WO2019026448A1 - Light-shielding blade, blade drive device, and imaging device - Google Patents

Light-shielding blade, blade drive device, and imaging device Download PDF

Info

Publication number
WO2019026448A1
WO2019026448A1 PCT/JP2018/023295 JP2018023295W WO2019026448A1 WO 2019026448 A1 WO2019026448 A1 WO 2019026448A1 JP 2018023295 W JP2018023295 W JP 2018023295W WO 2019026448 A1 WO2019026448 A1 WO 2019026448A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
blade
light shielding
shielding blade
hole
Prior art date
Application number
PCT/JP2018/023295
Other languages
French (fr)
Japanese (ja)
Inventor
光恵 吉田
Original Assignee
日本電産株式会社
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社, 日本電産コパル株式会社 filed Critical 日本電産株式会社
Priority to JP2019533952A priority Critical patent/JPWO2019026448A1/en
Priority to CN201880047685.1A priority patent/CN110914753A/en
Publication of WO2019026448A1 publication Critical patent/WO2019026448A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • G03B9/10Blade or disc rotating or pivoting about axis normal to its plane

Definitions

  • the present invention relates to a light shielding blade, a blade driving device, and an imaging device.
  • Patent Document 1 describes a configuration in which a shutter blade as a light shielding blade is rotated using a rotor that is a permanent magnet.
  • the permanent magnet directly to the blade main body of the light shielding blade using an adhesive.
  • at least one of the permanent magnet and the blade main body is provided with a hole into which the support pin is inserted, and the support pin rotatably supports the permanent magnet and the blade main body.
  • the adhesive gets into the hole when fixing the permanent magnet and the blade main body. If the adhesive gets into the hole, the adhesive may inhibit relative rotation of the permanent magnet and the blade main body with respect to the support pin, and the light shielding blade may not be able to operate properly. Therefore, the yield of the light shielding blade may be reduced.
  • the present invention provides a light shielding blade including a blade main body and a magnet fixed to the blade main body with an adhesive and having a structure capable of improving yield, a blade driving device including such a light shielding blade, and
  • An object of the present invention is to provide an imaging device provided with a light shielding blade or a blade driving device.
  • One aspect of the light-shielding blade of the present invention is a light-shielding blade for an imaging device, which has a magnet having a hole disposed along a central axis extending in one direction, and a fixed surface facing in the axial direction
  • the magnet is fixed to the fixing surface on one side in the axial direction of the blade main body, and the hole is recessed in the axial direction from the end on the other side in the axial direction of the magnet
  • the blade main body has a through hole which penetrates the blade main body in the axial direction and is connected to the hole, and the magnet faces the other side in the axial direction radially outward of the hole and the fixing surface
  • an opposing portion disposed apart from the other in the axial direction, and an adhesive for bonding the opposing portion and the fixing surface is disposed in an axial gap between the opposing portion and the fixing surface.
  • a light shielding blade described above a support pin inserted in the hole and supporting the light shielding blade rotatably about the central axis, and a magnetic field passing through the magnet
  • a drive unit configured to rotate the light shielding blade around the central axis.
  • One aspect of the imaging device of the present invention includes the light shielding blade described above or the blade driving device described above.
  • a light shielding blade having a blade body and a magnet fixed to the blade body with an adhesive and having a structure capable of improving yield, a blade driving device including such a light shielding blade, and the like
  • An imaging device includes a light shielding blade or a blade driving device.
  • FIG. 1 is a schematic configuration view showing a blade driving device of the first embodiment.
  • FIG. 2 is a view showing the blade driving device of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is sectional drawing which shows a part of assembly procedure of the light-shielding blade of 1st Embodiment.
  • FIG. 4 is a cross-sectional view showing the light shielding blade of the second embodiment.
  • FIG. 5 is a cross-sectional view showing the light shielding blade of the third embodiment.
  • FIG. 6 is a perspective view showing an example of an embodiment of an imaging device.
  • FIG. 7 is a perspective view showing an example of an embodiment of an imaging device.
  • FIG. 8 is a perspective view showing an example of an embodiment of an imaging device.
  • the Z-axis direction appropriately shown in each drawing is a direction parallel to the vertical direction.
  • the positive side in the Z-axis direction is referred to as “upper side”, and the negative side in the Z-axis direction is referred to as “lower side”.
  • the central axis J appropriately shown in each drawing extends in the Z-axis direction, that is, in the vertical direction.
  • the axial direction of the central axis J that is, the vertical direction parallel to the Z-axis direction is simply referred to as the “axial direction”.
  • a radial direction centered on the central axis J is simply referred to as “radial direction”
  • a circumferential direction centered on the central axis J is simply referred to as “circumferential direction”.
  • the upper side corresponds to one side in the axial direction.
  • the lower side corresponds to the other side in the axial direction.
  • the vertical direction, the upper side and the lower side are simply names for describing the relative positional relationship of each part, and the actual arrangement relationship etc. is an arrangement relationship etc. other than the arrangement relationship etc. indicated by these names. May be
  • the blade driving device 1 of the present embodiment shown in FIGS. 1 and 2 is mounted on an imaging device.
  • the blade driving device 1 is, for example, a shutter device mounted on an infrared camera among imaging devices.
  • the blade driving device 1 includes a base plate 1 a, a light shielding blade 10, a support pin 50, and a driving unit 60.
  • the ground plane 1 a supports the light shielding blade 10.
  • the ground plane 1a has an opening 1b penetrating the ground plane 1a in the axial direction.
  • the opening 1 b is an opening for exposure.
  • the light shielding blade 10 of the present embodiment is a light shielding blade for an imaging device, and is, for example, a shutter blade of an infrared camera.
  • the light shielding blade 10 rotates around the central axis J, and is switched between an open state in which the opening 1b shown by a two-dot chain line in FIG. 1 is exposed and a closed state in which the opening 1b shown by a solid line in FIG. In the closed state, the light shielding blade 10 shields the exposure light passing through the opening 1 b.
  • the light shielding blade 10 includes a blade main body 20 and a magnet 30.
  • the blade main body 20 is in the form of a plate extending in the radial direction. As shown in FIG. 1, the blade body 20 has a supported portion 21 and a blade portion 22.
  • the shape viewed from the upper side of the supported portion 21 is, for example, a square shape.
  • the upper surface of the supported portion 21 is a fixed surface 21 a. That is, the blade main body 20 has the fixed surface 21 a facing upward.
  • the fixed surface 21a is orthogonal to the axial direction.
  • the lower surface of the supported portion 21 is a supported surface 21 b.
  • the supported surface 21b is orthogonal to the axial direction.
  • the wing portion 22 extends radially outward from the supported portion 21.
  • the shape viewed from the upper side of the blade portion 22 is, for example, a rectangular shape elongated in the radial direction.
  • the blade body 20 has a through hole 21 c axially passing through the blade body 20.
  • the through hole 21 c penetrates the supported portion 21 in the axial direction.
  • the cross-sectional shape orthogonal to the axial direction of the through hole 21 c is, for example, a circular shape centering on the central axis J.
  • metal, such as aluminum, and resin, such as a polyethylene terephthalate (PET: polyethylene terephthalate) are illustrated.
  • PET polyethylene terephthalate
  • the material of the blade main body 20 can be appropriately selected according to the application of the light shielding blade 10.
  • the light shielding blade 10 of the present embodiment in the case of the light shielding blade 10 of the present embodiment, in the case of the light shielding blade for an infrared camera, for example, aluminum is used as a material of the blade main body.
  • the light shielding blade is a shutter blade for a digital camera or a film camera, polyethylene terephthalate is used as the material of the blade body.
  • the magnet 30 has a substantially cylindrical shape centered on the central axis J.
  • the magnet 30 is a single member.
  • the magnet 30 has N and S poles as two different magnetic poles.
  • the north pole and the south pole are arranged side by side along a predetermined direction orthogonal to the axial direction.
  • a portion of the magnet 30 on one side in the predetermined direction than the central axis J is an N pole
  • a portion of the magnet 30 on the other side of the central axis J in the predetermined direction is an S pole.
  • the N pole and the S pole are disposed with the central axis J in between.
  • the magnet 30 is fixed to the fixing surface 21 a on the upper side of the blade main body 20 by the adhesive 40.
  • the lower surface of the magnet 30 contacts the fixing surface 21 a.
  • the shape viewed from the upper side of the magnet 30 is a shape in which both side portions sandwiching the central axis J in the radial direction out of a circle centered on the central axis J are cut away.
  • the magnet 30 has a pair of flat surfaces 30 b as a part of the radially outer surface of the magnet 30.
  • the pair of flat surfaces 30 b are provided on both sides of the central axis J of the magnet 30.
  • the flat surface 30 b is a flat surface orthogonal to the radial direction.
  • the pair of flat surfaces 30b are parallel to each other.
  • the pair of flat surfaces 30 b is parallel to the predetermined direction in which the N pole and the S pole of the magnet 30 described above are arranged.
  • the magnet 30 has a hole 30a disposed along a central axis J extending in the axial direction.
  • the hole 30 a is recessed upward from the lower end of the magnet 30.
  • the hole 30 a penetrates the magnet 30 in the axial direction.
  • the cross-sectional shape orthogonal to the central axis J of the hole 30 a is a circular shape centered on the central axis J.
  • the inner diameter of the hole 30a is, for example, substantially the same as the inner diameter of the through hole 21c.
  • the holes 30a and the through holes 21c overlap with each other as viewed in the axial direction.
  • the lower peripheral edge of the hole 30a and the upper peripheral edge of the through hole 21c contact each other. Thereby, the through hole 21c is connected to the hole 30a.
  • the magnet 30 has an inclined surface 30e at the lower end.
  • the inclined surface 30 e is an inclined surface located on the upper side as it goes from the radially inner side to the radially outer side.
  • the inclined surface 30e has a substantially annular shape centering on the central axis J.
  • the inclined surface 30 e faces radially outward.
  • the inclined surface 30 e is a radially outer surface of the lower part of the magnet 30. Thereby, the outer diameter of the lower part of the magnet 30 becomes smaller as it goes from the upper side to the lower side.
  • the inclined surface 30 e is produced, for example, by chamfering the corner of the lower end of a cylindrical magnet.
  • the lower end of the inclined surface 30 e is connected to the lower surface 30 c of the magnet 30.
  • the magnet 30 has a first opposing portion 30d as an opposing portion facing downward and being spaced apart from the fixing surface 21a on the radially outer side of the hole 30a. That is, in the present embodiment, the facing portion includes the first facing portion 30d. In the present embodiment, the first facing portion 30d is at least a part of the inclined surface 30e. The first facing portion 30 d is provided at a radial outer edge at the lower end of the magnet 30. The first facing portion 30 d is provided on the entire circumference of the radial outer edge portion at the lower end of the magnet 30. The first opposing portion 30 d is substantially annular and centered on the central axis J.
  • the first opposing portion 30 d is an inclined surface positioned on the upper side as it goes from the radial inner side to the radial outer side. Thereby, the 1st opposing part 30d faces the radial direction outer side.
  • the first facing portion 30 d is a radially outer surface of the lower portion of the magnet 30.
  • the angle ⁇ of the first facing portion 30d with respect to the fixed surface 21a is 45 ° or more and less than 90 °.
  • the dimension L2 in the radial direction of the first facing portion 30d is equal to or less than half the maximum radial distance L1 from the radially inner side surface of the hole 30a to the radially outer side surface of the magnet 30.
  • the maximum distance L1 is the largest distance among radial distances from the radial inner surface of the hole 30a to the radial outer surface of the magnet 30.
  • the maximum distance L1 is the distance in the radial direction from the radially inner side surface of the hole 30a to the radially outer side surface of the portion above the first facing portion 30d of the magnet 30.
  • the dimension L2 is the distance in the radial direction from the radial inner edge of the first facing portion 30d to the radial outer edge of the first facing portion 30d.
  • the radial dimension L2 of the first facing portion 30d is, for example, about 0.05 mm or more and 0.2 mm or less.
  • a gap S1 in the axial direction between the first facing portion 30d and the fixed surface 21a opens radially outward.
  • the axial dimension of the gap S1 increases from the radially inner side toward the radially outer side.
  • An adhesive 40 for bonding the first facing portion 30d and the fixing surface 21a is disposed in the gap S1. Thereby, the blade main body 20 and the magnet 30 are adhered and fixed via the adhesive 40.
  • the adhesive 40 is a portion formed by curing the uncured adhesive 44 applied to the gap S1.
  • the adhesive 40 is filled in the entire gap S1.
  • the adhesive 40 has a first portion 41 and a second portion 42.
  • the first portion 41 is a portion located in the gap S1.
  • the first portion 41 is bonded to both the first facing portion 30d and the fixing surface 21a.
  • the second portion 42 is a portion located radially outward of the magnet 30. That is, the second portion 42 is a portion protruding radially outward from the gap S1.
  • the adhesive 40 is easily filled with the adhesive 40 in the entire gap S1 by the adhesive 40 having the second portion 42 positioned radially outward of the magnet 30, and the first opposing portion 30d is fixed to the fixing surface 21a. It is possible to suppress a decrease in the amount of adhesive 40 to be bonded. Thus, the area of the first facing portion 30d to which the adhesive 40 adheres can be increased, and the magnet 30 can be firmly fixed to the blade main body 20. In addition, the amount of uncured adhesive 44 applied when bonding the magnet 30 and the blade main body 20 can be easily managed.
  • the second portion 42 is bonded to the fixing surface 21 a. Thereby, the area of the fixed surface 21a to which the adhesive 40 adheres can be increased. Therefore, the magnet 30 can be fixed to the blade main body 20 more firmly.
  • the adhesive 40 is, for example, an ultraviolet curing adhesive.
  • the time until the uncured adhesive 44 cures can be made shorter than that of the thermosetting adhesive or the like.
  • demagnetization of the magnet 30 can be suppressed.
  • the uncured adhesive 44 is applied to the gap S1 opening radially outward. Therefore, the applied uncured adhesive 44 is exposed to the outside of the light shielding blade 10. Therefore, for example, even if the material of the blade main body 20 is a metal or the like, it is possible to irradiate the applied uncured adhesive 44 with ultraviolet light.
