WO2019026626A1 - Fuel cell device - Google Patents
Fuel cell device Download PDFInfo
- Publication number
- WO2019026626A1 WO2019026626A1 PCT/JP2018/026982 JP2018026982W WO2019026626A1 WO 2019026626 A1 WO2019026626 A1 WO 2019026626A1 JP 2018026982 W JP2018026982 W JP 2018026982W WO 2019026626 A1 WO2019026626 A1 WO 2019026626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- fuel cell
- housing
- chamber
- air supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present disclosure relates to a fuel cell device.
- a SOFC (Solid Oxide Fuel Cell) fuel cell apparatus in a cell stack configured by stacking a large number of fuel cells disposed in a fuel cell module, fuel reformed by a reformer and air are combined. It generates electricity by making it react.
- a structure for ventilating the air in the outer case is required. Therefore, a fuel cell device has been proposed in which a fan is provided in the outer case to ventilate the air in the outer case (see, for example, Patent Document 1).
- a large SOFC type fuel cell apparatus is provided with a so-called negative pressure ventilation system in which an exhaust fan is provided in the vicinity of the exhaust port and the pressure in the outer case is negative to discharge the air in the outer case.
- a so-called negative pressure ventilation system in which an exhaust fan is provided in the vicinity of the exhaust port and the pressure in the outer case is negative to discharge the air in the outer case.
- the fuel cell device of the present disclosure A fuel cell module that generates electricity; A housing for housing the fuel cell module; A partition member configured to divide the inside of the housing into a first chamber and a second chamber; In the housing, an air inlet provided on a bottom surface of the housing to communicate the first chamber with the outside of the housing, and an exhaust port connecting the second chamber with the outside of the housing are provided.
- the partition member is provided with an opening for communicating the first chamber and the second chamber, A first air blower for moving air in the first chamber to the second chamber through the opening; And an air supply passage having one end connected to the fuel cell module and the other end extending to the vicinity of the air inlet.
- FIG. 1 is a block diagram showing the configuration of the fuel cell device of the embodiment.
- the same members are denoted by the same reference numerals.
- the fuel cell device 1 includes a fuel cell module 2 configured to store the reformer 10 and the cell stack device 20 in a storage container (not shown).
- a housing which is an outer case together with a plurality of accessories such as a heat exchanger 31, a condensed water tank 32, a power conditioner 33, a fuel supply device 34, and an air supply device 35 for operating the fuel cell module 2. It is housed and configured (not shown). Not all the above-mentioned devices need to be accommodated in the housing, and for example, the heat exchanger 31 may be provided outside the housing. Moreover, you may arrange
- FIG. 2 is a perspective view showing the configuration of the casing of the fuel cell device of the embodiment
- FIG. 3 is a schematic cross-sectional view showing the configuration of the fuel cell device of the embodiment.
- the rectangular parallelepiped casing 40 is composed of an exterior plate 41 and a column 42 made of metal or the like.
- An exterior plate 41 is fixed to the column 42, and the exterior plate 41 constitutes each surface of the housing 40.
- the exterior plate 41 includes a bottom plate 41 a constituting the bottom surface of the housing 40, a top plate 41 b constituting the top surface of the housing 40, and a side plate 41 c constituting the side surface of the housing 40.
- the casing 40 is divided by the partition member 43 into a first chamber 44 which is a space below the partition member 43 and a second chamber 45 which is a space above the partition member 43.
- the partition member 43 is supported by the column 42, and its strength is secured so that the fuel cell module 2 and the like can be mounted on the partition member 43.
- An intake port 46 is provided in the bottom plate 41 a.
- the outside of the housing 40 and the first chamber 44 are in communication with each other by the intake port 46.
- the exhaust port 47 is provided in the top plate 41b.
- the exhaust port 47 communicates the outside of the housing 40 with the second chamber 45.
- the partition member 43 is provided with an opening 48 which allows the first chamber 44 and the second chamber 45 to communicate with each other.
- the partition member 43 is provided with a first air blower 50 for moving the air of the first chamber 44 to the second chamber 45 through the opening 48.
- a blower fan or the like can be used as the first blower 50.
- the air in the case 40 flows from the bottom to the top by providing the intake port 46 in the bottom plate 41 b and the exhaust port 47 in the top plate 41 b. Therefore, ventilation in the housing 40 can be performed well.
- the first chamber 44 has a negative pressure
- the second chamber 45 has a positive pressure.
- the flow of air in the first chamber 44 is accelerated near the opening 48, the overall flow of air from the lower side to the upper side is generated inside the first chamber 44, and the flow velocity of the air is relatively small.
- the first chamber 44 has openings other than the intake port 46 such as the drainage port 49 for draining rainwater and the like, and since the first chamber 44 has a negative pressure, Air flows into the single chamber 44.
- the air flow in the second chamber 45 is caused by the first blower 50, and the air flows in from the opening 48, so that a linear high flow of air is generated upward from the opening 48.
- the fuel cell module 2 shown in FIG. 3 is placed on the partition member 43 and disposed in the second chamber 45.
- the fuel cell module 2 has a high temperature inside, so the storage container 24 also has a relatively high temperature. That is, the second chamber 45 tends to have a higher temperature than the first chamber 44.
- the fuel supply device 34, the air supply device 35, the condensed water tank 32, and the pumps which are auxiliary devices that should be operated at relatively low temperature, are disposed in the first chamber 44, and the second chamber 45 An auxiliary machine that operates even at a relatively high temperature is disposed in As a result, it is possible to reduce a failure such as a failure of the accessory, and to improve the reliability of the fuel cell device 1.
- the air supply passage 103 for supplying air to the fuel cell module 2 disposed in the second chamber 45 is connected to the fuel cell module 2.
- the air supply passage 103 penetrates the partition member 43 and the other end extends to the vicinity of the intake port 46.
- the other end of the air supply path 103 is formed with a rectangular box-shaped portion 103 a.
- the bottom of the box-like portion 103 a of the air supply passage 103 is open, and this opening is the end portion 103 b of the air supply passage 103.
- the air supply path 103 is formed of a tubular member such as metal or resin.
- the flow of air is stabilized, and the accessories in the housing 40 can be reliably cooled. Therefore, the reliability of the fuel cell device 1 can be improved.
- the air supply device 35 is provided in the air supply path 103.
- an air supply device 35 is provided in the box-like portion 103a.
- the air supply device 35 has a second blower 35a.
- a blower fan or the like can be used as the second blower 35a. By operating the second blower 35 a, air is fed from the air supply path 103 to the fuel cell module 2.
- Such an air supply device 35 may be located at any position of the air supply path 103 extending from the fuel cell module 2 to the vicinity of the intake port 46. As in the present embodiment, by disposing the air supply device 35 in the vicinity of the intake port, the air flowing in from the intake port 46 can be directly taken in by the air supply device 35, so the air can be efficiently fueled. The battery module 2 can be supplied. Further, since the air supply device 35 is installed at a position close to the end of the air supply path 103, maintenance work can be performed efficiently.
