WO2019028812A1 - 一种路径转换方法及相关设备 - Google Patents

一种路径转换方法及相关设备 Download PDF

Info

Publication number
WO2019028812A1
WO2019028812A1 PCT/CN2017/097024 CN2017097024W WO2019028812A1 WO 2019028812 A1 WO2019028812 A1 WO 2019028812A1 CN 2017097024 W CN2017097024 W CN 2017097024W WO 2019028812 A1 WO2019028812 A1 WO 2019028812A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
message
base station
power control
closed loop
Prior art date
Application number
PCT/CN2017/097024
Other languages
English (en)
French (fr)
Inventor
徐海博
坦尼纳坦•爱德华
邝奕如
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17920927.5A priority Critical patent/EP3657872B1/en
Priority to CN201780065058.6A priority patent/CN109845363B/zh
Priority to PCT/CN2017/097024 priority patent/WO2019028812A1/zh
Priority to US16/638,020 priority patent/US11259234B2/en
Publication of WO2019028812A1 publication Critical patent/WO2019028812A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/28Connectivity information management, e.g. connectivity discovery or connectivity update for reactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of wireless network technologies, and in particular, to a path conversion method and related devices.
  • the communication between the user equipment (User Equipment, UE) and the base station includes two modes: communication mode 1, the user equipment is directly connected to the base station for data communication, and the communication mode is called direct connection communication.
  • the user The communication path between the device and the base station is called a direct connection path; in the communication mode 2, the first user equipment is connected to the base station through the second user equipment for data communication, and the communication mode is called indirect communication, in this case, The communication path between a user equipment and a base station is called an indirect path.
  • the first user equipment is a remote user equipment (Remote UE), and the second user equipment is a relay user equipment (Relay UE).
  • the Remote UE can switch between two connection modes or between two paths. For example, as shown in FIG.
  • the Remote UE may choose to connect to the base station through a nearby Relay UE, and switch from the direct connection path to the indirect direct path.
  • the connection between the Remote UE and the Relay UE may be difficult to maintain, and the Remote UE needs to convert the indirect path to the indirect path.
  • the Remote UE In the process of the Remote UE transitioning from the indirect path to the direct path, the Remote UE needs to obtain the uplink synchronization of the serving cell of the direct connection path through the random access procedure, and then communicate with the base station through the direct connection path.
  • the random access process between the remote UE and the base station through the direct connection path not only the power consumption of the Remote UE is consumed, but also the service of the Remote UE is interrupted especially in the case of enhancing the coverage.
  • the present invention provides a path conversion method and related equipment, which can not only maintain service continuity in the path conversion process, improve service quality, but also save power consumption of random UEs for random access.
  • the present application provides a path conversion method, including: a base station first receiving a first message sent by a first user equipment, where the first message is used to request that the first user equipment communicate with the base station by using the second user equipment.
  • the indirect path is switched to the direct path that communicates with the base station; and then the second message is sent to the first user equipment, where the second message is used to indicate that the first user equipment performs path conversion, and the second message includes the timing advance and the closed loop power.
  • At least one of a control value and an uplink authorization configuration Therefore, the path information is completed through the above information, the continuity of the service is maintained, the service quality is improved, and the power consumption of the first user equipment for random access is saved.
  • the base station sends a third message to the second user equipment, where the third message is used to indicate that the second user equipment reports the timing advance; and then receives the fourth message sent by the second user equipment, where the fourth message includes The amount of time ahead.
  • the third message may also be used to indicate that the second user equipment reports the closed loop power control value.
  • the fourth message also includes a closed loop power control value currently used by the second user equipment.
  • the base station sends a fifth message to the second user equipment, where the fifth message is used to indicate that the second user equipment reports the closed loop power control value; and then receives the sixth message sent by the second user equipment, and the sixth message.
  • the message contains a closed loop power control value.
  • the first message further includes a link quality of a current short-range communication link between the first user equipment and the second user equipment.
  • connection of the short-distance link between the first user equipment and the second user equipment may be a 3rd Generation Partnership Project (3GPP)-based side link, Bluetooth. Connection to any of the WLAN technologies.
  • 3GPP 3rd Generation Partnership Project
  • the base station receives a Radio Resource Control (RRC) connection reconfiguration complete message sent by the first user equipment, and the RRC connection reconfiguration complete message is used by the first user equipment according to the timing advance. At least one of a closed loop power control value and an uplink grant configuration is sent.
  • RRC Radio Resource Control
  • the base station after receiving the first message sent by the first user equipment, determines whether the current link quality between the first user equipment and the second user equipment is greater than a preset threshold, if the current If the link quality is greater than the preset threshold, the third message is sent to the second user equipment. If the current link quality is not greater than the preset threshold, no processing is performed.
  • a further aspect of the present application provides a path conversion method, including: a first user equipment sends a first message to a base station, where the first message is used to request that the first user equipment communicate with the base station by using the second user equipment. Directly connecting the direct connection path to the direct connection path with the base station; and then receiving the second message sent by the base station, where the second message includes at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration; the first user equipment is configured according to The second message performs path conversion. Therefore, the path information is completed through the above information, the continuity of the service is maintained, the service quality is improved, and the power consumption of the first user equipment for random access is saved.
  • the first user equipment after performing the path conversion according to the second message, sends the radio resource control connection reconfiguration to the base station according to at least one of the timing advance, the closed loop power control value, and the uplink authorization configuration. Message.
  • the first user equipment may adjust the time advance of the uplink physical signal including the physical uplink shared channel according to the value of the timing advance delivered by the base station to ensure synchronization with the base station. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station. Or, the sending resource of the physical uplink shared channel (PUSCH) is determined according to the uplink grant configuration sent by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • a further aspect of the present application provides a path conversion method, including: a second user equipment receives a third message sent by a base station, where the third message is used to indicate that the second user equipment reports a timing advance; and then sends a fourth message to the base station.
  • the fourth message includes a timing advance of the second user equipment. Thereby, the base station acquires the timing advance and completes the path conversion.
  • the second user equipment receives the fifth message sent by the base station, where the fifth message is used to indicate that the second user equipment reports the closed loop power control value; and then sends a sixth message to the base station, where the sixth message includes the second message.
  • the closed loop power control value of the user equipment is used to indicate that the second user equipment reports the closed loop power control value.
  • the third message may also be used to indicate that the second user equipment reports the closed loop power control value.
  • the fourth message also includes a closed loop power control value currently used by the second user equipment.
  • a further aspect of the present application provides a path conversion method, including: receiving, by a base station, a first message sent by a second user equipment, where the first message is used to request to release a connection between a link between the second user equipment and the first user equipment. And then sending a second message to the first user equipment, where the second message is used to indicate that the first user equipment switches from the indirect path that communicates with the base station by using the second user equipment to the direct path that communicates with the base station, and second The message contains the amount of time advancement, closed At least one of a ring power control value and an uplink authorization configuration. Therefore, the path information is completed through the above information, the continuity of the service is maintained, the service quality is improved, and the power consumption of the first user equipment for random access is saved.
  • the first message includes a timing advance of the second user equipment.
  • the first message further includes a closed loop power control value of the second user equipment.
  • the radio resource control connection reconfiguration complete message sent by the first user equipment is received, and the radio resource control connection reconfiguration complete message is used by the first user equipment.
  • the transmission is performed according to at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration.
  • a further aspect of the present application provides a path conversion method, including: a first user equipment first receives a second message sent by a base station, where the second message is sent by the base station after receiving the first message sent by the second user equipment, first The message is used to request to release the connection of the link between the second user equipment and the first user equipment, and the second message includes at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration; and then according to the second message, The indirect path that communicates with the base station by the second user equipment is switched to a direct path that communicates with the base station. Therefore, the path information is completed through the above information, the continuity of the service is maintained, the service quality is improved, and the power consumption of the first user equipment for random access is saved.
  • the first message includes a timing advance of the second user equipment.
  • the first message further includes a closed loop power control value of the second user equipment.
  • the first user equipment switches from the indirect path that communicates with the base station by using the second user equipment to the direct path that communicates with the base station according to the second message, according to the timing advance, And transmitting, by the at least one of the closed loop power control value and the uplink grant configuration, a radio resource control connection reconfiguration complete message to the base station.
  • the first user equipment may adjust the time advance of the uplink physical signal including the physical uplink shared channel according to the value of the timing advance delivered by the base station to ensure synchronization with the base station. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station. Or determining the sending resource of the physical uplink shared channel according to the uplink grant configuration delivered by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • a further aspect of the present application provides a path conversion method, including: a base station first receiving a first message sent by a first user equipment, where the first message is used to request that the first user equipment communicate with the base station by using the second user equipment.
  • the indirectly connected path is switched to the direct connection path with the base station, and after the first user equipment acquires the timing advance and/or the closed loop power control value from the second user equipment, the base station sends a fourth message to the first user equipment.
  • the fourth message includes an uplink authorization configuration and/or a closed-loop power control value, so that path conversion is performed through the above information, the continuity of the service is maintained, the service quality is improved, and the power consumption of the first user equipment for random access is saved.
  • the first message further includes a current link quality between the first user equipment and the second user equipment.
  • the base station after receiving the first message sent by the first user equipment, determines whether the current link quality between the first user equipment and the second user equipment is greater than a preset threshold, if the current If the link quality is greater than the preset threshold, the third message is sent to the second user equipment. If the current link quality is not greater than the preset threshold, no processing is performed.
  • the radio resource control connection reconfiguration complete message sent by the first user equipment is received, and the radio resource control connection reconfiguration complete message is used by the first
  • the user equipment transmits according to at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration.
  • a further aspect of the present application provides a path conversion method, including: a first user equipment sends a first message to a base station, where the first message is used to request that the first user equipment communicate with the base station by using the second user equipment.
  • the direct path is switched to a direct path that communicates with the base station.
  • the first user equipment sends a second message to the second user equipment, and receives a third message of the second user equipment, where the third message includes a timing advance and/or a closed loop power control value.
  • the first user equipment receives the fourth message sent by the base station, where the fourth message includes an uplink authorization configuration and/or a closed loop power control value, thereby completing path conversion through the foregoing information, maintaining service continuity, improving service quality, and saving the first user.
  • the power consumption of the device for random access including: a first user equipment sends a first message to a base station, where the first message is used to request that the first user equipment communicate with the base station by using the second user equipment.
  • the direct path
  • the first user equipment sends the first message, receives the fourth message, and sends the second message, and the third message can be received in any order.
  • the first user equipment may first send the first message and send the second message before receiving the fourth message.
  • the first user equipment may first send the first message, and then send the second message after receiving the fourth message.
  • the first user equipment may first send the second message and send the first message before receiving the third message.
  • the first user equipment may first send the second message, and then send the first message after receiving the third message.
  • the first user equipment may adjust the time advance of the uplink physical signal including the physical uplink shared channel according to the value of the timing advance sent by the second user equipment to ensure synchronization with the base station. . Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station or the second user equipment. Or determining the sending resource of the physical uplink shared channel according to the uplink grant configuration delivered by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • the first user equipment sends a radio resource control connection reconfiguration complete message to the base station according to at least one of a timing advance, a closed loop power control value, and an uplink grant configuration.
  • a further aspect of the present application provides a path conversion method, including: receiving, by a base station, a second message sent by a first user equipment, where the second message is used to request that the first user equipment communicate with the base station by using the second user equipment.
  • the indirect path is switched to the direct connection path with the base station, and then the third message is sent to the first user equipment, where the third message includes the uplink authorization configuration, so that the path conversion is completed through the above information, and the continuity of the service is maintained and improved.
  • the quality of the service is saved, and the power consumption of the first user equipment for random access is saved.
  • the radio resource control connection reconfiguration complete message sent by the first user equipment is received, and the radio resource control connection reconfiguration complete message is used by the first user equipment.
  • the transmission is performed according to at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration.
  • a further aspect of the present application provides a path conversion method, including: a first user equipment first receiving a first message sent by a second user equipment, where the first message includes a value of a timing advance and/or a closed loop power control, and then The base station sends a second message, and after receiving the second message, the base station returns a third message to the first user equipment, where the third message includes the value of the uplink authorization configuration and/or the closed loop power control, so that the path information is completed through the above information, and the service is maintained. Continuity, improve service quality, and save power consumption of random access by the first user equipment.
