WO2019026674A1 - Cement admixture, cement composition and production method therefor - Google Patents

Cement admixture, cement composition and production method therefor Download PDF

Info

Publication number
WO2019026674A1
WO2019026674A1 PCT/JP2018/027542 JP2018027542W WO2019026674A1 WO 2019026674 A1 WO2019026674 A1 WO 2019026674A1 JP 2018027542 W JP2018027542 W JP 2018027542W WO 2019026674 A1 WO2019026674 A1 WO 2019026674A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
cao
molar ratio
cba
raw material
Prior art date
Application number
PCT/JP2018/027542
Other languages
French (fr)
Japanese (ja)
Inventor
泰一郎 森
悠太 藏本
盛岡 実
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2019534050A priority Critical patent/JP7062668B2/en
Priority to SG11201910123RA priority patent/SG11201910123RA/en
Publication of WO2019026674A1 publication Critical patent/WO2019026674A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates mainly to cement admixtures and cement compositions used in the civil engineering and construction industry.
  • Non-patent Document 1 As a method of suppressing chloride ion permeation into the inside of a hardened concrete and providing chloride ion permeation resistance, a method of reducing a water / cement ratio is known (see Non-patent Document 1). However, the method of reducing the water / cement ratio not only impairs the workability but also may not be a drastic measure.
  • Patent Document 4 a method of adding nitrite or the like for the purpose of preventing corrosion of reinforcing bars has also been proposed (see Patent Document 4 and Patent Document 5).
  • the present invention provides a cement admixture, a cement composition and a method for producing the same, which can suppress the
  • the present invention provides (1) a cement admixture containing calcium boron aluminate having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and a B 2 O 3 content of 0.05 to 10% by mass, (2) The cement admixture according to (1), (3) cement, (1) or (2), wherein the powder degree of calcium boron aluminate is 2,000 to 7,000 cm 2 / g as a brane specific surface area value.
  • Cement composition containing the cement admixture of (4) CaO / Al 2 O 3 molar ratio of 0.15 to 0.7, B 2 O 3 content of 0.05 to 10% by mass, A material containing calcia, a raw material containing alumina, and a raw material containing boron are mixed, calcined at 1400 ° C. or higher, and ground to a Blaine specific surface value of 2000 to 7000 cm 2 / g. Mix the cement Method for producing a cement composition characterized by.
  • the cement admixture of the present invention has an excellent antirust effect and a shielding effect of chloride ions entering from the outside, and furthermore, it is less porous because Ca ions are less leached out from the hardened cement concrete.
  • the effects such as being able to suppress
  • cement concrete as referred to herein is a generic term for cement paste, cement mortar and concrete.
  • the numerical range is intended to include the upper limit value and the lower limit value.
  • CBA Calcium boron aluminate
  • CBA Calcium boron aluminate
  • the material composition of CBA has a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and a B 2 O 3 content of 0.05 to 10%.
  • the CaO / Al 2 O 3 molar ratio is more preferably 0.4 to 0.6. If the CaO / Al 2 O 3 molar ratio is less than 0.15, the shielding effect of chloride ions may not be sufficiently obtained, while if it exceeds 0.7, rapid hardness develops and the usable time is secured. It may not be possible.
  • the content of B 2 O 3 in CBA is preferably 0.05 to 10%, more preferably 0.1 to 5%, and most preferably 0.2 to 3%. If the B 2 O 3 content is less than 0.05%, a large amount of unreacted aluminum oxide may remain when fired in a kiln, while if it exceeds 10%, the chloride ion permeation resistance becomes worse There is.
  • the Blaine specific surface area value (hereinafter, referred to as Blaine) 2,000 ⁇ 7,000cm 2 / g are preferred, the more preferred 3,000 ⁇ 6,000cm 2 / g, 4,000 ⁇ 5 It is most preferable that it is 1,000 cm 2 / g.
  • the CBA brane value is 2,000 cm 2 / g or more, a sufficient chloride ion shielding effect can be obtained, while when it is 7,000 cm 2 / g or less, rapid hardening can be suppressed, and usable time Is effective.
  • the raw materials used for the production of CBA are as follows.
  • the raw material containing calcia is not particularly limited, and examples thereof include commercialized commercially available raw materials such as quick lime (CaO), slaked lime (Ca (OH) 2 ), limestone (CaCO 3 ) and the like.
  • the raw material containing an alumina is not specifically limited, For example, use of Al 2 O 3 , aluminum hydroxide, bauxite marketed as an industrial raw material is mentioned. In particular, bauxite is preferable because it contains B 2 O 3 in addition to Al 2 O 3 .
  • the raw material containing boron is not particularly limited, B 2 O 3 obtained by grinding, processing and refining a borate mineral marketed as an industrial raw material, and B 2 O 3 obtained by recovering and purifying from steel cleaning waste hydrochloric acid Anything can be used.
  • CBA is obtained by mixing a raw material containing calcia, a raw material containing alumina, a raw material containing boron, and other raw materials as appropriate, and performing heat treatment such as firing in a kiln or melting in an electric furnace .
  • the firing temperature is preferably 1200 ° C. or more, more preferably 1300 ° C. or more, although it depends on the composition of the raw materials. If the temperature is less than 1200 ° C., the reaction may not proceed efficiently, and unreacted Al 2 O 3 may remain.
  • cement examples include various Portland cements such as normal, early strength, ultra early strength, low heat, and moderate heat, and various types of blast furnace slag, fly ash or silica mixed with these portland cements.
  • Mixed cement, filler cement mixed with limestone powder and blast furnace slowly cooled slag fine powder, and Portland cement such as environmentally friendly cement (eco cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash as raw materials. And one or more of these can be used.
  • the cement and cement admixture described above can be blended to obtain a cement composition.
  • the amount of the cement admixture used is not particularly limited, but in general, 1 to 30 parts is preferable and 100 parts of the cement composition is more preferable, and 5 to 15 parts is more preferable. If the amount of cement admixture used is less than 1 part, sufficient antirust effect, chloride ion shielding effect and leaching inhibitory effect of Ca ion may not be obtained. On the other hand, if it exceeds 30 parts, rapid hardening is obtained. It may be expressed, and sufficient working time may not be secured.
  • the amount of water used for the cement composition is preferably a water / cement composition ratio of 0.25 to 0.7, and more preferably 0.3 to 0.65. If the blending amount of water is small, pumpability and workability may be reduced or shrinkage may be caused. On the other hand, if the blending amount of water is excessive, strength development may be reduced.
  • the respective materials may be mixed at the time of construction, or some or all of them may be mixed beforehand.