  • an adhesive having a relatively high viscosity is used as the adhesive 40.
  • the uncured adhesive 44 is applied to the gap S1, the uncured adhesive 44 can be easily held in the relatively large gap S1. That is, the shape of the magnet 30 of the present embodiment is particularly useful when an adhesive having a relatively high viscosity is used as the adhesive 40.
  • the worker assembling the light shielding blade 10 brings the lower surface 30 c of the magnet 30 into contact with the fixing surface 21 a in a state where the hole 30 a and the through hole 21 c are aligned along the central axis J.
  • the blade main body 20 and the magnet 30 are positioned by a jig not shown.
  • the supported surface 21b of the blade main body 20 is supported from the lower side by a jig and positioned in the axial direction.
  • the pair of flat surfaces 30 b of the magnet 30 is pressed against the jig and positioned in the radial direction.
  • the orientation of the magnetic pole of the magnet 30 can be determined by positioning the magnet 30 using the flat surface 30 b.
  • the blade main body 20 can be accurately aligned.
  • the magnet 30 may be positioned in the radial direction by inserting a positioning pin into the hole 30a.
  • the operator applies the uncured adhesive 44 to the gap S1 from the outside in the radial direction as shown by the arrows in a state where the magnet 30 is in contact with the fixing surface 21a as shown in FIG. Then, the worker irradiates the uncured adhesive 44 with ultraviolet light. Thereby, the uncured adhesive 44 is cured to be the adhesive 40. Therefore, the first facing portion 30d and the fixing surface 21a are bonded, and the magnet 30 and the blade main body 20 are fixed. Thereby, the light shielding blade 10 is assembled.
  • the light shielding blade 10 may be assembled by an assembling robot.
  • the support pin 50 has a cylindrical shape extending in the axial direction about the central axis J.
  • the lower end portion of the support pin 50 is fixed to, for example, a housing of the blade driving device 1 (not shown).
  • the support pin 50 is inserted into the hole 30 a from the lower side of the blade main body 20 through the through hole 21 c.
  • the support pin 50 rotatably supports the light shielding blade 10 around the central axis J.
  • the upper end portion of the support pin 50 is, for example, disposed at the same position in the axial direction as the upper surface of the magnet 30.
  • the support pin 50 inserts from the lower side of the hole 30a in FIG. 2, it is not restricted to this.
  • the support pin 50 since the hole 30a penetrates the magnet 30 in the axial direction, the support pin 50 can be inserted from the upper side of the hole 30a. Therefore, the light shielding blade 10 can be supported by the support pin 50 in a state where the posture of the light shielding blade 10 is axially reversed with respect to the posture shown in FIG. Therefore, assembly of the blade drive device 1 can be facilitated.
  • the driving unit 60 generates a magnetic field passing through the magnet 30 to rotate the light shielding blade 10 around the central axis J.
  • the driving unit 60 has a pair of coils 61 disposed so as to sandwich the magnet 30 in a direction orthogonal to the axial direction, and a yoke (not shown) to which the coil 61 is mounted.
  • the coil 61 is supplied with current from the power supply 70 shown in FIG. Thereby, a magnetic field is generated between the pair of coils 61.
  • the magnetic field generated by the coil 61 and the magnetic field generated by the magnet 30 cause the magnet 30 to generate a magnetic force that causes the magnet 30 to rotate around the central axis J. Therefore, the magnet 30 can be rotated by the drive unit 60, and the light shielding blade 10 fixed to the magnet 30 can be rotated around the central axis J. Thereby, the light shielding blade 10 can be switched between the open state and the closed state.
  • the light shielding blade 10 in the state where the current is not supplied to the coil 61, the light shielding blade 10 is maintained in the open state shown by the two-dot chain line in FIG. At this time, the light shielding blade 10 is maintained in the open state by the magnetic force of the magnet 30.
  • the light shielding blade 10 rotates around the central axis J and is in a closed state shown by a solid line in FIG. Then, when the supply of the current to the coil 61 is stopped, the light shielding blade 10 is reversely rotated around the central axis J by the magnetic force of the magnet 30, and is in the open state again.
  • the light shielding blade 10 may be maintained in the closed state in the state where the current is not supplied to the coil 61. In this case, when a current is supplied to the coil 61, the light shielding blade 10 is switched to the open state.
  • the adhesive 40 is disposed in the gap S1 between the first facing portion 30d located radially outward of the hole 30a and the fixing surface 21a, whereby the first facing portion 30d and the fixing surface are fixed. 21a is adhered and the magnet 30 and the blade main body 20 are fixed. Therefore, when the uncured adhesive 44 is applied, it is easy to keep the uncured adhesive 44 in the gap S1, and it is possible to suppress the uncured adhesive 44 from entering the hole 30a and the through hole 21c. As a result, it is possible to suppress inhibition of the relative rotation of the magnet 30 and the blade main body 20 with respect to the support pin 50, and the light shielding blade 10 that operates properly can be obtained. Moreover, it can suppress that insertion of the support pin 50 to the hole 30a and the through-hole 21c is inhibited.
  • the blade driving device 1 having excellent reliability can be obtained.
  • the positioning pin when the positioning pin is inserted in the hole 30 a and the magnet 30 is positioned in the radial direction, adhesion of the applied uncured adhesive 44 to the positioning pin can be suppressed. Therefore, the assembling workability of the light shielding blade 10 can be improved.
  • the uncured adhesive 44 is applied to the gap S1.
  • An application method can be adopted. By adopting this method, the uncured adhesive 44 applied to the gap S1 is blocked by the contact portion between the lower surface 30c and the fixed surface 21a, and is prevented from flowing to the hole 30a and the through hole 21c. . Therefore, the entry of the uncured adhesive 44 into the hole 30a and the through hole 21c can be further suppressed. Further, since the lower surface 30c of the magnet 30 and the fixing surface 21a can be brought into contact with each other without the uncured adhesive 44, the magnet 30 can be positioned with respect to the blade main body 20 with high accuracy.
  • the first opposing portion 30 d is an inclined surface positioned on the upper side as it goes from the radial inner side to the radial outer side. Therefore, the area of the first facing portion 30d can be easily increased, and the area of the magnet 30 in contact with the adhesive 40 can be easily increased. Thereby, the magnet 30 can be fixed to the blade main body 20 more firmly.
  • the angle ⁇ with respect to the fixed surface 21 a of the first facing portion 30 d is 45 ° or more and less than 90 °. Therefore, the area of the first facing portion 30d can be easily increased. Therefore, the magnet 30 can be fixed to the blade main body 20 more firmly.
  • the dimension L2 in the radial direction of the first facing portion 30d is 0.05 mm or more. Therefore, the area of the first facing portion 30d can be easily increased, and the magnet 30 can be fixed to the blade main body 20 more firmly.
  • the first facing portion 30 d is provided on the entire circumference of the radial outer edge portion at the lower end of the magnet 30. Therefore, the entire circumference of the magnet 30 can be fixed to the blade main body 20 by the adhesive 40. Thereby, the magnet 30 can be fixed to the blade main body 20 more firmly and in a more stable state.
  • the magnet 30 is directly fixed to the blade main body 20, a separate member for connecting the magnet 30 and the blade main body 20 is not necessary. Therefore, the number of parts of the blade drive device 1 can be reduced. Further, the blade drive device 1 can be easily miniaturized.
  • the magnet 130 has a groove 133 extending in the circumferential direction and recessed upward from the lower end of the magnet 130.
  • the groove 133 has an annular shape centered on the central axis J.
  • the cross-sectional shape orthogonal to the circumferential direction of the groove 133 is, for example, a semi-elliptical shape that is convex upward.
  • the groove 133 is located radially outward of the hole 30 a and radially inward of the first facing portion 30 d.
  • the facing portion includes a second facing portion 133 a which is an inner side surface of the groove 133.
  • the second facing portion 133a has an annular shape centered on the central axis J.
  • the radial dimension of the second facing portion 133a, that is, the width of the groove 133 is, for example, not more than half the radial distance from the radial inner surface of the hole 30a to the radial outer edge of the lower surface 30c.
  • An adhesive 140 for bonding the second facing portion 133a and the fixing surface 21a is disposed in an axial gap S2 between the second facing portion 133a, which is the facing portion, and the fixing surface 21a, that is, the groove 133.
  • the adhesive 140 is filled in the gap S2.
  • the magnet 130 can be made more robustly. It can be fixed to
  • the uncured adhesive 44 can be trapped in the gap S2. As a result, it is possible to suppress the uncured adhesive 44 from reaching between the lower surface 30c of the magnet 130 and the fixing surface 21a and reaching the hole 30a and the through hole 21c.
  • the uncured adhesive 44 has the holes 30a and the through holes 21c. Can be suppressed from entering the In the case where the uncured adhesive 44 is applied to the fixing surface 21a first, the uncured adhesive 44 can be applied from immediately above the fixed surface 21a, so that the uncured adhesive 44 can be easily applied.
  • a portion of the lower surface 30c of the magnet 130 between the first facing portion 30d and the second facing portion 133a in the radial direction is fixed to the fixing surface 21a via an adhesive.
  • the magnet 230 has a large diameter portion 231 and a small diameter portion 232.
  • the small diameter portion 232 is connected to the lower end portion of the large diameter portion 231.
  • the outer diameter of the small diameter portion 232 is smaller than the outer diameter of the large diameter portion 231.
  • the lower surface 230 c of the magnet 230 is the lower surface of the small diameter portion 232.
  • the first facing portion 230 d is the lower surface of the large diameter portion 231.
  • the first facing portion 230 d is in an annular shape orthogonal to the axial direction and centered on the central axis J.
  • a gap S3 in the axial direction between the first facing portion 230d and the fixed surface 21a opens radially outward.
  • the axial dimension of the gap S3 is the same as the axial dimension of the small diameter portion 232.
  • the axial dimension of the gap S3 is substantially uniform throughout the radial direction.
  • An adhesive 240 is disposed in an axial gap S3 between the first facing portion 230d and the fixing surface 21a.
  • the dimension in the axial direction of the gap S3 is substantially uniform over the entire radial direction, so the opening in the radial direction outside of the gap S3 is It tends to be relatively small.
  • the present invention is not limited to the above-described embodiments, and other configurations can be adopted.
  • the blade body is not particularly limited as long as it has a fixed surface.
  • the hole of the magnet may not penetrate the magnet.
  • the opposing part is not particularly limited as long as it faces the lower side and is disposed at the upper side from the fixing surface.
  • the magnet 130 according to the second embodiment may not have the first facing portion 30d.
  • the magnet 230 of the third embodiment may have the second facing portion 133a of the second embodiment.
  • the radial dimension of the first facing portion may be larger than half of the maximum radial distance from the radially inner side surface of the hole to the radially outer side surface of the magnet.
  • the first facing portion and the second facing portion may not be annular.
  • a plurality of first opposing portions may be provided at intervals along the circumferential direction.
  • a plurality of second opposing portions may be provided at intervals along the circumferential direction.
  • the magnet may be configured by connecting a plurality of magnets. Further, the shape of the magnet is not particularly limited, and may be a substantially polygonal prism such as a substantially hexagonal prism, or may be a substantially elliptical prism.
  • the type of adhesive is not particularly limited as long as the blade body and the magnet can be bonded.
  • the adhesive may be a thermosetting adhesive.
  • the adhesive may not have a portion located radially outward of the magnet. That is, the entire adhesive may be disposed in an axial gap between the facing portion and the fixing surface.
  • the adhesive may not be filled in the axial gap between the facing portion and the fixing surface.
  • there may be a facing portion in which the adhesive is not disposed in the axial gap with the fixing surface.
  • the magnet In fixing the magnet and the blade main body, after applying an uncured adhesive to the magnet, the magnet may be brought into contact with the fixing surface to fix the magnet and the blade main body. Moreover, after applying an uncured adhesive to both the magnet and the fixing surface, the magnet may be brought into contact with the fixing surface to fix the magnet and the blade main body. In addition, it replaces with an adhesive agent and you may fix a blade
  • a light-shielding blade is a light-shielding blade for imaging devices, a use in particular will not be limited.
  • the light blocking blade may be, for example, a filter blade or a diaphragm blade.
  • the blade driving device is not particularly limited as long as it has a light shielding blade, and may be an aperture device or the like.
  • the imaging device 2 shown in FIG. 6 is an example of an infrared camera.
  • the imaging device 3 illustrated in FIG. 7 is an example of a digital camera.
  • the imaging device 4 illustrated in FIG. 8 is an example of a portable information terminal having an imaging function.
  • the imaging device 4 is, for example, a smartphone.
  • the imaging device 2, the imaging device 3, and the imaging device 4 each include the blade driving device 1 of the first embodiment described above.
  • the blade driving device 1 is an imaging element built in each imaging device.
  • the imaging device 2, the imaging device 3, and the imaging device 4 each include a lens positioned in front of the blade driving device 1, a processing circuit that processes a captured image, a memory, and the like.
  • the blade driving device 1 as an imaging device provided in a smartphone such as the imaging device 4 may be an imaging device retrofitted to the smartphone.
  • the blade drive device mounted in the imaging device 2 and the imaging device 3 may be a blade drive device including the light shielding blade 110 of the second embodiment described above, or the light shielding blade 210 of the third embodiment described above. It may be a blade drive provided with.
  • the imaging device is not particularly limited, and may be a single-lens reflex camera, or a portable information terminal having an imaging function other than a smartphone.
  • SYMBOLS 1 ... blade drive device, 2, 3, 4 ... imaging device, 10, 110, 210 ... light shielding blade, 20 ... blade main body, 21a ... fixed surface, 21c ... through hole, 30, 130, 230 ... magnet, 30a ... hole Parts, 30d, 230d: first opposing part, 40, 44, 140, 240: adhesive, 50: support pin, 60: driving part, 133: groove, 133a: second opposing part, J: central axis, L1: Maximum distance, L2: Dimension in the radial direction of the first opposing portion, S1, S2, S3: Gap, ⁇ : Angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Shutters For Cameras (AREA)
  • Diaphragms For Cameras (AREA)
  • Studio Devices (AREA)