- An air filter 51 is provided at the intake port 46, and by taking in the outside air through the air filter 51, it is possible to reduce the infiltration of dust and dirt contained in the outside air into the housing 40. Further, the air supply passage 103 is provided to extend to the vicinity of the intake port 46, whereby a large amount of air having passed through the air filter 51 can be introduced into the fuel cell module 2. Therefore, the entry of dust and dirt into the fuel cell module 2 can be reduced.
- the air supply device 35 is attached in the vicinity of the intake port 46 and the configuration in which the air filter 51 is provided in the intake port 46, the air is taken through the air filter 51 among the air taken into the housing 40.
- the proportion of air taken into the body 40 can be increased to reduce the infiltration of dust and dirt into the housing 40.
- FIG. 4 is a bottom view showing the configuration of the fuel cell device of the embodiment.
- the intake port 46 can be formed, for example, by providing a plurality of openings in the metal bottom plate 41 a that constitutes the bottom surface of the housing 40 of the fuel cell device 1.
- the intake port 46 is formed by opening an oblong hole in the bottom plate 41 a in the longitudinal and lateral directions.
- an air filter 51 is disposed at the intake port 46.
- the air filter may be provided also in the air supply passage 103, and may be provided with two air filters such as an air filter 51 near the intake port 46 and an air filter in the air supply passage 103.
- the end portion 103b of the air supply path 103 is provided on the air filter 51, and a partial region where the intake port 46 is provided overlaps with the end portion 103b in plan view from the bottom surface side . That is, the intake port 46 is a first intake port 46 a which is a portion overlapping the one end 103 b of the air supply path 103 in plan view from the bottom surface side, and the first intake port of the intake ports 46. It has a second intake port 46b which is the other part.
- a plurality of openings are provided in the bottom plate 41a, and a water outlet 49 is formed.
- the drainage port 49 drains from the inside of the housing 40 the water such as rain water and condensation that has entered the inside of the housing 40 of the fuel cell device 1.
- the first air blower 50 operates to cool and ventilate the inside of the housing 40, but since the first chamber 44 has a negative pressure, air is only from the intake port 46. Instead, it also flows from other openings provided in the outer wall of the first chamber 44 such as the drainage port 49.
- the air that has passed through the air inlet 46 passes through the air filter 51, so dust and dirt contained in the air can be removed, but air from other openings such as the water outlet 49 does not pass through the air filter 51, Dust and dirt can easily enter the housing 40.
- the air is supplied by the air supply device 35 into the fuel cell module 2.
- a strong negative pressure is generated to generate a flow of air flowing to the air supply passage 103 through the first air inlet 46a.
- the second intake port 46b around the first intake port 46a, the airflow toward the air supply path 103 is surrounded by the airflow passing through the second intake port 46b. Flow can be generated. As a result, the possibility that air that has passed through another opening such as the drainage port 49 is drawn from the air supply path 103 and supplied to the fuel cell module 2 can be reduced. For example, by locating the second inlet 46b between the outlet 49 and the first inlet 46a, it is possible to reduce the possibility that air flowing in from the outlet may enter the air supply path 103. it can.
- the air from the first air intake 46a moves through the inside of the air supply passage 103
- the air from the air inlet 46 b of the air conditioner may be configured to move through the outside of the air supply passage 103. This can further reduce the possibility that air that has passed through another opening such as the drainage port 49 is drawn from the air supply path 103 and supplied to the fuel cell module 2.
- FIG. 5 is an exploded perspective view of a fuel cell module constituting the fuel cell device of the embodiment. The operation of the fuel cell device will be described with reference to FIGS. 1 and 5.
- the reformer 10 is connected to a raw fuel supply pipe 100 for supplying a raw fuel such as hydrocarbon gas and a water supply pipe 101 for supplying reforming water. As shown in FIG. 5, the raw fuel supply pipe 100 and the water supply pipe 101 may be integrally connected to the reformer through a pipe line.
- the raw fuel supply pipe 100 is provided with a fuel supply device 34 for supplying the raw fuel to the reformer 10.
- the raw fuel is reformed by the vapor resulting from evaporation of the reforming water to generate a reformed gas containing hydrogen.
- the reformed gas generated by the reformer 10 is supplied to the cell stack device 20 through the reformed gas supply pipe 102.
- the cell stack device 20 includes a cell stack 23 in which a large number of manifolds 21 and fuel cells 22 are connected.
- the reformed gas supplied from the reformer 10 to the cell stack device 20 is supplied from the manifold 21 into the fuel cell 22.
- air which is an oxygen-containing gas is introduced from the air supply passage 103 to the outside of the fuel cell 22.
- An air supply device 35 is connected to the air supply path 103, and the air supply device 35 feeds air to the cell stack device 20.
- the reformed gas passes through the fuel cell 22, it reacts with the air to generate power.
- the reformed gas not used for power generation merges with the air not used for power generation at the top of the cell stack 23 and burns to generate high temperature exhaust gas. Further, the reformer 10 is heated by the heat generated by the combustion.
- the electricity generated by the fuel cell module 2 is sent to the power conditioner 33 and used for power consumption and storage of electricity in the storage battery.
- the reformer 10 and the cell stack device 20 have a high temperature, they are surrounded by a heat insulating material or the like and stored in the storage container 24 and disposed as a fuel cell module 2 in a housing together with accessories.
- the exhaust gas generated in the fuel cell module 2 is discharged from the cell stack device 20 and then supplied to the heat exchanger 31 through the exhaust gas flow path 104.
- a circulation line 105 is connected to the heat exchanger 31, and heat exchange is performed between the medium introduced into the circulation line 105 and the exhaust gas.
- Water or the like can be used as the medium.
- the exhaust gas is cooled and the medium is heated by the heat of the exhaust gas.
- the exhaust gas is cooled and the water vapor contained in the exhaust gas is separated into water and gas.
- Gas is exhausted from the gas exhaust port to the outside through the exhaust passage 107. Water separated by cooling the exhaust gas is sent to the condensed water tank 32 through the condensed water recovery channel 106.
- the water is purified through ion exchange and the like, and the purified water is introduced into the water supply pipe 101 and supplied to the reformer 10 as reforming water. Unwanted water is drained from the drain 108.
- the medium warmed by the heat exchanger 31 moves to the heat storage tank 36.
- the medium can store heat while circulating through the circulation line 105.
- the stored heat can be used for hot water supply and the like.
- the water in the heat storage tank 36 may be used for hot water supply. If the temperature of the medium in the heat storage tank 36 becomes too high, a radiator may be provided to reduce the temperature of the medium supplied to the heat exchanger 31.
