WO2019028765A1 - Methods and computing device for multi-beam resource management in a wireless network - Google Patents

Methods and computing device for multi-beam resource management in a wireless network Download PDF

Info

Publication number
WO2019028765A1
WO2019028765A1 PCT/CN2017/096896 CN2017096896W WO2019028765A1 WO 2019028765 A1 WO2019028765 A1 WO 2019028765A1 CN 2017096896 W CN2017096896 W CN 2017096896W WO 2019028765 A1 WO2019028765 A1 WO 2019028765A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
type
beam management
user equipment
Prior art date
Application number
PCT/CN2017/096896
Other languages
French (fr)
Inventor
Xiaojuan Shi
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN201780093705.4A priority Critical patent/CN110999443A/en
Priority to PCT/CN2017/096896 priority patent/WO2019028765A1/en
Publication of WO2019028765A1 publication Critical patent/WO2019028765A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure is related generally to wireless networks and, more particularly, to methods and a computing device for multi-beam resource management in a wireless network.
  • next generation system 5G system
  • 5G system next generation system
  • MIMO Massive multiple-in-multiple-out
  • beam management functions such as beam sweeping, beam determination, beam reporting (e.g., reporting beam ID and layer 1 (L1) reference signal received power (RSRP) , etc. ) and beam switching are introduced to select the most proper serving beam (s) for a respective UE.
  • UE specific Channel State Information Reference Signals are designated serving the purpose of beam management.
  • the UE-specific CSI-RSes are limited to the narrow spatial coverage provided by their respective beams .
  • CSI-RS based beams beams for the transmission of CSI-RS, which will sometimes be referred to herein as “CSI-RS based beams”
  • CSI-RS based beams beams for the transmission of CSI-RS, which will sometimes be referred to herein as “CSI-RS based beams”
  • the number of narrow CSI-RS based beams can be up to 4096.
  • a UE In order to identify which of these beams are suitable or “best” for communications, a UE should continuously perform beam sweeping, beam measurement, beam determination, and CSI-RS beam based reporting (either periodic or aperiodic) . If too many beams are configured to a particular UE (e.g., all of the CSI-RS based beams are configured to the UE) the UE will be required to consume a considerable amount of power. Additionally, dedicating a large number of beams to a particular UE incurs a processing burden on the UE. At the same time, a large signaling overhead and higher resource consumption will be introduced over the air due to the high level of CSI-RS reporting activity that will result from the large number of beams.
  • beam management decisions may be sub-optional and the UE has higher risk of beam link failure or radio link failure (e.g., when too few beams are measured and reported and blockage occurs) .
  • FIG. 1 is a diagram of a system in which various embodiments of the disclosure are implemented.
  • FIG. 2 shows an example hardware architecture, according to an embodiment.
  • FIG. 3 is a diagram depicting a framework for providing beam management configurations, according to an embodiment.
  • FIG. 4 and FIG. 5 are diagrams depicting implementations of cell-specific reference signals, according to an embodiment.
  • FIG. 6 depicts the trajectory of a user equipment and the quasi collocation relationship between a cell-specific reference signal resource and user equipment-specific reference signal resource.
  • a method for multi-beam resource management in a wireless network involves a computing device (e.g., a user equipment or relay node) : carrying out beam management according to a first beam management configuration; receiving a first type of reference signal (e.g., a user equipment-specific reference signal such as a channel state information reference signal) ; receiving a second type of reference signal (e.g., a cell-specific reference signal such as a synchronization signal) ; determining that a resource of the reference signal of the first type has met a criterion of a triggering event; determining whether a resource of the reference signal of the first type is quasi co-located with a resource of the reference signal of the second type; and based on the triggering event determination and the quasi co-location determination, ceasing to carry out beam management according to the first beam management configuration and commencing to carry out beam management according to a second beam management configuration.
  • a computing device e.g., a user equipment or relay node
  • a method for multi-beam resource management in a wireless network involves: transmitting a first beam management configuration to a computing device, wherein the first beam management configuration specifies a triggering event; receiving, from the computing device, a message indicating that a resource of a first type of reference signal received by the user equipment has met a criterion for the triggering event; determining whether the resource is quasi co-located with a resource of a second type of reference signal; and based on receiving the message and on the quasi co-location determination, transmitting a beam management command to the computing device indicating that the computing device is to change its beam management configuration.
  • a method for multi-beam resource management in a wireless network involves a computing device: wirelessly receiving a first type of reference signal and a second type of reference signal; carrying out a measurement on resource of the first type of reference signal according to a received measurement configuration; determining, based on the measurement, that the resource of the first type of reference signal has triggered a resource specific event of the first type of reference signal; determining a resource of the second type of reference signal that is quasi co-located with the resource of the first type of reference signal; and carrying out beam management on the resource of the second type of reference signal.
  • a method for multi-beam resource management in a wireless network involves a first computing device: transmitting a measurement configuration to a second computing device, wherein the measurement configuration specifies a resource specific event of a first type of reference signal; receiving, from the second computing device, a message indicating that a resource of the first type of reference signal received by the second computing device has triggered the resource specific event of the first type of reference signal; determining a resource of the second type of reference signal that is quasi co-located with the resource of the first type of reference signal; and transmitting a beam management signal to the second computing device indicating that the second computing device is to carry out beam management according to information contained in the beam management signal.
  • FIG. 1 depicts a wireless communication system 100 in which the various embodiments may be deployed.
  • the communication system 100 includes several communication nodes.
  • the communication node depicted is a base station (BS) 102.
  • BS base station
  • UE user equipment
  • FIG. 1 depicts a wireless communication system 100 in which the various embodiments may be deployed.
  • the communication system 100 includes several communication nodes.
  • the communication node depicted is a base station (BS) 102.
  • UE user equipment
  • FIG. 1 depicts a wireless communication system 100 in which the various embodiments may be deployed.
  • the communication system 100 includes several communication nodes.
  • the communication node depicted is a base station (BS) 102.
  • UE user equipment
  • FIG. 1 depicts a wireless communication system 100 in which the various embodiments may be deployed.
  • the communication system 100 includes several communication nodes.
  • the communication node depicted is a base station (BS) 102.
  • UE user equipment
  • FIG. 1 depict
  • Possible implementations of the UE 104 include any device capable of wireless communication, such as a smartphone, tablet, laptop computer, and non-traditional devices (e.g., household appliances or other parts of the “Internet of Things” ) .
  • UE 104 from FIG. 1 may be thought of as carrying out the action or receiving the result of the action being discussed.
  • BS 104 from FIG. 1 may be thought of as carrying out the action or receiving the result of the action being discussed.
  • FIG. 2 illustrates a basic (computing device) hardware architecture implemented by the elements of FIG. 1, including the BS 102 and UE 104.
  • the elements of FIG. 1 have other components as well.
  • the hardware architecture depicted in FIG. 2 includes logic circuitry 202, memory 204, transceiver 206, and one more antennas represented by antenna 208.
  • the memory 204 may be or include a buffer that, for example, holds incoming transmissions until the logic circuitry is able to process the transmission.
  • Each of these elements is communicatively linked to one another via one or more data pathways 210. Examples of data pathways include wires, conductive pathways on a microchip, and wireless connections.
  • logic circuitry means a circuit (atype of electronic hardware) designed to perform complex functions defined in terms of mathematical logic. Examples of logic circuitry include a microprocessor, a controller, or an application-specific integrated circuit. When the present disclosure refers to a device carrying out an action, it is to be understood that this can also mean that logic circuitry integrated with the device is, in fact, carrying out the action.
  • the first type of RS is provided by the Synchronization Signals (SS) .
  • the SS includes one or more SS blocks. Each of the SS blocks includes at least a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a physical broadcast channel (PBCH) .
  • the second type of RS is provided by CSI-RS.
  • Each CSI-RS is transmitted using CSI-RS resources.
  • One or more CSI-RS resources can be configured for a single UE for the reception of one or more CSI-RSes. Different CSI-RS resources can be configured for different UEs.
  • a CSI-RS resource configuration for a given UE for the reception of a CSI-RS includes at least one of the following: Cell ID; CSI-RS identifier; timing configuration (including time offset and periodicity) ; number of antenna ports; resource element (RE) mapping; and parameters for sequence generation.
  • Both the SS and CSI-RS signals are beamformed signals, each with a specified radio-propagation direction.
  • the SS can be considered to be a cell-specific configured RS
  • the CSI-RS can be considered to be a UE-specific configured RS which is not always-on transmitted but can be turned on and off efficiently.
  • the SS can cover a wide area within a cell and serve all UEs within the wide area, but its spatial resolution is low (i.e., it is transmitted as a wide beam) .
  • the CSI-RS provides higher spatial resolution (i.e., a narrow beam) and a stronger signal within the narrow beam, but covers only a narrow area.
  • the SS and CSI-RS signals would be transmitted by the BS 102 and used by the UE 104.
  • the UE uses the SS for radio resource management (RRM) measurement.
  • RRM radio resource management
  • the UE can use a CSI-RS for RRM measurement if it is configured to do so by the network (e.g., by the BS) .
  • a UE in the CONNECTED state performs beam management (including beam sweeping, beam measurement, beam determination, beam reporting etc. ) at least based on a CSI-RS.
  • the network should provide CSI-RS based beam management configuration parameters to the UE.
  • the network signals these configuration parameters to the UE via RRC signaling.
  • FIG. 3 illustrates a framework for providing beam management configurations.
  • the network can configure a UE with N ⁇ 1 CSI reporting settings, M ⁇ 1 Resource settings, and one CSI measurement setting, where the CSI measurement setting includes L ⁇ 1 links.
  • Each of the L links is configured to correspond to a CSI reporting setting and a resource setting.
  • the resource setting defines the CSI-RS resources based on which UE should perform an L1 measurement for beam management.
  • Each of the configured CSI-RS resource settings can be configured with one or more CSI-RS resource sets.
  • Each CSI-RS resource set can be configured with K ⁇ CSI-RS resources.
  • the UE performs an L1 measurement (e.g., beam sweeping, beam measurement and beam determination) according to the beam management configuration signaled to the UE by the network (e.g., by the BS) .