  • the first user equipment sends a radio resource control connection reconfiguration complete message to the base station according to the uplink grant configuration.
  • the first user equipment may adjust the time advance of the uplink physical signal including the physical uplink shared channel according to the value of the timing advance sent by the second user equipment to ensure the same as the base station. step. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station or the second user equipment. Or, the sending resource of the physical uplink shared channel is determined according to the uplink grant configuration sent by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • the second message includes indication information, which is used to indicate that the first user equipment has obtained the timing advance, or that the first user equipment has obtained the timing advance and the closed loop power control value.
  • Yet another aspect of the present application provides a base station configured to implement the methods and functions performed by a base station in the various aspects described above, implemented by hardware/software, the hardware/software comprising units corresponding to the functions described above.
  • Yet another aspect of the present application provides a first user equipment configured to implement the method and function performed by the first user equipment in the various aspects described above, implemented by hardware/software, the hardware/software including The unit corresponding to the above function.
  • Yet another aspect of the present application provides a second user equipment configured to implement the methods and functions performed by the second user equipment in the various aspects described above, implemented by hardware/software, the hardware/software including The unit corresponding to the above function.
  • a base station including: a processor, a memory, and a communication bus, wherein the communication bus is used to implement connection communication between the processor and the memory, and the processor executes a program stored in the memory for implementing the above A step in a path conversion method provided by various aspects.
  • Yet another aspect of the present application provides a first user equipment, including: a processor, a memory, and a communication bus, wherein the communication bus is used to implement connection communication between the processor and the memory, and the processor executes a program stored in the memory for implementation The steps in a path conversion method provided by the above various aspects.
  • Yet another aspect of the present application provides a second user equipment, including: a processor, a memory, and a communication bus, wherein the communication bus is used to implement connection communication between the processor and the memory, and the processor executes a program stored in the memory for implementation The steps in a path conversion method provided by the above various aspects.
  • the base station provided by the present application may include a module for performing the behavior of the network device in the above method design.
  • Modules can be software and/or hardware.
  • the first user equipment provided by the present application may include a module for performing a terminal behavior in the above method design.
  • Modules can be software and/or hardware.
  • the second user equipment provided by the present application may include a module for performing a terminal behavior in the above method design.
  • Modules can be software and/or hardware.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods of the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the various aspects described above.
  • FIG. 1(A) is a schematic diagram of a path transition provided by a prior art solution
  • FIG. 1(B) is a schematic diagram of another path conversion provided by the prior art solution
  • FIG. 2 is a schematic structural diagram of a path conversion system according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a path conversion method according to an embodiment of the present application.
  • FIG. 4(A) is a schematic diagram of a format of a MAC CE according to an embodiment of the present application.
  • FIG. 4(B) is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of another path conversion method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart diagram of another path conversion method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of another path conversion method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a first user equipment according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a second user equipment according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another base station proposed in this application.
  • FIG. 12 is a schematic structural diagram of another first user equipment according to the present application.
  • FIG. 13 is a schematic structural diagram of another second user equipment proposed by the present application.
  • FIG. 2 is a schematic structural diagram of a path conversion system according to an embodiment of the present disclosure.
  • the path conversion system includes a first user equipment, a second user equipment, and a base station, where the first user equipment is a remote user.
  • the second user equipment is a relay user equipment.
  • the first user equipment may communicate with the base station through the second user equipment, or may directly communicate with the base station.
  • the first user equipment or the second user equipment in the embodiments of the present application may be any device having a wireless transceiving function, and may be a device that provides a voice and/or data connection to the user, or may be connected to, for example, A computing device such as a laptop or desktop computer, or it may be a standalone device such as a Personal Digital Assistant (PDA).
  • PDA Personal Digital Assistant
  • the first user equipment or the second user equipment may also be referred to as a system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, remote terminal, access terminal, user terminal, user agent or user equipment.
  • the base station in the embodiment of the present application may be an access point, a Node B, an Evolution Bureau (eNB), or a 5G base station (gNB), which refers to one or more sectors on the air interface.
  • eNB Evolution Bureau
  • gNB 5G base station
  • the base station can act as a router between the wireless terminal and the rest of the access network, which can include an internet protocol network.
  • the base station can also coordinate the management of the attributes of the air interface.
  • FIG. 3 is a schematic flowchart diagram of a path conversion method according to an embodiment of the present disclosure, where the method includes but is not limited to the following steps:
  • the first user equipment communicates with the base station by using the second user equipment, where the first user equipment and the second user equipment pass the 3GPP side link, the wireless local area network (WLAN), or the Bluetooth. Any one of them performs a short-distance link connection.
  • the link between the first user equipment and the second user equipment cannot be maintained, and the first user equipment may send a first message to the base station, where the first message is used. And requesting to convert the first user equipment from an indirect path that communicates with the base station by using the second user equipment to a direct connection path that communicates with the base station.
  • the first message further includes a current link quality between the first user equipment and the second user equipment.
  • the base station sends a third message to the second user equipment.
  • the third message may be used to indicate that the second user equipment reports the timing advance.
  • the third message is further used to indicate that the second user equipment reports the closed loop power control value.
  • the base station determines whether the current link quality between the first user equipment and the second user equipment is greater than a preset threshold, if the current link quality is greater than the current The preset threshold is sent to the second user equipment, and if the current link quality is not greater than the preset threshold, no processing is performed.
  • the first user equipment can use the timing advance of the second user equipment.
  • the second user equipment sends a fourth message to the base station, where the fourth message includes a timing advance.
  • the fourth message further includes a closed loop power control value currently used by the second user equipment.
  • the time advancement may include an uplink time advancement currently used by the second user equipment, and the length is 11 bits.
  • the RX_TX time difference of the user equipment to the signal frame currently measured by the second user equipment may be included, and the length is 12bit.
  • the third message and the fourth message may be an RRC message
  • the third message may be a request message
  • the fourth message is a response message.
  • the third message may be a UEInformationRequest message
  • the fourth message may be a UEInformationResponse message.
  • the third message and the fourth message may be a Media Access Control-Control Element (MAC CE).
  • the third message is a MAC CE that only contains one MAC subheader.
  • the MAC subheader includes a value of a predefined Logical Channel Identify (LCID).
  • LCID Logical Channel Identify
  • the value of the LCID is used to indicate that the MAC CE is a MAC CE that requests the second user equipment to report the timing advance.
  • the value of the LCID is used to indicate that the MAC CE is a MAC CE that requests the second user equipment to report the timing advance and the closed loop power control value. As shown in FIG. 4(A), FIG.
  • FIG. 4(A) is a schematic diagram of a format of a MAC CE of a fourth message according to an embodiment of the present application, where the fourth message only includes the timing advance of the second user equipment ( Timing Advance, TA).
  • FIG. 4(B) is a schematic diagram of a format of a MAC CE of another fourth message according to an embodiment of the present application, where the fourth message includes a timing advance of the second user equipment. Closed loop power control value (Power Control, PC).
  • the timing advance is 11 bits as an example, and it is also possible to expand to 12 bits.
  • the third message is a Physical Downlink Control Channel (PDCCH) order
  • the fourth message is a MAC CE.
  • the value of the Mask Index of the Physical Random Access Channel (PRACH) included in the PDCCH oder may be set to any one of the current reserved values.
  • PRACH Mask Index is set to the current reserved value
  • the PDCCH order is used to command the second user equipment to report the timing advance, or to command the second user equipment to report the timing advance and the closed loop power control value, and It is not used to trigger the second user equipment to perform random access. As shown in FIG. 4(A), FIG.
  • FIG. 4(A) is a schematic diagram of a format of a MAC CE of a fourth message according to an embodiment of the present application, where the fourth message only includes the timing advance of the second user equipment.
  • FIG. 4(B) is a schematic diagram of a format of another MAC CE of the fourth message provided by the embodiment of the present application, where The four messages contain the timing advance and the closed loop power control value of the second user equipment.
  • the timing advance is 11 bits as an example, and it is also possible to expand to 12 bits.
  • the base station may send a fifth message to the second user equipment, where the fifth message is used to instruct the second user equipment to report the closed loop power control value; and then receive the second user equipment. And a sixth message sent, where the sixth message includes the closed loop power control value.
  • the fifth message and the sixth message may adopt the same signaling design as the third message and the fourth message, respectively.
  • the base station sends a second message to the first user equipment, where the second message is used to indicate that the first user equipment performs path switching, where the second message includes a timing advance, a closed loop power control value, and an uplink grant. At least one of the configurations.
  • the first user equipment performs path conversion according to the second message.
  • the first user equipment can adjust the time advance of the uplink physical signal including the physical uplink shared channel to ensure synchronization with the base station according to the value of the time advance amount delivered by the base station. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station. Or determining the sending resource of the physical uplink shared channel according to the uplink grant configuration delivered by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • the first user equipment sends a radio resource control connection reconfiguration complete message to the base station according to at least one of the timing advance, the closed loop power control value, and the uplink grant configuration.
  • the base station initiates an RRC connection reconfiguration process to the second user equipment to release the link between the second user equipment and the first user equipment.
  • the connection and reconfiguration of the data radio bearer of the second user equipment with the base station is a simple RRC connection reconfiguration process.
  • the first user equipment sends a first message to the base station, requesting to use the first user equipment from the second user, because the link between the first user equipment and the second user equipment cannot be maintained.
  • the indirect path that the device communicates with the base station is switched to a direct path that communicates with the base station, and after receiving the first message, the base station returns a time advance amount, a closed loop power control value, and an uplink authorization to the first user equipment.
  • the first user equipment completes the path conversion, thereby maintaining service continuity, improving service quality, and saving power consumption of the first user equipment for random access.
  • FIG. 5 is a schematic flowchart diagram of another path conversion method according to an embodiment of the present disclosure, where the method includes but is not limited to the following steps:
  • the first user equipment communicates with the base station by using the second user equipment, where the first user equipment and the second user equipment perform short-distance chain through any one of a 3GPP side link, a wireless local area network, or Bluetooth. Road connection.
  • the second user equipment sends a first message to the base station, where the first message is used to request release.
  • the base station may release the connection of the link between the second user equipment and the first user equipment.
  • the second user equipment sends a first message to the base station, and after receiving the response message returned by the base station, the second user equipment releases the connection of the link between the second user equipment and the first user equipment.
  • the first message may include a timing advance.
  • the first message further includes a closed loop power control value currently used by the second user equipment.
  • the time advancement may include an uplink time advancement currently used by the second user equipment, and the length is 11 bits.
  • the RX_TX time difference of the user equipment to the signal frame currently measured by the second user equipment may be included, and the length is 12bit.
  • the base station sends a second message to the first user equipment, where the second message is used to indicate that the first user equipment is switched from the indirect path that communicates with the base station by using the second user equipment to The direct connection path that the base station performs communication, the second message includes at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration.
  • the first user equipment performs path conversion according to the second message.
  • the first user equipment can adjust the time advance of the uplink physical signal including the physical uplink shared channel to ensure synchronization with the base station according to the value of the time advance amount delivered by the base station. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station. Or determining the sending resource of the physical uplink shared channel according to the uplink grant configuration delivered by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • the first user equipment sends a radio resource control connection reconfiguration complete message to the base station according to at least one of the timing advance, the closed loop power control value, and the uplink grant configuration.
  • the base station initiates an RRC connection reconfiguration process to the second user equipment to release the link between the second user equipment and the first user equipment.
  • the connection and reconfiguration of the data radio bearer of the second user equipment with the base station is a simple RRC connection reconfiguration process.
  • the first user equipment sends a first message to the base station, requesting to release the second user equipment and the first user equipment, because the link between the first user equipment and the second user equipment cannot be maintained.
  • the base station sends at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration to the first user equipment, so that the first user equipment completes the path conversion, thereby maintaining The continuity of the service improves the quality of the service and saves the power consumption of the first user equipment for random access.
  • FIG. 6 is a schematic flowchart diagram of another path conversion method according to an embodiment of the present disclosure, where the method includes but is not limited to the following steps:
  • the first user equipment communicates with the base station by using the second user equipment, where the first user equipment and the second user equipment perform short-distance chain through any one of a 3GPP side link, a wireless local area network, or a Bluetooth. Road connection.
  • the first user equipment may send a first message to the base station, where the first message is used, because the link between the first user equipment and the second user equipment cannot be maintained due to the movement of the first user equipment or the second user equipment. And requesting to convert the first user equipment from an indirect path that communicates with the base station by using the second user equipment to a direct connection path that communicates with the base station.
  • the first message further includes a current link quality between the first user equipment and the second user equipment.
  • the first user equipment sends a second message to the second user equipment.
