WO2019028769A1 - Method and apparatus for synchronization in sidelink communication - Google Patents

Method and apparatus for synchronization in sidelink communication Download PDF

Info

Publication number
WO2019028769A1
WO2019028769A1 PCT/CN2017/096904 CN2017096904W WO2019028769A1 WO 2019028769 A1 WO2019028769 A1 WO 2019028769A1 CN 2017096904 W CN2017096904 W CN 2017096904W WO 2019028769 A1 WO2019028769 A1 WO 2019028769A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
sidelink
group
wireless communication
communication node
Prior art date
Application number
PCT/CN2017/096904
Other languages
French (fr)
Inventor
Shuanghong Huang
Zijiang Ma
Youxiong Lu
Jin Yang
Jie Chen
Lin Chen
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2017/096904 priority Critical patent/WO2019028769A1/en
Priority to CN201780091983.6A priority patent/CN110771217A/en
Publication of WO2019028769A1 publication Critical patent/WO2019028769A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • This disclosure relates generally to wireless communications and, more particularly, to a method and apparatus for synchronization in sidelink communications.
  • Sidelink (SL) communication is a wireless radio communication directly between two or more user equipment devices (hereinafter “UE” ) .
  • UE user equipment devices
  • two or more UEs that are geographically proximate to each other can directly communicate without going through an eNode or a base station (hereinafter “BS” ) , or a core network.
  • Data transmission in sidelink communications is thus different from typical cellular network communications, which transmit data to a BS (i.e., uplink transmissions) or receive date from a BS (i.e., downlink transmissions) .
  • data is transmitted directly from a source UE to a target UE through the Unified Air Interface, e.g., PC5 interface, without passing through a BS.
  • Unified Air Interface e.g., PC5 interface
  • Synchronization is an essential prerequisite for all mobile networks to operate. It is fundamental to data integrity, and without it, data errors and networks outages can occur, resulting in additional operational costs.
  • a BS relies on having access to reliable and accurate synchronization timing signals from a synchronization source (e.g., a core network or a satellite) in order to generate radio signals and maintain frame alignment for data transmission. Effective synchronization also permits seamless handover of subscriber or UE connections between adjacent BSs. Routers and switches in the transport network may therefore be required to provide synchronization to BSs in order for them to handle and transport data properly.
  • a synchronization source e.g., a core network or a satellite
  • Effective synchronization also permits seamless handover of subscriber or UE connections between adjacent BSs. Routers and switches in the transport network may therefore be required to provide synchronization to BSs in order for them to handle and transport data properly.
  • the mobile network evolution to LTE and future planning for 5G networks and services has generated an increasing need
  • SL communication a new feature introduced in LTE, is supported and typically used in communications such as Device-to-Device (D2D) , or Vehicle-to-Everything (V2X) communications.
  • SL communications include broadcasts, group communications, and direct unicast communications.
  • the group typically consists a Leader UE or a Relay UE which directly communicates with the BS for downlink (DL) and/or uplink (UL) data transmission, and at least one Follower or Remote UE, which can directly communicate with the Leader/Relay UE to realize communication with a BS and/or SL data transmission within or outside the group.
  • Each UE may separately obtain a synchronization timing from a different synchronization source, e.g., a base station, a core network, or a satellite, and if these different synchronization sources are not synchronized to each other, there may co-exist multiple synchronization timings within the group, leading to a failure of data transmission during SL communications due to frame misalignment between the UEs. Thus, there exists a need to develop proper synchronization protocols for SL communications.
  • a different synchronization source e.g., a base station, a core network, or a satellite
  • exemplary embodiments disclosed herein are directed to solving the issues related to one or more problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • exemplary systems, methods, and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the invention.
  • a method for performing sidelink communications comprising: determining, by a first wireless communication node, whether a second synchronization timing with at least one second wireless communication node is to be established, wherein the first wireless communication node and the at least one second wireless communication node form a sidelink communication group; in response to determining that the second synchronization timing is to be established, transmitting a first message based on a first synchronization timing to the at least one second wireless communication node, wherein the first message indicates a synchronization message which is configured to provide the second synchronization timing to the at least one second wireless communication node; and transmitting the synchronization message using a predefined sidelink synchronization resource to the at least one second wireless communication node.
  • a method for performing sidelink communications comprising: receiving, by a second wireless communication node, a first message based on a first synchronization timing from a first wireless communication node, wherein the first message indicates a synchronization message which is configured to provide a second synchronization timing to the second wireless communication node, wherein the first wireless communication node and the second wireless communication node form a sidelink communication group; and receiving the synchronization message from the first wireless communication node over a predefined sidelink synchronization resource.
  • a computing device configured to carry out the method.
  • a non-transitory computer-readable medium having stored thereon computer-executable instructions for carrying out the method.
  • FIG. 1A illustrates an exemplary wireless communication network illustrating a group communication within a cellular network, in accordance with some embodiments of the present disclosure.
  • FIG. 1B illustrates a block diagram of an exemplary wireless communication system for transmitting and receiving downlink, uplink and sidelink communication signals, in accordance with some embodiments of the present disclosure.
  • FIG. 2A-2C illustrate an exemplary scenario when UEs in a group obtain their synchronization timings from different synchronization sources, in accordance with some embodiments.
  • FIG. 3 illustrates a synchronization process 300 between UEs in a group for sidelink communication, in accordance with some embodiments.
  • FIG. 4 illustrates a method of obtaining a synchronization timing for follower UEs when a reference UE switches to a new synchronization source, according to some embodiments of the present disclosure.
  • FIG. 5 illustrates a configuration of a predefined sidelink synchronization resource subframe for transmitting a group-level SLSS and/or PSBCH signal from a reference UE in a SL communication group, in accordance with some embodiments.
  • FIG. 6 illustrates a radio frame structure with at least one predefined SL synchronization subframe added to a radio frame for sidelink communications, in accordance with some embodiments.
  • FIG. 1A illustrates an exemplary wireless communication network 100 illustrating a group communication within a cellular network, in accordance with some embodiments of the present disclosure.
  • a network side communication node or a base station can be a node B, an E-utran Node B (also known as Evolved Node B, eNodeB or eNB) , a pico station, a femto station, or the like.
  • E-utran Node B also known as Evolved Node B, eNodeB or eNB
  • pico station also known as Evolved Node B, eNodeB or eNB
  • femto station or the like.
  • a terminal side node or a user equipment can be a long range communication system like a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, or a short range communication system such as, for example a wearable device, a vehicle with a vehicular communication system and the like.
  • a network and a terminal side communication node are represented by a BS 102 and a UE 104, respectively, and in all the embodiments in this disclosure hereafter, and are generally referred to as “communication nodes” herein.
  • Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the invention. It is noted that all the embodiments are merely preferred examples, and are not intended to limit the present disclosure. Accordingly, it is understood that the system may include any desired combination of UEs and BSs, while remaining within the scope of the present disclosure.
  • the wireless communication network 100 includes a BS 102 and UE 104a, UE 104b and a UE 104c.
  • the UE 104a can be a vehicle that is moving in the cell and meanwhile has a direct communication channel with the BS 102.
  • the UE 104b can be also a vehicle that is moving in the same cell, but may not have a direct communication channel 103a with the BS 102 or is out of coverage of the cell 101.
  • the UE 104b does not have a direct communication channel with the BS 102, it forms direct communication channels (e.g. 105a and 105b) with its neighbor UEs, e.g., UE 104a and UE 104c, respectively.
  • the UE 104c can be a mobile device that also has a direct communication channel 103c with the BS 102.
  • the direct communication channels between the UE 104 and the BS 102 can be through interfaces such as an Uu interface, which is also known as UMTS (Universal Mobile Telecommunication System (UMTS) air interface.
  • the direct communication channels 105 between the UEs can be through a PC5 interface, which is introduced to address high moving speed and high density applications such as Vehicle-to-Vehicle (V2V) communications.
  • the BS 102 is connected to a core network (CN) 108 through an external interface 107, e.g., an Iu interface.
  • CN core network
  • the UE 104a obtains its synchronization timing from the BS 102, which obtains its own synchronization timing from the core network 108 through an internet time service, such as a public time NTP (Network Time Protocol) server or a RNC (Radio Frequency Simulation System Network Controller) server. This is known as network-based synchronization.
  • the BS 102 can also obtain synchronization timing from a Global Navigation Satellite System (GNSS) 109 through a satellite signal 106, especially for a large BS in a large cell which has a direct line of sight to the sky, which is known as satellite-based synchronization.
  • GNSS Global Navigation Satellite System
  • the main advantage of the satellite-based synchronization is full independency providing a reliable synchronization signal as long as the station remains locked to a minimum number of GPS (Global Positioning System) satellites.
  • GPS Global Positioning System
  • Each GPS satellite contains multiple atomic clocks that contribute very precise time data to the GPS signals.
  • GPS receivers on the BS 102 decode these signals, effectively synchronizing the BS 102 to the atomic clocks. This enables BS 102 to determine the time to within 100 billionths of a second (i.e., 100 nanoseconds) , without the cost of owning and operating atomic clocks.
  • the UE 104b can obtain a synchronization timing through the UE 104a or the UE 104c in sidelink communication, wherein the synchronization timing of the UE 104a can be either network-based or satellite-based, as described above. Similarly, the synchronization timing of the UE 104c can be either network-based or satellite-based.
  • Figure 1B illustrates a block diagram of an exemplary wireless communication system 150 for transmitting and receiving downlink, uplink and sidelink communication signals, in accordance with some embodiments of the present disclosure.
  • the system 150 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 150 can be used to transmit and receive data symbols in a wireless communication environment such as the wireless communication network 100 of Figure 1A, as described above.
  • the System 150 generally includes a BS 102 and two UEs 104a and 104b, collectively referred to as UE 104 below for ease of discussion.
  • the BS 102 includes a BS transceiver module 152, a BS antenna array 154, a BS memory module 156, a BS processor module 158, and a network interface 160, each module being coupled and interconnected with one another as necessary via a data communication bus 180.
  • the UE 104 includes a UE transceiver module 162, a UE antenna 164, a UE memory module 166, a UE processor module 168, and a I/O interface 169, each module being coupled and interconnected with one another as necessary via a date communication bus 190.
  • the BS 102 communicates with the UE 104 via a communication channel 192, which can be any wireless channel or other medium known in the art suitable for transmission of data as described herein.
  • system 150 may further include any number of modules other than the modules shown in Figure 1B .
  • modules other than the modules shown in Figure 1B
  • the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof.
  • various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software depends upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present invention.
  • a wireless transmission from a transmitting antenna of the UE 104 to a receiving antenna of the BS 102 is known as an uplink transmission
  • a wireless transmission from a transmitting antenna of the BS 102 to a receiving antenna of the UE 104 is known as a downlink transmission.
  • a UE transceiver 162 may be referred to herein as an "uplink" transceiver 162 that includes a RF transmitter and receiver circuitry that are each coupled to the UE antenna 164.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 152 may be referred to herein as a "downlink" transceiver 152 that includes RF transmitter and receiver circuitry that are each coupled to the antenna array 154.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna array 154 in time duplex fashion.
  • the operations of the two transceivers 152 and 162 are coordinated in time such that the uplink receiver is coupled to the uplink UE antenna 164 for reception of transmissions over the wireless communication channel 192 at the same time that the downlink transmitter is coupled to the downlink antenna array 154.