  • the term “beam” can refer to the radio-propagation direction formulated by the transmitted signals from a single CSI-RS resource or the radio-propagation direction formulated by the transmitted signals from a CSI-RS resource set.
  • the association of CSI-RS resources with the Tx beams may depend on the particular network implementation. For example, each CSI-RS resource might convey a specific Tx beam, or each CSI-RS resource set might correspond to one Tx beam.
  • the UE generates CSI-RS based beam reporting according to the L1 measurement. If the network (e.g., the BS) sends a command to the UE indicating that the UE needs to change the serving beam (s) , the UE switches the serving beam (s) according to the command.
  • a CONNECTED UE carries out an RRM measurement based on an SS for Layer3 mobility. More specifically, the UE carries out an RRM measurement on the secondary synchronization signal (SSS) according the measurement configuration signaled from the network. This process will sometimes be referred to as the network “configuring the measurement reporting of the UE” or “configuring the UE’s measurement reporting. ”
  • the kind of information contained in the measurement configuration may include a list of measurement objects, a list of report configurations, and a list of measurement identities, where each measurement identity links one measurement object with one reporting configuration.
  • each measurement identity links one measurement object with one reporting configuration.
  • Each measurement object is associated with a carrier frequency.
  • Each reporting configuration includes at least a reporting criterion, which indicates the criterion that triggers the UE to send a measurement report.
  • the reporting criterion can be an event-triggered criterion, such as Event A4 (Neighbour cell becomes better than threshold) or Event A3 (Neighbour cell becomes offset better than the primary cell (PCell) /Primary Secondary Cell (PSCell) ) .
  • the measured RS type can also be included in the reporting configuration to indicate the UE which RS to use for the corresponding measurement object that is linked to this reporting configuration via the measurement identity.
  • the UE carries out measurement on the configured measurement objects (carrier frequencies) , which are linked to at least a reporting configuration via the measurement identity (identities) . The UE then sends the measurement report (s) to the network.
  • a more specific example of an event-triggered criterion is as follows: The UE sends measurement report (s) to the network if at least one of the cells on a measurement object (carrier frequency) triggers the corresponding event that is set forth in the corresponding reporting configuration that is linked to the measurement object via a measurement identity. The identity (identities) and quality (qualities) of the cell (s) that triggers the event is included in the measurement report.
  • the network Upon receiving the measurement report (s) from the UE, the network can select a target cell and indicate to the UE that it should handover to the selected target cell.
  • the SS includes one or more SS blocks.
  • the term “SS resource” refers to an SS block or an SS block group.
  • the SS is periodically transmitted. In each period, six SS blocks (illustrated as SB0 to SB5 in FIG. 4) are transmitted consecutively. Each SS block is transmitted with a different radio-propagation direction than the others.
  • a SS resource corresponds to an SS block. For example, SS0 to SS5 in FIG. 4 corresponding to SS resource 0 to SS resource 5.
  • FIG. 5 another example of an SS will now be described.
  • the SS in FIG. 5 is periodically transmitted and six SS blocks (illustrated as SB0 to SB5 in FIG. 5) are transmitted consecutively.
  • K consecutive SS blocks transmitted on the same beam constitutes an “SS block group. ”
  • SB0 and SB1, SB2 and SB3, SB4 and SB5 constitute three individual SS block groups.
  • an SS resource corresponds to an SS block group.
  • SB0 and SB1 correspond to SS resource
  • SB2 and SB3 correspond to SS resource 1
  • SB4 and SB5 correspond to SS resource 2.
  • the SS blocks are transmitted consecutively within the period, e.g., SS blocks are transmitted immediately after the previous block is finished being transmitted. Nevertheless, the succeeding SS blocks can also be transmitted with some gaps in the time domain.
  • resource refers to any network or protocol resource, such as a physical resource block, a physical resource element, slot, subframe, or sub-carrier, that may be allocated to one or more UEs for transmitting the signals (e.g., for transmitting synchronization signals) .
  • the network includes at least one reporting configuration, including an SS resource specific event, in the measurement configuration that it sends to a UE.
  • Each reporting configuration (including the SS resource specific event) is linked to one or more corresponding measurement object (s) (one or more carrier frequencies) by one or more measurement identities.
  • the measurement object i.e., the thing that the UE measures
  • the serving carrier at the service carrier frequency
  • Targets for the serving cell are configured for the purpose of assisting the beam management.
  • the SS resource specific event in this example could be one of the following:
  • Event S1 SS resource becomes better than threshold
  • Event S1 is an SS resource specific event.
  • the SS resource as used here is the SS resource of the serving cell.
  • the UE in this example will:
  • Mssr is the measurement result of the SS resource, not taking into account any offsets
  • Ossr is the SS resource specific offset
  • Hys is the hysteresis parameter for the event
  • Thresh is the threshold parameter for the event.
  • the UE will send a measurement report to the network if at least one of the SS resources triggers event S1. If the measurement results of an SS resource satisfy the Entering condition of event S1 for a time period defined for event S1, then the UE considers event S1 to have been triggered.
  • the measurement report includes at least information regarding which SS resource triggered the corresponding SS resource specific event. Such information includes at least the SS resource ID. If, for example, SS resource is defined as an SS block, then the SS resource ID is the SS block ID. If the SS resource is defined as an SS block group, then the SS resource ID is the SS block ID of an SS block within the SS block group or the SS block group ID (if the SS block group ID is specified) .
  • the SS resource is also considered to have triggered the event S1. If this happens, the UE sends a measurement report but does not include information regarding which the SS resource (s) satisfied the Leaving condition of the event S1.
  • Event S2 SS resource becomes within X dB of the best SS resource
  • event S2 is an SS resource specific event.
  • the SS resource and best SS resource in this example are the SS resources of the serving cell.
  • the UE considers the entering condition for event S2 to be satisfied when condition S2, as specified below, is fulfilled.
  • Condition S2 (Entering condition) : Mssr + Ossr –Hys ⁇ X ⁇ Mssrb + Ossrb. If Mssr ⁇ Mssrb, –X; else if Mssr ⁇ Mssrb, +X.
  • Mssr, Ossr and Hys is the same as discussed previously; Mssrb is the measurement result of the best SS resource, not taking into account any offsets; Ossrb is the best SS resource specific offset; X is the threshold parameter specified for event S2.
  • the SS resource is considered to have triggered event S2.
  • the UE sends a measurement report if at least one of the SS resources triggers event S2.
  • the measurement report includes at least information regarding which SS resource triggered event S2. Such information includes at least the SS resource ID, which is was discussed previously.
  • Event S3 best SS resource changes
  • event S3 is an SS resource specific event.
  • the SS resource and best SS resource as used here are the SS resources of the serving cell.
  • the UE considers the entering condition for event S3 to be satisfied when condition S3, as specified below, is fulfilled:
  • the SS resource is considered to have triggered event S3.
  • the UE sends a measurement report if at least one of the SS resource triggers SS resource specific event S3.
  • the measurement report includes at least information regarding which SS resource triggered event S3. Such information includes at least the SS resource ID, which has been previously described.
  • one or both the BS 102 and the UE 104 carry out beam management based on the information regarding the SS resource or resources that triggered the SS resource-specific event and on the QCL relationship between the CSI-RS resource (s) and the SS resource (s) .
  • the channel properties for determining whether two or more resources are QCLed or not can include one or more of the following properties: (1) Doppler spread; (2) Doppler shift; (3) delay spread; (4) average delay; (5) average gain; and (6) Spatial parameter.
  • Doppler spread refers to the frequency-domain spread for one received multipath component
  • Doppler shift refers to the frequency difference between one carrier component observed by a receiver and that transmitted by a transmitter in terms of carrier frequency
  • delay spread refers to the time difference between the arrival moment of a first received multipath component (typically the line of sight (LOS) component) and the last received multipath component (typically a non-line of sigh (NLOS) component)
  • average delay refers to weighed average of delay of all multipath components multiplied by a power of each component
  • average gain refers to an average transmission power per antenna port or resource element
  • spatial parameter refers to spatial-domain properties of multipath components observed by a receiver, such as angle of arrival (AoA) , spatial correlation, etc. This information of channel properties can be pre-defined or configured by Layer1 or higher level signaling (e.g. RRC signaling) to the UE.
  • Layer1 or higher level signaling e.g. RRC signaling
  • channel properties can be predefined that two channel properties are similar to each other when their respective parameter values are within 5%or 10%of each other.
  • a UE having this information regarding channel properties can use this information to determine whether resources of two different types of RSes are QCLed or not. Or, if two resources are determined to be QCLed, e.g., CSI-RS resource X is determined to be QCLed with SS resource Y, the QCL relationship between these two resources can be signaled to the UE.
  • the network e.g., a node of the network, such as a base station
  • Each resource setting can includes one or more CSI-RS resource sets and each CSI-RS resource set can includes K ⁇ CSI-RS resources. If all K of the CSI-RS resources in a CSI-RS resource set are QCLed with an SS resource, then the CSI-RS resource set is said to be QCLed with the SS resource. If all of the CSI-RS resource sets in a CSI-RS resource setting are QCLed with a SS resource, then the CSI-RS resource setting is said to be QCLed with the SS resource.
  • the QCL relationship between a CSI-RS resource (or a CSI-RS resource set or a CSI-RS resource setting) and a SS resource can be signaled to the UE.
  • the QCL relationship between the two types of RS e.g., SS and CSI-RS
  • FIG. 6 an example of the trajectory of a UE and the QCL relationship between an SS resource and a CSI-RS resource is shown.
  • a CONNECTED UE moves from the coverage of SS resource 2 to SS resource 3 in the serving cell.
  • CSI-RS resource 1 through CSI-RS resource 4 are QCLed with SS resource 2
  • CSI-RS resource 5 through CSI-RS resource 8 are QCLed with SS resource 3 (the QCLed resources are similarly hatched in FIG. 6) .
  • each individual CSI-RS resource here conveys a specific Tx beam. In other words, each CSI-RS resource corresponds to a beam.
  • the network configures CSI-RS resource 1 through CSI-RS resource 4 within one CSI-RS resource set (which will be referred to as CSI-RS resource set X) and configures CSI-RS resource 5 through CSI-RS resource 8 within another CSI-RS resource set (which will be referred to as CSI-RS resource set Y) .
  • Each CSI-RS resource setting in this example is configured to have only one CSI-RS resource set.
  • one CSI-RS resource setting (which will be referred to as CSI-RS resource setting M) is configured to include CSI-RS resource set X and another CSI-RS resource setting (which will be referred to as CSI-RS resource setting N) is configured to include CSI-RS resource set Y.
  • the UE is configured in the measurement configuration with an SS resource specific event S3 (best SS resource changes) .