  • the second message may be used to indicate that the second user equipment returns a timing advance.
  • the second message is further used to indicate that the second user equipment returns a closed loop power control value.
  • the second user equipment sends a third message to the first user equipment, where the third message includes a timing advance.
  • the third message further includes a closed loop power control value currently used by the second user equipment.
  • the time advancement may include an uplink time advancement currently used by the second user equipment, and the length is 11 bits.
  • the RX_TX time difference of the user equipment to the signal frame currently measured by the second user equipment may be included, and the length is 12bit.
  • the second message and the third message are both PC5 signaling.
  • the second message and the third message are both MAC CEs, and the format of the MAC CE is the same as that in the foregoing embodiment, and details are not described herein again.
  • the base station sends a fourth message to the first user equipment, where the fourth message is used to indicate that the first user equipment performs path switching, and the second message includes an uplink authorization configuration.
  • the fourth message further includes a closed loop power control value pre-configured by the base station.
  • the base station determines whether the current link quality between the first user equipment and the second user equipment is greater than a preset threshold, if the current link quality is greater than the current The preset threshold is sent to the second user equipment, and if the current link quality is not greater than the preset threshold, no processing is performed.
  • the first user equipment can use the timing advance of the second user equipment.
  • the first user equipment sends the first message, receives the fourth message, and sends the second message, and the third message may be received in any order.
  • the first user equipment may first send the first message and send the second message before receiving the fourth message.
  • the first user equipment may first send the first message, and then send the second message after receiving the fourth message.
  • the first user equipment may first send the second message and send the first message before receiving the third message.
  • the first user equipment may first send the second message, and then send the first message after receiving the third message.
  • the first user equipment performs path conversion according to at least one of the timing advance, the closed loop power control value, and the uplink authorization configuration.
  • the first user equipment may adjust the time advance of the uplink physical signal including the physical uplink shared channel according to the value of the timing advance sent by the second user equipment to ensure synchronization with the base station. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station or the second user equipment. Or determining the sending resource of the physical uplink shared channel according to the uplink grant configuration delivered by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • the first user equipment sends a radio resource control connection reconfiguration complete message to the base station according to at least one of the timing advance, the closed loop power control value, and the uplink grant configuration.
  • the base station initiates an RRC connection reconfiguration process to the second user equipment to release the link between the second user equipment and the first user equipment.
  • the connection and reconfiguration of the data radio bearer of the second user equipment with the base station is a simple RRC connection reconfiguration process.
  • the first user equipment sends a first message to the base station, requesting to use the first user equipment from the second user equipment, because the link between the first user equipment and the second user equipment cannot be maintained. Transmitting the indirect path of the communication by the base station to the direct connection path with the base station, and after receiving the first message, the base station returns an uplink authorization configuration and/or a closed loop power control value to the first user equipment, and the first user The device obtains the timing advance and/or the closed loop power control value from the second user equipment, and the first user equipment completes the path conversion and maintains the service. Continuity, improve service quality, and save power consumption of random access by the first user equipment.
  • FIG. 7 is a schematic flowchart diagram of another path conversion method according to an embodiment of the present disclosure, where the method includes but is not limited to the following steps:
  • the first user equipment communicates with the base station by using the second user equipment, where the first user equipment and the second user equipment perform short-distance chain through any one of a 3GPP side link, a wireless local area network, or a Bluetooth. Road connection.
  • the second user equipment sends a first message to the first user equipment, where the first message is used to notify or instruct the first user equipment to release the first The connection between the two user equipments and the link between the first user equipment.
  • the first message includes a timing advance currently used by the second user equipment.
  • the first message further includes a value of a closed loop power control currently used by the second user equipment.
  • the time advancement may include an uplink time advancement currently used by the second user equipment, and the length is 11 bits.
  • the RX_TX time difference of the user equipment to the signal frame currently measured by the second user equipment may be included, and the length is 12bit.
  • the first user equipment sends a second message to the base station, where the second message is used to request that the first user equipment is switched from the indirect path that communicates with the base station by using the second user equipment to The direct connection path through which the base station communicates.
  • the second message includes indication information, where the indication information is used to indicate that the first user equipment has obtained the timing advance, or that the first user equipment has obtained the timing advance and the closed loop power control value.
  • the base station sends a third message to the first user equipment, where the third message includes an uplink authorization configuration.
  • the third message further includes a value of a closed loop power control pre-configured by the base station.
  • the first user equipment performs path conversion according to at least one of the timing advance, the closed loop power control value, and the uplink authorization configuration.
  • the first user equipment may adjust the time advance of the uplink physical signal including the physical uplink shared channel according to the value of the timing advance sent by the second user equipment to ensure synchronization with the base station. Or determining the transmit power of the physical uplink shared channel according to the closed loop power control value sent by the base station or the second user equipment. Or determining the sending resource of the physical uplink shared channel according to the uplink grant configuration delivered by the base station. After the above processing, the first user equipment can communicate with the base station through the direct connection path.
  • the first user equipment sends a radio resource control connection reconfiguration complete message to the base station according to at least one of the timing advance, the closed loop power control value, and the uplink grant configuration.
  • the base station initiates an RRC connection reconfiguration process to the second user equipment to release the link between the second user equipment and the first user equipment.
  • the connection and reconfiguration of the data radio bearer of the second user equipment with the base station is a simple RRC connection reconfiguration process.
  • the first user equipment sends the first message to the first user equipment, because the link between the first user equipment and the second user equipment cannot be maintained, and the first user equipment obtains the time advance amount and And/or the closed-loop power control value, the first user equipment sends a second message to the base station, and after the base station returns the third message, the first user equipment obtains an uplink authorization configuration and/or a closed-loop power control value, and then the first user equipment completes the path conversion.
  • the continuity of the service is maintained, the quality of the service is improved, and the power consumption of the first user equipment for random access is saved.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station may include a receiving module 801 and a sending module 802.
  • the detailed description of each module is as follows.
  • the receiving module 801 is configured to receive a first message sent by the first user equipment, where the first message is used to request that the first user equipment pass the second user equipment and The indirect path of the communication performed by the base station is switched to the direct connection path that communicates with the base station; the sending module 802 is configured to send a second message to the first user equipment, where the second message is used to indicate the The first user equipment performs path conversion, and the second message includes at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration.
  • the sending module 802 is further configured to send a third message to the second user equipment, where the third message is used to indicate that the second user equipment reports the timing advance; the receiving module 801 is further used. Receiving a fourth message sent by the second user equipment, where the fourth message includes the timing advance.
  • the sending module 802 is further configured to send, to the second user equipment, a fifth message, where the fifth message is used to instruct the second user equipment to report the closed loop power control value;
  • the receiving module 801 is further configured to receive a sixth message sent by the second user equipment, where the sixth message includes the closed loop power control value.
  • the receiving module 801 is further configured to receive a radio resource control connection reconfiguration complete message sent by the first user equipment, where the radio resource control connection reconfiguration complete message is used by the first user equipment according to the time At least one of an advance amount, the closed loop power control value, and the uplink grant configuration is transmitted.
  • the receiving module 801 is configured to receive a first message sent by the second user equipment, where the first message is used to request release between the second user equipment and the first user equipment. a connection of the link, the sending module 802, configured to send a second message to the first user equipment, where the second message is used to indicate that the first user equipment is performed by using the second user equipment and the base station.
  • the indirect path of the communication is switched to a direct path that communicates with the base station, and the second message includes at least one of a timing advance, a closed loop power control value, and an uplink grant configuration.
  • the receiving module 801 is further configured to receive a radio resource control connection reconfiguration complete message sent by the first user equipment, where the radio resource control connection reconfiguration complete message is used by the first user equipment according to the time At least one of an advance amount, the closed loop power control value, and the uplink grant configuration is transmitted.
  • each module may also perform the methods and functions performed by the base station in the foregoing embodiments, corresponding to the corresponding descriptions of the method embodiments shown in FIG. 3, FIG. 5, FIG. 6, and FIG.
  • FIG. 9 is a schematic structural diagram of a first user equipment according to an embodiment of the present disclosure.
  • the first user equipment may include a sending module 901, a receiving module 902, and a processing module 903, where detailed descriptions of the modules are provided. as follows.
  • the sending module 901 is configured to send a first message to the base station, where the first message is used to request that the first user equipment communicate with the base station by using the second user equipment.
  • the indirect path is switched to the direct path that communicates with the base station;
  • the receiving module 902 is configured to receive the second message sent by the base station, where the second message includes a timing advance, a closed loop power control value, and an uplink.
  • the sending module 901 is further configured to: according to the timing advance, the closed loop power control value, and the At least one of the uplink grant configurations sends a radio resource control connection reconfiguration complete message to the base station.
  • the receiving module 902 is configured to receive a second message sent by the base station, where the second message is sent by the base station after receiving the first message sent by the second user equipment, where the a message for requesting release of a connection between the second user equipment and a link between the first user equipment, where the second message includes at least one of a timing advance, a closed loop power control value, and an uplink authorization configuration;
  • the processing module 903 is configured to, according to the second message, switch from an indirect path that communicates with the base station by using the second user equipment to a direct path that communicates with the base station.
  • the sending module 901 is further configured to send a radio resource control connection reconfiguration complete message to the base station according to at least one of the timing advance, the closed loop power control value, and the uplink grant configuration.
  • each module may also perform the method and function performed by the first user equipment in the foregoing embodiment, corresponding to the corresponding descriptions of the method embodiments shown in FIG. 3, FIG. 5, FIG. 6, and FIG.
  • FIG. 10 is a schematic structural diagram of a second user equipment according to an embodiment of the present disclosure.
  • the first user equipment may include a receiving module 1001 and a sending module 1002.
  • the detailed description of each module is as follows.
  • the receiving module 1001 is configured to receive a third message sent by the base station, where the third message is used to indicate that the second user equipment reports a timing advance;
  • the sending module 1002 is configured to send a fourth message to the base station, where the fourth message includes the timing advance of the second user equipment.
  • the receiving module 1001 is further configured to receive a fifth message sent by the base station, where the fifth message is used to indicate that the second user equipment reports a closed loop power control value, and the sending module 1002 is further used to The base station sends a sixth message, where the sixth message includes the closed loop power control value of the second user equipment.
  • each module may also perform the method and function performed by the second user equipment in the foregoing embodiment, corresponding to the corresponding descriptions of the method embodiments shown in FIG. 3, FIG. 5, FIG. 6, and FIG.
  • FIG. 11 is a schematic structural diagram of another base station proposed by the present application.
  • the base station can include at least one processor 1101, such as a CPU, at least one communication interface 1102, at least one memory 1103, and at least one communication bus 1104.
  • the communication bus 1104 is used to implement connection communication between these components.
  • the communication interface 1102 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1103 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 1103 can also optionally be at least one storage device located remotely from the aforementioned processor 1101.
  • a set of program codes is stored in the memory 1103, and the processor 1101 executes a program executed by the above-described base station in the memory 1103. Further, the processor may also cooperate with the memory and the communication interface to perform the operations of the base station in the foregoing application embodiment.
  • FIG. 12 is a schematic structural diagram of another first user equipment proposed by the present application.
  • the first user device can include at least one processor 1201, such as a CPU, at least one communication interface 1202, at least one memory 1203, and at least one communication bus 1204.
  • the communication bus 1204 is used to implement connection communication between these components.
  • the communication interface 1202 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1203 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 1203 can optionally be at least A storage device located remotely from the aforementioned processor 1201.
  • a set of program codes is stored in the memory 1203, and the processor 1201 executes the programs executed by the first user device in the memory 1203. Further, the processor may also cooperate with the memory and the communication interface to perform the operation of the first user equipment in the foregoing application embodiment.
  • FIG. 13 is a schematic structural diagram of another second user equipment proposed by the present application.
  • the second user device can include at least one processor 1301, such as a CPU, at least one communication interface 1302, at least one memory 1303, and at least one communication bus 1304.
  • the communication bus 1304 is used to implement connection communication between these components.
  • the communication interface 1302 of the device in the embodiment of the present application is used for signaling or data communication with other node devices.
  • the memory 1303 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • the memory 1303 can also optionally be at least one storage device located remotely from the aforementioned processor 1301.
  • a set of program codes is stored in the memory 1303, and the processor 1301 executes the programs executed by the above-described second user equipment in the memory 1303. Further, the processor may also cooperate with the memory and the communication interface to perform the operation of the second user equipment in the foregoing application embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种路径转换方法及相关设备,包括:基站接收第一用户设备发送的第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;所述基站向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备执行路径转换,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。从而保持在路径转换过程中业务的连续性,提高业务质量。