  • there is close synchronization timing with only a minimal guard time between changes in duplex direction.
  • the UE transceiver 162 communicates through the UE antenna 164 with the BS 102 via the wireless communication channel 192 or with other UEs via the wireless communication channel 193.
  • the wireless communication channel 193 can be any wireless channel or other medium known in the art suitable for sidelink transmission of data as described herein.
  • the UE transceiver 162 and the BS transceiver 152 are configured to communicate via the wireless data communication channel 192, and cooperate with a suitably configured RF antenna arrangement 154/164 that can support a particular wireless communication protocol and modulation scheme.
  • the UE transceiver 162 and the BS transceiver 152 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the invention is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 162 and the BS transceiver 152 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • the processor modules 158 and 168 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 158 and 168, respectively, or in any practical combination thereof.
  • the memory modules 156 and 166 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • the memory modules 156 and 166 may be coupled to the processor modules 158 and 168, respectively, such that the processors modules 158 and 168 can read information from, and write information to, memory modules 156 and 166, respectively.
  • the memory modules 156 and 166 may also be integrated into their respective processor modules 158 and 168.
  • the memory modules 156 and 166 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 158 and 168, respectively.
  • Memory modules 156 and 166 may also each include non-volatile memory for storing instructions to be executed by the processor modules 158 and 168, respectively.
  • the network interface 160 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 102 that enable bi-directional communication between BS transceiver 152 and other network components and communication nodes configured to communication with the BS 102.
  • network interface 160 may be configured to support internet or WiMAX traffic.
  • network interface 160 provides an 802.3 Ethernet interface such that BS transceiver 152 can communicate with a conventional Ethernet based computer network.
  • the network interface 160 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the terms “configured for” or “configured to” as used herein with respect to a specified operation or function refers to a device, component, circuit, structure, machine, signal, etc. that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
  • the network interface 160 could allow the BS 102 to communicate with other BSs or core network over a wired or wireless connection.
  • the BS 102 repeatedly broadcasts system information associated with the BS 102 to one or more UEs (e.g., 104) so as to allow the UE 104 to access the network within the cell 101 where the BS 102 is located, and in general, to operate properly within the cell 101.
  • Plural information such as, for example, downlink and uplink cell bandwidths, downlink and uplink configuration, configuration for random access, etc., can be included in the system information, which will be discussed in further detail below.
  • the BS 102 broadcasts a first signal carrying some major system information, for example, configuration of the cell 101 through a PBCH (Physical Broadcast Channel) .
  • PBCH Physical Broadcast Channel
  • first broadcast signal For purposes of clarity of illustration, such a broadcasted first signal is herein referred to as “first broadcast signal. ” It is noted that the BS 102 may subsequently broadcast one or more signals carrying some other system information through respective channels (e.g., a Physical Downlink Shared Channel (PDSCH) ) , which are herein referred to as “second broadcast signal, ” “third broadcast signal, ” and so on.
  • PDSCH Physical Downlink Shared Channel
  • the major system information carried by the first broadcast signal may be transmitted by the BS 102 in a symbol format via the communication channel 192 (e.g., a PBCH) .
  • an original form of the major system information may be presented as one or more sequences of digital bits and the one or more sequences of digital bits may be processed through plural steps (e.g., coding, scrambling, modulation, mapping steps, etc. ) , all of which can be processed by the BS processor module 158, to become the first broadcast signal.
  • the UE processor module 168 may perform plural steps (de-mapping, demodulation, decoding steps, etc. ) to estimate the major system information such as, for example, bit locations, bit numbers, etc., of the bits of the major system information.
  • the UE processor module 168 is also coupled to the I/O interface 169, which provides the UE 104 with the ability to connect to other devices such as computers.
  • the I/O interface 169 is the communication path between these accessories and the UE processor module 168.
  • the UE 104 can operate in a hybrid communication network in which the UE communicates with the BS 102, and with other UEs, e.g., between 104a and 104b. As described in further detail below, the UE 104 supports sidelink communications with other UE’s as well as downlink/uplink communications between the BS 102 and the UE 104. As discussed above, sidelink communication allows the UEs 104a and 104b to establish a direct communication link with each other, or with other UEs from different cells, without requiring the BS 102 to relay data between UE’s .
  • FIGS 2A-2C illustrate an exemplary scenario when UEs in a group can obtain their synchronization timings from different synchronization sources, in accordance with some embodiments.
  • a V2X communication group 201 is formed by three UEs 204a, 204b and 204c, each synchronized to a first BS 202a in a first cell 210 with a first synchronization timing 205.
  • the UE 204a is a leader UE (hereinafter “L-UE” ) of the group 201, while the UE 204b and 204c are follower UEs (hereinafter “F-UEs” ) of the same group 201.
  • L-UE leader UE
  • F-UEs follower UEs
  • the L-UE 204a is not considered to be a synchronization reference UE (hereinafter “R-UE” ) of the group.
  • the F-UEs 204b and 204c can directly communicate with the L-UE 204a and with each other based on a common synchronization timing 205 of the group, which is also the synchronization timing of the cell 201.
  • the group 201 is moving toward an edge of the first cell 210 in a direction 220 toward a second cell 211, which is covered by a second BS 202b.
  • the group 201 As the group 201 continues to move, it will reach a second position, as shown in Figure 2B, where the L-UE 204a crosses a boundary of the first cell 210 and enters the area of the second cell 211.
  • the L-UE 204a switches from its first synchronization timing 205 of the BS 202a to a second synchronization timing 206 of the second BS 202b. Since the L-UE 204a is the first to cross the boundary, it is the first UE to switch its synchronization source within the group 201.
  • the two synchronization timings 205 and 206 can both be used by UEs in the group 201, e.g., the L-UE 204a obtains its synchronization timing 206 from the BS 202b and the two F-UEs 204b and 204c obtain their synchronization timing 205 from the BS 202a.
  • the sidelink data between the F-UEs 204b and 204c, or between the F-UEs and the L-UE 204a cannot be successfully decoded due to a mismatch between synchronization timings 205 and 206. Therefore, at this position the sidelink communication will be temporarily interrupted due to synchronization misalignment.
  • the group 201 continues to a third position where all the F-UEs and L-UE of the group completely travel across the boundary of the two cells 210 and 211 and switch their synchronization timing from 205 of the first cell 210 to 206 of the second cell 211.
  • sidelink communication can be re-established among all the UEs within the group 210 since all the UEs can obtain the same synchronization timing from a common synchronization source, i.e., BS 202b.
  • FIG. 3 illustrates an exemplary environment 300 in which UEs in a sidelink group can perform sidelink communications, in accordance with some embodiments.
  • Three of the four UEs e.g., 104a, 104b and 104c
  • One of the four UEs e.g., UE 104d
  • the UE 104d can obtain its synchronization timing from a different synchronization source (e.g., GNSS or a different BS) .
  • a different synchronization source e.g., GNSS or a different BS
  • all the UEs within the cell 101 can obtain their synchronization timings from the BS 102 or from other synchronization sources (e.g., GNSS) .
  • the UE 104a can broadcast a request to all other UEs within UE 104a’s vicinity to form a group.
  • Such groups can be advantageously formed, for example, when vehicles that are heading to a same direction or a same destination wish to form a group, so that information (e.g., traffic jam or accident up ahead) can be shared between UEs in a group.
  • Each of UEs e.g., UEs 104b and 104c
  • the UE 104a then informs the BS 102 about this group forming event on channels like PUSCH (physical Uplink Shared Channel) or PUCCH (Physical Uplink Control Channel) .
  • the BS 102 can then broadcast messages like a RRC (Radio Resource Control) message or messages on channels like PDSCH (Physical Downlink Shared Channel) containing information of the group to all the UEs 104.
  • the information of the group can be also broadcasted by the L-UE to all the F-UEs in the group, when the L-UE is the only one receives this information from the BS 102, in accordance with some embodiments.
  • the UE 104a becomes a L-UE and UE 104b and 104c become F-UEs of the group.
  • the L-UE 104a can be the only UE in the group that directly communicates with the BS 102, e.g., for downlink/uplink transmission and group communication is used only for sidelink messages.
  • all the UEs 104 in the group can also communicate directly with the BS 102 for cellular communication.
  • the F-UEs of the group 110 are in the same cell 101 within the cellular network range of the BS 102 in Figure 3, in alternative scenarios, the F-UEs can be outside the cellular network range covered by the BS 102. In this case, they can communicate between each other or to the BS 102 through the L-UE 104a, which acts as a Relay-UE of the group in such a scenario.
  • the F-UEs 104b and 104c instead of obtaining synchronization timings from different synchronization sources as discussed in Figure 3, the F-UEs 104b and 104c obtain their synchronization timings directly from the L-UE 104a, in which case, the L-UE 104a becomes a synchronization reference UE (hereinafter “reference UE” or “R-UE” ) in the sidelink group.
  • the L-UE can be a R-UE in a V2X group, which transmits a Sidelink Synchronization Signal (SLSS) and/or a Physical Sidelink Broadcast Channel (PSBCH) signal to the F-UEs 104b and 104c.
  • the L-UE 104a communicates with and obtains its synchronization timing from the BS 102.
  • SLSS Sidelink Synchronization Signal
  • PSBCH Physical Sidelink Broadcast Channel
  • the L-UE does not necessarily have to be a R-UE.
  • the L-UE becomes the first vehicle of the group and the quality of the signal from the L-UE 104a to the last vehicle in the group may be poor compared to a signal from a vehicle within the center of the group.
  • each of the UE has its own synchronization source (e.g., a BS or a GNSS) , each UE is capable of re-establishing the synchronization to the BS or the GNSS to become the new R-UE of the group for providing accurate synchronization timing to the group, even it is not the L-UE of the group.
  • the F-UEs detect and periodically track the SLSS and/or PSBCH signal transmitted from the R-UE to obtain and maintain an accurate synchronization timing after joining a group.
  • the F-UEs communicate within the group based on this synchronization timing obtained from SLSS, as shown in Figure 3.
  • the two F-UEs 104b and 104c after joining a group, have the priority to synchronize with the R-UE 104a of the group over other synchronization sources, e.g, a BS 102 or a GNSS, for sidelink group communications.
  • the two F-UEs 104b and 104c select different synchronization sources, e.g., a BS by tracking a SS (synchronization signal) according to the priority defined by the current cellular network technology or a different R-UE from a different group by detecting/tracking a different SLSS.
  • FIG. 1 It should be noted that although 3 UEs 104 are shown in one sidelink group 110 in a cell 101, Figure 3 serves merely as an example environment for demonstration purpose. There can be any number of UEs in a group and/or any number of groups in a cell, depending on cell area and other factors, in accordance with various embodiments of the invention.
  • Figure 4 illustrates a method 400 of obtaining a group-level synchronization timing by at least one F-UE (e.g., 104b and/or 104c) from the R-UE 104a when the R-UE 104a switches to a new synchronization source, according to some embodiments of the present disclosure. It is understood that additional operations may be provided before, during, and after the method 400 of Figure 4, and that some other operations may be omitted or only briefly described herein.
  • F-UE e.g., 104b and/or 104c
  • Group-level SLSS and/or PSBCH signals transmitted by the R-UE 104a are different from non-group-level ones and are carried on different resource subframes in the current technology.
  • a synchronization resource subframe for SL transmission is defined or allocated to carry the group-level SLSS and/or PSBCH signal, which contains characteristic information of the group that can be used by F-UEs of the group to identify the R-UE for synchronization.
  • SLSSID sidelink synchronization signal identification
  • public information carried by the group-level PSBCH signal can also be different from that by a non-group-level PSBCH signal.
  • the PSBCH can be used for carrying specific information of the group such as but not limited to, group identification information.
  • the method 400 starts with operation 401, where a BS 102 transmits a message to all the UEs 104 in a group 110 to acknowledge a request for a formation of a SL communication group, typically transmitted by a L-UE.
  • this instruction is transmitted from the BS 102 to the UEs in a group 110 in messages such as a RRC (Radio Resource Control) message from a layer above the physical layer, or a system message.
  • this message from the BS 102 can be also used to trigger the detection of a group-level SLSS and/or PBSCH signal from the R-UE 104a on a predefined SL synchronization resource subframe, which is discussed further in detail below with respect to Figure 5.
