WO2019026655A1 - Load cell and bearing - Google Patents

Load cell and bearing Download PDF

Info

Publication number
WO2019026655A1
WO2019026655A1 PCT/JP2018/027407 JP2018027407W WO2019026655A1 WO 2019026655 A1 WO2019026655 A1 WO 2019026655A1 JP 2018027407 W JP2018027407 W JP 2018027407W WO 2019026655 A1 WO2019026655 A1 WO 2019026655A1
Authority
WO
WIPO (PCT)
Prior art keywords
load cell
load
strain
axis
strain gauge
Prior art date
Application number
PCT/JP2018/027407
Other languages
French (fr)
Japanese (ja)
Inventor
持丸 昌己
五十嵐 美照
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Publication of WO2019026655A1 publication Critical patent/WO2019026655A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a load cell, and more particularly to a load cell suitable for measuring the load of a vehicle applied to a suspension.
  • Patent Document 1 discloses a bearing capable of measuring a load applied to a suspension while supporting the load of a vehicle.
  • the bearing is connected to a rotating body, a top race and a bottom race relatively rotatably combined via the rotating body, a top cup connected to the top race and disposed on the vehicle body side, and a bottom race And a deformation sensor such as a strain gauge attached to the top race or the top cup.
  • the top race or the top cup functions as a straining body
  • the strain of the straining body is detected by a deformation sensor
  • the load in the thrust direction (the load of the vehicle) is calculated based on the magnitude of the detected strain. ing.
  • Patent Document 1 since the bearing described in Patent Document 1 is configured to support the load of the vehicle applied to the suspension, it is designed to have sufficient rigidity with respect to the load in the thrust direction. Therefore, when the top race or the top cup is used as a strain generating body, the strain of the strain generating body against the load in the thrust direction is small, so the detection sensitivity of the deformation sensor becomes low, and the load of the vehicle can be measured accurately. difficult.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a load cell capable of accurately measuring a load in a thrust direction and a bearing using the load cell.
  • two annular flat plates are arranged in the axial direction, and the annular flat plates are connected by a connecting member to constitute a strain generating body, and the connecting member is axially
  • the strain gauge was attached to the connecting member while being inclined with respect to the heart.
  • the load cell of the present invention Strain generating body, A strain gauge for detecting strain generated in the strain generating body;
  • the strain body is Two annular flat plates arranged in the axial direction, And a connecting member for connecting between the two annular flat plates, The connecting member is inclined with respect to the axial center, The strain gauge is attached to the connecting member.
  • the bearing of the present invention is A bearing that supports the load of a vehicle applied to a suspension, An upper case attached to the vehicle body side, A lower case attached to a spring side constituting the suspension and rotatably combined with the upper case; The above-mentioned load cell disposed between the upper case and the vehicle body.
  • the connecting member constituting the strain generating body is inclined with respect to the axial center, the connecting member is compressed and deformed against the load in the thrust direction applied in the direction of contracting between the two annular flat plates. In addition to this, bending deformation also occurs, and distortion is greater than in the case of only compression deformation. This increases the detection sensitivity of the strain gauge. Therefore, according to the present invention, the load in the thrust direction can be measured accurately.
  • FIG. 1A and FIG. 1B are a front view and a side view of a load cell 1 according to an embodiment of the present invention.
  • FIGS. 2A and 2B are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the load cell 1 shown in FIG. 1A.
  • 3 (A) and 3 (B) are a cross-sectional view and a cross-sectional view of the load cell 1 shown in FIG. 1 (B), respectively.
  • FIG. 4A is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the thrust direction
  • FIG. 4B is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the radial direction.
  • FIG. 5 is a partial cross-sectional view of the damper assembly 5, the bearing 6, and the upper support 7 that constitute the vehicle suspension 4.
  • 6 (A), 6 (B) and 6 (C) are a front view, a rear view and a side view of the sliding bearing 6, and
  • FIG. 6 (D) is a sliding bearing shown in FIG. 6 (A).
  • 6 is a cross-sectional view taken along line E-E of FIG.
  • FIG. 1A and FIG. 1B are a front view and a side view of a load cell 1 according to the present embodiment.
  • 2 (A) and 2 (B) are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the load cell 1 shown in FIG. 1 (A).
  • 3 (A) and 3 (B) are a cross-sectional view taken along the line CC and a cross-sectional view taken along the line DD of the load cell 1 shown in FIG. 1 (B).
  • the load cell 1 is for measuring the load applied in the thrust direction (axial center O direction), and a plurality of strains for detecting strain generated in the strain generating body 2 and the strain generating body 2 Gauge sets 3a to 3d (hereinafter, also simply referred to as strain gauge set 3).
  • the strain generating body 2 is formed of a thermoplastic resin such as polyacetal resin or polyamide resin, and is a connecting member for connecting between two annular flat plates 20a and 20b arranged in the axial center O direction and the two annular flat plates 20a and 20b. And 21.
  • the annular flat plates 20a and 20b are disposed parallel to each other with their centers aligned with the axis O.
  • the connecting member 21 has a plurality of arm portions 22 arranged at equal intervals on the circumference centering on the axial center O and in line symmetry with respect to the axial center O.
  • the arm portion 22 is inclined in a direction away from the axial center O as the sectional shape in the plane including the axial center O goes from the annular flat plate 20 a to the annular flat plate 20 b. Therefore, the two arm portions 22 arranged in line symmetry with respect to the axis O have a cross-sectional shape in a plane including the axis O inclined in line symmetry with respect to the axis O to form a V shape. There is no. As a result, in the strain-generating body 2, the cross-sectional shape in the plane including the axial center O becomes a Z shape that is line symmetrical with respect to the axial center O (see FIGS. 2A and 2B).
  • the strain gauge set 3 is arranged to be line symmetrical with respect to the axis O. Specifically, the strain gauge sets 3a and 3b are arranged to be axisymmetric with respect to the axis O, and the strain gauge sets 3c and 3d are arranged to be axisymmetrical with respect to the axis O.
  • the strain gauge set 3 is constituted by four strain gauges 30a to 30d constituting a Wheatstone bridge circuit.
  • the strain gauge 30a is attached to the outer wall surface (surface on the radially outer side) 221 of the end 220a of the arm 22 on the side of the annular flat plate 20a
  • the strain gauge 30b is on the side of the annular flat 20b of the arm 22.
  • the strain gauge 30c is attached to the inner wall surface (surface on the radially inward side) 222 of the end 220a of the arm 22 on the side of the annular flat plate 20a
  • the strain gauge 30d is on the side of the annular flat 20b of the arm 22. It is attached to the inner wall surface 222 of the end 220 b.
  • FIG. 4A is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the thrust direction
  • FIG. 4B is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the radial direction.
  • FIG. FIG. 4A and FIG. 4B correspond to a diagram in which a part of FIG. 2B is omitted.
  • the plurality of arm portions 22 constituting the connecting member 21 of the strain generating body 2 are at equal intervals on the circumference centered on the axis O and are line symmetrical with respect to the axis O It is arranged as. Further, the cross-sectional shape in the plane including the axis O is inclined in the direction away from the axis O as it goes from the annular flat plate 20 a to the annular flat plate 20 b. Therefore, as shown in FIG.
  • each arm portion 22 is distorted in the direction in which the outer wall surface 221 extends, and is distorted in the direction in which the inner wall surface 222 contracts. For this reason, distortion of the strain generating body 3 becomes larger than that in the case of only compression deformation, and the detection sensitivity of distortion which can be detected by the strain gauge set 3 becomes high.