- this indication was explained in detail, this indication is not limited to the above-mentioned embodiment, In the range which does not deviate from the gist of this indication, various change, improvement, etc. are possible.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
This invention is provided with: a fuel cell module for generating power; a casing for housing the fuel cell module; and a partition member for dividing the interior of the casing into a first compartment and a second compartment. The casing is provided with an intake port, which is provided on the bottom surface of the casing and which communicates between the first compartment and the exterior of the casing, and an exhaust port, which communicates between the second compartment and the exterior of the casing. An opening communicating between the first compartment and the second compartment is provided to the partition member. The invention is provided with a first blower device for moving air in the first compartment into the second compartment through the opening, and an air feed path having one end connecting to a fuel cell module and the other end extending to the vicinity of the intake port. It is thereby possible to improve the reliability of the fuel cell device.
Description
本開示は燃料電池装置に関する。
The present disclosure relates to a fuel cell device.
近年、次世代エネルギーとして、燃料ガス(水素含有ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルを収納容器内に収納してなる燃料電池モジュールと、燃料電池モジュールを動作させるための補機とを、筐体である外装ケース内に収納してなる燃料電池装置が、種々提案されている。
In recent years, as a next-generation energy, a fuel cell module in which a fuel cell capable of obtaining electric power using fuel gas (hydrogen-containing gas) and air (oxygen-containing gas) is accommodated in a storage container, and fuel cell Various fuel cell devices have been proposed in which an auxiliary machine for operating the module is housed in an outer case which is a housing.
たとえば、SOFC(Solid Oxide Fuel Cell)型燃料電池装置は、燃料電池モジュール内に配設した燃料電池セルを多数積層して構成したセルスタックにおいて、改質器で改質された燃料と空気とを反応させることによって発電する。また、燃料電池モジュールの発電によって生じる熱によって、外装ケース内が高温になるため、外装ケース内の空気を換気する構造が必要となる。そこで、外装ケースにファンを設け、外装ケース内の空気の換気を行う燃料電池装置が提案されている(たとえば、特許文献1を参照。)。
For example, in a SOFC (Solid Oxide Fuel Cell) fuel cell apparatus, in a cell stack configured by stacking a large number of fuel cells disposed in a fuel cell module, fuel reformed by a reformer and air are combined. It generates electricity by making it react. In addition, since the heat generated by the fuel cell module generates the inside of the outer case at a high temperature, a structure for ventilating the air in the outer case is required. Therefore, a fuel cell device has been proposed in which a fan is provided in the outer case to ventilate the air in the outer case (see, for example, Patent Document 1).
また、外装ケースを隔壁で上下2室に分割し、隔壁に開口した孔にファンを設けた燃料電池装置が提案されている(たとえば、特許文献2を参照。)。
In addition, a fuel cell device has been proposed in which an outer case is divided into upper and lower two chambers by a partition wall and a fan is provided in a hole opened in the partition wall (see, for example, Patent Document 2).
また、大型のSOFC型燃料電池装置においては、排気口近傍に排気ファンを設け、外装ケース内を負圧にして外装ケース内の空気を排出する、いわゆる負圧式の換気システムを具備しているものもある。
In addition, a large SOFC type fuel cell apparatus is provided with a so-called negative pressure ventilation system in which an exhaust fan is provided in the vicinity of the exhaust port and the pressure in the outer case is negative to discharge the air in the outer case. There is also.
本開示の燃料電池装置は、
発電を行う燃料電池モジュールと、
前記燃料電池モジュールを収納する筐体と、
前記筐体内を第1室と第2室とに分割する仕切部材と、を備え、
前記筐体には、前記筐体の底面に設けられて前記第1室と筐体の外部とを連通させる吸気口と、前記第2室と筐体の外部とを連通させる排気口とが、設けられており、
前記仕切部材には、前記第1室と前記第2室とを連通させる開口が設けられており、
前記開口を介して、前記第1室の空気を前記第2室に移動させる第1送風装置と、
一端が前記燃料電池モジュールに接続し、他端が前記吸気口近傍まで延びる空気供給路と、を備える。 The fuel cell device of the present disclosure
A fuel cell module that generates electricity;
A housing for housing the fuel cell module;
A partition member configured to divide the inside of the housing into a first chamber and a second chamber;
In the housing, an air inlet provided on a bottom surface of the housing to communicate the first chamber with the outside of the housing, and an exhaust port connecting the second chamber with the outside of the housing are provided. Provided,
The partition member is provided with an opening for communicating the first chamber and the second chamber,
A first air blower for moving air in the first chamber to the second chamber through the opening;
And an air supply passage having one end connected to the fuel cell module and the other end extending to the vicinity of the air inlet.
発電を行う燃料電池モジュールと、
前記燃料電池モジュールを収納する筐体と、
前記筐体内を第1室と第2室とに分割する仕切部材と、を備え、
前記筐体には、前記筐体の底面に設けられて前記第1室と筐体の外部とを連通させる吸気口と、前記第2室と筐体の外部とを連通させる排気口とが、設けられており、
前記仕切部材には、前記第1室と前記第2室とを連通させる開口が設けられており、
前記開口を介して、前記第1室の空気を前記第2室に移動させる第1送風装置と、
一端が前記燃料電池モジュールに接続し、他端が前記吸気口近傍まで延びる空気供給路と、を備える。 The fuel cell device of the present disclosure
A fuel cell module that generates electricity;
A housing for housing the fuel cell module;
A partition member configured to divide the inside of the housing into a first chamber and a second chamber;
In the housing, an air inlet provided on a bottom surface of the housing to communicate the first chamber with the outside of the housing, and an exhaust port connecting the second chamber with the outside of the housing are provided. Provided,
The partition member is provided with an opening for communicating the first chamber and the second chamber,
A first air blower for moving air in the first chamber to the second chamber through the opening;
And an air supply passage having one end connected to the fuel cell module and the other end extending to the vicinity of the air inlet.
本開示の目的、特色、および利点は、下記の詳細な説明と図面とから、より明確になるであろう。
実施形態の燃料電池装置の構成を示すブロック図である。
実施形態の燃料電池装置の筐体の構成を示す斜視図である。
実施形態の燃料電池装置の構成を示す概略断面図である。
実施形態の燃料電池装置の構成を示す底面図である。
実施形態の燃料電池モジュールの構成を示す分解斜視図である。
The objects, features and advantages of the present disclosure will become more apparent from the following detailed description and the drawings.
It is a block diagram showing composition of a fuel cell device of an embodiment. It is a perspective view showing composition of a case of a fuel cell device of an embodiment. It is a schematic sectional drawing which shows the structure of the fuel cell apparatus of embodiment. It is a bottom view showing composition of a fuel cell device of an embodiment. It is a disassembled perspective view which shows the structure of the fuel cell module of embodiment.
