WO2019026745A1 - Thermally conductive resin molded article - Google Patents

Thermally conductive resin molded article Download PDF

Info

Publication number
WO2019026745A1
WO2019026745A1 PCT/JP2018/028025 JP2018028025W WO2019026745A1 WO 2019026745 A1 WO2019026745 A1 WO 2019026745A1 JP 2018028025 W JP2018028025 W JP 2018028025W WO 2019026745 A1 WO2019026745 A1 WO 2019026745A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive filler
filler
sheet
gap
Prior art date
Application number
PCT/JP2018/028025
Other languages
French (fr)
Japanese (ja)
Inventor
孝太郎 山浦
史博 向
祐希 細川
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2018540879A priority Critical patent/JP6490877B1/en
Priority to CN201880048210.4A priority patent/CN110945082B/en
Priority to DE112018003897.1T priority patent/DE112018003897B4/en
Publication of WO2019026745A1 publication Critical patent/WO2019026745A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/267Magnesium carbonate

Definitions

  • the present invention relates to a thermally conductive resin molded article.
  • Patent Document 1 discloses that a kneaded product containing scaly particles of a resin and / or rubber and boron nitride is extruded into a plurality of strip-like plasticizers, assembled by a lip and sheeted, and then cured or sheeted. While, a manufacturing method to cure is proposed.
  • Patent Document 2 discloses a silicone laminate containing 50 to 75% by volume of a thermally conductive filler containing two kinds of boron nitride powders (A) and (B) having different average particle sizes as a thermally conductive molded body. A heat conductive molded body has been proposed which is characterized in that it is cut from the laminating direction.
  • the resin molded product having thermal conductivity described in Patent Documents 1 and 2 preferably employs a filler made of boron nitride as the thermal conductive filler.
  • Boron nitride fillers have the advantage of being easy to impart excellent thermal conductivity.
  • boron nitride is expensive, and it is difficult to provide a resin molded product having thermal conductivity at low cost when it contains a large amount of filler made of boron nitride as in Patent Documents 1 and 2 above.
  • a filler made of boron nitride is used as the thermally conductive filler, it is difficult to orient the filler if the content of the filler is small.
  • the produced resin molded product has used the filler made from boron nitride, it had the subject that it was inferior to thermal conductivity.
  • the present invention has been made in view of such problems, and an object thereof is to provide a thermally conductive resin molded product having excellent thermal conductivity and capable of being manufactured inexpensively.
  • the thermally conductive resin molded article of the present invention is What is claimed is: 1.
  • a thermally conductive resin molded article comprising: a resin; and a thermally conductive filler comprising a first thermally conductive filler and a second thermally conductive filler having a particle size smaller than that of the first thermally conductive filler,
  • the content of the thermally conductive filler is 30 to 50% by volume
  • the first thermally conductive filler is a filler made of boron nitride having a particle diameter of 30 ⁇ m or more and an aspect ratio of 10 or more
  • the content of the first thermally conductive filler is 5 to 20% by volume
  • the second thermally conductive filler is a filler made of a material other than boron nitride.
  • the thermally conductive resin molded article of the present invention is composed of a first thermally conductive filler consisting of boron nitride and a material other than boron nitride while suppressing the upper limit of the total content of the thermally conductive filler to 50% by volume, A predetermined amount of a second thermally conductive filler smaller in diameter than the first thermally conductive filler is contained. Therefore, according to the thermally conductive resin molded product, the first thermally conductive filler can be oriented even if the content of the first thermally conductive filler consisting of boron nitride is small, and the thermally conductive resin is molded The product is excellent in thermal conductivity. Moreover, the said heat conductive resin molded article can be provided cheaply.
  • the particle diameter of the second thermally conductive filler is preferably 3 to 20 ⁇ m.
  • the second thermally conductive filler is suitable for enhancing the thermal conductivity of the thermally conductive resin molded article by being interposed between the first thermally conductive fillers, and thermally conductive resin molding It is also suitable for orienting the first thermally conductive filler in the product manufacturing process.
  • the second thermally conductive filler is preferably made of magnesium oxide or magnesium carbonate.
  • the second thermally conductive filler is suitable for enhancing the thermal conductivity of the thermally conductive resin molded article by being interposed between the first thermally conductive fillers, and thermally conductive resin molding It is suitable to offer goods inexpensively.
  • the thermally conductive resin molded article of the present invention has excellent thermal conductivity. Moreover, the said heat conductive resin molded article can be provided cheaply.
  • a thermally conductive resin molded product refers to a block-like product produced by molding the raw material composition, and a cut product obtained by cutting the block-like product (a sliced sheet product Is a concept that includes any of In the present embodiment, an embodiment of a thermally conductive resin molded article will be described by taking a thermally conductive sheet as an example.
  • FIG. 1 is a cross-sectional view schematically showing a thermally conductive sheet according to an embodiment of the present invention, and is a cross-sectional view parallel to the thickness direction of the thermally conductive sheet.
  • FIG. 1 is a schematic diagram, and each member (especially the 1st thermally conductive filler and the 2nd thermally conductive filler) does not reflect an actual dimension correctly.
  • the heat conductive sheet 1 according to the present embodiment is disposed between a heat generating member such as an IC chip and a heat radiating member such as a heat sink, and one surface is in contact with the heat generating member and the other surface is in contact with the heat radiating member. To use.
  • the thermally conductive sheet 1 includes a matrix component 2, a first thermally conductive filler 4 and a second thermally conductive filler 5, and the first thermally conductive filler 4 is thermally
  • the conductive sheet 1 is oriented substantially in the thickness direction (vertical direction in FIG. 1).
  • a thermally conductive path by the first thermally conductive filler 4 and the second thermally conductive filler 5 is formed in the substantially thickness direction of the thermally conductive sheet 1. Therefore, the thermally conductive sheet 1 is excellent in thermal conductivity in the thickness direction.
  • components other than the heat conductive filler are collectively referred to as a matrix component.
  • the thermally conductive sheet 1 is sliced into a sheet of block-like material in which the thin resin sheet in which the first thermally conductive fillers 4 in the matrix component 2 are oriented and dispersed in the surface direction is folded in the vertical direction. It is a thing.
  • a weld line 6 may be formed on such a thermally conductive sheet 1 substantially in the thickness direction.
  • the matrix component 2 contains at least a resin (including rubber).
  • resin conventionally well-known various resin can be selected suitably and can be used.
  • ethylene- ⁇ -olefin copolymer such as polyethylene, polypropylene and ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate co-weight Combination, polyvinyl alcohol, polyacetal, fluorocarbon resin such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Polymer (ABS) resin, polyphenylene ether, modified polyphenylene ether,
  • styrene-butadiene copolymer or hydrogenated polymer thereof styrene-based thermoplastic elastomer such as styrene-isoprene block copolymer or hydrogenated polymer thereof, olefin-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, polyester Thermoplastic elastomers, polyurethane thermoplastic elastomers, polyamide thermoplastic elastomers, etc.
  • silicone rubber, acrylic rubber, butyl rubber, fluororubber, nitrile rubber, hydrogenated nitrile rubber and the like can also be used. These may be used alone or in combination of two or more. Among these, silicone rubber is preferable in terms of flexibility in forming a molded product, shape followability, adhesion to a heat generating surface when contacting an electronic component, and heat resistance.
  • silicone rubber what the polymer (silicone) which has silicone frame
  • the crosslinking of silicone may be peroxide crosslinking or addition reaction type crosslinking, but peroxide crosslinking is preferable. This is because silicone rubber crosslinked by peroxide crosslinking is more excellent in heat resistance.
  • the silicone rubber for example, a peroxide-crosslinked mixture of a silicone having all methyl groups and no unsaturated group and a silicone having a vinyl group as part of the side chains (including the end).
  • the silicone having a vinyl group in a part of the side chain can also be regarded as a cross-linking agent for silicone in which all the side chains are methyl groups and which do not contain an unsaturated group.
  • silicone having a vinyl group in part of the side chain are, for example, dimethylpolysiloxane capped with dimethylvinylsiloxy at both ends of molecular chain, dimethylpolysiloxane capped with methylphenylvinylsiloxy at both ends of molecular chain, both molecular chains Terminal dimethylvinylsiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both terminal dimethylvinylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both terminally trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane co-polymer Polymer, both-end dimethylvinylsiloxy-blocked methyl (3,3,3-trifluoropropyl) polysiloxane, both-end silanol group blocked dimethyls
  • organic peroxide at the time of performing the above-mentioned peroxide crosslinking examples include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t Butyl peroxide, t-butyl perbenzoate and the like. These may be used alone or in combination of two or more. Furthermore, at the time of crosslinking, a crosslinking accelerator or a crosslinking accelerator may be used in combination.
  • the matrix component 2 may contain, in addition to the above-described resin, a crosslinking agent, a crosslinking accelerator, and a crosslinking accelerator as described above. Moreover, the matrix component 2 is a general additive such as a reinforcing agent, a filler, a softener, a plasticizer, an antiaging agent, a tackifier, an antistatic agent, a kneading agent, a flame retardant, and a coupling agent. You may contain.
  • the thermally conductive sheet 1 contains a first thermally conductive filler 4 and a second thermally conductive filler 5 smaller in particle size than the first thermally conductive filler 4 as two types of thermally conductive fillers.
  • the first thermally conductive filler 4 is made of boron nitride (BN). Therefore, the thermally conductive sheet 1 has excellent thermal conductivity.
  • the shape of the first thermally conductive filler 4 is not particularly limited as long as it has a predetermined particle diameter and aspect ratio.
  • As a specific shape of the 1st heat conductive filler 4 scaly shape, plate shape, film shape, fibrous shape, cylindrical shape, prismatic shape, elliptical shape, flat shape etc. are mentioned, for example. Among these, scaly is preferable. This is because the thermal conductivity of the molded article is high when the scale-like thermally conductive filler is oriented because it has a high aspect ratio and an isotropic thermal conductivity in the surface direction.
  • the particle diameter of the first heat conductive filler 4 is 30 ⁇ m or more. If the particle diameter is less than 30 ⁇ m, it is difficult to form a heat conduction path, and the heat conductivity may be poor. On the other hand, the preferable upper limit of the particle diameter of the 1st heat conductive filler 4 is 100 micrometers from a viewpoint of the workability at the time of producing a heat conductive resin molded product.
  • the aspect ratio of the first thermally conductive filler 4 is 10 or more.
  • the second thermally conductive filler 5 having a particle diameter smaller than that of the first thermally conductive filler 4 is dispersed in the gaps of the first thermally conductive filler 4 to easily form a thermally conductive path, and the first heat The conductive filler 4 is easy to be oriented in the matrix component 2.
  • the upper limit of the aspect ratio of the first heat conductive filler 4 is preferably 100. In this case, the first thermally conductive filler can be easily filled into the thermally conductive resin molded product, and the processability at the time of producing the thermally conductive resin molded product is also excellent.
  • the “particle size” of the thermally conductive filler is the concept of the average particle size in the particle size distribution measurement.
  • the average particle size is measured by a laser diffraction scattering method (apparatus: Microtrac MT3300EXII manufactured by Microtrac Bell Inc.).
  • the “aspect ratio” of the thermally conductive filler is a concept of the average value of the ratio of the major axis to the minor axis. The above-mentioned aspect ratio arbitrarily selects 200 or more particles from the image photographed by SEM, calculates the ratio of the major axis to the minor axis, and calculates the average value.
  • the length of the longest portion is the major axis
  • the length of a portion passing through the middle point of this major axis and orthogonal to the major axis is the minor axis.
  • the second thermally conductive filler 5 has a particle size smaller than that of the first thermally conductive filler, and is made of a material other than boron nitride.
  • the second thermally conductive filler 5 may be made of a material other than boron nitride and has thermal conductivity.
  • Specific examples of the second heat conductive filler 5 include, for example, graphite, carbon fiber, carbon nanotube (CNT), mica, alumina, aluminum nitride, silicon carbide, silica, zinc oxide, magnesium oxide, calcium carbonate, magnesium carbonate, What consists of molybdenum disulfide, copper, aluminum etc. is mentioned.
  • a heat conductive filler made of magnesium oxide and a heat conductive filler made of magnesium carbonate are preferable. It is because it intervenes between the first thermally conductive fillers 4 to be suitable for enhancing the thermal conductivity of the thermally conductive sheet 1 and suitable for providing the thermally conductive sheet 1 at low cost. .
  • the shape of the second heat conductive filler 5 is not particularly limited, and specific shapes include, for example, a spherical shape, a scaly shape, a plate shape, a film shape, a columnar shape, a prismatic shape, an elliptical shape, and a flat shape. .
  • the shape of the second thermally conductive filler 5 is preferably spherical or scaly. In this case, it is easy to form a heat conduction path between the first heat conductive fillers 4 and suitable for orienting the first heat conductive fillers 4.