  • strain gauge set 3 is arranged so as to be line symmetrical with respect to axis O. Therefore, the influence of radial load R is canceled by averaging the detection values of each strain gauge set 3. can do.
  • the strain detection sensitivity that can be detected by the strain gauge set 3 can be increased, and furthermore, by averaging the detection values of the strain gauge set 3 Since the influence of the radial load R included in the detection value can be offset, the thrust load T can be accurately measured by calculating the thrust load T based on the average value of the detection values of the strain gauge set 3 . Further, by changing the inclination of the plurality of arm portions 22 constituting the connecting member 21 with respect to the axial center O, it is possible to adjust the detection sensitivity of distortion which can be detected by the strain gauge set 3.
  • FIG. 5 is a partial cross-sectional view of the damper assembly 5, the slide bearing 6, and the upper support 7 that constitute the vehicle suspension 4. As shown in FIG.
  • the vehicle suspension 4 is used for suspension of a vehicle such as a car, and as shown, a damper assembly 5 including a shock absorber 50, an upper support 7 for mounting the damper assembly 5 on the vehicle body side, and a damper assembly And a sliding bearing 6 disposed between the upper support 7 and the upper support 7.
  • a damper assembly 5 including a shock absorber 50, an upper support 7 for mounting the damper assembly 5 on the vehicle body side, and a damper assembly And a sliding bearing 6 disposed between the upper support 7 and the upper support 7.
  • the damper assembly 5 includes a coil spring 51, a lower spring seat 52, a bump stopper 53, and a dust boot 54, in addition to the shock absorber 50.
  • the coil spring 51 is coaxially disposed with the shock absorber 50 so as to surround the shock absorber 50, and its upper end 510 is supported by an upper spring seat 55 provided on the slide bearing 6, and its lower end 511 is It is supported by a lower spring seat 52 provided on the shock absorber 50.
  • the bump stopper 53 is mounted on the piston rod 56 of the shock absorber 50 and prevents the shock absorber 50 from colliding with the body of the vehicle when the piston rod 56 is compressed.
  • the dust boot 54 is mounted so as to cover the piston rod 56 on which the bump stopper 53 is mounted, and prevents dust, muddy water and the like from adhering to the piston rod 56.
  • the slide bearing 6 is disposed between the damper assembly 5 and the upper support 7 and supports the load applied to the damper assembly 5 while allowing relative rotation between the coil spring 51 and the upper support 7.
  • the slide bearing 6 is equipped with the load cell 1 which concerns on this Embodiment.
  • the load cell 1 outputs signals from the plurality of strain gauge sets 3 according to the strain generated in the strain generating body 2 by the load supported by the slide bearing 6.
  • the signals output from the plurality of strain gauge sets 3 are input to the load measuring unit 8 mounted on the vehicle.
  • the load measuring unit 8 calculates an average value of detection values indicated by the signals output from the plurality of strain gauge sets 3 and measures a load applied to the damper assembly 5 based on the average value. Then, the vehicle weight is calculated based on the detected load.
  • the vehicle weight is calculated by summing the loads measured by the load cells 1. Further, for example, when the slide bearing 6 including the load cell 1 is mounted only on the suspension of the front wheel or the rear wheel, the vehicle weight is calculated by doubling the total of the loads detected by the load cells 1. Further, for example, in the case where the slide bearing 6 including the load cell 1 is mounted on only one suspension of four wheels, the vehicle weight is calculated by quadrupling the load detected by the load cell 1.
  • FIG. 6 (A), 6 (B) and 6 (C) are a front view, a rear view and a side view of the sliding bearing 6, and FIG. 6 (D) is a sliding bearing shown in FIG. 6 (A). 6 is a cross-sectional view taken along line E-E of FIG.
  • the slide bearing 6 has a receiving hole 60 for receiving the piston rod 56 on which the bump stopper 53 is mounted.
  • the slide bearing 6 is rotatably combined with the upper case 61 and the upper case 61, and is disposed in the lower case 62 forming an annular space 64 between the upper case 61 and the lower case 62.
  • An annular center plate 63 and a load cell 1 disposed between the upper case 61 and the upper support 7 are provided.
  • Upper case 61 is formed of thermoplastic resin having excellent sliding characteristics such as polyacetal resin impregnated with lubricating oil as needed, and is inserted to upper support 7 through load cell 1 with piston rod 56 inserted. It is attached.
  • Lower case 62 is formed of thermoplastic resin such as polyamide resin reinforced with glass fiber etc. if necessary, and upper end portion 510 of coil spring 51 in a state where piston rod 56 mounted with bump stopper 53 is inserted. It also functions as an upper spring seat 55 that supports the
  • the center plate 63 is an annular member formed of a material excellent in sliding characteristics, such as PTFE (polytetrafluoroethylene), a thermoplastic resin to which PTFE is added, a brass alloy, etc.
  • strain gauge sets 3a to 3d are used as the plurality of strain gauge sets 3 for detecting distortion generated in the strain generating body 2 is described as an example.
  • the present invention is not limited to this.
  • a plurality of strain gauge sets 3 may be arranged in line symmetry with respect to the axis O.
  • the strain gauge set 3 is constituted by the four strain gauges 30a to 30d constituting the Wheatstone bridge circuit, and the strain gauges 30a to 30d are formed by the outer wall surfaces of both end portions 220a and 220b of the arm portion 22. And 221 attached to the inner wall surface 222.
  • the strain gauge set 3 may be configured to include at least one strain gauge, and the mounting position thereof may be any connecting member 21 that bends in addition to compressive deformation with respect to the thrust load T. You may attach it.
  • the connecting members 21 for connecting the annular flat plates 20a and 20b are arranged at equal intervals on the circumference centering on the axial center O and in line symmetry to the axial center O. It is comprised by the several arm part 22 arrange
  • the connecting member may have a cross-sectional shape in a plane including the axial center O inclined in line symmetry with respect to the axial center O.
  • the connecting member may be a tubular member whose diameter increases from one of the annular flat plates 20a and 20b to the other.
  • the annular flat plates 20a and 20b have the same diameter, but the present invention is not limited to this.
  • the annular flat plate 20a is adjusted to the size of the upper support 7 to which the annular flat plate 20a is attached, and the annular flat plate 20b is annular
  • the sizes of the annular flat plates 20a and 20b may be made different from each other.
  • the slide bearing 6 is described as an example.
  • the bearing combined with the load cell 1 is not limited to the sliding bearing.
  • it may be a rolling bearing.
  • the load cell of the present invention can be used not only for bearings but also for various applications for measuring thrust loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Force In General (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Provided are: a load cell capable of accurately measuring a load in a thrust direction; and a bearing using the load cell. This load cell (1) is provided with: a deformable body (2); strain gauge sets (3a-3d) for detecting strain occurring in the deformable body (2). The deformable body (2) has: two annular flat plates (20a, 20b) arranged in the direction of an axis O; and a connection member (21) connecting the annular flat plates (20a, 20b). The connection member (21) comprises a plurality of arms (22) arranged on a circle centered on the axis O, the plurality of arms (22) being positioned at equal intervals and being line-symmetric with respect to the axis O, and the connection member (21) is tilted relative to the axis O. The strain gauge sets (3a-3d) each comprise four strain gauges (30a-30d) constituting a Wheatstone bridge circuit, and are attached to locations line-symmetric with respect to the axis O of the connection member (21).

