WO2019026816A1 - Fluorine-containing composite particles - Google Patents

Fluorine-containing composite particles Download PDF

Info

Publication number
WO2019026816A1
WO2019026816A1 PCT/JP2018/028358 JP2018028358W WO2019026816A1 WO 2019026816 A1 WO2019026816 A1 WO 2019026816A1 JP 2018028358 W JP2018028358 W JP 2018028358W WO 2019026816 A1 WO2019026816 A1 WO 2019026816A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
silica
particles
particle
containing compound
Prior art date
Application number
PCT/JP2018/028358
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 宮本
侑哉 寺澤
浩之 西川
啓司 麻植
渉 寺尾
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to JP2019534482A priority Critical patent/JP7157059B2/en
Publication of WO2019026816A1 publication Critical patent/WO2019026816A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds

Definitions

  • the present invention relates to a novel fluorine-containing composite particle, and more particularly to a composite particle having anti-adhesion properties (water and oil repellency).
  • Patent Document 1 discloses a coating film provided with metal oxide composite particles provided with a resin layer containing a polyfluoroalkyl methacrylate resin on the surface.
  • Patent Document 1 Although conventional techniques such as the technique of Patent Document 1 can provide high water repellency and oil repellency to water or most oils, oil repellency (oleophobicity) is satisfactory for fatty acids such as oleic acid, for example. There is room for further improvement in that respect.
  • an object of the present invention is to provide fine particles capable of exhibiting higher water repellency and oil repellency than conventional ones.
  • the present inventor has found that the above object can be achieved by adopting a specific particle structure, and has completed the present invention.
  • the present invention relates to a fluorine-containing composite particles below.
  • the fluorine-containing compound is at least one distally [-Si (OR) 3] in the main chain of perfluoropolyether (provided that three R are the same or different from each other, 1 hydrogen or carbon atoms 10
  • the fluorine-containing amount per unit surface area of the silica-based fine particles is 0.9 mg / m 2 to 1.0 g / m 2. Fluorine-containing composite particles. 2.
  • the fluorine-containing compound has a number average molecular weight of 500-2500, the fluorine-containing composite particles of the claim 1, wherein. 3.
  • the functional group at one end of the polymer and the functional group at the other end from the side to which the silica particle is bonded are [--Si (OR) of the polymer having another perfluoropolyether as the main chain 3] (provided that the three R are the same or different from each other, represent hydrogen or an alkyl group having 1 to 10 carbon atoms.) is bonded to the functional group represented by, according to any one of the items 1 to 3 Fluorine-containing composite particles. 5.
  • fine-particles which can exhibit water repellency and oil repellency higher than before can be provided.
  • the fluorine-containing composite particles of the present invention can exhibit high oil repellency even to fatty acids.
  • high oil repellency insectifouling
  • the fluorine-containing composite particles of the present invention can be suitably applied to products, members, parts and the like for which an adhesion preventing effect (water and oil repellency) is required.
  • FIG. 1 (a) is a schematic view of a laminate formed by laminating a coating film comprising the fluorine-containing composite particles of the present invention on a substrate.
  • FIG. 1 (b) shows a schematic view of the structure of the fluorine-containing composite particle of the present invention.
  • FIG. 2 is a schematic view of an apparatus used to measure a sliding angle in a test example.
  • Fig.2 (a) shows the state before jacking up a glass board.
  • FIG.2 (b) shows the state which jacked up the glass board.
  • Fluorine-containing composite particles Fluorine-containing composite particles of the present invention (the invention particles), the surface of the silica-based fine particles 1) fluorine-containing compound and 2) it is coated with at least one silicon and siloxane bonds to become a fluorine-containing groups of the silica-based particles
  • the composite particles being (1) the fluorine-containing compound, at least one end side to [-Si (OR) 3] in the main chain of perfluoropolyether (provided that three R are the same or different from each other, hydrogen or carbon atoms represents 1 to 10 alkyl group.) also referred to as functional group (hereinafter "functional group a" represented by.) is a compound containing, (2) Fluorine content per unit surface area of the silica fine particles are 0.8mg / m 2 ⁇ 1.0g / m 2, It is characterized by
  • FIG. 1 (b) A schematic view of the particles of the present invention is shown in FIG. 1 (b).
  • the particles 26 of the present invention have a structure in which a part or the whole of the surface is coated with a fluorine-containing compound (or a fluorine-containing group) 28 using the silica-based fine particles 27 as core particles. That is, the coating layer containing the fluorine-containing compound (or the fluorine-containing group) 28 is formed on the surface of the core particle.
  • the fluorine-containing compound polymers having perfluoropolyether as a main chain (in particular, linear polymers) can be suitably used.
  • the fluorine-containing compound 28 may be present on the surface of the silica-based fine particle without reaction (that is, while maintaining the functional group A), but in particular, the functional group A is present on the surface of the silica-based fine particle
  • the functional group A is present on the surface of the silica-based fine particle
  • a chemical bond in particular, a siloxane bond
  • a certain silica or another functional group in particular, a hydrophilic group such as an OH group
  • it is preferable to exist as a fluorine-containing group a fluorine-containing organic group.
  • the fluorine-containing compound can be more firmly fixed to the surface of the silica-based fine particle as a fluorine-containing group.
  • silica-based fine particles may be any particles containing silica (SiO 2 ), and may be particles containing silica and other components in addition to particles consisting of silica alone.
  • the silica based particles, silica is preferably fine particles containing more than 50 wt%, preferably microparticles particularly containing silica 99% by mass or more.
  • the other components include, in addition to unavoidable impurities, for example, iron (Fe), titanium (Ti), aluminum (Al), calcium (Ca), zirconium (Zr), sodium Elements such as (Na), potassium (K), magnesium (Mg) and the like or compounds thereof can be mentioned.
  • unavoidable impurities for example, iron (Fe), titanium (Ti), aluminum (Al), calcium (Ca), zirconium (Zr), sodium Elements such as (Na), potassium (K), magnesium (Mg) and the like or compounds thereof can be mentioned.
  • the silica-based fine particles may be obtained by surface treatment of the silica particles, the compound (or functional group) provided by the surface treatment may be included. Therefore, in the present invention, hydrophobic silica-based particles, hydrophilic silica-based particles or a mixture thereof can be used as the silica-based particles.
  • silica-based fine particles it is possible to use hydrophilic silica particles having an OH group on the surface thereof suitably.
  • a siloxane bonding functional group A is a dehydration condensation reaction with OH groups of the silica-based fine particle surface [-Si-O-Si *] (where, Si * in the silica-based particles forming a Si) contained, a fluorine-containing compound to the silica-based fine particle surface can be firmly fixed.
  • hydrophilic silica-based particles are used by applying hydrophilic treatment to hydrophobic silica-based particles in advance to impart OH groups and the like to the surface of the silica-based particles. As in the case, it becomes possible to fix the fluorine-containing compound on the surface of the silica-based fine particles.
  • the average primary particle size of the silica-based particles is usually 3 to 500 nm, and preferably 10 to 300 nm. By setting the particle diameter in the above range, more excellent water repellency and oil repellency can be obtained.
  • the measurement of the primary particle average diameter of the particles can be carried out using a transmission electron microscope or a scanning electron microscope. More specifically, the average primary particle size is determined by photographing with a transmission electron microscope or scanning electron microscope, measuring the diameters of 200 or more particles on the photograph, and calculating the arithmetic mean value be able to.
  • the specific surface area of the silica-based fine particles usually preferably not more than 400 meters 2 / g, it is preferable in particular 10 ⁇ 380m 2 / g.
  • the specific surface area can be determined by BET1 point method using a Macsorb (manufactured MOUNTECH). Adsorption gas, using nitrogen 30 vol% helium 70% by volume of the gas, for 10 minutes at 100 ° C.
  • the cell containing the sample was cooled with liquid nitrogen, increased to room temperature after the adsorption completion raised, determined the surface area of the sample from the desorbed amount of nitrogen can be obtained a specific surface area by dividing the mass of the sample.
  • the shape of the silica-based fine particles is not particularly limited as long as it is in the form of particles, and any shape such as spherical, rod-like, needle-like, plate-like, indeterminate, scaly and spindle-like can be adopted.
  • the silica-based fine particles are preferably spherical (substantially spherical) close to a true sphere in order to minimize the contact area with water or oil.
  • silica-based fine particles themselves, known or commercially available ones can also be used. Moreover, it is also possible to synthesize
  • product name "AEROSIL 200" (“AEROSIL” is a registered trademark.
  • Fluorine-containing compounds present on the surface of the fluorine-containing compound silica-based fine particles, at least one of the distal [-Si (OR) 3] in the main chain of perfluoropolyether is a compound containing a functional group represented by.
  • a polymer having a perfluoropolyether as a main chain can be used.
  • a polymer having such a perfluoropolyether as the main chain it is possible to secure a chain length equivalent to C8 or more without including a C8 fluorotelomer (C8 telomer) like structure that may cause environmental pollution.
  • High water repellency and oil repellency can be obtained.
  • the presence of an ether bond in the main chain makes it possible to firmly coat the surface of the silica-based fine particle.
  • fluorine-containing compound used in the present invention more specifically the following general formula (1): X-CF 2 -O- (C n F 2n O) m-CF 2 -X ⁇ (1) It can be suitably used compound represented by in.
  • X is a terminal portion containing an alkoxysilane functional group [—Si (OR) 3 ], and a perfluoropolyether having a functional group A can also be referred to as a perfluoropolyether silane.
  • n and m in the above general formula are independent natural numbers, and the values thereof are not particularly limited.
  • n is preferably 1 or more and 7 or less.
  • m is preferably 7 or more and 100 or less.
  • the functional group A in the fluorine-containing compound, as described above [-Si (OR) 3] (provided that the three R are the same or different from each other, represent hydrogen or an alkyl group having 1 to 10 carbon atoms.) In It is a functional group represented.
  • R is an alkyl group
  • it is preferably an alkyl group having 1 to 10 carbon atoms (in particular, a linear alkyl group), and more preferably an alkyl group having 1 to 4 carbon atoms.
  • a methyl group, an ethyl group, a propyl group or a butyl group is mentioned, for example.
  • all three Rs of the functional group A may be different, or some or all of them may be the same.
  • at least one of the three OR groups in the functional group is bonded to the silicon of the silica-based particles, it can be a fluorine-containing group and can be strongly linked to the silica-based particles. More preferably, if two or all of the OR groups of the above functional groups are bonded to the silica-based fine particles, the immobilization can be performed more strongly.
  • X in the above general formula may contain the functional group A. Therefore, all X may be a functional group A, or a part of X may be another functional group as long as the effects of the present invention are not impaired.
  • the functional group A may be directly bonded to the main chain [—CF 2 —O— (CF 2 O) p — (CF 2 CF 2 O) q —CF 2 —] consisting of perfluoropolyether and, it may be bonded via a linker unit.
  • Linker unit is for connecting the CF 2 and a functional group A particular in the general formula of the perfluoropolyether described above.
  • the linker portion is preferably comprising an amide bond (-CONH-).
  • k, p and q are natural numbers that independently.
  • the value of k is 1-6, or more preferably 2-3. If the value of k exceeds 6, it is difficult to coat the fluorine-containing compound to the silica fine particle surface.
  • the molecular weight of the polymer having a perfluoropolyether which is a fluorine-containing compound as a main chain is not particularly limited, but a number average molecular weight measured by gel permeation chromatography is preferably 500 to 5000, and particularly preferably 1000 to 3000, Among these, 1200 to 2500 are most preferable.
  • a number average molecular weight measured by gel permeation chromatography is preferably 500 to 5000, and particularly preferably 1000 to 3000, Among these, 1200 to 2500 are most preferable.
  • the number average molecular weight exceeds 5,000, it may be difficult to dissolve the polymer in a water-soluble organic solvent. If the polymer can not be dissolved in a water-soluble organic solvent, for example, when R of the functional group A is an alkyl group, the hydrolysis reaction for substituting the OR group with an OH group becomes difficult to proceed.
  • OR group can not be substituted with an OH group, formation of a siloxane bond between the functional group A and the OH group on the surface of the silica-based fine particle does not proceed as described later, and the polymer is firmly bonded to the surface of the silica-based particle and coated. It becomes difficult.