Description

一种路径转换方法及相关设备 技术领域
本申请涉及无线网络技术领域,尤其涉及一种路径转换方法及相关设备。
背景技术
用户设备(User Equipment,UE)与基站之间进行通信包括两种模式:通信模式一,用户设备与基站直接连接进行数据通信,这种通信模式称为直连通信,在这种情况下,用户设备与基站的通信路径称为直连路径;通信模式二,第一用户设备通过第二用户设备与基站连接进行数据通信,这种通信模式称为非直连通信,在这种情况下,第一用户设备与基站的通信路径称为非直连路径。其中,第一用户设备为远端用户设备(Remote UE),第二用户设备为中继用户设备(Relay UE)。Remote UE可以在两种连接模式或者两种路径间进行转换。例如,如图1(A)所示,当Remote UE与基站间的链路质量比较差时,Remote UE可以选择通过一个附近的Relay UE与基站进行连接,从直连路径转换到非直连路径。又如图1(B)所示,当Remote UE连接的Relay UE移动后,Remote UE和Relay UE之间的连接可能难以维持,Remote UE需要非直连路径转换到非直连路径。
在Remote UE从非直连路径转换到直连路径的过程中,Remote UE需要通过随机接入过程来获取直连路径的服务小区的上行同步,然后通过直连路径与基站进行通信。但是,Remote UE通过直连路径与基站进行随机接入过程中,不仅会消耗Remote UE的功耗,而且特别在增强覆盖范围内的情况下会造成Remote UE的业务中断。
发明内容
本申请提供了一种路径转换方法及相关设备,不仅可以在路径转换过程中保持业务连续,提高业务质量,而且可以节省Remote UE进行随机接入带来的功耗。
一方面,本申请提供了一种路径转换方法,包括:基站首先接收第一用户设备发送的第一消息,第一消息用于请求将第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径;然后向第一用户设备发送第二消息,第二消息用于指示第一用户设备执行路径转换,第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,基站向第二用户设备发送第三消息,第三消息用于指示第二用户设备上报时间提前量;然后接收第二用户设备发送的第四消息,第四消息包含时间提前量。
在另一种可能的设计中,第三消息还可以用于指示第二用户设备上报闭环功率控制值。第四消息还包括第二用户设备当前使用的闭环功率控制值。
在另一种可能的设计中,基站向第二用户设备发送第五消息,第五消息用于指示第二用户设备上报闭环功率控制值;然后接收第二用户设备发送的第六消息,第六消息包含闭环功率控制值。
在另一种可能的设计中,第一消息还包含第一用户设备与第二用户设备之间的当前的短距离通信链路的链路质量。
在另一种可能的设计中,第一用户设备与第二用户设备间的短距离链路的连接可以为基于第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的侧行链路、蓝牙和WLAN中的任意一项技术的连接。
在另一种可能的设计中,基站接收第一用户设备发送的无线资源控制(Radio Resource Control,RRC)连接重配置完成消息,无线资源控制连接重配置完成消息由第一用户设备根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项发送。
在另一种可能的设计中,基站接收到第一用户设备发送的第一消息之后,确定第一用户设备与第二用户设备之间的当前的链路质量是否大于预设阈值,如果当前的链路质量大于预设阈值,则向第二用户设备发送第三消息,如果当前的链路质量不大于预设阈值,则不做任何处理。
本申请的又一方面提供了一种路径转换方法,包括:第一用户设备向基站发送第一消息,第一消息用于请求将第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径;然后接收基站发送的第二消息,第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;第一用户设备根据第二消息执行路径转换。从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,第一用户设备根据第二消息执行路径转换之后,根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项,向基站发送无线资源控制连接重配置完成消息。
在另一种可能的设计中,第一用户设备可以根据基站下发的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站下发的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
本申请的又一方面提供了一种路径转换方法,包括:第二用户设备接收基站发送的第三消息,第三消息用于指示第二用户设备上报时间提前量;然后向基站发送第四消息,第四消息包含第二用户设备的时间提前量。从而基站获取到时间提前量,完成路径转换。
在一种可能的设计中,第二用户设备接收基站发送的第五消息,第五消息用于指示第二用户设备上报闭环功率控制值;然后向基站发送第六消息,第六消息包含第二用户设备的闭环功率控制值。
在另一种可能的设计中,第三消息还可以用于指示第二用户设备上报闭环功率控制值。第四消息还包括第二用户设备当前使用的闭环功率控制值。
本申请的又一方面提供了一种路径转换方法,包括:基站接收第二用户设备发送的第一消息,第一消息用于请求释放第二用户设备与第一用户设备间的链路的连接;然后向第一用户设备发送第二消息,第二消息用于指示第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径,第二消息包含时间提前量、闭 环功率控制值以及上行授权配置中的至少一项。从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,第一消息包含第二用户设备的时间提前量。
在另一种可能的设计中,第一消息还包含第二用户设备的闭环功率控制值。
在另一种可能的设计中,基站向第一用户设备发送第二消息之后,接收第一用户设备发送的无线资源控制连接重配置完成消息,无线资源控制连接重配置完成消息由第一用户设备根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项发送。
本申请的又一方面提供了一种路径转换方法,包括:第一用户设备首先接收基站发送的第二消息,第二消息由基站接收到第二用户设备发送的第一消息后发送,第一消息用于请求释放第二用户设备与第一用户设备间的链路的连接,第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;然后根据第二消息,从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径。从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,第一消息包含第二用户设备的时间提前量。
在另一种可能的设计中,第一消息还包含第二用户设备的闭环功率控制值。
在另一种可能的设计中,第一用户设备根据第二消息,从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径之后,根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项,向基站发送无线资源控制连接重配置完成消息。
在另一种可能的设计中,第一用户设备可以根据基站下发的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站下发的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
本申请的又一方面提供了一种路径转换方法,包括:基站首先接收第一用户设备发送的第一消息,第一消息用于请求将第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径,在第一用户设备从第二用户设备获取到时间提前量和/或闭环功率控制值之后,基站向第一用户设备发送第四消息,第四消息包含上行授权配置和/或闭环功率控制值,从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,第一消息还包含第一用户设备与第二用户设备之间的当前的链路质量。
在另一种可能的设计中,基站接收到第一用户设备发送的第一消息之后,确定第一用户设备与第二用户设备之间的当前的链路质量是否大于预设阈值,如果当前的链路质量大于预设阈值,则向第二用户设备发送第三消息,如果当前的链路质量不大于预设阈值,则不做任何处理。
在另一种可能的设计中,基站向第一用户设备发送的第四消息之后,接收第一用户设备发送的无线资源控制连接重配置完成消息,无线资源控制连接重配置完成消息由第一用 户设备根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项发送。
本申请的又一方面提供了一种路径转换方法,包括:第一用户设备向基站发送第一消息,第一消息用于请求将第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径。第一用户设备向第二用户设备发送第二消息,并接收第二用户设备的第三消息,第三消息包含时间提前量和/或闭环功率控制值。第一用户设备接收基站发送的第四消息,第四消息包含上行授权配置和/或闭环功率控制值,从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,第一用户设备发送第一消息,接收第四消息,以及发送第二消息,接收第三消息可以为任意顺序。例如,第一用户设备可以首先发送第一消息,在接收到第四消息前发送第二消息。又如,第一用户设备可以首先发送第一消息,在接收到第四消息后再发送第二消息。又如,第一用户设备可以首先发送第二消息,在接收到第三消息前发送第一消息。又如,第一用户设备可以首先发送第二消息,在接收到第三消息后再发送第一消息。
在另一种可能的设计中,第一用户设备可以根据第二用户设备发送的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站或者第二用户设备发送的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
在另一种可能的设计中,第一用户设备根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项,向基站发送无线资源控制连接重配置完成消息。
本申请的又一方面提供了一种路径转换方法,包括:基站接收第一用户设备发送的第二消息,第二消息用于请求将第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与基站进行通信的直连路径,然后向第一用户设备发送第三消息,第三消息中包含上行授权配置,从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,基站向第一用户设备发送的第三消息之后,接收第一用户设备发送的无线资源控制连接重配置完成消息,无线资源控制连接重配置完成消息由第一用户设备根据时间提前量、闭环功率控制值以及上行授权配置中的至少一项发送。
本申请的又一方面提供了一种路径转换方法,包括:第一用户设备首先接收第二用户设备发送的第一消息,第一消息包括时间提前量和/或闭环功率控制的值,然后向基站发送第二消息,基站接收到第二消息之后向第一用户设备返回第三消息,第三消息包含上行授权配置和/或闭环功率控制的值,从而通过以上信息完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
在一种可能的设计中,第一用户设备根据上行授权配置,向基站发送无线资源控制连接重配置完成消息。
在另一种可能的设计中,第一用户设备可以根据第二用户设备发送的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同 步。或者,根据基站或者第二用户设备发送的闭环功率控制值确定物理上行共享信道的发送功率。或者,根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
在另一种可能的设计中,第二消息中包含指示信息,指示信息用于指示第一用户设备已获得时间提前量,或者指示第一用户设备已获得时间提前量和闭环功率控制值。
本申请的又一方面提供了一种基站,该基站被配置为实现上述各个方面中基站所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的单元。
本申请的又一方面提供了一种第一用户设备,该第一用户设备被配置为实现上述各个方面中第一用户设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的单元。
本申请的又一方面提供了一种第二用户设备,该第一用户设备被配置为实现上述各个方面中第二用户设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的单元。