  • cement composition in addition to cement, cement admixture, and fine aggregate such as sand, coarse aggregate such as gravel, expansive material, quick-hardening material, water reducing agent, AE water reducing agent , High performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickener, conventional antirust agent, antifreeze agent, shrinkage reducing agent, condensation regulator, clay minerals such as bentonite, anion exchange such as hydrotalcite Body, slag such as ground granulated blast furnace slag and ground granulated slowly cooled slag, and mixed materials such as limestone fine powder, etc., within a range not substantially hampering the object of the present invention. It is possible to use together.
  • fine aggregate such as sand, coarse aggregate such as gravel, expansive material, quick-hardening material, water reducing agent, AE water reducing agent , High performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickener, conventional antirust agent, antifreeze agent,
  • any existing device can be used, and for example, a tilt mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
  • Example 1 Calcium carbonate of reagent grade 1 and aluminum oxide of reagent grade 1 are compounded to have the molar ratio shown in Table 1 in terms of oxide, and B 2 O 3 of reagent grade 1 is shown in Table 1 with respect to the compound. It mix
  • the CaO / Al 2 O 3 molar ratio 0.7 is at 1400 ° C.
  • the CaO / Al 2 O 3 molar ratio 0.6 is at 1450 ° C.
  • the CaO / Al 2 O 3 molar ratio 0.4 is at 1500 ° C.
  • the CaO / Al 2 O 3 molar ratio of 0.15 was gradually cooled after each firing for 3 hours at 1550 ° C. to produce CBA.
  • the brane value was adjusted to 4,000 cm 2 / g.
  • B sample was added to SiO 2 in place of the 2 O 3, the added sample a similar condition Na 2 O in place of B 2 O 3 .
  • the presence or absence of the unreacted substance was investigated about the produced sample using X-ray diffraction. The results are shown in Table 1.
  • FIG. 1 shows an X-ray diffraction spectrum of a sample obtained while changing the blending amount of B 2 O 3 with respect to CaO and Al 2 O 3 (denoted as CA 2 ).
  • the CaO / Al 2 O 3 molar ratio in the sample is 0.5
  • Al 2 O 3 substitution is carried out at a ratio of 0.5, 1.0, and 1.5 wt% of Al 2 O 3 in B 2 O 3 conversion.
  • the firing conditions were a temperature rising rate of 10 ° C./min and holding at 1400 ° C. for 30 minutes.
  • the measurement conditions were: Cu ⁇ , tube voltage: 40 kV, tube current: 40 mA, step width: 0.02 deg, scanning speed: 2.0 deg / min using a powder X-ray diffractometer (XRD, manufactured by Rigaku Corporation, Multiflex type) .
  • XRD powder X-ray diffractometer
  • B 2 amount of O 3 0%, 0.5%, 1.0% is the spectrum of the 5.0% of the sample.
  • 2 [Theta] 30 from the spectrum around °, B 2 while the CaAl 2 O 4 had occurred as a by-product in the case of O 3 was not added, CaAl 2 O 4
  • the addition of B 2 O 3 It can be seen that the derived peak has disappeared.
  • the peak near 2 ⁇ 25.5 ° shifts slightly to the left as the amount of B 2 O 3 added increases, and the byproduct of Al 2 O 3 (corundum) is also suppressed. From the above, it can be understood that the addition of B 2 O 3 allows only a single phase of CA 2 to be obtained.
  • Example 2 A cement composition is prepared by blending 7 parts of CBA in 100 parts of a cement composition consisting of cement and CBA using CBA shown in Table 2 to prepare a cement composition having a water / cement composition ratio of 0.5 according to JIS R 5201: 2015. It produced according to the same. Using this mortar, antirust effect, compressive strength, chloride penetration depth, leaching amount of Ca ion, and sulfate resistance were examined. The results are shown in Table 2.
  • CBA-A Reagent 1 grade aluminum oxide calcium carbonate reagent first grade blended in a predetermined ratio, B 2 O 3 content blended with reagent grade 1 B 2 O 3 so that the 0.2%
  • annealing was performed at 1550 ° C. for 3 hours in an electric furnace and then slowly cooled.
  • CBA-B Experiment No. 1-3
  • CBA-C Experiment No.
  • CBA-F Compounding calcium carbonate of reagent grade 1 and aluminum oxide of reagent grade 1 in a predetermined ratio, compounding reagent grade B 2 O 3 so that the B 2 O 3 content is 0.2%
  • CBA-G Experiment No. 1-26 CaO / Al 2 O 3 molar ratio 0.4, brane value 4,000 cm 2 / g. Not containing boron.
  • CBA-H Experiment No.
  • Anti-corrosion effect Chloride ions were added to a mortar to be 10 kg / m 3 , a reinforcing bar of round steel was added, and the anti-corrosion effect was confirmed in an accelerated test in which heating and curing were performed at 50 ° C. It is good when the rust does not occur in the rebar at 1 year of material age, it is acceptable when the rust occurs within 1/10 of the area, and it is not acceptable when the rust occurs over 1/10 of the area . Compressive strength: 1 day and 28 day compressive strength was measured according to JIS R5201: 2015. Chloride penetration depth: Evaluate chloride ion penetration resistance.
  • a 10 cm ⁇ ⁇ 20 cm cylindrical mortar specimen aged in water at 20 ° C. until 28 days old is immersed in simulated seawater (at a salt concentration of 3.5%) at 30 ° C. for 12 weeks, then fluorescein-silver nitrate
  • the chloride penetration depth was measured by the method. The chloride penetration depth was determined to be a portion of the cross section of the mortar sample that did not change to brown and was measured at 8 points with a caliper to obtain an average value.
  • Dissolution of Ca ions A mortar specimen (4 ⁇ 4 ⁇ 16 cm) aged at 20 ° C. and 60% humidity until 28 days of age is immersed in 10 liters of pure water for 28 days and dissolved in the liquid phase The concentration of Ca ion was measured.
  • Sulfate resistance A mortar specimen (4 ⁇ 4 ⁇ 16 cm) aged at 20 ° C. and 60% humidity until 28 days of age is immersed in a 10% Na 2 SO 4 solution for 25 weeks, and the expansion rate is measured. It was measured.
  • Example 3 Calcium carbonate of reagent grade 1 and aluminum oxide of reagent grade 1 are blended so that the molar ratio of CaO / Al 2 O 3 is 0.4, and the content of B 2 O 3 of reagent grade 1 is shown in Table 3 It carried out similarly to Experimental example 2 except having mix
  • Example 4 The experiment was carried out in the same manner as in Experimental Example 2 except that CBA-D having the fineness shown in Table 4 was used. The results are shown in Table 4.
  • Example 5 The procedure of Experimental Example 2 was repeated except that CBA-D was used and the amount of CBA used in 100 parts of the cement composition consisting of cement and CBA was as shown in Table 5. A test using a conventional anticorrosion material was also conducted for comparison. The rustproofing material was used in 10 parts per 100 parts of cement. The results are shown in Table 5.
  • Conventional anti-corrosion agent a Lithium nitrite, commercial item
  • Conventional anti-corrosion agent b Nitrite type hydrocalumite, commercial item
  • the cement admixture of the present invention since it exhibits an excellent antirust effect, a chloride ion shielding effect, a Ca ion leaching suppression effect, and a sulfate resistance, mainly in the civil engineering / building industry etc. Suitable for a wide range of applications such as marine and river water structures, water tanks, and floor slab concrete.