  • the particle diameter of the second thermally conductive filler 5 is not particularly limited as long as it is smaller than the particle diameter of the first thermally conductive filler 4, but 3 to 20 ⁇ m is preferable.
  • a thermally conductive path is formed to be interposed between the first thermally conductive fillers 4, and the first thermally conductive filler 4 is oriented It is more suitable to Furthermore, when the particle diameter of the second thermally conductive filler 5 is in this range, the surface roughness of the thermally conductive sheet 1 is suppressed, and the contact thermal resistance (thermally conductive sheet 1) when in contact with the heat generating member or the heat radiating member Suitable for reducing the thermal resistance of the surface of On the other hand, if the particle size of the second thermally conductive filler 5 exceeds 20 ⁇ m, the first thermally conductive filler 4 is difficult to be oriented, and the thermally conductive sheet 1 may be inferior in thermal conductivity.
  • the thermally conductive sheet 1 may be inferior in thermal conductivity depending on the material of the second thermally conductive filler 5.
  • the material of the second thermally conductive filler 5 is magnesium oxide or magnesium carbonate
  • foaming of the second thermally conductive filler 5 may occur in the process of producing the thermally conductive sheet 1, and such foaming is If produced, the thermal conductivity of the produced thermally conductive sheet 1 may be reduced.
  • the particle diameter of the second thermally conductive filler 5 is more preferably 5 to 20 ⁇ m, still more preferably 5 to 15 ⁇ m, and particularly preferably 5 to 10 ⁇ m.
  • the upper limit of the aspect ratio of the second thermally conductive filler 5 is preferably 100. This is because the second thermally conductive filler can be easily filled into the thermally conductive resin molded article, and the processability at the time of producing the thermally conductive resin molded article is also excellent.
  • the lower limit of the aspect ratio of the second thermally conductive filler 5 is not limited, and the aspect ratio of the second thermally conductive filler 5 may be 1 or more.
  • the measuring method of each of the particle diameter and the aspect ratio of the second heat conductive filler 5 is the same as the measuring method of the particle diameter and the aspect ratio of the first heat conductive filler 4.
  • the content of the thermally conductive filler in the thermally conductive sheet 1 (the total content of the thermally conductive filler) is 30 to 50% by volume. If the total content of the thermally conductive filler is less than 30% by volume, sufficient thermal conductivity can not be ensured. In addition, when the content exceeds 50% by volume, the processability at the time of producing a thermally conductive resin molded article is inferior, and it is difficult to provide a thermally conductive resin molded article at low cost. Become.
  • the content of the first thermally conductive filler 4 in the thermally conductive sheet 1 is 5 to 20% by volume. In this case, the thermal conductivity can be secured by orienting the first thermally conductive filler. On the other hand, if the content of the first thermally conductive filler 4 is less than 5% by volume, sufficient thermal conductivity can not be ensured even if the first thermally conductive filler is oriented. Moreover, when the said content exceeds 20 volume%, it is difficult to provide a heat conductive resin molded product in low cost.
  • the content of the second thermally conductive filler 5 in the thermally conductive sheet 1 is preferably 10 to 45% by volume.
  • the content of the second thermally conductive filler 5 is less than 10% by volume, it becomes difficult to orient the first thermally conductive filler at the time of molding.
  • the content of the second thermally conductive filler 5 exceeds 45% by volume, the content of the first thermally conductive filler is too small, and sufficient thermal conductivity can not be ensured.
  • the content of the second thermally conductive filler 5 is more preferably 20 to 45% by volume.
  • the thermally conductive sheet 1 of the present embodiment contains a first thermally conductive filler 4 and a second thermally conductive filler 5 as a thermally conductive filler.
  • the particle diameter D1 of the first thermally conductive filler 4 and the particle diameter D2 of the second thermally conductive filler 5 have a relationship of D1> D2.
  • the thermally conductive sheet 1 may contain thermally conductive fillers other than the 1st thermally conductive filler 4 and the 2nd thermally conductive filler 5 in the range which does not impair the effect of this invention.
  • the thickness of the thermally conductive sheet 1 is not particularly limited, and is, for example, about 0.1 to 3.0 mm.
  • the heat conductive sheet 1 can be suitably used as a member for efficiently transmitting heat between the heat generating member and the heat dissipating member in an electric part, an automobile part or the like.
  • FIG. 2 is a figure which shows typically the extruder used by manufacture of the heat conductive sheet which concerns on embodiment of this invention.
  • FIG. 2 shows a schematic cross-sectional view of the tip portion of the extruder 100 and the T-die.
  • the raw material composition containing the thermally conductive filler charged into the extruder 100 is stirred and kneaded by the screw 8 and introduced into the first gap 12 along the flow path 10.
  • the raw material composition supplied to the extruder 100 is first squeezed in the vertical direction (thickness direction) by the first gap 12 to form a thin strip.
  • shear force acts on the raw material composition, and the first thermally conductive filler mixed in the raw material composition is oriented in the flow direction of the raw material composition.
  • the first thermally conductive filler is oriented in the surface direction of the resin sheet precursor.
  • the second thermally conductive filler is oriented in the same direction as the first thermally conductive filler when passing through the first gap 12.
  • the gap (the dimension in the vertical direction in FIG. 2) of the first gap 12 is preferably 0.1 mm or more and 5.0 mm or less. If the gap of the first gap 12 is smaller than 0.1 mm, the extrusion pressure may increase unnecessarily, and further, resin clogging may occur. On the other hand, if the gap of the first gap 12 is larger than 5.0 mm, the degree of orientation of the thermally conductive filler in the surface direction of the thin resin sheet precursor may be reduced.
  • the flow direction of the sheet which has been limited in the extrusion direction is released, and the flow direction is It changes in a direction substantially perpendicular to the extrusion direction. This is because the cross-sectional area of the flow path 10 after passing through the first gap 12 is expanded, and the length in the vertical direction of the flow path 10 is increased.
  • the thin resin sheet precursor in which the flow direction of the sheet is changed to be substantially perpendicular to the extrusion direction is further extruded toward the second gap 14 after completely passing through the first gap 12. As a result, the resin sheet precursor in the second gap 14 is in a state in which the thin resin sheet precursor is laminated.
  • the resin sheet precursor is heated under predetermined conditions to advance crosslinking, and further, as required, the resin sheet precursor is sliced in the direction perpendicular to the thickness direction.
  • the heat conductive sheet 1 is manufactured through such a process.
  • the gap of the second gap 14 is preferably twice or more and 20 times or less the gap of the first gap 12. If the gap of the second gap 14 is smaller than twice the gap of the first gap 12, the first thermally conductive filler 4 may not be oriented in the thickness direction of the thermally conductive sheet 1. In addition, when the gap of the second gap 14 is larger than 20 times the gap of the first gap 12, a situation where the resin sheet precursor is partially turbulent flows easily, and as a result, the heat conductive sheet 1 The proportion of the first thermally conductive filler 4 oriented in the thickness direction may be reduced.
  • the gap of the second gap 14 is more preferably twice or more and 10 times or less than the gap of the first gap 12. Further, from the viewpoint of facilitating uniform flow of the resin sheet precursor in the vertical direction of the flow path 10, the thickness direction center of the first gap 12 and the thickness direction center of the second gap 14 have a thickness It is preferable to be at substantially the same position in the direction.
  • the shape of the opening connected to the first gap 12 is not particularly limited, but the side surfaces (upper and lower surfaces) of the opening on the upstream side are preferably inclined to reduce pressure loss.
  • the inclination angle (the angle between the extrusion direction and the inclined surface) for upper and lower surfaces).
  • the inclination angle may be, for example, 10 ° to 50 °, and more preferably 20 ° to 25 °.
  • the opening connected to the first gap 12 does not have to be inclined at both the upper and lower sides, and only one of them may have the inclination.
  • the depths of the first gap 12 and the second gap 14 are substantially the same throughout the T die. Further, the depth dimensions of the first gap and the second gap are not particularly defined, and various design changes are possible according to the product width of the resin sheet.
  • the thermally conductive sheet according to the embodiment of the present invention can also be manufactured by the following manufacturing method. That is, after preparing a raw material composition for producing a thermally conductive sheet, using the raw material composition, a plurality of sheet materials in which at least the first thermally conductive filler is oriented in the plane direction are obtained by a conventionally known method A plurality of sheet-like materials are laminated to form a block-like material, and then the block-like material (laminate of sheet materials) from the direction perpendicular to the direction in which the first thermally conductive filler is oriented It may be produced by cutting. When manufacturing a heat conductive sheet by this method, you may perform a crosslinking process at an appropriate timing as needed.
  • the thermally conductive sheet produced by such a method is also a sheet excellent in thermal conductivity in which the first thermally conductive filler is oriented in the substantially thickness direction of the thermally conductive sheet.
  • Example 1 In the composition described in Table 1, the resin component is mixed with a cross-linking agent and a first heat conductive filler and a second heat conductive filler (hereinafter, all are collectively referred to as a raw material component) by two rolls, and a ribbon A sheet (composition as a precursor) was obtained.
  • a cross-linking agent a first heat conductive filler and a second heat conductive filler (hereinafter, all are collectively referred to as a raw material component) by two rolls, and a ribbon A sheet (composition as a precursor) was obtained.
  • silicone rubber “DY321005U manufactured by Toray Dow Corning” and a plasticizer (silicone oil manufactured by Shin-Etsu Chemical Co., Ltd .: KF-96-3000CS) were used.
  • MR-53 and “RC-450P FD” manufactured by Toray Dow Corneg were used.
  • Table 1 shows the total content.
  • XGP boron nitride
  • the second heat conductive filler a filler made of magnesium carbonate (cube shape, particle diameter 6 ⁇ m, aspect ratio about 1 (manufactured by Kamijima Chemical Co., Ltd.)) was used.
  • the ribbon sheet produced was prepared using a vertically oriented mold (die) having a first gap of 1 mm and a second gap of 10 mm.
  • the sheet after the crosslinking treatment was sliced in the direction perpendicular to the thickness direction to prepare a thermally conductive sheet 1 as a thermally conductive resin molded product with a thickness of 500 ⁇ m.
  • Example 2 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1.
  • Example 3 As a second heat conductive filler, a filler made of magnesium carbonate (cube shape, particle diameter 15 ⁇ m, aspect ratio about 1 (manufactured by Kamijima Chemical Industries Co., Ltd.)) was used, and the blending amounts of the raw material components are shown in Table 1 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that it was changed as described above.
  • Example 4 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1.
  • Example 5 As a second heat conductive filler, a filler made of magnesium oxide (“SMO” (spherical, particle size 10 ⁇ m, aspect ratio about 1) manufactured by Sakai Chemical Industry Co., Ltd.) is used, and the blending amounts of raw material components are shown in Table 1 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that it was changed as shown in.
  • SMO magnesium oxide
  • Example 6 A thermally conductive sheet 1 was produced in the same manner as in Example 5 except that the blending amounts of the raw material components were changed as shown in Table 1.
  • Example 7 As a second heat conductive filler, a filler made of magnesium carbonate (cube shape, particle diameter 26 ⁇ m, aspect ratio about 1 (made by Kamijima Chemical Co., Ltd.)) was used, and the blending amounts of the raw material components are shown in Table 1 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that it was changed as described above.
  • Example 8 A thermally conductive sheet 1 was produced in the same manner as in Example 3 except that the blending amounts of the raw material components were changed as shown in Table 1.
  • Example 9 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1.
  • Example 10 The same procedure as in Example 7 was followed, except that a filler consisting of calcium carbonate ("Light calcium carbonate” (spherical, particle size 6 ⁇ m, aspect ratio about 1) manufactured by Maruo Calcium Co., Ltd.) was used as the second thermally conductive filler.
  • a thermally conductive sheet 1 was produced.
  • Example 11 The same procedure as in Example 7 was followed, except that a filler made of magnesium oxide (“Starmag MSL” (spherical, particle size 9 ⁇ m, aspect ratio 1) manufactured by Kamijima Chemical Industry Co., Ltd.) was used as the second thermally conductive filler.
  • the conductive sheet 1 was produced.
  • thermoly conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1 (the second thermally conductive filler was not used).
  • thermally conductive sheet 2 matrix component 4 first thermally conductive filler 5 second thermally conductive filler 6 weld line 8 screw 10 flow path 12 first gap 14 second gap 100 extruder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A thermally conductive resin molded article including a resin and a thermally conductive filler that includes a first thermally conductive filler and a second thermally conductive filler having a smaller grain size than the first thermally conductive filler, wherein the thermally conductive filler content is 30-50% by volume, the first thermally conductive filler comprises boron nitride having a grain size of 30 μm or greater and an aspect ratio of 10 or higher, the first thermally conductive foller content is 5-20% by volume, and the second thermally conductive filler comprises a material other than boron nitride.