本申请的又一方面提供了一种基站,包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述各个方面提供的一种路径转换方法中的步骤。
本申请的又一方面提供了第一用户设备,包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述各个方面提供的一种路径转换方法中的步骤。
本申请的又一方面提供了第二用户设备,包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述各个方面提供的一种路径转换方法中的步骤。
在一个可能的设计中,本申请提供的基站可以包含用于执行上述方法设计中网络设备行为相对应的模块。模块可以是软件和/或是硬件。
在一个可能的设计中,本申请提供的第一用户设备可以包含用于执行上述方法设计中终端行为相对应的模块。模块可以是软件和/或是硬件。
在一个可能的设计中,本申请提供的第二用户设备可以包含用于执行上述方法设计中终端行为相对应的模块。模块可以是软件和/或是硬件。
本申请的又一方面提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1(A)是现有技术方案提供的一种路径转换的示意图;
图1(B)是现有技术方案提供的另一种路径转换的示意图;
图2是本申请实施例提供的一种路径转换系统的结构示意图;
图3是本申请实施例提供的一种路径转换方法的流程示意图;
图4(A)是本申请实施例提供的一种MAC CE的格式的示意图;
图4(B)是本申请实施例提供的另一种MAC CE的格式的示意图
图5是本申请实施例提供的另一种路径转换方法的流程示意图;
图6是本申请实施例提供的另一种路径转换方法的流程示意图;
图7是本申请实施例提供的另一种路径转换方法的流程示意图;
图8是本申请实施例提供的一种基站的结构示意图;
图9是本申请实施例提供的一种第一用户设备的结构示意图;
图10是本申请实施例提供的一种第二用户设备的结构示意图;
图11是本申请提出的另一种基站的结构示意图
图12是本申请提出的另一种第一用户设备的结构示意图;
图13是本申请提出的另一种第二用户设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图2,图2是本申请实施例提供的一种路径转换系统的结构示意图,该路径转换系统包括第一用户设备、第二用户设备和基站,其中,第一用户设备为远端用户设备,第二用户设备为中继用户设备。第一用户设备可以通过第二用户设备与基站进行通信,也可以直接与基站进行通信。本申请各实施例中的第一用户设备或第二用户设备可以是任意一种具有无线收发功能的设备,可以是指提供到用户的语音和/或数据连接的设备,也可以被连接到诸如膝上型计算机或台式计算机等的计算设备,或者其可以是诸如个人数字助理(Personal Digital Assistant,PDA)等的独立设备。第一用户设备或第二用户设备还可以称为系统、用户单元、用户站、移动站、移动台、远程站、接入点、远程终端、接入终端、用户终端、用户代理或用户装置。本申请实施例中的基站可以为接入点、节点B、演进型节点(Environment Bureau,eNB)或5G基站(Next generation base station,gNB),指在空中接口上通过一个或多个扇区与无线终端进行通信的接入网络中的设备。通过将已接收的空中接口帧转换为IP分组,基站可以作为无线终端和接入网络的其余部分之间的路由器,接入网络可以包括因特网协议网络。基站还可以对空中接口的属性的管理进行协调。
请参见图3,图3是本申请实施例提供的一种路径转换方法的流程示意图,该方法包括但不限于如下步骤:
S301,第一用户设备通过第二用户设备与基站进行通信,其中,第一用户设备与第二用户设备之间通过3GPP的侧行链路、无线局域网(Wireless Local Area Networks,WLAN)或蓝牙中的任意一种进行短距离链路连接。在第一用户设备或第二用户设备开始移动后,造成第一用户设备和第二用户设备之间的链路无法维持,第一用户设备可以向基站发送第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。
可选的,第一消息还包含所述第一用户设备与第二用户设备之间的当前的链路质量。
S302,基站向第二用户设备发送第三消息。其中,第三消息可以用于指示第二用户设备上报时间提前量。可选的,第三消息还可以用于指示第二用户设备上报闭环功率控制值。
可选的,基站接收到第一用户设备发送的第一消息之后,确定第一用户设备与第二用户设备之间的当前的链路质量是否大于预设阈值,如果当前的链路质量大于所述预设阈值,则向第二用户设备发送第三消息,如果当前的链路质量不大于所述预设阈值,则不做任何处理。其中,第一用户设备和第二用户设备之间的链路质量较好时,第一用户设备才可以使用第二用户设备的时间提前量。
S303,第二用户设备向基站发送第四消息,所述第四消息包括时间提前量。可选的,所述第四消息还包括第二用户设备当前使用的闭环功率控制值。其中,时间提前量可以包括第二用户设备当前使用的上行时间提前量,长度为11bit;也可以包括第二用户设备当前测得的用户设备对信号帧的收发时间差(RX_TX time difference),长度为12bit。
在一种可能的实现方式中,第三消息和第四消息可以为RRC消息,第三消息可以为请求消息,第四消息为响应消息。例如,第三消息可以为UEInformationRequest消息,第四消息可以为UEInformationResponse消息。
在另一种可能的实现方式中,第三消息和第四消息可以为介质访问控制的控制单元(Media Access Control-Control Element,MAC CE)。其中,第三消息是只包含一个MAC subheader的MAC CE。该MAC subheader中包含预先定义的逻辑信道标识(Logical Channel Identify,LCID)的值。该LCID的值用于指示该MAC CE为请求第二用户设备上报时间提前量的MAC CE。或者,该LCID的值用于指示该MAC CE为请求第二用户设备上报时间提前量和闭环功率控制值的MAC CE。如图4(A)所示,图4(A)是本申请实施例提供的一种第四消息的MAC CE的格式的示意图,其中,第四消息只包含第二用户设备的时间提前量(Timing Advance,TA)。如图4(B)所示,图4(B)是本申请实施例提供的另一种第四消息的MAC CE的格式的示意图,其中,第四消息包含第二用户设备的时间提前量和闭环功率控制值(Power Control,PC)。图4(A)和图4(B)中是以时间提前量为11bit为例来说明的,也可以扩展为12bit。
在另一种可能的实现方式中,第三消息为物理下行控制信道(Physical Downlink Control Channel,PDCCH)order,第四消息为MAC CE。所述PDCCH oder中包含的物理随机接入信道(Physical Random Access Channel,PRACH)的掩码索引(Mask Index)的值可以设置为目前的预留值中的任意一个。当所述PRACH Mask Index设置为目前的预留值时,表示所述PDCCH order是用于命令第二用户设备上报时间提前量,或者命令第二用户设备上报时间提前量和闭环功率控制值,而不是用于触发第二用户设备执行随机接入。如图4(A)所示,图4(A)是本申请实施例提供的一种第四消息的MAC CE的格式的示意图,其中,第四消息只包含第二用户设备的时间提前量。如图4(B)所示,图4(B)是本申请实施例提供的另一种第四消息的MAC CE的格式的示意图,其中,第 四消息包含第二用户设备的时间提前量和闭环功率控制值。图4(A)和图4(B)中是以时间提前量为11bit为例来说明的,也可以扩展为12bit。
可选的,所述基站可以向所述第二用户设备发送第五消息,所述第五消息用于指示所述第二用户设备上报所述闭环功率控制值;然后接收所述第二用户设备发送的第六消息,所述第六消息包含所述闭环功率控制值。其中,第五消息和第六消息可以分别采用与第三消息和第四消息相同的信令设计。
S304,基站向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备执行路径转换,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
S305,第一用户设备根据所述第二消息执行路径转换。
具体实现中,第一用户设备可以根据基站下发的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站下发的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
S306,第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
具体的,在第一用户设备完成从非直连路径到直连路径的转换后,基站向第二用户设备发起RRC连接重配置过程,以释放第二用户设备于第一用户设备间的链路的连接,并重配置第二用户设备与基站的数据无线承载。
在本申请实施例中,由于第一用户设备和第二用户设备之间的链路无法维持,由第一用户设备向基站发送第一消息,请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,基站接收到第一消息之后,向第一用户设备返回时间提前量、闭环功率控制值以及上行授权配置中的至少一项,进而第一用户设备完成路径转换,从而保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
请参见图5,图5是本申请实施例提供的另一种路径转换方法的流程示意图,该方法包括但不限于如下步骤:
S501,第一用户设备通过第二用户设备与基站进行通信,其中,第一用户设备与第二用户设备之间通过3GPP的侧行链路、无线局域网或蓝牙中的任意一种进行短距离链路连接。当第一用户设备和第二用户设备之间的链路无法维持时,例如,由于第二用户设备的电源不够,第二用户设备向基站发送第一消息,所述第一消息用于请求释放所述第二用户设备与第一用户设备间的链路的连接。
其中,第二用户设备向基站发送第一消息之后,可以由基站释放第二用户设备和第一用户设备间的链路的连接。或者,第二用户设备向基站发送第一消息,在接收到基站返回的响应消息后,由第二用户设备释放第二用户设备和第一用户设备间的链路的连接。
其中,所述第一消息可以包括时间提前量。可选的,所述第一消息还包括第二用户设备当前使用的闭环功率控制值。其中,时间提前量可以包括第二用户设备当前使用的上行时间提前量,长度为11bit;也可以包括第二用户设备当前测得的用户设备对信号帧的收发时间差(RX_TX time difference),长度为12bit。
S502,基站向第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
S503,第一用户设备根据所述第二消息执行路径转换。
具体实现中,第一用户设备可以根据基站下发的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站下发的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
S504,第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
具体的,在第一用户设备完成从非直连路径到直连路径的转换后,基站向第二用户设备发起RRC连接重配置过程,以释放第二用户设备于第一用户设备间的链路的连接,并重配置第二用户设备与基站的数据无线承载。
在本申请实施例中,由于第一用户设备和第二用户设备之间的链路无法维持,由第二用户设备向基站发送第一消息,请求释放所述第二用户设备与第一用户设备间的链路的连接,基站接收到第一消息之后,向第一用户设备发送时间提前量、闭环功率控制值以及上行授权配置中的至少一项,进而第一用户设备完成路径转换,从而保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
请参见图6,图6是本申请实施例提供的另一种路径转换方法的流程示意图,该方法包括但不限于如下步骤:
S601,第一用户设备通过第二用户设备与基站进行通信,其中,第一用户设备与第二用户设备之间通过3GPP的侧行链路、无线局域网或蓝牙中的任意一种进行短距离链路连接。由于第一用户设备或第二用户设备的移动,造成第一用户设备和第二用户设备之间的链路无法维持,第一用户设备可以向基站发送第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。
可选的,第一消息还包含所述第一用户设备与第二用户设备之间的当前的链路质量。
S602,第一用户设备向第二用户设备发送第二消息。其中,第二消息可以用于指示第二用户设备返回时间提前量。可选的,第二消息还可以用于指示第二用户设备返回闭环功率控制值。
S603,第二用户设备向第一用户设备发送第三消息,所述第三消息包括时间提前量。可选的,所述第三消息还包括第二用户设备当前使用的闭环功率控制值。其中,时间提前量可以包括第二用户设备当前使用的上行时间提前量,长度为11bit;也可以包括第二用户设备当前测得的用户设备对信号帧的收发时间差(RX_TX time difference),长度为12bit。