Abstract

Provided are a cement admixture and a cement composition, which, in a cement concrete cured body, have excellent anti-rust effects on an internal rebar, have shielding effects against chloride ions infiltrating from the exterior, and in addition, have low leaching of Ca ions and can suppress pore development. The cement admixture contains calcium boroaluminate wherein the molar ratio CaO/Al2O3 is 0.15 to 0.7, and the B2O3 content is 0.05 to 10% by mass.

Description

セメント混和材、セメント組成物及びその製造方法Cement admixture, cement composition and method for producing the same
 本発明は、主に、土木・建築業界において使用されるセメント混和材及びセメント組成物に関する。 The present invention relates mainly to cement admixtures and cement compositions used in the civil engineering and construction industry.
 近年、土木や建築分野において、コンクリート構造物の耐久性向上に対する要望が高まっている。 In recent years, in the field of civil engineering and architecture, there has been an increasing demand for improving the durability of concrete structures.
 コンクリート構造物の劣化要因の1つとして、塩化物イオンの存在によって鉄筋が腐食する塩害が挙げられ、その抑制手段として、コンクリート構造物に塩化物イオン浸透抵抗性を付与する方法がある。 As one of the deterioration factors of concrete structures, there is a salt damage in which rebars are corroded due to the presence of chloride ions, and there is a method of imparting chloride ion permeation resistance to concrete structures as a means for suppressing such damage.
 コンクリート硬化体内部への塩化物イオン浸透を抑制し、塩化物イオン浸透抵抗性を付与する方法として、水/セメント比を小さくする方法が知られている(非特許文献1参照)。しかしながら、水/セメント比を小さくする方法は、施工性が損なわれるだけでなく、抜本的な対策とはならない場合があった。 As a method of suppressing chloride ion permeation into the inside of a hardened concrete and providing chloride ion permeation resistance, a method of reducing a water / cement ratio is known (see Non-patent Document 1). However, the method of reducing the water / cement ratio not only impairs the workability but also may not be a drastic measure.
 また、セメントコンクリートに早強性を付与し、かつ、鉄筋の腐食を防止するなどの目的で、CaO・2Al23とセッコウを主体とし、ブレーン比表面積値が8,000cm2/g以上の微粉を含有するセメント混和材を使用する方法が提案されている(特許文献1参照)。 In addition, for the purpose of imparting early strength to cement concrete and preventing corrosion of reinforcing bars, etc., it is mainly composed of CaO · 2Al 2 O 3 and gypsum, and has a specific surface area value of 8,000 cm 2 / g or more. A method of using a cement admixture containing fine powder has been proposed (see Patent Document 1).
 さらに、CaO/Al23モル比が0.3~0.7、ブレーン比表面積値が2000~7000cm2/gのカルシウムアルミネートを含有するセメント混和材を使用し、優れた塩化物イオン浸透抵抗性を持ち、マスコンの温度ひび割れ抑制する方法が提案されている(特許文献2参照)。また、CaO/Al23モル比が0.15~0.7でFe23含有量が0.5~20質量%のカルシウムフェロアルミネート化合物を含有するセメント混和材が提案されている(特許文献3参照)。 Furthermore, excellent chloride ion permeation is achieved using a cement admixture containing calcium aluminate with a CaO / Al 2 O 3 molar ratio of 0.3 to 0.7 and a Blaine specific surface value of 2000 to 7000 cm 2 / g. A method has been proposed which has resistance and suppresses the temperature cracking of the masscon (see Patent Document 2). In addition, a cement admixture containing a calcium ferroaluminate compound having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and an Fe 2 O 3 content of 0.5 to 20% by mass has been proposed. (See Patent Document 3).
 他方、鉄筋の防錆を目的として、亜硝酸塩などを添加する方法も提案されている(特許文献4、特許文献5参照)。 On the other hand, a method of adding nitrite or the like for the purpose of preventing corrosion of reinforcing bars has also been proposed (see Patent Document 4 and Patent Document 5).
特開昭47-035020号公報Japanese Patent Application Laid-Open No. 47-035020 特開2005-104828号公報JP 2005-104828 A 特許第5688073号公報Patent No. 5680873 gazette 特開昭53-003423号公報JP-A-53-003423 特開平01-103970号公報Japanese Patent Application Publication No. 01-103970
 セメントコンクリート硬化体内部の鉄筋に優れた防錆効果を付与し、外部からの塩化物イオンの浸透に対して遮蔽効果を有し、さらに、セメントコンクリート硬化体からのCaイオンの溶脱が少なく多孔化を抑制できる、セメント混和材、セメント組成物及びその製造方法を提供する。 It imparts an excellent antirust effect to the rebar inside cement concrete hardened body, has a shielding effect against the penetration of chloride ion from the outside, and further, less leaching of Ca ion from cement concrete hardened body, making it porous The present invention provides a cement admixture, a cement composition and a method for producing the same, which can suppress the
 本発明は、(1)CaO/Al23モル比が0.15~0.7でB23含有量が0.05~10質量%のカルシウムボロンアルミネートを含有するセメント混和材、(2)カルシウムボロンアルミネートの粉末度が、ブレーン比表面積値で2,000~7,000cm2/gである(1)のセメント混和材、(3)セメントと、(1)または(2)のセメント混和材を含有するセメント組成物、(4)CaO/Al23モル比が0.15~0.7、B23含有量が0.05~10質量%となるように、カルシアを含む原料、アルミナを含む原料及びボロンを含む原料を混合し、1400℃以上で焼成後、ブレーン比表面積値が2000~7000cm2/gとなるよう粉砕して得られたカルシウムボロンアルミネートと、セメントを混合することを特徴とするセメント組成物の製造方法。 The present invention provides (1) a cement admixture containing calcium boron aluminate having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and a B 2 O 3 content of 0.05 to 10% by mass, (2) The cement admixture according to (1), (3) cement, (1) or (2), wherein the powder degree of calcium boron aluminate is 2,000 to 7,000 cm 2 / g as a brane specific surface area value. Cement composition containing the cement admixture of (4) CaO / Al 2 O 3 molar ratio of 0.15 to 0.7, B 2 O 3 content of 0.05 to 10% by mass, A material containing calcia, a raw material containing alumina, and a raw material containing boron are mixed, calcined at 1400 ° C. or higher, and ground to a Blaine specific surface value of 2000 to 7000 cm 2 / g. Mix the cement Method for producing a cement composition characterized by.
 本発明のセメント混和材を使用することにより、優れた防錆効果と、外部から侵入する塩化物イオンの遮蔽効果を持ち、さらに、セメントコンクリート硬化体からのCaイオンの溶脱が少ないことから、多孔化も抑制できるなどの効果を奏する。 By using the cement admixture of the present invention, it has an excellent antirust effect and a shielding effect of chloride ions entering from the outside, and furthermore, it is less porous because Ca ions are less leached out from the hardened cement concrete. The effects such as being able to suppress
カルシウムボロンアルミート試料およびその対照のX線回折スペクトルを示す。The X-ray diffraction spectrum of a calcium boron aluminate sample and its control is shown.
 以下、本発明を詳細に説明する。なお、本明細書における部や%は、特に規定しない限り質量基準で示す。また、本明細書で云うセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。また本明細書では、別段の定めのない限りは、数値範囲はその上限値および下限値を含むものであるとする。 Hereinafter, the present invention will be described in detail. In the present specification, “parts” and “%” are based on mass unless otherwise specified. Moreover, cement concrete as referred to herein is a generic term for cement paste, cement mortar and concrete. Also, in the present specification, unless otherwise specified, the numerical range is intended to include the upper limit value and the lower limit value.
 本発明で使用するカルシウムボロンアルミネート(以下、CBAとも略記する)とは、カルシアを含む原料、アルミナを含む原料、ボロンを含む原料等を混合して、キルンでの焼成や電気炉での溶融等の熱処理をして得られる、CaO、Al23、B23を主成分とする化合物を総称するものであって、カルシウムアルミネートに対してホウ素原子が固溶した結晶構造を有する。 Calcium boron aluminate (hereinafter abbreviated as CBA) used in the present invention is a mixture of a raw material containing calcia, a raw material containing alumina, a raw material containing boron, etc., and fired in a kiln or melted in an electric furnace Is a generic term for compounds obtained by heat treatment such as CaO, Al 2 O 3 , and B 2 O 3 as a main component, and having a crystal structure in which a boron atom forms a solid solution with calcium aluminate. .