Description

熱伝導性樹脂成型品Thermal conductive resin molding
 本発明は、熱伝導性樹脂成型品に関する。 The present invention relates to a thermally conductive resin molded article.
 近年、電子機器の高密度化・薄型化が急速に進み、ICやパワー部品、高輝度LEDから発生する熱の影響が重大な問題となっている。これに対して、例えば、チップ等の発熱体と放熱体の間の熱を効率よく伝達する部材として、シート状の熱伝導性樹脂成型品の利用が進んでいる。
 ここで、樹脂成型品に高い熱伝導性を付与する手段として、効率よく熱伝導パスを形成するために、熱伝導性フィラーを配向させて樹脂中に分散させることが知られている。
In recent years, with the rapid increase in density and thickness of electronic devices, the influence of heat generated from ICs, power components, and high-brightness LEDs has become a serious problem. On the other hand, for example, as a member for efficiently transferring heat between a heat generating body such as a chip and a heat radiating body, use of a sheet-like thermally conductive resin molded product has been advanced.
Here, as a means for imparting high thermal conductivity to a resin molded product, it is known to orient and thermally disperse a thermally conductive filler in a resin in order to efficiently form a thermally conductive path.
 特許文献1には、樹脂及び/又はゴムと窒化ホウ素の鱗片状粒子を含む混練物を複数の帯状可塑物に押出成型しながらそれらをリップで集成しシート化した後硬化させるか、又はシート化しながら硬化させる製造方法が提案されている。
 特許文献2には、熱伝導性成形体として、平均粒子径の異なる2種類の窒化ホウ素粉末(A)及び(B)を含む熱伝導性フィラーを50~75体積%含有してなるシリコーン積層体を、積層方向から切断することを特徴とする熱伝導性成形体が提案されている。
Patent Document 1 discloses that a kneaded product containing scaly particles of a resin and / or rubber and boron nitride is extruded into a plurality of strip-like plasticizers, assembled by a lip and sheeted, and then cured or sheeted. While, a manufacturing method to cure is proposed.
Patent Document 2 discloses a silicone laminate containing 50 to 75% by volume of a thermally conductive filler containing two kinds of boron nitride powders (A) and (B) having different average particle sizes as a thermally conductive molded body. A heat conductive molded body has been proposed which is characterized in that it is cut from the laminating direction.
特開平08-244094号公報Japanese Patent Application Publication No. 08-244094 特開2010-260225号公報JP, 2010-260225, A
 上記特許文献1、2に記載されている熱伝導性を有する樹脂成型品は、熱伝導性フィラーとして、窒化ホウ素製のフィラーを好ましく採用している。窒化ホウ素製のフィラーは優れた熱伝導性を付与させやすいという利点を有する。しかしながら、窒化ホウ素は高価であり、上記特許文献1、2のように窒化ホウ素製のフィラーを多量に含有する場合、熱伝導性を有する樹脂成型品を安価に提供することが困難であった。
 一方、熱伝導性フィラーとして窒化ホウ素製のフィラーのみを用いる場合、フィラーの含有量が少ないと、このフィラーを配向させることが困難となる。その結果、作製した樹脂成型品は、窒化ホウ素製のフィラーを使用しているにも関わらず、熱伝導性に劣るという課題があった。
The resin molded product having thermal conductivity described in Patent Documents 1 and 2 preferably employs a filler made of boron nitride as the thermal conductive filler. Boron nitride fillers have the advantage of being easy to impart excellent thermal conductivity. However, boron nitride is expensive, and it is difficult to provide a resin molded product having thermal conductivity at low cost when it contains a large amount of filler made of boron nitride as in Patent Documents 1 and 2 above.
On the other hand, when only a filler made of boron nitride is used as the thermally conductive filler, it is difficult to orient the filler if the content of the filler is small. As a result, although the produced resin molded product has used the filler made from boron nitride, it had the subject that it was inferior to thermal conductivity.
 本発明は、このような課題に鑑みてなされたものであり、優れた熱伝導性を有し、安価に製造することができる熱伝導性樹脂成型品を提供することを目的する。 The present invention has been made in view of such problems, and an object thereof is to provide a thermally conductive resin molded product having excellent thermal conductivity and capable of being manufactured inexpensively.
(1)本発明の熱伝導性樹脂成型品は、
 樹脂と、第1熱伝導性フィラー及び上記第1熱伝導性フィラーより小さい粒径を有する第2熱伝導性フィラーを含む熱伝導性フィラーと、を含む熱伝導性樹脂成型品であって、
 上記熱伝導性フィラーの含有量は、30~50体積%であり、
 上記第1熱伝導性フィラーは、30μm以上の粒径及び10以上のアスペクト比を有する窒化ホウ素からなるフィラーであり、
 上記第1熱伝導性フィラーの含有量は、5~20体積%であり、
 上記第2熱伝導性フィラーは、窒化ホウ素以外の材質からなるフィラーである
ことを特徴とする。
(1) The thermally conductive resin molded article of the present invention is
What is claimed is: 1. A thermally conductive resin molded article comprising: a resin; and a thermally conductive filler comprising a first thermally conductive filler and a second thermally conductive filler having a particle size smaller than that of the first thermally conductive filler,
The content of the thermally conductive filler is 30 to 50% by volume,
The first thermally conductive filler is a filler made of boron nitride having a particle diameter of 30 μm or more and an aspect ratio of 10 or more,
The content of the first thermally conductive filler is 5 to 20% by volume,
The second thermally conductive filler is a filler made of a material other than boron nitride.
 本発明の熱伝導性樹脂成型品は、熱伝導性フィラーの総含有量の上限を50体積%に抑えつつ、窒化ホウ素からなる第1熱伝導性フィラーと、窒化ホウ素以外の材質からなり、粒径が第1熱伝導性フィラーよりも小さい第2熱伝導性フィラーとをそれぞれ所定量含有している。
 そのため、上記熱伝導性樹脂成型品によれば、窒化ホウ素からなる第1熱伝導性フィラーの含有量が少なくても上記第1熱伝導性フィラーを配向させることができ、上記熱伝導性樹脂成型品は、熱伝導性に優れる。
 また、上記熱伝導性樹脂成型品は、安価に提供することができる。
The thermally conductive resin molded article of the present invention is composed of a first thermally conductive filler consisting of boron nitride and a material other than boron nitride while suppressing the upper limit of the total content of the thermally conductive filler to 50% by volume, A predetermined amount of a second thermally conductive filler smaller in diameter than the first thermally conductive filler is contained.
Therefore, according to the thermally conductive resin molded product, the first thermally conductive filler can be oriented even if the content of the first thermally conductive filler consisting of boron nitride is small, and the thermally conductive resin is molded The product is excellent in thermal conductivity.
Moreover, the said heat conductive resin molded article can be provided cheaply.
(2)上記熱伝導性樹脂成型品において、上記第2熱伝導性フィラーの粒径は、3~20μmであることが好ましい。
 この場合、上記第2熱伝導性フィラーは、第1熱伝導性フィラー同士の間に介在して上記熱伝導性樹脂成型品の熱伝導性を高めるのに適しており、かつ熱伝導性樹脂成型品の製造工程において、第1熱伝導性フィラーを配向させるのにも適している。
(2) In the thermally conductive resin molded product, the particle diameter of the second thermally conductive filler is preferably 3 to 20 μm.
In this case, the second thermally conductive filler is suitable for enhancing the thermal conductivity of the thermally conductive resin molded article by being interposed between the first thermally conductive fillers, and thermally conductive resin molding It is also suitable for orienting the first thermally conductive filler in the product manufacturing process.
(3)上記熱伝導性樹脂成型品において、上記第2熱伝導性フィラーは、酸化マグネシウム又は炭酸マグネシウムからなることが好ましい。
 この場合、上記第2熱伝導性フィラーは、第1熱伝導性フィラー同士の間に介在して上記熱伝導性樹脂成型品の熱伝導性を高めるのに適しており、かつ熱伝導性樹脂成型品を安価で提供するのに適している。
(3) In the thermally conductive resin molded product, the second thermally conductive filler is preferably made of magnesium oxide or magnesium carbonate.
In this case, the second thermally conductive filler is suitable for enhancing the thermal conductivity of the thermally conductive resin molded article by being interposed between the first thermally conductive fillers, and thermally conductive resin molding It is suitable to offer goods inexpensively.
 本発明の熱伝導性樹脂成型品は、優れた熱伝導性を有する。
 また、上記熱伝導性樹脂成型品は、安価に提供することができる。
The thermally conductive resin molded article of the present invention has excellent thermal conductivity.
Moreover, the said heat conductive resin molded article can be provided cheaply.
本発明の実施形態に係る熱伝導性シートを模式的に示す断面図である。It is a sectional view showing typically a thermally conductive sheet concerning an embodiment of the present invention. 本発明の実施形態に係る熱伝導性シートの製造で使用する押出機を模式的に示す図である。It is a figure which shows typically the extruder used by manufacture of the heat conductive sheet which concerns on embodiment of this invention.
 以下、本発明の実施形態について説明する。
 本発明において、「熱伝導性樹脂成型品」とは、原料組成物を成型して作製したブロック状物、及び、当該ブロック状物を切断して得られた切断物(スライスしたシート状物を含む)のいずれも含む概念である。
 本実施形態では、熱伝導性シートを例にして、熱伝導性樹脂成型品の実施形態を説明する。
Hereinafter, embodiments of the present invention will be described.
In the present invention, “a thermally conductive resin molded product” refers to a block-like product produced by molding the raw material composition, and a cut product obtained by cutting the block-like product (a sliced sheet product Is a concept that includes any of
In the present embodiment, an embodiment of a thermally conductive resin molded article will be described by taking a thermally conductive sheet as an example.
 図1は、本発明の実施形態に係る熱伝導性シートを模式的に示す断面図であり、上記熱伝導性シートの厚さ方向に平行な断面図である。なお、図1は模式図であり、各部材(特に第1熱伝導性フィラー及び第2熱伝導性フィラー)は、実寸法を正確に反映したものではない。
 本実施形態に係る熱伝導性シート1は、ICチップ等の発熱部材とヒートシンク等の放熱部材との間に配置し、一方の面を発熱部材に接触させ、他方の面を放熱部材に接触させて使用する。
FIG. 1 is a cross-sectional view schematically showing a thermally conductive sheet according to an embodiment of the present invention, and is a cross-sectional view parallel to the thickness direction of the thermally conductive sheet. In addition, FIG. 1 is a schematic diagram, and each member (especially the 1st thermally conductive filler and the 2nd thermally conductive filler) does not reflect an actual dimension correctly.
The heat conductive sheet 1 according to the present embodiment is disposed between a heat generating member such as an IC chip and a heat radiating member such as a heat sink, and one surface is in contact with the heat generating member and the other surface is in contact with the heat radiating member. To use.
 熱伝導性シート1は、図1に示すように、マトリックス成分2と、第1熱伝導性フィラー4及び第2熱伝導性フィラー5とを有しており、第1熱伝導性フィラー4が熱伝導性シート1の略厚さ方向(図1中、上下方向)に配向している。熱伝導性シート1では、第1熱伝導性フィラー4及び第2熱伝導性フィラー5による熱伝導パスが、熱伝導性シート1の略厚さ方向に形成されている。従って、熱伝導性シート1は厚さ方向における熱伝導性に優れる。
 なお、上記熱伝導性シートでは、熱伝導性フィラー以外の成分をまとめてマトリックス成分と称する。
As shown in FIG. 1, the thermally conductive sheet 1 includes a matrix component 2, a first thermally conductive filler 4 and a second thermally conductive filler 5, and the first thermally conductive filler 4 is thermally The conductive sheet 1 is oriented substantially in the thickness direction (vertical direction in FIG. 1). In the thermally conductive sheet 1, a thermally conductive path by the first thermally conductive filler 4 and the second thermally conductive filler 5 is formed in the substantially thickness direction of the thermally conductive sheet 1. Therefore, the thermally conductive sheet 1 is excellent in thermal conductivity in the thickness direction.
In the heat conductive sheet, components other than the heat conductive filler are collectively referred to as a matrix component.
 熱伝導性シート1は、マトリックス成分2中の第1熱伝導性フィラー4がその面方向に配向分散した薄い樹脂シートが垂直方向に折り畳んだ状態で密着されたブロック状物をシート状にスライスしたものである。このような熱伝導性シート1には略厚さ方向にウェルドライン6が形成される場合もある。 The thermally conductive sheet 1 is sliced into a sheet of block-like material in which the thin resin sheet in which the first thermally conductive fillers 4 in the matrix component 2 are oriented and dispersed in the surface direction is folded in the vertical direction. It is a thing. A weld line 6 may be formed on such a thermally conductive sheet 1 substantially in the thickness direction.
 マトリックス成分2は、少なくとも樹脂(ゴムを含む)を含有する。
 上記樹脂としては、従来公知の種々の樹脂を適宜選択して用いることができる。
 具体的には、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-α-オレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリアセタール、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、脂肪族ポリアミド類、芳香族ポリアミド類、ポリアミドイミド、ポリメタクリル酸又はそのエステル、ポリアクリル酸又はそのエステル、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマーなどを用いることができる。
 また、例えば、スチレン-ブタジエン共重合体又はその水添ポリマー、スチレン-イソプレンブロック共重合体又はその水添ポリマー等のスチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどを用いることができる。
 更には、例えば、シリコーンゴム、アクリルゴム、ブチルゴム、フッ素ゴム、ニトリルゴム、水素化ニトリルゴム等を用いることもできる。
 これらは単独で用いても良いし、2種以上を併用しても良い。
 これらのなかでは、成型体とした際の柔軟性、形状追従性、電子部品に接触させる際の発熱面への密着性、及び、耐熱性に優れる点からシリコーンゴムが好ましい。
The matrix component 2 contains at least a resin (including rubber).
As said resin, conventionally well-known various resin can be selected suitably and can be used.
