WO2019027310A1 - Películas con una capa de pintura luminiscente para impresión de radiografías digitales - Google Patents

Películas con una capa de pintura luminiscente para impresión de radiografías digitales Download PDF

Info

Publication number
WO2019027310A1
WO2019027310A1 PCT/MX2017/000086 MX2017000086W WO2019027310A1 WO 2019027310 A1 WO2019027310 A1 WO 2019027310A1 MX 2017000086 W MX2017000086 W MX 2017000086W WO 2019027310 A1 WO2019027310 A1 WO 2019027310A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent polymer
luminescent
layer
paint
polymer sheets
Prior art date
Application number
PCT/MX2017/000086
Other languages
English (en)
French (fr)
Inventor
Marco Eugenio RAMOS MAZA
Original Assignee
Ramos Maza Marco Eugenio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ramos Maza Marco Eugenio filed Critical Ramos Maza Marco Eugenio
Priority to PCT/MX2017/000086 priority Critical patent/WO2019027310A1/es
Publication of WO2019027310A1 publication Critical patent/WO2019027310A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/06Veined printings; Fluorescent printings; Stereoscopic images; Imitated patterns, e.g. tissues, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein

Definitions

  • the present invention relates to sheets or films of transparent polymers with luminescent paint for the printing of digital radiographs, which allow the study of the internal parts of the body without the use of special devices for the visualization of said impressions,
  • Digital radiography is a form of X-ray images, where digital X-ray detectors are used instead of traditional photographic films.
  • the advantages include the efficiency of time through bypassing e! chemical processing and the ability to digitally transfer and improve images.
  • radiation hands can be used to produce a contrast image similar to conventional radiography.
  • Digital radiography has existed in various forms in the field of security X-ray inspection for more than 20 years and has largely replaced the use of film for X-ray inspection in safety and non-destructive testing. open a window of opportunity for the security industry due to several key advantages, including excellent image quality, high portability, respect for the environment and immediate images.
  • the advantages of digital technologies include the ability to provide results in real time.
  • digital radiology is the greatest technological advance in medical imaging systems of the last decade.
  • the benefits of digital radiology are enormous.
  • clinical digital radiology is the set of techniques to obtain radiological images scanned in digital format.
  • Digital radiology is used in human and veterinary medicine, dentistry, non-destructive and safety tests in which it is not necessary to have film support.
  • the digitalization of the radiography can be done:
  • X-ray detectors exposed directly or indirectly to X-ray detectors, such as lines of detector diodes, which operate on the basis of CCD cameras or flat panels using CMOS sensors, amorphous silicon wafers or amorphous selenium wafers. It is generally known as a flat sensor panel or DR.
  • the doctor who prescribed the exam can see on his personal computer or on his laptop the image he requested, and even issue a report a few minutes after the scan was performed.
  • the images are no longer stored in a single place, but several doctors located miles away can see them simultaneously.
  • the patient can take X-ray images on a compact disc to make available to other doctors or other hospitals.
  • the images can be printed with good quality on special films without the need for chemical development, using laser or thermal printers similar to computer ones.
  • the digital image processing software is intuitive and very easy to use.
  • the use of special films to obtain the printed image necessary for the doctor to diagnose or program the surgery involves printing the image on special equipment, printers fafricadas ex profeso.
  • the reduction of costs associated with traditional radiographs and their Complications due to the substitution of the RD are diminished by the high costs associated with the use of equipment and special films for printing.
  • RU2597028 refers to the registration of radiographic images generated by ionizing radiation; in particular, to methods for recording optical images generated by means of proton radiation, and can be used in digital imaging systems for the determination of the internal structure of dense objects, or investigations of high-speed processes.
  • radiographs for diagnosis radiography or wet plate that are used to reveal chemical and X-ray or Dry Plate that is printed with thermal lasers, in both cases is diagnosed by placing the X-ray on a negatoscope with light that tends to hurt the eyes of specialists, the X-ray or Dry Plate alone It is printed on printers configured according to their products, it is not possible to print on plates of different brand, this generates dependency, exclusivity and high costs. Description of the invention
  • the present invention provides a transparent polymer film with a luminescent paint layer for use in the printing of images from Digital Radiology.
  • a digital image is obtained printed on a transparent film of acetate, PVC, polycarbonate or any type of smooth transparent film, where on one of the sides a base of luminescent opaque paint is applied, which is dried by hot air or left to dry in the open with fans for its early drying or baked to cure and affirm its consistency and properties for the generation of iuminiscence,
  • the printed impressions in the transparent films object of the present invention can be used to evaluate fractures, tumors or conditions that generate wear in the bone, degeneration in the bone structure, detect if there is a cancer that was spreading in different parts of the body, as well as to look for anomalies on the soft tissue that is surrounding the bone in a human being or in an animal.
