WO2019026258A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2019026258A1
WO2019026258A1 PCT/JP2017/028312 JP2017028312W WO2019026258A1 WO 2019026258 A1 WO2019026258 A1 WO 2019026258A1 JP 2017028312 W JP2017028312 W JP 2017028312W WO 2019026258 A1 WO2019026258 A1 WO 2019026258A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
less
resin composition
resin
Prior art date
Application number
PCT/JP2017/028312
Other languages
French (fr)
Japanese (ja)
Inventor
茂久 上村
浩二 大崎
大崎 和友
貢平 山田
知也 和田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to PCT/JP2017/028312 priority Critical patent/WO2019026258A1/en
Publication of WO2019026258A1 publication Critical patent/WO2019026258A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a resin composition. More specifically, the present invention relates to a resin composition containing a thermoplastic resin and a method for producing the same, and a molded article containing the resin composition and a method for producing the same.
  • GF reinforcing material is not only difficult to thermally recycle, but also high in density, so it is not suitable for applications requiring light weight and high strength.
  • carbon fibers have a low density compared to GF, and carbon fiber reinforced materials exhibit high rigidity, but carbon fibers are flame retardant materials, and in addition to the price, there are problems with recycling as well as GF.
  • CNF nano-fibrillated cellulose nanofibers
  • CNF has a large number of hydroxyl groups, has low affinity with many general purpose thermoplastic resins such as polyethylene and polypropylene, interfacial peeling and aggregation occur, and toughness and impact resistance are greatly reduced. Therefore, attempts have been actively made to improve the heat resistance of CNF by chemically modifying the surface of CNF, to improve the affinity to the target resin, and to develop additives such as a compatibilizer.
  • Patent Document 1 by blending a cellulose having a crystallinity of less than 50% with a polyolefin resin and / or a styrenic resin, the obtained molded product has both strength and flexibility, and further, it has an impact resistance. It has been reported that the superior effect of superiority is achieved. Further, Patent Document 2 reports that toughness is improved by adding non-crystallized cellulose and an elastomer to a matrix resin.
  • the present invention relates to the following [1] to [4].
  • a resin composition comprising: at least 20 parts by mass but not less than 4 parts by mass and at most 20 parts by mass of a compatibilizer when the thermoplastic resin is polyethylene.
  • FIG. 1 is a view showing a SEM image of a cross section of a sheet of the resin composition of Example 3. Arrows in the figure indicate the state in which non-crystallized cellulose is dispersed.
  • FIG. 2 is a view showing a SEM image of the sheet cross section of the resin composition of Comparative Example 3.
  • the present invention relates to a resin composition having both toughness and rigidity and a method for producing the same, and a molded article containing the resin composition and a method for producing the same.
  • the resin composition of the present invention relates to those having the excellent effect of achieving both toughness and rigidity.
  • the resin composition of the present invention is characterized by containing a specific amount of a cellulose having a specific relative degree of crystallinity and a compatibilizer with respect to a thermoplastic resin.
  • amorphous cellulose is said to be more reactive than crystalline cellulose.
  • the compatibilizer has a functional group capable of reacting or interacting with cellulose, interacts only with the cellulose surface when the compatibilizer acts on crystalline cellulose, and stabilizes the interface between the matrix resin and the cellulose, Elastic modulus is improved.
  • the compatibilizer acts on the non-crystalline cellulose, the compatibilizer penetrates to the inside of the cellulose to suppress the strong interaction between the cellulose, so the interface between the matrix resin and the cellulose is stabilized.
  • thermoplastic resin The thermoplastic resin in the present invention is not particularly limited, and polyolefin resin, polystyrene resin, polyester resin, polyamide resin, polyamide resin, nylon resin, vinyl chloride resin, vinyl ether resin, polyvinyl alcohol resin, polycarbonate resin, polysulfone resin, etc. It can be mentioned. These can be used singly or in combination of two or more.
  • those containing one or more selected from polyolefin resins, polystyrene resins, polyester resins, and polyamide resins as a constituent resin are preferable, and those selected from polyolefin resins and polyamide resins 1 It is more preferable to contain the species or two as the constituent resin, and it is more preferable to contain at least the polyolefin resin.
  • polyethylene polyethylene
  • PP resin polypropylene
  • PS resin polystyrene
  • PVDC resin polyvinyl acetate
  • PA resin polyacrylic acid
  • PAE resin polyacrylic acid ester
  • PB resin polybutadiene
  • PIP resin polyisoprene
  • PCP resin polychloroprene
  • the content of the polyolefin resin in the thermoplastic resin is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more is there.
  • the upper limit is not particularly limited, and may be a polyolefin resin, that is, 100% by mass.
  • the content of the thermoplastic resin in the resin composition of the present invention is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, from the viewpoint of improving the toughness of the molded body obtained. More preferably, it is 65 mass% or more, More preferably, it is 70 mass% or more, More preferably, it is 75 mass% or more. Further, from the viewpoint of improving the rigidity of the obtained molded product, it is preferably 93% by mass or less, more preferably 90% by mass or less, still more preferably 87% by mass or less, still more preferably 85% by mass or less, still more preferably 83% by mass % Or less.
  • Non-crystallized cellulose is a fibrous reinforcing material which can be expected to be reduced in weight and thermal recyclability, but when its content is increased, the viscosity of the resin composition is increased, so that the formability is reduced, fiber aggregation, polymer matrix and the like Decrease in toughness due to interface instability with the
  • the cellulose used in the present invention is non-crystallized cellulose having a relative crystallinity of less than 50%.
  • non-crystallized cellulose it may be described simply as "non-crystallized cellulose”.
  • the relative crystallinity degree of cellulose is cellulose I-type crystallinity degree calculated by Segal method from the diffraction intensity value by X-ray diffraction method, and it is defined by the following formula (A) Ru.
  • the non-crystallized cellulose in the present invention has a relative crystallinity of less than 50%, it is preferably 49% or less, more preferably 40% or less, still more preferably 30% or less from the viewpoint of the toughness of the resulting molded body It is. Further, from the viewpoint of improving the rigidity of the obtained molded product, it is preferably -70% or more, more preferably -60% or more, and still more preferably -50% or more. It should be noted that the smaller the value of relative crystallinity, the larger the ratio of the noncrystalline portion to the crystalline portion.
  • Such non-crystallized cellulose is obtained by treating at least one cellulose-containing material selected from woods, pulps, papers, plant stems / leaves, plant shells and the like with a grinder to obtain cellulose crystals. It can be obtained by reducing the degree of For example, the method described in JP-A-2011-1547 can be referred to.
  • the cellulose I-type crystallinity of commercially available pulp is usually 60% or more.
  • the cellulose-containing raw material is adjusted in size to a size of preferably 0.1 to 70 mm by using a shredder or the like, and then treated with a media crusher or extruder. Roughness obtained by adjusting the bulk density to 50 to 600 kg / m 3 or the specific surface area to 0.2 to 750 m 2 / kg by conducting, drying, or performing any treatment.
  • the ground cellulose is stirred for 0.5 minutes to 24 hours using an impact-type grinder to obtain non-crystallized cellulose with a reduced degree of crystallinity.
  • the relative crystallinity degree of the obtained non-crystallized cellulose can be controlled by adjusting the circumferential speed of the rotor, the sample supply speed, the stirring time and the like.
  • it is preferable that the water content of a raw material will be 1.8 mass% or less from a viewpoint of performing a grinding process efficiently.
  • the lower limit of the average fiber diameter of the non-crystallized cellulose thus obtained is not particularly set, but it is preferably 0.01 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 5 ⁇ m or more, from the viewpoint of dispersibility in the resin. More preferably, it is 10 micrometers or more, More preferably, it is 20 micrometers or more.
  • the upper limit is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and still more preferably 100 ⁇ m or less from the viewpoint of toughness.
  • the non-crystallized cellulose after being dispersed in the resin composition of the present invention is refined by the dispersion at the time of mixing the raw materials described later, and it is finer than the above-mentioned average fiber diameter, for example, an average fiber diameter
  • the average fiber diameter of cellulose fibers is the volume-based median diameter, and can be measured according to the method described in the examples below.
  • the content of the non-crystallized cellulose in the resin composition of the present invention is 5 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, preferably from the viewpoint of the rigidity of the obtained molded body Is 7 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 13 parts by mass or more, still more preferably 15 parts by mass or more, preferably 60 parts by mass or less from the viewpoint of toughness of the obtained molded body
  • the amount is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
  • the content of non-crystallized cellulose in the resin composition is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 8% by mass or more, from the viewpoint of improving the rigidity of the molded article obtained. More preferably, it is 10 mass% or more, More preferably, it is 12 mass% or more. Further, from the viewpoint of toughness of the resulting molded body, it is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less It is.
  • compatibilizer can be used as the compatibilizer that can be used in the present invention, but from the viewpoint of improving the dispersibility of the non-crystallized cellulose and stabilizing the interface between the non-crystallized cellulose and the thermoplastic resin, It is preferable to contain one or more selected from the following compatibilizers.
  • Compatibilizer (1) ethylene / vinyl acetate copolymer compatibilizer (2): ethylene / (meth) acrylate copolymer compatibilizer (3): acid anhydride group, carboxyl group, amino group, Polyolefin resin compatibilizer (4) having at least one functional group (substituent) selected from the group consisting of imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group and epoxy group: acid Acrylic having at least one functional group (substituent) selected from the group consisting of anhydride group, carboxyl group, amino group, imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group, and epoxy group Resin or Styrene Resin Compatibilizer (5): Polyester Resin Compatibilizer (6): Ionomer Resin
  • compatibilizer (3) and the compatibilizer (4) 1 type, or 2 or more types are preferable, and 1 type or 2 or more types selected from a compatibilizer (3) are more preferable.
  • the polyolefin resin in the compatibilizer (3) is preferably an ethylene polymer [high density polyethylene, medium density polyethylene, low density polyethylene, ethylene and one or more other vinyl compounds (for example, ⁇ -olefin, vinyl acetate , Copolymers with methacrylic acid, acrylic acid etc.), propylene polymers [polypropylene, copolymers of propylene and one or more other vinyl compounds, etc.], ethylene propylene copolymer, polybutene and the like Poly-4-methylpentene-1 and the like, and more preferred are ethylene polymers and propylene polymers.
  • ethylene polymer high density polyethylene, medium density polyethylene, low density polyethylene, ethylene and one or more other vinyl compounds (for example, ⁇ -olefin, vinyl acetate , Copolymers with methacrylic acid, acrylic acid etc.)
  • propylene polymers polypropylene, copolymers of propylene and one or more other vinyl compounds, etc.
  • the functional group in the polyolefin resin is at least one selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group.
  • an acid anhydride group or an epoxy group, more preferably an acid anhydride group.
  • maleic anhydride, maleic acid, succinic anhydride, succinic acid and glycidyl methacrylate are exemplified.
  • the weight average molecular weight (Mw) of the compatibilizer is preferably 1000 or more, more preferably 5000 or more, still more preferably 10000 or more, and still more preferably 20000 or more from the viewpoint of the rigidity of the resulting molded article. Further, from the viewpoint of the toughness of the obtained molded product, it is preferably 100,000 or less, more preferably 90000 or less, still more preferably 80000 or less, still more preferably 70000 or less, still more preferably 60000 or less. In the present specification, the weight average molecular weight can be measured according to the method described in the following examples.
  • the content of the compatibilizer is 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, but both the rigidity and the toughness of the obtained molded body are achieved. From the viewpoint, it is preferably 5 parts by mass or more. In addition, from the same viewpoint, the content is preferably 17 parts by mass or less, more preferably 14 parts by mass or less, still more preferably 11 parts by mass or less, and still more preferably 8 parts by mass or less. However, when the thermoplastic resin is polyethylene, the amount is 4 parts by mass or more and 20 parts by mass or less.
  • the desired effect may not be sufficiently exhibited if the compatibilizer is less than 4 parts by mass.
  • the thermoplastic resin is other than polyethylene, specifically, polypropylene, polystyrene, polyvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylic acid, polyacrylic acid ester, polybutadiene, polyisoprene, polychloroprene, etc.
  • the desired effect is sufficiently exhibited even when the amount of the compatibilizer is in a range of small amount, for example, in a range of 2 parts by mass or more and less than 4 parts by mass.
  • the rigidity of the resin compound decreases as the amount of the compatibilizer added increases.
  • the elastic modulus of the thermoplastic resin and the elastic modulus of the compatibilizer are equal to each other as in polyethylene, the rigidity of the resin compound is unlikely to decrease even if the addition amount of the compatibilizer is increased.
  • the content of the compatibilizer in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass, from the viewpoint of achieving both the rigidity and the toughness of the molded body obtained.
  • the above more preferably 4% by mass or more.
  • the content is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 8% by mass or less, still more preferably 6% by mass or less.
  • the mass ratio of the compatibilizer to the non-crystallized cellulose is preferably 0.8 or less, more preferably 0. It is 6 or less, more preferably 0.4 or less, and still more preferably 0.3 or less. Moreover, from the same viewpoint, it is preferably 0.06 or more, more preferably 0.08 or more, further preferably 0.1 or more, and still more preferably 0.15 or more.
  • Crystal nucleating agent in addition to the above components, a crystal nucleating agent can be further used in the resin composition of the present invention from the viewpoint of the rigidity of the resulting molded body.
  • crystal nucleating agents examples include inorganic crystal nucleating agents and organic crystal nucleating agents.
  • inorganic crystal nucleating agents include natural or synthetic silicate compounds, titanium oxide, barium sulfate, tricalcium phosphate, calcium carbonate, sodium phosphate, kaolinite, halloysite, talc, smectite, vermeulite, mica, etc.
  • organic crystal nucleating agent include amides, organic acid metal salts, sorbitol derivatives, nonitol derivatives, etc. From the viewpoint of improving rigidity, organic acid metal salts and sorbitol derivatives are preferable.
  • Examples of the organic acid metal salt include sodium benzoate, aluminum dibenzoate, potassium benzoate, lithium benzoate, sodium ⁇ ⁇ naphthalate, sodium cyclohexane carboxylate, zinc phenylphosphonate and the like
  • examples of the sorbitol derivative include 1,3: Examples thereof include 2,4-bis-O- (4-methylbenzylidene) -D-sorbitol, and a sorbitol derivative is preferable from the viewpoint of achieving both rigidity and toughness.
  • the content of the crystal nucleating agent is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint of improving the rigidity and the degree of crystallinity. Preferably it is 3.0 mass parts or less, More preferably, it is 2.0 mass parts or less.