Specifically, for example, ethylene-α-olefin copolymer such as polyethylene, polypropylene and ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate co-weight Combination, polyvinyl alcohol, polyacetal, fluorocarbon resin such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Polymer (ABS) resin, polyphenylene ether, modified polyphenylene ether, aliphatic polyamides, aromatic polyamides, polyamideimide, polymethacrylic acid or Esters thereof, polyacrylic acid or its ester, polycarbonate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether nitrile, polyether ketone, may be used polyketone, liquid crystal polymer, silicone resin, ionomer and the like.
In addition, for example, styrene-butadiene copolymer or hydrogenated polymer thereof, styrene-based thermoplastic elastomer such as styrene-isoprene block copolymer or hydrogenated polymer thereof, olefin-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, polyester Thermoplastic elastomers, polyurethane thermoplastic elastomers, polyamide thermoplastic elastomers, etc. can be used.
Furthermore, for example, silicone rubber, acrylic rubber, butyl rubber, fluororubber, nitrile rubber, hydrogenated nitrile rubber and the like can also be used.
These may be used alone or in combination of two or more.
Among these, silicone rubber is preferable in terms of flexibility in forming a molded product, shape followability, adhesion to a heat generating surface when contacting an electronic component, and heat resistance.
 上記シリコーンゴムとしては、シリコーン骨格を有する高分子(シリコーン)が架橋したものが挙げられる。
 ここで、シリコーンの架橋は、過酸化物架橋であっても良いし、付加反応型の架橋であっても良いが、過酸化物架橋が好ましい。過酸化物架橋によって架橋されたシリコーンゴムの方が耐熱性に優れるからである。
As said silicone rubber, what the polymer (silicone) which has silicone frame | skeleton bridge | crosslinked is mentioned.
Here, the crosslinking of silicone may be peroxide crosslinking or addition reaction type crosslinking, but peroxide crosslinking is preferable. This is because silicone rubber crosslinked by peroxide crosslinking is more excellent in heat resistance.
 上記シリコーンゴムとしては、例えば、側鎖が全てメチル基で不飽和基を含まないシリコーンと側鎖(末端も含む)の一部にビニル基を有するシリコーンとの混合物を過酸化物架橋させたものが好ましい。
 このとき、上記側鎖の一部にビニル基を有するシリコーンは、上記側鎖が全てメチル基で不飽和基を含まないシリコーンに対する架橋剤とみなすこともできる。
As the silicone rubber, for example, a peroxide-crosslinked mixture of a silicone having all methyl groups and no unsaturated group and a silicone having a vinyl group as part of the side chains (including the end). Is preferred.
At this time, the silicone having a vinyl group in a part of the side chain can also be regarded as a cross-linking agent for silicone in which all the side chains are methyl groups and which do not contain an unsaturated group.
 上記側鎖の一部にビニル基を有するシリコーンの具体例としては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。これらは単独で用いても良いし、2種以上併用しても良い。 Specific examples of the silicone having a vinyl group in part of the side chain are, for example, dimethylpolysiloxane capped with dimethylvinylsiloxy at both ends of molecular chain, dimethylpolysiloxane capped with methylphenylvinylsiloxy at both ends of molecular chain, both molecular chains Terminal dimethylvinylsiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both terminal dimethylvinylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both terminally trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane co-polymer Polymer, both-end dimethylvinylsiloxy-blocked methyl (3,3,3-trifluoropropyl) polysiloxane, both-end silanol group blocked dimethylsiloxane / methylvinylsiloxane copolymer, both-end molecular chain Silanol dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane copolymers. These may be used alone or in combination of two or more.
 上記過酸化物架橋を行う際の有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート等が挙げられる。これらは単独で用いても良いし、2種以上併用しても良い。
 更に、架橋時には、架橋促進剤や架橋促進助剤を併用しても良い。
Examples of the organic peroxide at the time of performing the above-mentioned peroxide crosslinking include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, di-t Butyl peroxide, t-butyl perbenzoate and the like. These may be used alone or in combination of two or more.
Furthermore, at the time of crosslinking, a crosslinking accelerator or a crosslinking accelerator may be used in combination.
 マトリックス成分2は、上記樹脂に加えて、上述したように架橋剤、架橋促進剤、架橋促進助剤を含有しても良い。また、マトリックス成分2は、補強剤、充填剤、軟化剤、可塑剤、老化防止剤、粘着付与剤、帯電防止剤、練り込み接着剤、難燃剤、カップリング剤等の一般的な添加剤を含有していても良い。 The matrix component 2 may contain, in addition to the above-described resin, a crosslinking agent, a crosslinking accelerator, and a crosslinking accelerator as described above. Moreover, the matrix component 2 is a general additive such as a reinforcing agent, a filler, a softener, a plasticizer, an antiaging agent, a tackifier, an antistatic agent, a kneading agent, a flame retardant, and a coupling agent. You may contain.
 熱伝導性シート1は、2種類の熱伝導性フィラーとして、第1熱伝導性フィラー4と、第1熱伝導性フィラー4よりも粒径の小さい第2熱伝導性フィラー5とを含有する。
 第1熱伝導性フィラー4は、窒化ホウ素(BN)からなる。そのため、熱伝導性シート1は優れた熱伝導性を有する。
 第1熱伝導性フィラー4は、所定の粒径及びアスペクト比を有していればその形状は特に限定されない。第1熱伝導性フィラー4の具体的な形状としては、例えば、鱗片状、板状、膜状、繊維状、円柱状、角柱状、楕円状、扁平形状などが挙げられる。
 これらのなかでは鱗片状が好ましい。高アスペクト比で、かつ面方向に等方的な熱伝導率を有しているため、鱗片状の熱伝導性フィラーを配向させた場合、成型品の熱伝導率が高くなるからである。
The thermally conductive sheet 1 contains a first thermally conductive filler 4 and a second thermally conductive filler 5 smaller in particle size than the first thermally conductive filler 4 as two types of thermally conductive fillers.
The first thermally conductive filler 4 is made of boron nitride (BN). Therefore, the thermally conductive sheet 1 has excellent thermal conductivity.
The shape of the first thermally conductive filler 4 is not particularly limited as long as it has a predetermined particle diameter and aspect ratio. As a specific shape of the 1st heat conductive filler 4, scaly shape, plate shape, film shape, fibrous shape, cylindrical shape, prismatic shape, elliptical shape, flat shape etc. are mentioned, for example.
Among these, scaly is preferable. This is because the thermal conductivity of the molded article is high when the scale-like thermally conductive filler is oriented because it has a high aspect ratio and an isotropic thermal conductivity in the surface direction.
 第1熱伝導性フィラー4の粒径は30μm以上である。上記粒径が30μm未満では、熱伝導パスが形成しにくく、熱伝導性に劣る場合がある。
 一方、第1熱伝導性フィラー4の粒径の好ましい上限は、熱伝導性樹脂成型品を作製する際の加工性の観点から100μmである。
The particle diameter of the first heat conductive filler 4 is 30 μm or more. If the particle diameter is less than 30 μm, it is difficult to form a heat conduction path, and the heat conductivity may be poor.
On the other hand, the preferable upper limit of the particle diameter of the 1st heat conductive filler 4 is 100 micrometers from a viewpoint of the workability at the time of producing a heat conductive resin molded product.
 第1熱伝導性フィラー4のアスペクト比は10以上である。この場合、第1熱伝導性フィラー4の間隙に、第1熱伝導性フィラー4より粒径の小さい第2熱伝導性フィラー5が分散して熱伝導パスを形成しやすく、また、第1熱伝導性フィラー4がマトリックス成分2中で配向し易い。
 一方、第1熱伝導性フィラー4のアスペクト比の上限は、100が好ましい。この場合、第1熱伝導性フィラーを熱伝導性樹脂成型品に充填しやすく、また、熱伝導性樹脂成型品を作製する際の加工性にも優れることになる。
The aspect ratio of the first thermally conductive filler 4 is 10 or more. In this case, the second thermally conductive filler 5 having a particle diameter smaller than that of the first thermally conductive filler 4 is dispersed in the gaps of the first thermally conductive filler 4 to easily form a thermally conductive path, and the first heat The conductive filler 4 is easy to be oriented in the matrix component 2.
On the other hand, the upper limit of the aspect ratio of the first heat conductive filler 4 is preferably 100. In this case, the first thermally conductive filler can be easily filled into the thermally conductive resin molded product, and the processability at the time of producing the thermally conductive resin molded product is also excellent.
 本発明において、熱伝導性フィラーの「粒径」とは、粒度分布測定における平均粒径という概念である。上記平均粒径は、レーザー回析散乱法(装置:マイクロトラック・ベル株式会社社製、マイクロトラックMT3300EXII)によって測定されたものである。
 また、本発明において、熱伝導性フィラーの「アスペクト比」は、短径に対する長径の比の平均値という概念である。上記アスペクト比は、SEMで撮影された画像から200個以上の粒子を任意に選択し、それぞれの長径と短径の比を求めて平均値を算出する。ここで、長径及び短径は、各粒子の観察画像において、最も長い部分の長さを長径とし、この長径の中点を通り、かつ当該長径に直行する部分の長さを短径とする。
In the present invention, the “particle size” of the thermally conductive filler is the concept of the average particle size in the particle size distribution measurement. The average particle size is measured by a laser diffraction scattering method (apparatus: Microtrac MT3300EXII manufactured by Microtrac Bell Inc.).
In the present invention, the “aspect ratio” of the thermally conductive filler is a concept of the average value of the ratio of the major axis to the minor axis. The above-mentioned aspect ratio arbitrarily selects 200 or more particles from the image photographed by SEM, calculates the ratio of the major axis to the minor axis, and calculates the average value. Here, for the major axis and minor axis, in the observed image of each particle, the length of the longest portion is the major axis, and the length of a portion passing through the middle point of this major axis and orthogonal to the major axis is the minor axis.
 第2熱伝導性フィラー5は、第1熱伝導性フィラーより小さい粒径を有し、窒化ホウ素以外の材質からなる。
 第2熱伝導性フィラー5は、窒化ホウ素以外の材質からなり、かつ熱伝導性を有するものであれば良い。第2熱伝導性フィラー5の具体例としては、例えば、黒鉛、炭素繊維、カーボンナノチューブ(CNT)、雲母、アルミナ、窒化アルミニウム、炭化珪素、シリカ、酸化亜鉛、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、二硫化モリブデン、銅、アルミニウム等からなるものが挙げられる。
 これらのなかでは、酸化マグネシウムからなる熱伝導性フィラー、及び、炭酸マグネシウムからなる熱伝導性フィラーが好ましい。第1熱伝導性フィラー4同士の間に介在して熱伝導性シート1の熱伝導性を高めるのに適しており、かつ熱伝導性シート1を安価で提供するのに適しているからである。
The second thermally conductive filler 5 has a particle size smaller than that of the first thermally conductive filler, and is made of a material other than boron nitride.
The second thermally conductive filler 5 may be made of a material other than boron nitride and has thermal conductivity. Specific examples of the second heat conductive filler 5 include, for example, graphite, carbon fiber, carbon nanotube (CNT), mica, alumina, aluminum nitride, silicon carbide, silica, zinc oxide, magnesium oxide, calcium carbonate, magnesium carbonate, What consists of molybdenum disulfide, copper, aluminum etc. is mentioned.
Among these, a heat conductive filler made of magnesium oxide and a heat conductive filler made of magnesium carbonate are preferable. It is because it intervenes between the first thermally conductive fillers 4 to be suitable for enhancing the thermal conductivity of the thermally conductive sheet 1 and suitable for providing the thermally conductive sheet 1 at low cost. .
 第2熱伝導性フィラー5の形状は特に限定されず、具体的な形状としては、例えば、球状、鱗片状、板状、膜状、円柱状、角柱状、楕円状、扁平形状などが挙げられる。
 第2熱伝導性フィラー5の形状は、球状、鱗片状が好ましい。この場合、第1熱伝導性フィラー4間に熱伝導パスを形成しやすく、また、第1熱伝導性フィラー4を配向させるのに適しているからである。
The shape of the second heat conductive filler 5 is not particularly limited, and specific shapes include, for example, a spherical shape, a scaly shape, a plate shape, a film shape, a columnar shape, a prismatic shape, an elliptical shape, and a flat shape. .
The shape of the second thermally conductive filler 5 is preferably spherical or scaly. In this case, it is easy to form a heat conduction path between the first heat conductive fillers 4 and suitable for orienting the first heat conductive fillers 4.
 第2熱伝導性フィラー5の粒径は、第1熱伝導性フィラー4の粒径よりも小さければ特に限定されないが、3~20μmが好ましい。
 第2熱伝導性フィラー5の粒径がこの範囲にあると、第1熱伝導性フィラー4同士の間に介在して熱伝導パスを形成すること、及び、第1熱伝導性フィラー4を配向させること、により適している。更に、第2熱伝導性フィラー5の粒径がこの範囲にあると、熱伝導性シート1の表面粗さを抑え、発熱部材や放熱部材と接触した際の接触熱抵抗(熱伝導性シート1の表面の熱抵抗)を小さくするのに適している。
 一方、第2熱伝導性フィラー5の粒径が20μmを超えると、第1熱伝導性フィラー4が配向しにくくなり、熱伝導性シート1は熱伝導性に劣る場合がある。
 また、第2熱伝導性フィラー5の粒径が3μm未満の場合は、第2熱伝導性フィラー5の材質によっては、熱伝導性シート1は熱伝導性に劣ることがある。例えば、第2熱伝導性フィラー5の材質が酸化マグネシウム又は炭酸マグネシウムの場合は、熱伝導性シート1の製造過程で第2熱伝導性フィラー5の発泡が生じる場合があり、このような発泡が生じると、製造された熱伝導性シート1の熱伝導性が低下する場合がある。
 第2熱伝導性フィラー5の粒径は、5~20μmがより好ましく、5~15μmがさらに更に好ましく、5~10μmが特に好ましい。