  • the BS 102 also transmits group identification information to the R-UE in the same message.
  • the method 400 continues with operation 402, where the R-UE 104a instructs all F-UEs 104b and 104c in the group 110 to detect the SLSS and/or PSBCH signal.
  • the R-UE 104a is also a L-UE of the group.
  • the instruction signal comprises SLSS identification information (SLSSID) of the group-level SLSS, or group ID information (GroupID) .
  • SLSSID SLSS identification information
  • GroupID group ID information
  • the GroupID in the instruction signal can be also used as a reference by a F-UE in later operations to identify a corresponding synchronization timing from a group-level PSBCH signal with the same GroupID.
  • the SLSSID can be group broadcasted by the R-UE, while the GroupID can be group broadcasted by the L-UE, in accordance with some embodiments.
  • the instruction signal further comprises an offset value between a new synchronization timing and an old one, e.g., when the R-UE switches synchronization sources as illustrated in Figure 2. The offset value is used by the R-UE to instruct a time window to the F-UEs, when the F-UEs can detect the group-level SLSS with a corresponding SLSSID.
  • the instruction signal from the R-UE 104a to the F-UE’s 104b and 104c can be triggered by a direct instruction from the BS 102 received in operation 401 discussed above.
  • the instruction signal can be triggered by a measured value of a reference signal received power (RSRP) determined by the R-UE 104a based on measurements performed on a downlink reference signal (DLRS) from the BS 102. For example, if the RSRP value is below a predetermined threshold, e.g., RSRP ⁇ 1, the R-UE 104a will be triggered to send the instruction signal to the F-UE’s in the group.
  • the instruction signal can be transmitted on channels like PBSCH (Physical Broadcast Shared Channel) , PSSCH (Physical Sidelink Shared Channel) or the like.
  • the DLRS from the BS 102 can be transmitted on channels such as, for example, a Physical Downlink Control Channel (PDCCH) , and a Physical Downlink Shared Channel (PDSCH) .
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • multiple DLRSs are staggered in time and frequency, which allows the UE 104 to perform complex interpolation of channel time-frequency response to estimate the channel effect on the transmitted information.
  • a DLRS can also be a Cell-specific reference signal (CSRS) or a UE-specific reference signal (UESRS) .
  • CSRS Cell-specific reference signal
  • UASRS UE-specific reference signal
  • the method 400 continues with operations 403, In some embodiments, when the F-UE initially does not have the knowledge of an exact synchronization timing on which the group- level SLSS and/or PSBCH signal will be transmitted from the R-UE, the detection of a group-level SLSS and/or a PSBCH signal by the F-UE is performed continuously in the time domain, until F-UE receives the group-level SLSS and/or PSBCH signal.
  • the theoretical maximum time that the F-UE needs to continuously detect the group-level SLSS and/or PSBCH is the period of the group-level SLSS and/or PSBCH, which is also the period of the predefined SL synchronization resource subframe.
  • the period of the group-level SLSS and/or PSBCH signal can be long, so establishing a synchronized SL communication for the F-UE can be slow, limiting the system performance.
  • the F-UE needs to be constantly receiving and processing signals so that the power consumption of the F-UEs during the establishment of the synchronized SL transmission is high.
  • the new synchronization timing and the old one can be compared and an offset between the two can be calculated by the R-UE 104a.
  • the R-UE 104a can then include the offset value (e.g., t) in the instruction signal which can be transmitted on channels including PSBCH (Physical Sidelink Broadcast Channel) or PSSCH (Physical Sidelink Shared Channel) .
  • This offset value is then used to determine an approximate time window for the F-UEs to detect the new group-level SLSS and/or PSBCH signal from the R-UE 104a instead of continuously attempting to detect the signals.
  • the time window for the F-UEs to detect the group-level SLSS and/or PSBCH signal can be the previous synchronization timing plus the offset value plus or minus a constant.
  • the constant determines the size of the time window and can be configured by the BS 102 or preconfigured in all the UEs 104.
  • the method 400 continues with operation 404, where the F-UEs 104b and 104c receive the group-level SLSS and/or PBSCH from the R-UE 104a and obtain a new synchronization timing, which is used by the F-UEs to track the R-UE 104a for accurate synchronization during subsequent SL transmissions.
  • the detection of the group-level SLSS or PBSCH signal from the R-UE 104a can also be triggered by a direct message from the BS 102, e.g., a RRC message or a system message.
  • the group-level SLSS and/or PSBCH signal also contains identification information of the group for the F-UEs to identify the R-UE of the group, which will be further discussed in detail in Figure 5.
  • the method 400 continues with operation 405 for SL transmission when the synchronization timing is established for the F-UEs of the group 110.
  • data in the SL transmission may include break/acceleration information and route options which can be triggered by random events, e.g., accident.
  • a L-UE can obtain environmental and traffic information from a road side unit (RSU) and can broadcast periodically to the F-UEs of the group. Meanwhile, the L-UE may collect F-UE status reports and transmit back to the RSU, which can also be an example of a SL transmission.
  • RSU road side unit
  • timed tracking can be implemented to reinforce and maintain accurate synchronization timing within the SL communication group.
  • the period of the timed tracking can be the period of the SL synchronization resource subframe.
  • the F-UE can terminate the redetect and retrack of the group-level SLSS and/or PSBCH signal from the R-UE 104a when the SL transmission is accomplished, or when the F-UE leaves the group 110 for another group with a different synchronization source, or when it receives termination instructions directly from the BS 102.
  • the F-UEs in the group not only detect/track the group level SLSS and/or PSBCH periodically to maintain an accurate synchronization timing within the SL communication group, the F-UE also redetect/retract the non-group-level SLSS and/or PSBCH signal periodically from the BS 102 to maintain an accurate synchronization timing on the non-group level.
  • the period of the detection of non-group-level SLSS and/or PSBCH signal is the period of the resource subframes defined by the current technology.
  • Figure 5 illustrates a configuration of a predefined sidelink synchronization resource subframe for transmitting a group-level SLSS and/or PSBCH signal from a R-UE in a SL communication group, in accordance with some embodiments.
  • a sidelink (SL) synchronization resource 501 occupying a subframe 502 in a radio frame 503 in the time domain and a plurality of central physical resource blocks 504 within a system bandwidth 505 in the frequency domain, is defined and configured to only used for group-level SLSS transmission to carry group-level SLSS identification (SLSSID) information.
  • SLSSID group-level SLSS identification
  • a group-level SLSS and SLSSID can be used by F-UEs to identify the R-UE of the group.
  • the radio frame 503 contains 10 subframe 502 in the time domain.
  • a first time slot 506 or a second time slot 507 in a subframe 502 form 1 resource block 504 with 12 subcarriers 508 in the frequency domain.
  • Each of the two time slots in one subcarrier 506 includes 7 SC-FDMA (single carrier-frequency division multiple access) symbols 509.
  • the SL synchronization resource 501 occupies the center 6 RBs, i.e., the 72 subcarriers 508.
  • different SLSSIDs can be assigned by a BS to different groups in the cell when groups are formed.
  • the message that carries this information from the BS to the R-UE can be transmitted on channels including PDSCH (Physical Downlink Share Channel) or the like.
  • the BS only assigns a group ID to a group based on the scene (e.g., inside/outside of coverage) or synchronization source (e.g., R-UE, BS or GNSS) .
  • the SLSSIDs of groups can then be derived from the assigned group ID through operations such as, GroupID mod 168 or GroupID mod 168 +168.
  • a R-UE of the group broadcasts a group-level SLSS containing SLSSID of the group to all the F-UEs of the group.
  • the SLSS is transmitted in the predefined SL synchronization resource subframe.
  • the group-level SLSS can be mapped to a plurality of SC-FDMA symbols predefined in the predefined SL synchronization resource subframe.
  • the group-level SLSS can be mapped to all of the SC-FDMA symbols in the predefined SL synchronization resource subframe.
  • the SL synchronization resource subframe is only used for transmitting SLSS, and not for transmitting PSBCH or DMRS (Demodulation Reference Signal) .
  • an index of SC-FDMA symbols that carries SLSS can be obtained by operations, e.g., SLSSID mod 13 when the last SC-FDMA symbol (i.e., symbols in column 13 in Figure 5) is used as GAP symbol to minimize interferences between transmissions.
  • the operation can also be SLSSID mod 12, when the first SC-FDMA symbol (i.e., symbol in column 0 in Figure 5) is excluded for signal processing, e.g., AGC ( Automatic Gain Control ) , which is a method for automatically adjusting the gain of the output signal based on the change of the input signal in order to improve the efficiency of the amplifier.
  • AGC Automatic Gain Control
  • the predefined SL synchronization resource as shown in Figure 5 can be used for transmitting both a group-level SLSS and a group-level PSBCH signal. In some embodiments, the predefined SL synchronization resource can also be used for only transmitting a group-level PSBCH signal.
  • Figure 6 illustrates a radio frame structure 600 with at least one predefined SL synchronization subframe 602 added to the radio frame 600 for sidelink transmission, in accordance with some embodiments.
  • the at least one predefined SL synchronization subframe 602 can be only used for the group-level SLSS transmission.
  • the radio frame 600 further includes a conventional synchronization subframe 604 for conventional SLSS and/or PSBCH signal transmissions.
  • the SL synchronization resource subframe is used by a R-UE of a group for transmitting a group-level PSBCH signal to indicate group ID information.
  • each SL synchronization resource subframe 602 is associated with a group with a different group ID.
  • the L-UE of the group broadcasts the group ID information when a group is formed.
  • Sidelink synchronization resource subframe period 606 can be the same as the conventional synchronization subframe period.
  • a Sidelink Control Information is transmitted and used to indicate scheduling information for sidelink communications, e.g., resource allocation.
  • the SCI is used to indicate the positions of the predefined SL synchronization resource (s) for the group-level PSBCH signal transmission.
  • the SCI is used by F-UEs to decode the group-level PSBCH signal to further obtain the group ID and identify the R-UE.
  • a R-UE transmits non-group-level SLSS and/or PSBCH signal according to the current technology, and transmits a group-level SLSS and/or PSBCH signal at resources with a predefined offset, offsetQ, wherein the different offset values are associated with different group IDs.
  • the offset value in millisecond can be the group ID mod 10. In some other embodiments, the offset value in millisecond can be the group ID mod 20.
  • the F-UEs of the group receive group ID and/or group SLSSID information after joining the group, in accordance with some embodiments.
  • the group ID is further used to calculate the subframe position for the group-level PSBCH signal transmission.
  • the F-UEs can further identify the R-UE based on detecting SLSS with group SLSSID, or decoding the group-level PSBCH signal in which a group ID can be obtained.
  • the last SC-FDMA symbol is typically not occupied in the current technology, in order to prevent any kind of data loss between transmissions.
  • the last symbol of SC-FDMA in the SL synchronization resource subframe can be used for carrying group ID information, which can be used by the F-UEs to identify the R-UE of the group. Specifically, in some embodiments, only the first few bits of the last symbol can be used to carry the group ID while effectively preventing data loss.
  • the offset between resources in the frequency domain is associated to the group ID to prevent overlapping of different groups.
  • the offset value in Hz can be the group ID mod a constant value N, where N is the number of unit that the SL synchronization resource is divided into in the frequency domain.
  • the aforementioned configuration of the SL synchronization resource subframe which only occupies the 6 central RBs within system bandwidth as shown in Figure 5 is a preferred resource subframe configuration, which has advantageous over other configurations in accordance with some embodiments.
  • this configuration is compatible with the configuration of synchronization resource for non-group-level SLSS transmission, which also occupies the 6 central RBs within system bandwidth.
  • this configuration could be able to facilitate the decoding process.
  • this resource subframe configuration could facilitate the resource allocation; if there is a control signaling for PBSCH, e.g., the predefined SCI format as discussed above to indicate the position of the PBSCH signal in the SL synchronization resource subframe, this resource subframe configuration can simplify the content of the control signaling, e.g., in the SCI format while being consistent with the configuration in the current technology.
  • this configuration of the SL synchronization resource structure presented in Figure 5 is merely an example and is not intend to limit this invention. Different configurations with different numbers of subcarriers and numbers of symbols for the group-level SLSS and/or PSBCH signal transmission are all within the scope of this invention.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two, which can be designed using source coding or some other technique) , various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or combinations of both.
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the invention.
  • memory or other storage may be employed in embodiments of the invention.
  • memory or other storage may be employed in embodiments of the invention.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the invention.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Abstract