 CBAの材料組成は、CaO/Al23モル比が0.15~0.7でB23含有量が0.05~10%である。CaO/Al23モル比は0.4~0.6がより好ましい。CaO/Al23モル比が0.15未満では、塩化物イオンの遮蔽効果が充分に得られない場合があり、一方、0.7を超えると急硬性が発現し、可使時間が確保できない場合がある。CBA中のB23の含有量は、0.05~10%が好ましく、0.1~5%がより好ましく、0.2~3%が最も好ましい。B23含有量が0.05%未満では、キルンで焼成した場合に未反応の酸化アルミニウムが多く残る可能性があり、一方、10%を越えると塩化物イオン浸透抵抗性が悪くなる場合がある。 The material composition of CBA has a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and a B 2 O 3 content of 0.05 to 10%. The CaO / Al 2 O 3 molar ratio is more preferably 0.4 to 0.6. If the CaO / Al 2 O 3 molar ratio is less than 0.15, the shielding effect of chloride ions may not be sufficiently obtained, while if it exceeds 0.7, rapid hardness develops and the usable time is secured. It may not be possible. The content of B 2 O 3 in CBA is preferably 0.05 to 10%, more preferably 0.1 to 5%, and most preferably 0.2 to 3%. If the B 2 O 3 content is less than 0.05%, a large amount of unreacted aluminum oxide may remain when fired in a kiln, while if it exceeds 10%, the chloride ion permeation resistance becomes worse There is.
 CBAの粉末度は、ブレーン比表面積値(以下、ブレーン値という)で2,000~7,000cm2/gが好ましく、3,000~6,000cm2/gがより好ましく、4,000~5,000cm2/gが最も好ましい。CBAのブレーン値が2,000cm2/g以上であると充分な塩化物イオンの遮蔽効果が得られ、一方、7,000cm2/g以下であると急硬性の発現を抑えられ、可使時間が確保できる効果がある。 Fineness of the CBA, the Blaine specific surface area value (hereinafter, referred to as Blaine) 2,000 ~ 7,000cm 2 / g are preferred, the more preferred 3,000 ~ 6,000cm 2 / g, 4,000 ~ 5 It is most preferable that it is 1,000 cm 2 / g. When the CBA brane value is 2,000 cm 2 / g or more, a sufficient chloride ion shielding effect can be obtained, while when it is 7,000 cm 2 / g or less, rapid hardening can be suppressed, and usable time Is effective.
 CBAの製造に使用する原料は次の通りである。 The raw materials used for the production of CBA are as follows.
 カルシアを含む原料は特に限定されないが、工業原料として市販されている、例えば、生石灰(CaO)、消石灰(Ca(OH)2)、石灰石(CaCO3)等の使用が挙げられる。 The raw material containing calcia is not particularly limited, and examples thereof include commercialized commercially available raw materials such as quick lime (CaO), slaked lime (Ca (OH) 2 ), limestone (CaCO 3 ) and the like.
 アルミナを含む原料は特に限定されないが、工業原料として市販されている、例えばAl23や水酸化アルミニウム、ボーキサイトの使用が挙げられる。特にボーキサイトはAl23の他にB23を含んでいるため好ましい。 Although the raw material containing an alumina is not specifically limited, For example, use of Al 2 O 3 , aluminum hydroxide, bauxite marketed as an industrial raw material is mentioned. In particular, bauxite is preferable because it contains B 2 O 3 in addition to Al 2 O 3 .
 ボロンを含む原料は特に限定されないが、工業原料として市販されているホウ酸塩鉱物を粉砕、加工、精製したB23や、鋼材洗浄廃塩酸から回収、精製して得られるB23など如何なるものも使用可能である。 Although the raw material containing boron is not particularly limited, B 2 O 3 obtained by grinding, processing and refining a borate mineral marketed as an industrial raw material, and B 2 O 3 obtained by recovering and purifying from steel cleaning waste hydrochloric acid Anything can be used.
 さらに、例えば、MgO、SiO2、R2O(Rはアルカリ金属)、Fe23、TiO2、Ti23を併用しても、本発明の目的を損なわない限り使用可能である。 Furthermore, for example, even if MgO, SiO 2 , R 2 O (R is an alkali metal), Fe 2 O 3 , TiO 2 or Ti 2 O 3 is used in combination, it can be used as long as the object of the present invention is not impaired.
 CBAは、カルシアを含む原料、アルミナを含む原料、およびボロンを含む原料、ならびに適切であればその他の原料を混合して、キルンでの焼成や電気炉での溶融等の熱処理をして得られる。焼成温度は原料の配合にもよるが1200℃以上が好ましく、1300℃以上がより好ましい。1200℃未満では効率良く反応が進まず、未反応のAl23が残る可能性がある。 CBA is obtained by mixing a raw material containing calcia, a raw material containing alumina, a raw material containing boron, and other raw materials as appropriate, and performing heat treatment such as firing in a kiln or melting in an electric furnace . The firing temperature is preferably 1200 ° C. or more, more preferably 1300 ° C. or more, although it depends on the composition of the raw materials. If the temperature is less than 1200 ° C., the reaction may not proceed efficiently, and unreacted Al 2 O 3 may remain.
 本発明の実施形態で使用できるセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。 Examples of cement that can be used in the embodiment of the present invention include various Portland cements such as normal, early strength, ultra early strength, low heat, and moderate heat, and various types of blast furnace slag, fly ash or silica mixed with these portland cements. Mixed cement, filler cement mixed with limestone powder and blast furnace slowly cooled slag fine powder, and Portland cement such as environmentally friendly cement (eco cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash as raw materials. And one or more of these can be used.
 本発明の或る実施形態では、上記したセメントとセメント混和材を配合してセメント組成物を得ることができる。 In one embodiment of the present invention, the cement and cement admixture described above can be blended to obtain a cement composition.
 セメント混和材の使用量は特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、1~30部が好ましく、5~15部がより好ましい。セメント混和材の使用量が1部未満であると充分な防錆効果、塩化物イオンの遮蔽効果、Caイオンの溶脱抑制効果が得られない場合があり、一方、30部を超えると急硬性が発現し、充分な可使時間が確保できない場合がある。  The amount of the cement admixture used is not particularly limited, but in general, 1 to 30 parts is preferable and 100 parts of the cement composition is more preferable, and 5 to 15 parts is more preferable. If the amount of cement admixture used is less than 1 part, sufficient antirust effect, chloride ion shielding effect and leaching inhibitory effect of Ca ion may not be obtained. On the other hand, if it exceeds 30 parts, rapid hardening is obtained. It may be expressed, and sufficient working time may not be secured.
 セメント組成物に対する水の使用量は、水/セメント組成物比0.25~0.7が好ましく、0.3~0.65がより好ましい。水の配合量が少ないと、ポンプ圧送性や施工性が低下したり、収縮等の原因となる場合があり、一方、水の配合量が過剰では強度発現性が低下する場合がある。 The amount of water used for the cement composition is preferably a water / cement composition ratio of 0.25 to 0.7, and more preferably 0.3 to 0.65. If the blending amount of water is small, pumpability and workability may be reduced or shrinkage may be caused. On the other hand, if the blending amount of water is excessive, strength development may be reduced.
 上記のセメント混和材やセメント組成物の調製にあたっては、それぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。 In preparation of the above-mentioned cement admixture and cement composition, the respective materials may be mixed at the time of construction, or some or all of them may be mixed beforehand.