The particle diameter of the second thermally conductive filler 5 is not particularly limited as long as it is smaller than the particle diameter of the first thermally conductive filler 4, but 3 to 20 μm is preferable.
When the particle diameter of the second thermally conductive filler 5 is in this range, a thermally conductive path is formed to be interposed between the first thermally conductive fillers 4, and the first thermally conductive filler 4 is oriented It is more suitable to Furthermore, when the particle diameter of the second thermally conductive filler 5 is in this range, the surface roughness of the thermally conductive sheet 1 is suppressed, and the contact thermal resistance (thermally conductive sheet 1) when in contact with the heat generating member or the heat radiating member Suitable for reducing the thermal resistance of the surface of
On the other hand, if the particle size of the second thermally conductive filler 5 exceeds 20 μm, the first thermally conductive filler 4 is difficult to be oriented, and the thermally conductive sheet 1 may be inferior in thermal conductivity.
When the particle diameter of the second thermally conductive filler 5 is less than 3 μm, the thermally conductive sheet 1 may be inferior in thermal conductivity depending on the material of the second thermally conductive filler 5. For example, when the material of the second thermally conductive filler 5 is magnesium oxide or magnesium carbonate, foaming of the second thermally conductive filler 5 may occur in the process of producing the thermally conductive sheet 1, and such foaming is If produced, the thermal conductivity of the produced thermally conductive sheet 1 may be reduced.
The particle diameter of the second thermally conductive filler 5 is more preferably 5 to 20 μm, still more preferably 5 to 15 μm, and particularly preferably 5 to 10 μm.
 第2熱伝導性フィラー5のアスペクト比の上限は100が好ましい。第2熱伝導性フィラーを熱伝導性樹脂成型品に充填しやすく、また、熱伝導性樹脂成型品を作製する際の加工性にも優れるからである。
 第2熱伝導性フィラー5のアスペクト比の下限は限定されず、第2熱伝導性フィラー5のアスペクト比は1以上であれば良い。
 第2熱伝導性フィラー5の粒径及びアスペクト比のそれぞれの測定方法は、第1熱伝導性フィラー4の粒径及びアスペクト比の測定方法と同様である。
The upper limit of the aspect ratio of the second thermally conductive filler 5 is preferably 100. This is because the second thermally conductive filler can be easily filled into the thermally conductive resin molded article, and the processability at the time of producing the thermally conductive resin molded article is also excellent.
The lower limit of the aspect ratio of the second thermally conductive filler 5 is not limited, and the aspect ratio of the second thermally conductive filler 5 may be 1 or more.
The measuring method of each of the particle diameter and the aspect ratio of the second heat conductive filler 5 is the same as the measuring method of the particle diameter and the aspect ratio of the first heat conductive filler 4.
 熱伝導性シート1における熱伝導性フィラーの含有量(熱伝導性フィラーの総含有量)は、30~50体積%である。
 上記熱伝導性フィラーの総含有量が30体積%未満では、充分な熱伝導性を確保することができない。また、上記含有量が50体積%を超えると、熱伝導性樹脂成型品を作製する際の加工性に劣ることになり、かつ熱伝導性を有する樹脂成型品を安価で提供することが困難になる。
The content of the thermally conductive filler in the thermally conductive sheet 1 (the total content of the thermally conductive filler) is 30 to 50% by volume.
If the total content of the thermally conductive filler is less than 30% by volume, sufficient thermal conductivity can not be ensured. In addition, when the content exceeds 50% by volume, the processability at the time of producing a thermally conductive resin molded article is inferior, and it is difficult to provide a thermally conductive resin molded article at low cost. Become.
 熱伝導性シート1における第1熱伝導性フィラー4の含有量は、5~20体積%である。この場合、第1熱伝導性フィラーを配向させ、熱伝導性を確保することができる。
 一方、第1熱伝導性フィラー4の含有量が5体積%未満では、第1熱伝導性フィラーを配向させても、充分な熱伝導性を確保することができない。また、上記含有量が20体積%を超えると、安価に熱伝導性樹脂成型品を提供することが困難である。
The content of the first thermally conductive filler 4 in the thermally conductive sheet 1 is 5 to 20% by volume. In this case, the thermal conductivity can be secured by orienting the first thermally conductive filler.
On the other hand, if the content of the first thermally conductive filler 4 is less than 5% by volume, sufficient thermal conductivity can not be ensured even if the first thermally conductive filler is oriented. Moreover, when the said content exceeds 20 volume%, it is difficult to provide a heat conductive resin molded product in low cost.
 熱伝導性シート1における第2熱伝導性フィラー5の含有量は、10~45体積%が好ましい。
 第2熱伝導性フィラー5の含有量が10体積%未満では、成型時に第1熱伝導性フィラーを配向させることが困難になる。一方、第2熱伝導性フィラー5の含有量が45体積%を超えると、第1熱伝導性フィラーの含有量が少なくなりすぎ、充分な熱伝導性を確保することができなくなる。
 第2熱伝導性フィラー5の含有量は、20~45体積%がより好ましい。
The content of the second thermally conductive filler 5 in the thermally conductive sheet 1 is preferably 10 to 45% by volume.
When the content of the second thermally conductive filler 5 is less than 10% by volume, it becomes difficult to orient the first thermally conductive filler at the time of molding. On the other hand, when the content of the second thermally conductive filler 5 exceeds 45% by volume, the content of the first thermally conductive filler is too small, and sufficient thermal conductivity can not be ensured.
The content of the second thermally conductive filler 5 is more preferably 20 to 45% by volume.
 本実施形態の熱伝導性シート1は、熱伝導性フィラーとして、第1熱伝導性フィラー4及び第2熱伝導性フィラー5を含有している。ここで、第1熱伝導性フィラー4の粒径D1と、第2熱伝導性フィラー5の粒径D2が、D1>D2の関係を有している。
 なお、熱伝導性シート1は、本発明の効果を損なわない範囲で、第1熱伝導性フィラー4及び第2熱伝導性フィラー5以外の熱伝導性フィラーを含有しても良い。
The thermally conductive sheet 1 of the present embodiment contains a first thermally conductive filler 4 and a second thermally conductive filler 5 as a thermally conductive filler. Here, the particle diameter D1 of the first thermally conductive filler 4 and the particle diameter D2 of the second thermally conductive filler 5 have a relationship of D1> D2.
In addition, the thermally conductive sheet 1 may contain thermally conductive fillers other than the 1st thermally conductive filler 4 and the 2nd thermally conductive filler 5 in the range which does not impair the effect of this invention.
 熱伝導性シート1の厚さは特に限定されないが、例えば、0.1~3.0mm程度である。
 この場合、熱伝導性シート1は、電気部品や自動車部品等において、発熱部材と放熱部材との間で熱を効率良く伝達する部材として好適に使用することができる。
The thickness of the thermally conductive sheet 1 is not particularly limited, and is, for example, about 0.1 to 3.0 mm.
In this case, the heat conductive sheet 1 can be suitably used as a member for efficiently transmitting heat between the heat generating member and the heat dissipating member in an electric part, an automobile part or the like.
 次に、本実施形態に係る熱伝導性シートを製造する方法について、図面を参照しながら説明する。
 図2は、本発明の実施形態に係る熱伝導性シートの製造で使用する押出機を模式的に示す図である。図2には、押出機100の先端部分及びTダイの断面概略図を示す。
 押出機100に投入された熱伝導性フィラーを含む原料組成物は、スクリュー8によって撹拌・混練され、流路10に沿って第1ギャップ12に導入される。
Next, a method of manufacturing the thermally conductive sheet according to the present embodiment will be described with reference to the drawings.
FIG. 2: is a figure which shows typically the extruder used by manufacture of the heat conductive sheet which concerns on embodiment of this invention. FIG. 2 shows a schematic cross-sectional view of the tip portion of the extruder 100 and the T-die.
The raw material composition containing the thermally conductive filler charged into the extruder 100 is stirred and kneaded by the screw 8 and introduced into the first gap 12 along the flow path 10.
 押出機100に投入された原料組成物は、まず、第1ギャップ12によって上下方向(厚さ方向)にしぼり込まれて薄い帯状となる。第1ギャップ12を通過する際、原料組成物にはせん断力が作用し、原料組成物中に混合されている第1熱伝導性フィラーが原料組成物の流れ方向に配向する。従って、第1ギャップ12を通過して成形された厚さの薄い樹脂シート前駆体は、少なくとも第1熱伝導性フィラーが当該樹脂シート前駆体の面方向に配向している。
 また、第2熱伝導性フィラーが配向可能な形状を有するフィラーの場合、当該第2熱伝導性フィラーは、第1ギャップ12を通過する際に第1熱伝導性フィラーと同方向に配向する。
The raw material composition supplied to the extruder 100 is first squeezed in the vertical direction (thickness direction) by the first gap 12 to form a thin strip. When passing through the first gap 12, shear force acts on the raw material composition, and the first thermally conductive filler mixed in the raw material composition is oriented in the flow direction of the raw material composition. Accordingly, in the thin resin sheet precursor having a thickness formed by passing through the first gap 12, at least the first thermally conductive filler is oriented in the surface direction of the resin sheet precursor.
In addition, in the case of a filler having a shape in which the second thermally conductive filler can be oriented, the second thermally conductive filler is oriented in the same direction as the first thermally conductive filler when passing through the first gap 12.
 第1ギャップ12の隙間(図2中、上下方向の寸法)は、0.1mm以上5.0mm以下であることが好ましい。第1ギャップ12の隙間が0.1mmよりも小さいと、押出し圧力が不必要に上昇し、更には、樹脂詰まりが発生してしまうことがある。一方、第1ギャップ12の隙間が5.0mmよりも大きいと、上記薄い樹脂シート前駆体の面方向に対する熱伝導性フィラーの配向度が減少することがある。 The gap (the dimension in the vertical direction in FIG. 2) of the first gap 12 is preferably 0.1 mm or more and 5.0 mm or less. If the gap of the first gap 12 is smaller than 0.1 mm, the extrusion pressure may increase unnecessarily, and further, resin clogging may occur. On the other hand, if the gap of the first gap 12 is larger than 5.0 mm, the degree of orientation of the thermally conductive filler in the surface direction of the thin resin sheet precursor may be reduced.
 第1熱伝導性フィラーが面方向に配向した上記薄い樹脂シート前駆体は、第1ギャップ12を完全に通過すると、押出方向に限定されていたシートの流れ方向が解放されて、当該流れ方向が押出方向に対してほぼ垂直となる方向に変化する。これは、第1ギャップ12を通過した後の流路10の断面積が拡大し、流路10の上下方向の長さが長くなるためである。
 シートの流れ方向が押出方向に対してほぼ垂直となる方向に変化した上記薄い樹脂シート前駆体は、第1ギャップ12を完全に通過した後、更に第2ギャップ14に向かって押し出される。その結果、第2ギャップ14内の樹脂シート前駆体は、上記薄い樹脂シート前駆体が積層された状態となる。その際に第1熱伝導性フィラーの多くは、第2ギャップ14内の樹脂シート前駆体の厚さ方向(図2中、上下方向)に配向させられる。
 その後、必要に応じて、樹脂シート前駆体を所定の条件で加熱することにより架橋を進行させ、更に必要に応じて、樹脂シート前駆体を厚さ方向に垂直な方向にスライス加工する。このような工程を経て、熱伝導性シート1が製造される。
When the thin resin sheet precursor in which the first thermally conductive filler is oriented in the plane direction completely passes through the first gap 12, the flow direction of the sheet which has been limited in the extrusion direction is released, and the flow direction is It changes in a direction substantially perpendicular to the extrusion direction. This is because the cross-sectional area of the flow path 10 after passing through the first gap 12 is expanded, and the length in the vertical direction of the flow path 10 is increased.
The thin resin sheet precursor in which the flow direction of the sheet is changed to be substantially perpendicular to the extrusion direction is further extruded toward the second gap 14 after completely passing through the first gap 12. As a result, the resin sheet precursor in the second gap 14 is in a state in which the thin resin sheet precursor is laminated. At this time, most of the first thermally conductive fillers are oriented in the thickness direction (vertical direction in FIG. 2) of the resin sheet precursor in the second gap 14.
Thereafter, if necessary, the resin sheet precursor is heated under predetermined conditions to advance crosslinking, and further, as required, the resin sheet precursor is sliced in the direction perpendicular to the thickness direction. The heat conductive sheet 1 is manufactured through such a process.
 ここで、第2ギャップ14の隙間は第1ギャップ12の隙間の2倍以上20倍以下であることが好ましい。第2ギャップ14の隙間が第1ギャップ12の隙間の2倍よりも小さい場合は、第1熱伝導性フィラー4が熱伝導性シート1の厚さ方向に配向しないことがある。また、第2ギャップ14の隙間が第1ギャップ12の隙間の20倍よりも大きな場合は、部分的に樹脂シート前駆体が乱流した状況が生じやすくなり、その結果、熱伝導性シート1の厚さ方向に配向する第1熱伝導性フィラー4の割合が減少してしまうことがある。
 第2ギャップ14の隙間は第1ギャップ12の隙間の2倍以上10倍以下であることがより好ましい。
 また、上記樹脂シート前駆体が流路10の上下方向において均等に流れやすくなる観点から、第1ギャップ12における厚さ方向の中心と、第2ギャップ14における厚さ方向の中心とは、厚さ方向において略同一の位置にあることが好ましい。