以下、図面を参考にして、実施形態を詳細に説明する。
図1は、実施形態の燃料電池装置の構成を示すブロック図である。なお、以降の図において同一の部材については同一の番号を付するものとする。 Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the fuel cell device of the embodiment. In the following drawings, the same members are denoted by the same reference numerals.
図1は、実施形態の燃料電池装置の構成を示すブロック図である。なお、以降の図において同一の部材については同一の番号を付するものとする。 Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the fuel cell device of the embodiment. In the following drawings, the same members are denoted by the same reference numerals.
燃料電池装置1は、収納容器(図示せず)に改質器10およびセルスタック装置20を収納して構成される燃料電池モジュール2を含む。また、燃料電池モジュール2を作動させるための、熱交換器31、凝縮水タンク32、パワーコンディショナ33、燃料供給装置34および空気供給装置35等の複数の補機とともに、外装ケースである筐体(図示せず)に納められて構成されている。筐体内には、上述の装置全てが収められる必要はなく、たとえば、熱交換器31を筐体の外部に設けてもよい。また、熱交換器31で熱交換をした水などの熱媒体を蓄える蓄熱タンク36などを、筐体の内部に配設してもよい。
The fuel cell device 1 includes a fuel cell module 2 configured to store the reformer 10 and the cell stack device 20 in a storage container (not shown). In addition, a housing which is an outer case together with a plurality of accessories such as a heat exchanger 31, a condensed water tank 32, a power conditioner 33, a fuel supply device 34, and an air supply device 35 for operating the fuel cell module 2. It is housed and configured (not shown). Not all the above-mentioned devices need to be accommodated in the housing, and for example, the heat exchanger 31 may be provided outside the housing. Moreover, you may arrange | position the thermal storage tank 36 grade | etc., Which stores heat-medium, such as water which heat-exchanged by the heat exchanger 31, in the inside of a housing | casing.
図2は、実施形態の燃料電池装置の筐体の構成を示す斜視図であり、図3は、実施形態の燃料電池装置の構成を示す概略断面図である。
FIG. 2 is a perspective view showing the configuration of the casing of the fuel cell device of the embodiment, and FIG. 3 is a schematic cross-sectional view showing the configuration of the fuel cell device of the embodiment.
直方体状の筐体40は、金属などで構成された、外装板41と支柱42とから構成されている。支柱42には、外装板41が固定されており、外装板41は、筐体40の各面を構成している。外装板41は、筐体40の底面を構成する底板41aと、筐体40の天面を構成する天板41bと、筐体40の側面を構成する側板41cとから構成されている。
The rectangular parallelepiped casing 40 is composed of an exterior plate 41 and a column 42 made of metal or the like. An exterior plate 41 is fixed to the column 42, and the exterior plate 41 constitutes each surface of the housing 40. The exterior plate 41 includes a bottom plate 41 a constituting the bottom surface of the housing 40, a top plate 41 b constituting the top surface of the housing 40, and a side plate 41 c constituting the side surface of the housing 40.
筐体40は、仕切部材43によって、仕切部材43よりも下方の空間である、第1室44と、仕切部材43よりも上方の空間である、第2室45とに分割されている。仕切部材43は、支柱42に支持されており、仕切部材43上に燃料電池モジュール2などを載置できるように、強度が確保されている。
The casing 40 is divided by the partition member 43 into a first chamber 44 which is a space below the partition member 43 and a second chamber 45 which is a space above the partition member 43. The partition member 43 is supported by the column 42, and its strength is secured so that the fuel cell module 2 and the like can be mounted on the partition member 43.
底板41aには、吸気口46が設けられている。吸気口46によって、筐体40の外部と第1室44とが連通している。また、天板41bには、排気口47が設けられている。排気口47によって、筐体40の外部と第2室45とが連通している。また、仕切部材43には、第1室44と第2室45とを連通させる開口48が設けられている。
An intake port 46 is provided in the bottom plate 41 a. The outside of the housing 40 and the first chamber 44 are in communication with each other by the intake port 46. Moreover, the exhaust port 47 is provided in the top plate 41b. The exhaust port 47 communicates the outside of the housing 40 with the second chamber 45. Further, the partition member 43 is provided with an opening 48 which allows the first chamber 44 and the second chamber 45 to communicate with each other.
仕切部材43には、第1室44の空気を、開口48を介して第2室45に移動させるための第1送風装置50が配設されている。第1送風装置50としては、送風ファンなどを用いることができる。
The partition member 43 is provided with a first air blower 50 for moving the air of the first chamber 44 to the second chamber 45 through the opening 48. As the first blower 50, a blower fan or the like can be used.
第1送風装置50を動作させると、空気は、開口48を介して第1室44から第2室45に移動するとともに、吸気口46から空気が第1室44に流入し、排気口47を介して、空気が第2室45から外部に放出される。このように底板41bに吸気口46を設け、天板41bに排気口47を設けることによって、筐体40内の空気が、おおむね下から上へ流れる。したがって、筐体40内の換気を、良好に行うことができる。
When the first air blower 50 is operated, the air moves from the first chamber 44 to the second chamber 45 through the opening 48, and the air flows from the air inlet 46 into the first chamber 44, and the air outlet 47 is Air is discharged from the second chamber 45 to the outside through the air. Thus, the air in the case 40 flows from the bottom to the top by providing the intake port 46 in the bottom plate 41 b and the exhaust port 47 in the top plate 41 b. Therefore, ventilation in the housing 40 can be performed well.
第1送風装置50を動作させることによって、第1室44は、負圧になり、第2室45は、正圧になる。第1室44における空気の流れは、開口48付近で速くなるが、第1室44内部に、下方から上方への全体的な空気の流れが生じ、空気の流速は比較的小さい。
By operating the first air blower 50, the first chamber 44 has a negative pressure, and the second chamber 45 has a positive pressure. Although the flow of air in the first chamber 44 is accelerated near the opening 48, the overall flow of air from the lower side to the upper side is generated inside the first chamber 44, and the flow velocity of the air is relatively small.
第1室44には、雨水などを排出するための排水口49などの吸気口46以外の開口があり、第1室44が負圧であるので、吸気口46とともにそれらの開口からも、第1室44に空気が流入する。
The first chamber 44 has openings other than the intake port 46 such as the drainage port 49 for draining rainwater and the like, and since the first chamber 44 has a negative pressure, Air flows into the single chamber 44.
第2室45における空気の流れは、第1送風装置50によって、開口48から空気が流入するので、開口48から上方に向かって、直線的な流速の大きな空気の流れが生じる。
The air flow in the second chamber 45 is caused by the first blower 50, and the air flows in from the opening 48, so that a linear high flow of air is generated upward from the opening 48.