  • the images obtained in the transparent films of the invention can be used for any study of imaging, in medicine they would be in X-rays, computerized tomography, Magnetic Resonance, Mastography, Ultrasound, Angiography, in Dental printing Dentistry and in Veterinary in X-Rays and Computerized Tomography, as well as for non-destructive and safety tests.
  • digital images are printed internally of the body, which thanks to its luminescence emits visible light to the naked eye and more in a dark room without the need for light, this makes highlight to the naked eye any injury or change in the body to be diagnosed, also protect the eyes of doctors and specialists as it is not necessary to use any device or device that emits direct light.
  • Transparent films with luminescent paint layer can be printed on commercial printers with a suitable size, which are toner or ink, and operate with DICOM software, the toner or ink used in printing does not require special specifications, so which are commercially available through common commercial distributors.
  • the sheets of transparent polymer with luminescent layer for the printing of digital radiographs object of the invention are characterized by having a support of a transparent polymer film, where said polymer film is selected from polyvinyl acetate, polyvinyl chloride, polyethylene terephthalate, polycarbonate and the like, whose dimensions make them suitable for use in printers currently available in the market.
  • the fluorescent paint layer is a thermoplastic ink for use in segraphy, whose presentation in powder and is mixed with 50% varnish and 50% with luminescent powder paint. It is a solvent base ink of its use in screen printing for plastic, PVC, and metals, of Yellow Green, Green, Pink, Yellow, Orange, Blue and Red, which are luminescent and are used for printing with rubberized finish, good opacity and high performance, which require heat for curing, and can be used to print transparent polymer films applied directly without conditioning.
  • the paintings are usually applied through the silkscreen technique, consisting of: first, a transparent praimer is applied to clean and open the pores of the mesh, which makes it a bit matt, this only in case that the polyvinyl acetate does not have a matte finish on any of its faces. it is in the pofivinil acetate for ink injection, then the first layer of luminescent paint is applied, it is dried, then a second layer is applied to give more luminosity and it dries, thus the desired tone remains, optionally it is possible to apply a third layer of luminescent paint to have all via greater luminosity, and are used for printing with a very resistant finish, good opacity and high performance, and can be used to print transparent polymer films applied directly without conditioning.
  • the sheets of transparent polymer with luminescent layer have two surfaces, a first surface on which is deposited a rough layer of luminescent paint and a second smooth surface, on any of the surfaces the digital radiography can be printed by means of toner or ink.
  • the transparent polymer sheets with luminescent layer allow to see directly on the doctor's desk the patient's x-rays without special lighting or use of the X-ray viewer or any other device, Brief Description of the Figures,
  • Figure 1 shows a sheet of transparent polymer film before applying the luminescent paint layer.
  • Figure 2. shows a sheet of transparent polymer film once the luminescent paint layer is applied Fabrication process
  • the transparent film with luminescent layer is manufactured according to the following process:
  • the roll of transparent polymer film for example acetate, of 0.4 mm is cut according to the measurements of the required plates, such as for example: 20.32 x 20.32; 25.40 x 20.32; 30.48 x 25.40; 35.56 x 25.40; 35.56 x 27.94; 35.58 x 35.56; 35.56 x 91.44 and 43.18 x 35.58 cm.
  • the paint is applied, it is dried outdoors under fans to remove vapors or in a hot air stream or it is placed in the oven at a temperature between approximately 160 ° C and 170 ° C for a period of 10 sec. 1 minute, in order to be cured by gripping its consistency, do not detach or detach by adhering on the transparent film very evenly that allows it to supply its properties properly,
  • the luminescent paint is a thermoplastic plastic paint ink for use in screen printing, type CALTEX®, of any appropriate color selected from the group of colors Green, Pink, Yellow, Orange, Blue and Red. This type of paint is used undiluted.
  • the luminescent paints used should be inks for printing with rubberized finish, good opacity and high performance, which require heat for curing, they can also be used to print on cotton, wool, acetate, rayon, paper and applied directly without conditioning.
  • transparent polymer films used in common printers are preferred, for example, Sas! type of acetate, with a thickness of 3 to 5 thousandth, with brightness and crystalline finish on both sides. In such a way that the transparent polymer sheet obtained is rough on the side of the luminescent layer and smooth on the opposite side.
  • the treating doctor can plan by means of strokes or measure marking the radiography with any type of pencil, color, down or common desktop marker. This planning or marking of the radiography can be done directly on the doctor's desk without the need for special lighting! or use of the X-ray viewer, as this is allowed by the contrast between the luminescent layer and the impression of the X-ray.
  • Printing on the transparent polymer film of the digital radiography while not intentionally or accidentally damaged or mistreated, will be in good condition without deteriorating the image over a long period of time, comparable to that of any paper or acetate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Vascular Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