  • any of the OR groups can not be substituted with OH groups, dehydration condensation reaction between the functional groups A of the multiple polymers does not easily occur. As a result, the polymers are less likely to become long-chained and water repellency and oil repellency decrease. There is a fear.
  • the application amount (coating amount) of the coating layer (fluorine-containing compound) is not limited, but is 0.8 mg / m 2 or more and 1.0 g / m 2 or less as the fluorine content per unit surface area of the silica-based fine particles, preferably a 0.9 mg / m 2 or more 1.5 mg / m 2 or less. Is less than 0.9 mg / m 2, sometimes water repellency and oil repellency are insufficient. If it exceeds 1.0 g / m 2, the processing cost becomes high.
  • the fluorine content F are quartz tube combustion decomposition - is a value measured by an ion chromatographic method. More specifically, burned in a quartz combustion tube the sample was heated to 900 ⁇ 10000 ° C., the resulting gas was collected by steam distillation, it detects the recovering solution as fluoride ion by ion chromatography, quantified that Accordingly, the total fluorine content determined, which can be calculated by dividing the mass of the sample.
  • Method for producing fluorine-containing composite particles is not particularly limited.
  • the coating layer comprising a fluorine-containing compound may be formed on the silica-based fine particle surface according to granulation methods and the like.
  • the silica-based fine particles may be mixed with the solution of the fluorine-containing compound as it is, but it is preferable to mix with the solution in the form of a dispersion in that higher dispersibility is obtained. That is, a dispersion in which silica-based particles are dispersed in a solvent can be suitably used.
  • any solvent can be used as long as the silica-based fine particles do not dissolve or deteriorate.
  • aromatic hydrocarbons such as toluene and xylene
  • alicyclic hydrocarbon solvents such as methylcyclohexane and cyclohexane
  • ester solvents such as ethyl acetate and butyl acetate
  • ketone solvents such as methyl ethyl ketone and acetone
  • Organic solvents such as alcohol solvents such as isopropyl alcohol and denatured ethanol
  • any of water, a water-soluble organic solvent or a mixed solvent thereof can be suitably used.
  • the water-soluble organic solvent is not limited, and examples thereof include methanol, ethanol, 2-propanol, propylene glycol monomethyl ether and the like.
  • the content of the silica-based fine particles in the dispersion may be usually set in the range of about 1 to 50% by weight from the viewpoint of the dispersibility of the silica-based fine particles in the dispersion, but is not limited thereto.
  • a pH adjuster can also be mix
  • acids such as acetic acid and hydrochloric acid, and bases such as sodium hydroxide and ammonia can be used.
  • the solution of the fluorine-containing compound can be prepared by dissolving the fluorine-containing compound in a solvent.
  • the fluorine-containing compound As the fluorine-containing compound, the above-mentioned 1.
  • the compound shown by can be used suitably.
  • the OH group is contained in the functional group on the terminal side of at least one end of the polymer having a perfluoropolyether main chain, thereby forming a siloxane bond with the OH group on the surface of the silica-based fine particle, thereby forming a silica bond It is easy to firmly bond and coat the polymer.
  • a siloxane bond that is, a fluorine-containing group
  • a siloxane bond can be formed by dehydration condensation reaction with the OH group on the surface of the silica-based fine particle without using a water-soluble organic solvent. it can.
  • the water-soluble organic solvent is used in the coating step to cause water to be present to cause the OR group to undergo a hydrolysis reaction. It is converted into an OH group, and a siloxane bond can be formed by a dehydration condensation reaction with the OH group on the surface of the silica-based fine particle.
  • the fluorine-containing compound can be strongly fixed to the surface of the silica-based fine particle as a fluorine-containing group.
  • the polymer may have a functional group A on one end side, but more preferably has a functional group A on both end sides.
  • both terminals are bonded to the silica-based fine particles to be in a more rigid state.
  • one end is bonded to the silica-based fine particle, and the other end is bonded to the other polymer end to form a long chain. Therefore, as a result of the area of the perfluoropolyether occupying on the surface of the silica-based fine particles, it becomes possible to express higher water repellency and oil repellency.
  • the solvent in the solution particularly, water, a water-soluble organic solvent or a mixed solvent thereof can be suitably used.
  • the water-soluble organic solvent is not particularly limited as long as it is a solvent miscible with water such as methanol, ethanol, 2-propanol, propylene glycol monomethyl ether and the like.
  • the reaction in an aqueous system makes it possible to form a siloxane bond more reliably as described above.
  • the content of the fluorine-containing compound in the solution of the fluorine-containing compound is not particularly limited, but generally 10 to 80% by weight, in particular 15 to 70% by weight, and further preferably 20 to 60% by weight. Is preferred.
  • the ratio of the silica-based fine particle to the solution may be appropriately set according to the coating amount of the desired fluorine-containing compound. It is preferable to adjust so that it may become the shown coating amount.
  • a step of stirring the mixed solution By stirring the mixed solution, it becomes possible to fully react part or all of the functional group A with the silica on the surface of the silica-based fine particle or the functional group on the silica surface to reliably form a siloxane bond.
  • the stirring conditions are not particularly limited as long as they are not higher than the boiling point of the solvent that occupies the majority in the solution.
  • the stirring temperature is usually about 30 to 80 ° C., preferably 40 to 70 ° C.
  • the stirring time is usually about 1 to 96 hours, preferably 6 to 84 hours. Stirring may be performed using a commercially available stirring device.
  • the particles of the present invention can be obtained in the form of a slurry. For this reason, when using this invention particle
  • it after processing such as solid-liquid separation, washing, etc. is performed to the above-mentioned slurry as needed, it can also be used in the form of a substantially dried powder.
  • the powder can also be used in the form of a dispersion obtained by dispersing it in a solvent.
  • the particles of the fluorine-containing composite particles by applying to various articles, it is possible to impart desired repellency and / or oil repellency.
  • desired repellency and / or oil repellency In particular, by forming a coating film comprising the present invention particles to the article surface, it is possible to impart water repellency and / or oil repellency.
  • the material that is the object of forming the coating that is, the object of imparting water repellency and oil repellency.
  • the material may be, for example, metal, plastics, ceramics, rubber, fibrous materials (paper, non-woven fabric, woven fabric, etc.), composite materials of these materials, etc.
  • it may be any of a product, a semi-finished product, or their raw materials.
  • the materials in addition to packaging materials, daily necessities (glasses, rain gear, eyebrows, etc.), building materials (roof, wallpaper, flooring, ceiling materials, tiles, window glass, etc.), dishes, cooking Appliances (pots, saucepans for gas stoves, oil panels, top plates of induction cookers, etc.), kitchenware, sports goods, clothing (hats, shoes, gloves, coats, etc.), structures (building walls, bridges,
  • the present invention can be widely applied to transportation equipment (car, motorcycle, train, ship, etc. body outer surface), cosmetics, medicines, toys, jigs for identification, etc.
  • a packaging material is suitable as the material.
  • the packaging material also includes both a package as a product (finished product) and its raw material.
  • the product (finished product) include a lid of a container, and a package such as a molded container, a wrapping paper, a tray, a tube, and a bag (a pouch or the like).
  • the laminated body containing a base material and a heat seal layer, etc. can be mentioned, for example. That is, the packaging material comprised from the laminated body which contains in order 1) the water-repellent and oil-repellent coating film which contains this invention particle
  • FIG. 1A The schematic diagram of the cross section of the laminated body containing the coating film by this invention particle
  • the particles 26 of the present invention are laminated on the surface of a substrate 10.
  • grains 26 is shown in FIG.1 (b).
  • the fluorine-containing compound 26 coats the surface of the silica-based particles 27 with the silica-based particles 26 coated with the fluorine compound.
  • the structure is schematically illustrated in an easily understandable manner, and the size, the number, and the like of each configuration do not necessarily reproduce the actual laminate.
  • Example 1 Hydrophilic BET value 200 meters 2 / g silica fine particles 3.0 g (Nippon Aerosil Co., AEROSIL200, average primary particle diameter 12 nm) in ethanol solvent (Godo Co. GS Arco EP-7) was dispersed in 62.6g The This was followed by acetic acid 0.4g and pure water 10.0g was added, and stirred for 3 minutes with a glass rod, to prepare a dispersion.
  • the average of the perfluoropolyether silane (p + q of the following formula in a concentration of 10 mass% (3) is 14, the number average molecular weight 2000, k is 3, R is an ethyl group shown.) prepared 2.4 g, was mixed with ethanol solvent 21.6 g, was prepared perfluoropolyether silane ethanol solution.
  • the bar After diluting the coating solution with an ethanol-based solvent (GS Alco EP-7 manufactured by Godo Co., Ltd.) so that the target lamination amount of the silica-based fine particles coated with the fluorine compound after drying is 1.2 g / m 2 , the bar The surface of a commercially available slide glass (MICRO SLIDE GLASS S9213) was coated using a coater # 6. Next, it was heated and dried in an oven at 180 ° C. for 10 seconds to evaporate the ethanol-based solvent. There was thus prepared a sample of the laminate.
  • an ethanol-based solvent GS Alco EP-7 manufactured by Godo Co., Ltd.
  • the average of the perfluoropolyether silane (p + q of the following formula in a concentration of 10 mass% (3) is 14, the number average molecular weight 2000, k is 3, R is an ethyl group shown.) prepared 0.2 g, was mixed with ethanol solvent 1.8g, was prepared perfluoropolyether silane ethanol solution.
  • the surface treatment agent of the polyfluoro octyl methacrylate 2-N, N-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate and 2,2'-ethylenedioxy aqueous dispersion of a copolymer of diethyl dimethacrylate (solids Concentration: 20% by weight) was used. It was prepared coating liquid The surface modified silica fine particles are dispersed in ethanol 100 ml. As in Example 1 by using the obtained coating liquid was manufactured a sample of the laminate.
  • Comparative example 3 CF 3 (CF 2) 3 ( CH 2) 2 OH ( product name "FA-4" UNIMATEC Ltd. (Ltd.)) 0.25 g was added and dissolved in methanol 30 ml, silica sol (product name into the solution " methanol silica sol; 30 wt% nano silica containing "manufactured by Nissan chemical Co.) 1.67 g and tetraethoxysilane (trade name” Dynasylan a "Evonik Japan Ltd.) 0.25 ml was added, while stirring with a magnetic stirrer , added 25 wt% aqueous ammonia 0.25 ml, the reaction was carried out for 5 hours.
  • the methanol was removed and aqueous ammonia under reduced pressure using an evaporator, redispersed overnight resulting powder in methanol of approximately 20 ml. Centrifuged using the next day centrifuge tube, the supernatant discarded, the new methanol were added thereto to carry out a rinsing operation. After three times this rinse work, the mouth of the centrifuge tube covered with aluminum foil, and placed overnight in a 70 °C of oven. The next day and dried for overnight 50 ° C. a vacuum dryer to obtain a white powder.
  • a coating solution was prepared by dispersing 5.0 g of the fluorine-containing nanosilica composite particles before firing obtained in 95.0 g of an ethanol-based solvent (GS Alco EP-7 manufactured by Gordo). As in Example 1 by using the obtained coating liquid was manufactured a sample of the laminate.
  • Test Example 1 It was measured sliding angle at 25 ° C. for a sample of the resulting laminate in each of Examples and Comparative Examples. The results are shown in Table 1.
  • an electric lab jack 30 manufactured by Auto Lab jacks ALJ200-H, AS ONE Corporation
  • established the foundation 20 so as to extend over the electric laboratory jack 30 and the base 20, 30 cm ⁇ 70cm ⁇ Place the glass plate 36 of 3 mm, further digital angle meter 38 (digital goniometer mini DPM-1, Toei Kogyo Co., Ltd.) in a plate 36 carrying the.
  • the plate 36 is adjusted lifting height of the electric lab jack 30 so that the horizontal (inclination 0 °).
  • the side 32 of the plate 36 in contact with the base 20 and the base 20 were fixed with a commercially available tape so that the plate 36 does not move in the horizontal direction.
  • the side is supported by an electric lab jack 30 of the plate 36 was not fixed.
  • the electric lab jack 30 when jacked up, the plate 36 and Kosudo while always in contact with the upper end portion 34 of the electric lab jack 30 a plate 36 is inclined.
  • sample 42 pure water, oleic acid (NAA-34, manufactured by NOF Corporation, content: 98 mass% or more as fatty acid) and edible olive oil (AJINOMOTO olive oil) were used respectively.
  • NAA-34 oleic acid
  • AJINOMOTO olive oil edible olive oil
  • the sliding angle of water showed a very small sliding angle in both Example 1 and Comparative Example 1, but the sliding angle of oleic acid and olive oil in Example 1 was the comparative example.
  • the sliding angle was much smaller than 1.
  • the fluorine-containing composite particles of the present invention can exhibit high oil repellency also to higher fatty acids such as oleic acid as well as specific oil components such as olive oil and the like.