Here, the gap of the second gap 14 is preferably twice or more and 20 times or less the gap of the first gap 12. If the gap of the second gap 14 is smaller than twice the gap of the first gap 12, the first thermally conductive filler 4 may not be oriented in the thickness direction of the thermally conductive sheet 1. In addition, when the gap of the second gap 14 is larger than 20 times the gap of the first gap 12, a situation where the resin sheet precursor is partially turbulent flows easily, and as a result, the heat conductive sheet 1 The proportion of the first thermally conductive filler 4 oriented in the thickness direction may be reduced.
The gap of the second gap 14 is more preferably twice or more and 10 times or less than the gap of the first gap 12.
Further, from the viewpoint of facilitating uniform flow of the resin sheet precursor in the vertical direction of the flow path 10, the thickness direction center of the first gap 12 and the thickness direction center of the second gap 14 have a thickness It is preferable to be at substantially the same position in the direction.
 第1ギャップ12に繋がる開口部の形状は特に規定されないが、上流側の開口部の側面(上下面)は圧力損失が少ないように傾斜面とすることが好ましく、下流側の開口部の側面(上下面)については効率良く熱伝導性フィラーを樹脂シートの厚さ方向に配向させるために、傾斜角度(押出方向と傾斜面とのなす角度)を調整することが望ましい。当該傾斜角度としては、例えば、10°~50°とすることができ、更には、20°~25°であるのが好ましい。
 また、第1ギャップ12に繋がる開口部は、上下共に傾斜を有している必要はなく、どちらか一方のみが傾斜を有していても良い。
 なお、第1ギャップ12及び第2ギャップ14の奥行(即ち、図2において紙面に略垂直な方向における第1ギャップ12及び第2ギャップ14の隙間)は、Tダイの全体にわたって略同一である。また、上記第1ギャップ及び上記第2ギャップの奥行寸法は特に規定されず、樹脂シートの製品幅に応じて種々の設計変更が可能である。
The shape of the opening connected to the first gap 12 is not particularly limited, but the side surfaces (upper and lower surfaces) of the opening on the upstream side are preferably inclined to reduce pressure loss. In order to efficiently orient the thermally conductive filler in the thickness direction of the resin sheet, it is desirable to adjust the inclination angle (the angle between the extrusion direction and the inclined surface) for upper and lower surfaces). The inclination angle may be, for example, 10 ° to 50 °, and more preferably 20 ° to 25 °.
Further, the opening connected to the first gap 12 does not have to be inclined at both the upper and lower sides, and only one of them may have the inclination.
The depths of the first gap 12 and the second gap 14 (that is, the gaps between the first gap 12 and the second gap 14 in a direction substantially perpendicular to the paper surface in FIG. 2) are substantially the same throughout the T die. Further, the depth dimensions of the first gap and the second gap are not particularly defined, and various design changes are possible according to the product width of the resin sheet.
 本発明の実施形態に係る熱伝導性シートは、下記の製造方法によって製造することもできる。
 即ち、熱伝導性シートを製造するための原料組成物を調製した後、この原料組成物を用いて少なくとも第1熱伝導性フィラーが面方向に配向したシート状物を従来公知の方法で複数枚作製し、そのシート状物を複数枚積層してブロック状物とした後、上記第1熱伝導性フィラーが配向した方向に対して垂直な方向から上記ブロック状物(シート状物の積層体)をカットすることにより作製しても良い。この方法で熱伝導性シートを製造する場合、必要に応じて、適宜なタイミングで架橋処理を施しても良い。
 このような方法で製造された熱伝導性シートもまた、第1熱伝導性フィラーが熱伝導性シートの略厚さ方向に配向した熱伝導性に優れたシートとなる。
The thermally conductive sheet according to the embodiment of the present invention can also be manufactured by the following manufacturing method.
That is, after preparing a raw material composition for producing a thermally conductive sheet, using the raw material composition, a plurality of sheet materials in which at least the first thermally conductive filler is oriented in the plane direction are obtained by a conventionally known method A plurality of sheet-like materials are laminated to form a block-like material, and then the block-like material (laminate of sheet materials) from the direction perpendicular to the direction in which the first thermally conductive filler is oriented It may be produced by cutting. When manufacturing a heat conductive sheet by this method, you may perform a crosslinking process at an appropriate timing as needed.
The thermally conductive sheet produced by such a method is also a sheet excellent in thermal conductivity in which the first thermally conductive filler is oriented in the substantially thickness direction of the thermally conductive sheet.
 次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
(実施例1)
 表1に記載の配合にて、樹脂成分に、架橋剤並びに第1熱伝導性フィラー及び第2熱伝導性フィラー(以下、全てを合わせて原料成分ともいう)を2本ロールで練り込み、リボンシート(前駆体としての組成物)を得た。
 上記樹脂成分としては、シリコーンゴム「東レダウコーニング社製のDY321005U」、及び可塑剤(信越化学工業社製のシリコーンオイル:KF-96-3000CS)を用いた。
 上記架橋剤としては、東レダウコーング社製の「MR‐53」及び「RC-4 50P FD」を用いた。表1にはその合計含有量を示した。
 上記第1熱伝導性フィラーとしては、窒化ホウ素からなるフィラー(デンカ株式会社製「XGP」(鱗片状、粒径35μm、アスペクト比約30))を用いた。
 上記第2熱伝導性フィラーとしては、炭酸マグネシウムからなるフィラー(立方体状、粒径6μm、アスペクト比約1(神島化学工業株式会社製))を用いた。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited to such examples.
Example 1
In the composition described in Table 1, the resin component is mixed with a cross-linking agent and a first heat conductive filler and a second heat conductive filler (hereinafter, all are collectively referred to as a raw material component) by two rolls, and a ribbon A sheet (composition as a precursor) was obtained.
As the resin component, silicone rubber “DY321005U manufactured by Toray Dow Corning” and a plasticizer (silicone oil manufactured by Shin-Etsu Chemical Co., Ltd .: KF-96-3000CS) were used.
As the above-mentioned crosslinking agent, "MR-53" and "RC-450P FD" manufactured by Toray Dow Corneg were used. Table 1 shows the total content.
As the first thermally conductive filler, a filler made of boron nitride (“XGP” (scale-like, particle size 35 μm, aspect ratio about 30) manufactured by Denka Co., Ltd.) was used.
As the second heat conductive filler, a filler made of magnesium carbonate (cube shape, particle diameter 6 μm, aspect ratio about 1 (manufactured by Kamijima Chemical Co., Ltd.)) was used.
 次に、作製したリボンシートを図2に示したようなゴム用短軸押出機100にて、1mmの第一ギャップ及び10mmの第二ギャップを有する垂直配向金型(口金)を用いて、第1熱伝導性フィラー(鱗片状窒化ホウ素)が厚さ方向に配向した厚さ10mmのシートを作製し、当該シートを170℃で30分間の架橋処理を施した。架橋処理後の当該シートを厚さ方向と垂直にスライス加工し、厚さ500μmの熱伝導性樹脂成型品として熱伝導性シート1を作製した。 Next, in the rubber short-shaft extruder 100 as shown in FIG. 2, the ribbon sheet produced was prepared using a vertically oriented mold (die) having a first gap of 1 mm and a second gap of 10 mm. 1 A sheet having a thickness of 10 mm, in which a thermally conductive filler (flaky boron nitride) is oriented in the thickness direction, was prepared, and the sheet was subjected to crosslinking treatment at 170 ° C. for 30 minutes. The sheet after the crosslinking treatment was sliced in the direction perpendicular to the thickness direction to prepare a thermally conductive sheet 1 as a thermally conductive resin molded product with a thickness of 500 μm.
(実施例2)
 原料成分の配合量を表1に示したように変更した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Example 2)
A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1.
(実施例3)
 第2熱伝導性フィラーとして、炭酸マグネシウムからなるフィラー(立方体状、粒径15μm、アスペクト比約1(神島化学工業株式会社製))を使用し、かつ原料成分の配合量を表1に示したように変更した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Example 3)
As a second heat conductive filler, a filler made of magnesium carbonate (cube shape, particle diameter 15 μm, aspect ratio about 1 (manufactured by Kamijima Chemical Industries Co., Ltd.)) was used, and the blending amounts of the raw material components are shown in Table 1 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that it was changed as described above.
(実施例4)
 原料成分の配合量を表1に示したように変更した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Example 4)
A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1.
(実施例5)
 第2熱伝導性フィラーとして、酸化マグネシウムからなるフィラー(堺化学工業株式会社製の「SMO」(球状、粒径10μm、アスペクト比約1))を使用し、かつ原料成分の配合量を表1に示したように変更した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Example 5)
As a second heat conductive filler, a filler made of magnesium oxide (“SMO” (spherical, particle size 10 μm, aspect ratio about 1) manufactured by Sakai Chemical Industry Co., Ltd.) is used, and the blending amounts of raw material components are shown in Table 1 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that it was changed as shown in.
(実施例6)
 原料成分の配合量を表1に示したように変更した以外は、実施例5と同様にして熱伝導性シート1を作製した。
(Example 6)
A thermally conductive sheet 1 was produced in the same manner as in Example 5 except that the blending amounts of the raw material components were changed as shown in Table 1.
(実施例7)  
 第2熱伝導性フィラーとして、炭酸マグネシウムからなるフィラー(立方体状、粒径26μm、アスペクト比約1(神島化学工業株式会社製))を使用し、かつ原料成分の配合量を表1に示したように変更した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Example 7)
As a second heat conductive filler, a filler made of magnesium carbonate (cube shape, particle diameter 26 μm, aspect ratio about 1 (made by Kamijima Chemical Co., Ltd.)) was used, and the blending amounts of the raw material components are shown in Table 1 A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that it was changed as described above.
(実施例8)
 原料成分の配合量を表1に示したように変更した以外は、実施例3と同様にして熱伝導性シート1を作製した。
(Example 8)
A thermally conductive sheet 1 was produced in the same manner as in Example 3 except that the blending amounts of the raw material components were changed as shown in Table 1.
(実施例9)
 原料成分の配合量を表1に示したように変更した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Example 9)
A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1.
(実施例10)
 第2熱伝導性フィラーとして、炭酸カルシウムからなるフィラー(丸尾カルシウム株式会社製「軽質炭酸カルシウム」(球状、粒径6μm、アスペクト比約1))を使用した以外は、実施例7と同様にして熱伝導性シート1を作製した。
(Example 10)
The same procedure as in Example 7 was followed, except that a filler consisting of calcium carbonate ("Light calcium carbonate" (spherical, particle size 6 μm, aspect ratio about 1) manufactured by Maruo Calcium Co., Ltd.) was used as the second thermally conductive filler. A thermally conductive sheet 1 was produced.
(実施例11)
 第2熱伝導性フィラーとして、酸化マグネシウムからなるフィラー(神島化学工業株式会社製「スターマグMSL」(球状、粒径9μm、アスペクト比1))を使用した以外は、実施例7と同様にして熱伝導性シート1を作製した。
(Example 11)
The same procedure as in Example 7 was followed, except that a filler made of magnesium oxide ("Starmag MSL" (spherical, particle size 9 μm, aspect ratio 1) manufactured by Kamijima Chemical Industry Co., Ltd.) was used as the second thermally conductive filler. The conductive sheet 1 was produced.
(比較例1、2)
 原料成分の配合量を表1に示したように変更(第2熱伝導性フィラーを使用しなかった)した以外は、実施例1と同様にして熱伝導性シート1を作製した。
(Comparative Examples 1 and 2)
A thermally conductive sheet 1 was produced in the same manner as in Example 1 except that the blending amounts of the raw material components were changed as shown in Table 1 (the second thermally conductive filler was not used).
[評価試験]
(1)硬度
 得られた熱伝導性樹脂シートの硬度として、アスカーC硬度を測定した。結果を表1に示した。
(2)熱抵抗
 得られた熱伝導性樹脂シートの厚さ方向の熱抵抗をTIM TESTER1300を用いて3水準の測定圧力(0.1MPa、0.3MPa及び0.5MPa)で計測した。計測された値を表1に示した。なお、当該測定は定常法にて米国規格ASTM D5470に準拠した。結果を表1に示した。
[Evaluation test]
(1) Hardness As the hardness of the obtained heat conductive resin sheet, Asker C hardness was measured. The results are shown in Table 1.
(2) Thermal Resistance The thermal resistance in the thickness direction of the obtained thermally conductive resin sheet was measured at three levels of measurement pressure (0.1 MPa, 0.3 MPa and 0.5 MPa) using TIM TESTER 1300. The measured values are shown in Table 1. In addition, the said measurement was based on the American Standard ASTMD5470 by a steady state method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、本発明の実施形態によれば、高価なBNの使用量を減らしつつ、熱抵抗値の低い熱伝導性樹脂シートを提供することができることが明らかとなった。 From the results shown in Table 1, it is clear that according to the embodiment of the present invention, a thermally conductive resin sheet having a low thermal resistance value can be provided while reducing the amount of expensive BN used.
 1 熱伝導性シート
 2 マトリックス成分
 4 第1熱伝導性フィラー
 5 第2熱伝導性フィラー
 6 ウェルドライン
 8 スクリュー
 10 流路
 12 第1ギャップ
 14 第2ギャップ
 100 押出機
Reference Signs List 1 thermally conductive sheet 2 matrix component 4 first thermally conductive filler 5 second thermally conductive filler 6 weld line 8 screw 10 flow path 12 first gap 14 second gap 100 extruder