 本発明の実施形態に係るセメント組成物では、セメント、セメント混和材、及び砂等の細骨材や砂利等の粗骨材の他にも、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末等の混和材料からなる群のうち一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。 In the cement composition according to the embodiment of the present invention, in addition to cement, cement admixture, and fine aggregate such as sand, coarse aggregate such as gravel, expansive material, quick-hardening material, water reducing agent, AE water reducing agent , High performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickener, conventional antirust agent, antifreeze agent, shrinkage reducing agent, condensation regulator, clay minerals such as bentonite, anion exchange such as hydrotalcite Body, slag such as ground granulated blast furnace slag and ground granulated slowly cooled slag, and mixed materials such as limestone fine powder, etc., within a range not substantially hampering the object of the present invention. It is possible to use together.
 混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。 As a mixing device, any existing device can be used, and for example, a tilt mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
 以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実験例1)
 試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを酸化物換算で表1に示すモル比となるように配合し、その配合物に対して試薬1級のB23を表1に示す含有量となるように配合し、電気炉で焼成した。CaO/Al23モル比0.7のものは1400℃、CaO/Al23モル比0.6のものは1450℃、CaO/Al23モル比0.4のものは1500℃、CaO/Al23モル比0.15のものは1550℃でそれぞれ3時間焼成後に徐冷して、CBAを作製した。ブレーン値は4,000cm2/gに調整した。なお、比較のため、B23を添加しない試料、B23の代わりにSiO2を添加した試料、B23の代わりにNa2Oを添加した試料も同様の条件で作製した。X線回折を用い、作製した試料について未反応物の有無を調べた。結果を表1に示す。
(Experimental example 1)
Calcium carbonate of reagent grade 1 and aluminum oxide of reagent grade 1 are compounded to have the molar ratio shown in Table 1 in terms of oxide, and B 2 O 3 of reagent grade 1 is shown in Table 1 with respect to the compound. It mix | blended so that it might become content, and it baked with the electric furnace. The CaO / Al 2 O 3 molar ratio 0.7 is at 1400 ° C., the CaO / Al 2 O 3 molar ratio 0.6 is at 1450 ° C. The CaO / Al 2 O 3 molar ratio 0.4 is at 1500 ° C. The CaO / Al 2 O 3 molar ratio of 0.15 was gradually cooled after each firing for 3 hours at 1550 ° C. to produce CBA. The brane value was adjusted to 4,000 cm 2 / g. For comparison, prepared in B 2 O 3 samples without added, B sample was added to SiO 2 in place of the 2 O 3, the added sample a similar condition Na 2 O in place of B 2 O 3 . The presence or absence of the unreacted substance was investigated about the produced sample using X-ray diffraction. The results are shown in Table 1.
(試験方法)
X線回折:未反応物(酸化アルミニウム)の回折ピークが明確に確認された場合を×(poor)、多少残っている場合を△(fair)、確認されなかった場合を○(good)とした。
(Test method)
X-ray diffraction: When the diffraction peak of the unreacted material (aluminum oxide) was clearly confirmed, it was x (poor), when some remained, it was 残 っ (fair), and when it was not confirmed, it was ((good) .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、適量のボロンを加えることで、上記の焼成温度でも未反応の酸化アルミニウムが残らないことが分かる。 From Table 1, it can be seen that by adding an appropriate amount of boron, unreacted aluminum oxide does not remain even at the above-mentioned baking temperature.
 なお、ボロンを加えない試料について、未反応の酸化アルミニウムの回折ピークを消失させるには、CaO/Al23モル比0.7のものは1500℃、CaO/Al23モル比0.6のものは1550℃、CaO/Al23モル比0.4のものは1600℃、CaO/Al23モル比0.15のものは1650℃以上でさらに焼成することが必要であった。 Note that the sample without addition of boron, in order to eliminate the diffraction peaks of aluminum oxide unreacted, CaO / Al 2 O 3 as the molar ratio 0.7 1500 ℃, CaO / Al 2 O 3 molar ratio of 0. It is necessary to further bake at 6 at 1550 ° C, CaO / Al 2 O 3 molar ratio of 0.4 at 1600 ° C, CaO / Al 2 O 3 molar ratio of 0.15 at 1650 ° C or higher. The
 図1は、CaOとAl23(CA2と表記)に対して、B23の配合量を変化させつつ得た試料のX線回折スペクトルを示すものである。試料におけるCaO/Al23モル比は0.5とし、Al23をB23換算で0.5、1.0、1.5重量%となる割合でAl23置換で添加した。焼成条件は、昇温速度10℃/分、1400℃で30分保持とした。測定条件は、粉末エックス線回折装置(XRD、リガク社製、Multiflex型)を使用して、ターゲットにCuα、管電圧40kV、管電流40mA、ステップ幅0.02deg、走査速度2.0deg/minとした。 FIG. 1 shows an X-ray diffraction spectrum of a sample obtained while changing the blending amount of B 2 O 3 with respect to CaO and Al 2 O 3 (denoted as CA 2 ). The CaO / Al 2 O 3 molar ratio in the sample is 0.5, and Al 2 O 3 substitution is carried out at a ratio of 0.5, 1.0, and 1.5 wt% of Al 2 O 3 in B 2 O 3 conversion. Added. The firing conditions were a temperature rising rate of 10 ° C./min and holding at 1400 ° C. for 30 minutes. The measurement conditions were: Cu α, tube voltage: 40 kV, tube current: 40 mA, step width: 0.02 deg, scanning speed: 2.0 deg / min using a powder X-ray diffractometer (XRD, manufactured by Rigaku Corporation, Multiflex type) .
 図1の上から順に、B23の配合量が0%、0.5%、1.0%、5.0%の試料のスペクトルである。2θ=30°付近のスペクトルからは、B23を添加しなかった場合にはCaAl24が副生成物として生じていたのに対して、B23を添加するとCaAl24由来のピークが消失したことがわかる。また2θ=25.5°付近のピークが、B23の添加量が増すにつれて若干左へシフトし、Al23(コランダム)の副生も抑えられていたこともわかる。以上から、B23の添加によってCA2の単一相のみが得られるようになることが理解できる。 In order from the top in FIG. 1, B 2 amount of O 3 0%, 0.5%, 1.0%, is the spectrum of the 5.0% of the sample. 2 [Theta] = 30 from the spectrum around °, B 2 while the CaAl 2 O 4 had occurred as a by-product in the case of O 3 was not added, CaAl 2 O 4 The addition of B 2 O 3 It can be seen that the derived peak has disappeared. In addition, it can also be seen that the peak near 2θ = 25.5 ° shifts slightly to the left as the amount of B 2 O 3 added increases, and the byproduct of Al 2 O 3 (corundum) is also suppressed. From the above, it can be understood that the addition of B 2 O 3 allows only a single phase of CA 2 to be obtained.
(実験例2)
 表2に示すCBAを用い、セメントとCBAからなるセメント組成物100部中CBAを7部配合してセメント組成物を作製し、水/セメント組成物比0.5のモルタルをJIS R5201:2015に準じて作製した。このモルタルを用いて、防錆効果、圧縮強さ、塩化物浸透深さ、Caイオンの溶脱量、および耐硫酸塩性を調べた。結果を表2に示す。
(Experimental example 2)
A cement composition is prepared by blending 7 parts of CBA in 100 parts of a cement composition consisting of cement and CBA using CBA shown in Table 2 to prepare a cement composition having a water / cement composition ratio of 0.5 according to JIS R 5201: 2015. It produced according to the same. Using this mortar, antirust effect, compressive strength, chloride penetration depth, leaching amount of Ca ion, and sulfate resistance were examined. The results are shown in Table 2.
(使用材料)
CBA-A:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合に配合し、B23含有量が0.2%となるように試薬1級のB23を配合し、実験例1と同様に、電気炉で1550℃、3時間焼成後に徐冷した。CaO/Al23モル比0.1、ブレーン値4,000cm2/g。
CBA-B:実験No.1-3、CaO/Al23モル比0.15、B23:0.2%、ブレーン値4,000cm2/g。
CBA-C:実験No.1-9、CaO/Al23モル比0.4、B23:0.2%、ブレーン値4,000cm2/g。
CBA-D:実験No.1-15、CaO/Al23モル比0.6、B23:0.2%、ブレーン値4,000cm2/g。
CBA-E:実験No.1-21、CaO/Al23モル比0.7、B23:0.2%、ブレーン値4,000cm2/g。
CBA-F:試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムを所定割合に配合し、B23含有量が0.2%となるように試薬1級のB23を配合し、実験例1と同様に、電気炉で1400℃、3時間焼成後に徐冷した。CaO/Al23モル比0.9、B23:0.2%、ブレーン値4,000cm2/g。
CBA-G:実験No.1-26、CaO/Al23モル比0.4、ブレーン値4,000cm2/g。ボロン含有せず。
CBA-H:実験No.1-29、CaO/Al23モル比0.4、SiO2:0.5%、ブレーン値4,000cm2/g。
CBA-I:実験No.1-30、CaO/Al23モル比0.4、Na2O:0.5%、ブレーン値4,000cm2/g。
セメント:普通ポルトランドセメント、市販品
細骨材:JIS R5201:2015で使用する標準砂
水:水道水
(Material used)