Abstract

Provided are fine particles that can exhibit higher water repellency and higher oil repellency than conventional ones. The present invention pertains to fluorine-containing composite particles obtained by coating the surface of silica fine particles with at least one of 1) a fluorine-containing compound and 2) a fluorine-containing group formed by siloxane bonding between the fluorine-containing compound and silicon in the silica fine particles, wherein (1) the fluorine-containing compound includes a functional group represented by [-Si(OR)3] (wherein, three Rs may be the same or different and each represent hydrogen or a C1-10 alkyl group) at at least one end of the main chain of perfluoropolyether, and (2) the fluorine content per unit surface area of the silica fine particles is 0.8 mg/m2 to 1.0 g/m2.

Description

フッ素含有複合粒子Fluorine-containing composite particles
 本発明は、新規なフッ素含有複合粒子に関し、特に付着防止性(撥水性・撥油性)を有する複合粒子に関する。 The present invention relates to a novel fluorine-containing composite particle, and more particularly to a composite particle having anti-adhesion properties (water and oil repellency).
 近年において、防汚性、固液界面の摩擦抵抗の軽減等の観点から、撥水性又は撥油性を発現する材料が注目されている。例えば、特許文献1には、ポリフルオロアルキルメタアクリレ-ト樹脂を含む樹脂層を表面に備える金属酸化物複合粒子を備える塗膜が開示されている。 In recent years, materials that exhibit water repellency or oil repellency have attracted attention from the viewpoint of antifouling properties, reduction of the frictional resistance at the solid-liquid interface, and the like. For example, Patent Document 1 discloses a coating film provided with metal oxide composite particles provided with a resin layer containing a polyfluoroalkyl methacrylate resin on the surface.
特開2014-80465号公報JP, 2014-80465, A
 しかしながら、特許文献1の技術のような従来技術では水又はほとんどの油に対して高い撥水性及び撥油性が得られるものの、例えばオレイン酸等の脂肪酸に対しては満足できる撥油性(疎油性)を得ることができず、その点においてさらなる改良の余地がある。 However, although conventional techniques such as the technique of Patent Document 1 can provide high water repellency and oil repellency to water or most oils, oil repellency (oleophobicity) is satisfactory for fatty acids such as oleic acid, for example. There is room for further improvement in that respect.
 よって、本発明は、従来よりも高い撥水性及び撥油性を発揮できる微粒子を提供することを目的とする。 Therefore, an object of the present invention is to provide fine particles capable of exhibiting higher water repellency and oil repellency than conventional ones.
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の粒子構造を採用することにより上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the problems of the prior art, the present inventor has found that the above object can be achieved by adopting a specific particle structure, and has completed the present invention.
 すなわち、本発明は、下記のフッ素含有複合粒子に係る。
1. シリカ系微粒子の表面が1)フッ素含有化合物及び2)それがシリカ系微粒子のケイ素とシロキサン結合してなるフッ素含有基の少なくとも1種で被覆されている複合粒子であって、
 前記フッ素含有化合物が、パーフルオロポリエーテルからなる主鎖の少なくとも一方の末端側に[-Si(OR)](但し、3つのRは、互いに同一又は異なって、水素又は炭素数1~10のアルキル基を示す。)で示される官能基を含む化合物であり、前記シリカ系微粒子の単位表面積当たりのフッ素被覆量が0.9mg/m~1.0g/mであることを特徴とするフッ素含有複合粒子。
2. 前記フッ素含有化合物の数平均分子量が500~2500である、前記項1記載のフッ素含有複合粒子。
3. 平均一次粒子径が3~50μmである、前記項1又は2のいずれか記載のフッ素含有複合粒子。
4. 前記ポリマーの一方の端部側の官能基と前記シリカ粒子とが結合している側とは他端の官能基は、別のパーフルオロポリエーテルを主鎖とするポリマーの[-Si(OR)](但し、3つのRは、互いに同一又は異なって、水素又は炭素数1~10のアルキル基を示す。)で示される官能基と結合している、前記項1~3いずれか記載のフッ素含有複合粒子。
5. 前記フッ素含有化合物が(RO)Si-(CH-NHC(=O)-CF-O-(C2n-C(=O)NH-(CH-Si(OR)(但し、Rは炭素数1~4のアルキル基、nは1~7の整数、mは7以上の整数、kは1~5の整数をそれぞれ示す。)で示される化合物を含む、前記項1~4のいずれか記載のフッ素含有複合粒子。
That is, the present invention relates to a fluorine-containing composite particles below.
1. A composite particle in which the surface of a silica-based fine particle is coated with at least one of 1) a fluorine-containing compound and 2) a fluorine-containing group formed by siloxane bond with silicon of the silica-based fine particle,
The fluorine-containing compound is at least one distally [-Si (OR) 3] in the main chain of perfluoropolyether (provided that three R are the same or different from each other, 1 hydrogen or carbon atoms 10 And the fluorine-containing amount per unit surface area of the silica-based fine particles is 0.9 mg / m 2 to 1.0 g / m 2. Fluorine-containing composite particles.
2. Wherein the fluorine-containing compound has a number average molecular weight of 500-2500, the fluorine-containing composite particles of the claim 1, wherein.
3. The average primary particle diameter of 3 ~ 50 [mu] m, the fluorine-containing composite particles according to any one of the claim 1 or 2.
4. The functional group at one end of the polymer and the functional group at the other end from the side to which the silica particle is bonded are [--Si (OR) of the polymer having another perfluoropolyether as the main chain 3] (provided that the three R are the same or different from each other, represent hydrogen or an alkyl group having 1 to 10 carbon atoms.) is bonded to the functional group represented by, according to any one of the items 1 to 3 Fluorine-containing composite particles.
5. The fluorine-containing compound (RO) 3 Si- (CH 2 ) k -NHC (= O) -CF 2 -O- (C n F 2n) m -C (= O) NH- (CH 2) k -Si (oR) 3 (where, R represents an alkyl group having 1 to 4 carbon atoms, n represents 1-7 integer, m is an integer of seven or more, k is an integer of 1 to 5 respectively.) the compound represented by the comprising fluorine-containing composite particles according to any one of the claim 1-4.
 本発明によれば、従来よりも高い撥水性及び撥油性を発揮できる微粒子を提供することができる。特に、本発明のフッ素含有複合粒子は、脂肪酸に対しても高い撥油性を発揮することができる。特に、パルミチン酸,ステアリン酸,オレイン酸,リノール酸,リノレン酸等の高級脂肪酸に対しても高い撥油性(防汚性)を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the microparticles | fine-particles which can exhibit water repellency and oil repellency higher than before can be provided. In particular, the fluorine-containing composite particles of the present invention can exhibit high oil repellency even to fatty acids. In particular, high oil repellency (antifouling) can be obtained even with higher fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid.
 このため、本発明のフッ素含有複合粒子は、付着防止効果(撥水性・撥油性)が要求される製品、部材、部品等に好適に適用することができる。 For this reason, the fluorine-containing composite particles of the present invention can be suitably applied to products, members, parts and the like for which an adhesion preventing effect (water and oil repellency) is required.
図1(a)は、本発明のフッ素含有複合粒子からなる塗膜を基材に積層してなる積層体の模式図である。図1(b)は、本発明のフッ素含有複合粒子の構造の模式図を示す。FIG. 1 (a) is a schematic view of a laminate formed by laminating a coating film comprising the fluorine-containing composite particles of the present invention on a substrate. FIG. 1 (b) shows a schematic view of the structure of the fluorine-containing composite particle of the present invention. 図2は、試験例において滑落角を測定するために用いた装置の概略図である。図2(a)は、ガラス製板をジャッキアップする前の状態を示す。図2(b)は、ガラス製板をジャッキアップした状態を示す。FIG. 2 is a schematic view of an apparatus used to measure a sliding angle in a test example. Fig.2 (a) shows the state before jacking up a glass board. FIG.2 (b) shows the state which jacked up the glass board.
 1.フッ素含有複合粒子 
 本発明のフッ素含有複合粒子(本発明粒子)は、シリカ系微粒子の表面が1)フッ素含有化合物及び2)それがシリカ系微粒子のケイ素とシロキサン結合してなるフッ素含有基の少なくとも1種で被覆されている複合粒子であって、
(1)前記フッ素含有化合物が、パーフルオロポリエーテルからなる主鎖の少なくとも一方の末端側に[-Si(OR)](但し、3つのRは、互いに同一又は異なって、水素又は炭素数1~10のアルキル基を示す。)で示される官能基(以下「官能基A」ともいう。)を含む化合物であり、
(2)前記シリカ系微粒子の単位表面積当たりのフッ素含有量が0.8mg/m~1.0g/mである、
ことを特徴とする
1. Fluorine-containing composite particles
Fluorine-containing composite particles of the present invention (the invention particles), the surface of the silica-based fine particles 1) fluorine-containing compound and 2) it is coated with at least one silicon and siloxane bonds to become a fluorine-containing groups of the silica-based particles The composite particles being
(1) the fluorine-containing compound, at least one end side to [-Si (OR) 3] in the main chain of perfluoropolyether (provided that three R are the same or different from each other, hydrogen or carbon atoms represents 1 to 10 alkyl group.) also referred to as functional group (hereinafter "functional group a" represented by.) is a compound containing,
(2) Fluorine content per unit surface area of the silica fine particles are 0.8mg / m 2 ~ 1.0g / m 2,
It is characterized by
 本発明粒子の模式図を図1(b)に示す。本発明粒子26は、シリカ系微粒子27をコア粒子として、その表面の一部又は全部がフッ素含有化合物(又はフッ素含有基)28で被覆された構造を有している。すなわち、フッ素含有化合物(又はフッ素含有基)28を含む被覆層がコア粒子表面に形成されている。フッ素含有化合物としては、パーフルオロポリエーテルを主鎖とするポリマー(特に直鎖状ポリマー)を好適に使用することができる。本発明では、フッ素含有化合物28が反応することなく(すなわち、官能基Aを保持したまま)、シリカ系微粒子表面上に存在していても良いが、特に官能基Aがシリカ系微粒子の表面にあるシリカ又他の官能基(特にOH基等の親水基)と化学的な結合(特にシロキサン結合)を形成した結果として、フッ素含有基(フッ素含有有機基)として存在していることが好ましい。これにより、フッ素含有化合物がフッ素含有基としてよりいっそう強固にシリカ系微粒子表面に固定することが可能となる。 A schematic view of the particles of the present invention is shown in FIG. 1 (b). The particles 26 of the present invention have a structure in which a part or the whole of the surface is coated with a fluorine-containing compound (or a fluorine-containing group) 28 using the silica-based fine particles 27 as core particles. That is, the coating layer containing the fluorine-containing compound (or the fluorine-containing group) 28 is formed on the surface of the core particle. As the fluorine-containing compound, polymers having perfluoropolyether as a main chain (in particular, linear polymers) can be suitably used. In the present invention, the fluorine-containing compound 28 may be present on the surface of the silica-based fine particle without reaction (that is, while maintaining the functional group A), but in particular, the functional group A is present on the surface of the silica-based fine particle As a result of forming a chemical bond (in particular, a siloxane bond) with a certain silica or another functional group (in particular, a hydrophilic group such as an OH group), it is preferable to exist as a fluorine-containing group (a fluorine-containing organic group). As a result, the fluorine-containing compound can be more firmly fixed to the surface of the silica-based fine particle as a fluorine-containing group.
 シリカ系微粒子
 シリカ系微粒子は、シリカ(SiO)を含有するものであれば良く、シリカ単独からなる粒子のほか、シリカと他の成分とを含む粒子であっても良い。本発明では、シリカ系微粒子は、シリカを50質量%以上含む微粒子が好ましく、特にシリカを99質量%以上含む微粒子であることが好ましい。
Silica-Based Fine Particles The silica-based fine particles may be any particles containing silica (SiO 2 ), and may be particles containing silica and other components in addition to particles consisting of silica alone. In the present invention, the silica based particles, silica is preferably fine particles containing more than 50 wt%, preferably microparticles particularly containing silica 99% by mass or more.
 シリカ系微粒子が他の成分を含む場合、当該他の成分としては、不可避不純物のほか、例えば鉄(Fe)、チタン(Ti)、アルミニウム(Al)、カルシウム(Ca)、ジルコニウム(Zr)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)等の元素又はその化合物が挙げられる。 When the silica-based fine particles contain other components, the other components include, in addition to unavoidable impurities, for example, iron (Fe), titanium (Ti), aluminum (Al), calcium (Ca), zirconium (Zr), sodium Elements such as (Na), potassium (K), magnesium (Mg) and the like or compounds thereof can be mentioned.
 さらに、シリカ系微粒子は、シリカ粒子を表面処理することにより得られたものであっても良いので、その表面処理によって付与された化合物(又は官能基)が含まれていても良い。従って、本発明では、シリカ系微粒子として、疎水性シリカ系微粒子、親水性シリカ系微粒子又はその混合物を用いることができる。 Furthermore, since the silica-based fine particles may be obtained by surface treatment of the silica particles, the compound (or functional group) provided by the surface treatment may be included. Therefore, in the present invention, hydrophobic silica-based particles, hydrophilic silica-based particles or a mixture thereof can be used as the silica-based particles.
 本発明では、シリカ系微粒子として、その表面にOH基を有する親水性シリカ系微粒子を好適に用いることができる。シリカ系微粒子の表面にOH基を備えることにより、官能基Aがシリカ系微粒子表面のOH基と脱水縮合反応によりシロキサン結合[-Si-O-Si](但し、Siはシリカ系微粒子に含まれるSi)を形成し、シリカ系微粒子表面にフッ素含有化合物を強固に固定させることができる。 In the present invention, as the silica-based fine particles, it is possible to use hydrophilic silica particles having an OH group on the surface thereof suitably. By providing the OH groups on the surface of the silica-based fine particles, a siloxane bonding functional group A is a dehydration condensation reaction with OH groups of the silica-based fine particle surface [-Si-O-Si *] ( where, Si * in the silica-based particles forming a Si) contained, a fluorine-containing compound to the silica-based fine particle surface can be firmly fixed.
 また、疎水性シリカ系微粒子等を用いる場合であっても、疎水性シリカ系微粒子に予め親水性処理を施してシリカ系微粒子表面にOH基等を付与することによって、親水性シリカ系微粒子を用いる場合と同様、フッ素含有化合物をシリカ系微粒子表面に固定することが可能となる。 In addition, even when hydrophobic silica-based particles and the like are used, hydrophilic silica-based particles are used by applying hydrophilic treatment to hydrophobic silica-based particles in advance to impart OH groups and the like to the surface of the silica-based particles. As in the case, it becomes possible to fix the fluorine-containing compound on the surface of the silica-based fine particles.
 シリカ系微粒子の平均一次粒径は、通常3~500nmであり、特に10~300nmであることが望ましい。かかる粒子径の範囲内に設定することによって、より優れた撥水性及び撥油性を得ることができる。 The average primary particle size of the silica-based particles is usually 3 to 500 nm, and preferably 10 to 300 nm. By setting the particle diameter in the above range, more excellent water repellency and oil repellency can be obtained.
 なお、本発明において、粒子の一次粒子平均径の測定は、透過型電子顕微鏡又は走査型電子顕微鏡を用いて実施することができる。より具体的には、平均一次粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡で撮影し、その写真上で200個以上の粒子の直径を測定し、その算術平均値を算出することによって求めることができる。 In the present invention, the measurement of the primary particle average diameter of the particles can be carried out using a transmission electron microscope or a scanning electron microscope. More specifically, the average primary particle size is determined by photographing with a transmission electron microscope or scanning electron microscope, measuring the diameters of 200 or more particles on the photograph, and calculating the arithmetic mean value be able to.