Description

ロードセルおよび軸受Load cell and bearing
 本発明は、ロードセルに関し、特にサスペンションに加わる車両の荷重を測定するのに好適なロードセルに関する。 The present invention relates to a load cell, and more particularly to a load cell suitable for measuring the load of a vehicle applied to a suspension.
 特許文献1には、サスペンションに加わる車両の荷重を支持しながらこの荷重を測定することのできる軸受が開示されている。この軸受は、回転体と、回転体を介して相対的に回転可能に組み合わされたトップレースおよびボトムレースと、トップレースに連結されて車体側に配置されるトップカップと、ボトムレースに連結されてサスペンションスプリング側に配置されるボトムカップと、トップレースあるいはトップカップに取り付けられた歪ゲージ等の変形センサと、を備えている。この軸受では、トップレースあるいはトップカップが起歪体として機能し、起歪体の歪みを変形センサで検出し、検出した歪みの大きさに基づいてスラスト方向の荷重(車両の荷重)を算出している。 Patent Document 1 discloses a bearing capable of measuring a load applied to a suspension while supporting the load of a vehicle. The bearing is connected to a rotating body, a top race and a bottom race relatively rotatably combined via the rotating body, a top cup connected to the top race and disposed on the vehicle body side, and a bottom race And a deformation sensor such as a strain gauge attached to the top race or the top cup. In this bearing, the top race or the top cup functions as a straining body, the strain of the straining body is detected by a deformation sensor, and the load in the thrust direction (the load of the vehicle) is calculated based on the magnitude of the detected strain. ing.
特開2004-177411号公報JP 2004-177411 A
 しかしながら、特許文献1に記載の軸受は、サスペンションに加わる車両の荷重を支持する構造であるため、スラスト方向の荷重に対して十分な剛性を有するように設計される。このため、トップレースあるいはトップカップを起歪体として用いた場合、スラスト方向の荷重に対する起歪体の歪みが小さいので、変形センサの検出感度が低くなり、精度よく車両の荷重を測定することが難しい。 However, since the bearing described in Patent Document 1 is configured to support the load of the vehicle applied to the suspension, it is designed to have sufficient rigidity with respect to the load in the thrust direction. Therefore, when the top race or the top cup is used as a strain generating body, the strain of the strain generating body against the load in the thrust direction is small, so the detection sensitivity of the deformation sensor becomes low, and the load of the vehicle can be measured accurately. difficult.
 本発明は、上記事情に鑑みてなされたものであり、その目的は、スラスト方向の荷重を精度よく測定することのできるロードセルおよびこのロードセルを用いた軸受を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a load cell capable of accurately measuring a load in a thrust direction and a bearing using the load cell.
 上記課題を解決するために、本発明では、2つの環状平板を軸心方向に配置して、これらの環状平板間を連結部材で連結することにより、起歪体を構成し、連結部材を軸心に対して傾斜させるとともに、歪みゲージを連結部材に取り付けた。 In order to solve the above problems, in the present invention, two annular flat plates are arranged in the axial direction, and the annular flat plates are connected by a connecting member to constitute a strain generating body, and the connecting member is axially The strain gauge was attached to the connecting member while being inclined with respect to the heart.
 例えば、本発明のロードセルは、
 起歪体と、
 前記起歪体に生じた歪みを検出する歪みゲージと、を備え、
 前記起歪体は、
 軸心方向に配置された2つの環状平板と、
 前記2つの環状平板間を連結する連結部材と、を有し、
 前記連結部材は、軸心に対して傾斜しており、
 前記歪みゲージは、前記連結部材に取り付けられている。
For example, the load cell of the present invention
Strain generating body,
A strain gauge for detecting strain generated in the strain generating body;
The strain body is
Two annular flat plates arranged in the axial direction,
And a connecting member for connecting between the two annular flat plates,
The connecting member is inclined with respect to the axial center,
The strain gauge is attached to the connecting member.
 また、本発明の軸受は、
 サスペンションに加わる車両の荷重を支持する軸受であって、
 車体側に取り付けられるアッパーケースと、
 前記サスペンションを構成するスプリング側に取り付けられ、前記アッパーケースと相対的に回転可能に組み合わされるロワーケースと、
 前記アッパーケースと前記車体との間に配置される上述のロードセルと、を備えている。
Also, the bearing of the present invention is
A bearing that supports the load of a vehicle applied to a suspension,
An upper case attached to the vehicle body side,
A lower case attached to a spring side constituting the suspension and rotatably combined with the upper case;
The above-mentioned load cell disposed between the upper case and the vehicle body.
 本発明のロードセルは、起歪体を構成する連結部材を軸心に対して傾斜させているので、2つの環状平板間を縮める方向に加わるスラスト方向の荷重に対して、連結部材は、圧縮変形に加えて、曲げ変形も生じて、圧縮変形のみの場合と比べてより大きく歪む。このため、歪みゲージの検出感度が高くなる。したがって、本発明によれば、スラスト方向の荷重を精度よく測定することができる。 In the load cell of the present invention, since the connecting member constituting the strain generating body is inclined with respect to the axial center, the connecting member is compressed and deformed against the load in the thrust direction applied in the direction of contracting between the two annular flat plates. In addition to this, bending deformation also occurs, and distortion is greater than in the case of only compression deformation. This increases the detection sensitivity of the strain gauge. Therefore, according to the present invention, the load in the thrust direction can be measured accurately.
図1(A)および図1(B)は、本発明の一実施の形態に係るロードセル1の正面図および側面図である。FIG. 1A and FIG. 1B are a front view and a side view of a load cell 1 according to an embodiment of the present invention. 図2(A)および図2(B)は、図1(A)に示すロードセル1のA-A断面図およびB-B断面図である。FIGS. 2A and 2B are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the load cell 1 shown in FIG. 1A. 図3(A)および図3(B)は、図1(B)に示すロードセル1のC-C断面図およびD-D断面図である。3 (A) and 3 (B) are a cross-sectional view and a cross-sectional view of the load cell 1 shown in FIG. 1 (B), respectively. 図4(A)は、スラスト方向の荷重に対する起歪体2の歪みを説明するための図であり、図4(B)は、ラジアル方向の荷重に対する起歪体2の歪みを説明するための図である。FIG. 4A is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the thrust direction, and FIG. 4B is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the radial direction. FIG. 図5は、車両用サスペンション4を構成するダンパアッセンブリ5、軸受6、およびアッパーサポート7の部分断面図である。FIG. 5 is a partial cross-sectional view of the damper assembly 5, the bearing 6, and the upper support 7 that constitute the vehicle suspension 4. 図6(A)、図6(B)および図6(C)は、滑り軸受6の正面図、背面図および側面図であり、図6(D)は、図6(A)に示す滑り軸受6のE-E断面図である。6 (A), 6 (B) and 6 (C) are a front view, a rear view and a side view of the sliding bearing 6, and FIG. 6 (D) is a sliding bearing shown in FIG. 6 (A). 6 is a cross-sectional view taken along line E-E of FIG.
 以下、本発明の一実施の形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
 図1(A)および図1(B)は、本実施の形態に係るロードセル1の正面図および側面図である。また、図2(A)および図2(B)は、図1(A)に示すロードセル1のA-A断面図およびB-B断面図である。また、図3(A)および図3(B)は、図1(B)に示すロードセル1のC-C断面図およびD-D断面図である。 FIG. 1A and FIG. 1B are a front view and a side view of a load cell 1 according to the present embodiment. 2 (A) and 2 (B) are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of the load cell 1 shown in FIG. 1 (A). 3 (A) and 3 (B) are a cross-sectional view taken along the line CC and a cross-sectional view taken along the line DD of the load cell 1 shown in FIG. 1 (B).