  • the network transmits a measurement configuration to the UE when the UE is within the coverage of SS resource 2 (time T1 in FIG. 6) and during that time the UE measures SS resource 2 and determines that SS resource 2 is the best SS resource.
  • the UE gradually moves from the coverage of SS resource 2 to the coverage of SS resource 3.
  • event S3 is triggered by SS resource 3 and the UE transmits a report to the network that includes information regarding SS resource 3.
  • the information regarding an SS resource can be used for the purpose of assisting beam management according to one the following alternatives:
  • Alternative 1 Providing beam management configuration based on the reported information of the SS resource (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
  • a wireless network (e.g., node 102) provides beam management configuration to a UE (e.g., UE 104) based on the QCL relationship between one or more CSI-RS resources and one or more SS resources.
  • This QCL relationship is determined based on information that the UE transmits to the network. For example, referring again to FIG. 6, when the UE stays in the coverage area of SS resource 2, the UE is provided with the CSI-RS resource setting M, which means that the UE should carry out beam management on CSI-RS resource set X (CSI-RS resource 1 through CSI-RS resource 4) .
  • the UE will (in response to event S3 being triggered) transmit a measurement report to the network (e.g., to the BS) , which will include information regarding SS resource 3.
  • the network Upon receiving this report, the network analyzes the information regarding SS resource 3. For the sake of this example, assume that the network determines that SS resource 3 is or is becoming the best SS resource and finds that CSI-RS resource setting N (i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8) is QCLed with SS resource 3. Based on this determination, the network updates the beam management configuration for the UE. In this example, the network updates the CSI-RS resource setting from M to N (i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8) as the measurement object for performing beam management in the beam management configuration.
  • M i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8
  • the network signals to the UE that the UE should carry out measurements on CSI-RS resource set Y from now on for the purpose of facilitating beam management.
  • the network provides this beam management configuration to the UE via high layer signaling (e.g., RRC signaling) .
  • the UE will now carry out L1 measurements or beam management (e.g., beam sweeping, beam measurement and beam determination) on CSI-RS resource 5 to CSI-RS resource 8 instead of on CSI-RS resource 1 to CSI-RS resource 4.
  • Alternative 2 Providing beam management command based on the reported information of the SS resource (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
  • the network when the UE accesses the serving cell, the network (e.g., the BS) provides the UE with all the possible CSI-RS resources for beam management in the cell. For example, the network may provide all of the CSI-RS resources in the serving cell for the UE.
  • the UE accesses the serving cell under the coverage of SS resource 2 initially, so the network provides the CSI-RS resources QCLed with SS resource 1, the CSI-RS resources QCLed SS resource 2 (e.g., CSI-RS resource setting M) and the CSI-RS resources QCLed SS resource 3 (CSI-RS resource setting N) to the UE.
  • the network can issue a beam management command to the UE to activate beam management on CSI-RS resource setting M.
  • the network indicates to the UE that the UE is to perform L1 measurement or beam management (e.g., beam sweeping, beam measurement and beam determination) on the CSI-RS resources specified by CSI-RS resource setting M.
  • the UE will (in response to event S3 being triggered) transmit a measurement report to the network (e.g., to the BS) , which will include the information regarding the SS resource 3.
  • the network analyzes the information regarding SS resource 3. For the sake of this example, assume that the network determines that SS resource 3 is or is becoming the best SS resource and finds that CSI-RS resource setting N (i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8) is QCLed with SS resource 3. Based on this determination, the network issues one or more new beam management commands to the UE to activate CSI-RS resource setting N.
  • CSI-RS resource setting N i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8
  • the network indicates to the UE that the UE is to perform L1 measurement or beam management using the CSI-RS resources specified by CSI-RS resource setting N.
  • the one or more new beam management commands also tell the UE to deactivate CSI-RS resource setting M.
  • the one or more new beam management commands tell the UE to cease measurement or beam management using the CSI-RS resources specified in CSI-RS resource setting M.
  • the network in this example determined that beam management on CSI-RS resource setting N should be activated and that beam management on CSI-RS resource setting M should be deactivated.
  • the network made this determination based on the QCL relationship between SS resources and CSI-RS resources.
  • Various possible ways that the network can issue the one or more beam management commands include: issuing the commands to the UE via Layer 2 signaling (e.g., Media Access Control (MAC) Control Element (MAC CE)) or via Layer 1 signaling (e.g., Downlink Control Information (DCI) on Physical Downlink Control Channel (PDCCH) ) .
  • Layer 2 signaling e.g., Media Access Control (MAC) Control Element (MAC CE)
  • Layer 1 signaling e.g., Downlink Control Information (DCI) on Physical Downlink Control Channel (PDCCH)
  • the UE Upon receiving the beam management command, the UE carries out L1 measurement or beam management (e.g., beam sweeping, beam measurement and beam determination) on CSI-RS resource 5 to CSI-RS resource 8 instead of on CSI-RS resource 1 to CSI-RS resource 4.
  • L1 measurement or beam management e.g., beam sweeping, beam measurement and beam determination
  • Alternative 3 UE autonomously activating/deactivating or said switching CSI-RS resources for beam management based on the SS resource (s) that triggers the SS resource specific event (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
  • a UE autonomously activates/deactivates or switches CSI-RS resources for beam management based on (1) the one or more SS resources that trigger the SS resource specific event (s) and on (2) the QCL relationship between CSI-RS resource (s) and SS resource (s) .
  • the UE accesses the serving cell, the UE is provided with all the possible CSI-RS resources for beam management in the cell.
  • the network may provide all of the CSI-RS resources in the serving cell to the UE.
  • the UE accesses the serving cell under the coverage of SS resource 2 initially, so the network provides the CSI-RS resources QCLed with SS resource 1, the CSI-RS resources QCLed SS resource 2 (e.g., CSI-RS resource setting M) and the CSI-RS resources QCLed SS resource 3 (CSI-RS resource setting N) to the UE. And during the time the UE stays under the coverage of SS resource 2, the UE measures and estimates that SS resource 2 is the best SS resource. The UE determines that CSI-RS resource setting M is QCLed with SS resource 2 according to the channel properties that are pre-defined or configured to the UE or according to the QCL relationship that the network provided to the UE.
  • the CSI-RS resource setting M is QCLed with SS resource 2 according to the channel properties that are pre-defined or configured to the UE or according to the QCL relationship that the network provided to the UE.
  • the UE autonomously activates L1 measurement or beam management on CSI-RS resource setting M and does not carry out beam management on the other configured CSI-RS resources. Or meanwhile, if the UE is configured with SS resource specific event S1, the UE measures and determines that SS resource 1 triggers event S1. The UE autonomously activates L1 measurement or beam management on the CSI-RS resource setting (or CSI-RS resource set or CSI-RS resource (s)) that QCLed with SS resource 1 in addition to the CSI-RS resource setting M.
  • the UE With the movement of the UE, the UE carries out measurements and determines that SS resource 3 triggers event S3. The UE also determines that SS resource 3 is or is becoming the best SS resource. The UE further determines that CSI-RS resource setting N is QCLed with SS resource 3 (based on information regarding channel properties that are either pre-defined at the UE or provided to the UE by the network, or based on the QCL relationship that the network provided to the UE) . Then, the UE autonomously (1) activates L1 measurement or beam management using CSI-RS resource setting N, and (2) deactivates beam management on CSI-RS resource setting M (and the CSI-RS resources QCLed with SS resource 1 if the UE autonomously activated above) . Meanwhile, the UE can send a measurement report to the network with the information regarding SS resource 3 included. The network can use the measurement report to update or re-configure the beam management configuration for the UE.
  • a receiver receives a measurement configuration from the transmitter (e.g., the BS) .
  • the measurement configuration includes at least a SS resource specific event.
  • the receiver performs measurement on SS resources according to the received measurement configuration.
  • the receiver sends a measurement report if at least one of the SS resources triggers the corresponding SS resource specific event.
  • the measurement report includes at least the information of the SS resource (s) which triggers the corresponding SS resource specific event.
  • the receiver then carries out beam management according to the information signaled from the transmitter, including one of the following:
  • the receiver receives a beam management configuration from the transmitter.
  • the beam management configuration includes the configuration of at least one CSI-RS resource.
  • the beam management configuration is configured based on the reported information of the SS resource (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
  • the receiver carries out beam management according to the beam management configuration.
  • the receiver receives a beam management command from the transmitter.
  • the beam management command includes the information of the CSI-RS resources the receiver should activate for beam management and/or the information of the CSI-RS resources the receivers should deactivate for beam management.
  • the information of the CSI-RS resources can be one of the following: CSI-RS resource identity (identities) ; CSI-RS resource set (identities) ; and CSI-RS resource setting (identities) .
  • the receiver receives a measurement configuration from the transmitter (e.g., the BS) .
  • the measurement configuration includes at least a SS resource specific event.
  • the receiver performs measurement on SS resources according to the received measurement configuration.
  • the receiver autonomously activates/deactivates or switches CSI-RS resources for beam management based on the SS resource (s) that triggers the SS resource specific event (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
  • the QCL relationship between CSI-RS resource (s) and SS resource (s) can be determined according to the information of channel properties that pre-defined or configured to the receiver or according to the QCL relationship that provided to the receiver.
  • any and all of the methods described herein are carried out by or on one or more computing devices. Furthermore, instructions for carrying out any or all of the methods described herein may be stored on a non-transitory, computer-readable medium, such as any of the various types of memory described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for multi-beam resource management in a wireless network involves a computing device: carrying out beam management according to a first beam management configuration; receiving a first type of reference signal; receiving a second type of reference signal; determining that a resource of the received first type of reference signal has met a criterion of a triggering event; determining whether a resource of the received first type of reference signal is quasi co-located with a resource of the received second type of reference signal; and based on the triggering event determination and the quasi co-location determination, ceasing to carry out beam management according to the first beam management configuration and commencing to carry out beam management according to a second beam management configuration.