図3に示す燃料電池モジュール2は、仕切部材43上に載置され、第2室45内に配設されている。燃料電池モジュール2は、内部が高熱になるため、収納容器24も比較的高熱になる。すなわち、第2室45は、第1室44よりも高温になりやすい。
The fuel cell module 2 shown in FIG. 3 is placed on the partition member 43 and disposed in the second chamber 45. The fuel cell module 2 has a high temperature inside, so the storage container 24 also has a relatively high temperature. That is, the second chamber 45 tends to have a higher temperature than the first chamber 44.
したがって、第1室44には、比較的低温で動作させた方がよい補機である、燃料供給装置34、空気供給装置35、凝縮水タンク32およびポンプ類を配設し、第2室45には、比較的高温であっても動作する補機などを配設する。これにより、補機の故障などの不具合を低減することができ、燃料電池装置1の信頼性を高めることができる。
Therefore, the fuel supply device 34, the air supply device 35, the condensed water tank 32, and the pumps, which are auxiliary devices that should be operated at relatively low temperature, are disposed in the first chamber 44, and the second chamber 45 An auxiliary machine that operates even at a relatively high temperature is disposed in As a result, it is possible to reduce a failure such as a failure of the accessory, and to improve the reliability of the fuel cell device 1.
第2室45に配設された燃料電池モジュール2に空気を供給する空気供給路103は、一端が燃料電池モジュール2に接続されている。空気供給路103は、仕切部材43を貫通して、他端が吸気口46近傍まで延びている。空気供給路103の他端は、直方体状の箱状部103aが形成されている。空気供給路103の箱状部103aは、底面が開口しており、この開口部が空気供給路103の端部103bとなっている。空気供給路103は、金属または樹脂などの管状部材から構成される。
One end of an air supply passage 103 for supplying air to the fuel cell module 2 disposed in the second chamber 45 is connected to the fuel cell module 2. The air supply passage 103 penetrates the partition member 43 and the other end extends to the vicinity of the intake port 46. The other end of the air supply path 103 is formed with a rectangular box-shaped portion 103 a. The bottom of the box-like portion 103 a of the air supply passage 103 is open, and this opening is the end portion 103 b of the air supply passage 103. The air supply path 103 is formed of a tubular member such as metal or resin.
このような構成によって、空気供給路103から燃料電池モジュール2に空気が流れ込み、吸気口46近傍の圧力が下がって、より多くの空気が吸気口46から流れ込むため、空気の流れが安定し、筐体40内の補機を確実に冷却できる。
With such a configuration, air flows from the air supply path 103 into the fuel cell module 2 and the pressure in the vicinity of the intake port 46 decreases, and more air flows from the intake port 46, so that the air flow is stabilized. The accessories in the body 40 can be reliably cooled.
すなわち、従来式の、排気ファンによって筐体内の空気を排出する負圧式の換気システムにおいては、吸気口以外の外装ケースの開口からも筐体内に空気が流入するために筐体内の空気の流れが複雑になり、筐体内に配設された一部の補機が十分冷却できないおそれがあった。
That is, in the conventional negative pressure type ventilation system which exhausts the air in the case by the exhaust fan, the air flows in the case because the air also flows into the case from the opening of the outer case other than the intake port. It became complicated and there was a possibility that some accessories installed in the case could not be cooled sufficiently.
本実施形態の燃料電池装置1によれば、空気の流れが安定し、筐体40内の補機を確実に冷却できるので、燃料電池装置1の信頼性を高めることができる。
According to the fuel cell device 1 of the present embodiment, the flow of air is stabilized, and the accessories in the housing 40 can be reliably cooled. Therefore, the reliability of the fuel cell device 1 can be improved.
空気供給装置35は、空気供給路103に設けられている。本実施例においては、箱状部103aの中に空気供給装置35が設けられている。空気供給装置35は、第2送風装置35aを有している。第2送風装置35aとしては、送風ファンなどを用いることができる。第2送風装置35aを動作させることによって、空気供給路103から燃料電池モジュール2へ空気が送り込まれる。
The air supply device 35 is provided in the air supply path 103. In the present embodiment, an air supply device 35 is provided in the box-like portion 103a. The air supply device 35 has a second blower 35a. A blower fan or the like can be used as the second blower 35a. By operating the second blower 35 a, air is fed from the air supply path 103 to the fuel cell module 2.
このような空気供給装置35は、燃料電池モジュール2から、吸気口46近傍に延びる空気供給路103のいずれかの位置にあればよい。本実施形態のように、吸気口近傍に空気供給装置35を配設することによって、吸気口46から流入する空気を、直接的に空気供給装置35によって取り込むことができるので、効率よく空気を燃料電池モジュール2供給することができる。また、空気供給装置35が、空気供給路103の端部に近い位置に設置されているので、メンテナンス作業を効率よく行うことができる。
Such an air supply device 35 may be located at any position of the air supply path 103 extending from the fuel cell module 2 to the vicinity of the intake port 46. As in the present embodiment, by disposing the air supply device 35 in the vicinity of the intake port, the air flowing in from the intake port 46 can be directly taken in by the air supply device 35, so the air can be efficiently fueled. The battery module 2 can be supplied. Further, since the air supply device 35 is installed at a position close to the end of the air supply path 103, maintenance work can be performed efficiently.
また、第2送風装置35aを、吸気口46近傍に取り付けることによって、空気供給路103の端部103b近傍に、局所的な負圧環境が形成され、より多くの外気が、吸気口46を通って取り込むことができる。
In addition, by attaching the second air blower 35 a in the vicinity of the intake port 46, a local negative pressure environment is formed in the vicinity of the end 103 b of the air supply passage 103, and more external air passes through the intake port 46. Can be captured.
吸気口46には、エアフィルタ51が設けられており、エアフィルタ51を介して外気を取り入れることによって、外気に含まれる塵や埃が筐体40内に侵入することを軽減することができる。また、空気供給路103が、吸気口46近傍にまで延びて設けられることによって、燃料電池モジュール2にエアフィルタ51を通過した空気を多く導入することができる。したがって、燃料電池モジュール2に塵や埃が侵入することを軽減することができる。
An air filter 51 is provided at the intake port 46, and by taking in the outside air through the air filter 51, it is possible to reduce the infiltration of dust and dirt contained in the outside air into the housing 40. Further, the air supply passage 103 is provided to extend to the vicinity of the intake port 46, whereby a large amount of air having passed through the air filter 51 can be introduced into the fuel cell module 2. Therefore, the entry of dust and dirt into the fuel cell module 2 can be reduced.
さらに、空気供給装置35を吸気口46近傍に取り付ける構成と、吸気口46にエアフィルタ51を設ける構成とを組み合わせることによって、筐体40内に取り込まれる空気のうち、エアフィルタ51を通って筐体40内に取り込まれる空気の割合を増やし、筐体40内に塵や埃が侵入することを軽減することができる。
Further, by combining the configuration in which the air supply device 35 is attached in the vicinity of the intake port 46 and the configuration in which the air filter 51 is provided in the intake port 46, the air is taken through the air filter 51 among the air taken into the housing 40. The proportion of air taken into the body 40 can be increased to reduce the infiltration of dust and dirt into the housing 40.