La presente invención proporciona hojas de polímero transparente para la impresión de radiografías digitales. Las hojas de polímero transparente son elaboradas con pintura luminiscente que permite observar las radiografías digitales impresas sin necesidad de dispositivos especiales para este fin.

Description

PELÍCULAS CON UNA CAPA DE PINTURA LUMINISCENTE PARA
IMPRESIÓN DE RADIOGRAFÍAS DIGITALES
Campo de la invención La presente invención se refiere a hojas o películas de polímeros transparentes con pintura luminiscente para la impresión de radiografías digitales, las cuales permiten el estudio de las partes internas del cuerpo sin la utilización de dispositivos especíales para la vísuaiización de dichas impresiones,
Antecedentes
La radiografía digital es una forma de imágenes de rayos X, donde se utilizan detectores de rayos X digitales en lugar de películas fotográficas tradicionales. Las ventajas incluyen la eficiencia del tiempo a través de pasar por alto e! procesamiento químico y la capacidad de transferir digitalmente y mejorar las imágenes. Además, se puede usar manos radiación para producir una imagen de contraste similar a la radiografía convencional.
La radiografía digital (DR) ha existido en varias formas en el campo de inspección de rayos X de seguridad durante más de 20 años y ha reemplazado en gran medida el uso de película para inspección de rayos X en la seguridad y no destructiva Pruebas DR ha abierto una ventana de oportunidad para la industria de la seguridad debido a varias ventajas clave, incluyendo excelente calidad de imagen, alta portabílidad, respeto al medio ambiente e imágenes inmediatas. Las ventajas de las tecnologías digitales incluyen la capacidad de proporcionar resultados en tiempo real.
Así, la radiología digital es el mayor avance tecnológico en sistemas de imágenes de uso médico de la última década. Los beneficios que aporta la radiología digital son enormes. Mediante esta técnica se puede llegar a prescindir completamente de las películas en las instalaciones o departamentos radiológicos. Se puede decir que la radiología digital clínica es el conjunto de técnicas para obtener imágenes radiológicas escaneadas en formato digital. La radiología digital se utiliza en medicina humana y veterinaria, odontología, pruebas no destructivas y de seguridad en que no es necesario tener el soporte en película. La digitalización de la radiografía se puede hacer:
A partir del escaneo de una la película tradicional (analógica) una vez revelada. Esta técnica es importante en el proceso de archivo de radiografías existentes.
Por escaneo de una placa fotoestimulable de fósforo reutilizable que se graba con la imagen de la radiografía. Este sistema recibe el nombre de "CR".
Utilizando detectores sensibles expuestos directa o indirectamente a los detectores de rayos X, tales como líneas de diodos detectores, que operan sobre la base de las cámaras CCD o paneles planos utilizando sensores CMOS, obleas de silicio amorfo o bien obleas de selenio amorfo. Generalmente se conoce como panel sensor plano o DR.
En fluoroscopia, la digitalización se realizará en tiempo real y por este motivo sólo el tercer método es posible. Estos sistemas se encuentran principalmente en equipos de intensificador de luz o bien en equipos de Panel sensor plano.
Los más importantes eventos ocurridos en el desarrollo de la Radiología Digital en aplicaciones medicas se pueden resumir de la siguiente forma;
- 1983: Los sistemas de radiografía estimulada por el fósforo se introdujeron por primera vez en el uso clínico.
- 1987: Radiografía digital en odontología introducida por primera vez como "RadioVisioGraphy".
- 1995: La empresa francesa Signet introduce el primer sistema panorámico digital dental. Se introdujeron los primeros detectores de silicio amorfo y selenio amorfo. - 2001 ; Se puso a disposición e! primer DIC comercial Indirecto Csl para mamografía y radiografía general
- 2003: Los detectores sin hilos del CMOS para el trabajo dental primero hecho disponible por Schick Technologies.