A method and apparatus for synchronization in sidelink communications is disclosed. In one embodiment, a method for performing sidelink communications, the method comprising: determining, by a first wireless communication node, whether a second synchronization timing with at least one second wireless communication node is to be established, wherein the first wireless communication node and the at least one second wireless communication node form a sidelink communication group; in response to determining that the second synchronization timing is to be established, transmitting a first message based on a first synchronization timing to the at least one second wireless communication node, wherein the first message indicates a synchronization message which is configured to provide the second synchronization timing to the at least one second wireless communication node; and transmitting the synchronization message using a predefined sidelink synchronization resource to the at least one second wireless communication node.

Description

METHOD AND APPARATUS FOR SYNCHRONIZATION IN SIDELINK COMMUNICATION TECHNICAL FIELD
This disclosure relates generally to wireless communications and, more particularly, to a method and apparatus for synchronization in sidelink communications.
BACKGROUND
Sidelink (SL) communication is a wireless radio communication directly between two or more user equipment devices (hereinafter “UE” ) . In this type of communication, two or more UEs that are geographically proximate to each other can directly communicate without going through an eNode or a base station (hereinafter “BS” ) , or a core network. Data transmission in sidelink communications is thus different from typical cellular network communications, which transmit data to a BS (i.e., uplink transmissions) or receive date from a BS (i.e., downlink transmissions) . In sidelink communications, data is transmitted directly from a source UE to a target UE through the Unified Air Interface, e.g., PC5 interface, without passing through a BS.
Synchronization is an essential prerequisite for all mobile networks to operate. It is fundamental to data integrity, and without it, data errors and networks outages can occur, resulting in additional operational costs. A BS relies on having access to reliable and accurate synchronization timing signals from a synchronization source (e.g., a core network or a satellite) in order to generate radio signals and maintain frame alignment for data transmission. Effective synchronization also permits seamless handover of subscriber or UE connections between adjacent BSs. Routers and switches in the transport network may therefore be required to provide synchronization to BSs in order for them to handle and transport data properly. Additionally, the mobile network evolution to LTE and future planning for 5G  networks and services has generated an increasing need for the delivery of accurate synchronization to the UEs in the network. Apart from the need for these networks to provide ever increasing data rates and lower network latencies, more sophisticated synchronization schemes are needed to support new features.
Sidelink (SL) communication, a new feature introduced in LTE, is supported and typically used in communications such as Device-to-Device (D2D) , or Vehicle-to-Everything (V2X) communications. SL communications include broadcasts, group communications, and direct unicast communications. In a group-type SL communication, the group typically consists a Leader UE or a Relay UE which directly communicates with the BS for downlink (DL) and/or uplink (UL) data transmission, and at least one Follower or Remote UE, which can directly communicate with the Leader/Relay UE to realize communication with a BS and/or SL data transmission within or outside the group. Each UE may separately obtain a synchronization timing from a different synchronization source, e.g., a base station, a core network, or a satellite, and if these different synchronization sources are not synchronized to each other, there may co-exist multiple synchronization timings within the group, leading to a failure of data transmission during SL communications due to frame misalignment between the UEs. Thus, there exists a need to develop proper synchronization protocols for SL communications.
SUMMARY OF THE INVENTION
The exemplary embodiments disclosed herein are directed to solving the issues related to one or more problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with various embodiments, exemplary systems, methods, and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will  be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the invention.
In one embodiment, a method for performing sidelink communications, the method comprising: determining, by a first wireless communication node, whether a second synchronization timing with at least one second wireless communication node is to be established, wherein the first wireless communication node and the at least one second wireless communication node form a sidelink communication group; in response to determining that the second synchronization timing is to be established, transmitting a first message based on a first synchronization timing to the at least one second wireless communication node, wherein the first message indicates a synchronization message which is configured to provide the second synchronization timing to the at least one second wireless communication node; and transmitting the synchronization message using a predefined sidelink synchronization resource to the at least one second wireless communication node.
In a further embodiment, a method for performing sidelink communications, the method comprising: receiving, by a second wireless communication node, a first message based on a first synchronization timing from a first wireless communication node, wherein the first message indicates a synchronization message which is configured to provide a second synchronization timing to the second wireless communication node, wherein the first wireless  communication node and the second wireless communication node form a sidelink communication group; and receiving the synchronization message from the first wireless communication node over a predefined sidelink synchronization resource.
In another embodiment, a computing device configured to carry out the method.
Yet, in another embodiment, a non-transitory computer-readable medium having stored thereon computer-executable instructions for carrying out the method.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that various features are not necessarily drawn to scale. In fact, the dimensions and geometries of the various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1A illustrates an exemplary wireless communication network illustrating a group communication within a cellular network, in accordance with some embodiments of the present disclosure.
FIG. 1B illustrates a block diagram of an exemplary wireless communication system for transmitting and receiving downlink, uplink and sidelink communication signals, in accordance with some embodiments of the present disclosure.
FIG. 2A-2C illustrate an exemplary scenario when UEs in a group obtain their synchronization timings from different synchronization sources, in accordance with some embodiments.
FIG. 3 illustrates a synchronization process 300 between UEs in a group for sidelink communication, in accordance with some embodiments.
FIG. 4 illustrates a method of obtaining a synchronization timing for follower UEs when a reference UE switches to a new synchronization source, according to some embodiments of the present disclosure.
FIG. 5 illustrates a configuration of a predefined sidelink synchronization resource subframe for transmitting a group-level SLSS and/or PSBCH signal from a reference UE in a SL communication group, in accordance with some embodiments.
FIG. 6 illustrates a radio frame structure with at least one predefined SL synchronization subframe added to a radio frame for sidelink communications, in accordance with some embodiments.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Various exemplary embodiments of the invention are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the invention. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the invention. Thus, the present invention is not limited to the exemplary embodiments and applications described or illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present invention. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the invention is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
Embodiments of the present invention are described in detail with reference to the accompanying drawings. The same or similar components may be designated by the same or  similar reference numerals although they are illustrated in different drawings. Detailed descriptions of constructions or processes well-known in the art may be omitted to avoid obscuring the subject matter of the present invention. Further, the terms are defined in consideration of their functionality in embodiment of the present invention, and may vary according to the intention of a user or an operator, usage, etc. Therefore, the definition should be made on the basis of the overall content of the present specification.
Figure 1A illustrates an exemplary wireless communication network 100 illustrating a group communication within a cellular network, in accordance with some embodiments of the present disclosure. In a wireless communication system, a network side communication node or a base station (BS) can be a node B, an E-utran Node B (also known as Evolved Node B, eNodeB or eNB) , a pico station, a femto station, or the like. A terminal side node or a user equipment (UE) can be a long range communication system like a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, or a short range communication system such as, for example a wearable device, a vehicle with a vehicular communication system and the like. A network and a terminal side communication node are represented by a BS 102 and a UE 104, respectively, and in all the embodiments in this disclosure hereafter, and are generally referred to as “communication nodes” herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the invention. It is noted that all the embodiments are merely preferred examples, and are not intended to limit the present disclosure. Accordingly, it is understood that the system may include any desired combination of UEs and BSs, while remaining within the scope of the present disclosure.
Referring to Figure 1A, the wireless communication network 100 includes a BS 102 and UE 104a, UE 104b and a UE 104c. The UE 104a can be a vehicle that is moving in the cell  and meanwhile has a direct communication channel with the BS 102. Similarly, the UE 104b can be also a vehicle that is moving in the same cell, but may not have a direct communication channel 103a with the BS 102 or is out of coverage of the cell 101. Although the UE 104b does not have a direct communication channel with the BS 102, it forms direct communication channels (e.g. 105a and 105b) with its neighbor UEs, e.g., UE 104a and UE 104c, respectively. The UE 104c can be a mobile device that also has a direct communication channel 103c with the BS 102. The direct communication channels between the UE 104 and the BS 102 can be through interfaces such as an Uu interface, which is also known as UMTS (Universal Mobile Telecommunication System (UMTS) air interface. The direct communication channels 105 between the UEs can be through a PC5 interface, which is introduced to address high moving speed and high density applications such as Vehicle-to-Vehicle (V2V) communications. The BS 102 is connected to a core network (CN) 108 through an external interface 107, e.g., an Iu interface.
The UE 104a obtains its synchronization timing from the BS 102, which obtains its own synchronization timing from the core network 108 through an internet time service, such as a public time NTP (Network Time Protocol) server or a RNC (Radio Frequency Simulation System Network Controller) server. This is known as network-based synchronization. Alternatively, the BS 102 can also obtain synchronization timing from a Global Navigation Satellite System (GNSS) 109 through a satellite signal 106, especially for a large BS in a large cell which has a direct line of sight to the sky, which is known as satellite-based synchronization. The main advantage of the satellite-based synchronization is full independency providing a reliable synchronization signal as long as the station remains locked to a minimum number of GPS (Global Positioning System) satellites. Each GPS satellite contains multiple atomic clocks that contribute very precise time data to the GPS signals. GPS receivers  on the BS 102 decode these signals, effectively synchronizing the BS 102 to the atomic clocks. This enables BS 102 to determine the time to within 100 billionths of a second (i.e., 100 nanoseconds) , without the cost of owning and operating atomic clocks.
The UE 104b can obtain a synchronization timing through the UE 104a or the UE 104c in sidelink communication, wherein the synchronization timing of the UE 104a can be either network-based or satellite-based, as described above. Similarly, the synchronization timing of the UE 104c can be either network-based or satellite-based.
Figure 1B illustrates a block diagram of an exemplary wireless communication system 150 for transmitting and receiving downlink, uplink and sidelink communication signals, in accordance with some embodiments of the present disclosure. The system 150 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one exemplary embodiment, system 150 can be used to transmit and receive data symbols in a wireless communication environment such as the wireless communication network 100 of Figure 1A, as described above.
System 150 generally includes a BS 102 and two  UEs  104a and 104b, collectively referred to as UE 104 below for ease of discussion. The BS 102 includes a BS transceiver module 152, a BS antenna array 154, a BS memory module 156, a BS processor module 158, and a network interface 160, each module being coupled and interconnected with one another as necessary via a data communication bus 180. The UE 104 includes a UE transceiver module 162, a UE antenna 164, a UE memory module 166, a UE processor module 168, and a I/O interface 169, each module being coupled and interconnected with one another as necessary via a date communication bus 190. The BS 102 communicates with the UE 104 via a communication channel 192, which can be any wireless channel or other medium known in the art suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 150 may further include any number of modules other than the modules shown in Figure 1B Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software depends upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present invention.
A wireless transmission from a transmitting antenna of the UE 104 to a receiving antenna of the BS 102 is known as an uplink transmission, and a wireless transmission from a transmitting antenna of the BS 102 to a receiving antenna of the UE 104 is known as a downlink transmission. In accordance with some embodiments, a UE transceiver 162 may be referred to herein as an "uplink" transceiver 162 that includes a RF transmitter and receiver circuitry that are each coupled to the UE antenna 164. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 152 may be referred to herein as a "downlink" transceiver 152 that includes RF transmitter and receiver circuitry that are each coupled to the antenna array 154. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna array 154 in time duplex fashion. The operations of the two  transceivers  152 and 162 are coordinated in time such that the uplink  receiver is coupled to the uplink UE antenna 164 for reception of transmissions over the wireless communication channel 192 at the same time that the downlink transmitter is coupled to the downlink antenna array 154. Preferably, there is close synchronization timing with only a minimal guard time between changes in duplex direction. The UE transceiver 162 communicates through the UE antenna 164 with the BS 102 via the wireless communication channel 192 or with other UEs via the wireless communication channel 193. The wireless communication channel 193 can be any wireless channel or other medium known in the art suitable for sidelink transmission of data as described herein.