図4は、実施形態の燃料電池装置の構成を示す底面図である。吸気口46は、たとえば、燃料電池装置1の筐体40の底面を構成する金属の底板41aに、複数の開口を設けることによって形成できる。本実施形態においては、吸気口46は、底板41aに長円状の孔を縦横に開口して形成されている。
FIG. 4 is a bottom view showing the configuration of the fuel cell device of the embodiment. The intake port 46 can be formed, for example, by providing a plurality of openings in the metal bottom plate 41 a that constitutes the bottom surface of the housing 40 of the fuel cell device 1. In the present embodiment, the intake port 46 is formed by opening an oblong hole in the bottom plate 41 a in the longitudinal and lateral directions.
さらに、吸気口46には、エアフィルタ51が配設されている。なお、エアフィルタは、空気供給路103にも設けてもよく、吸気口46近傍のエアフィルタ51と空気供給路103の中のエアフィルタの、2つのエアフィルタを備えていてもよい。
Furthermore, an air filter 51 is disposed at the intake port 46. The air filter may be provided also in the air supply passage 103, and may be provided with two air filters such as an air filter 51 near the intake port 46 and an air filter in the air supply passage 103.
エアフィルタ51の上には、空気供給路103の端部103bが設けられおり、底面側から平面視して、吸気口46が設けられている一部の領域が、端部103bと重なっている。すなわち、吸気口46は、底面側から平面視して、空気供給路103の一方の端部103bと重なっている部分である第1の吸気口46aと、吸気口46のうち第1の吸気口以外の部分である第2の吸気口46bとを有している。
The end portion 103b of the air supply path 103 is provided on the air filter 51, and a partial region where the intake port 46 is provided overlaps with the end portion 103b in plan view from the bottom surface side . That is, the intake port 46 is a first intake port 46 a which is a portion overlapping the one end 103 b of the air supply path 103 in plan view from the bottom surface side, and the first intake port of the intake ports 46. It has a second intake port 46b which is the other part.
また、吸気口46とは別に、底板41aに複数の開口が設けられ排水口49が形成されている。排水口49は、燃料電池装置1の筐体40内に侵入した雨水および結露などの水を、筐体40内から排出する。
Further, aside from the air inlet 46, a plurality of openings are provided in the bottom plate 41a, and a water outlet 49 is formed. The drainage port 49 drains from the inside of the housing 40 the water such as rain water and condensation that has entered the inside of the housing 40 of the fuel cell device 1.
燃料電池装置1が動作する場合には、第1送風装置50が動作して、筐体40内を冷却および換気するが、第1室44は、負圧なので、空気は、吸気口46からだけではなく、排水口49などの第1室44の外壁に設けられた他の開口からも流入する。吸気口46を通過した空気は、エアフィルタ51を通過するので空気に含まれる塵および埃は取り除くことができるが、排水口49などの他の開口からの空気はエアフィルタ51を介さないので、塵および埃が筐体40内に侵入しやすくなる。
When the fuel cell device 1 operates, the first air blower 50 operates to cool and ventilate the inside of the housing 40, but since the first chamber 44 has a negative pressure, air is only from the intake port 46. Instead, it also flows from other openings provided in the outer wall of the first chamber 44 such as the drainage port 49. The air that has passed through the air inlet 46 passes through the air filter 51, so dust and dirt contained in the air can be removed, but air from other openings such as the water outlet 49 does not pass through the air filter 51, Dust and dirt can easily enter the housing 40.
そこで、吸気口46の上部に空気供給路103の一方の端部103bを配設することで、燃料電池モジュール2内に空気供給装置35よって空気が供給されるので、端部103bおよびその周辺に強い負圧が発生して、第1の吸気口46aを通過して空気供給路103へ流れる空気の流れが生じる。
Therefore, by disposing one end 103 b of the air supply path 103 above the intake port 46, the air is supplied by the air supply device 35 into the fuel cell module 2. A strong negative pressure is generated to generate a flow of air flowing to the air supply passage 103 through the first air inlet 46a.
そうすると、第1の吸気口46a周辺の第2の吸気口46bからもより多くの空気が、筐体40内に流入する。このように、第1の吸気口46aの少なくとも一部に第2の吸気口46bが位置することによって、排水口49などの他の開口からの空気の流入量が減少させることができる。その結果、より多くの空気がエアフィルタ51を通過し、筐体40内に流入する塵および埃を減少させることができる。
Then, more air flows into the housing 40 from the second intake port 46 b around the first intake port 46 a. Thus, the inflow of the air from other openings, such as the drainage port 49, can be reduced by locating the second intake port 46b in at least a part of the first intake port 46a. As a result, more air can pass through the air filter 51 and dust and dirt flowing into the housing 40 can be reduced.
また、第1の吸気口46aの周りに、第2の吸気口46bを設けることによって、空気供給路103に向かう空気流の周りを、第2の吸気口46bを通過した空気流で囲むような流れを生成することができる。これにより、排水口49などの他の開口を通過した空気が、空気供給路103から吸入されて燃料電池モジュール2に供給される可能性を、減少させることができる。たとえば、排水口49と第1の吸気口46aとの間に第2の吸気口46bが位置することによって、排水口から流入する空気が、空気供給路103に進入する可能性を減少させることができる。
In addition, by providing the second intake port 46b around the first intake port 46a, the airflow toward the air supply path 103 is surrounded by the airflow passing through the second intake port 46b. Flow can be generated. As a result, the possibility that air that has passed through another opening such as the drainage port 49 is drawn from the air supply path 103 and supplied to the fuel cell module 2 can be reduced. For example, by locating the second inlet 46b between the outlet 49 and the first inlet 46a, it is possible to reduce the possibility that air flowing in from the outlet may enter the air supply path 103. it can.
さらに、空気供給路103の端部103bを、第1の吸気口46aに近接させることによって、第1の吸気口46aからの空気は、空気供給路103の内部を通って移動し、前記第2の吸気口46bからの空気は、空気供給路103の外側を通って移動するように構成してもよい。これにより、排水口49などの他の開口を通過した空気が、空気供給路103をから吸入されて燃料電池モジュール2に供給される可能性を、より減少させることができる。
Further, by bringing the end 103b of the air supply passage 103 close to the first air inlet 46a, the air from the first air intake 46a moves through the inside of the air supply passage 103, The air from the air inlet 46 b of the air conditioner may be configured to move through the outside of the air supply passage 103. This can further reduce the possibility that air that has passed through another opening such as the drainage port 49 is drawn from the air supply path 103 and supplied to the fuel cell module 2.