  • the resin composition of the present invention contains, as components other than the above, a plasticizer; a filler (inorganic filler, organic filler); a hydrolysis inhibitor; a flame retardant; an antioxidant; a hydrocarbon wax and an anion -Type surfactant: lubricant, UV absorber, antistatic agent, anti-fogging agent, light stabilizer, pigment, anti-mold agent, antibacterial agent, foaming agent, surfactant, polysaccharides such as starches, alginic acid, gelatin Natural proteins such as pomace, casein, etc .; Inorganic compounds such as tannins, zeolites, ceramics, metal powders, etc .; perfumes; flow control agents; leveling agents; conductive agents; ultraviolet light dispersants; Can be contained in the range which does not impair.
  • the content ratio of the optional additive may be suitably contained within the range not impairing the effects of the present invention, but for example, 20% by mass or less in the resin composition is preferable, and about 10% by mass or less is more preferable. About 5 mass% or less is still more preferable.
  • the resin composition of the present invention can be prepared without particular limitation as long as it contains a specific amount of non-crystallized cellulose and a specific amount of a compatibilizer with respect to the thermoplastic resin, for example, as described above
  • the raw materials containing various additives in addition to the three components are optionally stirred with a Henschel mixer or the like, or using a known kneader such as a closed kneader, single- or twin-screw extruder, or open-roll type kneader It can be prepared by melt-kneading or solvent casting.
  • the raw materials can also be subjected to melt-kneading after being uniformly mixed in advance using a Henschel mixer, a super mixer, etc., and the resin composition of the present invention improves the dispersibility of non-crystallized cellulose by the compatibilizer.
  • the raw materials can be mixed at once and melt-kneaded instead of being separately mixed in advance.
  • a supercritical gas may be present and melt mixed. After the melt-kneading, the melt-kneaded product may be dried according to a known method.
  • the melt-kneading temperature is preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C. or more, still more preferably 220 ° C. or more, further preferably from the viewpoint of improving the moldability of the resin composition and the prevention of deterioration.
  • the temperature is 225 ° C. or more, more preferably 230 ° C. or more, preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less.
  • the melt-kneading time can not be determined generally depending on the melt-kneading temperature and the type of the kneader, but is preferably 15 seconds or more and 900 seconds or less.
  • the present invention also provides a method of producing the resin composition of the present invention.
  • the agent As a method for producing the resin composition of the present invention, 5 parts by mass to 70 parts by mass of non-crystallized cellulose, and 2 parts by mass to 20 parts by mass of compatibilization with respect to 100 parts by mass of the above-mentioned thermoplastic resin
  • the agent includes the step of mixing 4 parts by mass or more and 20 parts by mass or less of the compatibilizing agent when the thermoplastic resin is polyethylene.
  • the raw material containing various additives as necessary in addition to the thermoplastic resin, the non-crystallized cellulose, and the compatibilizer is preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C.
  • thermoplastic resin is polyethylene
  • the amount of the compatibilizer is small, that is, less than 4 parts by mass
  • the desired effect may not be sufficiently exhibited.
  • the thermoplastic resin is other than polyethylene, the desired effect is sufficiently exhibited even when the amount of the compatibilizer is in a range of small amount, for example, in the range of 2 parts by mass to less than 4 parts by mass.
  • the resin composition of the present invention thus obtained is excellent in toughness and rigidity.
  • a No. 2 test piece is produced based on JIS K 7127, and the tensile elastic modulus (GPa) and the tensile breaking strain (%) are measured
  • the breaking strain improvement rate calculated from the following formula (I) is preferably 120% or more, more preferably 150% or more, and still more preferably 200% or more.
  • the elastic modulus improvement rate calculated from the following formula (II) is preferably 120% or more, more preferably 150% or more, and further preferably 200% or more.
  • Breaking strain improvement rate (%) (ES / EB) x 100 (I)
  • ES Average value of tensile breaking strain of 5 sample test pieces
  • EB Average value of tensile breaking strain of 5 control test pieces
  • Modulus improvement rate (%) (MS / MB) ⁇ 100
  • MS Average value of tensile elastic modulus of 5 sample test pieces
  • MB Average value of tensile elastic modulus of 5 blank test pieces
  • the blank resin piece has the same thermoplastic resin composition of Comparative Example 1 or Comparative Example 13 described later.
  • the resin composition of the present invention is suitable for daily goods, household appliances parts, automobile parts, etc. by using various molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for various molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for various molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for various molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for various molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used
  • the present invention also provides a molded article containing the resin composition of the present invention.
  • the molded body is not particularly limited as long as it is a molded body of the resin composition of the present invention, and for example, known molding methods such as extrusion molding, injection molding, press molding, cast molding or solvent casting of the resin composition It can be prepared by suitably using For example, after injection or application to a package type, a mold or the like, a molded body according to the application can be obtained by drying and curing.
  • the thickness is preferably 0.05 mm or more, more preferably 0.1 mm or more, and still more preferably 0.15 mm or more from the viewpoint of processability. Moreover, 1.5 mm or less is preferable, 1.0 mm or less is more preferable, and 0.5 mm or less is still more preferable.
  • the molded article of the resin composition of the present invention thus obtained is excellent in toughness and rigidity, and thus, it is used as a packaging material for various purposes, for example, daily necessities, cosmetics, home appliances, blister packs, trays, lids for lunch boxes, etc. It can be suitably used for food containers of the above, industrial trays used for transportation and protection of industrial parts, and the like.
  • this invention further discloses the following resin composition, the manufacturing method of this resin composition, the molded object containing this resin composition, and the manufacturing method of this molded object.
  • thermoplastic resin 5 parts by mass or more and 70 parts by mass or less of non-crystallized cellulose having a relative crystallinity degree of less than 50%, and 2 parts by mass of a compatibilizer with respect to 100 parts by mass of the thermoplastic resin
  • a resin composition comprising: at least 20 parts by mass but not less than 4 parts by mass and at most 20 parts by mass of a compatibilizer when the thermoplastic resin is polyethylene.
  • the relative crystallinity of the non-crystallized cellulose is preferably 49% or less, more preferably 40% or less, still more preferably 30% or less, preferably -70% or more, more preferably -60% or more
  • the content of non-crystallized cellulose in the ⁇ 3> resin composition is preferably 7 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 13 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin.
  • the above ⁇ 1> or ⁇ 2> is preferably 15 parts by mass or more, preferably 60 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less
  • the content of the compatibilizer in the ⁇ 4> resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 14 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin.
  • the content of the compatibilizer in the resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin.
  • the content of the polyolefin resin in the thermoplastic resin is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass
  • the upper limit of the content of the polyolefin resin in the thermoplastic resin is not particularly limited, and it is made of a polyolefin resin, that is, may be 100% by mass, the resin according to any one of ⁇ 1> to ⁇ 6> Composition.
  • the content of the thermoplastic resin in the ⁇ 8> resin composition is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, still more preferably 65% by mass or more, still more preferably 70 % By mass, more preferably 75% by mass or more, preferably 93% by mass or less, more preferably 90% by mass or less, still more preferably 87% by mass or less, still more preferably 85% by mass or less, still more preferably 83% by mass
  • the non-crystallized cellulose is treated with a crusher by treating at least one cellulose-containing raw material selected from woods, pulps, papers, plant stems and leaves, plant shells, etc.
  • the resin composition according to any one of the above ⁇ 1> to ⁇ 8>, which is obtained by reducing the degree of crystallinity of ⁇ 10> If necessary, the cellulose-containing raw material is adjusted to a size of preferably 0.1 to 70 mm by using a shredder or the like, and then treated with a medium-type crusher or extruder. Dried, or subjected to any treatment to obtain a bulk density of preferably 50 to 600 kg / m 3 or a specific surface area of preferably 0.2 to 750 m 2 / kg.
  • the resin according to the above ⁇ 9>, wherein the coarsely pulverized cellulose can be stirred using an impact crusher for 0.5 minutes to 24 hours to obtain non-crystallized cellulose having a reduced degree of crystallinity.
  • Composition The resin composition as described in said ⁇ 9> or ⁇ 10> whose water content of ⁇ 11> cellulose containing raw material is preferably 1.8 mass% or less.
  • the average fiber diameter of the ⁇ 12> non-crystallized cellulose is preferably 0.01 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, preferably 200 ⁇ m or less
  • the content of non-crystallized cellulose in the ⁇ 13> resin composition is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 8% by mass or more, still more preferably 10% by mass or more, still more preferably It is 12% by mass or more, preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less.
  • the weight average molecular weight of the ⁇ 14> compatibilizer is preferably 1000 or more, more preferably 5000 or more, still more preferably 10000 or more, still more preferably 20000 or more, preferably 100000 or less, more preferably 90000 or less, more preferably
  • the compatibilizer preferably contains one or more selected from the following compatibilizers: Compatibilizer (1): ethylene / vinyl acetate copolymer compatibilizer (2): ethylene / (meth) acrylate copolymer compatibilizer (3): acid anhydride group, carboxyl group, amino group, Polyolefin resin compatibilizer (4) having at least one functional group (substituent) selected from the group consisting of imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group and epoxy group: acid Acrylic having at least one functional group (substituent) selected from the group consisting of anhydride group, carboxyl group, amino group, imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group, and epoxy group Resin based resin or styrene resin compatibilizer (5): polyester resin compatibilizer (6):
  • ⁇ 16> The resin composition according to any one of ⁇ 1> to ⁇ 14>, wherein the compatibilizer more preferably contains at least one selected from the group shown below: Compatibilizer: having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin.
  • Compatibilizer having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin.
  • the polyolefin resin in the ⁇ 17> compatibilizer (3) is preferably an ethylene polymer [high density polyethylene, medium density polyethylene, low density polyethylene, ethylene and one or more other vinyl compounds (for example, ⁇ -olefins, Copolymers etc. with vinyl acetate, methacrylic acid, acrylic acid etc.], propylene polymers [polypropylene, copolymers etc.
  • the resin composition according to ⁇ 15> which is polybutene and poly-4-methylpentene-1 or the like, more preferably an ethylene polymer or a propylene polymer:
  • the functional group of the polyolefin resin in the ⁇ 18> compatibilizer (3) is preferably an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and It is at least one selected from the group consisting of epoxy groups, more preferably an acid anhydride group and an epoxy group, still more preferably an acid anhydride group, still more preferably maleic anhydride, maleic acid and succinic anhydride
  • the resin composition according to ⁇ 15> or ⁇ 17> which is an acid, succinic acid or glycidyl methacrylate.
  • the content of the compatibilizer in the ⁇ 19> resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 8% by mass or less, still more preferably 6% by mass or less Resin composition.
  • the mass ratio of the ⁇ 20> compatibilizer to the non-crystallized cellulose is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.4 or less, and further preferably
  • the above ⁇ 1> to ⁇ 19> is preferably 0.3 or less, preferably 0.06 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and still more preferably 0.15 or more.
  • the resin composition as described in any one.
  • thermoplastic resin selected from the group consisting of polyolefin resin, polystyrene resin, polyester resin, polyamide resin, polyamide resin, nylon resin, vinyl chloride resin, vinyl ether resin, polyvinyl alcohol resin, polycarbonate resin and polysulfone resin
  • thermoplastic resin comprises a polyolefin.
  • a crystal nucleating agent is further used.
  • the crystal nucleating agent is preferably an inorganic crystal nucleating agent and an organic crystal nucleating agent, and the inorganic crystal nucleating agent is more preferably a natural or synthetic silicate compound, titanium oxide, barium sulfate, phosphoric acid Tricalcium, calcium carbonate, sodium phosphate, kaolinite, halloysite, talc, smectite, vermeulite, mica, etc.
  • organic crystal nucleating agent more preferably amide, organic acid metal salt, sorbitol derivative, nonitol
  • the resin composition according to ⁇ 25> which is a derivative or the like, more preferably an organic acid metal salt and a sorbitol derivative.
  • the metal salt of an organic acid ⁇ 27> is preferably sodium benzoate, aluminum dibenzoate, potassium benzoate, lithium benzoate, sodium ⁇ ⁇ naphthalate, sodium cyclohexane carboxylate, zinc phenylphosphonate and the like, and as a sorbitol derivative,
  • the resin composition according to the above ⁇ 26> which is preferably 1,3: 2,4-bis-O- (4-methylbenzylidene) -D-sorbitol or the like, more preferably a sorbitol derivative.
  • the content of the ⁇ 28> crystal nucleating agent is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and preferably 3.0 parts by mass or less, based on 100 parts by mass of the thermoplastic resin.
  • plasticizers As other components, plasticizers; fillers (inorganic fillers, organic fillers); hydrolysis inhibitors; flame retardants; antioxidants; lubricants that are hydrocarbon waxes and anionic surfactants; UV absorbers, antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents, surfactants, polysaccharides such as starches and alginic acid, and natural proteins such as gelatin, glue, casein, etc.
  • fillers inorganic fillers, organic fillers
  • hydrolysis inhibitors flame retardants
  • antioxidants antioxidants
  • lubricants that are hydrocarbon waxes and anionic surfactants
  • UV absorbers antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents, surfactants, polysaccharides such as starches and alginic acid, and natural proteins such as gelatin, glue, casein, etc.
  • Inorganic compounds such as tannins, zeolites, ceramics, metal powders, perfumes, flow control agents, leveling agents, conductive agents, ultraviolet light dispersants, deodorants, etc., or other polymer materials
  • the resin composition as described in any one of the above ⁇ 1> to ⁇ 28>, to which a resin composition or any other resin composition can be added.
  • the resin according to the above ⁇ 29>, wherein the content ratio of the other components is preferably 20% by mass or less, more preferably about 10% by mass or less, still more preferably about 5% by mass or less in the resin composition. Composition.
  • raw materials containing various additives are preferably stirred with a Henschel mixer etc., or a closed kneader, a single screw or twin screw extruder, an open roll kneader
  • ⁇ 32> The resin composition according to the above ⁇ 31>, wherein the raw materials are preferably uniformly mixed in advance using a Henschel mixer, a super mixer, etc., and then subjected to melt-kneading or mixed at once and melt-kneaded object.
  • Melt-kneading temperature is preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C. or more, still more preferably 220 ° C. or more, still more preferably 225 ° C.
  • melt-kneading time is preferably 15 seconds or more, preferably 900 seconds or less.
  • thermoplastic resin 5 parts by mass to 70 parts by mass of non-crystallized cellulose having a relative crystallization degree of less than 50%, and 2 parts by mass of a compatibilizer with respect to 100 parts by mass of the thermoplastic resin
  • a method for producing a resin composition comprising: at least 20 parts by mass, but in the case where the thermoplastic resin is polyethylene, at least 4 parts by mass and not more than 20 parts by mass of a compatibilizer.
  • the method for producing a resin composition according to ⁇ 35> wherein the mixing is performed at a temperature of preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less.