其中,所述第二消息和第三消息均为PC5信令。或者,所述第二消息和第三消息均为MAC CE,MAC CE的格式与上述实施例相同,此处不再赘述。
S604,基站向第一用户设备发送第四消息,所述第四消息用于指示所述第一用户设备执行路径转换,所述第二消息包含上行授权配置。可选的,所述第四消息还包含所述基站预先配置的闭环功率控制值。
可选的,基站接收到第一用户设备发送的第一消息之后,确定第一用户设备与第二用户设备之间的当前的链路质量是否大于预设阈值,如果当前的链路质量大于所述预设阈值,则向第二用户设备发送第三消息,如果当前的链路质量不大于所述预设阈值,则不做任何处理。其中,第一用户设备和第二用户设备之间的链路质量较好时,第一用户设备才可以使用第二用户设备的时间提前量。
需要说明的是,第一用户设备发送第一消息,接收第四消息,以及发送第二消息,接收第三消息可以为任意顺序。例如,第一用户设备可以首先发送第一消息,在接收到第四消息前发送第二消息。又如,第一用户设备可以首先发送第一消息,在接收到第四消息后再发送第二消息。又如,第一用户设备可以首先发送第二消息,在接收到第三消息前发送第一消息。又如,第一用户设备可以首先发送第二消息,在接收到第三消息后再发送第一消息。
S605,第一用户设备根据所述时间提前量、闭环功率控制值以及上行授权配置中的至少一项执行路径转换。
具体实现中,第一用户设备可以根据第二用户设备发送的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站或者第二用户设备发送的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
S606,第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
具体的,在第一用户设备完成从非直连路径到直连路径的转换后,基站向第二用户设备发起RRC连接重配置过程,以释放第二用户设备于第一用户设备间的链路的连接,并重配置第二用户设备与基站的数据无线承载。
在本申请实施例中,由于第一用户设备和第二用户设备之间的链路无法维持,由第一用户设备向基站发送第一消息,请求将第一用户设备从通过第二用户设备与基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,基站接收到第一消息之后,向第一用户设备返回上行授权配置和/或闭环功率控制值,并且第一用户设备从第二用户设备获取时间提前量和/或闭环功率控制值,进而第一用户设备完成路径转换,保持业务 的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
请参见图7,图7是本申请实施例提供的另一种路径转换方法的流程示意图,该方法包括但不限于如下步骤:
S701,第一用户设备通过第二用户设备与基站进行通信,其中,第一用户设备与第二用户设备之间通过3GPP的侧行链路、无线局域网或蓝牙中的任意一种进行短距离链路连接。由于第一用户设备和第二用户设备之间的链路无法维持,第二用户设备向第一用户设备发送第一消息,所述第一消息用于通知或指示第一用户设备释放所述第二用户设备与第一用户设备间的链路的连接。
其中,所述第一消息中包含第二用户设备当前使用的时间提前量。可选的,所述第一消息还包含第二用户设备当前使用的闭环功率控制的值。其中,时间提前量可以包括第二用户设备当前使用的上行时间提前量,长度为11bit;也可以包括第二用户设备当前测得的用户设备对信号帧的收发时间差(RX_TX time difference),长度为12bit。
S702,第一用户设备向基站发送第二消息,所述第二消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。其中,所述第二消息中包含指示信息,所述指示信息用于指示第一用户设备已获得时间提前量,或者指示第一用户设备已获得时间提前量和闭环功率控制值。
S703,基站向第一用户设备发送第三消息,所述第三消息中包含上行授权配置。可选的,所述第三消息中还包含基站预先配置的闭环功率控制的值。
S704,第一用户设备根据所述时间提前量、闭环功率控制值以及上行授权配置中的至少一项执行路径转换。
具体实现中,第一用户设备可以根据第二用户设备发送的时间提前量的值调整发送的包括物理上行共享信道在内的上行物理信号的时间提前量来保证与基站的同步。或者,根据基站或者第二用户设备发送的闭环功率控制值确定物理上行共享信道的发送功率。或者根据基站下发的上行授权配置确定物理上行共享信道的发送资源。在经过上述处理之后,第一用户设备可以通过直连路径与基站进行通信。
S705,第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
具体的,在第一用户设备完成从非直连路径到直连路径的转换后,基站向第二用户设备发起RRC连接重配置过程,以释放第二用户设备于第一用户设备间的链路的连接,并重配置第二用户设备与基站的数据无线承载。
在本申请实施例中,由于第一用户设备和第二用户设备之间的链路无法维持,首先由第二用户设备向第一用户设备发送第一消息,第一用户设备获得时间提前量和/或闭环功率控制值,然后第一用户设备向基站发送第二消息,基站返回第三消息之后,第一用户设备获得上行授权配置和/或闭环功率控制值,进而第一用户设备完成路径转换,保持业务的连续性,提高业务质量,并且节省第一用户设备进行随机接入带来的功耗。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图8,图8是本申请实施例提供的一种基站的结构示意图,该基站可以包括接收模块801和发送模块802,其中,各个模块的详细描述如下。
在本申请的一种实施例中,接收模块801,用于接收第一用户设备发送的第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;发送模块802,用于向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备执行路径转换,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
可选的,发送模块802,还用于向所述第二用户设备发送第三消息,所述第三消息用于指示所述第二用户设备上报所述时间提前量;接收模块801,还用于接收所述第二用户设备发送的第四消息,所述第四消息包含所述时间提前量。
可选的,发送模块802,还用于向所述第二用户设备发送第五消息,所述第五消息用于指示所述第二用户设备上报所述闭环功率控制值;
可选的,接收模块801,还用于接收所述第二用户设备发送的第六消息,所述第六消息包含所述闭环功率控制值。
可选的,接收模块801,还用于接收所述第一用户设备发送的无线资源控制连接重配置完成消息,所述无线资源控制连接重配置完成消息由所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项发送。
在本申请的另一种实施例中,接收模块801,用于接收第二用户设备发送的第一消息,所述第一消息用于请求释放所述第二用户设备与第一用户设备间的链路的连接;发送模块802,用于向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
可选的,接收模块801,还用于接收所述第一用户设备发送的无线资源控制连接重配置完成消息,所述无线资源控制连接重配置完成消息由所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项发送。
需要说明的是,各个模块的实现还可以对应参照图3、图5、图6以及图7所示的方法实施例的相应描述,执行上述实施例中基站所执行的方法和功能。
请参见图9,图9是本申请实施例提供的一种第一用户设备的结构示意图,该第一用户设备可以包括发送模块901、接收模块902以及处理模块903,其中,各个模块的详细描述如下。
在本申请的一种实施例中,发送模块901,用于向基站发送第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;接收模块902,用于接收所述基站发送的第二消息,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;处理模块903,用于根据所述第二消息执行路径转换。
可选的,发送模块901,还用于根据所述时间提前量、所述闭环功率控制值以及所述 上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
在本申请的一种实施例中,接收模块902,用于接收基站发送的第二消息,所述第二消息由所述基站接收到第二用户设备发送的第一消息后发送,所述第一消息用于请求释放所述第二用户设备与所述第一用户设备间的链路的连接,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;处理模块903,用于根据所述第二消息,从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。
可选的,发送模块901,还用于根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
需要说明的是,各个模块的实现还可以对应参照图3、图5、图6以及图7所示的方法实施例的相应描述,执行上述实施例中第一用户设备所执行的方法和功能。
请参见图10,图10是本申请实施例提供的一种第二用户设备的结构示意图,该第一用户设备可以包括接收模块1001以及发送模块1002,其中,各个模块的详细描述如下。
接收模块1001,用于接收基站发送的第三消息,所述第三消息用于指示所述第二用户设备上报时间提前量;
发送模块1002,用于向所述基站发送第四消息,所述第四消息包含所述第二用户设备的所述时间提前量。
可选的,接收模块1001,还用于接收所述基站发送的第五消息,所述第五消息用于指示所述第二用户设备上报闭环功率控制值;发送模块1002,还用于向所述基站发送第六消息,所述第六消息包含所述第二用户设备的所述闭环功率控制值。
需要说明的是,各个模块的实现还可以对应参照图3、图5、图6以及图7所示的方法实施例的相应描述,执行上述实施例中第二用户设备所执行的方法和功能。
请继续参考图11,图11是本申请提出的另一种基站的结构示意图。如图所示,该基站可以包括:至少一个处理器1101,例如CPU,至少一个通信接口1102,至少一个存储器1103和至少一个通信总线1104。其中,通信总线1104用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口1102用于与其他节点设备进行信令或数据的通信。存储器1103可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1103可选的还可以是至少一个位于远离前述处理器1101的存储装置。存储器1103中存储一组程序代码,且处理器1101执行存储器1103中上述基站所执行的程序。进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中基站的操作。
请继续参考图12,图12是本申请提出的另一种第一用户设备的结构示意图。如图所示,该第一用户设备可以包括:至少一个处理器1201,例如CPU,至少一个通信接口1202,至少一个存储器1203和至少一个通信总线1204。其中,通信总线1204用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口1202用于与其他节点设备进行信令或数据的通信。存储器1203可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1203可选的还可以是至少 一个位于远离前述处理器1201的存储装置。存储器1203中存储一组程序代码,且处理器1201执行存储器1203中上述第一用户设备所执行的程序。进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中第一用户设备的操作。
请继续参考图13,图13是本申请提出的另一种第二用户设备的结构示意图。如图所示,该第二用户设备可以包括:至少一个处理器1301,例如CPU,至少一个通信接口1302,至少一个存储器1303和至少一个通信总线1304。其中,通信总线1304用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口1302用于与其他节点设备进行信令或数据的通信。存储器1303可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1303可选的还可以是至少一个位于远离前述处理器1301的存储装置。存储器1303中存储一组程序代码,且处理器1301执行存储器1303中上述第二用户设备所执行的程序。进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中第二用户设备的操作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (37)