Abstract

One embodiment of this light-shielding blade is a light-shielding blade for an imaging device, wherein the light-shielding blade comprises a magnet having a hole part disposed along a center axis extending in one direction, and a blade body having a fixing surface facing one side in the axial direction. The magnet is fixed to the fixing surface on one side in the axial direction of the blade body. The hole part is recessed from the end part on the other side in the axial direction of the magnet to one side in the axial direction. The blade body has a through hole that passes through the blade body in the axial direction and connects to the hole part. The magnet has a facing part on the outer side in the radial direction of the hole part, the facing part being disposed facing the other side in the axial direction, and separated on the one side in the axial direction from the fixing surface. An adhesive that adheres the facing part and the fixing surface is disposed in the gap in the axial direction between the facing part and the fixing surface.

Description

遮光羽根、羽根駆動装置、および撮像装置Shading blade, blade driving device, and imaging device
本発明は、遮光羽根、羽根駆動装置、および撮像装置に関する。 The present invention relates to a light shielding blade, a blade driving device, and an imaging device.
撮像装置用の遮光羽根が知られる。例えば、特許文献1には、遮光羽根としてのシャッタ羽根を、永久磁石であるロータを用いて回転させる構成が記載される。 A shading blade for an imaging device is known. For example, Patent Document 1 describes a configuration in which a shutter blade as a light shielding blade is rotated using a rotor that is a permanent magnet.
特開2005-77765号公報JP 2005-77765 A
上記のような遮光羽根において、永久磁石を遮光羽根の羽根本体に接着剤を用いて直接的に固定することが考えられる。この場合、例えば、永久磁石および羽根本体の少なくとも一方に支持ピンが挿入される穴部を設けて、支持ピンによって永久磁石および羽根本体を回転可能に支持する。  In the light shielding blade as described above, it is conceivable to fix the permanent magnet directly to the blade main body of the light shielding blade using an adhesive. In this case, for example, at least one of the permanent magnet and the blade main body is provided with a hole into which the support pin is inserted, and the support pin rotatably supports the permanent magnet and the blade main body.
上記のような構成を採用する場合、永久磁石と羽根本体とを固定する際に、接着剤が穴部に入り込むことが考えられる。穴部に接着剤が入り込むと、接着剤によって支持ピンに対する永久磁石および羽根本体の相対回転が阻害され、遮光羽根を好適に動作させることができない場合がある。したがって、遮光羽根の歩留まりが低下する場合があった。  In the case of adopting the configuration as described above, it is conceivable that the adhesive gets into the hole when fixing the permanent magnet and the blade main body. If the adhesive gets into the hole, the adhesive may inhibit relative rotation of the permanent magnet and the blade main body with respect to the support pin, and the light shielding blade may not be able to operate properly. Therefore, the yield of the light shielding blade may be reduced.
本発明は、上記事情に鑑みて、羽根本体および羽根本体に接着剤で固定されたマグネットを備え、歩留まりを向上できる構造を有する遮光羽根、そのような遮光羽根を備える羽根駆動装置、およびそのような遮光羽根、または羽根駆動装置を備える撮像装置を提供することを目的の一つとする。 In view of the above circumstances, the present invention provides a light shielding blade including a blade main body and a magnet fixed to the blade main body with an adhesive and having a structure capable of improving yield, a blade driving device including such a light shielding blade, and An object of the present invention is to provide an imaging device provided with a light shielding blade or a blade driving device.
本発明の遮光羽根の一つの態様は、撮像装置用の遮光羽根であって、一方向に延びる中心軸に沿って配置される穴部を有するマグネットと、軸方向一方側を向く固定面を有する羽根本体と、を備え、前記固定面には、前記羽根本体の軸方向一方側において前記マグネットが固定され、前記穴部は、前記マグネットの軸方向他方側の端部から軸方向一方側に窪み、前記羽根本体は、前記羽根本体を軸方向に貫通し前記穴部と繋がる貫通孔を有し、前記マグネットは、前記穴部よりも径方向外側において、軸方向他方側に面し前記固定面から軸方向一方側に離れて配置される対向部を有し、前記対向部と前記固定面との軸方向の隙間には、前記対向部と前記固定面とを接着する接着剤が配置される。  One aspect of the light-shielding blade of the present invention is a light-shielding blade for an imaging device, which has a magnet having a hole disposed along a central axis extending in one direction, and a fixed surface facing in the axial direction The magnet is fixed to the fixing surface on one side in the axial direction of the blade main body, and the hole is recessed in the axial direction from the end on the other side in the axial direction of the magnet The blade main body has a through hole which penetrates the blade main body in the axial direction and is connected to the hole, and the magnet faces the other side in the axial direction radially outward of the hole and the fixing surface And an opposing portion disposed apart from the other in the axial direction, and an adhesive for bonding the opposing portion and the fixing surface is disposed in an axial gap between the opposing portion and the fixing surface. .
本発明の羽根駆動装置の一つの態様は、上記の遮光羽根と、前記穴部に挿入され、前記遮光羽根を前記中心軸周りに回転可能に支持する支持ピンと、前記マグネットを通る磁界を生じさせて前記遮光羽根を前記中心軸周りに回転させる駆動部と、を備える。  According to one aspect of the blade driving device of the present invention, a light shielding blade described above, a support pin inserted in the hole and supporting the light shielding blade rotatably about the central axis, and a magnetic field passing through the magnet A drive unit configured to rotate the light shielding blade around the central axis.
本発明の撮像装置の一つの態様は、上記の遮光羽根、または上記の羽根駆動装置を備える。 One aspect of the imaging device of the present invention includes the light shielding blade described above or the blade driving device described above.
本発明の一つの態様によれば、羽根本体および羽根本体に接着剤で固定されたマグネットを備え、歩留まりを向上できる構造を有する遮光羽根、そのような遮光羽根を備える羽根駆動装置、およびそのような遮光羽根、または羽根駆動装置を備える撮像装置が提供される。 According to one aspect of the present invention, a light shielding blade having a blade body and a magnet fixed to the blade body with an adhesive and having a structure capable of improving yield, a blade driving device including such a light shielding blade, and the like An imaging device is provided that includes a light shielding blade or a blade driving device.
図1は、第1実施形態の羽根駆動装置を示す概略構成図である。FIG. 1 is a schematic configuration view showing a blade driving device of the first embodiment. 図2は、第1実施形態の羽根駆動装置を示す図であって、図1におけるII-II断面図である。FIG. 2 is a view showing the blade driving device of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG. 図3は、第1実施形態の遮光羽根の組み立て手順の一部を示す断面図である。FIG. 3: is sectional drawing which shows a part of assembly procedure of the light-shielding blade of 1st Embodiment. 図4は、第2実施形態の遮光羽根を示す断面図である。FIG. 4 is a cross-sectional view showing the light shielding blade of the second embodiment. 図5は、第3実施形態の遮光羽根を示す断面図である。FIG. 5 is a cross-sectional view showing the light shielding blade of the third embodiment. 図6は、撮像装置の実施形態の一例を示す斜視図である。FIG. 6 is a perspective view showing an example of an embodiment of an imaging device. 図7は、撮像装置の実施形態の一例を示す斜視図である。FIG. 7 is a perspective view showing an example of an embodiment of an imaging device. 図8は、撮像装置の実施形態の一例を示す斜視図である。FIG. 8 is a perspective view showing an example of an embodiment of an imaging device.
各図に適宜示すZ軸方向は、上下方向と平行な方向である。Z軸方向の正の側を「上側」とし、Z軸方向の負の側を「下側」とする。また、各図に適宜示す中心軸Jは、Z軸方向、すなわち上下方向に延びる。以下の説明においては、中心軸Jの軸方向、すなわちZ軸方向と平行な上下方向を単に「軸方向」と呼ぶ。また、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。  The Z-axis direction appropriately shown in each drawing is a direction parallel to the vertical direction. The positive side in the Z-axis direction is referred to as “upper side”, and the negative side in the Z-axis direction is referred to as “lower side”. The central axis J appropriately shown in each drawing extends in the Z-axis direction, that is, in the vertical direction. In the following description, the axial direction of the central axis J, that is, the vertical direction parallel to the Z-axis direction is simply referred to as the “axial direction”. Further, a radial direction centered on the central axis J is simply referred to as “radial direction”, and a circumferential direction centered on the central axis J is simply referred to as “circumferential direction”.
以下の各実施形態において、上側は、軸方向一方側に相当する。下側は、軸方向他方側に相当する。なお、上下方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。  In the following embodiments, the upper side corresponds to one side in the axial direction. The lower side corresponds to the other side in the axial direction. Note that the vertical direction, the upper side and the lower side are simply names for describing the relative positional relationship of each part, and the actual arrangement relationship etc. is an arrangement relationship etc. other than the arrangement relationship etc. indicated by these names. May be
<第1実施形態> 図1および図2に示す本実施形態の羽根駆動装置1は、撮像装置に搭載される。羽根駆動装置1は、例えば、撮像装置のうち赤外線カメラに搭載されるシャッタ装置である。羽根駆動装置1は、地板1aと、遮光羽根10と、支持ピン50と、駆動部60と、を備える。地板1aは、遮光羽根10を支持する。地板1aは、地板1aを軸方向に貫通する開口部1bを有する。開口部1bは、露光用の開口部である。  First Embodiment The blade driving device 1 of the present embodiment shown in FIGS. 1 and 2 is mounted on an imaging device. The blade driving device 1 is, for example, a shutter device mounted on an infrared camera among imaging devices. The blade driving device 1 includes a base plate 1 a, a light shielding blade 10, a support pin 50, and a driving unit 60. The ground plane 1 a supports the light shielding blade 10. The ground plane 1a has an opening 1b penetrating the ground plane 1a in the axial direction. The opening 1 b is an opening for exposure.
本実施形態の遮光羽根10は、撮像装置用の遮光羽根であり、例えば、赤外線カメラのシャッタ羽根である。遮光羽根10は、中心軸J周りに回転し、図1において二点鎖線で示す開口部1bを露出させる開状態と、図1において実線で示す開口部1bを覆う閉状態と、に切り換えられる。閉状態において遮光羽根10は、開口部1bを通る露光光を遮光する。遮光羽根10は、羽根本体20と、マグネット30と、を備える。  The light shielding blade 10 of the present embodiment is a light shielding blade for an imaging device, and is, for example, a shutter blade of an infrared camera. The light shielding blade 10 rotates around the central axis J, and is switched between an open state in which the opening 1b shown by a two-dot chain line in FIG. 1 is exposed and a closed state in which the opening 1b shown by a solid line in FIG. In the closed state, the light shielding blade 10 shields the exposure light passing through the opening 1 b. The light shielding blade 10 includes a blade main body 20 and a magnet 30.
羽根本体20は、径方向に延びる板状である。図1に示すように、羽根本体20は、被支持部21と、羽根部22と、を有する。被支持部21の上側から視た形状は、例えば、正方形状である。被支持部21の上面は、固定面21aである。すなわち、羽根本体20は、上側を向く固定面21aを有する。固定面21aは、軸方向と直交する。被支持部21の下面は、被支持面21bである。被支持面21bは、軸方向と直交する。羽根部22は、被支持部21から径方向外側に延びる。羽根部22の上側から視た形状は、例えば、径方向に長い長方形状である。  The blade main body 20 is in the form of a plate extending in the radial direction. As shown in FIG. 1, the blade body 20 has a supported portion 21 and a blade portion 22. The shape viewed from the upper side of the supported portion 21 is, for example, a square shape. The upper surface of the supported portion 21 is a fixed surface 21 a. That is, the blade main body 20 has the fixed surface 21 a facing upward. The fixed surface 21a is orthogonal to the axial direction. The lower surface of the supported portion 21 is a supported surface 21 b. The supported surface 21b is orthogonal to the axial direction. The wing portion 22 extends radially outward from the supported portion 21. The shape viewed from the upper side of the blade portion 22 is, for example, a rectangular shape elongated in the radial direction.
図2に示すように、羽根本体20は、羽根本体20を軸方向に貫通する貫通孔21cを有する。本実施形態において貫通孔21cは、被支持部21を軸方向に貫通する。貫通孔21cの軸方向と直交する断面形状は、例えば、中心軸Jを中心とする円形状である。羽根本体20の材質としては、アルミニウム等の金属、およびポリエチレンテレフタレート(PET:polyethylene terephthalate)等の樹脂が例示される。羽根本体20の材質は、遮光羽根10の用途に応じて適宜選択できる。本実施形態の遮光羽根10のように、赤外線カメラ用の遮光羽根の場合、例えば、羽根本体の材質としてはアルミニウムが用いられる。また、遮光羽根がデジタルカメラ用またはフィルムカメラ用のシャッタ羽根である場合、羽根本体の材質としてはポリエチレンテレフタレートが用いられる。  As shown in FIG. 2, the blade body 20 has a through hole 21 c axially passing through the blade body 20. In the present embodiment, the through hole 21 c penetrates the supported portion 21 in the axial direction. The cross-sectional shape orthogonal to the axial direction of the through hole 21 c is, for example, a circular shape centering on the central axis J. As a material of the blade | wing main body 20, metal, such as aluminum, and resin, such as a polyethylene terephthalate (PET: polyethylene terephthalate) are illustrated. The material of the blade main body 20 can be appropriately selected according to the application of the light shielding blade 10. As in the case of the light shielding blade 10 of the present embodiment, in the case of the light shielding blade for an infrared camera, for example, aluminum is used as a material of the blade main body. When the light shielding blade is a shutter blade for a digital camera or a film camera, polyethylene terephthalate is used as the material of the blade body.