Debido a la expansión de la Radiología Digital, en breve la película fotográfica para rayos X podría caer completamente en desuso, pues las imágenes obtenidas mediante RD se pueden obtener, borrar, modificar y enviar a continuación a una red de computadores. En lugar de una película de rayos X, la radiografía digital utiliza un dispositivo de captura de imágenes digitales. Esto ofrece ventajas de previsualización y disponibilidad inmediatas de la imagen; eliminación de costosas etapas de procesamiento de películas; un rango dinámico más amplio, lo que hace que sea más tolerante para la sobre y la subexposición, Así como la capacidad de aplicar técnicas especiales de procesamiento de imágenes que mejoren la calidad de visualización general de la imagen.
El médico que prescribió el examen puede ver en su ordenador personal o en su portátil la imagen que solicitó, e incluso emitir un informe pocos minutos después de haberse realizado la exploración. Las imágenes ya no se guardan en un único lugar, sino que varios médicos situados a kilómetros de distancia las pueden ver simultáneamente. Además, el paciente se puede llevar las imágenes de rayos X en un disco compacto para ponerías a disposición de otros médicos u otros hospitales.
No se necesita un cuarto oscuro para obtener las imágenes. Las imágenes se pueden imprimir con buena calidad en películas especiales sin necesidad de revelado químico, mediante impresoras láser o térmicas similares a las de ordenador. El software de procesamiento digital de imágenes es intuitivo y muy fácil de usar. No obstante el uso de películas especiales para obtener la imagen impresa necesaria para que el medico diagnostique o programe la cirugía implica imprimir la imagen en equipos especiales, impresoras fafricadas ex profeso. Por un lado, la reducción de los costos asociados a las Radiografías tradicionales y sus complicaciones por ¡a sustitución de la RD, se ven disminuidos por los altos costos asociados a la utilización de equipo y películes especiales para su impresión.
En el estado de la técnica existe una gran número de documentos publicados donde se describe ía técnica de la radiografía digital y de su reproducción en imágenes, tal es el caso de la publicación WO2017109343 la cual se refiere a una consola para leer y para procesar la conversión de datos físicos en datos numéricos para radiografía de película, mediante e! uso de un software de aplicación que convierte las mediciones físicas de determinados puntos de la radiografía de película cuando la radiografía de la película (RA) toca una pantalla capacitiva. En FR2815144 se proporciona un cassette rectangular donde hay dos pantallas eiectroluminiscentes rectangulares yuxtapuestas y unidas. El cassette tiene una superficie que detecta el doble de rayos X que la de un cassette digital convencional. Una vez expuesto, el cásete se coloca en un lector dos veces primero para leer en una primera pantalla, luego se gira 130 grados para leer en la segunda pantalla. El lector producirá dos archivos digitales que se pueden enviar a un procesador de datos.
Por su parte RU2597028 se refiere al registro de imágenes radiográficas generadas por radiación ionizante; en particular, a métodos para registrar imágenes ópticas generadas por medio de radiación de protones, y puede usarse en sistemas de imagen digital para la determinación de la estructura interna de objetos densos, o investigaciones de procesos de alta velocidad. Primero se lee una radiación ionizante a través de un objeto analizado, y luego a través de una pantalla luminiscente de almacenamiento, donde se lee posteriormente una imagen, en donde se emplea un haz de protones que se aceleran hasta una energía de 10 GeV, y como pantalla luminiscente de almacenamiento, se emplea una placa con capa sensible a base de haluros fluorados de bario activados por europio.
En la actualidad existen dos tipos de Radiografías para el diagnóstico, la Radiografía o Placa Húmeda que se utilizan químicos para poder revelarla y la Radiografía o Placa Seca que se imprime con cabezales láseres Térmicos, en ambos casos se diagnostica poniendo la Radiografía en un negatoscopio con luz que tiende a lastimar los ojos de los especialistas, la Radiografía o Placa Seca solo se imprime en impresoras configuradas de acuerdo a sus productos, no es posible imprimir en placas de diferente marca, esto genera dependencia, exclusividad y costos elevados. Descripción de la Invención
La presente invención proporciona una película de polímero transparente con una capa de pintura luminiscente para su uso en la impresión de imágenes provenientes de la Radiología Digital, Con dicha película se obtiene una imagen digital impresa en una película transparente de acetato, PVC, poiicarbonato o en cualquier tipo de película transparente lisa, donde en uno de los lados se aplica una base de pintura opaca luminiscente, la cual es secada mediante aire caliente o se deja secar a la intemperie con ventiladores para su pronto secado o es horneada para curar y afirmar su consistencia y propiedades para la generación de iuminiscencia,