 本実施の形態に係るロードセル1は、スラスト方向(軸心O方向)に加わる荷重を測定するためのものであり、起歪体2と、起歪体2に生じた歪みを検出する複数の歪みゲージセット3a~3d(以下、単に歪みゲージセット3とも呼ぶ)と、を備えている。 The load cell 1 according to the present embodiment is for measuring the load applied in the thrust direction (axial center O direction), and a plurality of strains for detecting strain generated in the strain generating body 2 and the strain generating body 2 Gauge sets 3a to 3d (hereinafter, also simply referred to as strain gauge set 3).
 起歪体2は、ポリアセタール樹脂、ポリアミド樹脂等の熱可塑性樹脂で形成され、軸心O方向に配置された2つの環状平板20a、20bと、2つの環状平板20a、20b間を連結する連結部材21と、を有する。 The strain generating body 2 is formed of a thermoplastic resin such as polyacetal resin or polyamide resin, and is a connecting member for connecting between two annular flat plates 20a and 20b arranged in the axial center O direction and the two annular flat plates 20a and 20b. And 21.
 環状平板20a、20bは、それぞれの中心を軸心Oに一致させて互いに平行に配置されている。 The annular flat plates 20a and 20b are disposed parallel to each other with their centers aligned with the axis O.
 連結部材21は、軸心Oを中心とする円周上に等間隔でかつ軸心Oに対して線対称となるように配置された複数のアーム部22を有する。アーム部22は、軸心Oを含む平面における断面形状が、環状平板20aから環状平板20bに向かうに従い、軸心Oから離れる方向に傾斜している。したがって、軸心Oに対して線対称な位置に配置された2つのアーム部22は、軸心Oを含む平面における断面形状が軸心Oに対して線対称に傾斜してハの字形状をなしている。これにより、起歪体2は、軸心Oを含む平面における断面形状が軸心Oに対して線対称なZ形状となる(図2(A)および図2(B)参照)。 The connecting member 21 has a plurality of arm portions 22 arranged at equal intervals on the circumference centering on the axial center O and in line symmetry with respect to the axial center O. The arm portion 22 is inclined in a direction away from the axial center O as the sectional shape in the plane including the axial center O goes from the annular flat plate 20 a to the annular flat plate 20 b. Therefore, the two arm portions 22 arranged in line symmetry with respect to the axis O have a cross-sectional shape in a plane including the axis O inclined in line symmetry with respect to the axis O to form a V shape. There is no. As a result, in the strain-generating body 2, the cross-sectional shape in the plane including the axial center O becomes a Z shape that is line symmetrical with respect to the axial center O (see FIGS. 2A and 2B).
 歪みゲージセット3は、軸心Oに対して線対称となるように配置されている。具体的には、歪みゲージセット3a、3bが軸心Oに対して線対称となり、かつ歪みゲージセット3c、3dが軸心Oに対して線対称となるように配置されている。 The strain gauge set 3 is arranged to be line symmetrical with respect to the axis O. Specifically, the strain gauge sets 3a and 3b are arranged to be axisymmetric with respect to the axis O, and the strain gauge sets 3c and 3d are arranged to be axisymmetrical with respect to the axis O.
 また、歪みゲージセット3は、ホイートストンブリッジ回路を構成する4つの歪みゲージ30a~30dにより構成される。ここで、歪みゲージ30aは、アーム部22の環状平板20a側の端部220aの外壁面(径方向外方側の面)221に取り付けられ、歪みゲージ30bは、アーム部22の環状平板20b側の端部220bの外壁面221に取り付けられる。また、歪みゲージ30cは、アーム部22の環状平板20a側の端部220aの内壁面(径方向内方側の面)222に取り付けられ、歪みゲージ30dは、アーム部22の環状平板20b側の端部220bの内壁面222に取り付けられる。 Further, the strain gauge set 3 is constituted by four strain gauges 30a to 30d constituting a Wheatstone bridge circuit. Here, the strain gauge 30a is attached to the outer wall surface (surface on the radially outer side) 221 of the end 220a of the arm 22 on the side of the annular flat plate 20a, and the strain gauge 30b is on the side of the annular flat 20b of the arm 22. Is attached to the outer wall surface 221 of the end 220 b of the The strain gauge 30c is attached to the inner wall surface (surface on the radially inward side) 222 of the end 220a of the arm 22 on the side of the annular flat plate 20a, and the strain gauge 30d is on the side of the annular flat 20b of the arm 22. It is attached to the inner wall surface 222 of the end 220 b.
 つぎに、上記構成のロードセル1に荷重が加えられた場合における起歪体2の歪みについて説明する。 Next, distortion of the strain generating body 2 when a load is applied to the load cell 1 having the above-described configuration will be described.
 図4(A)は、スラスト方向の荷重に対する起歪体2の歪みを説明するための図であり、図4(B)は、ラジアル方向の荷重に対する起歪体2の歪みを説明するための図である。図4(A)および図4(B)は、図2(B)の一部を省略した図に相当する。 FIG. 4A is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the thrust direction, and FIG. 4B is a diagram for explaining the strain of the strain generating body 2 with respect to the load in the radial direction. FIG. FIG. 4A and FIG. 4B correspond to a diagram in which a part of FIG. 2B is omitted.
 上記構成のロードセル1において、起歪体2の連結部材21を構成する複数のアーム部22は、軸心Oを中心とする円周上に等間隔でかつ軸心Oに対して線対称となるように配置されている。また、軸心Oを含む平面における断面形状が、環状平板20aから環状平板20bに向かうに従い、軸心Oから離れる方向に傾斜している。このため、図4(A)に示すように、起歪体2を構成する2つの環状平板20a、20b間を縮める軸心O方向の荷重であるスラスト荷重Tがロードセル1に加わると、各アーム部22は、軸心O方向の圧縮変形に加えて、環状平板20a側の端部220aが径方向内方に撓み、かつ環状平板20b側の端部220bが径方向外方に撓むように曲げ変形する。この曲げ変形により、各アーム部22は、外壁面221が延びる方向に歪む一方、内壁面222が縮む方向に歪む。このため、圧縮変形のみの場合と比べて起歪体3の歪みが大きくなり、歪みゲージセット3で検出できる歪みの検出感度が高くなる。 In the load cell 1 configured as described above, the plurality of arm portions 22 constituting the connecting member 21 of the strain generating body 2 are at equal intervals on the circumference centered on the axis O and are line symmetrical with respect to the axis O It is arranged as. Further, the cross-sectional shape in the plane including the axis O is inclined in the direction away from the axis O as it goes from the annular flat plate 20 a to the annular flat plate 20 b. Therefore, as shown in FIG. 4A, when a thrust load T, which is a load in the axial center O direction that shrinks between the two annular flat plates 20a and 20b constituting the strain generating body 2, is applied to the load cell 1, each arm In the portion 22, in addition to the compressive deformation in the direction of the axis O, the end 220a on the side of the annular flat plate 20a is bent radially inward, and the end 220b on the side of the annular flat 20b is bent so as to radially outward. Do. By this bending deformation, each arm portion 22 is distorted in the direction in which the outer wall surface 221 extends, and is distorted in the direction in which the inner wall surface 222 contracts. For this reason, distortion of the strain generating body 3 becomes larger than that in the case of only compression deformation, and the detection sensitivity of distortion which can be detected by the strain gauge set 3 becomes high.