  1. 一种路径转换方法,其特征在于,所述方法包括:
    基站接收第一用户设备发送的第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;
    所述基站向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备执行路径转换,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
  2. 如权利要求1所述的方法,其特征在于,所述基站向所述第一用户设备发送第二消息之前,所述方法还包括:
    所述基站向所述第二用户设备发送第三消息,所述第三消息用于指示所述第二用户设备上报所述时间提前量;
    所述基站接收所述第二用户设备发送的第四消息,所述第四消息包含所述时间提前量。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述基站向所述第二用户设备发送第五消息,所述第五消息用于指示所述第二用户设备上报所述闭环功率控制值;
    所述基站接收所述第二用户设备发送的第六消息,所述第六消息包含所述闭环功率控制值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述基站向所述第一用户设备发送第二消息之后,还包括:
    所述基站接收所述第一用户设备发送的无线资源控制连接重配置完成消息,所述无线资源控制连接重配置完成消息由所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项发送。
  5. 一种路径转换方法,其特征在于,所述方法包括:
    第一用户设备向基站发送第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;
    所述第一用户设备接收所述基站发送的第二消息,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;
    所述第一用户设备根据所述第二消息执行路径转换。
  6. 如权利要求5所述的方法,其特征在于,所述第一用户设备根据所述第二消息执行路径转换之后,还包括:
    所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
  7. 一种路径转换方法,其特征在于,所述方法包括:
    第二用户设备接收基站发送的第三消息,所述第三消息用于指示所述第二用户设备上报时间提前量;
    所述第二用户设备向所述基站发送第四消息,所述第四消息包含所述第二用户设备的所述时间提前量。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二用户设备接收所述基站发送的第五消息,所述第五消息用于指示所述第二用户设备上报闭环功率控制值;
    所述第二用户设备向所述基站发送第六消息,所述第六消息包含所述第二用户设备的所述闭环功率控制值。
  9. 一种路径转换方法,其特征在于,所述方法包括:
    基站接收第二用户设备发送的第一消息,所述第一消息用于请求释放所述第二用户设备与第一用户设备间的链路的连接;
    所述基站向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
  10. 如权利要求9所述的方法,其特征在于,所述第一消息包含所述第二用户设备的所述时间提前量。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一消息还包含所述第二用户设备的所述闭环功率控制值。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述基站向所述第一用户设备发送的第二消息之后,还包括:
    所述基站接收所述第一用户设备发送的无线资源控制连接重配置完成消息,所述无线资源控制连接重配置完成消息由所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项发送。
  13. 一种路径转换方法,其特征在于,所述方法包括:
    第一用户设备接收基站发送的第二消息,所述第二消息由所述基站接收到第二用户设备发送的第一消息后发送,所述第一消息用于请求释放所述第二用户设备与所述第一用户设备间的链路的连接,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;
    所述第一用户设备根据所述第二消息,从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。
  14. 如权利要求13所述的方法,其特征在于,所述第一消息包含所述第二用户设备的所述时间提前量。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一消息还包含所述第二用户设备的所述闭环功率控制值。
  16. 如权利要求13-15任一项所述的方法,其特征在于,所述第一用户设备根据所述第二消息,从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径之后,还包括:
    所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
  17. 一种基站,其特征在于,所述基站包括:
    接收模块,用于接收第一用户设备发送的第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;
    发送模块,用于向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备执行路径转换,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
  18. 如权利要求17所述的基站,其特征在于,
    所述发送模块,还用于向所述第二用户设备发送第三消息,所述第三消息用于指示所述第二用户设备上报所述时间提前量;
    所述接收模块,还用于接收所述第二用户设备发送的第四消息,所述第四消息包含所述时间提前量。
  19. 如权利要求17或18所述的基站,其特征在于,
    所述发送模块,还用于向所述第二用户设备发送第五消息,所述第五消息用于指示所述第二用户设备上报所述闭环功率控制值;
    所述接收模块,还用于接收所述第二用户设备发送的第六消息,所述第六消息包含所述闭环功率控制值。
  20. 如权利要求17-19任一项所述的基站,其特征在于,所述接收模块,还用于接收所述第一用户设备发送的无线资源控制连接重配置完成消息,所述无线资源控制连接重配置完成消息由所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项发送。
  21. 一种第一用户设备,其特征在于,所述第一用户设备包括:
    发送模块,用于向基站发送第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;
    接收模块,用于接收所述基站发送的第二消息,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;
    处理模块,用于根据所述第二消息执行路径转换。
  22. 如权利要求21所述的第一用户设备,其特征在于,所述发送模块,还用于根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
  23. 一种第二用户设备,其特征在于,所述第二用户设备包括:
    接收模块,用于接收基站发送的第三消息,所述第三消息用于指示所述第二用户设备上报时间提前量;
    发送模块,用于向所述基站发送第四消息,所述第四消息包含所述第二用户设备的所述时间提前量。
  24. 如权利要求23所述的第二用户设备,其特征在于,
    所述接收模块,还用于接收所述基站发送的第五消息,所述第五消息用于指示所述第二用户设备上报闭环功率控制值;
    所述发送模块,还用于向所述基站发送第六消息,所述第六消息包含所述第二用户设备的所述闭环功率控制值。
  25. 一种基站,其特征在于,所述基站包括:
    接收模块,用于接收第二用户设备发送的第一消息,所述第一消息用于请求释放所述第二用户设备与第一用户设备间的链路的连接;
    发送模块,用于向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
  26. 如权利要求25所述的基站,其特征在于,所述第一消息包含所述第二用户设备的所述时间提前量。
  27. 如权利要求25或26所述的基站,其特征在于,所述第一消息还包含所述第二用户设备的所述闭环功率控制值。
  28. 如权利要求25-27任一项所述的基站,其特征在于,所述接收模块,还用于接收所述第一用户设备发送的无线资源控制连接重配置完成消息,所述无线资源控制连接重配置完成消息由所述第一用户设备根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项发送。
  29. 一种第一用户设备,其特征在于,所述第一用户设备包括:
    接收模块,用于接收基站发送的第二消息,所述第二消息由所述基站接收到第二用户设备发送的第一消息后发送,所述第一消息用于请求释放所述第二用户设备与所述第一用户设备间的链路的连接,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;
    处理模块,用于根据所述第二消息,从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。
  30. 如权利要求29所述的第一用户设备,其特征在于,所述第一消息包含所述第二用户设备的所述时间提前量。
  31. 如权利要求29或30所述的第一用户设备,其特征在于,所述第一消息还包含所述第二用户设备的所述闭环功率控制值。
  32. 如权利要求29-31任一项所述的第一用户设备,其特征在于,所述发送模块,还用于根据所述时间提前量、所述闭环功率控制值以及所述上行授权配置中的至少一项,向所述基站发送无线资源控制连接重配置完成消息。
  33. 一种基站,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    接收第一用户设备发送的第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;
    向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备执行路径转换,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
  34. 一种第一用户设备,其特征在于,包括:存储器、通信总线以及处理器,其中, 所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    向基站发送第一消息,所述第一消息用于请求将所述第一用户设备从通过第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径;
    接收所述基站发送的第二消息,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;
    根据所述第二消息执行路径转换。
  35. 一种第二用户设备,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    接收基站发送的第三消息,所述第三消息用于指示所述第二用户设备上报时间提前量;
    向所述基站发送第四消息,所述第四消息包含所述第二用户设备的所述时间提前量。
  36. 一种基站,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    接收第二用户设备发送的第一消息,所述第一消息用于请求释放所述第二用户设备与第一用户设备间的链路的连接;
    向所述第一用户设备发送第二消息,所述第二消息用于指示所述第一用户设备从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项。
  37. 一种第一用户设备,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,执行以下操作:
    接收基站发送的第二消息,所述第二消息由所述基站接收到第二用户设备发送的第一消息后发送,所述第一消息用于请求释放所述第二用户设备与所述第一用户设备间的链路的连接,所述第二消息包含时间提前量、闭环功率控制值以及上行授权配置中的至少一项;
    根据所述第二消息,从通过所述第二用户设备与所述基站进行通信的非直连路径转换到与所述基站进行通信的直连路径。
PCT/CN2017/097024 2017-08-11 2017-08-11 一种路径转换方法及相关设备 WO2019028812A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17920927.5A EP3657872B1 (en) 2017-08-11 2017-08-11 Path switching method and related equipment
CN201780065058.6A CN109845363B (zh) 2017-08-11 2017-08-11 一种路径转换方法及相关设备
PCT/CN2017/097024 WO2019028812A1 (zh) 2017-08-11 2017-08-11 一种路径转换方法及相关设备
US16/638,020 US11259234B2 (en) 2017-08-11 2017-08-11 Path switching method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097024 WO2019028812A1 (zh) 2017-08-11 2017-08-11 一种路径转换方法及相关设备