The UE transceiver 162 and the BS transceiver 152 are configured to communicate via the wireless data communication channel 192, and cooperate with a suitably configured RF antenna arrangement 154/164 that can support a particular wireless communication protocol and modulation scheme. In some exemplary embodiments, the UE transceiver 162 and the BS transceiver 152 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the invention is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 162 and the BS transceiver 152 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
The  processor modules  158 and 168 may be implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A  processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by  processor modules  158 and 168, respectively, or in any practical combination thereof. The  memory modules  156 and 166 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard, the  memory modules  156 and 166 may be coupled to the  processor modules  158 and 168, respectively, such that the  processors modules  158 and 168 can read information from, and write information to,  memory modules  156 and 166, respectively. The  memory modules  156 and 166 may also be integrated into their  respective processor modules  158 and 168. In some embodiments, the  memory modules  156 and 166 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by  processor modules  158 and 168, respectively.  Memory modules  156 and 166 may also each include non-volatile memory for storing instructions to be executed by the  processor modules  158 and 168, respectively.
The network interface 160 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 102 that enable bi-directional communication between BS transceiver 152 and other network components and communication nodes configured to communication with the BS 102. For example, network interface 160 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation,  network interface 160 provides an 802.3 Ethernet interface such that BS transceiver 152 can communicate with a conventional Ethernet based computer network. In this manner, the network interface 160 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for” or “configured to” as used herein with respect to a specified operation or function refers to a device, component, circuit, structure, machine, signal, etc. that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function. The network interface 160 could allow the BS 102 to communicate with other BSs or core network over a wired or wireless connection.
Referring again to Figure 1A, as mentioned above, the BS 102 repeatedly broadcasts system information associated with the BS 102 to one or more UEs (e.g., 104) so as to allow the UE 104 to access the network within the cell 101 where the BS 102 is located, and in general, to operate properly within the cell 101. Plural information such as, for example, downlink and uplink cell bandwidths, downlink and uplink configuration, configuration for random access, etc., can be included in the system information, which will be discussed in further detail below. Typically, the BS 102 broadcasts a first signal carrying some major system information, for example, configuration of the cell 101 through a PBCH (Physical Broadcast Channel) . For purposes of clarity of illustration, such a broadcasted first signal is herein referred to as “first broadcast signal. ” It is noted that the BS 102 may subsequently broadcast one or more signals carrying some other system information through respective channels (e.g., a Physical Downlink Shared Channel (PDSCH) ) , which are herein referred to as “second broadcast signal, ” “third broadcast signal, ” and so on.
Referring again to Figure 1B, in some embodiments, the major system information carried by the first broadcast signal may be transmitted by the BS 102 in a symbol format via the communication channel 192 (e.g., a PBCH) . In accordance with some embodiments, an original  form of the major system information may be presented as one or more sequences of digital bits and the one or more sequences of digital bits may be processed through plural steps (e.g., coding, scrambling, modulation, mapping steps, etc. ) , all of which can be processed by the BS processor module 158, to become the first broadcast signal. Similarly, when the UE 104 receives the first broadcast signal (in the symbol format) using the UE transceiver 162, in accordance with some embodiments, the UE processor module 168 may perform plural steps (de-mapping, demodulation, decoding steps, etc. ) to estimate the major system information such as, for example, bit locations, bit numbers, etc., of the bits of the major system information. The UE processor module 168 is also coupled to the I/O interface 169, which provides the UE 104 with the ability to connect to other devices such as computers. The I/O interface 169 is the communication path between these accessories and the UE processor module 168.
In some embodiments, the UE 104 can operate in a hybrid communication network in which the UE communicates with the BS 102, and with other UEs, e.g., between 104a and 104b. As described in further detail below, the UE 104 supports sidelink communications with other UE’s as well as downlink/uplink communications between the BS 102 and the UE 104. As discussed above, sidelink communication allows the  UEs  104a and 104b to establish a direct communication link with each other, or with other UEs from different cells, without requiring the BS 102 to relay data between UE’s .
Figures 2A-2C illustrate an exemplary scenario when UEs in a group can obtain their synchronization timings from different synchronization sources, in accordance with some embodiments. A V2X communication group 201 is formed by three  UEs  204a, 204b and 204c, each synchronized to a first BS 202a in a first cell 210 with a first synchronization timing 205. In this example, the UE 204a is a leader UE (hereinafter “L-UE” ) of the group 201, while the  UE  204b and 204c are follower UEs (hereinafter “F-UEs” ) of the same group 201. When all the F- UEs  204b and 204c do not obtain synchronization timing from the L-UE 204a, in such a case the L-UE 204a is not considered to be a synchronization reference UE (hereinafter “R-UE” ) of the group. The F- UEs  204b and 204c can directly communicate with the L-UE 204a and with each other based on a common synchronization timing 205 of the group, which is also the synchronization timing of the cell 201. As shown in Figure 2A, the group 201 is moving toward an edge of the first cell 210 in a direction 220 toward a second cell 211, which is covered by a second BS 202b.
As the group 201 continues to move, it will reach a second position, as shown in Figure 2B, where the L-UE 204a crosses a boundary of the first cell 210 and enters the area of the second cell 211. The L-UE 204a switches from its first synchronization timing 205 of the BS 202a to a second synchronization timing 206 of the second BS 202b. Since the L-UE 204a is the first to cross the boundary, it is the first UE to switch its synchronization source within the group 201. For a non-synchronized cellular network, where the two  BSs  202a and 202b in the two  cells  201 and 211 do not share the same synchronization timing, the two  synchronization timings  205 and 206 can both be used by UEs in the group 201, e.g., the L-UE 204a obtains its synchronization timing 206 from the BS 202b and the two F- UEs  204b and 204c obtain their synchronization timing 205 from the BS 202a. In this case, sidelink data between the F- UEs  204b and 204c, or between the F-UEs and the L-UE 204a, cannot be successfully decoded due to a mismatch between  synchronization timings  205 and 206. Therefore, at this position the sidelink communication will be temporarily interrupted due to synchronization misalignment.
As shown in Figure 2C, the group 201 continues to a third position where all the F-UEs and L-UE of the group completely travel across the boundary of the two  cells  210 and 211 and switch their synchronization timing from 205 of the first cell 210 to 206 of the second cell 211. At this point, sidelink communication can be re-established among all the UEs within the group  210 since all the UEs can obtain the same synchronization timing from a common synchronization source, i.e., BS 202b.
Figure 3 illustrates an exemplary environment 300 in which UEs in a sidelink group can perform sidelink communications, in accordance with some embodiments. In the example of Figure 3, there are four UEs within a cell 101 formed by a BS 102. Three of the four UEs (e.g., 104a, 104b and 104c) are geographically proximate to each other and are capable of forming a group with one another. One of the four UEs (e.g., UE 104d) , however, is not proximate to the other UE’s and therefore maintains direct communication and synchronization with the BS 102. Alternatively, the UE 104d can obtain its synchronization timing from a different synchronization source (e.g., GNSS or a different BS) .
Before forming a group 110, all the UEs within the cell 101 can obtain their synchronization timings from the BS 102 or from other synchronization sources (e.g., GNSS) . In accordance with some embodiments, the UE 104a can broadcast a request to all other UEs within UE 104a’s vicinity to form a group. Such groups can be advantageously formed, for example, when vehicles that are heading to a same direction or a same destination wish to form a group, so that information (e.g., traffic jam or accident up ahead) can be shared between UEs in a group. Each of UEs (e.g.,  UEs  104b and 104c) can then acknowledge the request from the UE 104a to form a group. The UE 104a then informs the BS 102 about this group forming event on channels like PUSCH (physical Uplink Shared Channel) or PUCCH (Physical Uplink Control Channel) . Based on the information provided by the UE 104a, the BS 102 can then broadcast messages like a RRC (Radio Resource Control) message or messages on channels like PDSCH (Physical Downlink Shared Channel) containing information of the group to all the UEs 104. The information of the group can be also broadcasted by the L-UE to all the F-UEs in the group, when the L-UE is the only one receives this information from the BS 102, in accordance with  some embodiments. When the group 110 is formed, the UE 104a becomes a L-UE and  UE  104b and 104c become F-UEs of the group. In some embodiments, the L-UE 104a can be the only UE in the group that directly communicates with the BS 102, e.g., for downlink/uplink transmission and group communication is used only for sidelink messages. In some embodiments, all the UEs 104 in the group can also communicate directly with the BS 102 for cellular communication. It should be noted that although the F-UEs of the group 110 are in the same cell 101 within the cellular network range of the BS 102 in Figure 3, in alternative scenarios, the F-UEs can be outside the cellular network range covered by the BS 102. In this case, they can communicate between each other or to the BS 102 through the L-UE 104a, which acts as a Relay-UE of the group in such a scenario.
In some embodiments, instead of obtaining synchronization timings from different synchronization sources as discussed in Figure 3, the F- UEs  104b and 104c obtain their synchronization timings directly from the L-UE 104a, in which case, the L-UE 104a becomes a synchronization reference UE (hereinafter “reference UE” or “R-UE” ) in the sidelink group. For example, the L-UE can be a R-UE in a V2X group, which transmits a Sidelink Synchronization Signal (SLSS) and/or a Physical Sidelink Broadcast Channel (PSBCH) signal to the F- UEs  104b and 104c. The L-UE 104a communicates with and obtains its synchronization timing from the BS 102. In some embodiment, the L-UE does not necessarily have to be a R-UE. For example, after a V2X group is formed, the L-UE becomes the first vehicle of the group and the quality of the signal from the L-UE 104a to the last vehicle in the group may be poor compared to a signal from a vehicle within the center of the group. Since before joining the group, each of the UE has its own synchronization source (e.g., a BS or a GNSS) , each UE is capable of re-establishing the synchronization to the BS or the GNSS to become the new R-UE of the group for providing accurate synchronization timing to the group, even it is not the L-UE of the group. The F-UEs  detect and periodically track the SLSS and/or PSBCH signal transmitted from the R-UE to obtain and maintain an accurate synchronization timing after joining a group. The F-UEs communicate within the group based on this synchronization timing obtained from SLSS, as shown in Figure 3.
In some embodiments, after joining a group, the two F- UEs  104b and 104c have the priority to synchronize with the R-UE 104a of the group over other synchronization sources, e.g, a BS 102 or a GNSS, for sidelink group communications. When exiting a group, the two F- UEs  104b and 104c select different synchronization sources, e.g., a BS by tracking a SS (synchronization signal) according to the priority defined by the current cellular network technology or a different R-UE from a different group by detecting/tracking a different SLSS.
It should be noted that although 3 UEs 104 are shown in one sidelink group 110 in a cell 101, Figure 3 serves merely as an example environment for demonstration purpose. There can be any number of UEs in a group and/or any number of groups in a cell, depending on cell area and other factors, in accordance with various embodiments of the invention.
Figure 4 illustrates a method 400 of obtaining a group-level synchronization timing by at least one F-UE (e.g., 104b and/or 104c) from the R-UE 104a when the R-UE 104a switches to a new synchronization source, according to some embodiments of the present disclosure. It is understood that additional operations may be provided before, during, and after the method 400 of Figure 4, and that some other operations may be omitted or only briefly described herein.
Group-level SLSS and/or PSBCH signals transmitted by the R-UE 104a are different from non-group-level ones and are carried on different resource subframes in the current technology. In accordance with some embodiments, a synchronization resource subframe for SL transmission is defined or allocated to carry the group-level SLSS and/or PSBCH signal, which contains characteristic information of the group that can be used by F-UEs of the group to identify the R-UE for synchronization. For example, a sidelink synchronization signal  identification (SLSSID) of a group-level SLSS can be different from the SLSSID of a non-group-level SLSS. As another example, public information carried by the group-level PSBCH signal can also be different from that by a non-group-level PSBCH signal. The PSBCH can be used for carrying specific information of the group such as but not limited to, group identification information.
The method 400 starts with operation 401, where a BS 102 transmits a message to all the UEs 104 in a group 110 to acknowledge a request for a formation of a SL communication group, typically transmitted by a L-UE. In some embodiments, this instruction is transmitted from the BS 102 to the UEs in a group 110 in messages such as a RRC (Radio Resource Control) message from a layer above the physical layer, or a system message. In some embodiments, this message from the BS 102 can be also used to trigger the detection of a group-level SLSS and/or PBSCH signal from the R-UE 104a on a predefined SL synchronization resource subframe, which is discussed further in detail below with respect to Figure 5. In some embodiments, the BS 102 also transmits group identification information to the R-UE in the same message.