CBA-A: Reagent 1 grade aluminum oxide calcium carbonate reagent first grade blended in a predetermined ratio, B 2 O 3 content blended with reagent grade 1 B 2 O 3 so that the 0.2% In the same manner as in Experimental Example 1, annealing was performed at 1550 ° C. for 3 hours in an electric furnace and then slowly cooled. CaO / Al 2 O 3 molar ratio 0.1, brane value 4,000 cm 2 / g.
CBA-B: Experiment No. 1-3, CaO / Al 2 O 3 molar ratio 0.15, B 2 O 3 : 0.2%, Brane value 4,000 cm 2 / g.
CBA-C: Experiment No. 1-9, CaO / Al 2 O 3 molar ratio 0.4, B 2 O 3 : 0.2%, Brane value 4,000 cm 2 / g.
CBA-D: Experiment No. 1-15, CaO / Al 2 O 3 molar ratio 0.6, B 2 O 3 : 0.2%, Brane value 4,000 cm 2 / g.
CBA-E: Experiment No. 1-21, CaO / Al 2 O 3 molar ratio 0.7, B 2 O 3 : 0.2%, brane value 4,000 cm 2 / g.
CBA-F: Compounding calcium carbonate of reagent grade 1 and aluminum oxide of reagent grade 1 in a predetermined ratio, compounding reagent grade B 2 O 3 so that the B 2 O 3 content is 0.2% In the same manner as in Experimental Example 1, it was annealed at 1400 ° C. for 3 hours in an electric furnace and then slowly cooled. CaO / Al 2 O 3 molar ratio 0.9, B 2 O 3 : 0.2%, Brane value 4,000 cm 2 / g.
CBA-G: Experiment No. 1-26 CaO / Al 2 O 3 molar ratio 0.4, brane value 4,000 cm 2 / g. Not containing boron.
CBA-H: Experiment No. 1-29, CaO / Al 2 O 3 molar ratio 0.4, SiO 2 0.5%, Brane value 4,000 cm 2 / g.
CBA-I: Experiment No. 1-30, CaO / Al 2 O 3 molar ratio 0.4, Na 2 O: 0.5%, Brane value 4,000 cm 2 / g.
Cement: Ordinary portland cement, fine aggregate commercially available product: Standard sand water used in JIS R5201: 2015: Tap water
(評価方法)
防錆効果:モルタルに10kg/m3となるように塩化物イオンを加え、丸鋼の鉄筋を入れて50℃に加温養生する促進試験で防錆効果を確認した。材齢1年で、鉄筋に錆が発生しなかった場合は良、1/10の面積以内で錆が発生した場合は可、1/10の面積を超えて錆が発生した場合は不可とした。
圧縮強さ:JIS R5201:2015に準じて材齢1日と28日圧縮強さを測定した。
塩化物浸透深さ:塩化物イオン浸透抵抗性を評価。脱型後、材齢28日まで20℃で水中養生した10cmφ×20cmの円柱状モルタル供試体を、30℃の擬似海水(塩分濃度3.5%)に12週間浸漬した後、フルオロセイン-硝酸銀法により塩化物浸透深さを測定した。塩化物浸透深さは、モルタル供試体断面の茶変しなかった部分とし、ノギスで8点測定して平均値を求めた。
Caイオンの溶脱:材齢28日まで20℃、湿度60%の環境下で養生したモルタル供試体(4×4×16cm)を、10リットルの純水に28日間浸漬し、液相中に溶解したCaイオン濃度を測定した。
耐硫酸塩性:材齢28日まで20℃、湿度60%の環境下で養生したモルタル供試体(4×4×16cm)を、10%Na2SO4溶液に25週間浸漬し、膨張率を測定した。
(Evaluation method)
Anti-corrosion effect: Chloride ions were added to a mortar to be 10 kg / m 3 , a reinforcing bar of round steel was added, and the anti-corrosion effect was confirmed in an accelerated test in which heating and curing were performed at 50 ° C. It is good when the rust does not occur in the rebar at 1 year of material age, it is acceptable when the rust occurs within 1/10 of the area, and it is not acceptable when the rust occurs over 1/10 of the area .
Compressive strength: 1 day and 28 day compressive strength was measured according to JIS R5201: 2015.
Chloride penetration depth: Evaluate chloride ion penetration resistance. After demolding, a 10 cmφ × 20 cm cylindrical mortar specimen aged in water at 20 ° C. until 28 days old is immersed in simulated seawater (at a salt concentration of 3.5%) at 30 ° C. for 12 weeks, then fluorescein-silver nitrate The chloride penetration depth was measured by the method. The chloride penetration depth was determined to be a portion of the cross section of the mortar sample that did not change to brown and was measured at 8 points with a caliper to obtain an average value.
Dissolution of Ca ions: A mortar specimen (4 × 4 × 16 cm) aged at 20 ° C. and 60% humidity until 28 days of age is immersed in 10 liters of pure water for 28 days and dissolved in the liquid phase The concentration of Ca ion was measured.
Sulfate resistance: A mortar specimen (4 × 4 × 16 cm) aged at 20 ° C. and 60% humidity until 28 days of age is immersed in a 10% Na 2 SO 4 solution for 25 weeks, and the expansion rate is measured. It was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、ボロンを含有することで、防錆効果、塩化物イオン浸透抑制効果を維持し、初期強度の低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、耐硫酸塩性を向上することができることが理解される。 According to Table 2, by containing boron, the antirust effect and the chloride ion permeation suppressing effect can be maintained, and the decrease in initial strength can be suppressed, and further, the leaching resistance of Ca ion and the sulfate resistance can be obtained. It is understood that it can be improved.
(実験例3)
 試薬1級の炭酸カルシウムと試薬1級の酸化アルミニウムをCaO/Al23モル比0.4となるよう配合し、試薬1級のB23を表3に示す含有量となるように配合し、実験例1と同様に電気炉で焼成後、徐冷して作製したCBAを用いたこと以外は実験例2と同様に行った。結果を表3に示す。
(Experimental example 3)
Calcium carbonate of reagent grade 1 and aluminum oxide of reagent grade 1 are blended so that the molar ratio of CaO / Al 2 O 3 is 0.4, and the content of B 2 O 3 of reagent grade 1 is shown in Table 3 It carried out similarly to Experimental example 2 except having mix | blended and baking with an electric furnace similarly to Experimental example 1, and using CBA produced by slow cooling and using it. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、ボロンを適度に含有することで、防錆効果、塩化物イオン浸透抑制効果を維持し、初期強度の低下を抑制することができ、さらに、Caイオンの溶脱抵抗性、耐硫酸塩性を向上することができる。 According to Table 3, by appropriately containing boron, the antirust effect and the chloride ion permeation suppressing effect can be maintained, and a decrease in initial strength can be suppressed, and further, the leaching resistance of Ca ion, sulfate resistance It is possible to improve the quality.
(実験例4)
 表4に示す粉末度のCBA-Dを使用したこと以外は実験例2と同様に行った。結果を表4に示す。
(Experimental example 4)
The experiment was carried out in the same manner as in Experimental Example 2 except that CBA-D having the fineness shown in Table 4 was used. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実験例5)
 CBA-Dを使用し、セメントとCBAからなるセメント組成物100部中CBAの使用量を表5に示す量としたこと以外は実験例2と同様に行った。比較のために、従来の防錆材を用いた試験も行った。防錆材は、セメント100部に対して10部使用した。結果を表5に示す。
(Experimental example 5)
The procedure of Experimental Example 2 was repeated except that CBA-D was used and the amount of CBA used in 100 parts of the cement composition consisting of cement and CBA was as shown in Table 5. A test using a conventional anticorrosion material was also conducted for comparison. The rustproofing material was used in 10 parts per 100 parts of cement. The results are shown in Table 5.
(使用材料)
従来の防錆材イ:亜硝酸リチウム、市販品
従来の防錆材ロ:亜硝酸型ハイドロカルマイト、市販品
(Material used)
Conventional anti-corrosion agent a: Lithium nitrite, commercial item Conventional anti-corrosion agent b: Nitrite type hydrocalumite, commercial item
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明のセメント混和材を使用することにより、優れた防錆効果と、塩化物イオンの遮蔽効果、Caイオンの溶脱抑制効果及び耐硫酸塩性を奏するため、主に、土木・建築業界等において海洋や河川の水利構造物、水槽、床版コンクリートなど広範な用途に適する。 By using the cement admixture of the present invention, since it exhibits an excellent antirust effect, a chloride ion shielding effect, a Ca ion leaching suppression effect, and a sulfate resistance, mainly in the civil engineering / building industry etc. Suitable for a wide range of applications such as marine and river water structures, water tanks, and floor slab concrete.