マグネット30は、中心軸Jを中心とする略円柱状である。本実施形態においてマグネット30は、単一の部材である。マグネット30は、異なる2つの磁極としてN極とS極とを有する。N極とS極とは、軸方向と直交する所定方向に沿って並んで配置される。例えば、マグネット30における中心軸Jよりも所定方向一方側の部分はN極であり、マグネット30における中心軸Jよりも所定方向他方側の部分はS極である。N極とS極とは、中心軸Jを挟んでそれぞれ配置される。マグネット30は、接着剤40によって、羽根本体20の上側において固定面21aに固定される。マグネット30の下面は、固定面21aと接触する。  The magnet 30 has a substantially cylindrical shape centered on the central axis J. In the present embodiment, the magnet 30 is a single member. The magnet 30 has N and S poles as two different magnetic poles. The north pole and the south pole are arranged side by side along a predetermined direction orthogonal to the axial direction. For example, a portion of the magnet 30 on one side in the predetermined direction than the central axis J is an N pole, and a portion of the magnet 30 on the other side of the central axis J in the predetermined direction is an S pole. The N pole and the S pole are disposed with the central axis J in between. The magnet 30 is fixed to the fixing surface 21 a on the upper side of the blade main body 20 by the adhesive 40. The lower surface of the magnet 30 contacts the fixing surface 21 a.
図1に示すように、マグネット30の上側から視た形状は、中心軸Jを中心とする円形のうち中心軸Jを径方向に挟んだ両側部分を切り欠いた形状である。これにより、マグネット30は、マグネット30の径方向外側面の一部として一対の平坦面30bを有する。一対の平坦面30bは、マグネット30における中心軸Jを挟んだ両側部分にそれぞれ設けられる。平坦面30bは、径方向と直交する平坦な面である。一対の平坦面30bは、互いに平行である。本実施形態において一対の平坦面30bは、上述したマグネット30のN極とS極とが並ぶ所定方向と平行である。  As shown in FIG. 1, the shape viewed from the upper side of the magnet 30 is a shape in which both side portions sandwiching the central axis J in the radial direction out of a circle centered on the central axis J are cut away. Thus, the magnet 30 has a pair of flat surfaces 30 b as a part of the radially outer surface of the magnet 30. The pair of flat surfaces 30 b are provided on both sides of the central axis J of the magnet 30. The flat surface 30 b is a flat surface orthogonal to the radial direction. The pair of flat surfaces 30b are parallel to each other. In the present embodiment, the pair of flat surfaces 30 b is parallel to the predetermined direction in which the N pole and the S pole of the magnet 30 described above are arranged.
図2に示すように、マグネット30は、軸方向に延びる中心軸Jに沿って配置される穴部30aを有する。穴部30aは、マグネット30の下側の端部から上側に窪む。本実施形態において穴部30aは、マグネット30を軸方向に貫通する。図1に示すように、穴部30aの中心軸Jと直交する断面形状は、中心軸Jを中心とする円形状である。  As shown in FIG. 2, the magnet 30 has a hole 30a disposed along a central axis J extending in the axial direction. The hole 30 a is recessed upward from the lower end of the magnet 30. In the present embodiment, the hole 30 a penetrates the magnet 30 in the axial direction. As shown in FIG. 1, the cross-sectional shape orthogonal to the central axis J of the hole 30 a is a circular shape centered on the central axis J.
図2に示すように、穴部30aの内径は、例えば、貫通孔21cの内径と略同じである。穴部30aと貫通孔21cとは、軸方向に沿って視て、全体が互いに重なり合う。穴部30aの下側の周縁部と貫通孔21cの上側の周縁部とは、互いに接触する。これにより、貫通孔21cは、穴部30aと繋がる。  As shown in FIG. 2, the inner diameter of the hole 30a is, for example, substantially the same as the inner diameter of the through hole 21c. The holes 30a and the through holes 21c overlap with each other as viewed in the axial direction. The lower peripheral edge of the hole 30a and the upper peripheral edge of the through hole 21c contact each other. Thereby, the through hole 21c is connected to the hole 30a.
マグネット30は、下側の端部に、傾斜面30eを有する。傾斜面30eは、径方向内側から径方向外側に向かうに従って、上側に位置する傾斜面である。傾斜面30eは、中心軸Jを中心とする略円環状である。傾斜面30eは、径方向外側に面する。傾斜面30eは、マグネット30の下部の径方向外側面である。これにより、マグネット30の下部の外径は、上側から下側に向かうに従って小さくなる。傾斜面30eは、例えば、円柱状のマグネットの下端部の角部を面取りすることで作られる。傾斜面30eの下側の端部は、マグネット30の下面30cに繋がる。  The magnet 30 has an inclined surface 30e at the lower end. The inclined surface 30 e is an inclined surface located on the upper side as it goes from the radially inner side to the radially outer side. The inclined surface 30e has a substantially annular shape centering on the central axis J. The inclined surface 30 e faces radially outward. The inclined surface 30 e is a radially outer surface of the lower part of the magnet 30. Thereby, the outer diameter of the lower part of the magnet 30 becomes smaller as it goes from the upper side to the lower side. The inclined surface 30 e is produced, for example, by chamfering the corner of the lower end of a cylindrical magnet. The lower end of the inclined surface 30 e is connected to the lower surface 30 c of the magnet 30.
マグネット30は、穴部30aよりも径方向外側において、下側に面し固定面21aから上側に離れて配置される対向部として第1対向部30dを有する。すなわち、本実施形態において対向部は、第1対向部30dを含む。本実施形態において第1対向部30dは、傾斜面30eの少なくとも一部である。第1対向部30dは、マグネット30の下側の端部における径方向外縁部に設けられる。第1対向部30dは、マグネット30の下側の端部における径方向外縁部の全周に設けられる。第1対向部30dは、中心軸Jを中心とする略円環状である。  The magnet 30 has a first opposing portion 30d as an opposing portion facing downward and being spaced apart from the fixing surface 21a on the radially outer side of the hole 30a. That is, in the present embodiment, the facing portion includes the first facing portion 30d. In the present embodiment, the first facing portion 30d is at least a part of the inclined surface 30e. The first facing portion 30 d is provided at a radial outer edge at the lower end of the magnet 30. The first facing portion 30 d is provided on the entire circumference of the radial outer edge portion at the lower end of the magnet 30. The first opposing portion 30 d is substantially annular and centered on the central axis J.
本実施形態において第1対向部30dは、径方向内側から径方向外側に向かうに従って、上側に位置する傾斜面である。これにより、第1対向部30dは、径方向外側に面する。本実施形態において第1対向部30dは、マグネット30の下部の径方向外側面である。  In the present embodiment, the first opposing portion 30 d is an inclined surface positioned on the upper side as it goes from the radial inner side to the radial outer side. Thereby, the 1st opposing part 30d faces the radial direction outer side. In the present embodiment, the first facing portion 30 d is a radially outer surface of the lower portion of the magnet 30.
第1対向部30dの固定面21aに対する角度θは、45°以上、90°未満である。第1対向部30dの径方向の寸法L2は、穴部30aの径方向内側面からマグネット30の径方向外側面までの径方向の最大距離L1の半分以下である。最大距離L1は、穴部30aの径方向内側面からマグネット30の径方向外側面までの径方向の距離のうち最も大きい距離である。本実施形態において最大距離L1は、穴部30aの径方向内側面からマグネット30における第1対向部30dよりも上側の部分の径方向外側面までの径方向の距離である。寸法L2は、第1対向部30dの径方向内縁から第1対向部30dの径方向外縁までの径方向の距離である。  The angle θ of the first facing portion 30d with respect to the fixed surface 21a is 45 ° or more and less than 90 °. The dimension L2 in the radial direction of the first facing portion 30d is equal to or less than half the maximum radial distance L1 from the radially inner side surface of the hole 30a to the radially outer side surface of the magnet 30. The maximum distance L1 is the largest distance among radial distances from the radial inner surface of the hole 30a to the radial outer surface of the magnet 30. In the present embodiment, the maximum distance L1 is the distance in the radial direction from the radially inner side surface of the hole 30a to the radially outer side surface of the portion above the first facing portion 30d of the magnet 30. The dimension L2 is the distance in the radial direction from the radial inner edge of the first facing portion 30d to the radial outer edge of the first facing portion 30d.
第1対向部30dの寸法L2を最大距離L1の半分以下とすることで、マグネット30の下面30cの径方向の寸法を大きくすることが可能になる。これにより、マグネット30における固定面21aとの接触面積を大きくすることができ、マグネット30を固定面21aに対して安定して固定できる。第1対向部30dの径方向の寸法L2は、例えば、0.05mm以上、0.2mm以下程度である。  By setting the dimension L2 of the first facing portion 30d to half or less of the maximum distance L1, the dimension in the radial direction of the lower surface 30c of the magnet 30 can be increased. Thereby, the contact area with fixed surface 21a in magnet 30 can be enlarged, and magnet 30 can be stably fixed to fixed surface 21a. The radial dimension L2 of the first facing portion 30d is, for example, about 0.05 mm or more and 0.2 mm or less.
第1対向部30dと固定面21aとの軸方向の隙間S1は、径方向外側に開口する。隙間S1の軸方向の寸法は、径方向内側から径方向外側に向かうに従って大きくなる。隙間S1には、第1対向部30dと固
定面21aとを接着する接着剤40が配置される。これにより、接着剤40を介して、羽根本体20とマグネット30とが接着されて固定される。接着剤40は、隙間S1に塗布された未硬化の接着剤44が硬化してできた部分である。 
A gap S1 in the axial direction between the first facing portion 30d and the fixed surface 21a opens radially outward. The axial dimension of the gap S1 increases from the radially inner side toward the radially outer side. An adhesive 40 for bonding the first facing portion 30d and the fixing surface 21a is disposed in the gap S1. Thereby, the blade main body 20 and the magnet 30 are adhered and fixed via the adhesive 40. The adhesive 40 is a portion formed by curing the uncured adhesive 44 applied to the gap S1.
接着剤40は、隙間S1の全体に充填される。接着剤40は、第1部分41と、第2部分42と、を有する。第1部分41は、隙間S1に位置する部分である。第1部分41は、第1対向部30dと固定面21aとの両方に接着される。第2部分42は、マグネット30よりも径方向外側に位置する部分である。すなわち、第2部分42は、隙間S1から径方向外側にはみ出した部分である。  The adhesive 40 is filled in the entire gap S1. The adhesive 40 has a first portion 41 and a second portion 42. The first portion 41 is a portion located in the gap S1. The first portion 41 is bonded to both the first facing portion 30d and the fixing surface 21a. The second portion 42 is a portion located radially outward of the magnet 30. That is, the second portion 42 is a portion protruding radially outward from the gap S1.
このように、接着剤40がマグネット30よりも径方向外側に位置する第2部分42を有することで、隙間S1の全体に接着剤40を充填しやすく、第1対向部30dを固定面21aに接着する接着剤40の量が少なくなることを抑制できる。これにより、接着剤40が接着する第1対向部30dの面積を大きくでき、マグネット30を強固に羽根本体20に固定することができる。また、マグネット30と羽根本体20とを接着する際に塗布する未硬化の接着剤44の量を管理しやすい。  Thus, the adhesive 40 is easily filled with the adhesive 40 in the entire gap S1 by the adhesive 40 having the second portion 42 positioned radially outward of the magnet 30, and the first opposing portion 30d is fixed to the fixing surface 21a. It is possible to suppress a decrease in the amount of adhesive 40 to be bonded. Thus, the area of the first facing portion 30d to which the adhesive 40 adheres can be increased, and the magnet 30 can be firmly fixed to the blade main body 20. In addition, the amount of uncured adhesive 44 applied when bonding the magnet 30 and the blade main body 20 can be easily managed.
第2部分42は、固定面21aに接着される。これにより、接着剤40が接着する固定面21aの面積を大きくできる。したがって、マグネット30をより強固に羽根本体20に固定することができる。  The second portion 42 is bonded to the fixing surface 21 a. Thereby, the area of the fixed surface 21a to which the adhesive 40 adheres can be increased. Therefore, the magnet 30 can be fixed to the blade main body 20 more firmly.
接着剤40は、例えば、紫外線硬化型の接着剤である。これにより、未硬化の接着剤44が硬化するまでの時間を、熱硬化型の接着剤等に比べて短くできる。また、未硬化の接着剤44を硬化させる際に加熱する必要がないため、マグネット30が減磁することを抑制できる。本実施形態では、未硬化の接着剤44は、径方向外側に開口する隙間S1に塗布される。そのため、塗布された未硬化の接着剤44は、遮光羽根10の外部に露出した状態となる。したがって、例えば、羽根本体20の材質が金属等であっても、塗布された未硬化の接着剤44に紫外線を照射することが可能である。  The adhesive 40 is, for example, an ultraviolet curing adhesive. As a result, the time until the uncured adhesive 44 cures can be made shorter than that of the thermosetting adhesive or the like. Moreover, since it is not necessary to heat when curing the uncured adhesive 44, demagnetization of the magnet 30 can be suppressed. In the present embodiment, the uncured adhesive 44 is applied to the gap S1 opening radially outward. Therefore, the applied uncured adhesive 44 is exposed to the outside of the light shielding blade 10. Therefore, for example, even if the material of the blade main body 20 is a metal or the like, it is possible to irradiate the applied uncured adhesive 44 with ultraviolet light.
例えば、本実施形態のように第1対向部30dが径方向外側に面する傾斜面で、隙間S1が比較的大きくなりやすい場合には、接着剤40として、比較的粘度が高い接着剤を用いることが好ましい。これは、未硬化の接着剤44を隙間S1に塗布した際に、比較的大きい隙間S1内に未硬化の接着剤44を保持しておきやすいためである。すなわち、本実施形態のマグネット30の形状は、接着剤40として比較的粘度が高い接着剤を用いる場合に特に有用である。  For example, when the gap S1 tends to be relatively large on the inclined surface where the first facing portion 30d faces the outer side in the radial direction as in the present embodiment, an adhesive having a relatively high viscosity is used as the adhesive 40. Is preferred. This is because when the uncured adhesive 44 is applied to the gap S1, the uncured adhesive 44 can be easily held in the relatively large gap S1. That is, the shape of the magnet 30 of the present embodiment is particularly useful when an adhesive having a relatively high viscosity is used as the adhesive 40.
図3に示すように、遮光羽根10を組み立てる作業者は、穴部30aと貫通孔21cとを中心軸Jに沿って揃えた状態で、マグネット30の下面30cを固定面21aに接触させる。このとき、羽根本体20とマグネット30とは図示しない治具によって位置決めされる。羽根本体20は、例えば、被支持面21bが治具によって下側から支持されて、軸方向に位置決めされる。  As shown in FIG. 3, the worker assembling the light shielding blade 10 brings the lower surface 30 c of the magnet 30 into contact with the fixing surface 21 a in a state where the hole 30 a and the through hole 21 c are aligned along the central axis J. At this time, the blade main body 20 and the magnet 30 are positioned by a jig not shown. For example, the supported surface 21b of the blade main body 20 is supported from the lower side by a jig and positioned in the axial direction.