The method 400 continues with operation 402, where the R-UE 104a instructs all F- UEs  104b and 104c in the group 110 to detect the SLSS and/or PSBCH signal. In some embodiments, the R-UE 104a is also a L-UE of the group. In some embodiments, the instruction signal comprises SLSS identification information (SLSSID) of the group-level SLSS, or group ID information (GroupID) . The SLSSID in the instruction signal can be used for the identification of a group-level SLSS by a F-UE in later operations to detect a corresponding synchronization timing from the group-level SLSS with the same SLSSID. Similarly, the GroupID in the instruction signal can be also used as a reference by a F-UE in later operations to identify a corresponding synchronization timing from a group-level PSBCH signal with the same GroupID. The SLSSID can be group broadcasted by the R-UE, while the GroupID can be group  broadcasted by the L-UE, in accordance with some embodiments. In some embodiments, the instruction signal further comprises an offset value between a new synchronization timing and an old one, e.g., when the R-UE switches synchronization sources as illustrated in Figure 2. The offset value is used by the R-UE to instruct a time window to the F-UEs, when the F-UEs can detect the group-level SLSS with a corresponding SLSSID. The offset value and time window are discussed further in detail in operation 403. In some embodiments, the instruction signal from the R-UE 104a to the F-UE’s 104b and 104c can be triggered by a direct instruction from the BS 102 received in operation 401 discussed above. In alternative embodiments, the instruction signal can be triggered by a measured value of a reference signal received power (RSRP) determined by the R-UE 104a based on measurements performed on a downlink reference signal (DLRS) from the BS 102. For example, if the RSRP value is below a predetermined threshold, e.g., RSRP<1, the R-UE 104a will be triggered to send the instruction signal to the F-UE’s in the group. The instruction signal can be transmitted on channels like PBSCH (Physical Broadcast Shared Channel) , PSSCH (Physical Sidelink Shared Channel) or the like.
In some embodiments, the DLRS from the BS 102 can be transmitted on channels such as, for example, a Physical Downlink Control Channel (PDCCH) , and a Physical Downlink Shared Channel (PDSCH) . In some embodiments, multiple DLRSs are staggered in time and frequency, which allows the UE 104 to perform complex interpolation of channel time-frequency response to estimate the channel effect on the transmitted information. In some embodiments, a DLRS can also be a Cell-specific reference signal (CSRS) or a UE-specific reference signal (UESRS) .
The method 400 continues with operations 403, In some embodiments, when the F-UE initially does not have the knowledge of an exact synchronization timing on which the group- level SLSS and/or PSBCH signal will be transmitted from the R-UE, the detection of a group-level SLSS and/or a PSBCH signal by the F-UE is performed continuously in the time domain, until F-UE receives the group-level SLSS and/or PSBCH signal. In some embodiments, the theoretical maximum time that the F-UE needs to continuously detect the group-level SLSS and/or PSBCH is the period of the group-level SLSS and/or PSBCH, which is also the period of the predefined SL synchronization resource subframe. In some embodiments, the period of the group-level SLSS and/or PSBCH signal can be long, so establishing a synchronized SL communication for the F-UE can be slow, limiting the system performance. In addition, during this period, the F-UE needs to be constantly receiving and processing signals so that the power consumption of the F-UEs during the establishment of the synchronized SL transmission is high.
In some embodiment, since a new synchronization timing is already obtained by the R-UE 104a from the BS 102. In order to prevent the problem discussed above, the new synchronization timing and the old one can be compared and an offset between the two can be calculated by the R-UE 104a. The R-UE 104a can then include the offset value (e.g., t) in the instruction signal which can be transmitted on channels including PSBCH (Physical Sidelink Broadcast Channel) or PSSCH (Physical Sidelink Shared Channel) . This offset value is then used to determine an approximate time window for the F-UEs to detect the new group-level SLSS and/or PSBCH signal from the R-UE 104a instead of continuously attempting to detect the signals. In some embodiments, the time window for the F-UEs to detect the group-level SLSS and/or PSBCH signal can be the previous synchronization timing plus the offset value plus or minus a constant. In some embodiments, the constant determines the size of the time window and can be configured by the BS 102 or preconfigured in all the UEs 104.
The method 400 continues with operation 404, where the F- UEs  104b and 104c receive the group-level SLSS and/or PBSCH from the R-UE 104a and obtain a new synchronization  timing, which is used by the F-UEs to track the R-UE 104a for accurate synchronization during subsequent SL transmissions. In some embodiments, the detection of the group-level SLSS or PBSCH signal from the R-UE 104a can also be triggered by a direct message from the BS 102, e.g., a RRC message or a system message. In some embodiment, in addition to the synchronization timing, the group-level SLSS and/or PSBCH signal also contains identification information of the group for the F-UEs to identify the R-UE of the group, which will be further discussed in detail in Figure 5.
The method 400 continues with operation 405 for SL transmission when the synchronization timing is established for the F-UEs of the group 110. In some embodiments, when the UE’s are vehicles, data in the SL transmission may include break/acceleration information and route options which can be triggered by random events, e.g., accident. In some embodiments, a L-UE can obtain environmental and traffic information from a road side unit (RSU) and can broadcast periodically to the F-UEs of the group. Meanwhile, the L-UE may collect F-UE status reports and transmit back to the RSU, which can also be an example of a SL transmission.
After the SL transmission is established, all F-UEs in the group are still required to redetect and track the group-level SLSS and/or PSBCH from the R-UE periodically at a predefined period during the SL transmission. This process, known as timed tracking, can be implemented to reinforce and maintain accurate synchronization timing within the SL communication group. The period of the timed tracking can be the period of the SL synchronization resource subframe. In some embodiments, the F-UE can terminate the redetect and retrack of the group-level SLSS and/or PSBCH signal from the R-UE 104a when the SL transmission is accomplished, or when the F-UE leaves the group 110 for another group with a different synchronization source, or when it receives termination instructions directly from the  BS 102. In some embodiments, the F-UEs in the group not only detect/track the group level SLSS and/or PSBCH periodically to maintain an accurate synchronization timing within the SL communication group, the F-UE also redetect/retract the non-group-level SLSS and/or PSBCH signal periodically from the BS 102 to maintain an accurate synchronization timing on the non-group level. In some embodiments, the period of the detection of non-group-level SLSS and/or PSBCH signal is the period of the resource subframes defined by the current technology.
Figure 5 illustrates a configuration of a predefined sidelink synchronization resource subframe for transmitting a group-level SLSS and/or PSBCH signal from a R-UE in a SL communication group, in accordance with some embodiments. In some embodiments, a sidelink (SL) synchronization resource 501 occupying a subframe 502 in a radio frame 503 in the time domain and a plurality of central physical resource blocks 504 within a system bandwidth 505 in the frequency domain, is defined and configured to only used for group-level SLSS transmission to carry group-level SLSS identification (SLSSID) information. As discussed above, a group-level SLSS and SLSSID can be used by F-UEs to identify the R-UE of the group. Therefore, different R-UEs in different groups transmits different SLSSIDs. The radio frame 503 contains 10 subframe 502 in the time domain. For example, a first time slot 506 or a second time slot 507 in a subframe 502 (e.g., time slots 0 and 1) , form 1 resource block 504 with 12 subcarriers 508 in the frequency domain. Each of the two time slots in one subcarrier 506 includes 7 SC-FDMA (single carrier-frequency division multiple access) symbols 509. In some embodiments, the SL synchronization resource 501 occupies the center 6 RBs, i.e., the 72 subcarriers 508.
In some embodiments, different SLSSIDs can be assigned by a BS to different groups in the cell when groups are formed. The message that carries this information from the BS to the R-UE can be transmitted on channels including PDSCH (Physical Downlink Share Channel) or the like. In some embodiments, the BS only assigns a group ID to a group based on the scene  (e.g., inside/outside of coverage) or synchronization source (e.g., R-UE, BS or GNSS) . In some embodiment, since there are 168 SC-FDMA symbols in two resource blocks, the SLSSIDs of groups can then be derived from the assigned group ID through operations such as, GroupID mod 168 or GroupID mod 168 +168.
When a group is formed, a R-UE of the group broadcasts a group-level SLSS containing SLSSID of the group to all the F-UEs of the group. In some embodiments, the SLSS is transmitted in the predefined SL synchronization resource subframe. In some embodiments, the group-level SLSS can be mapped to a plurality of SC-FDMA symbols predefined in the predefined SL synchronization resource subframe. In some embodiments, the group-level SLSS can be mapped to all of the SC-FDMA symbols in the predefined SL synchronization resource subframe. In some embodiments, the SL synchronization resource subframe is only used for transmitting SLSS, and not for transmitting PSBCH or DMRS (Demodulation Reference Signal) . In some embodiments, an index of SC-FDMA symbols that carries SLSS can be obtained by operations, e.g., SLSSID mod 13 when the last SC-FDMA symbol (i.e., symbols in column 13 in Figure 5) is used as GAP symbol to minimize interferences between transmissions. In some embodiments, the operation can also be SLSSID mod 12, when the first SC-FDMA symbol (i.e., symbol in column 0 in Figure 5) is excluded for signal processing, e.g., AGC (Automatic Gain  Control) , which is a method for automatically adjusting the gain of the output signal based on the change of the input signal in order to improve the efficiency of the amplifier. In some embodiments, there can be at least 1 SC-FDMA symbols and at most 6 SC-FDMA symbols in a subframe in the predefined SL synchronization resource that can be used for the group-level SLSS transmission.
In some embodiments, the predefined SL synchronization resource as shown in Figure 5 can be used for transmitting both a group-level SLSS and a group-level PSBCH signal. In  some embodiments, the predefined SL synchronization resource can also be used for only transmitting a group-level PSBCH signal.
Figure 6 illustrates a radio frame structure 600 with at least one predefined SL synchronization subframe 602 added to the radio frame 600 for sidelink transmission, in accordance with some embodiments. In some embodiments, the at least one predefined SL synchronization subframe 602 can be only used for the group-level SLSS transmission. As shown in Figure 6, the radio frame 600 further includes a conventional synchronization subframe 604 for conventional SLSS and/or PSBCH signal transmissions. In some embodiments, the SL synchronization resource subframe is used by a R-UE of a group for transmitting a group-level PSBCH signal to indicate group ID information. Similar to the SLSSID discussed above, the group ID is also used for F-UEs of the group to identify the R-UE for synchronization. In some embodiments, to prevent PSBCH overlapping, each SL synchronization resource subframe 602, is associated with a group with a different group ID. The L-UE of the group broadcasts the group ID information when a group is formed. Sidelink synchronization resource subframe period 606 can be the same as the conventional synchronization subframe period.
In some embodiments, a Sidelink Control Information (SCI) is transmitted and used to indicate scheduling information for sidelink communications, e.g., resource allocation. In some embodiments, the SCI is used to indicate the positions of the predefined SL synchronization resource (s) for the group-level PSBCH signal transmission. The SCI is used by F-UEs to decode the group-level PSBCH signal to further obtain the group ID and identify the R-UE.
In some embodiments, a R-UE transmits non-group-level SLSS and/or PSBCH signal according to the current technology, and transmits a group-level SLSS and/or PSBCH signal at resources with a predefined offset, offsetQ, wherein the different offset values are associated with different group IDs. In some embodiments, the offset value in millisecond can be the group ID  mod 10. In some other embodiments, the offset value in millisecond can be the group ID mod 20. The F-UEs of the group receive group ID and/or group SLSSID information after joining the group, in accordance with some embodiments. The group ID is further used to calculate the subframe position for the group-level PSBCH signal transmission. The F-UEs can further identify the R-UE based on detecting SLSS with group SLSSID, or decoding the group-level PSBCH signal in which a group ID can be obtained.
Referring again to Figure 5, the last SC-FDMA symbol is typically not occupied in the current technology, in order to prevent any kind of data loss between transmissions. In some embodiments, the last symbol of SC-FDMA in the SL synchronization resource subframe can be used for carrying group ID information, which can be used by the F-UEs to identify the R-UE of the group. Specifically, in some embodiments, only the first few bits of the last symbol can be used to carry the group ID while effectively preventing data loss. The offset between resources in the frequency domain is associated to the group ID to prevent overlapping of different groups. In some embodiments, the offset value in Hz can be the group ID mod a constant value N, where N is the number of unit that the SL synchronization resource is divided into in the frequency domain.
The aforementioned configuration of the SL synchronization resource subframe which only occupies the 6 central RBs within system bandwidth as shown in Figure 5 is a preferred resource subframe configuration, which has advantageous over other configurations in accordance with some embodiments. For example, when the predefined SL synchronization resource is only for the group-level SLSS transmission, this configuration is compatible with the configuration of synchronization resource for non-group-level SLSS transmission, which also occupies the 6 central RBs within system bandwidth. When the predefined SL synchronization resource is used for the group-level SLSS and PBSCH signal transmission, this configuration  could be able to facilitate the decoding process. When the predefined SL synchronization resource is only used for the group-level PBSCH signal transmission, if there is no control signaling for PBSCH as the PBSCH in the current technology, fixed dedicated resources must be used and in this case, this resource subframe configuration could facilitate the resource allocation; if there is a control signaling for PBSCH, e.g., the predefined SCI format as discussed above to indicate the position of the PBSCH signal in the SL synchronization resource subframe, this resource subframe configuration can simplify the content of the control signaling, e.g., in the SCI format while being consistent with the configuration in the current technology. However, this configuration of the SL synchronization resource structure presented in Figure 5 is merely an example and is not intend to limit this invention. Different configurations with different numbers of subcarriers and numbers of symbols for the group-level SLSS and/or PSBCH signal transmission are all within the scope of this invention.
While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand exemplary features and functions of the invention. Such persons would understand, however, that the invention is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the various illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two, which can be designed using source coding or some other technique) , various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these technique, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application,  but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the invention.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the invention. It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the invention. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (22)