Claims (4)

  1. CaO/Al23モル比が0.15~0.7でありかつB23含有量が0.05~10質量%のカルシウムボロンアルミネートを含有するセメント混和材。 A cement admixture containing calcium boron aluminate having a CaO / Al 2 O 3 molar ratio of 0.15 to 0.7 and a B 2 O 3 content of 0.05 to 10% by mass.
  2. カルシウムボロンアルミネートの粉末度が、ブレーン比表面積値で2,000~7,000cm2/gである請求項1に記載のセメント混和材。 The cement admixture according to claim 1, wherein the powder of calcium boron aluminate has a Blaine specific surface area value of 2,000 to 7,000 cm 2 / g.
  3. セメントと、請求項1または2に記載のセメント混和材を含有するセメント組成物。 A cement composition comprising a cement and the cement admixture according to claim 1 or 2.
  4. CaO/Al23モル比が0.15~0.7かつB23含有量が0.05~10質量%となるように、カルシアを含む原料、アルミナを含む原料及びボロンを含む原料を混合する工程と、
    混合した原料を1400℃以上で焼成後、ブレーン比表面積値が2000~7000cm2/gとなるよう粉砕してカルシウムボロンアルミネートを得る工程と、
    得られたカルシウムボロンアルミネートと、セメントとを混合する工程と
    を含むことを特徴とするセメント組成物の製造方法。
    A raw material containing calcia, a raw material containing alumina, and a raw material containing boron such that the molar ratio of CaO / Al 2 O 3 is 0.15 to 0.7 and the content of B 2 O 3 is 0.05 to 10% by mass Mixing the
    Baking the mixed raw material at 1400 ° C. or higher and grinding it to obtain a Blaine specific surface area value of 2000 to 7000 cm 2 / g to obtain calcium boron aluminate;
    A method of producing a cement composition comprising the step of mixing the obtained calcium boron aluminate and cement.
PCT/JP2018/027542 2017-08-03 2018-07-23 Cement admixture, cement composition and production method therefor WO2019026674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019534050A JP7062668B2 (en) 2017-08-03 2018-07-23 Cement admixture, cement composition and its manufacturing method
SG11201910123RA SG11201910123RA (en) 2017-08-03 2018-07-23 Cement admixture, cement composition and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150511 2017-08-03
JP2017-150511 2017-08-03