マグネット30は、例えば、一対の平坦面30bが治具に押し当てられて径方向に位置決めされる。本実施形態において平坦面30bは、マグネット30のN極とS極とが並ぶ所定方向と平行であるため、平坦面30bを利用してマグネット30を位置決めすることで、マグネット30の磁極の向きを羽根本体20に対して精度よく合わせることができる。なお、マグネット30は、穴部30aに位置決め用のピンが挿入されて径方向に位置決めされてもよい。  For example, the pair of flat surfaces 30 b of the magnet 30 is pressed against the jig and positioned in the radial direction. In the present embodiment, since the flat surface 30 b is parallel to the predetermined direction in which the N pole and the S pole of the magnet 30 are aligned, the orientation of the magnetic pole of the magnet 30 can be determined by positioning the magnet 30 using the flat surface 30 b. The blade main body 20 can be accurately aligned. The magnet 30 may be positioned in the radial direction by inserting a positioning pin into the hole 30a.
作業者は、図3に示すようにして、マグネット30を固定面21aに接触させた状態で、矢印で示すように径方向外側から隙間S1に未硬化の接着剤44を塗布する。そして、作業者は、未硬化の接着剤44に紫外線を照射する。これにより、未硬化の接着剤44が硬化して接着剤40となる。したがって、第1対向部30dと固定面21aとが接着され、マグネット30と羽根本体20とが固定される。これにより、遮光羽根10が組み立てられる。なお、例えば、遮光羽根10は、組み立てロボットによって組み立てられてもよい。  The operator applies the uncured adhesive 44 to the gap S1 from the outside in the radial direction as shown by the arrows in a state where the magnet 30 is in contact with the fixing surface 21a as shown in FIG. Then, the worker irradiates the uncured adhesive 44 with ultraviolet light. Thereby, the uncured adhesive 44 is cured to be the adhesive 40. Therefore, the first facing portion 30d and the fixing surface 21a are bonded, and the magnet 30 and the blade main body 20 are fixed. Thereby, the light shielding blade 10 is assembled. For example, the light shielding blade 10 may be assembled by an assembling robot.
支持ピン50は、中心軸Jを中心として軸方向に延びる円柱状である。支持ピン50の下端部は、例えば、図示しない羽根駆動装置1の筐体に固定される。支持ピン50は、羽根本体20の下側から貫通孔21cを介して穴部30aに挿入される。支持ピン50は、遮光羽根10を中心軸J周りに回転可能に支持する。図2では、支持ピン50の上端部は、例えば、マグネット30の上面と軸方向において同じ位置に配置される。遮光羽根10が回転する際、穴部30aの内周面および貫通孔21cの内周面は、例えば、支持ピン50の外周面に対して滑りながら周方向に相対移動する。  The support pin 50 has a cylindrical shape extending in the axial direction about the central axis J. The lower end portion of the support pin 50 is fixed to, for example, a housing of the blade driving device 1 (not shown). The support pin 50 is inserted into the hole 30 a from the lower side of the blade main body 20 through the through hole 21 c. The support pin 50 rotatably supports the light shielding blade 10 around the central axis J. In FIG. 2, the upper end portion of the support pin 50 is, for example, disposed at the same position in the axial direction as the upper surface of the magnet 30. When the light shielding blade 10 rotates, the inner peripheral surface of the hole 30 a and the inner peripheral surface of the through hole 21 c move in the circumferential direction, for example, while sliding relative to the outer peripheral surface of the support pin 50.
なお、図2では、支持ピン50は、穴部30aの下側から挿入される構成としたが、これに限られない。本実施形態において穴部30aはマグネット30を軸方向に貫通するため、支持ピン50を、穴部30aの上側から挿入することもできる。したがって、遮光羽根10の姿勢を図2に示す姿勢に対して軸方向に反転させた状態で、遮光羽根10を支持ピン50に支持させることもできる。そのため、羽根駆動装置1の組み立てを容易にできる。  In addition, although it was set as the structure which the support pin 50 inserts from the lower side of the hole 30a in FIG. 2, it is not restricted to this. In the present embodiment, since the hole 30a penetrates the magnet 30 in the axial direction, the support pin 50 can be inserted from the upper side of the hole 30a. Therefore, the light shielding blade 10 can be supported by the support pin 50 in a state where the posture of the light shielding blade 10 is axially reversed with respect to the posture shown in FIG. Therefore, assembly of the blade drive device 1 can be facilitated.
駆動部60は、マグネット30を通る磁界を生じさせて遮光羽根10を中心軸J周りに回転させる。駆動部60は、マグネット30を軸方向と直交する方向に挟んで配置される一対のコイル61と、コイル61が装着される図示しないヨークと、を有する。  The driving unit 60 generates a magnetic field passing through the magnet 30 to rotate the light shielding blade 10 around the central axis J. The driving unit 60 has a pair of coils 61 disposed so as to sandwich the magnet 30 in a direction orthogonal to the axial direction, and a yoke (not shown) to which the coil 61 is mounted.
コイル61には、図1に示す電源70から電流が供給される。これにより、一対のコイル61同士の間には、磁界が生じる。コイル61による磁界とマグネット30による磁界とによって、マグネット30には、マグネット30を中心軸J周りに回転させる磁力が生じる。したがって、駆動部60によって、マグネット30を回転させることができ、マグネット30に固定された遮光羽根10を中心軸J周りに回転させることができる。これにより、遮光羽根10を開状態と閉状態との間で切り換えられる。  The coil 61 is supplied with current from the power supply 70 shown in FIG. Thereby, a magnetic field is generated between the pair of coils 61. The magnetic field generated by the coil 61 and the magnetic field generated by the magnet 30 cause the magnet 30 to generate a magnetic force that causes the magnet 30 to rotate around the central axis J. Therefore, the magnet 30 can be rotated by the drive unit 60, and the light shielding blade 10 fixed to the magnet 30 can be rotated around the central axis J. Thereby, the light shielding blade 10 can be switched between the open state and the closed state.
本実施形態においては、コイル61に電流が供給されていない状態において、遮光羽根10は、図1において二点鎖線で示す開状態に維持される。このとき、遮光羽根10は、マグネット30の磁力によって、開状態に維持される。一方、コイル61に電流が供給されると、遮光羽根10は中心軸J周りに回転して図1において実線で示す閉状態となる。そして、コイル61への電流の供給を停止すると、遮光羽根10は、マグネット30の磁力によって中心軸J周りに逆回転し、再び開状態となる。  In the present embodiment, in the state where the current is not supplied to the coil 61, the light shielding blade 10 is maintained in the open state shown by the two-dot chain line in FIG. At this time, the light shielding blade 10 is maintained in the open state by the magnetic force of the magnet 30. On the other hand, when a current is supplied to the coil 61, the light shielding blade 10 rotates around the central axis J and is in a closed state shown by a solid line in FIG. Then, when the supply of the current to the coil 61 is stopped, the light shielding blade 10 is reversely rotated around the central axis J by the magnetic force of the magnet 30, and is in the open state again.
なお、遮光羽根10は、コイル61に電流が供給されていない状態において閉状態で維持されてもよい。この場合、コイル61に電流を供給すると、遮光羽根10は、開状態に切り換えられる。  In addition, the light shielding blade 10 may be maintained in the closed state in the state where the current is not supplied to the coil 61. In this case, when a current is supplied to the coil 61, the light shielding blade 10 is switched to the open state.
本実施形態によれば、穴部30aよりも径方向外側に位置する第1対向部30dと固定面21aとの隙間S1に接着剤40が配置されることで、第1対向部30dと固定面21aとが接着され、マグネット30と羽根本体20とが固定される。そのため、未硬化の接着剤44を塗布した際に、未硬化の接着剤44を隙間S1に留めておきやすく、未硬化の接着剤44が穴部30aおよび貫通孔21cに入り込むことを抑制できる。これにより、支持ピン50に対するマグネット30および羽根本体20の相対回転が阻害されることを抑制でき、好適に動作する遮光羽根10が得られる。また、穴部30aおよび貫通孔21cへの支持ピン50の挿入が阻害されることを抑制できる。  According to the present embodiment, the adhesive 40 is disposed in the gap S1 between the first facing portion 30d located radially outward of the hole 30a and the fixing surface 21a, whereby the first facing portion 30d and the fixing surface are fixed. 21a is adhered and the magnet 30 and the blade main body 20 are fixed. Therefore, when the uncured adhesive 44 is applied, it is easy to keep the uncured adhesive 44 in the gap S1, and it is possible to suppress the uncured adhesive 44 from entering the hole 30a and the through hole 21c. As a result, it is possible to suppress inhibition of the relative rotation of the magnet 30 and the blade main body 20 with respect to the support pin 50, and the light shielding blade 10 that operates properly can be obtained. Moreover, it can suppress that insertion of the support pin 50 to the hole 30a and the through-hole 21c is inhibited.
したがって、製造される遮光羽根10が不良品となることを抑制でき、遮光羽根10の歩留まりを向上させることができる。また、好適に動作する遮光羽根10が得られることで、信頼性に優れた羽根駆動装置1が得られる。  Therefore, it can suppress that the light-shielding blade 10 manufactured becomes inferior goods, and the yield of the light-shielding blade 10 can be improved. Further, by obtaining the light shielding blade 10 that operates suitably, the blade driving device 1 having excellent reliability can be obtained.
また、例えば、マグネット30が穴部30aに位置決め用のピンが挿入されて径方向に位置決めされる場合に、塗布した未硬化の接着剤44が位置決め用のピンに付着することを抑制できる。したがって、遮光羽根10の組立作業性を向上できる。  In addition, for example, when the positioning pin is inserted in the hole 30 a and the magnet 30 is positioned in the radial direction, adhesion of the applied uncured adhesive 44 to the positioning pin can be suppressed. Therefore, the assembling workability of the light shielding blade 10 can be improved.
また、本実施形態によれば、隙間S1は径方向外側に開口するため、上述したようにして、マグネット30の下面30cを固定面21aに接触させてから隙間S1に未硬化の接着剤44を塗布する方法を採用できる。この方法を採用することで、隙間S1に塗布された未硬化の接着剤44は、下面30cと固定面21aとの接触部分に遮られ、穴部30aおよび貫通孔21cに流れることが抑制される。したがって、穴部30aおよび貫通孔21cに未硬化の接着剤44が入り込むことをより抑制できる。また、マグネット30の下面30cと固定面21aとを未硬化の接着剤44を介さずに接触させることができるため、マグネット30を羽根本体20に対して精度よく位置決めできる。  Further, according to the present embodiment, since the gap S1 opens radially outward, as described above, after the lower surface 30c of the magnet 30 is brought into contact with the fixing surface 21a, the uncured adhesive 44 is applied to the gap S1. An application method can be adopted. By adopting this method, the uncured adhesive 44 applied to the gap S1 is blocked by the contact portion between the lower surface 30c and the fixed surface 21a, and is prevented from flowing to the hole 30a and the through hole 21c. . Therefore, the entry of the uncured adhesive 44 into the hole 30a and the through hole 21c can be further suppressed. Further, since the lower surface 30c of the magnet 30 and the fixing surface 21a can be brought into contact with each other without the uncured adhesive 44, the magnet 30 can be positioned with respect to the blade main body 20 with high accuracy.
また、本実施形態によれば、第1対向部30dは、径方向内側から径方向外側に向かうに従って、上側に位置する傾斜面である。そのため、第1対向部30dの面積を大きくしやすく、マグネット30における接着剤40と接触する面積を大きくしやすい。これにより、マグネット30をより強固に羽根本体20に固定することができる。  Further, according to the present embodiment, the first opposing portion 30 d is an inclined surface positioned on the upper side as it goes from the radial inner side to the radial outer side. Therefore, the area of the first facing portion 30d can be easily increased, and the area of the magnet 30 in contact with the adhesive 40 can be easily increased. Thereby, the magnet 30 can be fixed to the blade main body 20 more firmly.
特に、本実施形態では、第1対向部30dの固定面21aに対する角度θは、45°以上、90°未満である。そのため、第1対向部30dの面積をより大きくしやすい。したがって、マグネット30をより強固に羽根本体20に固定することができる。また、本実施形態では、第1対向部30dの径方向の寸法L2は、0.05mm以上である。そのため、第1対向部30dの面積をより大きくしやすく、マグネット30をより強固に羽根本体20に固定することができる。  In particular, in the present embodiment, the angle θ with respect to the fixed surface 21 a of the first facing portion 30 d is 45 ° or more and less than 90 °. Therefore, the area of the first facing portion 30d can be easily increased. Therefore, the magnet 30 can be fixed to the blade main body 20 more firmly. Moreover, in the present embodiment, the dimension L2 in the radial direction of the first facing portion 30d is 0.05 mm or more. Therefore, the area of the first facing portion 30d can be easily increased, and the magnet 30 can be fixed to the blade main body 20 more firmly.
また、本実施形態によれば、第1対向部30dは、マグネット30の下側の端部における径方向外縁部の全周に設けられる。そのため、接着剤40によってマグネット30の全周を羽根本体20に固定できる。これにより、マグネット30をより強固に、かつ、より安定した状態で羽根本体20に固定することができる。  Further, according to the present embodiment, the first facing portion 30 d is provided on the entire circumference of the radial outer edge portion at the lower end of the magnet 30. Therefore, the entire circumference of the magnet 30 can be fixed to the blade main body 20 by the adhesive 40. Thereby, the magnet 30 can be fixed to the blade main body 20 more firmly and in a more stable state.
また、本実施形態によれば、マグネット30が羽根本体20と直接的に固定されるため、マグネット30と羽根本体20とを連結する別部材が必要ない。そのため、羽根駆動装置1の部品点数を少なくできる。また、羽根駆動装置1を小型化しやすい。  Further, according to the present embodiment, since the magnet 30 is directly fixed to the blade main body 20, a separate member for connecting the magnet 30 and the blade main body 20 is not necessary. Therefore, the number of parts of the blade drive device 1 can be reduced. Further, the blade drive device 1 can be easily miniaturized.
<第2実施形態> 図4に示すように、本実施形態の遮光羽根110においてマグネット130は、マグネット130の下側の端部から上側に窪み周方向に延びる溝133を有する。図示は省略するが、溝133は、中心軸Jを中心とする円環状である。溝133の周方向と直交する断面形状は、例えば、上側に凸となる半楕円形状である。溝133は、穴部30aよりも径方向外側で、第1対向部30dよりも径方向内側に位置する。  Second Embodiment As shown in FIG. 4, in the light shielding blade 110 of the present embodiment, the magnet 130 has a groove 133 extending in the circumferential direction and recessed upward from the lower end of the magnet 130. Although not shown, the groove 133 has an annular shape centered on the central axis J. The cross-sectional shape orthogonal to the circumferential direction of the groove 133 is, for example, a semi-elliptical shape that is convex upward. The groove 133 is located radially outward of the hole 30 a and radially inward of the first facing portion 30 d.