  • the mixing time is preferably 15 seconds or more, preferably 900 seconds or less.
  • the relative crystallinity of the non-crystallized cellulose is preferably 49% or less, more preferably 40% or less, still more preferably 30% or less, preferably -70% or more, more preferably -60% or more
  • the content of non-crystallized cellulose in the ⁇ 39> resin composition is preferably 7 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 13 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin.
  • the amount is preferably 15 parts by mass or more, preferably 60 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less.
  • the manufacturing method of the resin composition in any one description.
  • the content of the compatibilizer in the ⁇ 40> resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 14 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin.
  • the content of the compatibilizer in the resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin.
  • the weight average molecular weight of the ⁇ 42> compatibilizer is preferably 1000 or more, more preferably 5000 or more, still more preferably 10000 or more, still more preferably 20000 or more, preferably 100000 or less, more preferably 90000 or less, more preferably
  • ⁇ 43> The method for producing a resin composition according to any one of ⁇ 35> to ⁇ 42>, wherein the compatibilizer more preferably contains at least one selected from the group shown below: Compatibilizer: having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin.
  • Compatibilizer having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin.
  • the weight ratio of the ⁇ 44> compatibilizer to the non-crystallized cellulose is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.4 or less, and further preferably
  • the above ⁇ 35> to ⁇ 43> is preferably 0.3 or less, preferably 0.06 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and still more preferably 0.15 or more.
  • the manufacturing method of the resin composition in any one description.
  • ⁇ 45> The method for producing a resin composition according to any one of ⁇ 35> to ⁇ 44>, wherein the thermoplastic resin comprises a polyolefin.
  • the manufacturing method of the resin composition of the said ⁇ 45> description whose ⁇ 46> polyolefin is 1 type or 2 types chosen from polyethylene and a polypropylene.
  • ⁇ 47> The method for producing a resin composition according to any one of ⁇ 35> to ⁇ 46>, wherein a crystal nucleating agent is further used.
  • ⁇ 48> A molded article containing the resin composition according to any one of the above ⁇ 1> to ⁇ 34>.
  • the ⁇ 49> molded article is a sheet-like molded article, and the thickness thereof is preferably 0.05 mm or more, more preferably 0.1 mm or more, still more preferably 0.15 mm or more, preferably 1.5 mm or less.
  • ⁇ 50> Preferably, it can be used as a packaging material for daily necessities, cosmetics, household appliances, etc., for food containers such as blister packs and trays, lids for lunch boxes, and industrial trays used for transportation and protection of industrial parts,
  • ⁇ 51> Based on JIS K7127, the No.
  • the resin composition according to any one of ⁇ 1> to ⁇ 34> is preferably processed by extrusion molding, injection molding, press molding, cast molding, or solvent casting to obtain a molded article.
  • Average fiber diameter of cellulose fiber The average fiber diameter is measured using a laser diffraction / scattering type particle size distribution measuring apparatus “LA-920” (manufactured by Horiba, Ltd.). As measurement conditions, ultrasonic waves are treated for 1 minute before measurement, water is used as a dispersion medium at the time of measurement, and a volume-based median diameter is measured at a temperature of 25 ° C.
  • the weight average molecular weight (Mw) is measured by GPC (gel permeation chromatography) under the following measurement conditions. ⁇ Measurement conditions> Column: Showa Denko Shodex HT-806M x 1 + Shodex HT- 803 x 2 columns Column temperature: 130 ° C Detector: RI Eluent: o-dichlorobenzene flow rate: 1.0 mL / min Sample concentration: 1 mg / mL Injection volume: 0.1 mL Conversion standard: polystyrene
  • Production Example 1 Amorphous Cellulose 1
  • sheet-like pulp manufactured by Tembec, Biofloc HV +, relative crystallinity: 82%, water content: 8.5% by mass
  • a cutting machine [Superno Cutter, manufactured by Kuwano Seiki Co., Ltd.]
  • RK6-800 a cutting machine
  • the dry pulp was charged at 20 kg / h under the conditions of a continuous vibration mill at a frequency of 16.7 Hz and an amplitude of 13.4 mm, and the pulp was roughly crushed.
  • the bulk density of the obtained coarsely pulverized cellulose was 223 kg / m 3 .
  • (4) Cellulose Amorphization Treatment The coarsely pulverized cellulose obtained from the above (3) was treated using a high-speed rotary pulverizer (manufactured by Dalton, Atomizer AIIW-7.5 type).
  • a 1.0 mm screen was attached, the rotor peripheral speed was driven at 91 m / s, and coarsely pulverized cellulose was supplied from the raw material supply section at a supply speed of 20 kg / h.
  • the obtained cellulose had a relative crystallinity of -9.4% and a median diameter of 62.5 ⁇ m.
  • the heating medium of the dryer used steam at 150 ° C., and the feed rate of the pulp was 20 kg / h.
  • the water content of the dried pulp obtained by the continuous treatment was 0.5% by mass.
  • (3) Cellulose Coarse Grinding Treatment The dried pulp obtained from the above (2) was roughly ground using a batch-type vibration mill [FV-10 manufactured by Chuo Kakoki Co., Ltd .; volume of grinding chamber: 33 L].
  • the grinding chamber contained 63 stainless steel round rod-like grinding media having a diameter of 30 mm and a length of 510 mm. Under the conditions of a frequency of 20 Hz and an amplitude of 8 mm, 920 g of dry pulp was charged, and the pulp was roughly crushed.
  • the bulk density of the obtained coarsely pulverized cellulose was 235 kg / m 3 .
  • (4) Cellulose Amorphization Treatment The coarsely pulverized cellulose obtained from the above (3) was treated using a high-speed rotary pulverizer [Sample Mill KIIW-1 manufactured by Dalton, Inc.]. A 1.0 mm screen was attached, the rotor peripheral speed was driven at 80 m / s, and coarsely pulverized cellulose was supplied from the raw material supply portion at a supply speed of 18 kg / h.
  • the obtained cellulose had a relative crystallinity of 43.2% and a median diameter of 27.8 ⁇ m.
  • Amorphous Cellulose 3 (1) Cutting treatment As a cellulose-containing raw material, a sheet-like pulp (manufactured by APRIL (Asia Pacific Resources International), RIAU ACACIA PULP, relative crystallinity: 80%, water content: 9.8 mass%), a cutting machine It was cut into chips of about 3 mm ⁇ 1.5 mm ⁇ 1 mm using a sheet pelletizer SG (E) -220 manufactured by Horai Co., Ltd. (2) Drying treatment The chip-like pulp obtained from the above (1) was subjected to a twin-screw horizontal stirring dryer [made by Nara Machinery Co., Ltd., a twin-paddle dryer NPD-1.6 W (1/2)]. It dried by continuous processing.
  • a twin-screw horizontal stirring dryer made by Nara Machinery Co., Ltd., a twin-paddle dryer NPD-1.6 W (1/2)]. It dried by continuous processing.
  • the heating medium of the dryer used steam at 150 ° C., and the feed rate of the pulp was 20 kg / h.
  • the water content of the dried pulp obtained by the continuous treatment was 0.5% by mass.
  • (3) Cellulose Coarse Grinding Treatment The dried pulp obtained from the above (2) was roughly ground using a batch-type vibration mill [FV-10 manufactured by Chuo Kakoki Co., Ltd .; volume of grinding chamber: 33 L].
  • the grinding chamber contained 63 stainless steel round rod-like grinding media having a diameter of 30 mm and a length of 510 mm. Under the conditions of a frequency of 20 Hz and an amplitude of 8 mm, 920 g of dry pulp was charged, and the pulp was roughly crushed.
  • the bulk density of the obtained coarsely pulverized cellulose was 230 kg / m 3 .
  • (4) Cellulose Amorphization Treatment The coarsely pulverized cellulose obtained from the above (3) was treated using a high-speed rotary pulverizer [Cryptron Eddy KTE0 type manufactured by Earth Technica Co., Ltd.]. While driving the rotor circumferential speed at 145 m / s, coarsely pulverized cellulose was fed from the raw material feed section at a feed rate of 7 kg / h. The obtained cellulose had a relative crystallinity of 4.1% and a median diameter of 10.1 ⁇ m.
  • Production Example 4 Amorphous Cellulose 4 (1) Cutting treatment As a cellulose-containing material, sheet-like wood pulp ("Blue Bear Ultra Ether” manufactured by Borregard, 800 mm x 600 mm x 1.5 mm, the cellulose content 96% by weight (the remainder obtained by removing water from the cellulose-containing material) The content in the ingredients, cellulose type I crystallinity 81%, water content 7.0 wt%, bulk density 200 kg / m 3 ) was applied to a sheet pelletizer ("SG (E) -220" manufactured by Horai) , Roughly 4 mm ⁇ 4 mm ⁇ 1.5 mm.
  • sheet-like wood pulp (“Blue Bear Ultra Ether” manufactured by Borregard, 800 mm x 600 mm x 1.5 mm, the cellulose content 96% by weight (the remainder obtained by removing water from the cellulose-containing material)
  • the content in the ingredients cellulose type I crystallinity 81%, water content 7.0 wt%, bulk density 200 kg / m 3
  • Examples 1 to 8 and Comparative Examples 1 to 14 The composition raw materials shown in Tables 1 and 2 are melt-kneaded for 8 minutes at a rotation number of 90 rpm and a temperature shown in Tables 1 and 2 using a kneader (Laboplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain a resin composition Obtained (The amounts of use of the raw materials described in Tables 1 and 2 are parts by mass, and mass% is calculated from their total amount).
  • the resulting resin composition is pressed using a heat press (lab press made by Toyo Seiki Seisakusho, Ltd., 240 ° C. for 1 minute at 0.4 MPa, 1 minute at 20 MPa, and then cooled to 20 ° C.
  • the sheet having a thickness of 0.4 mm was formed.
  • the raw materials in Tables 1 and 2 are as follows. ⁇ Thermoplastic resin> Polyethylene resin: Novatec LL UF 641 Polypropylene resin: Novatec PP EA9 ⁇ Cellulose fiber> KC floc: Nippon Paper Chemicals Co., Ltd., relative crystallinity 78.5%, median 28.0 ⁇ m ⁇ Compatibilizer> Yumex 1001: Sanyo Chemical Industries, Ltd., maleic anhydride modified polypropylene, weight average molecular weight 40000 Umex 1010: Sanyo Chemical Industries, Ltd., maleic acid modified polypropylene, weight average molecular weight 30000 ⁇ Elastomer> HYBLER 7311: Kuraray Plastics Co., Ltd., polystyrene-polyvinyl isoprene-polystyrene block copolymer, weight average molecular weight 140000 ⁇ Crystal nucleating agent> Gelall MD: New Japan Chemical Co., Ltd., methyl dibenzyliden
  • Test example 1 breaking strain improvement rate, elastic modulus improvement rate
  • a tensile test is conducted to check the tensile modulus (GPa) and the tensile breaking strain (%).
  • the improvement rate and the elastic modulus improvement rate were obtained from the following formulas (I) and (II).
  • AGS-10 kNX automatic graph precision universal tester manufactured by SHIMADZU.
  • the increase in breaking strain indicates that the greater the numerical value, the better the toughness, and the increase in elastic modulus indicates that the larger the numerical value, the superior in rigidity.
  • the tensile elastic modulus is 0.9 GPa or more, excellent strength is exhibited.
  • Comparative Example 2 for Examples 1 and 2 and Comparative Example 3 for Example 3 and Examples 4 and 5
  • the test piece of the resin composition of Comparative Example 14 was used for Comparative Example 12 and Comparative Example 11 and Example 7 and 8 for Example 6, respectively.
  • Breaking strain improvement rate (%) (ES / EB) x 100 (I)
  • ES Average value of tensile breaking strain of 5 sample test pieces
  • EB Average value of tensile breaking strain of 5 control test pieces
  • Modulus improvement rate (%) (MS / MB) ⁇ 100
  • MS Average value of tensile elastic modulus of 5 sample test pieces
  • MB Average value of tensile elastic modulus of 5 blank test pieces
  • the blank test piece is a test piece of the resin composition of Comparative Example 1 or Comparative Example 13 described later It is
  • FIG. 1 shows the sheet cross section of Example 3
  • FIG. 2 shows the sheet cross section of Comparative Example 3. From this comparison, the addition of the compatibilizer makes the non-crystallized cellulose finer and disperses. It is also understood that the properties are improved, and the interface between the thermoplastic resin and the cellulose fiber is stabilized.
  • the resin composition of the present invention can be suitably used in various industrial applications such as household goods, household electric appliance parts, packaging materials for household electric appliance parts, automobile parts, etc. since it is a combination of rigidity and toughness. .

Abstract

This resin composition includes: a thermoplastic resin; and 5-70 part by mass of an amorphous cellulose having a relative crystallinity of less than 50%, and 2-20 parts by mass of a compatibilizer (where the thermoplastic resin is polyethylene, the content of a compatibilizer is 4-20 parts by mass), with respect to 100 parts by mass of the thermoplastic resin. The resin composition according to the present invention achieves both rigidity and toughness, and can thus be suitably used for various industrial applications such as daily goods, household electrical appliances, packaging materials for home electric appliance parts, automobile parts and the like.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物に関する。更に詳しくは、熱可塑性樹脂を含有する樹脂組成物及びその製造方法、ならびに、該樹脂組成物を含有する成形体及びその製造方法に関する。 The present invention relates to a resin composition. More specifically, the present invention relates to a resin composition containing a thermoplastic resin and a method for producing the same, and a molded article containing the resin composition and a method for producing the same.
 一般的に、樹脂に剛性を付与するためには強化フィラーを添加する手法が取られ、実際にガラス繊維や炭素繊維による強化樹脂が実用化されている。しかし、ガラス繊維(GF)は不燃材料であるため、GF強化材料はサーマルリサイクルが困難であるだけでなく、密度が高いため軽量高強度が要求される用途には適さない。一方、炭素繊維は、GFと比較して低密度であり、炭素繊維強化材料は高い剛性を示すが、炭素繊維は難燃材料であり、価格に加えGF同様リサイクルに関する課題も残されている。これに対して、植物繊維をパルプ化し、さらにナノ解繊したセルロースナノファイバー(CNF)は、軽量で、鋼鉄の5倍以上の強度、ガラスの1/50の低い線熱膨張性を有していることから、補強用繊維として極めて有望であり、近年活発に研究されている。 Generally, in order to impart rigidity to a resin, a method of adding a reinforcing filler is taken, and in fact, a reinforcing resin by glass fiber or carbon fiber is put to practical use. However, since glass fiber (GF) is a non-combustible material, GF reinforcing material is not only difficult to thermally recycle, but also high in density, so it is not suitable for applications requiring light weight and high strength. On the other hand, carbon fibers have a low density compared to GF, and carbon fiber reinforced materials exhibit high rigidity, but carbon fibers are flame retardant materials, and in addition to the price, there are problems with recycling as well as GF. On the other hand, vegetable fibers are pulped and further nano-fibrillated cellulose nanofibers (CNF) are lightweight, have five times the strength of steel or more, and low linear thermal expansion of 1/50 of glass. It is very promising as a reinforcing fiber and has been actively studied in recent years.