Claims (3)

  1.  樹脂と、第1熱伝導性フィラー及び前記第1熱伝導性フィラーより小さい粒径を有する第2熱伝導性フィラーを含む熱伝導性フィラーと、を含む熱伝導性樹脂成型品であって、
     前記熱伝導性フィラーの含有量は、30~50体積%であり、
     前記第1熱伝導性フィラーは、30μm以上の粒径及び10以上のアスペクト比を有する窒化ホウ素からなるフィラーであり、
     前記第1熱伝導性フィラーの含有量は、5~20体積%であり、
     前記第2熱伝導性フィラーは、窒化ホウ素以外の材質からなるフィラーである
    ことを特徴とする熱伝導性樹脂成型品。
    A thermally conductive resin molded article comprising a resin, and a thermally conductive filler containing a first thermally conductive filler and a second thermally conductive filler having a particle size smaller than that of the first thermally conductive filler,
    The content of the thermally conductive filler is 30 to 50% by volume,
    The first thermally conductive filler is a filler made of boron nitride having a particle diameter of 30 μm or more and an aspect ratio of 10 or more,
    The content of the first thermally conductive filler is 5 to 20% by volume,
    The thermally conductive resin molded article, wherein the second thermally conductive filler is a filler made of a material other than boron nitride.
  2.  前記第2熱伝導性フィラーの粒径は、3~20μmである請求項1に記載の熱伝導性樹脂成型品。 The thermally conductive resin molded article according to claim 1, wherein the particle diameter of the second thermally conductive filler is 3 to 20 μm.
  3.  前記第2熱伝導性フィラーは、酸化マグネシウム又は炭酸マグネシウムからなるフィラーである請求項1又は2に記載の熱伝導性樹脂成型品。 The thermally conductive resin molded article according to claim 1, wherein the second thermally conductive filler is a filler composed of magnesium oxide or magnesium carbonate.
PCT/JP2018/028025 2017-07-31 2018-07-26 Thermally conductive resin molded article WO2019026745A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018540879A JP6490877B1 (en) 2017-07-31 2018-07-26 Thermal conductive resin molding
CN201880048210.4A CN110945082B (en) 2017-07-31 2018-07-26 Heat conductive resin molded article
DE112018003897.1T DE112018003897B4 (en) 2017-07-31 2018-07-26 Thermally conductive plastic molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148266 2017-07-31
JP2017-148266 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026745A1 true WO2019026745A1 (en) 2019-02-07