 シリカ系微粒子の比表面積については特に限定されないが、通常は400m/g以下であることが好ましく、特に10~380m/gであることが好ましい。比表面積が400m/gを超えると、後述するフッ素化合物又はフッ素含有基を均一に被覆することが困難になり、歩留まりが低下するおそれがある。なお、比表面積は、Macsorb (マウンテック製)を用いてBET1点法により求めることができる。吸着ガスは、窒素30体積%・ヘリウム70体積%のガスを用い、試料の前処理として100℃で10分間、吸着ガスの流通を行った後、試料が入ったセルを液体窒素で冷却し、吸着完了後室温まで昇温し、脱離した窒素量から試料の表面積を求め、試料の質量で除して比表面積を求めることができる。 No particular limitation is imposed on the specific surface area of the silica-based fine particles, usually preferably not more than 400 meters 2 / g, it is preferable in particular 10 ~ 380m 2 / g. When the specific surface area exceeds 400 m 2 / g, it becomes difficult to uniformly coat a fluorine compound or a fluorine-containing group described later, which may lower the yield. The specific surface area can be determined by BET1 point method using a Macsorb (manufactured MOUNTECH). Adsorption gas, using nitrogen 30 vol% helium 70% by volume of the gas, for 10 minutes at 100 ° C. as a pretreatment of the sample, after the flow of adsorbed gas, the cell containing the sample was cooled with liquid nitrogen, increased to room temperature after the adsorption completion raised, determined the surface area of the sample from the desorbed amount of nitrogen can be obtained a specific surface area by dividing the mass of the sample.
 シリカ系微粒子の形状は、粒子状であれば特に限定されず、例えば球状、棒状、針状、板状、不定形状、鱗片状、紡錘状等の任意の形状を採用することができる。特に、シリカ系微粒子は、水又は油との接触面積を最小化するために真球に近い球状(略球状)であることが好ましい。 The shape of the silica-based fine particles is not particularly limited as long as it is in the form of particles, and any shape such as spherical, rod-like, needle-like, plate-like, indeterminate, scaly and spindle-like can be adopted. In particular, the silica-based fine particles are preferably spherical (substantially spherical) close to a true sphere in order to minimize the contact area with water or oil.
 これらのシリカ系微粒子そのものは、公知又は市販のものを使用することもできる。また、公知の製造方法によって合成することも可能である。従って、例えば四塩化シランの高温燃焼により作製されるシリカ系微粒子、ゾルゲル法により作製されるシリカ系微粒子等も好適に用いることができる。市販品としては、例えば製品名「AEROSIL 200」(「AEROSIL」は登録商標。以下同じ)、「AEROSIL 130」、「AEROSIL 300」、「AEROSIL 50」、「AEROSIL 200FAD」、「AEROSIL 380」(以上、日本アエロジル(株)製)のほか、「SO―01」((株)アドマテックス製)等が挙げられる。 As these silica-based fine particles themselves, known or commercially available ones can also be used. Moreover, it is also possible to synthesize | combine by a well-known manufacturing method. Therefore, for example, silica-based particles produced by high-temperature combustion of silane tetrachloride, silica-based particles produced by a sol-gel method, and the like can be suitably used. As a commercial product, for example, product name "AEROSIL 200" ("AEROSIL" is a registered trademark. The same applies to the following), "AEROSIL 130", "AEROSIL 300", "AEROSIL 50", "AEROSIL 200 FAD", "AEROSIL 380" (or more) In addition to Nippon Aerosil Co., Ltd., “SO-01” (manufactured by Admatex Co., Ltd.) and the like can be mentioned.
 フッ素含有化合物
 シリカ系微粒子の表面に存在するフッ素含有化合物は、パーフルオロポリエーテルからなる主鎖の少なくとも一方の末端側に[-Si(OR)](但し、Rは、水素又は炭素数1~10のアルキル基を示す。)で示される官能基を含む化合物である。
Fluorine-containing compounds present on the surface of the fluorine-containing compound silica-based fine particles, at least one of the distal [-Si (OR) 3] in the main chain of perfluoropolyether (wherein, R represents hydrogen or a carbon number 1 an alkyl group of 1-10.) is a compound containing a functional group represented by.
 本発明では、上記のようにパーフルオロポリエーテルを主鎖とするポリマーを用いることができる。このようなパーフルオロポリエーテルを主鎖とするポリマーを用いることで、環境汚染が懸念されるC8フルオロテロマー(C8テロマー)様の構造を含むことなく、C8相当以上の鎖長を確保できるため、高い撥水性及び撥油性を得ることができる。また、前記主鎖中のエーテル結合の存在によってシリカ系微粒子表面へ強固に被覆することが可能となる。 In the present invention, as described above, a polymer having a perfluoropolyether as a main chain can be used. By using a polymer having such a perfluoropolyether as the main chain, it is possible to secure a chain length equivalent to C8 or more without including a C8 fluorotelomer (C8 telomer) like structure that may cause environmental pollution. High water repellency and oil repellency can be obtained. In addition, the presence of an ether bond in the main chain makes it possible to firmly coat the surface of the silica-based fine particle.
 本発明で用いられるフッ素含有化合物として、より具体的には下記一般式(1):
 X-CF-O-(C2nO)m-CF-X     ・・・(1)
で示される化合物を好適に用いることができる。
As the fluorine-containing compound used in the present invention, more specifically the following general formula (1):
X-CF 2 -O- (C n F 2n O) m-CF 2 -X ··· (1)
It can be suitably used compound represented by in.
 上記一般式におけるXは、アルコキシシラン官能基[-Si(OR)]を含む末端部分であり、官能基Aを有するパーフルオロポリエーテルをパーフルオロポリエーテルシランと呼称することもできる。 In the above general formula, X is a terminal portion containing an alkoxysilane functional group [—Si (OR) 3 ], and a perfluoropolyether having a functional group A can also be referred to as a perfluoropolyether silane.
 また、上記一般式におけるn及びmは、それぞれが独立した自然数であり、その値は特に限定されない。特に、nは、1以上7以下であることが好ましい。mは、7以上100以下であることが好ましい。このような範囲内に設定することにより、シリカ系微粒子の表面に上記フッ素化合物が被覆された微粒子が、高い撥水性及び撥油性を発現することができる。 Further, n and m in the above general formula are independent natural numbers, and the values thereof are not particularly limited. In particular, n is preferably 1 or more and 7 or less. m is preferably 7 or more and 100 or less. By setting it in such a range, the fine particles in which the surface of the silica-based fine particles is coated with the above-mentioned fluorine compound can exhibit high water repellency and oil repellency.
 フッ素含有化合物における官能基Aは、上記のように[-Si(OR)](但し、3つのRは、互いに同一又は異なって、水素又は炭素数1~10のアルキル基を示す。)で表される官能基である。 The functional group A in the fluorine-containing compound, as described above [-Si (OR) 3] (provided that the three R are the same or different from each other, represent hydrogen or an alkyl group having 1 to 10 carbon atoms.) In It is a functional group represented.
 特に、Rがアルキル基である場合は、炭素数1~10のアルキル基(特に直鎖状アルキル基)であることが好ましく、特に炭素数1~4のアルキル基であることがより好ましい。このようなアルキル基としては、例えばメチル基、エチル基、プロピル基又はブチル基が挙げられる。 In particular, when R is an alkyl group, it is preferably an alkyl group having 1 to 10 carbon atoms (in particular, a linear alkyl group), and more preferably an alkyl group having 1 to 4 carbon atoms. As such an alkyl group, a methyl group, an ethyl group, a propyl group or a butyl group is mentioned, for example.
 また、官能基Aの3つのRの全てが異なっていても良いし、一部又は全部が同一であっても良い。官能基中の3つのOR基の少なくとも1つがシリカ系微粒子のケイ素と結合していると、フッ素含有基となってシリカ系微粒子と強固に結びつくことができる。さらに好ましくは、上記官能基の2つ又は3つ全てのOR基がシリカ系微粒子に結合していると、さらに強く固定化できる。 In addition, all three Rs of the functional group A may be different, or some or all of them may be the same. When at least one of the three OR groups in the functional group is bonded to the silicon of the silica-based particles, it can be a fluorine-containing group and can be strongly linked to the silica-based particles. More preferably, if two or all of the OR groups of the above functional groups are bonded to the silica-based fine particles, the immobilization can be performed more strongly.
 特に、上記一般式におけるXは、官能基Aを含んでいれば良い。従って、すべてのXが官能基Aであっても良いし、本発明の効果を妨げない範囲内でXの一部が他の官能基であっても良い。 In particular, X in the above general formula may contain the functional group A. Therefore, all X may be a functional group A, or a part of X may be another functional group as long as the effects of the present invention are not impaired.
 さらに、官能基Aは、パーフルオロポリエーテルからなる主鎖[-CF-O-(CFO)-(CFCFO)-CF-]に直接結合していても良いし、リンカー部を介して結合していても良い。リンカー部は、特に上述のパーフルオロポリエーテルの一般式におけるCFと官能基Aとを連結するものである。このようなリンカー部としては、例えばオキシアルキレン基[-O-R-O-](Rはアルキレン基を示す。)、エーテル結合[-O-]、エステル結合[-C(=O)O-]、アミド結合[-CONH-]、ウレタン結合[-COHN-O-]等が挙げられる。 Furthermore, the functional group A may be directly bonded to the main chain [—CF 2 —O— (CF 2 O) p — (CF 2 CF 2 O) q —CF 2 —] consisting of perfluoropolyether and, it may be bonded via a linker unit. Linker unit is for connecting the CF 2 and a functional group A particular in the general formula of the perfluoropolyether described above. As such a linker moiety, for example, oxyalkylene group [-O-R 1 -O-] (R 1 represents an alkylene group), ether bond [-O-], ester bond [-C (= O) O-], an amide bond [-CONH-], include a urethane bond [-COHN-O-] and the like.
 本発明では、特に合成が容易であること等の理由から、リンカー部はアミド結合(-CONH-)を含むことが好ましい。さらには、リンカー部として-C(=O)NH-(CH-を含むことがより好ましい。すなわち、上述のパーフルオロポリエーテルの一般式におけるXは、例えば-C(=O)NH-(CH-Si(OR)であることが好ましい。 In the present invention, in particular for reasons such that the synthesis is easy, the linker portion is preferably comprising an amide bond (-CONH-). Further, -C a linker moiety (= O) NH- (CH 2 ) k - and more preferably contains. That, X in the general formula of the perfluoropolyether described above, for example, -C (= O) NH- (CH 2) k -Si (OR) is preferably 3.
 従って、好適なパーフルオロポリエーテルを主鎖とするポリマーとしては、下記一般式(2):
(RO)Si-(CH-NHC(=O)-CF-O-(CFO)-(CFCFO)-CF-C(=O)NH-(CH-Si(OR)・・・(2)
で示されるフッ素含有化合物が挙げられる。
Accordingly, a suitable perfluoropolyether as the polymer main chain, the following general formula (2):
(RO) 3 Si- (CH 2 ) k -NHC (= O) -CF 2 -O- (CF 2 O) p - (CF 2 CF 2 O) q -CF 2 -C (= O) NH- ( CH 2) k -Si (OR) 3 ··· (2)
In the fluorine-containing compounds represented.
 ここで、k、p及びqはそれぞれ独立した自然数である。kの値は1~6であることが好ましく、特に2~3であることがより好ましい。kの値が6を超えると、フッ素含有化合物をシリカ系微粒子表面へ被覆しにくくなる。pとqの和は、一般式X-CF-O-(C2nO)-CF-Xにおけるmに相当する。また、(CFO)及び(CFCFO)は、前記一般式においてそれぞれn=1及びn=2としたものである。 Here, k, p and q are natural numbers that independently. Preferably the value of k is 1-6, or more preferably 2-3. If the value of k exceeds 6, it is difficult to coat the fluorine-containing compound to the silica fine particle surface. the sum of p and q correspond to m in Formula X-CF 2 -O- (C n F 2n O) m -CF 2 -X. Further, (CF 2 O) and (CF 2 CF 2 O) is obtained by the n = 1 and n = 2 respectively in the general formula.
 フッ素含有化合物であるパーフルオロポリエーテルを主鎖とするポリマーの分子量は、特に限定されないが、ゲル浸透クロマトグラフィー法で測定した数平均分子量が500~5000が好ましく、特に1000~3000がより好ましく、その中でも1200~2500が最も好ましい。前記数平均分子量が5000を超えると、当該ポリマーを水溶性有機溶剤に溶解させることが困難になるおそれがある。当該ポリマーが水溶性の有機溶剤に溶解できないと、例えば官能基AのRがアルキル基の場合にはOR基をOH基に置換する加水分解反応が進みづらくなる。OR基をOH基に置換できないと、後述するように官能基Aとシリカ系微粒子表面のOH基とのシロキサン結合の形成が進まず、シリカ系微粒子表面に当該ポリマーを強固に結合させて被覆しにくくなる。また、いずれのOR基もOH基に置換できないと、複数の当該ポリマーを官能基Aどうしで脱水縮合反応が起こりにくくなる結果、ポリマーが長鎖化しにくくなるために撥水性及び撥油性が低下するおそれがある。 The molecular weight of the polymer having a perfluoropolyether which is a fluorine-containing compound as a main chain is not particularly limited, but a number average molecular weight measured by gel permeation chromatography is preferably 500 to 5000, and particularly preferably 1000 to 3000, Among these, 1200 to 2500 are most preferable. When the number average molecular weight exceeds 5,000, it may be difficult to dissolve the polymer in a water-soluble organic solvent. If the polymer can not be dissolved in a water-soluble organic solvent, for example, when R of the functional group A is an alkyl group, the hydrolysis reaction for substituting the OR group with an OH group becomes difficult to proceed. If the OR group can not be substituted with an OH group, formation of a siloxane bond between the functional group A and the OH group on the surface of the silica-based fine particle does not proceed as described later, and the polymer is firmly bonded to the surface of the silica-based particle and coated. It becomes difficult. In addition, if any of the OR groups can not be substituted with OH groups, dehydration condensation reaction between the functional groups A of the multiple polymers does not easily occur. As a result, the polymers are less likely to become long-chained and water repellency and oil repellency decrease. There is a fear.
 被覆層(フッ素含有化合物)の付与量(被覆量)は、限定的ではないが、シリカ系微粒子の単位表面積当たりのフッ素含有量で0.8mg/m以上1.0g/m以下とし、好ましくは0.9mg/m以上1.5mg/m以下とする。0.9mg/m未満では、撥水性及び撥油性が不十分となることがある。また、1.0g/mを超えると、処理コストが高くなる。 The application amount (coating amount) of the coating layer (fluorine-containing compound) is not limited, but is 0.8 mg / m 2 or more and 1.0 g / m 2 or less as the fluorine content per unit surface area of the silica-based fine particles, preferably a 0.9 mg / m 2 or more 1.5 mg / m 2 or less. Is less than 0.9 mg / m 2, sometimes water repellency and oil repellency are insufficient. If it exceeds 1.0 g / m 2, the processing cost becomes high.
 上記フッ素含有量は、本発明粒子の単位質量当たりのフッ素含有量F(g/g)をシリカ系微粒子のBET比表面積S(m/g)で割った値F/S(g/m)である。ここで、上記フッ素含有量Fは、石英管燃焼分解-イオンクロマトグラフィー法により測定した値である。より具体的には、試料を900~10000℃に加熱した石英燃焼管内で燃焼させ、生成するガスを水蒸気蒸留で回収し、その回収液をイオンクロマトグラフにてフッ素イオンとして検出し、定量することにより、総フッ素含有量を求め、これを試料の質量で割ることにより算出することができる。 The fluorine content, the fluorine content per unit mass of the present invention particles F (g / g) BET specific surface area of the silica-based fine particles S (m 2 / g) divided by the value F / S (g / m 2 ). Here, the fluorine content F are quartz tube combustion decomposition - is a value measured by an ion chromatographic method. More specifically, burned in a quartz combustion tube the sample was heated to 900 ~ 10000 ° C., the resulting gas was collected by steam distillation, it detects the recovering solution as fluoride ion by ion chromatography, quantified that Accordingly, the total fluorine content determined, which can be calculated by dividing the mass of the sample.
 2.フッ素含有複合粒子の製造方法 
 フッ素含有複合粒子の製造方法は特に限定されない。例えば、シリカ系微粒子に対して前記フッ素含有化合物を用い、公知のコーティング方法、造粒方法等に従ってフッ素含有化合物を含む被覆層をシリカ系微粒子表面に形成すれば良い。特に、シリカ系微粒子又はその分散液とフッ素含有化合物の溶液とを混合する工程(被覆工程)を含む製造方法によって本発明粒子を好適に調製することができる。
2. Method for producing fluorine-containing composite particles
Method for producing a fluorine-containing composite particles is not particularly limited. For example, using the silica-based fine particles of the fluorine-containing compound, a method known coating, the coating layer comprising a fluorine-containing compound may be formed on the silica-based fine particle surface according to granulation methods and the like. In particular, it is possible to suitably prepare the present invention particles by a manufacturing method comprising the step (coating step) of mixing a solution of the silica-based particles or the dispersion liquid and a fluorine-containing compound thereof.