Description

METHODS AND COMPUTING DEVICE FOR MULTI-BEAM RESOURCE MANAGEMENT IN A WIRELESS NETWORK TECHNICAL FIELD
The present disclosure is related generally to wireless networks and, more particularly, to methods and a computing device for multi-beam resource management in a wireless network.
BACKGROUND
To target for the ever-increasing requirement from the market and mobile communication society, the development of the next generation system (5G system) will adopt frequencies up to 100GHz. Considerable high propagation loss will be induced with the use of high operating frequencies (i.e. greater than 6 GHz) . To solve this, antenna array and beamforming (BF) training technologies using Massive multiple-in-multiple-out (MIMO) , e.g., 1024 antenna elements for one node, will be adopted to achieve beam alignment and obtain sufficiently high antenna gain.
With the adoption of large number of beams, beam management functions such as beam sweeping, beam determination, beam reporting (e.g., reporting beam ID and layer 1 (L1) reference signal received power (RSRP) , etc. ) and beam switching are introduced to select the most proper serving beam (s) for a respective UE. UE specific Channel State Information Reference Signals (CSI-RS) are designated serving the purpose of beam management. To compensate for the high propagation loss incurred as a result of operating on high frequencies (i.e., above 6 GHz) and to ensure a relatively long range, the UE-specific CSI-RSes are limited to the narrow spatial coverage provided by their respective beams . Meanwhile, to target a wider spatial coverage, large numbers of beams (beams for the transmission of CSI-RS, which will sometimes be referred to herein as “CSI-RS based beams” ) should be radiated. For instance, if a base station (BS) has a MIMO antenna array that includes 1024 antenna elements, the number of narrow CSI-RS based beams can be up to 4096.
In order to identify which of these beams are suitable or “best” for communications, a UE should continuously perform beam sweeping, beam measurement, beam determination, and CSI-RS beam based reporting (either periodic or aperiodic) . If too many beams are configured to a particular UE (e.g., all of the CSI-RS based beams are configured to the UE) the UE will be  required to consume a considerable amount of power. Additionally, dedicating a large number of beams to a particular UE incurs a processing burden on the UE. At the same time, a large signaling overhead and higher resource consumption will be introduced over the air due to the high level of CSI-RS reporting activity that will result from the large number of beams. On the contrary, if too few beams are configured to the UE, then beam management decisions may be sub-optional and the UE has higher risk of beam link failure or radio link failure (e.g., when too few beams are measured and reported and blockage occurs) .
DRAWINGS
While the appended claims set forth the features of the present techniques with particularity, these techniques, together with their objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
FIG. 1 is a diagram of a system in which various embodiments of the disclosure are implemented.
FIG. 2 shows an example hardware architecture, according to an embodiment.
FIG. 3 is a diagram depicting a framework for providing beam management configurations, according to an embodiment.
FIG. 4 and FIG. 5 are diagrams depicting implementations of cell-specific reference signals, according to an embodiment.
FIG. 6 depicts the trajectory of a user equipment and the quasi collocation relationship between a cell-specific reference signal resource and user equipment-specific reference signal resource.
DESCRIPTION
According to an embodiment, a method for multi-beam resource management in a wireless network involves a computing device (e.g., a user equipment or relay node) : carrying out beam management according to a first beam management configuration; receiving a first type of reference signal (e.g., a user equipment-specific reference signal such as a channel state  information reference signal) ; receiving a second type of reference signal (e.g., a cell-specific reference signal such as a synchronization signal) ; determining that a resource of the reference signal of the first type has met a criterion of a triggering event; determining whether a resource of the reference signal of the first type is quasi co-located with a resource of the reference signal of the second type; and based on the triggering event determination and the quasi co-location determination, ceasing to carry out beam management according to the first beam management configuration and commencing to carry out beam management according to a second beam management configuration.
According to an embodiment, a method for multi-beam resource management in a wireless network involves: transmitting a first beam management configuration to a computing device, wherein the first beam management configuration specifies a triggering event; receiving, from the computing device, a message indicating that a resource of a first type of reference signal received by the user equipment has met a criterion for the triggering event; determining whether the resource is quasi co-located with a resource of a second type of reference signal; and based on receiving the message and on the quasi co-location determination, transmitting a beam management command to the computing device indicating that the computing device is to change its beam management configuration.
In an embodiment, a method for multi-beam resource management in a wireless network involves a computing device: wirelessly receiving a first type of reference signal and a second type of reference signal; carrying out a measurement on resource of the first type of reference signal according to a received measurement configuration; determining, based on the measurement, that the resource of the first type of reference signal has triggered a resource specific event of the first type of reference signal; determining a resource of the second type of reference signal that is quasi co-located with the resource of the first type of reference signal; and carrying out beam management on the resource of the second type of reference signal.
According to an embodiment, a method for multi-beam resource management in a wireless network involves a first computing device: transmitting a measurement configuration to a second computing device, wherein the measurement configuration specifies a resource specific event of a first type of reference signal; receiving, from the second computing device, a message  indicating that a resource of the first type of reference signal received by the second computing device has triggered the resource specific event of the first type of reference signal; determining a resource of the second type of reference signal that is quasi co-located with the resource of the first type of reference signal; and transmitting a beam management signal to the second computing device indicating that the second computing device is to carry out beam management according to information contained in the beam management signal.
FIG. 1 depicts a wireless communication system 100 in which the various embodiments may be deployed. The communication system 100 includes several communication nodes. The communication node depicted is a base station (BS) 102. Also depicted is a user equipment (UE) 104. It is to be understood that there may be many other communication nodes and that the one represented in FIG. 1 is meant only for the sake of example. In an embodiment, the wireless communication system 100 has many components that are not depicted in FIG. 1, including other base stations, other UEs, wireless infrastructure, wired infrastructure, and other devices commonly found in wireless networks.
Possible implementations of the UE 104 include any device capable of wireless communication, such as a smartphone, tablet, laptop computer, and non-traditional devices (e.g., household appliances or other parts of the “Internet of Things” ) .
It should be noted that when the present disclosure refers to a UE without a reference number, UE 104 from FIG. 1 may be thought of as carrying out the action or receiving the result of the action being discussed. Similarly, when a BS, node, or “network” is referred to by the disclosure, BS 104 from FIG. 1 may be thought of as carrying out the action or receiving the result of the action being discussed.
FIG. 2 illustrates a basic (computing device) hardware architecture implemented by the elements of FIG. 1, including the BS 102 and UE 104. The elements of FIG. 1 have other components as well. The hardware architecture depicted in FIG. 2 includes logic circuitry 202, memory 204, transceiver 206, and one more antennas represented by antenna 208. The memory 204 may be or include a buffer that, for example, holds incoming transmissions until the logic circuitry is able to process the transmission. Each of these elements is communicatively linked to  one another via one or more data pathways 210. Examples of data pathways include wires, conductive pathways on a microchip, and wireless connections.
The term “logic circuitry” as used herein means a circuit (atype of electronic hardware) designed to perform complex functions defined in terms of mathematical logic. Examples of logic circuitry include a microprocessor, a controller, or an application-specific integrated circuit. When the present disclosure refers to a device carrying out an action, it is to be understood that this can also mean that logic circuitry integrated with the device is, in fact, carrying out the action.
Recent proposals for wireless networking in the cellular context introduce at least two new types of Reference Signals (RS) . The first type of RS is provided by the Synchronization Signals (SS) . The SS includes one or more SS blocks. Each of the SS blocks includes at least a primary synchronization signal (PSS) , a secondary synchronization signal (SSS) , and a physical broadcast channel (PBCH) . The second type of RS is provided by CSI-RS. Each CSI-RS is transmitted using CSI-RS resources. One or more CSI-RS resources can be configured for a single UE for the reception of one or more CSI-RSes. Different CSI-RS resources can be configured for different UEs. A CSI-RS resource configuration for a given UE for the reception of a CSI-RS includes at least one of the following: Cell ID; CSI-RS identifier; timing configuration (including time offset and periodicity) ; number of antenna ports; resource element (RE) mapping; and parameters for sequence generation. Both the SS and CSI-RS signals are beamformed signals, each with a specified radio-propagation direction. The SS can be considered to be a cell-specific configured RS, while the CSI-RS can be considered to be a UE-specific configured RS which is not always-on transmitted but can be turned on and off efficiently. The SS can cover a wide area within a cell and serve all UEs within the wide area, but its spatial resolution is low (i.e., it is transmitted as a wide beam) . On the other hand, the CSI-RS provides higher spatial resolution (i.e., a narrow beam) and a stronger signal within the narrow beam, but covers only a narrow area. In the context of FIG. 1, the SS and CSI-RS signals would be transmitted by the BS 102 and used by the UE 104.
When a UE is in the IDLE state, the UE uses the SS for radio resource management (RRM) measurement. When a UE is in the CONNECTED state, in addition to using the SS, the  UE can use a CSI-RS for RRM measurement if it is configured to do so by the network (e.g., by the BS) . A UE in the CONNECTED state performs beam management (including beam sweeping, beam measurement, beam determination, beam reporting etc. ) at least based on a CSI-RS.
In order to identify which of the CSI-RS based beams are suitable or “best” for communication for a specific UE, the network should provide CSI-RS based beam management configuration parameters to the UE. The network signals these configuration parameters to the UE via RRC signaling. FIG. 3 illustrates a framework for providing beam management configurations. When signaling the configurations, the network can configure a UE with N≥1 CSI reporting settings, M≥1 Resource settings, and one CSI measurement setting, where the CSI measurement setting includes L ≥1 links. Each of the L links is configured to correspond to a CSI reporting setting and a resource setting. The resource setting defines the CSI-RS resources based on which UE should perform an L1 measurement for beam management. Each of the configured CSI-RS resource settings can be configured with one or more CSI-RS resource sets. Each CSI-RS resource set can be configured with K≥ CSI-RS resources.
The UE performs an L1 measurement (e.g., beam sweeping, beam measurement and beam determination) according to the beam management configuration signaled to the UE by the network (e.g., by the BS) . As used here, the term “beam” can refer to the radio-propagation direction formulated by the transmitted signals from a single CSI-RS resource or the radio-propagation direction formulated by the transmitted signals from a CSI-RS resource set. The association of CSI-RS resources with the Tx beams may depend on the particular network implementation. For example, each CSI-RS resource might convey a specific Tx beam, or each CSI-RS resource set might correspond to one Tx beam. The UE generates CSI-RS based beam reporting according to the L1 measurement. If the network (e.g., the BS) sends a command to the UE indicating that the UE needs to change the serving beam (s) , the UE switches the serving beam (s) according to the command.