 しかし、CNFは多数の水酸基を有しており、ポリエチレンやポリプロピレンなど多くの汎用熱可塑性樹脂との親和性が低く、界面剥離や凝集が生じ、靱性や耐衝撃性が大きく低下してしまう。そのため、CNF表面を化学修飾してCNFの耐熱性を向上させたり、目的の樹脂との親和性を向上させる試みや、相溶化剤などの添加剤の開発などが盛んに行われている。 However, CNF has a large number of hydroxyl groups, has low affinity with many general purpose thermoplastic resins such as polyethylene and polypropylene, interfacial peeling and aggregation occur, and toughness and impact resistance are greatly reduced. Therefore, attempts have been actively made to improve the heat resistance of CNF by chemically modifying the surface of CNF, to improve the affinity to the target resin, and to develop additives such as a compatibilizer.
 例えば、特許文献1では、ポリオレフィン樹脂及び/又はスチレン系樹脂に結晶化度が50%未満のセルロースを配合させることで、得られる成形体が強度及び可撓性を両立し、さらに耐衝撃性に優れるという優れた効果を奏する事を報告している。また、特許文献2では、マトリックス樹脂に非晶化セルロースとエラストマーを添加する事で、靱性が向上する事を報告している。 For example, in Patent Document 1, by blending a cellulose having a crystallinity of less than 50% with a polyolefin resin and / or a styrenic resin, the obtained molded product has both strength and flexibility, and further, it has an impact resistance. It has been reported that the superior effect of superiority is achieved. Further, Patent Document 2 reports that toughness is improved by adding non-crystallized cellulose and an elastomer to a matrix resin.
特開2011-137094号公報JP, 2011-137094, A 特開2015-155535号公報JP, 2015-155535, A
 即ち、本発明は、下記〔1〕~〔4〕に関する。
〔1〕 熱可塑性樹脂に、該熱可塑性樹脂100質量部に対して、相対結晶化度が50%未満である非晶化セルロースを5質量部以上70質量部以下、及び相溶化剤を2質量部以上20質量部以下、ただし該熱可塑性樹脂がポリエチレンの場合には相溶化剤を4質量部以上20質量部以下含有してなる、樹脂組成物。
〔2〕 熱可塑性樹脂に、該熱可塑性樹脂100質量部に対して、相対結晶化度が50%未満である非晶化セルロースを5質量部以上70質量部以下、及び相溶化剤を2質量部以上20質量部以下、ただし該熱可塑性樹脂がポリエチレンの場合には相溶化剤を4質量部以上20質量部以下配合する、樹脂組成物の製造方法。
〔3〕 前記〔1〕記載の樹脂組成物を含有する成形体。
〔4〕 前記〔1〕記載の樹脂組成物を加工して成形体とする、成形体の製造方法。
That is, the present invention relates to the following [1] to [4].
[1] 5 parts by mass or more and 70 parts by mass or less of non-crystallized cellulose having a relative crystallinity degree of less than 50% and 100 parts by mass of the thermoplastic resin in 100 parts by mass of the thermoplastic resin A resin composition comprising: at least 20 parts by mass but not less than 4 parts by mass and at most 20 parts by mass of a compatibilizer when the thermoplastic resin is polyethylene.
[2] 5 parts by mass or more and 70 parts by mass or less of non-crystallized cellulose having a relative crystallinity degree of less than 50% and 100 parts by mass of the thermoplastic resin in 100 parts by mass of the thermoplastic resin A method for producing a resin composition, comprising: at least 20 parts by mass, but in the case where the thermoplastic resin is polyethylene, at least 4 parts by mass and not more than 20 parts by mass of a compatibilizer.
[3] A molded article containing the resin composition of the above-mentioned [1].
[4] A method for producing a molded article, wherein the resin composition according to the above [1] is processed into a molded article.
図1は、実施例3の樹脂組成物のシート断面のSEM画像を示す図である。図中の矢印は非晶化セルロースが分散している状態を示す。FIG. 1 is a view showing a SEM image of a cross section of a sheet of the resin composition of Example 3. Arrows in the figure indicate the state in which non-crystallized cellulose is dispersed. 図2は、比較例3の樹脂組成物のシート断面のSEM画像を示す図である。FIG. 2 is a view showing a SEM image of the sheet cross section of the resin composition of Comparative Example 3.
発明の詳細な説明Detailed Description of the Invention
 特許文献1の方法により得られる樹脂組成物よりも、更に靱性及び剛性に優れた樹脂組成物が望まれている。また、特許文献2の方法では、十分な剛性が確保できないことが分かった。 There is a need for a resin composition that is more excellent in toughness and rigidity than the resin composition obtained by the method of Patent Document 1. Moreover, it turned out that sufficient rigidity can not be ensured with the method of Patent Document 2.
 従って、本発明は、靱性と剛性を両立する樹脂組成物及びその製造方法、ならびに、該樹脂組成物を含有する成形体及びその製造方法に関する。 Therefore, the present invention relates to a resin composition having both toughness and rigidity and a method for producing the same, and a molded article containing the resin composition and a method for producing the same.
 そこで、本発明者らが鋭意検討した結果、熱可塑性樹脂に、非晶化セルロースと相溶化剤をそれぞれ特定量添加することで、得られる成形体の靱性を下げず、かつ剛性を向上させることを見出し、本発明を完成するに至った。 Therefore, as a result of intensive studies by the present inventors, it is possible to improve the rigidity without lowering the toughness of the resulting molded body by adding a specific amount of each of the non-crystallized cellulose and the compatibilizer to the thermoplastic resin. The present invention has been completed.
 即ち、本発明の樹脂組成物は、靱性及び剛性を両立するという優れた効果を奏するものに関する。 That is, the resin composition of the present invention relates to those having the excellent effect of achieving both toughness and rigidity.
〔樹脂組成物〕
 本発明の樹脂組成物は、熱可塑性樹脂に対して、特定の相対結晶化度を有するセルロースと相溶化剤を、それぞれ特定量含有することを特徴とする。
[Resin composition]
The resin composition of the present invention is characterized by containing a specific amount of a cellulose having a specific relative degree of crystallinity and a compatibilizer with respect to a thermoplastic resin.
 一般に、結晶性セルロースよりも非晶性セルロースの方が反応性が高いと言われている。相溶化剤はセルロースと反応もしくは相互作用できる官能基を持っており、結晶性セルロースに対して相溶化剤が作用した場合はセルロース表面のみと相互作用し、マトリックス樹脂とセルロース界面を安定化させ、弾性率が向上する。一方で、非晶性セルロースに対して相溶化剤が作用した場合、相溶化剤がセルロースの内部まで浸透する事で、セルロース間の強固な相互作用を抑制するため、マトリックス樹脂とセルロース界面の安定化による弾性率の向上だけではなく、通常の混練のような弱い機械力でもセルロースの樹脂中での分散状態が向上し、破断歪が向上すると考えられる。ただし、これらの推測は、本発明を限定するものではない。 In general, amorphous cellulose is said to be more reactive than crystalline cellulose. The compatibilizer has a functional group capable of reacting or interacting with cellulose, interacts only with the cellulose surface when the compatibilizer acts on crystalline cellulose, and stabilizes the interface between the matrix resin and the cellulose, Elastic modulus is improved. On the other hand, when the compatibilizer acts on the non-crystalline cellulose, the compatibilizer penetrates to the inside of the cellulose to suppress the strong interaction between the cellulose, so the interface between the matrix resin and the cellulose is stabilized. It is considered that the dispersion state of the cellulose in the resin is improved and the breaking strain is improved not only by the improvement of the elastic modulus by the hardening, but also by the weak mechanical force such as ordinary kneading. However, these guesses do not limit the present invention.
[熱可塑性樹脂]
 本発明における熱可塑性樹脂としては、特に限定されるものではなく、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、ナイロン樹脂、塩化ビニル樹脂、ビニルエーテル樹脂、ポリビニルアルコール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂等が挙げられる。これらは1種単独で又は2種以上組み合わせて用いることができる。なかでも、靱性を向上させる観点から、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、及びポリアミド樹脂から選ばれる1種又は2種以上を構成樹脂として含有するものが好ましく、ポリオレフィン樹脂及びポリアミド樹脂から選ばれる1種又は2種を構成樹脂として含有するものがより好ましく、少なくともポリオレフィン樹脂を含有するものが更に好ましい。
[Thermoplastic resin]
The thermoplastic resin in the present invention is not particularly limited, and polyolefin resin, polystyrene resin, polyester resin, polyamide resin, polyamide resin, nylon resin, vinyl chloride resin, vinyl ether resin, polyvinyl alcohol resin, polycarbonate resin, polysulfone resin, etc. It can be mentioned. These can be used singly or in combination of two or more. Among them, from the viewpoint of improving toughness, those containing one or more selected from polyolefin resins, polystyrene resins, polyester resins, and polyamide resins as a constituent resin are preferable, and those selected from polyolefin resins and polyamide resins 1 It is more preferable to contain the species or two as the constituent resin, and it is more preferable to contain at least the polyolefin resin.
 ポリオレフィン樹脂としては、ポリエチレン(PE樹脂)、ポリプロピレン(PP樹脂)、ポリスチレン(PS樹脂)、ポリ酢酸ビニル(PVAc樹脂)、ポリ塩化ビニル(PVC樹脂)、ポリ塩化ビニリデン(PVDC樹脂)、ポリアクリル酸(PA樹脂)、ポリアクリル酸エステル(PAE樹脂)、ポリブタジエン(PB樹脂)、ポリイソプレン(PIP樹脂)、ポリクロロプレン(PCP樹脂)等が例示される。これらのなかでも、ポリエチレン及びポリプロピレンから選ばれる1種又は両者を含有することが好ましい。熱可塑性樹脂におけるポリオレフィン樹脂の含有量は、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上である。上限は特に限定されず、ポリオレフィン樹脂からなるもの、即ち、100質量%であってもよい。 As polyolefin resin, polyethylene (PE resin), polypropylene (PP resin), polystyrene (PS resin), polyvinyl acetate (PVAc resin), polyvinyl chloride (PVC resin), polyvinylidene chloride (PVDC resin), polyacrylic acid (PA resin), polyacrylic acid ester (PAE resin), polybutadiene (PB resin), polyisoprene (PIP resin), polychloroprene (PCP resin), etc. are illustrated. Among these, it is preferable to contain one or both selected from polyethylene and polypropylene. The content of the polyolefin resin in the thermoplastic resin is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more is there. The upper limit is not particularly limited, and may be a polyolefin resin, that is, 100% by mass.
 本発明の樹脂組成物における熱可塑性樹脂の含有量は、得られる成形体の靱性を向上させる観点から、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上、更に好ましくは65質量%以上、更に好ましくは70質量%以上、更に好ましくは75質量%以上である。また、得られる成形体の剛性を向上させる観点から、好ましくは93質量%以下、より好ましくは90質量%以下、更に好ましくは87質量%以下、更に好ましくは85質量%以下、更に好ましくは83質量%以下である。 The content of the thermoplastic resin in the resin composition of the present invention is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, from the viewpoint of improving the toughness of the molded body obtained. More preferably, it is 65 mass% or more, More preferably, it is 70 mass% or more, More preferably, it is 75 mass% or more. Further, from the viewpoint of improving the rigidity of the obtained molded product, it is preferably 93% by mass or less, more preferably 90% by mass or less, still more preferably 87% by mass or less, still more preferably 85% by mass or less, still more preferably 83% by mass % Or less.
[セルロース]
 セルロース繊維は、軽量化、サーマルリサイクル性が期待できる繊維状補強材であるが、その含有量が多くなると、樹脂組成物の粘度が増加することによる成形性の低下や、繊維の凝集やポリマーマトリックスとの界面不安定化による靭性の低下などが起こる。よって、本発明で用いられるセルロースは、相対結晶化度が50%未満である非晶化セルロースである。以降、単に「非晶化セルロース」と記載することもある。
[cellulose]
Cellulose fiber is a fibrous reinforcing material which can be expected to be reduced in weight and thermal recyclability, but when its content is increased, the viscosity of the resin composition is increased, so that the formability is reduced, fiber aggregation, polymer matrix and the like Decrease in toughness due to interface instability with the Thus, the cellulose used in the present invention is non-crystallized cellulose having a relative crystallinity of less than 50%. Hereinafter, it may be described simply as "non-crystallized cellulose".
 なお、本明細書において、セルロースの相対結晶化度とは、X線回折法による回折強度値からSegal法により算出したセルロースI型結晶化度のことであり、下記計算式(A)により定義される。
  セルロースI型結晶化度(%)=[(I22.6-I18.5)/I22.6]×100  (A)
〔式中、I22.6はX線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5はアモルファス部(回折角2θ=18.5°)の回折強度を示す〕
In addition, in this specification, the relative crystallinity degree of cellulose is cellulose I-type crystallinity degree calculated by Segal method from the diffraction intensity value by X-ray diffraction method, and it is defined by the following formula (A) Ru.
Cellulose type I crystallinity (%) = [(I 22.6-I 18.5) / I 22.6] × 100 (A)
[Wherein, I22.6 indicates the diffraction intensity of the grating surface (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, I18.5 indicates the diffraction intensity of the amorphous part (diffraction angle 2θ = 18.5 °)]
 本発明における非晶化セルロースは、相対結晶化度が50%未満であるが、得られる成形体の靱性の観点から、好ましくは49%以下、より好ましくは40%以下、更に好ましくは30%以下である。また、得られる成形体の剛性を向上させる観点から、好ましくは-70%以上、より好ましくは-60%以上、更に好ましくは-50%以上である。なお、相対結晶化度の値が小さい程、結晶性部分に対する非晶性部分の占める割合が多いことを意味する。 Although the non-crystallized cellulose in the present invention has a relative crystallinity of less than 50%, it is preferably 49% or less, more preferably 40% or less, still more preferably 30% or less from the viewpoint of the toughness of the resulting molded body It is. Further, from the viewpoint of improving the rigidity of the obtained molded product, it is preferably -70% or more, more preferably -60% or more, and still more preferably -50% or more. It should be noted that the smaller the value of relative crystallinity, the larger the ratio of the noncrystalline portion to the crystalline portion.