 シリカ系微粒子は、そのままフッ素含有化合物の溶液と混合しても良いが、より高い分散性が得られるという点で分散液の形態で前記溶液と混合することが好ましい。すなわち、シリカ系微粒子が溶媒に分散した分散液を好適に用いることができる。 The silica-based fine particles may be mixed with the solution of the fluorine-containing compound as it is, but it is preferable to mix with the solution in the form of a dispersion in that higher dispersibility is obtained. That is, a dispersion in which silica-based particles are dispersed in a solvent can be suitably used.
 この場合の溶媒としては、シリカ系微粒子が溶解ないしは変質しない限り、いずれの溶媒も使用することができる。例えば、水のほか、トルエン、キシレン等の芳香族系炭化水素、メチルシクロヘキサン、シクロヘキサン等の脂環式炭化水素系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、アセトン等のケトン系溶剤、イソプロピルアルコール、変性エタノール等のアルコール系溶剤等の有機溶剤を使用することができる。特に、水、水溶性有機溶剤又はそれらの混合溶媒のいずれかを好適に用いることができる。水溶性有機溶剤としては、限定的ではなく、例えばメタノール、エタノール、2-プロパノール、プロピレングリコールモノメチルエーテル等が挙げられる。 As the solvent in this case, any solvent can be used as long as the silica-based fine particles do not dissolve or deteriorate. For example, other than water, aromatic hydrocarbons such as toluene and xylene, alicyclic hydrocarbon solvents such as methylcyclohexane and cyclohexane, ester solvents such as ethyl acetate and butyl acetate, ketone solvents such as methyl ethyl ketone and acetone Organic solvents such as alcohol solvents such as isopropyl alcohol and denatured ethanol can be used. In particular, any of water, a water-soluble organic solvent or a mixed solvent thereof can be suitably used. The water-soluble organic solvent is not limited, and examples thereof include methanol, ethanol, 2-propanol, propylene glycol monomethyl ether and the like.
 分散液中におけるシリカ系微粒子の含有量は、分散液中におけるシリカ系微粒子の分散性等の見地より通常は1~50重量%程度の範囲内で設定すれば良いが、これに制限されない。 The content of the silica-based fine particles in the dispersion may be usually set in the range of about 1 to 50% by weight from the viewpoint of the dispersibility of the silica-based fine particles in the dispersion, but is not limited thereto.
 また、分散液には、必要に応じて、pH調整剤を配合することもできる。pH調整剤としては、酢酸、塩酸等の酸、水酸化ナトリウム、アンモニア等の塩基を用いることができる。 Moreover, a pH adjuster can also be mix | blended with a dispersion liquid as needed. As a pH adjuster, acids such as acetic acid and hydrochloric acid, and bases such as sodium hydroxide and ammonia can be used.
 フッ素含有化合物の溶液は、フッ素含有化合物を溶媒に溶解させることにより調製することができる。 The solution of the fluorine-containing compound can be prepared by dissolving the fluorine-containing compound in a solvent.
 フッ素含有化合物としては、前記1.で示した化合物を好適に用いることができる。この場合、原料として用いるフッ素含有化合物として、官能基Aの3つのRのうちの少なくとも1つが水素(H)であるフッ素含有化合物を用いることがより好ましい。パーフルオロポリエーテルを主鎖とするポリマーの少なくとも一方の末端側の官能基にOH基が含まれることで、シリカ系微粒子表面のOH基と脱水縮合反応によりシロキサン結合を形成し、シリカ系微粒子表面に当該ポリマーを強固に結合させて被覆することが容易となる。さらに、当該ポリマーの末端部にOH基を有することで、水溶性の有機溶剤を用いずともシリカ系微粒子表面のOH基と脱水縮合反応によりシロキサン結合(すなわち、フッ素含有基)を形成することができる。 As the fluorine-containing compound, the above-mentioned 1. The compound shown by can be used suitably. In this case, it is more preferable to use a fluorine-containing compound in which at least one of the three Rs of the functional group A is hydrogen (H) as the fluorine-containing compound used as a raw material. The OH group is contained in the functional group on the terminal side of at least one end of the polymer having a perfluoropolyether main chain, thereby forming a siloxane bond with the OH group on the surface of the silica-based fine particle, thereby forming a silica bond It is easy to firmly bond and coat the polymer. Furthermore, by having an OH group at the end of the polymer, a siloxane bond (that is, a fluorine-containing group) can be formed by dehydration condensation reaction with the OH group on the surface of the silica-based fine particle without using a water-soluble organic solvent. it can.
 また、原料として用いるフッ素含有化合物の官能基AのRの全てがアルキル基の場合であっても、被覆工程で水溶性有機溶剤を用いて、水を存在させることによりOR基が加水分解反応でOH基に変換され、シリカ系微粒子表面のOH基と脱水縮合反応によりシロキサン結合を形成することができる。その結果、フッ素含有化合物をフッ素含有基としてシリカ系微粒子表面に強く固定することができる。 In addition, even if all of the functional groups A of the fluorine-containing compound used as the raw materials are alkyl groups, the water-soluble organic solvent is used in the coating step to cause water to be present to cause the OR group to undergo a hydrolysis reaction. It is converted into an OH group, and a siloxane bond can be formed by a dehydration condensation reaction with the OH group on the surface of the silica-based fine particle. As a result, the fluorine-containing compound can be strongly fixed to the surface of the silica-based fine particle as a fluorine-containing group.
 上記ポリマーは、片方の末端側に官能基Aを有しても良いが、両末端側に官能基Aを有していることがより好ましい。上記ポリマーの両末端側に官能基Aを有していることで、一部のポリマーにおいては両末端がシリカ系微粒子に結合してより強固な状態となる。また一部のポリマーにおいては、一方の末端がシリカ系微粒子と結合し、他端が他のポリマーの末端と結合して長鎖化する。そのため、シリカ系微粒子表面に占めるパーフルオロポリエーテルの面積が増加する結果、より高い撥水性及び撥油性を発現することが可能となる。 The polymer may have a functional group A on one end side, but more preferably has a functional group A on both end sides. By having the functional group A on both terminal sides of the polymer, in some polymers, both terminals are bonded to the silica-based fine particles to be in a more rigid state. In some polymers, one end is bonded to the silica-based fine particle, and the other end is bonded to the other polymer end to form a long chain. Therefore, as a result of the area of the perfluoropolyether occupying on the surface of the silica-based fine particles, it becomes possible to express higher water repellency and oil repellency.
 上記溶液における溶媒としては、特に水、水溶性有機溶剤又はこれらの混合溶媒を好適に用いることができる。水溶性有機溶剤としては、例えばメタノール、エタノール、2-プロパノール、プロピレングリコールモノメチルエーテル等のように水と混和する溶剤であれば特に制限されない。このように水系で反応させることにより、上記のようにより確実にシロキサン結合を形成させることが可能となる。 As the solvent in the solution, particularly, water, a water-soluble organic solvent or a mixed solvent thereof can be suitably used. The water-soluble organic solvent is not particularly limited as long as it is a solvent miscible with water such as methanol, ethanol, 2-propanol, propylene glycol monomethyl ether and the like. As described above, the reaction in an aqueous system makes it possible to form a siloxane bond more reliably as described above.
  フッ素含有化合物の溶液中におけるフッ素含有化合物の含有量は特に制限されないが、一般的には10~80重量%、特に15~70重量%、さらには20~60重量%の範囲内に設定することが好ましい。 The content of the fluorine-containing compound in the solution of the fluorine-containing compound is not particularly limited, but generally 10 to 80% by weight, in particular 15 to 70% by weight, and further preferably 20 to 60% by weight. Is preferred.
 シリカ系微粒子又はその分散液とフッ素含有化合物の溶液とを混合する場合、シリカ系微粒子と前記溶液との比率は、所望のフッ素含有化合物の被覆量に応じて適宜設定すれば良く、特に前記で示した被覆量となるように調整することが好ましい。 When mixing a silica-based fine particle or a dispersion thereof with a solution of a fluorine-containing compound, the ratio of the silica-based fine particle to the solution may be appropriately set according to the coating amount of the desired fluorine-containing compound. It is preferable to adjust so that it may become the shown coating amount.
 また、本発明では、特に両者を混合した後、その混合液を攪拌する工程をさらに含むことが好ましい。混合液を攪拌することにより、官能基Aの一部又は全部がシリカ系微粒子表面のシリカ又はそのシリカ表面の官能基と十分に反応してシロキサン結合を確実に形成させることが可能となる。 Moreover, in the present invention, it is preferable to further include a step of stirring the mixed solution after particularly mixing both. By stirring the mixed solution, it becomes possible to fully react part or all of the functional group A with the silica on the surface of the silica-based fine particle or the functional group on the silica surface to reliably form a siloxane bond.
 攪拌条件は、溶液中の多くを占める溶媒の沸点以下であれば、特に限定的ではない。例えば、攪拌温度は、通常30~80℃程度とし、好ましくは40~70℃とすれば良い。また、攪拌時間は、通常は1~96時間程度とし、好ましくは6~84時間とすれば良い。攪拌は、市販の攪拌装置で攪拌すれば良い。 The stirring conditions are not particularly limited as long as they are not higher than the boiling point of the solvent that occupies the majority in the solution. For example, the stirring temperature is usually about 30 to 80 ° C., preferably 40 to 70 ° C. The stirring time is usually about 1 to 96 hours, preferably 6 to 84 hours. Stirring may be performed using a commercially available stirring device.
 攪拌が完了した後は、スラリーの形態で本発明粒子を得ることができる。このため、本発明粒子を所定の用途に用いる場合は、そのままスラリーの形態で使用することができる。また、前記スラリーに対して必要に応じて固液分離、洗浄等の処理を施した後、実質的に乾燥した粉末の形態で使用することもできる。前記粉末をさらに溶媒に分散させて得られた分散液の形態で使用することもできる。その他にも、前記スラリーを固液分離して得られたケーキを別の溶媒に分散させることによって得られた分散液の形態で使用することも可能である。  After the stirring is completed, the particles of the present invention can be obtained in the form of a slurry. For this reason, when using this invention particle | grains for a predetermined use, it can be used in the form of a slurry as it is. In addition, after processing such as solid-liquid separation, washing, etc. is performed to the above-mentioned slurry as needed, it can also be used in the form of a substantially dried powder. The powder can also be used in the form of a dispersion obtained by dispersing it in a solvent. In addition, it is also possible to use in the form of a dispersion obtained by dispersing the slurry obtained by solid-liquid separation of the slurry in a separate solvent.
 3.フッ素含有複合粒子の使用
 本発明粒子は、各種の物品に適用することにより、所望の撥水性及び/又は撥油性を付与することができる。特に、本発明粒子を含む塗膜を物品表面に形成することにより、撥水性及び/又は撥油性を付与することが可能である。
3. Using the present invention the particles of the fluorine-containing composite particles, by applying to various articles, it is possible to impart desired repellency and / or oil repellency. In particular, by forming a coating film comprising the present invention particles to the article surface, it is possible to impart water repellency and / or oil repellency.
  塗膜を形成する対象(すなわち、撥水性及び撥油性を付与する対象)となる材料は特に限定されない。材質としては、例えば金属、プラスチックス、セラミックス、ゴム、繊維質材料(紙、不織布、織物等)、これらの複合材料等のいずれでも良い。また、製品、半製品又はそれらの原材料のいずれであっても良い。 There are no particular limitations on the material that is the object of forming the coating (that is, the object of imparting water repellency and oil repellency). The material may be, for example, metal, plastics, ceramics, rubber, fibrous materials (paper, non-woven fabric, woven fabric, etc.), composite materials of these materials, etc. Moreover, it may be any of a product, a semi-finished product, or their raw materials.
  前記材料(製品等)として、より具体的には包装材料のほか、日用品(メガネ、雨具、鞄等)、建材(屋根、壁紙、床材、天井材、タイル、窓ガラス等)、食器、調理器具(鍋、ガスコンロの受け皿、油除けパネル、電磁調理器のトッププレート等)、台所用品、スポーツ用品、衣料品(帽子、靴、手袋、コート等)、構造物(建築物の壁、橋、塔等)、輸送機器(車、バイク、電車、船等のボディ外面)、化粧品、医薬品、玩具、鑑識用冶具等に幅広く適用することができる。 More specifically, as the materials (products, etc.), in addition to packaging materials, daily necessities (glasses, rain gear, eyebrows, etc.), building materials (roof, wallpaper, flooring, ceiling materials, tiles, window glass, etc.), dishes, cooking Appliances (pots, saucepans for gas stoves, oil panels, top plates of induction cookers, etc.), kitchenware, sports goods, clothing (hats, shoes, gloves, coats, etc.), structures (building walls, bridges, The present invention can be widely applied to transportation equipment (car, motorcycle, train, ship, etc. body outer surface), cosmetics, medicines, toys, jigs for identification, etc.
  本発明では、特に包装材料が前記材料として好適である。包装材料も、製品(完成品)としての包装体と、その原材料との双方を包含する。製品(完成品)としては、容器の蓋をはじめ、例えば成形容器、包み紙、トレー、チューブ、袋体(パウチ等)等の包装体を挙げることができる。また、包装体の原材料としては、例えば基材及びヒートシール層を含む積層体等を挙げることができる。すなわち、1)本発明粒子を含む撥水・撥油性塗膜、2)ヒートシール層及び3)基材層を順に含む積層体から構成される包装材料を例示することができる。前記積層体は、前記撥水・撥油性塗膜が最表面に配置される限り、他の層がさらに積層されていても良い。 In the present invention, in particular, a packaging material is suitable as the material. The packaging material also includes both a package as a product (finished product) and its raw material. Examples of the product (finished product) include a lid of a container, and a package such as a molded container, a wrapping paper, a tray, a tube, and a bag (a pouch or the like). Moreover, as a raw material of a package body, the laminated body containing a base material and a heat seal layer, etc. can be mentioned, for example. That is, the packaging material comprised from the laminated body which contains in order 1) the water-repellent and oil-repellent coating film which contains this invention particle | grains, 2) heat seal layer, and 3) base material layer can be illustrated. As long as the water repellent and oil repellent coating film is disposed on the outermost surface of the laminate, another layer may be further laminated.
 本発明粒子による塗膜を含む積層体の断面の模式図を図1(a)に示す。図1(a)に示すように、積層体1は基材10の表面に本発明粒子26が積層されている。さらに、本発明粒子26の断面の模式図を図1(b)に示す。図1(b)に示すように、フッ素化合物が被覆されたシリカ系微粒子26はシリカ系微粒子27の表面をフッ素化合物28が被覆している。なお、図1では構造を分かりやすく模式的に図示したものであり、各構成の大きさ、個数等は必ずしも実際の積層体を再現するものではない。 The schematic diagram of the cross section of the laminated body containing the coating film by this invention particle | grains is shown to Fig.1 (a). As shown in FIG. 1A, in the laminate 1, the particles 26 of the present invention are laminated on the surface of a substrate 10. Furthermore, the schematic diagram of the cross section of this invention particle | grains 26 is shown in FIG.1 (b). As shown in FIG. 1B, the fluorine-containing compound 26 coats the surface of the silica-based particles 27 with the silica-based particles 26 coated with the fluorine compound. In FIG. 1, the structure is schematically illustrated in an easily understandable manner, and the size, the number, and the like of each configuration do not necessarily reproduce the actual laminate.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 Examples and comparative examples are shown below, and the features of the present invention are more specifically described. However, the scope of the present invention is not limited to the examples.
 実施例1
 BET値が200m/gの親水性シリカ微粒子3.0g (日本アエロジル社、AEROSIL200、平均一次粒子径=12nm)を、エタノール系溶剤(ゴードー社製GSアルコEP-7)62.6gに分散させた。次いで、これに酢酸0.4g及び純水10.0gを加え、ガラス棒で3分間攪拌し、分散液を調製した。
 これとは別途に、濃度10質量%となるように下記式(3)に示すパーフルオロポリエーテルシラン(p+qの平均は14であり、数平均分子量は2000、kは3、Rはエチル基を示す。)2.4gを用意し、エタノール系溶剤21.6gと混合し、パーフルオロポリエーテルシランエタノール溶液を調製した。
 