図5は、実施形態の燃料電池装置を構成する燃料電池モジュールの分解斜視図である。図1と図5とを参照して、燃料電池装置の動作を説明する。
FIG. 5 is an exploded perspective view of a fuel cell module constituting the fuel cell device of the embodiment. The operation of the fuel cell device will be described with reference to FIGS. 1 and 5.
改質器10には、炭化水素ガスなどの原燃料を供給する原燃料供給管100と、改質水を供給する水供給管101とが接続されている。図5に示すように、原燃料供給管100と水供給管101とが一体となった管路で、改質器に接続する構成であってもよい。
The reformer 10 is connected to a raw fuel supply pipe 100 for supplying a raw fuel such as hydrocarbon gas and a water supply pipe 101 for supplying reforming water. As shown in FIG. 5, the raw fuel supply pipe 100 and the water supply pipe 101 may be integrally connected to the reformer through a pipe line.
原燃料供給管100には、改質器10に原燃料を送り込むための燃料供給装置34が設けられている。加熱された改質器10内では、改質水が蒸発した蒸気により、原燃料が改質され、水素を含む改質ガスが生成される。改質器10で生成された改質ガスは、改質ガス供給管102を通って、セルスタック装置20に供給される。
The raw fuel supply pipe 100 is provided with a fuel supply device 34 for supplying the raw fuel to the reformer 10. In the heated reformer 10, the raw fuel is reformed by the vapor resulting from evaporation of the reforming water to generate a reformed gas containing hydrogen. The reformed gas generated by the reformer 10 is supplied to the cell stack device 20 through the reformed gas supply pipe 102.
セルスタック装置20は、マニホールド21および燃料電池セル22を多数接続したセルスタック23を含む。改質器10から、セルスタック装置20に供給された改質ガスはマニホールド21から燃料電池セル22内に供給される。
The cell stack device 20 includes a cell stack 23 in which a large number of manifolds 21 and fuel cells 22 are connected. The reformed gas supplied from the reformer 10 to the cell stack device 20 is supplied from the manifold 21 into the fuel cell 22.
セルスタック装置20において、燃料電池セル22の外側には空気供給路103から酸素含有ガスである空気が導入されている。空気供給路103には、空気供給装置35が接続されており、空気供給装置35によって、セルスタック装置20に空気を送り込む。改質ガスが燃料電池セル22内を通過するときに、この空気と反応して発電が行われる。
In the cell stack device 20, air which is an oxygen-containing gas is introduced from the air supply passage 103 to the outside of the fuel cell 22. An air supply device 35 is connected to the air supply path 103, and the air supply device 35 feeds air to the cell stack device 20. When the reformed gas passes through the fuel cell 22, it reacts with the air to generate power.
発電に使用されなかった改質ガスは、セルスタック23の上部で発電に使用されなかった空気と合流して燃焼し、高温の排ガスが生成される。また、燃焼で発生した熱によって改質器10が加熱される。
The reformed gas not used for power generation merges with the air not used for power generation at the top of the cell stack 23 and burns to generate high temperature exhaust gas. Further, the reformer 10 is heated by the heat generated by the combustion.
なお、燃料電池モジュール2で発電された電気は、パワーコンディショナ33に送られ、電力消費および蓄電池への蓄電などに用いられる。
The electricity generated by the fuel cell module 2 is sent to the power conditioner 33 and used for power consumption and storage of electricity in the storage battery.
改質器10およびセルスタック装置20は高温となるため、断熱材などで包囲されて収納容器24に収められ、燃料電池モジュール2として、補機とともに筐体内に配置されている。
Since the reformer 10 and the cell stack device 20 have a high temperature, they are surrounded by a heat insulating material or the like and stored in the storage container 24 and disposed as a fuel cell module 2 in a housing together with accessories.
燃料電池モジュール2内で生じた排ガスは、セルスタック装置20から排出された後、排ガス流路104を通って熱交換器31に供給される。熱交換器31には、循環ライン105が接続されており、この循環ライン105に導入されている媒体と排ガスとで熱交換を行う。
The exhaust gas generated in the fuel cell module 2 is discharged from the cell stack device 20 and then supplied to the heat exchanger 31 through the exhaust gas flow path 104. A circulation line 105 is connected to the heat exchanger 31, and heat exchange is performed between the medium introduced into the circulation line 105 and the exhaust gas.
媒体としては、水などを用いることができる。熱交換によって、排ガスは冷却され、媒体は排ガスの熱によって加熱される。排ガスは冷却されて、排ガス中に含まれる水蒸気が、水と気体に分離される。気体は、排気流路107を通ってガス排気口から外部に排出される。排ガスを冷却することによって分離された水は、凝縮水回収流路106を通って凝縮水タンク32に送られる。
Water or the like can be used as the medium. By means of heat exchange, the exhaust gas is cooled and the medium is heated by the heat of the exhaust gas. The exhaust gas is cooled and the water vapor contained in the exhaust gas is separated into water and gas. Gas is exhausted from the gas exhaust port to the outside through the exhaust passage 107. Water separated by cooling the exhaust gas is sent to the condensed water tank 32 through the condensed water recovery channel 106.
凝縮水タンク32においては、水はイオン交換などを経て純水化され、純水化された水は、水供給管101に導入され、改質水として改質器10に供給される。不要な水はドレイン108から排出される。
In the condensed water tank 32, the water is purified through ion exchange and the like, and the purified water is introduced into the water supply pipe 101 and supplied to the reformer 10 as reforming water. Unwanted water is drained from the drain 108.
熱交換器31で暖められた媒体は、蓄熱タンク36に移動する。媒体は、循環ライン105を循環しながら熱を蓄えることができる。蓄えられた熱は、給湯などに利用することができる。
The medium warmed by the heat exchanger 31 moves to the heat storage tank 36. The medium can store heat while circulating through the circulation line 105. The stored heat can be used for hot water supply and the like.
蓄熱タンク36に蓄えられた媒体が水の場合には、蓄熱タンク36の水を給湯に利用する構成とすることも可能である。蓄熱タンク36の媒体の温度が高くなりすぎた場合には、ラジエータを設けて熱交換器31に供給する媒体の温度を低下させる構成にすることも可能である。
When the medium stored in the heat storage tank 36 is water, the water in the heat storage tank 36 may be used for hot water supply. If the temperature of the medium in the heat storage tank 36 becomes too high, a radiator may be provided to reduce the temperature of the medium supplied to the heat exchanger 31.
以上、本開示について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において種々の変更、改良等が可能である。
As mentioned above, although this indication was explained in detail, this indication is not limited to the above-mentioned embodiment, In the range which does not deviate from the gist of this indication, various change, improvement, etc. are possible.
さらに、本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本開示の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本開示の範囲内のものである。
Furthermore, the present disclosure can be implemented in other various forms without departing from the spirit or main features thereof. Accordingly, the above-described embodiments are merely illustrative in every respect, and the scope of the present disclosure is as set forth in the claims, and is not limited in any way by the description. Furthermore, all variations and modifications that fall within the scope of the claims fall within the scope of the present disclosure.