 また、図4(B)に示すように、軸心O方向に対して垂直な方向の荷重であるラジアル荷重Rがロードセル1に加わると、ラジアル荷重Rが加えられる側のアーム部22(図4(B)において左側のアーム部22)では、外壁面221が延びる方向に歪む一方、内壁面222が縮む方向に歪む。これに対して、ラジアル荷重Rが加えられる側のアーム部22と軸心O方向に対して線対称な位置にあるアーム部22(図4(B)において右側のアーム部22)では、外壁面221が縮む方向に歪む一方、内壁面222が延びる方向に歪む。つまり、軸心O方向に対して線対称な位置にある2つのアーム部22は、ラジアル荷重Rに対して互いに反対方向に歪みが生じるので、軸心O方向に対して線対称な位置にある2つのアーム部22に取り付けた歪みゲージセット3の検出値の極性が逆となる。本実施の形態では、歪みゲージセット3を軸心Oに対して線対称となるように配置しているので、各歪みゲージセット3の検出値を平均することにより、ラジアル荷重Rによる影響を相殺することができる。 Further, as shown in FIG. 4B, when a radial load R, which is a load in a direction perpendicular to the direction of the axis O, is applied to the load cell 1, the arm 22 on the side to which the radial load R is applied (FIG. In (B), in the left arm portion 22), the outer wall surface 221 is distorted in the extending direction, while the inner wall surface 222 is distorted in the contracting direction. On the other hand, in the arm portion 22 on the side to which the radial load R is applied and the arm portion 22 located in line symmetry with the axial center O direction (the arm 22 on the right in FIG. While 221 is distorted in the shrinking direction, the inner wall surface 222 is distorted in the extending direction. That is, since the two arm portions 22 located in line symmetry with respect to the axis O direction are distorted in opposite directions with respect to the radial load R, they are located in line symmetry with respect to the axis O direction. The polarity of the detection value of the strain gauge set 3 attached to the two arms 22 is reversed. In the present embodiment, strain gauge set 3 is arranged so as to be line symmetrical with respect to axis O. Therefore, the influence of radial load R is canceled by averaging the detection values of each strain gauge set 3. can do.
 したがって、本実施の形態に係るロードセル1によれば、歪みゲージセット3で検出できる歪みの検出感度を高くでき、さらに、歪みゲージセット3の検出値の平均を取ることにより、歪みゲージセット3の検出値に含まれているラジアル荷重Rによる影響を相殺できるので、歪みゲージセット3の検出値の平均値に基づいてスラスト荷重Tを算出することにより、スラスト荷重Tを精度よく測定することができる。また、連結部材21を構成する複数のアーム部22の軸心Oに対する傾きを変えることにより、歪みゲージセット3で検出できる歪みの検出感度を調節することができる。 Therefore, according to the load cell 1 according to the present embodiment, the strain detection sensitivity that can be detected by the strain gauge set 3 can be increased, and furthermore, by averaging the detection values of the strain gauge set 3 Since the influence of the radial load R included in the detection value can be offset, the thrust load T can be accurately measured by calculating the thrust load T based on the average value of the detection values of the strain gauge set 3 . Further, by changing the inclination of the plurality of arm portions 22 constituting the connecting member 21 with respect to the axial center O, it is possible to adjust the detection sensitivity of distortion which can be detected by the strain gauge set 3.
 つぎに、本実施の形態に係るロードセル1を用いた軸受について説明する。 Below, the bearing using the load cell 1 which concerns on this Embodiment is demonstrated.
 図5は、車両用サスペンション4を構成するダンパアッセンブリ5、滑り軸受6、およびアッパーサポート7の部分断面図である。 FIG. 5 is a partial cross-sectional view of the damper assembly 5, the slide bearing 6, and the upper support 7 that constitute the vehicle suspension 4. As shown in FIG.
 車両用サスペンション4は、自動車等の車両の懸架に用いられ、図示するように、ショックアブソーバ50を含むダンパアッセンブリ5と、ダンパアッセンブリ5を車両のボディ側に取り付けるためのアッパーサポート7と、ダンパアッセンブリ5およびアッパーサポート7間に配された滑り軸受6と、を備えている。 The vehicle suspension 4 is used for suspension of a vehicle such as a car, and as shown, a damper assembly 5 including a shock absorber 50, an upper support 7 for mounting the damper assembly 5 on the vehicle body side, and a damper assembly And a sliding bearing 6 disposed between the upper support 7 and the upper support 7.
 ダンパアッセンブリ5は、ショックアブソーバ50に加えて、コイルスプリング51と、ロワースプリングシート52と、バンプストッパ53と、ダストブーツ54と、を備えている。 The damper assembly 5 includes a coil spring 51, a lower spring seat 52, a bump stopper 53, and a dust boot 54, in addition to the shock absorber 50.
 コイルスプリング51は、ショックアブソーバ50の周囲を囲むようにショックアブソーバ50と同軸に配され、その上端部510が滑り軸受6に設けられたアッパースプリングシート55によって支持されるとともに、その下端部511がショックアブソーバ50に設けられたロワースプリングシート52によって支持される。 The coil spring 51 is coaxially disposed with the shock absorber 50 so as to surround the shock absorber 50, and its upper end 510 is supported by an upper spring seat 55 provided on the slide bearing 6, and its lower end 511 is It is supported by a lower spring seat 52 provided on the shock absorber 50.
 バンプストッパ53は、ショックアブソーバ50のピストンロッド56に装着され、ピストンロッド56が圧縮された際にショックアブソーバ50が車両のボディに衝突するのを防止する。 The bump stopper 53 is mounted on the piston rod 56 of the shock absorber 50 and prevents the shock absorber 50 from colliding with the body of the vehicle when the piston rod 56 is compressed.
 ダストブーツ54は、バンプストッパ53が装着されたピストンロッド56を覆うように装着され、塵埃、泥水等がピストンロッド56に付着するのを防止する。 The dust boot 54 is mounted so as to cover the piston rod 56 on which the bump stopper 53 is mounted, and prevents dust, muddy water and the like from adhering to the piston rod 56.
 滑り軸受6は、ダンパアッセンブリ5とアッパーサポート7との間に配され、コイルスプリング51およびアッパーサポート7間の相対的な回動を許容しつつ、ダンパアッセンブリ5に加わる荷重を支持する。 The slide bearing 6 is disposed between the damper assembly 5 and the upper support 7 and supports the load applied to the damper assembly 5 while allowing relative rotation between the coil spring 51 and the upper support 7.
 また、滑り軸受6は、本実施の形態に係るロードセル1を備えている。ロードセル1は、滑り軸受6が支持する荷重によって起歪体2に生じた歪みに応じた信号を複数の歪みゲージセット3から出力する。そして、複数の歪みゲージセット3から出力された信号は、車両に搭載された荷重測定部8に入力される。荷重測定部8は、複数の歪みゲージセット3から出力された信号が示す検出値の平均値を算出し、この平均値に基づいてダンパアッセンブリ5に加わる荷重を測定する。そして、検出した荷重に基づいて車重を算出する。 Moreover, the slide bearing 6 is equipped with the load cell 1 which concerns on this Embodiment. The load cell 1 outputs signals from the plurality of strain gauge sets 3 according to the strain generated in the strain generating body 2 by the load supported by the slide bearing 6. The signals output from the plurality of strain gauge sets 3 are input to the load measuring unit 8 mounted on the vehicle. The load measuring unit 8 calculates an average value of detection values indicated by the signals output from the plurality of strain gauge sets 3 and measures a load applied to the damper assembly 5 based on the average value. Then, the vehicle weight is calculated based on the detected load.
 例えば、車両の四輪すべてのサスペンションにロードセル1を備えた滑り軸受6が搭載されている場合、各ロードセル1で測定した荷重を合計することにより車重を算出する。また、例えば、前輪あるいは後輪のサスペンションにのみロードセル1を備えた滑り軸受6が搭載されている場合、各ロードセル1で検出した荷重の合計を2倍にすることで車重を算出する。また、例えば、四輪のうちの一つのサスペンションにのみロードセル1を備えた滑り軸受6が搭載されている場合、このロードセル1で検出した荷重を4倍にすることで車重を算出する。 For example, when the slide bearing 6 provided with the load cell 1 is mounted on the suspension of all four wheels of the vehicle, the vehicle weight is calculated by summing the loads measured by the load cells 1. Further, for example, when the slide bearing 6 including the load cell 1 is mounted only on the suspension of the front wheel or the rear wheel, the vehicle weight is calculated by doubling the total of the loads detected by the load cells 1. Further, for example, in the case where the slide bearing 6 including the load cell 1 is mounted on only one suspension of four wheels, the vehicle weight is calculated by quadrupling the load detected by the load cell 1.
 図6(A)、図6(B)および図6(C)は、滑り軸受6の正面図、背面図および側面図であり、図6(D)は、図6(A)に示す滑り軸受6のE-E断面図である。 6 (A), 6 (B) and 6 (C) are a front view, a rear view and a side view of the sliding bearing 6, and FIG. 6 (D) is a sliding bearing shown in FIG. 6 (A). 6 is a cross-sectional view taken along line E-E of FIG.