(RO)Si-(CH-NHC(=O)-CF-O-(CFO)-(CFCFO)C(=O)NH-(CH-Si(OR)   
・・・(3)
 
 次いで、調製したパーフルオロポリエーテルシランエタノール溶液24.0gを前記分散液に加え、ガラス棒で3分間攪拌した。このようにして得られた混合スラリーを50℃の条件下で3日間攪拌し、フッ素化合物被覆微粒子(フッ素含有複合粒子、単位表面積当たりのフッ素含有量(F/S)=1.1mg/m)を含むコート液を得た。
 その後、得られたコート液を用いて塗膜を形成した。乾燥後のフッ素化合物が被覆されたシリカ系微粒子の目標積層量が1.2g/mとなるように、エタノール系溶剤(ゴードー社製GSアルコEP-7)でコート液を希釈した後、バーコーター#6を用いて市販のスライドガラス(松浪硝子工業製(MICRO SLIDE GLASS S9213))の表面に塗工した。次に、180℃のオーブン中で10秒間加熱乾燥させてエタノールを主成分とする溶媒を蒸発させた。このようにして積層体のサンプルを作製した。
Example 1
Hydrophilic BET value 200 meters 2 / g silica fine particles 3.0 g (Nippon Aerosil Co., AEROSIL200, average primary particle diameter = 12 nm) in ethanol solvent (Godo Co. GS Arco EP-7) was dispersed in 62.6g The This was followed by acetic acid 0.4g and pure water 10.0g was added, and stirred for 3 minutes with a glass rod, to prepare a dispersion.
Separately from this, the average of the perfluoropolyether silane (p + q of the following formula in a concentration of 10 mass% (3) is 14, the number average molecular weight 2000, k is 3, R is an ethyl group shown.) prepared 2.4 g, was mixed with ethanol solvent 21.6 g, was prepared perfluoropolyether silane ethanol solution.