  1. A method for performing sidelink communications, the method comprising:
    determining, by a first wireless communication node, whether a second synchronization timing with at least one second wireless communication node is to be established, wherein the first wireless communication node and the at least one second wireless communication node form a sidelink communication group;
    in response to determining that the second synchronization timing is to be established, transmitting a first message based on a first synchronization timing to the at least one second wireless communication node, wherein the first message indicates a synchronization message which is configured to provide the second synchronization timing to the at least one second wireless communication node; and
    transmitting the synchronization message using a predefined sidelink synchronization resource to the at least one second wireless communication node.
  2. The method of claim 1, wherein the determining whether a second synchronization timing with at least one second wireless communication node is to be established comprises  receiving a second message from a third wireless communication node, wherein the second message indicates the second synchronization timing to be established.
  3. The method of claim 1, wherein the determining whether a second synchronization timing with at least one second wireless communication node is to be established comprises:
    receiving a reference signal from a third wireless communication node;
    measuring a signal quality parameter based on the received reference signal; and
    in responsive to determining the measured signal quality parameter is below a predetermined threshold, determining that the second synchronization timing is to be established.
  4. The method of claim 3, wherein the signal quality parameter comprises a reference signal received power level.
  5. The method of claim 1, wherein the synchronization message comprises a sidelink synchronization signal containing a sidelink synchronization signal identification that identifies the second synchronization timing associated with the sidelink communications group.
  6. The method of claim 5, wherein the sidelink synchronization signal is transmitted in at least one predetermined subframe in the time domain that occupies at least one subcarrier in the frequency domain.
  7. The method of claim 1, wherein the first message comprises the identification information associated with the sidelink communication group.
  8. The method of claim 1, wherein the first message comprises an offset value that specifies a timing difference between the second synchronization timing and the first synchronization timing.
  9. The method of claim 1, wherein the synchronization message comprises a physical sidelink broadcast channel signal containing identification information associated with the sidelink communication group.
  10. The method of claim 9, wherein the physical sidelink broadcast channel signal is transmitted in at least one predetermined subframe in the time domain that occupies at least one subcarrier in the frequency domain.
  11. A method for performing sidelink communications, the method comprising:
    receiving, by a second wireless communication node, a first message based on a first synchronization timing from a first wireless communication node, wherein the first message indicates a synchronization message which is configured to provide a second synchronization timing to the second wireless communication node, wherein the first wireless communication node and the second wireless communication node form a sidelink communication group; and
    receiving the synchronization message from the first wireless communication node over a predefined sidelink synchronization resource.
  12. The method of claim 11, wherein the second wireless communication node has a priority to obtain the second synchronization timing from the first wireless communication node above other synchronization timing sources.
  13. The method of claim 11, wherein the first message comprises the identification information associated with the sidelink communication group.
  14. The method of claim 11, wherein the first message comprises a time offset value between the second synchronization timing and the first synchronization timing, wherein the time offset value indicates the second communication node about a time period for receiving the synchronization message.
  15. The method of claim 11, wherein the synchronization message comprises a sidelink synchronization signal containing a sidelink synchronization signal identification that identifies the second synchronization timing associated with the sidelink communication group.
  16. The method of claim 15, wherein the sidelink synchronization signal is transmitted in the predefined sidelink synchronization resource that occupies at least one subframe in the time domain and at least one subcarrier in the frequency domain.
  17. The method of claim 11, wherein the synchronization message comprises a physical sidelink broadcast channel signal containing information associated with the sidelink communication group.
  18. The method of claim 17, wherein the physical sidelink broadcast channel signal is transmitted in the predefined sidelink synchronization resource that occupies at least one subframe in the time domain and at least one subcarrier in the frequency domain.
  19. The method of claim 17, wherein the physical sidelink broadcast channel signal can be decoded in accordance with a predefined sidelink control information format by the second wireless communication node.
  20. The method of claim 17, wherein the physical sidelink broadcast channel signal comprises identification information associated with the sidelink communication group.
  21. A computing device configured to carry out the method of any one of claims 1 through 20.
  22. A non-transitory computer-readable medium having stored thereon computer-executable instructions for carrying out the method of any one of claims 1 through 20.
PCT/CN2017/096904 2017-08-10 2017-08-10 Method and apparatus for synchronization in sidelink communication WO2019028769A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/096904 WO2019028769A1 (en) 2017-08-10 2017-08-10 Method and apparatus for synchronization in sidelink communication
CN201780091983.6A CN110771217A (en) 2017-08-10 2017-08-10 Method and apparatus for synchronization in sidelink communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096904 WO2019028769A1 (en) 2017-08-10 2017-08-10 Method and apparatus for synchronization in sidelink communication