1 燃料電池装置
2 燃料電池モジュール
40 筐体
43 仕切部材
44 第1室
45 第2室
46 吸気口
47 排気口
48 開口
50 第1送風装置
103 空気供給路 DESCRIPTION OFSYMBOLS 1 fuel cell apparatus 2 fuel cell module 40 housing | casing 43 partition member 44 1st chamber 45 2nd chamber 46 air intake port 47 exhaust port 48 opening 50 1st air blower 103 air supply path
2 燃料電池モジュール
40 筐体
43 仕切部材
44 第1室
45 第2室
46 吸気口
47 排気口
48 開口
50 第1送風装置
103 空気供給路 DESCRIPTION OF
Claims (7)
- 発電を行う燃料電池モジュールと、
前記燃料電池モジュールを収納する筐体と、
前記筐体内を第1室と第2室とに分割する仕切部材と、を備え、
前記筐体には、前記筐体の底面に設けられて前記第1室と筐体の外部とを連通させる吸気口と、前記第2室と筐体の外部とを連通させる排気口とが、設けられており、
前記仕切部材には、前記第1室と前記第2室とを連通させる開口が設けられており、
前記開口を介して、前記第1室の空気を前記第2室に移動させる第1送風装置と、
一端が前記燃料電池モジュールに接続し、他端が前記吸気口近傍まで延びる空気供給路と、を備える燃料電池装置。 A fuel cell module that generates electricity;
A housing for housing the fuel cell module;
A partition member configured to divide the inside of the housing into a first chamber and a second chamber;
In the housing, an air inlet provided on a bottom surface of the housing to communicate the first chamber with the outside of the housing, and an exhaust port connecting the second chamber with the outside of the housing are provided. Provided,
The partition member is provided with an opening for communicating the first chamber and the second chamber,
A first air blower for moving air in the first chamber to the second chamber through the opening;
An air supply path whose one end is connected to the fuel cell module and whose other end extends to the vicinity of the intake port. - 前記筐体の底面に、排水口を有する請求項1に記載の燃料電池装置。 The fuel cell device according to claim 1, wherein the bottom surface of the housing has a drain.
- 前記吸気口は、
前記空気供給路の他端が上方に位置する第1の吸気口と、
前記第1の吸気口の周囲の少なくとも一部に位置する、第2の吸気口と、
を有する請求項2に記載の燃料電池装置。 The air intake is
A first air inlet at which the other end of the air supply passage is located at the upper side;
A second air intake located at least partially around the first air intake;
The fuel cell device according to claim 2, comprising: - 前記第1の吸気口からの空気は、前記空気供給路の内部を通って移動し、
前記第2の吸気口からの空気は、前記空気供給路の外側を通って移動する、請求項3に記載の燃料電池装置。 The air from the first air inlet travels through the interior of the air supply passage,
The fuel cell device according to claim 3, wherein air from the second air inlet moves through the outside of the air supply path. - 前記空気供給路の前記他端近傍に第2送風装置を備える請求項1~4のいずれか1つに記載の燃料電池装置。 The fuel cell device according to any one of claims 1 to 4, further comprising a second air blower near the other end of the air supply passage.
- 前記排気口は、前記筐体の天面に設けられている、請求項1~5のいずれか1つに記載の燃料電池装置。 The fuel cell device according to any one of claims 1 to 5, wherein the exhaust port is provided on a top surface of the housing.
- 前記吸気口にエアフィルタを備える請求項1~6のいずれか1つに記載の燃料電池装置。 The fuel cell device according to any one of claims 1 to 6, wherein the air inlet is provided with an air filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018561289A JP6472588B1 (en) | 2017-07-31 | 2018-07-18 | Fuel cell device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-148141 | 2017-07-31 | ||
JP2017148141 | 2017-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026626A1 true WO2019026626A1 (en) | 2019-02-07 |
Family
ID=65232780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026982 WO2019026626A1 (en) | 2017-07-31 | 2018-07-18 | Fuel cell device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6472588B1 (en) |
WO (1) | WO2019026626A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7487836B1 (en) | 2023-05-31 | 2024-05-21 | 富士電機株式会社 | Fuel Cell Systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007200650A (en) * | 2006-01-25 | 2007-08-09 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation device and its ventilation method |
JP2010272305A (en) * | 2009-05-20 | 2010-12-02 | Aisin Seiki Co Ltd | Fuel cell system |
JP2011029117A (en) * | 2009-07-29 | 2011-02-10 | Kyocera Corp | Fuel cell device |
-
2018
- 2018-07-18 JP JP2018561289A patent/JP6472588B1/en active Active
- 2018-07-18 WO PCT/JP2018/026982 patent/WO2019026626A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007200650A (en) * | 2006-01-25 | 2007-08-09 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation device and its ventilation method |
JP2010272305A (en) * | 2009-05-20 | 2010-12-02 | Aisin Seiki Co Ltd | Fuel cell system |
JP2011029117A (en) * | 2009-07-29 | 2011-02-10 | Kyocera Corp | Fuel cell device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7487836B1 (en) | 2023-05-31 | 2024-05-21 | 富士電機株式会社 | Fuel Cell Systems |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019026626A1 (en) | 2019-08-08 |
JP6472588B1 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6472902B2 (en) | Fuel cell device | |
KR101461874B1 (en) | Full cell system and its humidifying and cooling method | |
JP6082417B2 (en) | Fuel cell system | |
JP5733578B2 (en) | Fuel cell system | |
WO2008149753A1 (en) | Humidifier and fuel cell system | |
JP4932265B2 (en) | Fuel cell system | |
JP2006302606A (en) | Fuel cell housing case | |
JP2012099394A (en) | Fuel cell system | |
JP5381238B2 (en) | Fuel cell system | |
JP6472588B1 (en) | Fuel cell device | |
JP5907331B2 (en) | Fuel cell power generator | |
JP6646521B2 (en) | Fuel cell device | |
JP6304601B2 (en) | Fuel cell cogeneration system | |
JP5079370B2 (en) | Packaged fuel cell | |
JP5305688B2 (en) | Fuel cell device | |
JP2016110723A (en) | Fuel battery cogeneration system | |
JP6823176B2 (en) | Fuel cell device | |
JP7055034B2 (en) | Fuel cell power generation equipment | |
JP6478208B2 (en) | Fuel cell cogeneration system | |
JP2005259440A (en) | Fuel cell system | |
JP6192868B1 (en) | Fuel cell system | |
JP2005032685A (en) | Fuel cell system | |
JP6715043B2 (en) | Fuel cell system | |
JP7072366B2 (en) | Fuel cell device | |
JP2024047682A (en) | Fuel Cell Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018561289 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18840939 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18840939 Country of ref document: EP Kind code of ref document: A1 |