Las impresiones impresas en las películas transparentes objeto de la presente invención se pueden utilizar para evaluar fracturas, tumores o afecciones que generan un desgaste en el hueso, degeneración en la estructura ósea, detectar si hay un cáncer que fue diseminándose en distintas partes del cuerpo, así como para buscar anomalías sobre el tejido blando que está rodeando el hueso en un ser humano o en un animal.
Así, las imágenes obtenidas en las películas transparentes de la invención se puede utilizar para cualquier estudio de Imagenología, en la Medicina serían en los Rayos X, Tomografia Computarizada, Resonancia Magnética, Mastografía, Ultrasonido, Angiografía, en la Odontología impresión de Dental y en la Veterinaria en Rayos X y Tomografia Computarizada, así como para pruebas no destructivas y de seguridad. En la película transparente objeto de la presente invención se imprimen imágenes digitales internas del cuerpo que gracias a su luminiscencia emite luz visible a simple vista y más en un cuarto oscuro sin necesidad de luz, esto hace que resalte a simple vista cualquier lesión o cambio en el cuerpo para ser diagnosticado, además protegen los ojos de los Doctores y Especialistas pues no es necesario utilizar ningún aparato o dispositivo que emita luz directa. Las películas transparentes con capa de pintura luminiscente se puede imprimir en impresoras comerciales con un tamaño adecuado, que sean de tóner o tinta, y que operen con un software DÍCOM, el tóner o tinta utilizado en la impresión no requiere de especificaciones especiales, por lo cual están disponibles comercialmente a través de distribuidores comerciales comunes.
Los costos de la las películas transparentes con capa de pintura luminiscente para Hospital y/o Gabinete y/o Paciente y/o para cualquier requerimiento de imagen a través de rayos X, son más económicos y más sencilla su impresión que los actuales de cualquiera de los dos tipos de radiografías existentes.
Las hojas de polímero transparente con capa luminiscente para la impresión de radiografías digitales objeto de la invención se caracterizan por tener un soporte de una película de polímero trasparente, donde dicha película de polímero es seleccionada de acetato de polivinilo, cloruro de poliviniio, polietílen tereftalato, policarbonato y similares, cuyas dimensiones las hacen adecuadas para su utilización en impresoras disponibles actualmente en el mercado.
La capa de pintura fluorescente es una tinta termoplástica de uso en sehgrafía, cuya presentación en polvo y se mezcla con un 50% de barniz y 50% con la pintura luminiscente en polvo. Es una tinta base solvente de su uso en serigrafía para plástico, PVC, y metales, de color Verde Amarillento, Verde, Rosa, Amarillo, Naranja, Azul y Rojo, que son luminiscentes y se utilizan para la impresión con terminado ahulado, buena opacidad y alto desempeño, que requieren calor para su curado, y pueden ser utilizadas para imprimir películas de polímero transparente aplicadas directamente sin acondicionamiento.
La pinturas suelen ser aplicadas a través de la técnica de serigrafía, consistente en: primero se aplica un praimer transparente para limpiar y abrir los poros de la malla, con lo cual se pone un poco mate, esto solo en el caso de que el acetato de poíivíniio no tenga en alguna de sus caras un acabado mate como lo es en el acetato de pofivinilo para inyección de tinta, después se aplica la primer capa de pintura luminiscente, se seca, después se aplica una segunda capa para dar más luminosidad y se seca, así queda el tono deseado, opcionalmente es posible aplicar una tercera capa de pintura luminiscente para tener toda vía una mayor luminosidad, y se utilizan para la impresión con un terminado muy resistente, buena opacidad y alto desempeño, y pueden ser utilizadas para imprimir películas de polímero transparente aplicadas directamente sin acondicionamiento.