Publications (1)

Publication Number Publication Date
WO2019028769A1 true WO2019028769A1 (en) 2019-02-14

Family

ID=65272849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096904 WO2019028769A1 (en) 2017-08-10 2017-08-10 Method and apparatus for synchronization in sidelink communication

Country Status (2)

Country Link
CN (1) CN110771217A (en)
WO (1) WO2019028769A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2577530A (en) * 2018-09-27 2020-04-01 Tcl Communication Ltd Synchronisation in cellular networks
CN113711629A (en) * 2019-05-02 2021-11-26 鸿颖创新有限公司 Access layer management method and related device for sidelink unicast service
WO2022019593A1 (en) * 2020-07-20 2022-01-27 엘지전자 주식회사 Method and apparatus for transmitting signal in wireless communication system
CN114503523A (en) * 2019-09-30 2022-05-13 高通股份有限公司 Method and apparatus for indicating loss of sidelink connection
US11866058B2 (en) 2021-12-21 2024-01-09 Continental Automotive Systems, Inc. Apparatus and method for time synchronization in V2X networks

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4104546A1 (en) * 2020-02-14 2022-12-21 Nokia Technologies Oy Synchronization priority for sidelink wireless communications
CN111954243A (en) * 2020-08-14 2020-11-17 中兴通讯股份有限公司 Information indication method, device, equipment and storage medium
CN117015025A (en) * 2022-04-29 2023-11-07 华为技术有限公司 Side line synchronization method and device based on grouping
WO2024020712A1 (en) * 2022-07-25 2024-02-01 Qualcomm Incorporated Absolute time distribution over sidelink communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517139A (en) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 Synchronization method and user equipment of D2D communication
US20160212721A1 (en) * 2015-01-16 2016-07-21 Sharp Laboratories Of America, Inc. Method and apparatus for selecting a synchronization signal source for sidelink communcations
WO2017052687A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Systems, methods and devices for cellular synchronization references
WO2017077864A1 (en) * 2015-11-06 2017-05-11 Sony Corporation Communication device and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105517139A (en) * 2014-09-25 2016-04-20 中兴通讯股份有限公司 Synchronization method and user equipment of D2D communication
US20160212721A1 (en) * 2015-01-16 2016-07-21 Sharp Laboratories Of America, Inc. Method and apparatus for selecting a synchronization signal source for sidelink communcations
WO2017052687A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Systems, methods and devices for cellular synchronization references
WO2017077864A1 (en) * 2015-11-06 2017-05-11 Sony Corporation Communication device and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On Remaining Issues for Sidelink Synchronization", 3GPP TSG RAN WG2 MEETING #97, R2-1701372, 17 February 2017 (2017-02-17), XP051212033 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2577530A (en) * 2018-09-27 2020-04-01 Tcl Communication Ltd Synchronisation in cellular networks
CN113711629A (en) * 2019-05-02 2021-11-26 鸿颖创新有限公司 Access layer management method and related device for sidelink unicast service
CN114503523A (en) * 2019-09-30 2022-05-13 高通股份有限公司 Method and apparatus for indicating loss of sidelink connection
CN114503523B (en) * 2019-09-30 2024-01-05 高通股份有限公司 Method and apparatus for indicating loss of side-link connection
US11956120B2 (en) 2019-09-30 2024-04-09 Qualcomm Incorporated Indicating sidelink connection loss
WO2022019593A1 (en) * 2020-07-20 2022-01-27 엘지전자 주식회사 Method and apparatus for transmitting signal in wireless communication system
US11866058B2 (en) 2021-12-21 2024-01-09 Continental Automotive Systems, Inc. Apparatus and method for time synchronization in V2X networks

Also Published As

Publication number Publication date
CN110771217A (en) 2020-02-07

Similar Documents

Publication Publication Date Title
US11963171B2 (en) Method and apparatus for configuration and scheduling of sidelink resources
US20210185628A1 (en) Method and apparatus for synchronization in sidelink communications
US11903012B2 (en) Method and apparatus for carrier aggregation in sidelink communication
WO2019028769A1 (en) Method and apparatus for synchronization in sidelink communication
US20210250931A1 (en) Method and apparatus for configuration of sidelink channel resource units
US11743005B2 (en) Method and apparatus for allocating muting resources for communications between wireless communication nodes
US11956758B2 (en) Method and apparatus for configuration of sidelink channel resource units
CN112703786A (en) Method and apparatus for synchronous reference source selection
WO2020034326A1 (en) Method and apparatus for configuration of scheduling-based sidelink resources
US20200344671A1 (en) System and method for indicating information
US11864254B2 (en) Method and apparatus for frequency measurement and gap configuration
WO2020019155A1 (en) Method and apparatus for muting resource allocation
CN117616833A (en) Side link positioning reference signal sequence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920916

Country of ref document: EP

Kind code of ref document: A1