 滑り軸受6は、バンプストッパ53が装着されたピストンロッド56を収容するための収容孔60を有する。また、滑り軸受6は、アッパーケース61と、アッパーケース61と回動自在に組み合わされて、アッパーケース61との間に環状空間64を形成するロワーケース62と、この環状空間64に配された環状のセンタープレート63と、アッパーケース61とアッパーサポート7との間に配置されたロードセル1と、を備えている。 The slide bearing 6 has a receiving hole 60 for receiving the piston rod 56 on which the bump stopper 53 is mounted. The slide bearing 6 is rotatably combined with the upper case 61 and the upper case 61, and is disposed in the lower case 62 forming an annular space 64 between the upper case 61 and the lower case 62. An annular center plate 63 and a load cell 1 disposed between the upper case 61 and the upper support 7 are provided.
 アッパーケース61は、必要に応じて潤滑油が含浸されたポリアセタール樹脂等の摺動特性に優れた熱可塑性樹脂で形成され、ピストンロッド56が挿入された状態でロードセル1を介してアッパーサポート7に取り付けられる。 Upper case 61 is formed of thermoplastic resin having excellent sliding characteristics such as polyacetal resin impregnated with lubricating oil as needed, and is inserted to upper support 7 through load cell 1 with piston rod 56 inserted. It is attached.
 ロワーケース62は、必要に応じてガラス繊維等で強化されたポリアミド樹脂等の熱可塑性樹脂で形成され、バンプストッパ53が装着されたピストンロッド56が挿入された状態でコイルスプリング51の上端部510を支持するアッパースプリングシート55としても機能する。 Lower case 62 is formed of thermoplastic resin such as polyamide resin reinforced with glass fiber etc. if necessary, and upper end portion 510 of coil spring 51 in a state where piston rod 56 mounted with bump stopper 53 is inserted. It also functions as an upper spring seat 55 that supports the
 センタープレート63は、PTFE(ポリテトラフルオロエチレン)、PTFEが添加された熱可塑性樹脂、黄銅合金等の摺動特性に優れた材料で形成された円環状部材であり、環状空間64において、例えばロワーケース62との相対的な回動が拘束された状態でアッパーケース61と摺動することにより、アッパーケース61およびロワーケース62間の自在な回動を実現する軸受体として機能する。 The center plate 63 is an annular member formed of a material excellent in sliding characteristics, such as PTFE (polytetrafluoroethylene), a thermoplastic resin to which PTFE is added, a brass alloy, etc. By sliding with the upper case 61 in a state in which relative rotation with the case 62 is restrained, it functions as a bearing body that realizes free rotation between the upper case 61 and the lower case 62.
 以上、本発明の一実施の形態について説明した。 Heretofore, an embodiment of the present invention has been described.
 本発明は、上記の実施の形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention.
 例えば、上記の実施の形態では、起歪体2に生じた歪みを検出する複数の歪みゲージセット3として、4つの歪みゲージセット3a~3dを用いた場合を例にとり説明している。しかし、本発明はこれに限定されない。歪みゲージセット3は、軸心Oに対して線対称となるように複数配置されていればよい。 For example, in the above embodiment, the case where four strain gauge sets 3a to 3d are used as the plurality of strain gauge sets 3 for detecting distortion generated in the strain generating body 2 is described as an example. However, the present invention is not limited to this. A plurality of strain gauge sets 3 may be arranged in line symmetry with respect to the axis O.
 また、上記の実施の形態では、ホイートストンブリッジ回路を構成する4つの歪みゲージ30a~30dにより歪みゲージセット3を構成し、歪みゲージ30a~30dを、アーム部22の両端部220a、220bの外壁面221および内壁面222に取り付けている。しかし、本発明はこれに限定されない。歪みゲージセット3は、少なくとも一つの歪みゲージを含んで構成されていればよく、また、その取付け位置も、スラスト荷重Tに対して圧縮変形に加えて曲げ変形する連結部材21であれば、どこに取り付けてもよい。 Further, in the above embodiment, the strain gauge set 3 is constituted by the four strain gauges 30a to 30d constituting the Wheatstone bridge circuit, and the strain gauges 30a to 30d are formed by the outer wall surfaces of both end portions 220a and 220b of the arm portion 22. And 221 attached to the inner wall surface 222. However, the present invention is not limited to this. The strain gauge set 3 may be configured to include at least one strain gauge, and the mounting position thereof may be any connecting member 21 that bends in addition to compressive deformation with respect to the thrust load T. You may attach it.
 また、上記の実施の形態では、環状平板20a、20b間を連結する連結部材21を、軸心Oを中心とする円周上に等間隔でかつ軸心Oに対して線対称となるように配置された複数のアーム部22で構成している。しかし、本発明はこれに限定されない。連結部材は、軸心Oを含む平面における断面形状が軸心Oに対して線対称に傾斜していればよい。例えば、連結部材は、環状平板20a、20bの一方から他方に向けて直径が大きくなる筒状部材でもよい。 Further, in the above embodiment, the connecting members 21 for connecting the annular flat plates 20a and 20b are arranged at equal intervals on the circumference centering on the axial center O and in line symmetry to the axial center O. It is comprised by the several arm part 22 arrange | positioned. However, the present invention is not limited to this. The connecting member may have a cross-sectional shape in a plane including the axial center O inclined in line symmetry with respect to the axial center O. For example, the connecting member may be a tubular member whose diameter increases from one of the annular flat plates 20a and 20b to the other.
 また、上記の実施の形態では、環状平板20a、20bを同径としているが、本発明はこれに限定されない。例えば、図5に示すように、ロードセル1を滑り軸受6に組み込んで車両用サスペンション4に搭載する場合、環状平板20aを環状平板20aが取り付けられるアッパーサポート7のサイズに合わせ、環状平板20bを環状平板20bが取り付けられる滑り軸受6のアッパーケース61のサイズに合わせることにより、環状平板20a、20bのサイズをそれぞれ異ならせてもよい。 Further, in the above embodiment, the annular flat plates 20a and 20b have the same diameter, but the present invention is not limited to this. For example, as shown in FIG. 5, when the load cell 1 is incorporated into the slide bearing 6 and mounted on the vehicle suspension 4, the annular flat plate 20a is adjusted to the size of the upper support 7 to which the annular flat plate 20a is attached, and the annular flat plate 20b is annular By matching the size of the upper case 61 of the slide bearing 6 to which the flat plate 20b is attached, the sizes of the annular flat plates 20a and 20b may be made different from each other.
 また、上記の実施の形態に係るロードセル1を用いた軸受として、滑り軸受6を例にとり説明している。しかし、ロードセル1と組み合わせる軸受は、滑り軸受に限定されない。例えば転がり軸受であってもよい。また、本発明のロードセルは、軸受に限らず、スラスト荷重を測定する様々な用途に利用可能である。 In addition, as a bearing using the load cell 1 according to the above embodiment, the slide bearing 6 is described as an example. However, the bearing combined with the load cell 1 is not limited to the sliding bearing. For example, it may be a rolling bearing. Moreover, the load cell of the present invention can be used not only for bearings but also for various applications for measuring thrust loads.
 1:ロードセル、 2:起歪体、 3、3a~3d:歪みゲージセット、 4:車両用サスペンション、 5:ダンパアッセンブリ、 6:滑り軸受、 7:アッパーサポート、 8:荷重測定部、 20a、20b:環状平板、 21:連結部材、 22:アーム部、 30a~30d:歪みゲージ、 50:ショックアブソーバ、 51:コイルスプリング、 52:ロワースプリングシート、 53:バンプストッパ、 54:ダストブーツ、 55:アッパースプリングシート、 56:ピストンロッド、 220a、220b:アーム部22の端部、 221:アーム部22の外壁面、 222:アーム部22の内壁面、 510:コイルスプリング51の上端部、 511:コイルスプリング51の下端部 1: load cell, 2: strain generating body, 3, 3a to 3d: strain gauge set, 4: suspension for vehicle, 5: damper assembly, 6: sliding bearing, 7: upper support, 8: load measuring unit, 20a, 20b : Ring plate, 21: Link member, 22: Arm, 30a-30d: Strain gauge, 50: Shock absorber, 51: Coil spring, 52: Lower spring seat, 53: Bump stopper, 54: Dust boot, 55: Upper Spring seat 56: Piston rod 220a, 220b: end of arm 22 221: outer wall of arm 22 222: inner wall of arm 22 510: upper end of coil spring 51 511: coil spring Lower end of 51