Las hojas de polímero transparente con capa luminiscente tienen dos superficies, una primera superficie sobre la cual se encuentra depositada una capa rugosa de pintura luminiscente y una segunda superficie lisa, en cualquiera de las superficies se puede imprimir la radiografía digital medíante tóner o tinta. Además, en la superficie rugosa se pueden efectuar trazos o mediciones marcando la radiografía con cualquier tipo de lápiz, color, plumón o marcador común de escritorio. Las hojas de polímero transparente con capa luminiscente permiten ver directamente sobre el escritorio del médico las radiografías del paciente sin necesidad de iluminación especial o uso del Negatoscopio o cualquier otro dispositivo, Breve Descripción de las Figuras,
Figura 1 , muestra una hoja de película de polímero transparente antes de aplicar la capa de pintura luminiscente. Figura 2. muestra una hoja de película de polímero transparente una vez aplicada la capa de pintura luminiscente Proceso de Fabricación
La película transparente con capa luminiscente se fabrica de acuerdo al siguiente proceso:
Se corta el rollo de película polímero transparente, por ejemplo acetato, de 0.4 mm de acuerdo a las medidas de las placas requeridas, tales como por ejemplo: 20.32 x 20,32; 25.40 x 20.32; 30.48 x 25.40; 35.56 x 25.40; 35.56 x 27.94; 35.58 x 35.56; 35.56 x 91.44 y 43.18 x 35.58 cm.
Una vez cortadas se apilan anteponiendo una hoja de papel de protección para que estas no se rayen y se almacenan.
Aplicar a cada hoja de película transparente mediante serigrafsa empleando una maile de NySon o Poliéster de 43 a 77T con marcos de aluminio o marcos autotensables (Newman) para asegurar un buen registro, una capa homogénea de pintura en cantidades comprendidas entre 0.05 ml/'cm2 y 0.2 ml/cm2, muy pareja y cuidadosamente para que no queden manchas o variaciones en la cantidad, con la cual se cubre prácticamente toda la película transparente, dejando un marco de entre 1 cm y 3 cm sin pintura para anotaciones o rótulos que especifiquen la información de la RD correspondiente.
Una vez aplicada la pintura se seca a la intemperie bajo ventiladores para eliminar los vapores o en una corriente de aire calientes o se mete al horno a una temperatura de aproximadamente de entre 160 °C y 170°C por un tiempo comprendido de 10 seg a 1 minuto, con la finalidad de que se cure agarrando su consistencia, no se despegue o despinte adhiriéndose en la película transparente de forma muy pareja que le permita suministrar sus propiedades adecuadamente,
Al secar la pintura queda rugosa proporcionando una base lista para imprimir y efectuar los trazos correspondientes con cualquier tipo de marcador. La pintura luminiscente es una tinta termoplástica pintura plástica para su uso en serigrafía, tipo CALTEX®, de cualquier color apropiado seleccionado del grupo de colores Verde, Rosa, Amarillo, Naranja, Azul y Rojo. Este tipo de pinturas se utilizan sin diluir. En general las pinturas luminiscentes utilizadas deben ser tintas para la impresión con terminado ahulado, buena opacidad y alto desempeño, que requieren calor para su curado, además pueden ser utilizadas para imprimir sobre algodón, lana, acetato, rayón, papel y que se aplican directamente sin acondicionamiento. En general se prefiere las películas de polímeros transparentes empleadas en impresoras comunes, por ejemplo, Sas de! tipo de acetato, con un grosor de 3 a 5 milésima, con brillo y acabado cristalino por ambos lados. De tal forma que la hoja de polímero transparente obtenida sea rugosa por el lado de la capa de luminiscente y lisa por el lado opuesto.
Cuando la radiografía se tenga que imprimir para diagnóstico o como evidencia para el paciente, es recomendable que imprimir en la superficie brillosa cristalina pero, cuando el médico tratante requiera de la radiografía para operar al paciente, es recomendable imprimir del lado de la pintura luminiscente, con la finalidad de el medico tratante pueda planear mediante trazos o medir marcando la radiografía con cualquier tipo de lápiz, color, plumón o marcador común de escritorio. Dicha planeación o marcado de la radiografía se puede hacer directamente sobre el escritorio del médico sin necesidad de iluminación especia! o uso del Negatoscopio, pues así lo permite el contraste entre la capa luminiscente y la impresión de la radiografía.
La impresión en la película de polímero transparente de la radiografía digital, mientras no se dañe o maltrate intencional o accidentalmente estará en buenas condiciones sin que se deteriore la imagen durante un largo período de tiempo, comparable a la de cualquier papel o acetato.