Family

ID=65233781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028025 WO2019026745A1 (en) 2017-07-31 2018-07-26 Thermally conductive resin molded article

Country Status (5)

Country Link
JP (1) JP6490877B1 (en)
CN (1) CN110945082B (en)
DE (1) DE112018003897B4 (en)
TW (1) TWI762688B (en)
WO (1) WO2019026745A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022064582A (en) * 2020-10-14 2022-04-26 矢崎総業株式会社 Heat-conductive sheet, electronic apparatus and on-vehicle apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157664A (en) * 1993-12-03 1995-06-20 Fuji Kobunshi Kogyo Kk Thermally conductive silicone rubber sheet and its production
JP2011046967A (en) * 2010-12-07 2011-03-10 Mitsubishi Engineering Plastics Corp Thermoconductive polycarbonate resin composition and molding
JP2012144626A (en) * 2011-01-11 2012-08-02 Daicel Corp Thermally conductive resin composition and thermally conductive sheet
JP2012229315A (en) * 2011-04-26 2012-11-22 Mitsubishi Engineering Plastics Corp Thermally-conductive polyalkylene terephthalate resin composition and molding
JP2012229317A (en) * 2011-04-26 2012-11-22 Nitto Denko Corp Transparent thermoconductive composition
JP2013127035A (en) * 2011-12-19 2013-06-27 Two-One:Kk Thermal conductivity rubber composition that excels in insulation, flame retardancy, mechanical property, and flexibility, and where circuit contact failure is not caused, molding and sheet comprising the rubber composition, and manufacturing method of the same
JP2013225636A (en) * 2011-09-14 2013-10-31 Nippon Shokubai Co Ltd Thermoconductive material
WO2015166609A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Thermally conductive polymer composition and thermally conductive molded object
WO2016093248A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device
WO2017135237A1 (en) * 2016-02-01 2017-08-10 バンドー化学株式会社 Thermally conductive molded resin article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698451B2 (en) 1995-03-13 2005-09-21 電気化学工業株式会社 Sheet manufacturing method
JP3498823B2 (en) * 1996-04-30 2004-02-23 電気化学工業株式会社 Heat radiation spacer and its use
JP5405890B2 (en) 2009-05-01 2014-02-05 電気化学工業株式会社 Thermally conductive moldings and their applications
CN102816438A (en) 2011-06-06 2012-12-12 日东电工株式会社 Silicone resin composition and thermal conductive sheet
CN103333494B (en) * 2013-05-28 2015-08-05 东莞上海大学纳米技术研究院 A kind of Thermal-conductive insulation silicone rubber thermal interface material and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157664A (en) * 1993-12-03 1995-06-20 Fuji Kobunshi Kogyo Kk Thermally conductive silicone rubber sheet and its production
JP2011046967A (en) * 2010-12-07 2011-03-10 Mitsubishi Engineering Plastics Corp Thermoconductive polycarbonate resin composition and molding
JP2012144626A (en) * 2011-01-11 2012-08-02 Daicel Corp Thermally conductive resin composition and thermally conductive sheet
JP2012229315A (en) * 2011-04-26 2012-11-22 Mitsubishi Engineering Plastics Corp Thermally-conductive polyalkylene terephthalate resin composition and molding
JP2012229317A (en) * 2011-04-26 2012-11-22 Nitto Denko Corp Transparent thermoconductive composition
JP2013225636A (en) * 2011-09-14 2013-10-31 Nippon Shokubai Co Ltd Thermoconductive material
JP2013127035A (en) * 2011-12-19 2013-06-27 Two-One:Kk Thermal conductivity rubber composition that excels in insulation, flame retardancy, mechanical property, and flexibility, and where circuit contact failure is not caused, molding and sheet comprising the rubber composition, and manufacturing method of the same
WO2015166609A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Thermally conductive polymer composition and thermally conductive molded object
WO2016093248A1 (en) * 2014-12-08 2016-06-16 日立化成株式会社 Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device
WO2017135237A1 (en) * 2016-02-01 2017-08-10 バンドー化学株式会社 Thermally conductive molded resin article

Also Published As

Publication number Publication date
DE112018003897T5 (en) 2020-04-16
TWI762688B (en) 2022-05-01
JP6490877B1 (en) 2019-03-27
CN110945082A (en) 2020-03-31
CN110945082B (en) 2021-04-13
TW201910131A (en) 2019-03-16
JPWO2019026745A1 (en) 2019-08-08
DE112018003897B4 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
CN108495897B (en) Heat conductive resin molded article
CN107871721B (en) Thermal conductive sheet, method for producing same, and semiconductor device
JP6382927B2 (en) Manufacturing method of resin molded products
JP6746540B2 (en) Heat conduction sheet
JP5322894B2 (en) Insulating heat conductive sheet manufacturing method, insulating heat conductive sheet and heat radiation member
CN106575644B (en) Thermally conductive resin molded article
JP6552572B2 (en) Thermally conductive resin molded product
JP7168617B2 (en) Heat-conducting sheet and manufacturing method thereof
WO2020149335A1 (en) Heat-conductive sheet
JP6490877B1 (en) Thermal conductive resin molding
TW201842150A (en) Heat conductive sheet
JP7499641B2 (en) Thermally conductive sheet
CN116964731A (en) Heat conductive resin sheet
JP7137365B2 (en) thermally conductive sheet
JP2022182791A (en) Thermally conductive sheet and method for producing thermally conductive sheet
CN116848179A (en) Heat conductive sheet feeding form and heat conductive sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540879

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841513

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18841513

Country of ref document: EP

Kind code of ref document: A1