A CONNECTED UE carries out an RRM measurement based on an SS for Layer3 mobility. More specifically, the UE carries out an RRM measurement on the secondary synchronization signal (SSS) according the measurement configuration signaled from the  network. This process will sometimes be referred to as the network “configuring the measurement reporting of the UE” or “configuring the UE’s measurement reporting. ” 
The kind of information contained in the measurement configuration may include a list of measurement objects, a list of report configurations, and a list of measurement identities, where each measurement identity links one measurement object with one reporting configuration. By configuring multiple measurement identities, it is possible to link more than one measurement object to the same reporting configuration, as well as to link more than one reporting configuration to the same measurement object. Each measurement object is associated with a carrier frequency. Each reporting configuration includes at least a reporting criterion, which indicates the criterion that triggers the UE to send a measurement report. For example, the reporting criterion can be an event-triggered criterion, such as Event A4 (Neighbour cell becomes better than threshold) or Event A3 (Neighbour cell becomes offset better than the primary cell (PCell) /Primary Secondary Cell (PSCell) ) . The measured RS type can also be included in the reporting configuration to indicate the UE which RS to use for the corresponding measurement object that is linked to this reporting configuration via the measurement identity. For the purpose of Layer3 mobility, the UE carries out measurement on the configured measurement objects (carrier frequencies) , which are linked to at least a reporting configuration via the measurement identity (identities) . The UE then sends the measurement report (s) to the network.
A more specific example of an event-triggered criterion is as follows: The UE sends measurement report (s) to the network if at least one of the cells on a measurement object (carrier frequency) triggers the corresponding event that is set forth in the corresponding reporting configuration that is linked to the measurement object via a measurement identity. The identity (identities) and quality (qualities) of the cell (s) that triggers the event is included in the measurement report. Upon receiving the measurement report (s) from the UE, the network can select a target cell and indicate to the UE that it should handover to the selected target cell.
Turning to FIG. 4, an implementation of an SS will now be described. The SS includes one or more SS blocks. As used herein, the term “SS resource” refers to an SS block or an SS block group. In the implementation of FIG. 4, the SS is periodically transmitted. In each  period, six SS blocks (illustrated as SB0 to SB5 in FIG. 4) are transmitted consecutively. Each SS block is transmitted with a different radio-propagation direction than the others. In this example, a SS resource corresponds to an SS block. For example, SS0 to SS5 in FIG. 4 corresponding to SS resource 0 to SS resource 5.
Turning to FIG. 5, another example of an SS will now be described. As in the previous example, the SS in FIG. 5 is periodically transmitted and six SS blocks (illustrated as SB0 to SB5 in FIG. 5) are transmitted consecutively. However, in the example of FIG. 5, the SS blocks are transmitted with repetition coefficient K = 2, which means that every two consecutive SS blocks are transmitted with the same radio-propagation direction that can be regarded as one single beam. K consecutive SS blocks transmitted on the same beam constitutes an “SS block group. ” For instance, in FIG. 5, SB0 and SB1, SB2 and SB3, SB4 and SB5 constitute three individual SS block groups. In this example, an SS resource corresponds to an SS block group. For example, SB0 and SB1 correspond to SS resource 0, SB2 and SB3 correspond to SS resource 1, while SB4 and SB5 correspond to SS resource 2.
It should be noted that in both the above two examples, the SS blocks are transmitted consecutively within the period, e.g., SS blocks are transmitted immediately after the previous block is finished being transmitted. Nevertheless, the succeeding SS blocks can also be transmitted with some gaps in the time domain.
It should also be noted that, as used herein, the term “resource” refers to any network or protocol resource, such as a physical resource block, a physical resource element, slot, subframe, or sub-carrier, that may be allocated to one or more UEs for transmitting the signals (e.g., for transmitting synchronization signals) .
In addition to the control parameters configured in the measurement configuration for the purpose of Layer 3 mobility, the network includes at least one reporting configuration, including an SS resource specific event, in the measurement configuration that it sends to a UE. Each reporting configuration (including the SS resource specific event) is linked to one or more corresponding measurement object (s) (one or more carrier frequencies) by one or more measurement identities.
Examples of SS resource specific events will now be described. In these examples, the measurement object (i.e., the thing that the UE measures) to which the SS resource specific event is linked is the serving carrier (at the service carrier frequency) . Targets for the serving cell are configured for the purpose of assisting the beam management. The SS resource specific event in this example could be one of the following:
1. Event S1: SS resource becomes better than threshold
Event S1 is an SS resource specific event. The SS resource as used here is the SS resource of the serving cell. The UE in this example will:
(a) consider the entering condition for event S1 to be satisfied when condition S1-1, as specified below, is fulfilled; and
(b) consider the leaving condition for event S1 to be satisfied when condition S1-2, as specified below, is fulfilled.
Condition S1-1 (Entering condition) : Mssr + Ossr –Hys > Thresh
Condition S1-2 (Leaving condition) : Mssr + Ossr + Hys < Thresh
Where: Mssr is the measurement result of the SS resource, not taking into account any offsets; Ossr is the SS resource specific offset; Hys is the hysteresis parameter for the event; Thresh is the threshold parameter for the event.
The UE will send a measurement report to the network if at least one of the SS resources triggers event S1. If the measurement results of an SS resource satisfy the Entering condition of event S1 for a time period defined for event S1, then the UE considers event S1 to have been triggered. The measurement report includes at least information regarding which SS resource triggered the corresponding SS resource specific event. Such information includes at least the SS resource ID. If, for example, SS resource is defined as an SS block, then the SS resource ID is the SS block ID. If the SS resource is defined as an SS block group, then the SS resource ID is the SS block ID of an SS block within the SS block group or the SS block group ID (if the SS block group ID is specified) .
Similarly, if the results of the UE’s measurement of an SS resource that have triggered the SS resource specific event S1 satisfy the Leaving condition of event S1 for a time period defined for this event S1, the SS resource is also considered to have triggered the event S1. If this happens, the UE sends a measurement report but does not include information regarding which the SS resource (s) satisfied the Leaving condition of the event S1.
2. Event S2: SS resource becomes within X dB of the best SS resource
In this example, event S2 is an SS resource specific event. The SS resource and best SS resource in this example are the SS resources of the serving cell. The UE considers the entering condition for event S2 to be satisfied when condition S2, as specified below, is fulfilled.
Condition S2 (Entering condition) : Mssr + Ossr –Hys ± X ≥ Mssrb + Ossrb. If Mssr ≥ Mssrb, –X; else if Mssr < Mssrb, +X.
Where: Mssr, Ossr and Hys is the same as discussed previously; Mssrb is the measurement result of the best SS resource, not taking into account any offsets; Ossrb is the best SS resource specific offset; X is the threshold parameter specified for event S2.
If the measurement results of a SS resource satisfying the Entering condition of event S2 for a time period defined for this event S2, the SS resource is considered to have triggered event S2. The UE sends a measurement report if at least one of the SS resources triggers event S2. The measurement report includes at least information regarding which SS resource triggered event S2. Such information includes at least the SS resource ID, which is was discussed previously.
3 Event S3: best SS resource changes
In this example, event S3 is an SS resource specific event. The SS resource and best SS resource as used here are the SS resources of the serving cell. In this example, the UE considers the entering condition for event S3 to be satisfied when condition S3, as specified below, is fulfilled:
Condition S3 (Entering condition) : Mssr + Ossr –Hys ≥ Mssrb + Ossrb
If the measurement results of a SS resource satisfy the Entering condition of event S3 for a time period defined for event S3, the SS resource is considered to have triggered event S3. The UE sends a measurement report if at least one of the SS resource triggers SS resource specific event S3. The measurement report includes at least information regarding which SS resource triggered event S3. Such information includes at least the SS resource ID, which has been previously described.
According to an embodiment, one or both the BS 102 and the UE 104 carry out beam management based on the information regarding the SS resource or resources that triggered the SS resource-specific event and on the QCL relationship between the CSI-RS resource (s) and the SS resource (s) .
To provide context, if the resources of two different types of RS (e.g., the resources of an SSS and a CSI-RS) share the same or similar channel properties, such resources are considered to be “quasi-co-located (QCLed) . ” The channel properties for determining whether two or more resources are QCLed or not can include one or more of the following properties: (1) Doppler spread; (2) Doppler shift; (3) delay spread; (4) average delay; (5) average gain; and (6) Spatial parameter. As used herein, “Doppler spread” refers to the frequency-domain spread for one received multipath component, “Doppler shift” refers to the frequency difference between one carrier component observed by a receiver and that transmitted by a transmitter in terms of carrier frequency, “delay spread” refers to the time difference between the arrival moment of a first received multipath component (typically the line of sight (LOS) component) and the last received multipath component (typically a non-line of sigh (NLOS) component) , “average delay” refers to weighed average of delay of all multipath components multiplied by a power of each component, “average gain” refers to an average transmission power per antenna port or resource element, and “Spatial parameter” refers to spatial-domain properties of multipath components observed by a receiver, such as angle of arrival (AoA) , spatial correlation, etc. This information of channel properties can be pre-defined or configured by Layer1 or higher level signaling (e.g. RRC signaling) to the UE.
For example, it can be predefined that two channel properties are similar to each other when their respective parameter values are within 5%or 10%of each other. A UE having this  information regarding channel properties can use this information to determine whether resources of two different types of RSes are QCLed or not. Or, if two resources are determined to be QCLed, e.g., CSI-RS resource X is determined to be QCLed with SS resource Y, the QCL relationship between these two resources can be signaled to the UE.
In an embodiment, the network (e.g., a node of the network, such as a base station) can configure a UE with M≥1 CSI-RS Resource settings for the purpose of beam management. Each resource setting can includes one or more CSI-RS resource sets and each CSI-RS resource set can includes K≥ CSI-RS resources. If all K of the CSI-RS resources in a CSI-RS resource set are QCLed with an SS resource, then the CSI-RS resource set is said to be QCLed with the SS resource. If all of the CSI-RS resource sets in a CSI-RS resource setting are QCLed with a SS resource, then the CSI-RS resource setting is said to be QCLed with the SS resource. The QCL relationship between a CSI-RS resource (or a CSI-RS resource set or a CSI-RS resource setting) and a SS resource can be signaled to the UE. The QCL relationship between the two types of RS (e.g., SS and CSI-RS) can be used to facilitate beam management.