本実施形態において対向部は、溝133の内側面である第2対向部133aを含む。第2対向部133aは、中心軸Jを中心とする円環状である。第2対向部133aの径方向の寸法、すなわち溝133の幅は、例えば、穴部30aの径方向内側面から下面30cの径方向外縁までの径方向の距離の半分以下である。これにより、マグネット130における固定面21aとの接触面積を大きくすることができ、マグネット130を固定面21aに対して安定して固定できる。  In the present embodiment, the facing portion includes a second facing portion 133 a which is an inner side surface of the groove 133. The second facing portion 133a has an annular shape centered on the central axis J. The radial dimension of the second facing portion 133a, that is, the width of the groove 133 is, for example, not more than half the radial distance from the radial inner surface of the hole 30a to the radial outer edge of the lower surface 30c. Thus, the contact area of the magnet 130 with the fixing surface 21a can be increased, and the magnet 130 can be stably fixed to the fixing surface 21a.
対向部である第2対向部133aと固定面21aとの軸方向の隙間S2、すなわち溝133の内部には、第2対向部133aと固定面21aとを接着する接着剤140が配置される。接着剤140は、隙間S2に充填される。第1対向部30dが接着剤40によって固定面21aに固定されることに加えて、第2対向部133aが接着剤140によって固定面21aに固定されるため、マグネット130をより強固に羽根本体20に固定することができる。  An adhesive 140 for bonding the second facing portion 133a and the fixing surface 21a is disposed in an axial gap S2 between the second facing portion 133a, which is the facing portion, and the fixing surface 21a, that is, the groove 133. The adhesive 140 is filled in the gap S2. In addition to the first opposing portion 30d being fixed to the fixing surface 21a by the adhesive 40, since the second opposing portion 133a is fixed to the fixing surface 21a by the adhesive 140, the magnet 130 can be made more robustly. It can be fixed to
また、本実施形態によれば、例えば、固定面21aに未硬化の接着剤44を塗布した後にマグネ
ット130を羽根本体20に接着する場合において、マグネット130の下面30cと固定面21aとの間に未硬化の接着剤44が入り込んだ場合であっても、未硬化の接着剤44を隙間S2に捕捉することができる。これにより、未硬化の接着剤44がマグネット130の下面30cと固定面21aとの間を通って穴部30aおよび貫通孔21cまで到達することを抑制できる。 
Further, according to the present embodiment, for example, in the case where the magnet 130 is adhered to the blade main body 20 after the uncured adhesive 44 is applied to the fixing surface 21a, the space between the lower surface 30c of the magnet 130 and the fixing surface 21a Even when the uncured adhesive 44 gets in, the uncured adhesive 44 can be trapped in the gap S2. As a result, it is possible to suppress the uncured adhesive 44 from reaching between the lower surface 30c of the magnet 130 and the fixing surface 21a and reaching the hole 30a and the through hole 21c.
したがって、マグネット130と羽根本体20との接着方法として、先に固定面21aに未硬化の接着剤44を塗布する方法を採用しても、未硬化の接着剤44が穴部30aおよび貫通孔21cに入り込むことを抑制できる。先に固定面21aに未硬化の接着剤44を塗布する場合、固定面21aの直上から未硬化の接着剤44の塗布が可能であるため、未硬化の接着剤44の塗布を容易にできる。図示は省略するが、マグネット130の下面30cのうち第1対向部30dと第2対向部133aとの径方向の間の部分は、接着剤を介して固定面21aと固定される。  Therefore, even if the method of applying the uncured adhesive 44 to the fixing surface 21a first as the method of bonding the magnet 130 and the blade main body 20 is employed, the uncured adhesive 44 has the holes 30a and the through holes 21c. Can be suppressed from entering the In the case where the uncured adhesive 44 is applied to the fixing surface 21a first, the uncured adhesive 44 can be applied from immediately above the fixed surface 21a, so that the uncured adhesive 44 can be easily applied. Although not shown, a portion of the lower surface 30c of the magnet 130 between the first facing portion 30d and the second facing portion 133a in the radial direction is fixed to the fixing surface 21a via an adhesive.
<第3実施形態> 図5に示すように、本実施形態の遮光羽根210において、マグネット230は、大径部231と、小径部232と、を有する。小径部232は、大径部231の下端部に繋がる。小径部232の外径は、大径部231の外径よりも小さい。本実施形態においてマグネット230の下面230cは、小径部232の下面である。  Third Embodiment As shown in FIG. 5, in the light shielding blade 210 of the present embodiment, the magnet 230 has a large diameter portion 231 and a small diameter portion 232. The small diameter portion 232 is connected to the lower end portion of the large diameter portion 231. The outer diameter of the small diameter portion 232 is smaller than the outer diameter of the large diameter portion 231. In the present embodiment, the lower surface 230 c of the magnet 230 is the lower surface of the small diameter portion 232.
本実施形態において第1対向部230dは、大径部231の下面である。第1対向部230dは、軸方向と直交し、中心軸Jを中心とする円環状である。第1対向部230dと固定面21aとの軸方向の隙間S3は、径方向外側に開口する。本実施形態において隙間S3の軸方向の寸法は、小径部232の軸方向の寸法と同じである。隙間S3の軸方向の寸法は、径方向の全体に亘って略均一である。  In the present embodiment, the first facing portion 230 d is the lower surface of the large diameter portion 231. The first facing portion 230 d is in an annular shape orthogonal to the axial direction and centered on the central axis J. A gap S3 in the axial direction between the first facing portion 230d and the fixed surface 21a opens radially outward. In the present embodiment, the axial dimension of the gap S3 is the same as the axial dimension of the small diameter portion 232. The axial dimension of the gap S3 is substantially uniform throughout the radial direction.
第1対向部230dと固定面21aとの軸方向の隙間S3には、接着剤240が配置される。本実施形態のように第1対向部230dが軸方向と直交する場合、隙間S3の軸方向の寸法は径方向の全体に亘って略均一であるため、隙間S3の径方向外側の開口部が比較的小さくなりやすい。このような場合、接着剤240として、比較的粘度が低い接着剤を用いることが好ましい。これは、毛細管現象によって未硬化の接着剤が隙間S3に入り込みやすいためである。すなわち、本実施形態のマグネット230の形状は、接着剤240として比較的粘度が低い接着剤を用いる場合に特に有用である。  An adhesive 240 is disposed in an axial gap S3 between the first facing portion 230d and the fixing surface 21a. When the first facing portion 230d is orthogonal to the axial direction as in the present embodiment, the dimension in the axial direction of the gap S3 is substantially uniform over the entire radial direction, so the opening in the radial direction outside of the gap S3 is It tends to be relatively small. In such a case, it is preferable to use an adhesive having a relatively low viscosity as the adhesive 240. This is because the uncured adhesive easily enters the gap S3 due to capillary action. That is, the shape of the magnet 230 of the present embodiment is particularly useful when an adhesive having a relatively low viscosity is used as the adhesive 240.
本発明は上述の各実施形態に限られず、他の構成を採用することもできる。羽根本体は、固定面を有するならば、特に限定されない。マグネットの穴部は、マグネットを貫通しなくてもよい。対向部は、下側に面し固定面から上側に離れて配置されるならば、特に限定されない。例えば、第2実施形態のマグネット130は、第1対向部30dを有しなくてもよい。第3実施形態のマグネット230は、第2実施形態の第2対向部133aを有してもよい。  The present invention is not limited to the above-described embodiments, and other configurations can be adopted. The blade body is not particularly limited as long as it has a fixed surface. The hole of the magnet may not penetrate the magnet. The opposing part is not particularly limited as long as it faces the lower side and is disposed at the upper side from the fixing surface. For example, the magnet 130 according to the second embodiment may not have the first facing portion 30d. The magnet 230 of the third embodiment may have the second facing portion 133a of the second embodiment.
第1対向部の径方向寸法は、穴部の径方向内側面からマグネットの径方向外側面までの径方向の最大距離の半分よりも大きくてもよい。第1対向部および第2対向部は、環状でなくてもよい。第1対向部は、周方向に沿って互いに間隔を空けて複数設けられてもよい。第2対向部は、周方向に沿って互いに間隔を空けて複数設けられてもよい。マグネットは、複数のマグネットが連結されて構成されてもよい。また、マグネットの形状は、特に限定されず、略六角柱状等の略多角柱状であってもよいし、略楕円柱状であってもよい。  The radial dimension of the first facing portion may be larger than half of the maximum radial distance from the radially inner side surface of the hole to the radially outer side surface of the magnet. The first facing portion and the second facing portion may not be annular. A plurality of first opposing portions may be provided at intervals along the circumferential direction. A plurality of second opposing portions may be provided at intervals along the circumferential direction. The magnet may be configured by connecting a plurality of magnets. Further, the shape of the magnet is not particularly limited, and may be a substantially polygonal prism such as a substantially hexagonal prism, or may be a substantially elliptical prism.
接着剤の種類は、羽根本体とマグネットとを接着できるならば、特に限定されない。接着剤は、熱硬化型の接着剤であってもよい。接着剤は、マグネットよりも径方向外側に位置する部分を有しなくてもよい。すなわち、接着剤の全体は、対向部と固定面との軸方向の隙間に配置されてもよい。接着剤は、対向部と固定面との軸方向の隙間に充填されなくてもよい。例えば、マグネットが対向部を複数有する場合、固定面との軸方向の隙間に接着剤が配置されない対向部があってもよい。  The type of adhesive is not particularly limited as long as the blade body and the magnet can be bonded. The adhesive may be a thermosetting adhesive. The adhesive may not have a portion located radially outward of the magnet. That is, the entire adhesive may be disposed in an axial gap between the facing portion and the fixing surface. The adhesive may not be filled in the axial gap between the facing portion and the fixing surface. For example, when the magnet has a plurality of facing portions, there may be a facing portion in which the adhesive is not disposed in the axial gap with the fixing surface.
マグネットと羽根本体を固定する際、未硬化の接着剤をマグネットに塗布した後に、マグネットを固定面に接触させて、マグネットと羽根本体とを固定してもよい。また、マグネットと固定面との両方に未硬化の接着剤を塗布した後に、マグネットを固定面に接触させて、マグネットと羽根本体とを固定してもよい。なお、接着剤に代えて、接着シート(粘着テープ)を用いて羽根本体とマグネットとを固定してもよい。  In fixing the magnet and the blade main body, after applying an uncured adhesive to the magnet, the magnet may be brought into contact with the fixing surface to fix the magnet and the blade main body. Moreover, after applying an uncured adhesive to both the magnet and the fixing surface, the magnet may be brought into contact with the fixing surface to fix the magnet and the blade main body. In addition, it replaces with an adhesive agent and you may fix a blade | wing main body and a magnet using an adhesive sheet (adhesive tape).
また、遮光羽根は、撮像装置用の遮光羽根であれば、用途は特に限定されない。遮光羽根は、例えば、フィルタ羽根であってもよいし、絞り羽根であってもよい。また、羽根駆動装置は、遮光羽根を備えるならば、特に限定されず、絞り装置等であってもよい。  Moreover, if a light-shielding blade is a light-shielding blade for imaging devices, a use in particular will not be limited. The light blocking blade may be, for example, a filter blade or a diaphragm blade. The blade driving device is not particularly limited as long as it has a light shielding blade, and may be an aperture device or the like.
<撮像装置の実施形態> 図6に示す撮像装置2は、赤外線カメラの一例である。図7に示す撮像装置3は、デジタルカメラの一例である。図8に示す撮像装置4は、撮像機能を有する携帯情報端末の一例である。撮像装置4は、例えば、スマートフォンである。  <Embodiment of an imaging device> The imaging device 2 shown in FIG. 6 is an example of an infrared camera. The imaging device 3 illustrated in FIG. 7 is an example of a digital camera. The imaging device 4 illustrated in FIG. 8 is an example of a portable information terminal having an imaging function. The imaging device 4 is, for example, a smartphone.
撮像装置2、撮像装置3および撮像装置4は、それぞれ上述した第1実施形態の羽根駆動装置1を備える。撮像装置2、撮像装置3および撮像装置4において、羽根駆動装置1は、各撮像装置に内蔵される撮像素子である。撮像装置2、撮像装置3および撮像装置4は、それぞれ羽根駆動装置1の前方に位置するレンズ、撮像画像を処理する処理回路、およびメモリ等を備える。なお、例えば、撮像装置4のようなスマートフォンに備えられる撮像素子としての羽根駆動装置1は、スマートフォンに対して後付けされる撮像素子であってもよい。  The imaging device 2, the imaging device 3, and the imaging device 4 each include the blade driving device 1 of the first embodiment described above. In the imaging device 2, the imaging device 3 and the imaging device 4, the blade driving device 1 is an imaging element built in each imaging device. The imaging device 2, the imaging device 3, and the imaging device 4 each include a lens positioned in front of the blade driving device 1, a processing circuit that processes a captured image, a memory, and the like. Note that, for example, the blade driving device 1 as an imaging device provided in a smartphone such as the imaging device 4 may be an imaging device retrofitted to the smartphone.
なお、撮像装置2および撮像装置3に搭載される羽根駆動装置は、上述した第2実施形態の遮光羽根110を備える羽根駆動装置であってもよいし、上述した第3実施形態の遮光羽根210を備える羽根駆動装置であってもよい。また、撮像装置は、特に限定されず、一眼レフカメラであってもよいし、スマートフォン以外の撮像機能を有する携帯情報端末であってもよい。  In addition, the blade drive device mounted in the imaging device 2 and the imaging device 3 may be a blade drive device including the light shielding blade 110 of the second embodiment described above, or the light shielding blade 210 of the third embodiment described above. It may be a blade drive provided with. Also, the imaging device is not particularly limited, and may be a single-lens reflex camera, or a portable information terminal having an imaging function other than a smartphone.
以上に説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The configurations described above can be combined as appropriate as long as no contradiction arises.
1…羽根駆動装置、2,3,4…撮像装置、10,110,210…遮光羽根、20…羽根本体、21a…固定面、21c…貫通孔、30,130,230…マグネット、30a…穴部、30d,230d…第1対向部、40,44,140,240…接着剤、50…支持ピン、60…駆動部、133…溝、133a…第2対向部、J…中心軸、L1…最大距離、L2…第1対向部の径方向の寸法、S1,S2,S3…隙間、θ…角度 DESCRIPTION OF SYMBOLS 1 ... blade drive device, 2, 3, 4 ... imaging device, 10, 110, 210 ... light shielding blade, 20 ... blade main body, 21a ... fixed surface, 21c ... through hole, 30, 130, 230 ... magnet, 30a ... hole Parts, 30d, 230d: first opposing part, 40, 44, 140, 240: adhesive, 50: support pin, 60: driving part, 133: groove, 133a: second opposing part, J: central axis, L1: Maximum distance, L2: Dimension in the radial direction of the first opposing portion, S1, S2, S3: Gap, θ: Angle