Claims

REIVINDICACIONES
1. Hojas de polímero transparente con capa luminiscente para la impresión de radiografías caracterizadas porque comprenden un soporte de una película de polímero trasparente y una capa de pintura fluorescente o luminiscente.
2. Hojas de polímero transparente con capa luminiscente según la reivindicación 1 , donde dicha película de polímero es seleccionada de acetato de poíivinilo, cloruro de polivinilo, polietilen tereftalato, policarbonato y similares.
3. Hojas de polímero transparente con capa luminiscente según la reivindicación 2, donde el tamaño y dimensiones de las hojas son las adecuadas para su utilización en impresoras disponibles actualmente en el mercado. 4. Hojas de polímero transparente con capa luminiscente según la reivindicación 1 , caracterizada porque la capa de pintura luminiscente es una tinta termoplástica de su uso en serigrafia, con terminado ahulado, buena opacidad y alto desempeño, que requieren calor para su curado y pueden ser aplicadas directamente sin acondicionamiento.
5. Hojas de polímero transparente con capa luminiscente según la reivindicación 4, caracterizada porque de color se selecciona del Verde Amarillento, Verde. Rosa, Amarillo, Naranja, Azul y Rojo. 8. Hojas de polímero transparente con capa luminiscente según ¡a reivindicación 1 , caracterizada porque tienen dos superficies: una primera superficie sobre la cual se encuentra depositada una capa rugosa de pintura luminiscente y una segunda superficie lisa, además en cualquiera de las superficies se puede imprimir la radiografía digital medíante tonar o tinta.
7. Hojas de polímero transparente con capa luminiscente según la reivindicación 6, caracterizada porque en ia superficie rugosa se pueden efectuar trazos o mediciones con cualquier tipo de lápiz, color, plumón o marcador común de escritorio. 8. Hojas de polímero transparente con capa luminiscente según la reivindicación 1 , caracterizada porque permiten ver directamente las radiografías digitales impresas sin necesidad de cualquier dispositivo,
9. Un proceso para la fabricación de las hojas de polímero transparente con capa de pintura luminiscente según la reivindicaciónl , caracterizado dicho proceso porque comprende las siguientes etapas:
a) cortar hojas de polímero transparente en medidas seleccionadas de 20.32 x 20,32; 25.40 x 20.32; 30.48 x 25,40; 35,58 x 25.40; 35.56 x 27.94; 35.58 x 35.56; 35.58 x 91.44 y 43.18 x 35.56 cm.
b) apilar las hojas de polímero transparente anteponiendo una hoja de papel entre cada hoja de polímero;
c) aplicar a cada hoja de película transparente mediante serígrafía una o más capas de pintura luminiscente;
d) secar las hojas de polímero transparente con la capa de pintura luminiscente a una temperatura de aproximadamente de entre 160 °C y 170°C por un tiempo comprendido de 10 seg a 1 minuto.
10. El proceso según la reivindicación 9, caracterizado porque se seca la hoja de polímero transparente con la capa de pintura luminiscente después de la aplicación de cada capa de pintura.
11. El proceso según la reivindicación 9, caracterizado porque el secado la hoja de polímero transparente con la capa de pintura luminiscente se lleva a cabo por uno de los siguientes procedimientos: a) a la intemperie bajo ventiladores; b) en una corriente de aire caliente; y c) horneado a una temperatura de aproximadamente de entre 160 °C y 170°C por un tiempo comprendido entre 10 segundos a 1 minuto.
12. El proceso según !a reivindicación 9, caracterizado porque la serigrafía se lleva acabo empleando una malla de Nylon o Poliéster de 43 a 77T con marcos de aluminio o marcos autotensables (Newman); donde dicha capa de pintura se aplica en cantidades comprendidas entre 0.05 ml/crn2 y 0.2 ml/cm2; y se deja un marco de entre 1 cm y 3 cm sin pintura.
PCT/MX2017/000086 2017-08-02 2017-08-02 Películas con una capa de pintura luminiscente para impresión de radiografías digitales WO2019027310A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000086 WO2019027310A1 (es) 2017-08-02 2017-08-02 Películas con una capa de pintura luminiscente para impresión de radiografías digitales