 かかる非晶化セルロースは、木材類、パルプ類、紙類、植物茎・葉類、植物殻類等から選ばれる1種又は2種以上のセルロース含有原料を粉砕機で処理して、セルロースの結晶化度を低減することで得ることができる。例えば、特開2011-1547号に記載の方法を参照にすることができる。なお、市販のパルプのセルロースI型結晶化度は、通常60%以上である。 Such non-crystallized cellulose is obtained by treating at least one cellulose-containing material selected from woods, pulps, papers, plant stems / leaves, plant shells and the like with a grinder to obtain cellulose crystals. It can be obtained by reducing the degree of For example, the method described in JP-A-2011-1547 can be referred to. The cellulose I-type crystallinity of commercially available pulp is usually 60% or more.
 具体的には、セルロース含有原料を、必要により、シュレッダー等の裁断機を利用して予め大きさを好ましくは0.1~70mm角に整えてから、媒体式の粉砕機や押出機による処理を行ったり、乾燥処理を行ったり、あるいは、いずれの処理も行うことで、嵩密度を50~600kg/mあるいは比表面積を0.2~750m/kgの範囲に調整して得られた粗粉砕セルロースを、衝撃式の粉砕機を用いて0.5分~24時間攪拌することで、結晶化度を低減させた非晶化セルロースを得ることができる。得られる非晶化セルロースの相対結晶化度は、ローターの周速度やサンプル供給スピード、攪拌時間等を調整することで制御することができる。なお、粉砕処理を効率よく行う観点から、原料の水分含量が1.8質量%以下となることが好ましい。 Specifically, if necessary, the cellulose-containing raw material is adjusted in size to a size of preferably 0.1 to 70 mm by using a shredder or the like, and then treated with a media crusher or extruder. Roughness obtained by adjusting the bulk density to 50 to 600 kg / m 3 or the specific surface area to 0.2 to 750 m 2 / kg by conducting, drying, or performing any treatment. The ground cellulose is stirred for 0.5 minutes to 24 hours using an impact-type grinder to obtain non-crystallized cellulose with a reduced degree of crystallinity. The relative crystallinity degree of the obtained non-crystallized cellulose can be controlled by adjusting the circumferential speed of the rotor, the sample supply speed, the stirring time and the like. In addition, it is preferable that the water content of a raw material will be 1.8 mass% or less from a viewpoint of performing a grinding process efficiently.
 かくして得られた非晶化セルロースは、平均繊維径は下限は特に設定されないが、樹脂中での分散性の観点から、好ましくは0.01μm以上、より好ましくは1μm以上、更に好ましくは5μm以上、更に好ましくは10μm以上、更に好ましくは20μm以上である。また、上限は靱性の観点から、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下である。なお、本発明の樹脂組成物に分散後の非晶化セルロースは、後述する原料混合時の分散によって微細化されて、前記した平均繊維径よりも微小な、例えば100~500nm程度の平均繊維径を有するものである。本明細書において、セルロース繊維の平均繊維径は体積基準のメジアン径のことであり、後述の実施例に記載の方法に従って測定することができる。 The lower limit of the average fiber diameter of the non-crystallized cellulose thus obtained is not particularly set, but it is preferably 0.01 μm or more, more preferably 1 μm or more, still more preferably 5 μm or more, from the viewpoint of dispersibility in the resin. More preferably, it is 10 micrometers or more, More preferably, it is 20 micrometers or more. The upper limit is preferably 200 μm or less, more preferably 150 μm or less, and still more preferably 100 μm or less from the viewpoint of toughness. Incidentally, the non-crystallized cellulose after being dispersed in the resin composition of the present invention is refined by the dispersion at the time of mixing the raw materials described later, and it is finer than the above-mentioned average fiber diameter, for example, an average fiber diameter The In the present specification, the average fiber diameter of cellulose fibers is the volume-based median diameter, and can be measured according to the method described in the examples below.
 本発明の樹脂組成物における非晶化セルロースの含有量としては、熱可塑性樹脂100質量部に対して、5質量部以上70質量部以下であるが、得られる成形体の剛性の観点から、好ましくは7質量部以上、より好ましくは10質量部以上、更に好ましくは13質量部以上、更に好ましくは15質量部以上であり、得られる成形体の靱性の観点から、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは40質量部以下、更に好ましくは30質量部以下である。 The content of the non-crystallized cellulose in the resin composition of the present invention is 5 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, preferably from the viewpoint of the rigidity of the obtained molded body Is 7 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 13 parts by mass or more, still more preferably 15 parts by mass or more, preferably 60 parts by mass or less from the viewpoint of toughness of the obtained molded body The amount is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
 また、樹脂組成物中の非晶化セルロース含有量としては、得られる成形体の剛性を向上させる観点から、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは8質量%以上、更に好ましくは10質量%以上、更に好ましくは12質量%以上である。また、得られる成形体の靱性の観点から、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下、更に好ましくは25質量%以下、更に好ましくは20質量%以下である。 The content of non-crystallized cellulose in the resin composition is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 8% by mass or more, from the viewpoint of improving the rigidity of the molded article obtained. More preferably, it is 10 mass% or more, More preferably, it is 12 mass% or more. Further, from the viewpoint of toughness of the resulting molded body, it is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less It is.
[相溶化剤]
 本発明で用いることができる相溶化剤としては、公知のものを用いることができるが、非晶化セルロースの分散性向上、非晶化セルロースと熱可塑性樹脂との界面安定化を図る観点から、以下の相溶化剤から選ばれる1種又は2種以上を含有することが好ましい。
相溶化剤(1):エチレン/酢酸ビニル共重合体
相溶化剤(2):エチレン/(メタ)アクリル酸エステル共重合体
相溶化剤(3):酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基(置換基)を有するポリオレフィン系樹脂
相溶化剤(4):酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基(置換基)を有するアクリル系樹脂又はスチレン系樹脂
相溶化剤(5):ポリエステル系樹脂
相溶化剤(6):アイオノマー樹脂
[Compatibilizer]
Known compatibilizers can be used as the compatibilizer that can be used in the present invention, but from the viewpoint of improving the dispersibility of the non-crystallized cellulose and stabilizing the interface between the non-crystallized cellulose and the thermoplastic resin, It is preferable to contain one or more selected from the following compatibilizers.
Compatibilizer (1): ethylene / vinyl acetate copolymer compatibilizer (2): ethylene / (meth) acrylate copolymer compatibilizer (3): acid anhydride group, carboxyl group, amino group, Polyolefin resin compatibilizer (4) having at least one functional group (substituent) selected from the group consisting of imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group and epoxy group: acid Acrylic having at least one functional group (substituent) selected from the group consisting of anhydride group, carboxyl group, amino group, imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group, and epoxy group Resin or Styrene Resin Compatibilizer (5): Polyester Resin Compatibilizer (6): Ionomer Resin
 これらは1種単独で又は2種以上組み合わせて用いることができるが、なかでも、得られる成形体の剛性と靱性を両立させる観点から、相溶化剤(3)及び相溶化剤(4)から選ばれる1種又は2種以上が好ましく、相溶化剤(3)から選ばれる1種又は2種以上がより好ましい。 Although these can be used singly or in combination of two or more, among them, from the viewpoint of achieving both the rigidity and toughness of the obtained molded product, it is selected from among the compatibilizer (3) and the compatibilizer (4) 1 type, or 2 or more types are preferable, and 1 type or 2 or more types selected from a compatibilizer (3) are more preferable.
 相溶化剤(3)におけるポリオレフィン系樹脂としては、好ましくはエチレン系重合体[高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、エチレンと他の1種以上のビニル化合物(例えばα-オレフィン、酢酸ビニル、メタアクリル酸、アクリル酸等)との共重合体等]、プロピレン系重合体[ポリプロピレン、プロピレンと他の1種以上のビニル化合物との共重合体等]、エチレンプロピレン共重合体、ポリブテン及びポリ-4-メチルペンテン-1等であり、より好ましくはエチレン系重合体、プロピレン系重合体である。 The polyolefin resin in the compatibilizer (3) is preferably an ethylene polymer [high density polyethylene, medium density polyethylene, low density polyethylene, ethylene and one or more other vinyl compounds (for example, α-olefin, vinyl acetate , Copolymers with methacrylic acid, acrylic acid etc.), propylene polymers [polypropylene, copolymers of propylene and one or more other vinyl compounds, etc.], ethylene propylene copolymer, polybutene and the like Poly-4-methylpentene-1 and the like, and more preferred are ethylene polymers and propylene polymers.
 また、ポリオレフィン系樹脂における官能基は、酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種であるが、好ましくは酸無水物基、エポキシ基であり、より好ましくは酸無水物基である。具体的には、無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、グリシジルメタクリレートが例示される。 Further, the functional group in the polyolefin resin is at least one selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group. Although it is a species, it is preferably an acid anhydride group or an epoxy group, more preferably an acid anhydride group. Specifically, maleic anhydride, maleic acid, succinic anhydride, succinic acid and glycidyl methacrylate are exemplified.
 かかる化合物の好適例としては、住友化学工業社製「ボンドファースト 7M」(エポキシ基を有するポリエチレンと(メタ)クリル酸との共重合体)、日本ポリエチレン社製「レクスパール」(エポキシ基を有するポリオレフィン系樹脂)、日本油脂社製「モディパー」(エポキシ基を有するポリオレフィン系樹脂)、三洋化成工業社製「ユーメックス」(無水マレイン酸を有するポリプロピレン)、アルケマ社製「オレヴァック」(無水マレイン酸を有するポリエチレン)、オルケム社製「ロタダー」(酸無水物を有するポリオレフィン系樹脂)、住友化学工業社製「ボンダイン」(酸無水物を有するポリオレフィン系樹脂)、三井・デュポン・ポリケミカル社製「ニュクレル」(カルボキシル基を有するポリオレフィン系樹脂)、ダウケミカル社製「プリマコール」(カルボキシル基を有するポリオレフィン系樹脂)等が挙げられる。 As preferable examples of such a compound, "bond first 7M" (copolymer of polyethylene having an epoxy group and (meth) acrylic acid) manufactured by Sumitomo Chemical Co., Ltd., "Rexpearl" (having an epoxy group) manufactured by Japan Polyethylene Corporation Polyolefin resin), Nippon Oil & Fats Co., Ltd. "Modiper" (polyolefin resin having an epoxy group), Sanyo Chemical Industries, Ltd. "Yumex" (polypropylene having maleic anhydride), Arkema "Olevac" (maleic anhydride Polyethylene), “Rotader” (polyolefin resin having acid anhydride) by Orchem, “bondine” (polyolefin resin having acid anhydride) by Sumitomo Chemical Co., Ltd., “Nuclel” by Mitsui Dupont (Polyolefin resin having a carboxyl group), Dow Chemical Co., Le "etc. (polyolefin resin having a carboxyl group).
 相溶化剤の重量平均分子量(Mw)は、得られる成形体の剛性の観点から、好ましくは1000以上、より好ましくは5000以上、更に好ましくは10000以上、更に好ましくは20000以上である。また、得られる成形体の靱性の観点から、好ましくは100000以下、より好ましくは90000以下、更に好ましくは80000以下、更に好ましくは70000以下、更に好ましくは60000以下である。本明細書において重量平均分子量は後述の実施例に記載の方法に従って測定することができる。 The weight average molecular weight (Mw) of the compatibilizer is preferably 1000 or more, more preferably 5000 or more, still more preferably 10000 or more, and still more preferably 20000 or more from the viewpoint of the rigidity of the resulting molded article. Further, from the viewpoint of the toughness of the obtained molded product, it is preferably 100,000 or less, more preferably 90000 or less, still more preferably 80000 or less, still more preferably 70000 or less, still more preferably 60000 or less. In the present specification, the weight average molecular weight can be measured according to the method described in the following examples.
 本発明の樹脂組成物において、相溶化剤の含有量としては、熱可塑性樹脂100質量部に対して、2質量部以上20質量部以下であるが、得られる成形体の剛性と靱性を両立させる観点から、好ましくは5質量部以上である。また、同様の観点から、好ましくは17質量部以下、より好ましくは14質量部以下、更に好ましくは11質量部以下、更に好ましくは8質量部以下である。ただし、熱可塑性樹脂がポリエチレンの場合は4質量部以上20質量部以下である。ポリエチレンの場合、ポリプロピレン等の他の熱可塑性樹脂とは異なり、相溶化剤が4質量部未満では所望の効果が十分に発揮されないことがある。一方、熱可塑性樹脂がポリエチレン以外のものの場合、具体的にはポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリル酸、ポリアクリル酸エステル、ポリブタジエン、ポリイソプレン、及びポリクロロプレン等、好ましくはポリプロピレンの場合、相溶化剤の量が少ない範囲、例えば2質量部以上4質量部未満の範囲であっても、所望の効果が十分に発揮される。また、ポリプロピレンのように、熱可塑性樹脂の弾性率より相溶化剤の弾性率が低い場合、相溶化剤の添加量が増加すると樹脂コンパウンドの剛性は低下する。一方、ポリエチレンのように、熱可塑性樹脂の弾性率と相溶化剤の弾性率とが同等である場合、相溶化剤の添加量が増加しても樹脂コンパウンドの剛性は低下しにくい。 In the resin composition of the present invention, the content of the compatibilizer is 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, but both the rigidity and the toughness of the obtained molded body are achieved. From the viewpoint, it is preferably 5 parts by mass or more. In addition, from the same viewpoint, the content is preferably 17 parts by mass or less, more preferably 14 parts by mass or less, still more preferably 11 parts by mass or less, and still more preferably 8 parts by mass or less. However, when the thermoplastic resin is polyethylene, the amount is 4 parts by mass or more and 20 parts by mass or less. In the case of polyethylene, unlike other thermoplastic resins such as polypropylene, the desired effect may not be sufficiently exhibited if the compatibilizer is less than 4 parts by mass. On the other hand, when the thermoplastic resin is other than polyethylene, specifically, polypropylene, polystyrene, polyvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylic acid, polyacrylic acid ester, polybutadiene, polyisoprene, polychloroprene, etc. In the case of polypropylene, preferably, the desired effect is sufficiently exhibited even when the amount of the compatibilizer is in a range of small amount, for example, in a range of 2 parts by mass or more and less than 4 parts by mass. When the elastic modulus of the compatibilizer is lower than the elastic modulus of the thermoplastic resin, as in the case of polypropylene, the rigidity of the resin compound decreases as the amount of the compatibilizer added increases. On the other hand, when the elastic modulus of the thermoplastic resin and the elastic modulus of the compatibilizer are equal to each other as in polyethylene, the rigidity of the resin compound is unlikely to decrease even if the addition amount of the compatibilizer is increased.