Claims (6)

  1.  起歪体と、
     前記起歪体に生じた歪みを検出する歪みゲージと、を備え、
     前記起歪体は、
     軸心方向に配置された2つの環状平板と、
     前記2つの環状平板間を連結する連結部材と、を有し、
     前記連結部材は、前記軸心に対して傾斜しており、
     前記歪みゲージは、前記連結部材に取り付けられている
     ことを特徴とするロードセル。
    Strain generating body,
    A strain gauge for detecting strain generated in the strain generating body;
    The strain body is
    Two annular flat plates arranged in the axial direction,
    And a connecting member for connecting between the two annular flat plates,
    The connecting member is inclined with respect to the axial center,
    The load cell, wherein the strain gauge is attached to the connecting member.
  2.  請求項1に記載のロードセルであって、
     前記連結部材は、
     前記軸心を含む平面における断面形状が当該軸心に対して線対称に傾斜しており、
     前記歪みゲージは、
     前記連結部材の前記軸心に対して線対称な位置にそれぞれに取り付けられている
     ことを特徴とするロードセル。
    The load cell according to claim 1, wherein
    The connecting member is
    A cross-sectional shape in a plane including the axis is axisymmetrically inclined with respect to the axis;
    The strain gauge
    A load cell, wherein the load cells are attached at positions axisymmetrically with respect to the axial center of the connection member.
  3.  請求項2に記載のロードセルであって、
     前記連結部材は、
     前記軸心を中心とする円周上に等間隔でかつ前記軸心に対して線対称となるように配置された複数のアーム部を有する
     ことを特徴とするロードセル。
    The load cell according to claim 2, wherein
    The connecting member is
    A load cell comprising a plurality of arm portions arranged at equal intervals on a circumference centered on the axis and at line symmetry with respect to the axis.
  4.  請求項1ないし3のいずれか一項に記載のロードセルであって、
     前記歪みゲージは、
     前記環状平板の内縁側に位置する前記連結部材の内壁面および前記環状平板の外縁側に位置する前記連結部材の外壁面にそれぞれに取り付けられている
     ことを特徴とするロードセル。
    The load cell according to any one of claims 1 to 3, wherein
    The strain gauge
    A load cell characterized by being attached respectively to an inner wall surface of the connection member located on the inner edge side of the annular flat plate and an outer wall surface of the connection member located on the outer edge side of the annular flat plate.
  5.  請求項1ないし4のいずれか一項に記載のロードセルであって、
     前記歪みゲージは、
     前記連結部材の前記軸方向の両端部にそれぞれに取り付けられている
     ことを特徴とするロードセル。
    The load cell according to any one of claims 1 to 4, wherein
    The strain gauge
    A load cell, which is attached to each end of the connecting member in the axial direction.
  6.  サスペンションに加わる車両の荷重を支持する軸受であって、
     車体側に取り付けられるアッパーケースと、
     前記サスペンションを構成するスプリング側に取り付けられ、前記アッパーケースと相対的に回転可能に組み合わされるロワーケースと、
     前記アッパーケースと前記車体との間に配置される請求項1ないし5のいずれか一項に記載のロードセルと、を備えている
     ことを特徴とする軸受。
    A bearing that supports the load of a vehicle applied to a suspension,
    An upper case attached to the vehicle body side,
    A lower case attached to a spring side constituting the suspension and rotatably combined with the upper case;
    The load cell according to any one of claims 1 to 5, which is disposed between the upper case and the vehicle body.
PCT/JP2018/027407 2017-07-31 2018-07-20 Load cell and bearing WO2019026655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148456A JP2019027958A (en) 2017-07-31 2017-07-31 Load cell and bearing
JP2017-148456 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026655A1 true WO2019026655A1 (en) 2019-02-07