Turning to FIG. 6, an example of the trajectory of a UE and the QCL relationship between an SS resource and a CSI-RS resource is shown. In this example, a CONNECTED UE moves from the coverage of SS resource 2 to SS resource 3 in the serving cell. In this example, it is assumed that CSI-RS resource 1 through CSI-RS resource 4 are QCLed with SS resource 2 and CSI-RS resource 5 through CSI-RS resource 8 are QCLed with SS resource 3 (the QCLed resources are similarly hatched in FIG. 6) . It is also assumed that each individual CSI-RS resource here conveys a specific Tx beam. In other words, each CSI-RS resource corresponds to a beam. The network configures CSI-RS resource 1 through CSI-RS resource 4 within one CSI-RS resource set (which will be referred to as CSI-RS resource set X) and configures CSI-RS resource 5 through CSI-RS resource 8 within another CSI-RS resource set (which will be referred to as CSI-RS resource set Y) . Each CSI-RS resource setting in this example is configured to have only one CSI-RS resource set. For example, one CSI-RS resource setting (which will be referred to as CSI-RS resource setting M) is configured to include CSI-RS resource set X and another CSI-RS resource setting (which will be referred to as CSI-RS resource setting N) is configured to include CSI-RS resource set Y.
In this example, for the purpose of Layer 3 mobility, the UE is configured in the measurement configuration with an SS resource specific event S3 (best SS resource changes) . The network transmits a measurement configuration to the UE when the UE is within the coverage of SS resource 2 (time T1 in FIG. 6) and during that time the UE measures SS resource 2 and determines that SS resource 2 is the best SS resource. The UE gradually moves from the coverage of SS resource 2 to the coverage of SS resource 3. At time T2, event S3 is triggered by SS resource 3 and the UE transmits a report to the network that includes information regarding SS resource 3.
In an embodiment, the information regarding an SS resource (the SS resource 3 in the example of FIG. 6) can be used for the purpose of assisting beam management according to one the following alternatives:
Alternative 1: Providing beam management configuration based on the reported information of the SS resource (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
According to an embodiment, a wireless network (e.g., node 102) provides beam management configuration to a UE (e.g., UE 104) based on the QCL relationship between one or more CSI-RS resources and one or more SS resources. This QCL relationship is determined based on information that the UE transmits to the network. For example, referring again to FIG. 6, when the UE stays in the coverage area of SS resource 2, the UE is provided with the CSI-RS resource setting M, which means that the UE should carry out beam management on CSI-RS resource set X (CSI-RS resource 1 through CSI-RS resource 4) . Assuming the scenario in which SS resource 3 triggers event S3, the UE will (in response to event S3 being triggered) transmit a measurement report to the network (e.g., to the BS) , which will include information regarding SS resource 3.
Upon receiving this report, the network analyzes the information regarding SS resource 3. For the sake of this example, assume that the network determines that SS resource 3 is or is becoming the best SS resource and finds that CSI-RS resource setting N (i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8) is QCLed with SS resource 3. Based on this determination, the network updates the beam management configuration for the UE. In  this example, the network updates the CSI-RS resource setting from M to N (i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8) as the measurement object for performing beam management in the beam management configuration. In other words, the network signals to the UE that the UE should carry out measurements on CSI-RS resource set Y from now on for the purpose of facilitating beam management. The network provides this beam management configuration to the UE via high layer signaling (e.g., RRC signaling) . In response to receiving this updated beam management configuration, the UE will now carry out L1 measurements or beam management (e.g., beam sweeping, beam measurement and beam determination) on CSI-RS resource 5 to CSI-RS resource 8 instead of on CSI-RS resource 1 to CSI-RS resource 4.
Alternative 2: Providing beam management command based on the reported information of the SS resource (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
In an embodiment, when the UE accesses the serving cell, the network (e.g., the BS) provides the UE with all the possible CSI-RS resources for beam management in the cell. For example, the network may provide all of the CSI-RS resources in the serving cell for the UE. Using FIG. 6 as an example, the UE accesses the serving cell under the coverage of SS resource 2 initially, so the network provides the CSI-RS resources QCLed with SS resource 1, the CSI-RS resources QCLed SS resource 2 (e.g., CSI-RS resource setting M) and the CSI-RS resources QCLed SS resource 3 (CSI-RS resource setting N) to the UE. And during the time the UE stays under the coverage of SS resource 2, the network can issue a beam management command to the UE to activate beam management on CSI-RS resource setting M. In other words, the network indicates to the UE that the UE is to perform L1 measurement or beam management (e.g., beam sweeping, beam measurement and beam determination) on the CSI-RS resources specified by CSI-RS resource setting M.
Assuming the scenario in which SS resource 3 triggers event S3, the UE will (in response to event S3 being triggered) transmit a measurement report to the network (e.g., to the BS) , which will include the information regarding the SS resource 3. Upon receiving this report, the network analyzes the information regarding SS resource 3. For the sake of this example,  assume that the network determines that SS resource 3 is or is becoming the best SS resource and finds that CSI-RS resource setting N (i.e., CSI-RS resource set Y or CSI-RS resource 5 to CSI-RS resource 8) is QCLed with SS resource 3. Based on this determination, the network issues one or more new beam management commands to the UE to activate CSI-RS resource setting N. In other words, the network indicates to the UE that the UE is to perform L1 measurement or beam management using the CSI-RS resources specified by CSI-RS resource setting N. The one or more new beam management commands also tell the UE to deactivate CSI-RS resource setting M. In other words, the one or more new beam management commands tell the UE to cease measurement or beam management using the CSI-RS resources specified in CSI-RS resource setting M.
Put another way, the network in this example determined that beam management on CSI-RS resource setting N should be activated and that beam management on CSI-RS resource setting M should be deactivated. The network made this determination based on the QCL relationship between SS resources and CSI-RS resources. Various possible ways that the network can issue the one or more beam management commands include: issuing the commands to the UE via Layer 2 signaling (e.g., Media Access Control (MAC) Control Element (MAC CE)) or via Layer 1 signaling (e.g., Downlink Control Information (DCI) on Physical Downlink Control Channel (PDCCH) ) . Upon receiving the beam management command, the UE carries out L1 measurement or beam management (e.g., beam sweeping, beam measurement and beam determination) on CSI-RS resource 5 to CSI-RS resource 8 instead of on CSI-RS resource 1 to CSI-RS resource 4.
Alternative 3: UE autonomously activating/deactivating or said switching CSI-RS resources for beam management based on the SS resource (s) that triggers the SS resource specific event (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
According to an embodiment, a UE autonomously activates/deactivates or switches CSI-RS resources for beam management based on (1) the one or more SS resources that trigger the SS resource specific event (s) and on (2) the QCL relationship between CSI-RS resource (s) and SS resource (s) . As in the previously-described embodiment, when the UE accesses the serving cell, the UE is provided with all the possible CSI-RS resources for beam management in  the cell. For example, the network may provide all of the CSI-RS resources in the serving cell to the UE. Using FIG. 6 as an example, the UE accesses the serving cell under the coverage of SS resource 2 initially, so the network provides the CSI-RS resources QCLed with SS resource 1, the CSI-RS resources QCLed SS resource 2 (e.g., CSI-RS resource setting M) and the CSI-RS resources QCLed SS resource 3 (CSI-RS resource setting N) to the UE. And during the time the UE stays under the coverage of SS resource 2, the UE measures and estimates that SS resource 2 is the best SS resource. The UE determines that CSI-RS resource setting M is QCLed with SS resource 2 according to the channel properties that are pre-defined or configured to the UE or according to the QCL relationship that the network provided to the UE. The UE autonomously activates L1 measurement or beam management on CSI-RS resource setting M and does not carry out beam management on the other configured CSI-RS resources. Or meanwhile, if the UE is configured with SS resource specific event S1, the UE measures and determines that SS resource 1 triggers event S1. The UE autonomously activates L1 measurement or beam management on the CSI-RS resource setting (or CSI-RS resource set or CSI-RS resource (s)) that QCLed with SS resource 1 in addition to the CSI-RS resource setting M.
With the movement of the UE, the UE carries out measurements and determines that SS resource 3 triggers event S3. The UE also determines that SS resource 3 is or is becoming the best SS resource. The UE further determines that CSI-RS resource setting N is QCLed with SS resource 3 (based on information regarding channel properties that are either pre-defined at the UE or provided to the UE by the network, or based on the QCL relationship that the network provided to the UE) . Then, the UE autonomously (1) activates L1 measurement or beam management using CSI-RS resource setting N, and (2) deactivates beam management on CSI-RS resource setting M (and the CSI-RS resources QCLed with SS resource 1 if the UE autonomously activated above) . Meanwhile, the UE can send a measurement report to the network with the information regarding SS resource 3 included. The network can use the measurement report to update or re-configure the beam management configuration for the UE.
According to various embodiments, a receiver (e.g., a UE) receives a measurement configuration from the transmitter (e.g., the BS) . The measurement configuration includes at least a SS resource specific event. The receiver performs measurement on SS resources according to the received measurement configuration.
The receiver sends a measurement report if at least one of the SS resources triggers the corresponding SS resource specific event. The measurement report includes at least the information of the SS resource (s) which triggers the corresponding SS resource specific event. The receiver then carries out beam management according to the information signaled from the transmitter, including one of the following:
1) . The receiver receives a beam management configuration from the transmitter. The beam management configuration includes the configuration of at least one CSI-RS resource. The beam management configuration is configured based on the reported information of the SS resource (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) . The receiver carries out beam management according to the beam management configuration.
2) . The receiver receives a beam management command from the transmitter. The beam management command includes the information of the CSI-RS resources the receiver should activate for beam management and/or the information of the CSI-RS resources the receivers should deactivate for beam management.
The information of the CSI-RS resources can be one of the following: CSI-RS resource identity (identities) ; CSI-RS resource set (identities) ; and CSI-RS resource setting (identities) .
The receiver (e.g., UE) receives a measurement configuration from the transmitter (e.g., the BS) . The measurement configuration includes at least a SS resource specific event. The receiver performs measurement on SS resources according to the received measurement configuration.
The receiver autonomously activates/deactivates or switches CSI-RS resources for beam management based on the SS resource (s) that triggers the SS resource specific event (s) and the QCL relationship between CSI-RS resource (s) and SS resource (s) .
The QCL relationship between CSI-RS resource (s) and SS resource (s) can be determined according to the information of channel properties that pre-defined or configured to the receiver or according to the QCL relationship that provided to the receiver.
Any and all of the methods described herein are carried out by or on one or more computing devices. Furthermore, instructions for carrying out any or all of the methods described herein may be stored on a non-transitory, computer-readable medium, such as any of the various types of memory described herein.
It should be understood that the exemplary embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from their spirit and scope of as defined by the following claims. For example, the steps of the various methods can be reordered in ways that will be apparent to those of skill in the art.