 また、樹脂組成物中の相溶化剤含有量としては、得られる成形体の剛性と靱性を両立させる観点から、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上、更に好ましくは4質量%以上である。また、同様の観点から、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、更に好ましくは8質量%以下、更に好ましくは6質量%以下である。 In addition, the content of the compatibilizer in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass, from the viewpoint of achieving both the rigidity and the toughness of the molded body obtained. The above, more preferably 4% by mass or more. In addition, from the same viewpoint, the content is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 8% by mass or less, still more preferably 6% by mass or less.
 相溶化剤の非晶化セルロースに対する質量比(相溶化剤/非晶化セルロース)としては、得られる成形体の剛性と靱性を両立させる観点から、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.4以下、更に好ましくは0.3以下である。また、同様の観点から、好ましくは0.06以上、より好ましくは0.08以上、更に好ましくは0.1以上、更に好ましくは0.15以上である。 The mass ratio of the compatibilizer to the non-crystallized cellulose (compatibilizer / non-crystallized cellulose) is preferably 0.8 or less, more preferably 0. It is 6 or less, more preferably 0.4 or less, and still more preferably 0.3 or less. Moreover, from the same viewpoint, it is preferably 0.06 or more, more preferably 0.08 or more, further preferably 0.1 or more, and still more preferably 0.15 or more.
[結晶核剤]
 また、本発明の樹脂組成物は、得られる成形体の剛性の観点から、前記成分以外に、更に、結晶核剤を用いることができる。
Crystal nucleating agent
In addition to the above components, a crystal nucleating agent can be further used in the resin composition of the present invention from the viewpoint of the rigidity of the resulting molded body.
 結晶核剤としては、無機系結晶核剤、有機系結晶核剤が挙げられる。無機系結晶核剤としては、天然又は合成珪酸塩化合物、酸化チタン、硫酸バリウム、リン酸三カルシウム、炭酸カルシウム、リン酸ソーダ、カオリナイト、ハロイサイト、タルク、スメクタイト、バーミュライト、マイカ等が挙げられる。有機系結晶核剤としては、アミド、有機酸金属塩、ソルビトール誘導体、ノニトール誘導体、などが挙げられ、剛性向上の観点から、有機酸金属塩及びソルビトール誘導体が好ましい。有機酸金属塩としては、安息香酸ナトリウム、アルミニウムジベンゾエート、カリウムベンゾエート、リチウムベンゾエート、ソジウムβ・ナフタレート、ソジウムシクロヘキサンカルボキシレート、フェニルホスホン酸亜鉛などが例示され、ソルビトール誘導体としては、1,3:2,4-ビス-O-(4-メチルベンジリデン)-D-ソルビトールなどが例示され、剛性と靱性の両立の観点からソルビトール誘導体が好ましい。 Examples of crystal nucleating agents include inorganic crystal nucleating agents and organic crystal nucleating agents. Examples of inorganic crystal nucleating agents include natural or synthetic silicate compounds, titanium oxide, barium sulfate, tricalcium phosphate, calcium carbonate, sodium phosphate, kaolinite, halloysite, talc, smectite, vermeulite, mica, etc. Be Examples of the organic crystal nucleating agent include amides, organic acid metal salts, sorbitol derivatives, nonitol derivatives, etc. From the viewpoint of improving rigidity, organic acid metal salts and sorbitol derivatives are preferable. Examples of the organic acid metal salt include sodium benzoate, aluminum dibenzoate, potassium benzoate, lithium benzoate, sodium β · naphthalate, sodium cyclohexane carboxylate, zinc phenylphosphonate and the like, and examples of the sorbitol derivative include 1,3: Examples thereof include 2,4-bis-O- (4-methylbenzylidene) -D-sorbitol, and a sorbitol derivative is preferable from the viewpoint of achieving both rigidity and toughness.
 結晶核剤の含有量は、剛性及び結晶化度を向上させる観点から、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上であり、好ましくは3.0質量部以下、より好ましくは2.0質量部以下である。 The content of the crystal nucleating agent is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint of improving the rigidity and the degree of crystallinity. Preferably it is 3.0 mass parts or less, More preferably, it is 2.0 mass parts or less.
 本発明の樹脂組成物は、前記以外の他の成分として、可塑剤;充填剤(無機充填剤、有機充填剤);加水分解抑制剤;難燃剤;酸化防止剤;炭化水素系ワックス類やアニオン型界面活性剤である滑剤;紫外線吸収剤;帯電防止剤;防曇剤;光安定剤;顔料;防カビ剤;抗菌剤;発泡剤;界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;香料;流動調整剤;レべリング剤;導電剤;紫外線分散剤;消臭剤等を、本発明の効果を損なわない範囲で含有することができる。また、本発明の効果を阻害しない範囲内で他の高分子材料や他の樹脂組成物を添加することも可能である。任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されても良いが、例えば、樹脂組成物中20質量%以下が好ましく、10質量%程度以下がより好ましく、5質量%程度以下がより更に好ましい。 The resin composition of the present invention contains, as components other than the above, a plasticizer; a filler (inorganic filler, organic filler); a hydrolysis inhibitor; a flame retardant; an antioxidant; a hydrocarbon wax and an anion -Type surfactant: lubricant, UV absorber, antistatic agent, anti-fogging agent, light stabilizer, pigment, anti-mold agent, antibacterial agent, foaming agent, surfactant, polysaccharides such as starches, alginic acid, gelatin Natural proteins such as pomace, casein, etc .; Inorganic compounds such as tannins, zeolites, ceramics, metal powders, etc .; perfumes; flow control agents; leveling agents; conductive agents; ultraviolet light dispersants; Can be contained in the range which does not impair. Moreover, it is also possible to add other polymeric materials and other resin compositions in the range which does not inhibit the effect of this invention. The content ratio of the optional additive may be suitably contained within the range not impairing the effects of the present invention, but for example, 20% by mass or less in the resin composition is preferable, and about 10% by mass or less is more preferable. About 5 mass% or less is still more preferable.
 本発明の樹脂組成物は、前記熱可塑性樹脂に対して、特定量の非晶化セルロース及び特定量の相溶化剤を含有するものであれば特に限定なく調製することができ、例えば、前記した3成分の他、さらに必要により各種添加剤を含有する原料を、ヘンシェルミキサー等で攪拌、あるいは密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練又は溶媒キャスト法により調製することができる。原料は、予めヘンシェルミキサー、スーパーミキサー等を用いて均一に混合した後に、溶融混練に供することも可能であり、本発明の樹脂組成物は、相溶化剤によって非晶化セルロースの分散性が向上することもあって、原料は予め別々に混合するのではなく、一度に混合して溶融混練することができる。なお、樹脂組成物を調製する際に熱可塑性樹脂の可塑性を促進させるため、超臨界ガスを存在させて溶融混合させてもよい。溶融混練後は、公知の方法に従って、溶融混練物を乾燥させてもよい。 The resin composition of the present invention can be prepared without particular limitation as long as it contains a specific amount of non-crystallized cellulose and a specific amount of a compatibilizer with respect to the thermoplastic resin, for example, as described above The raw materials containing various additives in addition to the three components are optionally stirred with a Henschel mixer or the like, or using a known kneader such as a closed kneader, single- or twin-screw extruder, or open-roll type kneader It can be prepared by melt-kneading or solvent casting. The raw materials can also be subjected to melt-kneading after being uniformly mixed in advance using a Henschel mixer, a super mixer, etc., and the resin composition of the present invention improves the dispersibility of non-crystallized cellulose by the compatibilizer. In some cases, the raw materials can be mixed at once and melt-kneaded instead of being separately mixed in advance. In addition, in order to promote the plasticity of a thermoplastic resin when preparing a resin composition, a supercritical gas may be present and melt mixed. After the melt-kneading, the melt-kneaded product may be dried according to a known method.
 溶融混練温度は、樹脂組成物の成形性及び劣化防止を向上する観点から、好ましくは180℃以上、より好ましくは190℃以上、更に好ましくは200℃以上、更に好ましくは220℃以上、更に好ましくは225℃以上、更に好ましくは230℃以上であり、好ましくは300℃以下、より好ましくは290℃以下、更に好ましくは280℃以下である。溶融混練時間は、溶融混練温度、混練機の種類によって一概には決定できないが、15秒間以上900秒間以下が好ましい。 The melt-kneading temperature is preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C. or more, still more preferably 220 ° C. or more, further preferably from the viewpoint of improving the moldability of the resin composition and the prevention of deterioration. The temperature is 225 ° C. or more, more preferably 230 ° C. or more, preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less. The melt-kneading time can not be determined generally depending on the melt-kneading temperature and the type of the kneader, but is preferably 15 seconds or more and 900 seconds or less.
〔樹脂組成物の製造方法〕
 本発明はまた、本発明の樹脂組成物の製造方法を提供する。
[Method of producing resin composition]
The present invention also provides a method of producing the resin composition of the present invention.
 本発明の樹脂組成物の製造方法としては、前記した熱可塑性樹脂100質量部に対して、5質量部以上70質量部以下の非晶化セルロース、及び2質量部以上20質量部以下の相溶化剤、ただし熱可塑性樹脂がポリエチレンの場合には4質量部以上20質量部以下の相溶化剤を混合する工程を含むものであれば特に限定はない。例えば、熱可塑性樹脂、非晶化セルロース、及び相溶化剤の他、さらに必要により各種添加剤を含有する原料を、好ましくは180℃以上、より好ましくは190℃以上、更に好ましくは200℃以上であり、好ましくは300℃以下、より好ましくは290℃以下、更に好ましくは280℃以下の温度で混合する態様が例示される。なお、混合に際しては、生産性の観点から、原料を一度に混合することが好ましい。混合時間は、原料の組成や混合温度に応じて一該には設定されず、例えば、15秒間以上900秒間以下である。なお、非晶化セルロースの調製方法は、本願発明の樹脂組成物の項を参照することができる。前述のように、熱可塑性樹脂がポリエチレンの場合、相溶化剤の量が少ないとき、即ち4質量部未満のとき、所望の効果が十分に発揮されないことがある。一方、熱可塑性樹脂がポリエチレン以外のものの場合、相溶化剤の量が少ない範囲、例えば2質量部以上4質量部未満の範囲であっても、所望の効果が十分に発揮される。 As a method for producing the resin composition of the present invention, 5 parts by mass to 70 parts by mass of non-crystallized cellulose, and 2 parts by mass to 20 parts by mass of compatibilization with respect to 100 parts by mass of the above-mentioned thermoplastic resin There is no particular limitation on the agent, provided that it includes the step of mixing 4 parts by mass or more and 20 parts by mass or less of the compatibilizing agent when the thermoplastic resin is polyethylene. For example, the raw material containing various additives as necessary in addition to the thermoplastic resin, the non-crystallized cellulose, and the compatibilizer is preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C. or more An embodiment of mixing at a temperature of preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less is exemplified. In addition, in the case of mixing, it is preferable to mix a raw material at once from a viewpoint of productivity. The mixing time is not set according to the composition of the raw material or the mixing temperature, and is, for example, 15 seconds or more and 900 seconds or less. In addition, the method of the preparation of non-crystallized cellulose can refer to the term of the resin composition of this invention. As described above, when the thermoplastic resin is polyethylene, when the amount of the compatibilizer is small, that is, less than 4 parts by mass, the desired effect may not be sufficiently exhibited. On the other hand, when the thermoplastic resin is other than polyethylene, the desired effect is sufficiently exhibited even when the amount of the compatibilizer is in a range of small amount, for example, in the range of 2 parts by mass to less than 4 parts by mass.
 かくして得られた本発明の樹脂組成物は、靱性及び剛性に優れ、例えば、JIS K7127に基づいて2号試験片を作製して、その引張弾性率(GPa)と引張破断歪(%)を測定した際に、成形体の外観を向上させる観点から、下記式(I)より算出した破断歪向上率が、好ましくは120%以上、更に好ましくは150%以上、更に好ましくは200%以上である。また、剛性を向上する観点から、下記式(II)より算出した弾性率向上率が、好ましくは120%以上、更に好ましくは150%以上、更に好ましくは200%以上である。
 破断歪向上率(%)=(ES/EB)×100      (I)
        ES:サンプル試験片5個の引張破断歪の平均値
        EB:コントロール試験片5個の引張破断歪の平均値
   コントロール試験片とは、サンプル樹脂組成物から相溶化剤のみを除いた組成の樹脂組成物の試験片のことである。
 弾性率向上率(%)=(MS/MB)×100      (II)
        MS:サンプル試験片5個の引張弾性率の平均値
        MB:ブランク試験片5個の引張弾性率の平均値
   ブランク試験片とは、後述の比較例1又は比較例13の熱可塑性樹脂組成が同一の樹脂組成物の試験片のことである。
The resin composition of the present invention thus obtained is excellent in toughness and rigidity. For example, a No. 2 test piece is produced based on JIS K 7127, and the tensile elastic modulus (GPa) and the tensile breaking strain (%) are measured From the viewpoint of improving the appearance of the molded product, the breaking strain improvement rate calculated from the following formula (I) is preferably 120% or more, more preferably 150% or more, and still more preferably 200% or more. Further, from the viewpoint of improving the rigidity, the elastic modulus improvement rate calculated from the following formula (II) is preferably 120% or more, more preferably 150% or more, and further preferably 200% or more.
Breaking strain improvement rate (%) = (ES / EB) x 100 (I)
ES: Average value of tensile breaking strain of 5 sample test pieces EB: Average value of tensile breaking strain of 5 control test pieces A control test piece is a resin composition having a composition in which only the compatibilizer is removed from the sample resin composition It is a test piece of a thing.
Modulus improvement rate (%) = (MS / MB) × 100 (II)
MS: Average value of tensile elastic modulus of 5 sample test pieces MB: Average value of tensile elastic modulus of 5 blank test pieces The blank resin piece has the same thermoplastic resin composition of Comparative Example 1 or Comparative Example 13 described later. The test piece of the resin composition of
 本発明の樹脂組成物は、剛性及び靱性を両立することから、射出成形、押出成形、熱成形等の様々な成形加工方法を用いることにより、日用雑貨品、家電部品、自動車部品等に好適に用いることができる。 The resin composition of the present invention is suitable for daily goods, household appliances parts, automobile parts, etc. by using various molding processing methods such as injection molding, extrusion molding, thermoforming, etc. because the rigidity and toughness are compatible. It can be used for
〔成形体及び成形体の製造方法〕
 本発明はまた、本発明の樹脂組成物を含有する成形体を提供する。
[Molded Product and Method of Manufacturing Molded Product]
The present invention also provides a molded article containing the resin composition of the present invention.