(RO) 3 Si- (CH 2 ) k -NHC (= O) -CF 2 -O- (CF 2 O) p - (CF 2 CF 2 O) q C (= O) NH- (CH 2) k -Si (OR) 3
... (3)

Then added perfluoropolyether silane ethanol 24.0g, prepared the dispersion was stirred for 3 minutes with a glass rod. The mixed slurry thus obtained is stirred at 50 ° C. for 3 days, and the fluorine compound-coated fine particles (fluorine-containing composite particles, fluorine content per unit surface area (F / S) = 1.1 mg / m 2 A coating solution containing
Thereafter, the resulting coating solution to form a coating film with. After diluting the coating solution with an ethanol-based solvent (GS Alco EP-7 manufactured by Godo Co., Ltd.) so that the target lamination amount of the silica-based fine particles coated with the fluorine compound after drying is 1.2 g / m 2 , the bar The surface of a commercially available slide glass (MICRO SLIDE GLASS S9213) was coated using a coater # 6. Next, it was heated and dried in an oven at 180 ° C. for 10 seconds to evaporate the ethanol-based solvent. There was thus prepared a sample of the laminate.
 実施例2
 BET値が16m/gの親水性シリカ微粒子3.0g (アドマテック社、SO-C1、平均一次粒子径=250nm)を、エタノール系溶剤(ゴードー社製GSアルコEP-7)62.6gに分散させた。次いで、これに酢酸0.4g及び純水10.0gを加え、ガラス棒で3分間攪拌し、分散液を調製した。
 これとは別途に、濃度10質量%となるように下記式(3)に示すパーフルオロポリエーテルシラン(p+qの平均は14であり、数平均分子量は2000、kは3、Rはエチル基を示す。)0.2gを用意し、エタノール系溶剤1.8gと混合し、パーフルオロポリエーテルシランエタノール溶液を調製した。
 
(RO)Si-(CH-NHC(=O)-CF-O-(CFO)-(CFCFO)C(=O)NH-(CH-Si(OR)   
・・・(3)
 
 次いで、調製したパーフルオロポリエーテルシランエタノール溶液2.0gを前記分散液に加え、ガラス棒で3分間攪拌した。このようにして得られた混合スラリーを50℃の条件下で3日間攪拌し、フッ素化合物被覆微粒子(フッ素含有複合粒子、単位表面積当たりのフッ素含有量(F/S)=1.3mg/m)を含むコート液を得た。得られたコート液を用い、実施例1と同様に積層体のサンプルを作製した。
Example 2
BET value 16m 2 / g of the hydrophilic silica fine particles 3.0 g (Admatechs Co., SO-C1, average primary particle diameter = 250 nm) and, dispersed in ethanol solvent (Godo Co. GS Arco EP-7) 62.6 g I did. This was followed by acetic acid 0.4g and pure water 10.0g was added, and stirred for 3 minutes with a glass rod, to prepare a dispersion.
Separately from this, the average of the perfluoropolyether silane (p + q of the following formula in a concentration of 10 mass% (3) is 14, the number average molecular weight 2000, k is 3, R is an ethyl group shown.) prepared 0.2 g, was mixed with ethanol solvent 1.8g, was prepared perfluoropolyether silane ethanol solution.

(RO) 3 Si- (CH 2 ) k -NHC (= O) -CF 2 -O- (CF 2 O) p - (CF 2 CF 2 O) q C (= O) NH- (CH 2) k -Si (OR) 3
... (3)

Then added perfluoropolyether silane ethanol solution 2.0g, prepared the dispersion was stirred for 3 minutes with a glass rod. The mixed slurry thus obtained was stirred for 3 days under the conditions of 50 ° C., the fluorine compound-coated microparticles (fluorine-containing composite particles, the fluorine content per unit surface area (F / S) = 1.3mg / m 2 A coating solution containing Using the obtained coating solution, samples were prepared similarly laminate as in Example 1.
 実施例3
 パーフルオロポリエーテルシラン1.8g、エタノール系溶剤16.2gを用いて調製したパーフルオロポリエーテルシランエタノール溶液18gを用いた以外は、実施例1と同様にして、フッ素化合物被覆微粒子(フッ素含有複合粒子、単位表面積当たりのフッ素含有量(F/S)=0.9mg/m)を含むコート液を調製した。得られたコート液を用い、同様にして積層体のサンプルを作製した。
Example 3
Perfluoropolyether silane 1.8g, except for using the perfluoropolyether silane ethanol solution 18g prepared using ethanol solvent 16.2g, the same procedure as in Example 1, the fluorine compound-coated microparticles (fluorine-containing composite particles, fluorine content per unit surface area coating solution containing (F / S) = 0.9mg / m 2) was prepared. Using the obtained coating solution was prepared sample of the laminate in the same manner.
 比較例1
 シリカ微粒子(製品名「AEROSIL200」日本アエロジル(株)製、BET比表面積:200m/g、平均一次粒子径12nm)5gを反応槽に入れ、窒素ガス雰囲気下で攪拌しながら市販の表面処理剤500gをスプレーし、次いで200℃で30分間攪拌した後、冷却した。これによりフッ素化合物被覆微粒子(単位表面積当たりのフッ素含有量(F/S)=0.4mg/m)を得た。
 なお、前記の表面処理剤として、ポリフルオロオクチルメタクリレート、2-N,N-ジエチルアミノエチルメタクリレート、2-ヒドロキシエチルメタクリレート及び2,2’-エチレンジオキシジエチルジメタクリレートのコポリマーの水分散液(固形分濃度:20重量%)を用いた。
 この表面改質シリカ系微粒子をエタノール100mlに分散させてコート液を調製した。得られたコート液を用いて実施例1と同様にして積層体のサンプルを作製した。
Comparative Example 1
Silica fine particles (trade name "AEROSIL200" manufactured by Nippon Aerosil Co., Ltd., BET specific surface area: 200m 2 / g, average primary particle size 12 nm) 5 g was placed in a reaction vessel, commercially available surface treatment agent while stirring in a nitrogen gas atmosphere spray 500 g, then 200 after stirring for 30 min at ° C., and cooled. This gave a fluorine compound-coated microparticles (fluorine content per unit surface area (F / S) = 0.4mg / m 2).
Incidentally, as the surface treatment agent of the polyfluoro octyl methacrylate, 2-N, N-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate and 2,2'-ethylenedioxy aqueous dispersion of a copolymer of diethyl dimethacrylate (solids Concentration: 20% by weight) was used.
It was prepared coating liquid The surface modified silica fine particles are dispersed in ethanol 100 ml. As in Example 1 by using the obtained coating liquid was manufactured a sample of the laminate.
 比較例2
 パーフルオロポリエーテルシラン1.2g、エタノール系溶剤10.8gを用いて調整したパーフルオロポリエーテルシランエタノール溶液12gを用いた以外は、実施例1と同様にして、フッ素化合物被覆微粒子(フッ素含有複合粒子、単位表面積当たりのフッ素含有量(F/S)=0.7mg/m)を含むコート液を調製した。得られたコート液を用いて実施例1と同様にして積層体のサンプルを作製した。
Comparative example 2
Perfluoropolyether silane 1.2g, except for using the perfluoropolyether silane ethanol solution 12g adjusted using ethanol solvent 10.8g, the same procedure as in Example 1, the fluorine compound-coated microparticles (fluorine-containing composite particles, fluorine content per unit surface area coating solution containing (F / S) = 0.7mg / m 2) was prepared. As in Example 1 by using the obtained coating liquid was manufactured a sample of the laminate.
 比較例3
 CF(CF(CHOH(製品名「FA-4」ユニマテック(株)製)0.25gを30mlのメタノール中に加えて溶解させ、その溶液中にシリカゾル(製品名「メタノールシリカゾル;30重量%ナノシリカ含有」日産化学(株)製)1.67g及びテトラエトキシシラン(製品名「Dynasylan A」エボニックジャパン(株)製)0.25mlを加え、マグネチックスターラで攪拌しながら、25重量%アンモニア水0.25mlを加え、5時間反応を行った。 反応終了後、エバポレータを用いて減圧下でメタノール及びアンモニア水を除去し、得られた粉末を約20mlのメタノール中で一夜再分散させた。その翌日に遠沈管を用いて遠心分離し、上澄みを捨て、新たなメタノールを加え、リンス作業を行った。このリンス作業を3回行った後、遠沈管の口をアルミニウムホイルで覆い、70℃のオーブン中に一夜入れた。その翌日50℃の真空乾燥機に一夜入れて乾燥し、白色粉末を得た。得られた焼成前の含フッ素ナノシリカコンポジット粒子5.0gにエタノール系溶剤(ゴードー社製GSアルコEP-7)95.0gに分散させてコート液を調製した。得られたコート液を用いて実施例1と同様にして積層体のサンプルを作製した。
Comparative example 3
CF 3 (CF 2) 3 ( CH 2) 2 OH ( product name "FA-4" UNIMATEC Ltd. (Ltd.)) 0.25 g was added and dissolved in methanol 30 ml, silica sol (product name into the solution " methanol silica sol; 30 wt% nano silica containing "manufactured by Nissan chemical Co.) 1.67 g and tetraethoxysilane (trade name" Dynasylan a "Evonik Japan Ltd.) 0.25 ml was added, while stirring with a magnetic stirrer , added 25 wt% aqueous ammonia 0.25 ml, the reaction was carried out for 5 hours. After completion of the reaction, the methanol was removed and aqueous ammonia under reduced pressure using an evaporator, redispersed overnight resulting powder in methanol of approximately 20 ml. Centrifuged using the next day centrifuge tube, the supernatant discarded, the new methanol were added thereto to carry out a rinsing operation. After three times this rinse work, the mouth of the centrifuge tube covered with aluminum foil, and placed overnight in a 70 ℃ of oven. The next day and dried for overnight 50 ° C. a vacuum dryer to obtain a white powder. A coating solution was prepared by dispersing 5.0 g of the fluorine-containing nanosilica composite particles before firing obtained in 95.0 g of an ethanol-based solvent (GS Alco EP-7 manufactured by Gordo). As in Example 1 by using the obtained coating liquid was manufactured a sample of the laminate.
 試験例1
 各実施例及び比較例で得られた積層体のサンプルについて25℃における滑落角を測定した。その結果を表1に示す。
 滑落角の測定法としては図2に示す装置を用いた。図2(a)に示すように、電動ラボジャッキ30(オートラボジャッキ ALJ200-H、アズワン社製)と、土台20を設置し、電動ラボジャッキ30と土台20に跨るように、30cm×70cm×3mmのガラス製の板36を載せ、さらに板36にはデジタル角度計38(デジタル角度計ミニ DPM-1、東栄工業社製)を載せた。このとき、デジタル角度計38の電源を入れ、板36が水平(傾き0°)となるように電動ラボジャッキ30の昇降高さを調整した。
 なお、板36が水平方向に動かないように市販のテープで板36の土台20と接する側の辺32と土台20とを固定した。一方で、板36の電動ラボジャッキ30によって支えられている側は固定しないこととした。
 これにより、図2(b)に示すように、電動ラボジャッキ30をジャッキアップした場合に、板36は電動ラボジャッキ30の上端部34と常に接しながら擦動して板36が傾斜する。土台20と固定した板36の一方の辺32と、電動ラボジャッキ30の上端部34との距離Yを50cmとした。
 次に、板36に実施例及び比較例で得られた積層体1をコート液が塗布され微粒子が積層した面を上にして設置した。積層体1の四隅に市販のテープを貼り、板36に固定した。
 その後、マイクロピペット(pipetman  P20、GILSON社製)にマイクロピペットチップ40(アイビスピペットチップ、アイビス社製)を装着し、試料42を20μl量り取り、積層体1上に静かに滴下した。ここで試料42としては、純水、オレイン酸(NAA-34、日油社製、含有量:脂肪酸として98質量%以上)及び食用のオリーブオイル(AJINOMOTO  オリーブオイル)をそれぞれ用いた。
 次いで、電動ラボジャッキ30を速度1cm/秒でジャッキアップし、板36を傾斜させ、試料42が目視で転がりだしたことが確認されたときにジャッキアップを止めてデジタル角度計38に表示された角度を滑落角として記録した。
 各実施例及び比較例において、それぞれ試料毎に5回測定し、平均の滑落角を求めた。この結果を表1に示す。なお、板36を45度まで傾斜させても試料の一部又は全部が積層体1に付着したまま転がらなかったものは、45度でジャッキアップを止めた。