Publications (1)

Publication Number Publication Date
WO2019028812A1 true WO2019028812A1 (zh) 2019-02-14

Family

ID=65272749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097024 WO2019028812A1 (zh) 2017-08-11 2017-08-11 一种路径转换方法及相关设备

Country Status (4)

Country Link
US (1) US11259234B2 (zh)
EP (1) EP3657872B1 (zh)
CN (1) CN109845363B (zh)
WO (1) WO2019028812A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202512A1 (zh) * 2022-04-21 2023-10-26 华为技术有限公司 一种通信方法及设备
US20240259909A1 (en) * 2023-02-01 2024-08-01 Nokia Technologies Oy Control of uplink data split from remote user equipment over multipath

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083197A (zh) * 2010-12-23 2011-06-01 华为技术有限公司 时间提前量的处理方法、设备和系统
CN102118810A (zh) * 2010-02-10 2011-07-06 电信科学技术研究院 一种切换时避免路径转换方法、系统和设备
CN105934985A (zh) * 2014-01-28 2016-09-07 高通股份有限公司 在d2d通信中切换操作模式
CN106211261A (zh) * 2015-04-10 2016-12-07 中兴通讯股份有限公司 信息处理方法及通信节点
CN106604336A (zh) * 2011-09-29 2017-04-26 华为技术有限公司 通信模式切换的方法和装置
WO2017108209A1 (en) * 2015-12-21 2017-06-29 Nokia Solutions And Networks Oy D2d assisted load balancing and handover trigger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101597364B1 (ko) * 2009-12-21 2016-02-24 한국전자통신연구원 캐리어 어그리게이션 환경에서 idle-active 상태 천이 장치
CN103024924B (zh) 2011-09-28 2017-04-12 华为技术有限公司 D2d终端的连接建立方法、装置及系统
US9635627B2 (en) * 2014-11-12 2017-04-25 Nokia Solutions And Networks Oy Connection reliability and managing interference created by beamforming
WO2016180366A1 (zh) 2015-05-14 2016-11-17 中兴通讯股份有限公司 信息处理方法及通信节点
EP3286960B1 (en) 2015-05-22 2019-09-18 Sony Corporation Communications terminals, infrastructure equipment and methods, for user equipments acting as relays
KR102607520B1 (ko) 2016-01-15 2023-11-30 타이코에이엠피 주식회사 커넥터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118810A (zh) * 2010-02-10 2011-07-06 电信科学技术研究院 一种切换时避免路径转换方法、系统和设备
CN102083197A (zh) * 2010-12-23 2011-06-01 华为技术有限公司 时间提前量的处理方法、设备和系统
CN106604336A (zh) * 2011-09-29 2017-04-26 华为技术有限公司 通信模式切换的方法和装置
CN105934985A (zh) * 2014-01-28 2016-09-07 高通股份有限公司 在d2d通信中切换操作模式
CN106211261A (zh) * 2015-04-10 2016-12-07 中兴通讯股份有限公司 信息处理方法及通信节点
WO2017108209A1 (en) * 2015-12-21 2017-06-29 Nokia Solutions And Networks Oy D2d assisted load balancing and handover trigger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657872A4 *

Also Published As

Publication number Publication date
EP3657872B1 (en) 2021-07-21
EP3657872A4 (en) 2020-07-22
CN109845363B (zh) 2021-03-30
US20200178155A1 (en) 2020-06-04
EP3657872A1 (en) 2020-05-27
US11259234B2 (en) 2022-02-22
CN109845363A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
WO2016119243A1 (zh) 通信方法、网络设备、用户设备和通信系统
US10057937B2 (en) Communications via multiple access points
US11202333B2 (en) Layer 2 processing method, central unit and distributed unit
WO2022083484A1 (zh) 数据传输控制方法、装置及存储介质
WO2018102964A1 (zh) 传输信息的方法和设备
TW201422024A (zh) 進行設備至設備通信的方法以及對應的控制方法
WO2017113130A1 (zh) 一种资源请求方法、设备、网络侧节点及系统
WO2013166670A1 (zh) 上行信道资源配置方法和设备
CN113841442A (zh) 在有条件切换中可选地发送完成消息
TW201840218A (zh) 處理雙連結中的通訊的裝置及方法
WO2015070446A1 (zh) 一种数据传输的方法及用户设备
WO2018201318A1 (zh) 一种信号测量方法及相关设备
US10827403B2 (en) Data transmission method, user equipment, base station, and system
WO2019028812A1 (zh) 一种路径转换方法及相关设备
TW201844046A (zh) 處理雙連結的裝置及方法
WO2023001172A1 (zh) 推荐比特率确定方法、装置及相关设备
WO2022188437A1 (zh) 信息处理方法、装置及存储介质
WO2021027900A1 (zh) 一种通信方法、终端及网络设备
CN116114212B (zh) 一种辅助信息的配置方法及通信装置
WO2021057902A1 (zh) 资源使用方法及通信设备
WO2019028920A1 (zh) 一种数据传输方法及设备
RU2787775C1 (ru) Способ беспроводной связи для управления мобильностью
EP4422266A1 (en) Report sending method, terminal, base station, apparatus and storage medium
CN118785344A (zh) 一种定时提前组确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017920927

Country of ref document: EP

Effective date: 20200221