Claims (34)

  1. A method for multi-beam resource management in a wireless network, the method carried out by a user equipment, the method comprising:
    carrying out beam management according to a first beam management configuration;
    receiving a user equipment-specific reference signal;
    receiving a cell-specific reference signal;
    determining that a resource of the received cell-specific reference signal has met a criterion of a triggering event;
    determining whether a resource of the received user equipment-specific reference signal is quasi co-located with a resource of the received user-equipment reference signal; and
    based on the triggering event determination and the quasi collocation determination, ceasing to carry out beam management according to the first beam management configuration and commencing to carry out beam management according to a second beam management configuration.
  2. The method of claim 1, further comprising receiving a first beam management configuration from the wireless network.
  3. The method of claim 2, further comprising receiving a measurement configuration from the wireless network, wherein the measurement configuration specifies the triggering event.
  4. The method of claim 1, further comprising transmitting a message to the wireless network indicating that the user equipment is carrying out beam management according to the second beam management configuration.
  5. A method for multi-beam resource management in a wireless network, the method carried out by a node of the wireless network, the method comprising:
    transmitting a measurement configuration to a user equipment, wherein the measurement configuration specifies a triggering event;
    receiving, from the user equipment, a message indicating that a resource of a cell-specific reference signal received by the user equipment has met a criterion for the triggering event;
    determining whether a resource of a user equipment-specific reference signal received by the user equipment is quasi co-located with the resource of the received cell-specific reference signal; and
    based on receiving the message and on the quasi collocation determination, transmitting a beam management command to the user equipment indicating that the user equipment is to change its beam management configuration.
  6. The method of claim 5, wherein the message received from the user equipment includes information identifying the resource of the cell-specific reference signal.
  7. The method of claim 6, wherein the information identifying the resource of the cell-specific reference signal is a synchronization signal block identifier, a synchronization signal block group identifier, or an identifier of a synchronization signal block within a block group.
  8. The method of claim 5, wherein the beam management command specifies: the identity of one or more user equipment-specific reference signal resources, the identity of a set of user equipment-specific reference signal resources, or a user equipment-specific resource setting.
  9. The method of claim 5, further comprising transmitting the user equipment-specific reference signal and the cell-specific reference signal.
  10. The method of claim 1 or claim 5, wherein carrying out beam management comprises carrying out one or more of a beam sweeping operation, a beam determination operation, a beam reporting operation, and a beam switching operation.
  11. The method of claim 1 or claim 5, wherein carrying out beam management comprises changing which user equipment-specific reference signal beam or beams that the user equipment should regularly measure.
  12. The method of claim 1 or claim 5, wherein the beam management configuration specifies a set of user equipment-specific reference signal beams.
  13. The method of claim 1 or claim 5, wherein the user equipment-specific reference signal is a channel state information reference signal and the cell-specific reference signal is a synchronization signal.
  14. The method of claim 1 or claim 5, wherein determining that a resource of the user equipment-specific reference signal is quasi co-located with the resource of the cell-specific reference signal comprises:
    determining a channel property of the resource of the user equipment-specific reference signal;
    determining a channel property of the resource of the cell-specific reference signal; and
    based on a difference between the determined channel property of the resource of the user equipment-specific reference signal and the determined channel property of the resource of the cell-specific reference signal being within a predetermined threshold amount, determining that the respective resources are quasi co-located.
  15. The method of claim 1 or claim 5, wherein the triggering event involves the user equipment entering an area of coverage of the cell-specific reference signal.
  16. The method of claim 1 or claim 5, wherein the triggering event involves the user equipment leaving an area of coverage of the cell-specific reference signal.
  17. A method for multi-beam resource management in a wireless network, the method carried out by a first computing device, the method comprising:
    wirelessly receiving a first type of reference signal and a second type of reference signal;
    carrying out a measurement on a resource of the first type of reference signal according to a received measurement configuration;
    determining, based on the measurement, that the resource of the first type of reference signal has triggered a resource specific event of the first type of reference signal;
    determining a resource of the second type of reference signal that is quasi co-located with the resource of the first type of reference signal; and
    carrying out beam management on the resource of the second type of reference signal.
  18. The method of claim 17, the method further comprising:
    wirelessly receiving the measurement configuration from a second computing device,
    wherein the measurement configuration specifies the resource specific event of the first type of reference signal.
  19. The method of claim 17, further comprising receiving the configuration of the resources of the second type of reference signal from a second computing device.
  20. The method of claim 17, wherein determining that a resource of the second type of reference signal is quasi co-located with a resource of the first type of reference signal comprises:
    determining that the respective resources are quasi co-located according to a quasi co-location relationship information between the resources of the first type of reference signal and the resources of the second type of reference signal received from a second computing device.
  21. A method for multi-beam resource management in a wireless network, the method carried out by a first computing device, the method comprising:
    transmitting a measurement configuration to a second computing device, wherein the measurement configuration specifies a resource specific event of a first type of reference signal;
    receiving, from the second computing device, a message indicating that a resource of the first type of reference signal received by the second computing device has triggered the resource specific event of the first type of reference signal;
    determining a resource of the second type of reference signal that is quasi co-located with the resource of the first type of reference signal that has triggered the resource specific event of the first type of reference signal; and
    transmitting a beam management signal to the second computing device indicating that the second computing device is to carry out beam management according to information contained in the beam management signal.
  22. The method of claim 21, wherein the message received from the second computing device includes information identifying the resource of the first type of reference signal.
  23. The method of claim 22, wherein the information identifying the resource of the first type of reference signal is synchronization signal block identifier, a synchronization signal block group identifier, or an identifier of a synchronization signal block within a block group.
  24. The method of claim 21, wherein the beam management signal specifies: the identity of one or more resources of the second type of reference signal that the second computing device is to carry out beam management with, the identity of one or more set of resources of the second type of reference signal that the second computing device is to carry out beam management with, or the identity of one or more setting of resource sets of the second type of reference signal that the user equipment is to carry out beam management with.
  25. The method of claim 21, wherein the beam management signal specifies: the configuration of one or more resources of the second type of reference signal that the second computing device is to carry out beam management with, the configuration of one or more set of resources of the second type of reference signal that the second computing device is to carry out beam management with, or the configuration of one or more setting of resource sets of the second type of RS that the second computing device is to carry out beam management with.
  26. The method of claim 24 or claim 25, wherein the beam management signal further specifies: the identity of one or more resources of the second type of reference signal that the second computing device is not to carry out beam management with, the identity of one or more set of resources of the second type of reference signal that the user equipment is not to carry out beam management with, or the identity of one or more settings of resource sets of the second type of reference signal that the user equipment is not to carry out beam management with.
  27. The method of claim 21, wherein carrying out beam management comprises carrying out one or more of a beam sweeping operation, a beam determination operation, a beam reporting operation, and a beam switching operation.
  28. The method of claim 21, wherein the first type of reference signal is a synchronization signal and the second type of reference signal is a channel state information reference signal.
  29. The method of claim 21, wherein the resource of the first type of reference signal is a synchronization signal block or a synchronization signal block group that includes a plurality of synchronization signal blocks.
  30. The method of claim 17 or claim 21, wherein determining that a resource of the second type of reference signal is quasi co-located with a resource of the first type of reference signal comprises:
    determining a channel property of the resource of the second type of reference signal;
    determining a channel property of the resource of the first type of reference signal; and
    based on a difference between the determined channel property of the resource of the second type of reference signal and the determined channel property of the resource of the first type of reference signal being within a predetermined threshold amount, determining that the respective resources are quasi co-located.
  31. The method of claim 30, wherein the channel property of the first type of reference signal and the channel property of the second type of reference signal is a Doppler spread, a Doppler shift, a delay spread, an average delay, an average gain, or a spatial parameter.
  32. The method of claim 17 or claim 21, wherein the resource specific event of the first type of reference signal is one of:
    a resource of the first type of reference signal becoming better than a threshold;
    a signal power of a resource of the first type of reference signal comes within a predetermined amount of the power of the best resource of the first type of reference signal; and
    the best resource of the first type of reference signal changes.
  33. A computing device configured to carry out the method of any one of claims 1 through 14, 17 through 20, and 21 through 32.
  34. A non-transitory computer-readable medium having stored thereon computer-executable instructions for carrying out any one of claims 1 through 14, 17 through 20, and 21 through 32.
PCT/CN2017/096896 2017-08-10 2017-08-10 Methods and computing device for multi-beam resource management in a wireless network WO2019028765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780093705.4A CN110999443A (en) 2017-08-10 2017-08-10 Method and computing device for multi-beam resource management in a wireless network
PCT/CN2017/096896 WO2019028765A1 (en) 2017-08-10 2017-08-10 Methods and computing device for multi-beam resource management in a wireless network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096896 WO2019028765A1 (en) 2017-08-10 2017-08-10 Methods and computing device for multi-beam resource management in a wireless network