 
Test Example 1
It was measured sliding angle at 25 ° C. for a sample of the resulting laminate in each of Examples and Comparative Examples. The results are shown in Table 1.
As the measurement method of the sliding angle using the apparatus shown in FIG. As shown in FIG. 2 (a), an electric lab jack 30 (manufactured by Auto Lab jacks ALJ200-H, AS ONE Corporation), established the foundation 20, so as to extend over the electric laboratory jack 30 and the base 20, 30 cm × 70cm × Place the glass plate 36 of 3 mm, further digital angle meter 38 (digital goniometer mini DPM-1, Toei Kogyo Co., Ltd.) in a plate 36 carrying the. At this time, turn on the digital angle meter 38, the plate 36 is adjusted lifting height of the electric lab jack 30 so that the horizontal (inclination 0 °).
The side 32 of the plate 36 in contact with the base 20 and the base 20 were fixed with a commercially available tape so that the plate 36 does not move in the horizontal direction. On the other hand, the side is supported by an electric lab jack 30 of the plate 36 was not fixed.
Thus, as shown in FIG. 2 (b), the electric lab jack 30 when jacked up, the plate 36 and Kosudo while always in contact with the upper end portion 34 of the electric lab jack 30 a plate 36 is inclined. And one side 32 of the plate 36 which is fixed a base 20, and the distance Y between the upper portion 34 of the electric lab jack 30 and 50 cm.
It was then placed in a surface in which fine particles are coated with the laminate 1 obtained in Examples and Comparative Examples to the plate 36 coating solution was layered on top. Paste the commercial tape at the four corners of the laminated body 1, and fixed to the plate 36.
Thereafter, the micropipette tip 40 (Ibis pipet tip, manufactured by Ibis) was attached to a micropipette (pipetman P20, manufactured by GILSON), 20 μl of the sample 42 was weighed out, and the sample 42 was dropped gently on the laminate 1. Here, as sample 42, pure water, oleic acid (NAA-34, manufactured by NOF Corporation, content: 98 mass% or more as fatty acid) and edible olive oil (AJINOMOTO olive oil) were used respectively.
Then, the electric lab jack 30 was jacked up at a speed of 1 cm / sec, the plate 36 was inclined, and when it was confirmed that the sample 42 was visually rolled off, the jack up was stopped and displayed on the digital angle meter 38 the angle was recorded as the sliding angle.
In each of Examples and Comparative Examples, each measured 5 times for each sample was determined sliding angle of the mean. The results are shown in Table 1. In addition, even if the plate 36 was inclined to 45 degrees, the jackup was stopped at 45 degrees when the part or all of the sample did not roll while adhering to the laminate 1.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、水の滑落角については実施例1及び比較例1ともに非常に小さい滑落角を示したが、オレイン酸とオリーブオイルの滑落角に至っては実施例1の方が比較例1よりも極めて小さい滑落角を示した。このように、本発明のフッ素含有複合粒子は、オリーブオイル等のような特定の油成分のほか、オレイン酸等のような高級脂肪酸に対しても高い撥油性を発揮できることがわかる。 As shown in Table 1, the sliding angle of water showed a very small sliding angle in both Example 1 and Comparative Example 1, but the sliding angle of oleic acid and olive oil in Example 1 was the comparative example. The sliding angle was much smaller than 1. Thus, it can be seen that the fluorine-containing composite particles of the present invention can exhibit high oil repellency also to higher fatty acids such as oleic acid as well as specific oil components such as olive oil and the like.

Claims (5)

  1. シリカ系微粒子の表面が1)フッ素含有化合物及び2)それがシリカ系微粒子のケイ素とシロキサン結合してなるフッ素含有基の少なくとも1種で被覆されている複合粒子であって、
    (1)前記フッ素含有化合物が、パーフルオロポリエーテルからなる主鎖の少なくとも一方の末端側に[-Si(OR)](但し、3つのRは、互いに同一又は異なって、水素又は炭素数1~10のアルキル基を示す。)で示される官能基を含む化合物であり、
    (2)前記シリカ系微粒子の単位表面積当たりのフッ素含有量が0.8mg/m~1.0g/mである、
    ことを特徴とするフッ素含有複合粒子。
    A composite particle in which the surface of a silica-based fine particle is coated with at least one of 1) a fluorine-containing compound and 2) a fluorine-containing group formed by siloxane bond with silicon of the silica-based fine particle,
    (1) the fluorine-containing compound, at least one end side to [-Si (OR) 3] in the main chain of perfluoropolyether (provided that three R are the same or different from each other, hydrogen or carbon atoms a compound containing a functional group represented by an alkyl group having 1 to 10.),
    (2) Fluorine content per unit surface area of the silica fine particles are 0.8mg / m 2 ~ 1.0g / m 2,
    Fluorine-containing composite particles, characterized in that.
  2. 前記フッ素含有化合物の数平均分子量が500~2500である、請求項1に記載のフッ素含有複合粒子。 The fluorine-containing composite particle according to claim 1, wherein the number average molecular weight of the fluorine-containing compound is 500 to 2,500.
  3. 平均一次粒子径が3~500nmである、請求項1に記載のフッ素含有複合粒子。 The fluorine-containing composite particle according to claim 1, wherein the average primary particle diameter is 3 to 500 nm.
  4. 前記ポリマーの一方の端部側の官能基と前記シリカ粒子とが結合している側とは他端の官能基は、別のパーフルオロポリエーテルを主鎖とするポリマーの[-Si(OR)](但し、3つのRは、互いに同一又は異なって、水素又は炭素数1~10のアルキル基を示す。)で示される官能基と結合している、請求項1に記載のフッ素含有複合粒子。 The functional group at one end of the polymer and the functional group at the other end from the side to which the silica particle is bonded are [--Si (OR) of the polymer having another perfluoropolyether as the main chain 3. The fluorine-containing composite according to claim 1, wherein the fluorine-containing complex is bonded to a functional group represented by the formula 3 ] (provided that three R's are the same or different and each represents hydrogen or an alkyl group having 1 to 10 carbon atoms). particle.
  5. 前記フッ素含有化合物が(RO)Si-(CH-NHC(=O)-CF-O-(C2n-C(=O)NH-(CH-Si(OR)(但し、Rは炭素数1~4のアルキル基、nは1~7の整数、mは7以上の整数、kは1~5の整数をそれぞれ示す。)で示される化合物を含む、請求項1に記載のフッ素含有複合粒子。 The fluorine-containing compound (RO) 3 Si- (CH 2 ) k -NHC (= O) -CF 2 -O- (C n F 2n) m -C (= O) NH- (CH 2) k -Si (oR) 3 (where, R represents an alkyl group having 1 to 4 carbon atoms, n represents 1-7 integer, m is an integer of seven or more, k is an integer of 1 to 5 respectively.) the compound represented by the comprising fluorine-containing composite particles according to claim 1.
PCT/JP2018/028358 2017-07-31 2018-07-28 Fluorine-containing composite particles WO2019026816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019534482A JP7157059B2 (en) 2017-07-31 2018-07-28 Fluorine-containing composite particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148722 2017-07-31
JP2017-148722 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026816A1 true WO2019026816A1 (en) 2019-02-07

Family

ID=65233854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028358 WO2019026816A1 (en) 2017-07-31 2018-07-28 Fluorine-containing composite particles

Country Status (3)

Country Link
JP (1) JP7157059B2 (en)
TW (1) TW201910415A (en)
WO (1) WO2019026816A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175759A (en) * 1988-12-28 1990-07-09 Shin Etsu Chem Co Ltd Production of fluorosilione-treated silica
JPH09296134A (en) * 1996-04-26 1997-11-18 Shin Etsu Chem Co Ltd Water-repellent and oil-repellent powder and its production
JP2001152050A (en) * 1999-11-25 2001-06-05 Shin Etsu Chem Co Ltd Pigment treated with organic silicon compound, method for producing the same and cosmetic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175759A (en) * 1988-12-28 1990-07-09 Shin Etsu Chem Co Ltd Production of fluorosilione-treated silica
JPH09296134A (en) * 1996-04-26 1997-11-18 Shin Etsu Chem Co Ltd Water-repellent and oil-repellent powder and its production
JP2001152050A (en) * 1999-11-25 2001-06-05 Shin Etsu Chem Co Ltd Pigment treated with organic silicon compound, method for producing the same and cosmetic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYU NAM-HUI: "Preparation of water repellent and oil repellent hard coat materials", PROCEEDINGS OF THE SOCIETY OF POLYMER SCIENCE , JAPAN, vol. 64, no. 2, 2015 *

Also Published As

Publication number Publication date
TW201910415A (en) 2019-03-16
JPWO2019026816A1 (en) 2020-06-11
JP7157059B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
Facio et al. Producing lasting amphiphobic building surfaces with self-cleaning properties
Grasset et al. Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane
Jesionowski et al. Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media
CN101838496B (en) Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof
Hsieh et al. Influence of surface roughness on water-and oil-repellent surfaces coated with nanoparticles
EP2762537B1 (en) Water- and oil-repellent coating film and article containing same
Ramezani et al. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties
WO2013085050A1 (en) Photoluminescent pigment; cosmetic, paint composition, and resin composition containing same; and photoluminescent pigment production method
CN103874654B (en) Through the inorganic powder of surface coverage process
EA012114B1 (en) Process for manufacturing of metal containing composite material and material therefrom
García-González et al. Preparation of silane-coated TiO2 nanoparticles in supercritical CO2
Yan et al. Hydrophobic modification on the surface of SiO2 nanoparticle: wettability control
Wang et al. Influences of VTMS/SiO2 ratios on the contact angle and morphology of modified super-hydrophobic silicon dioxide material by vinyl trimethoxy silane
EP2966113B1 (en) Fluorine-containing nanocomposite particles and preparation method therefor
JP2009040966A (en) Resin composition for forming low thermal conductivity film, low thermal conductivity film, and method for producing low thermal conductivity film
JP6390756B2 (en) Barium sulfate spherical composite powder and method for producing the same
WO2014025045A1 (en) Organic-inorganic composite particles, dispersion liquid containing same, resin composition containing same, and method for producing organic-inorganic composite particles
Hanetho et al. Synthesis and characterization of hybrid aminopropyl silane-based coatings on stainless steel substrates
JP6996897B2 (en) Laminate
JP2019210392A (en) Liquid repellent surface and manufacturing method therefor
TWI798414B (en) Water repellent film-forming composition and water repellent film
JP2015522683A (en) Silsesquioxane-like particles
Jeon et al. Hard coating films based on organosilane-modified boehmite nanoparticles under UV/thermal dual curing
Qu et al. Gradient distribution of fluorine on the film surface of the organic–inorganic hybrid fluoropolymer
WO2017206010A1 (en) Article having amphiphobic coating film and method for preparation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840887

Country of ref document: EP

Kind code of ref document: A1