Claims (12)

  1. 撮像装置用の遮光羽根であって、 一方向に延びる中心軸に沿って配置される穴部を有するマグネットと、 軸方向一方側を向く固定面を有する羽根本体と、 を備え、 前記固定面には、前記羽根本体の軸方向一方側において前記マグネットが固定され、 前記穴部は、前記マグネットの軸方向他方側の端部から軸方向一方側に窪み、 前記羽根本体は、前記羽根本体を軸方向に貫通し前記穴部と繋がる貫通孔を有し、 前記マグネットは、前記穴部よりも径方向外側において、軸方向他方側に面し前記固定面から軸方向一方側に離れて配置される対向部を有し、 前記対向部と前記固定面との軸方向の隙間には、前記対向部と前記固定面とを接着する接着剤が配置される、遮光羽根。 A light shielding blade for an imaging device, comprising: a magnet having a hole disposed along a central axis extending in one direction; and a blade main body having a fixed surface facing in an axial direction on one side; The magnet is fixed on one side in the axial direction of the blade main body, and the hole is recessed to the one side in the axial direction from the end on the other side in the axial direction of the magnet, and the blade main body The magnet has a through hole that penetrates in the direction and is connected to the hole, and the magnet faces the other side in the axial direction on the radially outer side of the hole and is disposed away from the fixing surface in the axial direction A light shielding blade, comprising: a facing portion; and an adhesive that adheres the facing portion and the fixing surface to each other in an axial gap between the facing portion and the fixing surface.
  2. 前記対向部は、前記マグネットの軸方向他方側の端部における径方向外縁部に設けられる第1対向部を含み、 前記第1対向部と前記固定面との軸方向の隙間は、径方向外側に開口する、請求項1に記載の遮光羽根。 The facing portion includes a first facing portion provided at a radial outer edge portion at the other axial end of the magnet, and an axial gap between the first facing portion and the fixing surface is radially outside The light-shielding blade according to claim 1, wherein the light-shielding blade is open.
  3. 前記第1対向部は、径方向内側から径方向外側に向かうに従って、軸方向一方側に位置する傾斜面である、請求項2に記載の遮光羽根。 The light shielding blade according to claim 2, wherein the first opposing portion is an inclined surface positioned on one side in the axial direction as it goes from the inner side in the radial direction to the outer side in the radial direction.
  4. 前記第1対向部の前記固定面に対する角度は、45°以上、90°未満である、請求項3に記載の遮光羽根。 The light shielding blade according to claim 3, wherein an angle of the first facing portion with respect to the fixed surface is 45 ° or more and less than 90 °.
  5. 前記第1対向部は、前記マグネットの軸方向他方側の端部における径方向外縁部の全周に設けられる、請求項2から4のいずれか一項に記載の遮光羽根。 The light shielding blade according to any one of claims 2 to 4, wherein the first opposing portion is provided on the entire circumference of the radial outer edge portion at the other axial end of the magnet.
  6. 前記接着剤は、前記マグネットよりも径方向外側に位置する部分を有する、請求項2から5のいずれか一項に記載の遮光羽根。 The light shielding blade according to any one of claims 2 to 5, wherein the adhesive has a portion located radially outward of the magnet.
  7. 前記第1対向部の径方向の寸法は、前記穴部の径方向内側面から前記マグネットの径方向外側面までの径方向の最大距離の半分以下である、請求項2から6のいずれか一項に記載の遮光羽根。 The dimension of the radial direction of the said 1st opposing part is half or less of the largest distance of the radial direction from the radial direction inner surface of the said hole to the radial direction outer surface of the said magnet, Any one of Claim 2 to 6 The light shielding blade as described in Item.
  8. 前記第1対向部の径方向の寸法は、0.05mm以上である、請求項2から7のいずれか一項に記載の遮光羽根。 The light-shielding blade according to any one of claims 2 to 7, wherein a dimension of the first opposing portion in a radial direction is 0.05 mm or more.
  9. 前記マグネットは、前記マグネットの軸方向他方側の端部から軸方向一方側に窪み周方向に延びる溝を有し、 前記対向部は、前記溝の内側面である第2対向部を含む、請求項1から8のいずれか一項に記載の遮光羽根。 The magnet has a groove extending in the circumferential direction from the other end of the magnet in the axial direction, and the facing portion includes a second facing portion that is an inner surface of the groove. Item 9. The light shielding blade according to any one of items 1 to 8.
  10. 前記穴部は、前記マグネットを軸方向に貫通する、請求項1から9のいずれか一項に記載の遮光羽根。 The light shielding blade according to any one of claims 1 to 9, wherein the hole axially penetrates the magnet.
  11. 請求項1から10のいずれか一項に記載の遮光羽根と、 前記穴部に挿入され、前記遮光羽根を前記中心軸周りに回転可能に支持する支持ピンと、 前記マグネットを通る磁界を生じさせて前記遮光羽根を前記中心軸周りに回転させる駆動部と、 を備える、羽根駆動装置。 A light shielding blade according to any one of claims 1 to 10, a support pin inserted in the hole and rotatably supporting the light shielding blade around the central axis, generating a magnetic field passing through the magnet A driving unit configured to rotate the light shielding blade around the central axis.
  12. 請求項1から10のいずれか一項に記載の遮光羽根、または請求項11に記載の羽根駆動装置を備える、撮像装置。 An imaging device provided with the light-shielding blade according to any one of claims 1 to 10, or the blade driving device according to claim 11.
PCT/JP2018/023295 2017-07-31 2018-06-19 Light-shielding blade, blade drive device, and imaging device WO2019026448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019533952A JPWO2019026448A1 (en) 2017-07-31 2018-06-19 Shading blade, blade driving device, and imaging device
CN201880047685.1A CN110914753A (en) 2017-07-31 2018-06-19 Light-blocking blade, blade drive device, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148155 2017-07-31
JP2017-148155 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026448A1 true WO2019026448A1 (en) 2019-02-07