Publications (1)

Publication Number Publication Date
WO2019028765A1 true WO2019028765A1 (en) 2019-02-14

Family

ID=65272886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096896 WO2019028765A1 (en) 2017-08-10 2017-08-10 Methods and computing device for multi-beam resource management in a wireless network

Country Status (2)

Country Link
CN (1) CN110999443A (en)
WO (1) WO2019028765A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615195A (en) * 2019-04-08 2020-09-01 维沃移动通信有限公司 Method and device for determining beam information and communication equipment
WO2020198977A1 (en) * 2019-03-29 2020-10-08 Qualcomm Incorporated Reporting configurations for channel and interference measurement
WO2020244368A1 (en) * 2019-06-06 2020-12-10 华为技术有限公司 Channel measurement method and communication apparatus
WO2021180053A1 (en) * 2020-03-09 2021-09-16 维沃移动通信有限公司 Measurement configuration method, terminal and network side device
CN113517914A (en) * 2020-04-10 2021-10-19 华为技术有限公司 Beam training method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240137088A1 (en) * 2021-05-24 2024-04-25 Qualcomm Incorporated Nr air-to-ground signaling enhancement to support multiple numerologies
CN115396073B (en) * 2021-05-25 2024-05-17 维沃移动通信有限公司 Wireless communication method, device and equipment
CN116171588A (en) * 2021-09-24 2023-05-26 苹果公司 Method for group-based L1-SINR measurement and reporting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029966A1 (en) * 2012-02-11 2015-01-29 Lg Electronics Inc. Method for reporting channel state information, method for supporting same, and apparatus for said methods
CN106793125A (en) * 2017-01-06 2017-05-31 宇龙计算机通信科技(深圳)有限公司 beam configuration method and beam configuration device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029966A1 (en) * 2012-02-11 2015-01-29 Lg Electronics Inc. Method for reporting channel state information, method for supporting same, and apparatus for said methods
CN106793125A (en) * 2017-01-06 2017-05-31 宇龙计算机通信科技(深圳)有限公司 beam configuration method and beam configuration device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "3GPP TSG-RAN WG2 Meeting #97 R2-1700983", FURTHER CONSIDERATION ON RRM MEASUREMENT, 17 February 2017 (2017-02-17), XP051211749 *
LG ELECTRONICS: "3GPP TSG RAN WG1 NR Ad-Hoc#2 R1- 1710281", DISCUSSION ON DL BEAM MANAGEMENT, 30 June 2017 (2017-06-30), XP051299497 *
LG ELECTRONICS: "3GPP TSG RAN WGl Meeting #89 R1- 1707604", DISCUSSION ON DL BEAM MANAGEMENT, 19 May 2017 (2017-05-19), XP051261946 *
MEDIATEK INC: "3GPP TSG RAN WG1 Meeting#89 R1-1707820", DISCUSSION ON PROPERTIES OF CSI-RS FOR RRM MEASUREMENT, 19 May 2017 (2017-05-19), XP051263120 *
NOKIA ET AL.: "3GPP TSG RAN WG1#89 R1-1708904", REFERENCE SIGNALS AND MEASUREMENTS FOR BEAM MANAGEMENT AND MOBILITY, 19 May 2017 (2017-05-19), XP051262755 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020198977A1 (en) * 2019-03-29 2020-10-08 Qualcomm Incorporated Reporting configurations for channel and interference measurement
CN111615195A (en) * 2019-04-08 2020-09-01 维沃移动通信有限公司 Method and device for determining beam information and communication equipment
CN111615195B (en) * 2019-04-08 2023-08-25 维沃移动通信有限公司 Method and device for determining beam information and communication equipment
WO2020244368A1 (en) * 2019-06-06 2020-12-10 华为技术有限公司 Channel measurement method and communication apparatus
WO2021180053A1 (en) * 2020-03-09 2021-09-16 维沃移动通信有限公司 Measurement configuration method, terminal and network side device
EP4093080A4 (en) * 2020-03-09 2023-08-09 Vivo Mobile Communication Co., Ltd. Measurement configuration method, terminal and network side device
CN113517914A (en) * 2020-04-10 2021-10-19 华为技术有限公司 Beam training method and device
CN113517914B (en) * 2020-04-10 2023-10-20 华为技术有限公司 Beam training method and device
US11990977B1 (en) 2020-04-10 2024-05-21 Huawei Technologies Co., Ltd. Beam training method and apparatus

Also Published As

Publication number Publication date
CN110999443A (en) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2019028765A1 (en) Methods and computing device for multi-beam resource management in a wireless network
US11882063B2 (en) Terminal and reception power measurement method
CN109478924B (en) Reference signal tracking in a wireless communication system
US11800377B2 (en) Communication system
US11706001B2 (en) Method and apparatus for beam management
WO2020238471A1 (en) Information feedback method and apparatus, information receiving method and apparatus, information acquisition method and apparatus, communication node and storage medium
KR20220020305A (en) Method and apparatus of mobile communication for wider bandwidth system
RU2747052C1 (en) Signal measurement control in wireless beam-forming devices
CN114503447B (en) Beamforming and positioning reference signal transmission
KR20230074558A (en) Beam processing method, apparatus and related equipment
US20210274405A1 (en) Selective transmission and reception in centralized radio access network (c-ran) employing beamforming
CN106797599B (en) Handover control
JP7027522B2 (en) Methods and devices for directing and determining beam information, as well as communication systems.
CN107925895B (en) Method, apparatus, and storage medium for mobility reference signal allocation
CN115244961A (en) Method for selecting beam and communication device
US20230422111A1 (en) Media access control reset for layer 1/layer 2 centric mobility
EP3869897B1 (en) Methods and apparatus of spatial relation switching in new radio system
WO2018146293A1 (en) Adaptive mobility reference signal configuration
CN110268638B (en) Method and device used for multi-antenna transmission in user equipment and base station
CN112291849A (en) Wireless network communication method and communication device
CN117812652A (en) Communication method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920791

Country of ref document: EP

Kind code of ref document: A1