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000086 WO2019027310A1 (es) 2017-08-02 2017-08-02 Películas con una capa de pintura luminiscente para impresión de radiografías digitales

Publications (1)

Publication Number Publication Date
WO2019027310A1 true WO2019027310A1 (es) 2019-02-07

Family

ID=65233906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000086 WO2019027310A1 (es) 2017-08-02 2017-08-02 Películas con una capa de pintura luminiscente para impresión de radiografías digitales

Country Status (1)

Country Link
WO (1) WO2019027310A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389384A (ja) * 1986-10-03 1988-04-20 Oike Ind Co Ltd 蛍光性感熱転写媒体
EP0466421A2 (en) * 1990-07-05 1992-01-15 Brandeis University Autography marking tape
US6071855A (en) * 1997-02-19 2000-06-06 Eastman Kodak Company Glow-in-the-dark medium and method of making
US6474807B1 (en) * 1999-05-13 2002-11-05 Konica Corporation Recording medium for ink-jet printer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389384A (ja) * 1986-10-03 1988-04-20 Oike Ind Co Ltd 蛍光性感熱転写媒体
EP0466421A2 (en) * 1990-07-05 1992-01-15 Brandeis University Autography marking tape
US6071855A (en) * 1997-02-19 2000-06-06 Eastman Kodak Company Glow-in-the-dark medium and method of making
US6474807B1 (en) * 1999-05-13 2002-11-05 Konica Corporation Recording medium for ink-jet printer

Similar Documents

Publication Publication Date Title
Pisano et al. Current status of full-field digital mammography
Tateno et al. Computed radiography
US6356621B1 (en) Pressure-sensitive adhesive sheet for radiography
US7010092B2 (en) Dual energy imaging using optically coupled digital radiography system
Korner et al. Advances in digital radiography: physical principles and system overview
Shetty et al. Computed radiography image artifacts revisited
Mattoon Digital radiography
Christman Foot and ankle radiology
Whaites et al. Radiography and radiology for dental care professionals
Ayers Small animal radiographic techniques and positioning
CN108291972A (zh) 具有拼接的图像传感器的方法和设备
Sheridan et al. Computed radiography versus indirect digital radiography for the detection of glass soft-tissue foreign bodies
Lees et al. A hybrid camera for simultaneous imaging of gamma and optical photons
Conover et al. Comparison of linear measurements made from storage phosphor and dental radiographs
WO2019027310A1 (es) Películas con una capa de pintura luminiscente para impresión de radiografías digitales
US20170181721A1 (en) Nuclear medicine diagnostic apparatus, diagnostic imaging apparatus, and image processing method
US20080035859A1 (en) Photo-stimulable phosphor imaging plate
Ergun et al. How many times can we use a phosphor plate? A preliminary study
Molleran et al. Breast MRI: Expert Consult: Online and Print
Lai et al. Visibility of simulated microcalcifications—A hardcopy‐based comparison of three mammographic systems a
Yamauchi-Kawaura et al. Measurement of internal radiation dose distribution in CT examinations using polyethylene terephthalate resin
Ng et al. Technical specifications of medical imaging equipment
Petri et al. Comparison of the performance of computed radiography and direct radiography in glass soft tissue foreign body visualisation
TW422804B (en) Filing device for developed X-ray film
Gaona et al. TL dosimetry for quality control of CR mammography imaging systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919883

Country of ref document: EP

Kind code of ref document: A1