Family

ID=65232727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027407 WO2019026655A1 (en) 2017-07-31 2018-07-20 Load cell and bearing

Country Status (2)

Country Link
JP (1) JP2019027958A (en)
WO (1) WO2019026655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095217A (en) * 2019-04-26 2019-08-06 杭州电子科技大学 A kind of device and method measuring Frictional Moment for Rolling Bearings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226409A1 (en) * 2007-03-13 2008-09-18 Thomas Hasenzahl Dental machining unit with tool spindle
JP2008233008A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Axle holding device
WO2012028177A1 (en) * 2010-08-31 2012-03-08 Aktiebolaget Skf Suspension thrust bearing with filtering element
JP2015049209A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Torque sensor
WO2016052106A1 (en) * 2014-09-29 2016-04-07 オイレス工業株式会社 Thrust bearing for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226409A1 (en) * 2007-03-13 2008-09-18 Thomas Hasenzahl Dental machining unit with tool spindle
JP2008233008A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Axle holding device
WO2012028177A1 (en) * 2010-08-31 2012-03-08 Aktiebolaget Skf Suspension thrust bearing with filtering element
JP2015049209A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Torque sensor
WO2016052106A1 (en) * 2014-09-29 2016-04-07 オイレス工業株式会社 Thrust bearing for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095217A (en) * 2019-04-26 2019-08-06 杭州电子科技大学 A kind of device and method measuring Frictional Moment for Rolling Bearings

Also Published As

Publication number Publication date
JP2019027958A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP5723402B2 (en) Wheel force detection device
EP3219449A2 (en) Robot and torque sensor
US9243981B2 (en) Bush component force detection device
US9250158B2 (en) Bush component force detection device
US11761835B2 (en) Mounting structure for torque sensor
JP2011085514A (en) Load measuring sensor for rod-shaped body, and load measuring system
US7665371B2 (en) Device and method for measuring forces and moments
NO315192B1 (en) coupling
US7832290B2 (en) Axial force transducer
US9243980B2 (en) Bush component force detection device
WO2019026655A1 (en) Load cell and bearing
JP5886665B2 (en) Wheel force detection device
US20210300112A1 (en) Upright
US7685890B2 (en) Bearing assembly with a strain sensor
US20230044489A1 (en) Hub carrier comprising force and/or moment sensors
US10399188B2 (en) Method for manufacturing universal joint
US11493087B2 (en) Strut bearing and vehicle strut suspension
WO2016072843A1 (en) Wheel suspension, method for determining a mechanical quantity in a wheel suspension, and vehicle comprising such a wheel suspension
EP3712452A1 (en) Suspension assembly for a motor vehicle with a wheel hub rolling bearing unit mounted to an upright or a knuckle of the suspension
Yahia MODIFICATION OF THE BALL-JOINT FOR NISSAN PICK UP CAR
JPH04305132A (en) Load sensor for car wheel
JP2019015320A (en) Bearing body for suspension device, and suspension device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840690

Country of ref document: EP

Kind code of ref document: A1