 成形体は、本発明の樹脂組成物の成形体であれば特に限定はなく、例えば、前記樹脂組成物を押出成形、射出成形、プレス成形、注型成形又は溶媒キャスト法等の公知の成形方法を適宜用いることによって調製することができる。例えば、パッケージ型や成形型などに注入あるいは塗布した後、乾燥し硬化させることで用途に応じた成形体を得ることができる。 The molded body is not particularly limited as long as it is a molded body of the resin composition of the present invention, and for example, known molding methods such as extrusion molding, injection molding, press molding, cast molding or solvent casting of the resin composition It can be prepared by suitably using For example, after injection or application to a package type, a mold or the like, a molded body according to the application can be obtained by drying and curing.
 シート状の成形体を調製する場合、加工性の観点から、その厚さは0.05mm以上が好ましく、0.1mm以上がより好ましく、0.15mm以上が更に好ましい。また、1.5mm以下が好ましく、1.0mm以下がより好ましく、0.5mm以下が更に好ましい。 In the case of preparing a sheet-like formed product, the thickness is preferably 0.05 mm or more, more preferably 0.1 mm or more, and still more preferably 0.15 mm or more from the viewpoint of processability. Moreover, 1.5 mm or less is preferable, 1.0 mm or less is more preferable, and 0.5 mm or less is still more preferable.
 かくして得られた本発明の樹脂組成物の成形体は、靱性及び剛性に優れることから、各種用途、例えば、日用品、化粧品、家電製品などの包装材として、ブリスターパックやトレイ、お弁当の蓋等の食品容器、工業部品の輸送や保護に用いる工業用トレイ等に好適に用いることができる。 The molded article of the resin composition of the present invention thus obtained is excellent in toughness and rigidity, and thus, it is used as a packaging material for various purposes, for example, daily necessities, cosmetics, home appliances, blister packs, trays, lids for lunch boxes, etc. It can be suitably used for food containers of the above, industrial trays used for transportation and protection of industrial parts, and the like.
 また、上述した実施形態に関し、本発明は、さらに、以下の樹脂組成物、かかる樹脂組成物の製造方法、かかる樹脂組成物を含有する成形体、及びかかる成形体の製造方法を開示する。 Moreover, regarding embodiment mentioned above, this invention further discloses the following resin composition, the manufacturing method of this resin composition, the molded object containing this resin composition, and the manufacturing method of this molded object.
<1> 熱可塑性樹脂に、該熱可塑性樹脂100質量部に対して、相対結晶化度が50%未満である非晶化セルロースを5質量部以上70質量部以下、及び相溶化剤を2質量部以上20質量部以下、ただし該熱可塑性樹脂がポリエチレンの場合には相溶化剤を4質量部以上20質量部以下含有してなる、樹脂組成物。 <1> Thermoplastic resin, 5 parts by mass or more and 70 parts by mass or less of non-crystallized cellulose having a relative crystallinity degree of less than 50%, and 2 parts by mass of a compatibilizer with respect to 100 parts by mass of the thermoplastic resin A resin composition comprising: at least 20 parts by mass but not less than 4 parts by mass and at most 20 parts by mass of a compatibilizer when the thermoplastic resin is polyethylene.
<2> 非晶化セルロースの相対結晶化度が、好ましくは49%以下、より好ましくは40%以下、更に好ましくは30%以下であり、好ましくは-70%以上、より好ましくは-60%以上、更に好ましくは-50%以上である、前記<1>記載の樹脂組成物。
<3> 樹脂組成物における非晶化セルロースの含有量が、熱可塑性樹脂100質量部に対して、好ましくは7質量部以上、より好ましくは10質量部以上、更に好ましくは13質量部以上、更に好ましくは15質量部以上であり、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは40質量部以下、更に好ましくは30質量部以下である、前記<1>又は<2>記載の樹脂組成物。
<4> 樹脂組成物における相溶化剤の含有量が、熱可塑性樹脂100質量部に対して、好ましくは5質量部以上、好ましくは17質量部以下、より好ましくは14質量部以下、更に好ましくは11質量部以下、更に好ましくは8質量部以下である、前記<1>~<3>いずれか記載の樹脂組成物。
<5> 熱可塑性樹脂がポリエチレンの場合、樹脂組成物における相溶化剤の含有量が、熱可塑性樹脂100質量部に対して、好ましくは5質量部以上、好ましくは17質量部以下、より好ましくは14質量部以下、更に好ましくは11質量部以下、更に好ましくは8質量部以下である、前記<1>~<3>いずれか記載の樹脂組成物。
<6> 熱可塑性樹脂におけるポリオレフィン樹脂の含有量が、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上である、前記<1>~<5>いずれか記載の樹脂組成物。
<7> 熱可塑性樹脂におけるポリオレフィン樹脂の含有量の上限は特に限定されず、ポリオレフィン樹脂からなるもの、即ち、100質量%であってもよい、前記<1>~<6>いずれか記載の樹脂組成物。
<8> 樹脂組成物における熱可塑性樹脂の含有量が、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上、更に好ましくは65質量%以上、更に好ましくは70質量%以上、更に好ましくは75質量%以上であり、好ましくは93質量%以下、より好ましくは90質量%以下、更に好ましくは87質量%以下、更に好ましくは85質量%以下、更に好ましくは83質量%以下である、前記<1>~<7>いずれか記載の樹脂組成物。
<9> 非晶化セルロースが、木材類、パルプ類、紙類、植物茎・葉類、植物殻類等から選ばれる1種又は2種以上のセルロース含有原料を粉砕機で処理して、セルロースの結晶化度を低減することで得られるものである、前記<1>~<8>いずれか記載の樹脂組成物。
<10> セルロース含有原料を、必要により、シュレッダー等の裁断機を利用して予め大きさを好ましくは0.1~70mm角に整えてから、媒体式の粉砕機や押出機による処理を行ったり、乾燥処理を行ったり、あるいは、いずれの処理も行うことで、嵩密度を好ましくは50~600kg/mあるいは比表面積を好ましくは0.2~750m/kgの範囲に調整して得られた粗粉砕セルロースを、衝撃式の粉砕機を用いて0.5分~24時間攪拌することで、結晶化度を低減させた非晶化セルロースを得ることができる、前記<9>記載の樹脂組成物。
<11> セルロース含有原料の水分含量が好ましくは1.8質量%以下である、前記<9>又は<10>記載の樹脂組成物。
<12> 非晶化セルロースの平均繊維径が、好ましくは0.01μm以上、より好ましくは1μm以上、更に好ましくは5μm以上、更に好ましくは10μm以上、更に好ましくは20μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下である、前記<1>~<11>いずれか記載の樹脂組成物。
<13> 樹脂組成物中の非晶化セルロース含有量が、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは8質量%以上、更に好ましくは10質量%以上、更に好ましくは12質量%以上であり、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下、更に好ましくは25質量%以下、更に好ましくは20質量%以下である、前記<1>~<12>いずれか記載の樹脂組成物。
<14> 相溶化剤の重量平均分子量が、好ましくは1000以上、より好ましくは5000以上、更に好ましくは10000以上、更に好ましくは20000以上であり、好ましくは100000以下、より好ましくは90000以下、更に好ましくは80000以下、更に好ましくは70000以下、更に好ましくは60000以下である、前記<1>~<13>いずれか記載の樹脂組成物。
<15> 相溶化剤が、以下の相溶化剤から選ばれる1種又は2種以上を含有することが好ましい、前記<1>~<14>いずれか記載の樹脂組成物:
相溶化剤(1):エチレン/酢酸ビニル共重合体
相溶化剤(2):エチレン/(メタ)アクリル酸エステル共重合体
相溶化剤(3):酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基(置換基)を有するポリオレフィン系樹脂
相溶化剤(4):酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基(置換基)を有するアクリル系樹脂又はスチレン系樹脂
相溶化剤(5):ポリエステル系樹脂
相溶化剤(6):アイオノマー樹脂。
<16> 相溶化剤が、より好ましくは、以下に示す群の中から少なくとも一種類を含有する、前記<1>~<14>いずれか記載の樹脂組成物:
相溶化剤:酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基を有するポリオレフィン系樹脂。
<17> 相溶化剤(3)におけるポリオレフィン系樹脂が、好ましくはエチレン系重合体[高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、エチレンと他の1種以上のビニル化合物(例えばα-オレフィン、酢酸ビニル、メタアクリル酸、アクリル酸等)との共重合体等]、プロピレン系重合体[ポリプロピレン、プロピレンと他の1種以上のビニル化合物との共重合体等]、エチレンプロピレン共重合体、ポリブテン及びポリ-4-メチルペンテン-1等であり、より好ましくはエチレン系重合体、プロピレン系重合体である、前記<15>記載の樹脂組成物:
<18> 相溶化剤(3)におけるポリオレフィン系樹脂における官能基が、好ましくは、酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種であり、より好ましくは酸無水物基、エポキシ基であり、更に好ましくは酸無水物基であり、更に好ましくは無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、グリシジルメタクリレートである、前記<15>又は<17>記載の樹脂組成物。
<19> 樹脂組成物中の相溶化剤含有量が、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上、更に好ましくは4質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、更に好ましくは8質量%以下、更に好ましくは6質量%以下である、前記<1>~<18>いずれか記載の樹脂組成物。
<20> 相溶化剤の非晶化セルロースに対する質量比(相溶化剤/非晶化セルロース)が、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.4以下、更に好ましくは0.3以下であり、好ましくは0.06以上、より好ましくは0.08以上、更に好ましくは0.1以上、更に好ましくは0.15以上である、前記<1>~<19>いずれか記載の樹脂組成物。
<2> The relative crystallinity of the non-crystallized cellulose is preferably 49% or less, more preferably 40% or less, still more preferably 30% or less, preferably -70% or more, more preferably -60% or more The resin composition according to <1>, more preferably -50% or more.
The content of non-crystallized cellulose in the <3> resin composition is preferably 7 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 13 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin. The above <1> or <2> is preferably 15 parts by mass or more, preferably 60 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less The resin composition as described.
The content of the compatibilizer in the <4> resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 14 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin. The resin composition according to any one of <1> to <3>, which is 11 parts by mass or less, more preferably 8 parts by mass or less.
When the thermoplastic resin is polyethylene, the content of the compatibilizer in the resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin. The resin composition according to any one of <1> to <3>, which is 14 parts by mass or less, more preferably 11 parts by mass or less, still more preferably 8 parts by mass or less.
The content of the polyolefin resin in the thermoplastic resin is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass The resin composition according to any one of the above <1> to <5>, which is% or more.
The upper limit of the content of the polyolefin resin in the thermoplastic resin is not particularly limited, and it is made of a polyolefin resin, that is, may be 100% by mass, the resin according to any one of <1> to <6> Composition.
The content of the thermoplastic resin in the <8> resin composition is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, still more preferably 65% by mass or more, still more preferably 70 % By mass, more preferably 75% by mass or more, preferably 93% by mass or less, more preferably 90% by mass or less, still more preferably 87% by mass or less, still more preferably 85% by mass or less, still more preferably 83% by mass The resin composition according to any one of the above <1> to <7>, which is at most%.
<9> The non-crystallized cellulose is treated with a crusher by treating at least one cellulose-containing raw material selected from woods, pulps, papers, plant stems and leaves, plant shells, etc. The resin composition according to any one of the above <1> to <8>, which is obtained by reducing the degree of crystallinity of
<10> If necessary, the cellulose-containing raw material is adjusted to a size of preferably 0.1 to 70 mm by using a shredder or the like, and then treated with a medium-type crusher or extruder. Dried, or subjected to any treatment to obtain a bulk density of preferably 50 to 600 kg / m 3 or a specific surface area of preferably 0.2 to 750 m 2 / kg. The resin according to the above <9>, wherein the coarsely pulverized cellulose can be stirred using an impact crusher for 0.5 minutes to 24 hours to obtain non-crystallized cellulose having a reduced degree of crystallinity. Composition.
The resin composition as described in said <9> or <10> whose water content of <11> cellulose containing raw material is preferably 1.8 mass% or less.
The average fiber diameter of the <12> non-crystallized cellulose is preferably 0.01 μm or more, more preferably 1 μm or more, still more preferably 5 μm or more, still more preferably 10 μm or more, still more preferably 20 μm or more, preferably 200 μm or less The resin composition according to any one of the above <1> to <11>, which is more preferably 150 μm or less, further preferably 100 μm or less.
The content of non-crystallized cellulose in the <13> resin composition is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 8% by mass or more, still more preferably 10% by mass or more, still more preferably It is 12% by mass or more, preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, still more preferably 25% by mass or less, still more preferably 20% by mass or less The resin composition according to any one of 1> to <12>.
The weight average molecular weight of the <14> compatibilizer is preferably 1000 or more, more preferably 5000 or more, still more preferably 10000 or more, still more preferably 20000 or more, preferably 100000 or less, more preferably 90000 or less, more preferably The resin composition according to any one of <1> to <13>, wherein the resin composition is 80000 or less, more preferably 70000 or less, further preferably 60000 or less.
<15> The resin composition according to any one of <1> to <14>, wherein the compatibilizer preferably contains one or more selected from the following compatibilizers:
Compatibilizer (1): ethylene / vinyl acetate copolymer compatibilizer (2): ethylene / (meth) acrylate copolymer compatibilizer (3): acid anhydride group, carboxyl group, amino group, Polyolefin resin compatibilizer (4) having at least one functional group (substituent) selected from the group consisting of imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group and epoxy group: acid Acrylic having at least one functional group (substituent) selected from the group consisting of anhydride group, carboxyl group, amino group, imino group, alkoxysilyl group, silanol group, silyl ether group, hydroxyl group, and epoxy group Resin based resin or styrene resin compatibilizer (5): polyester resin compatibilizer (6): ionomer resin.
<16> The resin composition according to any one of <1> to <14>, wherein the compatibilizer more preferably contains at least one selected from the group shown below:
Compatibilizer: having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin.
The polyolefin resin in the <17> compatibilizer (3) is preferably an ethylene polymer [high density polyethylene, medium density polyethylene, low density polyethylene, ethylene and one or more other vinyl compounds (for example, α-olefins, Copolymers etc. with vinyl acetate, methacrylic acid, acrylic acid etc.], propylene polymers [polypropylene, copolymers etc. of propylene and one or more other vinyl compounds], ethylene propylene copolymer, The resin composition according to <15>, which is polybutene and poly-4-methylpentene-1 or the like, more preferably an ethylene polymer or a propylene polymer:
The functional group of the polyolefin resin in the <18> compatibilizer (3) is preferably an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and It is at least one selected from the group consisting of epoxy groups, more preferably an acid anhydride group and an epoxy group, still more preferably an acid anhydride group, still more preferably maleic anhydride, maleic acid and succinic anhydride The resin composition according to <15> or <17>, which is an acid, succinic acid or glycidyl methacrylate.