Family

ID=65233778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023295 WO2019026448A1 (en) 2017-07-31 2018-06-19 Light-shielding blade, blade drive device, and imaging device

Country Status (3)

Country Link
JP (1) JPWO2019026448A1 (en)
CN (1) CN110914753A (en)
WO (1) WO2019026448A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258867A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Shutter vane
JP2008170537A (en) * 2007-01-09 2008-07-24 Canon Inc Light quantity adjusting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476840B2 (en) * 1991-08-02 2003-12-10 オリンパス株式会社 Optical components
JP3501666B2 (en) * 1998-12-04 2004-03-02 アルプス電気株式会社 Magnetic head mounting
JP2003107309A (en) * 2001-09-28 2003-04-09 Kyocera Corp Optical device and method for assembling the same
JP3834816B2 (en) * 2003-04-24 2006-10-18 船井電機株式会社 Objective lens unit
JP3813944B2 (en) * 2003-04-28 2006-08-23 松下電器産業株式会社 Imaging device
US7872686B2 (en) * 2004-02-20 2011-01-18 Flextronics International Usa, Inc. Integrated lens and chip assembly for a digital camera
US7499229B2 (en) * 2004-05-31 2009-03-03 Konica Minolta Opto, Inc. Fixing method, optical component and pickup manufactured by the fixing method
JP2007094241A (en) * 2005-09-30 2007-04-12 Fujinon Corp Lens block, lens holder for holding the same, and projector using the same
JP4849516B2 (en) * 2005-10-21 2012-01-11 キヤノン株式会社 Driving device and light amount adjusting device
CN101493631B (en) * 2008-01-24 2012-01-25 鸿富锦精密工业(深圳)有限公司 Mechanical shutter and camera module using the mechanical shutter
JP5808218B2 (en) * 2010-11-25 2015-11-10 富士フイルム株式会社 Endoscope illumination optical system unit and manufacturing method thereof
CN203963144U (en) * 2014-05-26 2014-11-26 常州剑湖金城车辆设备有限公司 A kind of one-way valve and adopt the rail vehicle heating device electric hot plate of this one-way valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258867A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Shutter vane
JP2008170537A (en) * 2007-01-09 2008-07-24 Canon Inc Light quantity adjusting device

Also Published As

Publication number Publication date
JPWO2019026448A1 (en) 2020-08-27
CN110914753A (en) 2020-03-24

Similar Documents

Publication Publication Date Title
US10110816B2 (en) Optical unit with shake correction function
US10252295B2 (en) Linear actuator
US8379337B2 (en) Lens drive device
US7794162B2 (en) Mechanical shutter and camera module having the same
US10634928B2 (en) Method for adjusting position of swing member of optical unit with shake correction function and optical unit with shake correction function
JP2009080217A (en) Lens driving device, camera and mobil phone with camera
US6733192B2 (en) Electromagnetic actuator and camera blade driving device
US9557564B2 (en) Rotary body driving apparatus
JP2012014092A (en) Light adjusting apparatus
WO2007097413A1 (en) Lens drive device
TWI665509B (en) Optical unit with shake correction function and manufacturing method thereof
JP2013033186A (en) Lens drive device, autofocus camera and portable terminal device
WO2019026450A1 (en) Light blocking blade, blade driving device, and imaging device
WO2019026448A1 (en) Light-shielding blade, blade drive device, and imaging device
JP2017058506A (en) Blade drive device and optical device
WO2019026449A1 (en) Light-shielding blade, blade drive device, and imaging device
JP2007006641A (en) Manufacturing method for rotor, and rotor
US9742256B2 (en) Actuator
JP2007041307A (en) Light quantity adjustment device
JP2016061985A (en) Magnetic driving device and imaging apparatus
WO2020195005A1 (en) Rotor manufacturing method and motor manufacturing method
JP2011247985A (en) Motor attachment structure, lens barrel and camera
JP4575055B2 (en) Camera blade drive
US20150103422A1 (en) Lens driving device
JP2017060227A (en) Electromagnetic motor and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533952

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841950

Country of ref document: EP

Kind code of ref document: A1