Publications (1)

Publication Number Publication Date
WO2019026674A1 true WO2019026674A1 (en) 2019-02-07

Family

ID=65232779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027542 WO2019026674A1 (en) 2017-08-03 2018-07-23 Cement admixture, cement composition and production method therefor

Country Status (3)

Country Link
JP (1) JP7062668B2 (en)
SG (1) SG11201910123RA (en)
WO (1) WO2019026674A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330875A (en) * 1992-05-27 1993-12-14 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH0891895A (en) * 1994-09-19 1996-04-09 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2005104828A (en) * 2003-09-10 2005-04-21 Denki Kagaku Kogyo Kk Cement admixture and cement composition using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119603A1 (en) 2008-03-25 2009-10-01 パナソニック電工株式会社 Aluminum nitride substrate with oxide layer, aluminum nitride sintered compact, processes for producing the aluminum nitride substrate and the aluminum nitride sintered compact, circuit board, and led module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330875A (en) * 1992-05-27 1993-12-14 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH0891895A (en) * 1994-09-19 1996-04-09 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2005104828A (en) * 2003-09-10 2005-04-21 Denki Kagaku Kogyo Kk Cement admixture and cement composition using it

Also Published As

Publication number Publication date
JPWO2019026674A1 (en) 2020-06-18
JP7062668B2 (en) 2022-05-06
SG11201910123RA (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5688073B2 (en) Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition
JP4616113B2 (en) Quick-hardening clinker and cement composition
JP2007153714A (en) Cement admixture and cement composition
JP5345821B2 (en) Cement admixture and cement composition
JP4209381B2 (en) Cement composition
JP6312778B1 (en) Cement admixture and cement composition using the same
JP7062668B2 (en) Cement admixture, cement composition and its manufacturing method
JP2010100471A (en) Cement admixture and cement composition
JP5345820B2 (en) Cement admixture and cement composition
JP5651067B2 (en) Hydraulic cement composition
JP5843105B2 (en) Cement admixture, cement composition and method for producing the same
JP5651055B2 (en) Cement admixture and cement composition
JP4554332B2 (en) Cement composition
JP4509015B2 (en) Cement admixture and cement composition
JP5634683B2 (en) Cement admixture and method for adjusting cement composition
JP4685250B2 (en) Cement admixture and cement composition
JP5313623B2 (en) Cement admixture and cement composition
JP5313624B2 (en) Cement composition and cement concrete
JP5851343B2 (en) Cement admixture, cement composition and method for producing the same
JP6509586B2 (en) Salt damage control admixture and reinforced concrete salt damage control method
WO2022070683A1 (en) Ultra rapid hardening grout material, ultra rapid hardening grout mortar, and hardened body
WO2022070684A1 (en) Quick-hardening repair mortar material, quick-hardening repair mortar composition, and hardening body
JP2022135751A (en) Cement admixture and cement composition
JP2007153715A (en) Cement admixture and cement composition
JP2010100472A (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840942

Country of ref document: EP

Kind code of ref document: A1