The content of the compatibilizer in the <19> resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, still more preferably 4% by mass or more, preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, still more preferably 8% by mass or less, still more preferably 6% by mass or less Resin composition.
The mass ratio of the <20> compatibilizer to the non-crystallized cellulose (compatibilizer / non-crystallized cellulose) is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.4 or less, and further preferably The above <1> to <19> is preferably 0.3 or less, preferably 0.06 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and still more preferably 0.15 or more. The resin composition as described in any one.
<21> 熱可塑性樹脂が、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、ナイロン樹脂、塩化ビニル樹脂、ビニルエーテル樹脂、ポリビニルアルコール樹脂、ポリカーボネート樹脂及びポリスルホン樹脂からなる群より選択される1種以上である、前記<1>~<20>いずれか記載の樹脂組成物。
<22> 熱可塑性樹脂がポリオレフィン、ポリスチレン、ポリエステル、及びポリアミドから選ばれる1種又は2種以上を含む、前記<1>~<21>いずれか記載の樹脂組成物。
<23> 熱可塑性樹脂がポリオレフィンを含む、前記<1>~<22>いずれか記載の樹脂組成物。
<24> ポリオレフィンがポリエチレン及びポリプロピレンから選ばれる1種又は2種である、前記<21>~<23>いずれか記載の樹脂組成物。
<25> さらに結晶核剤が用いられる、前記<1>~<24>いずれか記載の樹脂組成物。
<26> 結晶核剤が、好ましくは無機系結晶核剤及び有機系結晶核剤であり、無機系結晶核剤としては、より好ましくは天然又は合成珪酸塩化合物、酸化チタン、硫酸バリウム、リン酸三カルシウム、炭酸カルシウム、リン酸ソーダ、カオリナイト、ハロイサイト、タルク、スメクタイト、バーミュライト、マイカ等であり、有機系結晶核剤としては、より好ましくはアミド、有機酸金属塩、ソルビトール誘導体、ノニトール誘導体等であり、更に好ましくは有機酸金属塩及びソルビトール誘導体である、前記<25>記載の樹脂組成物。
<27> 有機酸金属塩としては、好ましくは安息香酸ナトリウム、アルミニウムジベンゾエート、カリウムベンゾエート、リチウムベンゾエート、ソジウムβ・ナフタレート、ソジウムシクロヘキサンカルボキシレート、フェニルホスホン酸亜鉛等であり、ソルビトール誘導体としては、好ましくは1,3:2,4-ビス-O-(4-メチルベンジリデン)-D-ソルビトール等であり、より好ましくはソルビトール誘導体である、前記<26>記載の樹脂組成物。
<28> 結晶核剤の含有量が、熱可塑性樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上であり、好ましくは3.0質量部以下、より好ましくは2.0質量部以下である、前記<25>~<27>いずれか記載の樹脂組成物。
<29> 他の成分として、可塑剤;充填剤(無機充填剤、有機充填剤);加水分解抑制剤;難燃剤;酸化防止剤;炭化水素系ワックス類やアニオン型界面活性剤である滑剤;紫外線吸収剤;帯電防止剤;防曇剤;光安定剤;顔料;防カビ剤;抗菌剤;発泡剤;界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;香料;流動調整剤;レべリング剤;導電剤;紫外線分散剤;消臭剤等を含有することができ、あるいは、他の高分子材料や他の樹脂組成物を添加することができる、前記<1>~<28>いずれか記載の樹脂組成物。
<30> 前記他の成分の含有割合が、好ましくは樹脂組成物中20質量%以下、より好ましくは10質量%程度以下、更に好ましくは5質量%程度以下である、前記<29>記載の樹脂組成物。
<31> 前記した3成分の他、さらに必要により各種添加剤を含有する原料を、好ましくは、ヘンシェルミキサー等で攪拌、あるいは密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練又は溶媒キャスト法により調製することができる、前記<1>~<30>いずれか記載の樹脂組成物。
<32> 原料を、好ましくは、予めヘンシェルミキサー、スーパーミキサー等を用いて均一に混合した後に、溶融混練に供するか、又は、一度に混合して溶融混練する、前記<31>記載の樹脂組成物。
<33> 溶融混練後、好ましくは公知の方法に従って溶融混練物を乾燥させる、前記<31>又は<32>記載の樹脂組成物。
<34> 溶融混練温度が、好ましくは180℃以上、より好ましくは190℃以上、更に好ましくは200℃以上、更に好ましくは220℃以上、更に好ましくは225℃以上、更に好ましくは230℃以上であり、好ましくは300℃以下、より好ましくは290℃以下、更に好ましくは280℃以下であり、溶融混練時間が、好ましくは15秒間以上であり、好ましくは900秒間以下である、前記<31>~<33>いずれか記載の樹脂組成物。
<35> 熱可塑性樹脂に、該熱可塑性樹脂100質量部に対して、相対結晶化度が50%未満である非晶化セルロースを5質量部以上70質量部以下、及び相溶化剤を2質量部以上20質量部以下、ただし該熱可塑性樹脂がポリエチレンの場合には相溶化剤を4質量部以上20質量部以下配合する、樹脂組成物の製造方法。
<36> 熱可塑性樹脂、非晶化セルロース、及び相溶化剤の他、さらに必要により各種添加剤を含有する原料を、好ましくは180℃以上、より好ましくは190℃以上、更に好ましくは200℃以上であり、好ましくは300℃以下、より好ましくは290℃以下、更に好ましくは280℃以下の温度で混合する、前記<35>記載の樹脂組成物の製造方法。
<37> 混合時間が、好ましくは15秒間以上、好ましくは900秒間以下である、前記<36>記載の樹脂組成物の製造方法。
<38> 非晶化セルロースの相対結晶化度が、好ましくは49%以下、より好ましくは40%以下、更に好ましくは30%以下であり、好ましくは-70%以上、より好ましくは-60%以上、更に好ましくは-50%以上である、前記<35>~<37>いずれか記載の樹脂組成物の製造方法。
<39> 樹脂組成物における非晶化セルロースの含有量が、熱可塑性樹脂100質量部に対して、好ましくは7質量部以上、より好ましくは10質量部以上、更に好ましくは13質量部以上、更に好ましくは15質量部以上であり、好ましくは60質量部以下、より好ましくは50質量部以下、更に好ましくは40質量部以下、更に好ましくは30質量部以下である、前記<35>~<38>いずれか記載の樹脂組成物の製造方法。
<40> 樹脂組成物における相溶化剤の含有量が、熱可塑性樹脂100質量部に対して、好ましくは5質量部以上、好ましくは17質量部以下、より好ましくは14質量部以下、更に好ましくは11質量部以下、更に好ましくは8質量部以下である、前記<35>~<39>いずれか記載の樹脂組成物の製造方法。
<21> At least one thermoplastic resin selected from the group consisting of polyolefin resin, polystyrene resin, polyester resin, polyamide resin, polyamide resin, nylon resin, vinyl chloride resin, vinyl ether resin, polyvinyl alcohol resin, polycarbonate resin and polysulfone resin The resin composition according to any one of the above <1> to <20>.
<22> The resin composition according to any one of <1> to <21>, wherein the thermoplastic resin contains one or more selected from polyolefins, polystyrenes, polyesters, and polyamides.
<23> The resin composition according to any one of the above <1> to <22>, wherein the thermoplastic resin comprises a polyolefin.
<24> The resin composition according to any one of <21> to <23>, wherein the polyolefin is one or two selected from polyethylene and polypropylene.
<25> The resin composition according to any one of <1> to <24>, wherein a crystal nucleating agent is further used.
<26> The crystal nucleating agent is preferably an inorganic crystal nucleating agent and an organic crystal nucleating agent, and the inorganic crystal nucleating agent is more preferably a natural or synthetic silicate compound, titanium oxide, barium sulfate, phosphoric acid Tricalcium, calcium carbonate, sodium phosphate, kaolinite, halloysite, talc, smectite, vermeulite, mica, etc. As the organic crystal nucleating agent, more preferably amide, organic acid metal salt, sorbitol derivative, nonitol The resin composition according to <25>, which is a derivative or the like, more preferably an organic acid metal salt and a sorbitol derivative.
The metal salt of an organic acid <27> is preferably sodium benzoate, aluminum dibenzoate, potassium benzoate, lithium benzoate, sodium β · naphthalate, sodium cyclohexane carboxylate, zinc phenylphosphonate and the like, and as a sorbitol derivative, The resin composition according to the above <26>, which is preferably 1,3: 2,4-bis-O- (4-methylbenzylidene) -D-sorbitol or the like, more preferably a sorbitol derivative.
The content of the <28> crystal nucleating agent is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and preferably 3.0 parts by mass or less, based on 100 parts by mass of the thermoplastic resin. The resin composition according to any one of <25> to <27>, which is more preferably 2.0 parts by mass or less.
<29> As other components, plasticizers; fillers (inorganic fillers, organic fillers); hydrolysis inhibitors; flame retardants; antioxidants; lubricants that are hydrocarbon waxes and anionic surfactants; UV absorbers, antistatic agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents, surfactants, polysaccharides such as starches and alginic acid, and natural proteins such as gelatin, glue, casein, etc. Inorganic compounds such as tannins, zeolites, ceramics, metal powders, perfumes, flow control agents, leveling agents, conductive agents, ultraviolet light dispersants, deodorants, etc., or other polymer materials The resin composition as described in any one of the above <1> to <28>, to which a resin composition or any other resin composition can be added.
<30> The resin according to the above <29>, wherein the content ratio of the other components is preferably 20% by mass or less, more preferably about 10% by mass or less, still more preferably about 5% by mass or less in the resin composition. Composition.
<31> In addition to the above three components, if necessary, raw materials containing various additives are preferably stirred with a Henschel mixer etc., or a closed kneader, a single screw or twin screw extruder, an open roll kneader The resin composition according to any one of the above <1> to <30>, which can be prepared by melt-kneading or solvent casting using a known kneader or the like.
<32> The resin composition according to the above <31>, wherein the raw materials are preferably uniformly mixed in advance using a Henschel mixer, a super mixer, etc., and then subjected to melt-kneading or mixed at once and melt-kneaded object.
<33> The resin composition according to <31> or <32>, which is preferably dried according to a known method after melt-kneading.
<34> Melt-kneading temperature is preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C. or more, still more preferably 220 ° C. or more, still more preferably 225 ° C. or more, still more preferably 230 ° C. or more C., preferably 300.degree. C. or less, more preferably 290.degree. C. or less, still more preferably 280.degree. C. or less, and the melt-kneading time is preferably 15 seconds or more, preferably 900 seconds or less. 33> The resin composition as described in any one.
<35> Thermoplastic resin, 5 parts by mass to 70 parts by mass of non-crystallized cellulose having a relative crystallization degree of less than 50%, and 2 parts by mass of a compatibilizer with respect to 100 parts by mass of the thermoplastic resin A method for producing a resin composition, comprising: at least 20 parts by mass, but in the case where the thermoplastic resin is polyethylene, at least 4 parts by mass and not more than 20 parts by mass of a compatibilizer.
<36> A raw material containing various additives as necessary in addition to the thermoplastic resin, non-crystallized cellulose, and the compatibilizer, preferably 180 ° C. or more, more preferably 190 ° C. or more, still more preferably 200 ° C. or more The method for producing a resin composition according to <35>, wherein the mixing is performed at a temperature of preferably 300 ° C. or less, more preferably 290 ° C. or less, still more preferably 280 ° C. or less.
<37> The method for producing a resin composition according to <36>, wherein the mixing time is preferably 15 seconds or more, preferably 900 seconds or less.
<38> The relative crystallinity of the non-crystallized cellulose is preferably 49% or less, more preferably 40% or less, still more preferably 30% or less, preferably -70% or more, more preferably -60% or more The method for producing a resin composition according to any one of <35> to <37>, more preferably -50% or more.
The content of non-crystallized cellulose in the <39> resin composition is preferably 7 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 13 parts by mass or more, with respect to 100 parts by mass of the thermoplastic resin. The amount is preferably 15 parts by mass or more, preferably 60 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less. The manufacturing method of the resin composition in any one description.
The content of the compatibilizer in the <40> resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 14 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin. The method for producing a resin composition according to any one of <35> to <39>, which is 11 parts by mass or less, more preferably 8 parts by mass or less.
<41> 熱可塑性樹脂がポリエチレンの場合、樹脂組成物における相溶化剤の含有量が、熱可塑性樹脂100質量部に対して、好ましくは5質量部以上、好ましくは17質量部以下、より好ましくは14質量部以下、更に好ましくは11質量部以下、更に好ましくは8質量部以下である、前記<35>~<39>いずれか記載の樹脂組成物の製造方法。
<42> 相溶化剤の重量平均分子量が、好ましくは1000以上、より好ましくは5000以上、更に好ましくは10000以上、更に好ましくは20000以上であり、好ましくは100000以下、より好ましくは90000以下、更に好ましくは80000以下、更に好ましくは70000以下、更に好ましくは60000以下である、前記<35>~<41>いずれか記載の樹脂組成物の製造方法。
<43> 相溶化剤が、より好ましくは、以下に示す群の中から少なくとも一種類を含有する、前記<35>~<42>いずれか記載の樹脂組成物の製造方法:
相溶化剤:酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基を有するポリオレフィン系樹脂。
<44> 相溶化剤の非晶化セルロースに対する質量比(相溶化剤/非晶化セルロース)が、好ましくは0.8以下、より好ましくは0.6以下、更に好ましくは0.4以下、更に好ましくは0.3以下であり、好ましくは0.06以上、より好ましくは0.08以上、更に好ましくは0.1以上、更に好ましくは0.15以上である、前記<35>~<43>いずれか記載の樹脂組成物の製造方法。
<45> 熱可塑性樹脂がポリオレフィンを含む、前記<35>~<44>いずれか記載の樹脂組成物の製造方法。
<46> ポリオレフィンがポリエチレン及びポリプロピレンから選ばれる1種又は2種である、前記<45>記載の樹脂組成物の製造方法。
<47> さらに結晶核剤が用いられる、前記<35>~<46>いずれか記載の樹脂組成物の製造方法。
<48> 前記<1>~<34>いずれか記載の樹脂組成物を含有する成形体。
<49> 成形体がシート状の成形体であって、その厚さが好ましくは0.05mm以上、より好ましくは0.1mm以上、更に好ましくは0.15mm以上であり、好ましくは1.5mm以下、より好ましくは1.0mm以下、更に好ましくは0.5mm以下である、前記<48>記載の成形体。
<50> 好ましくは、日用品、化粧品、家電製品などの包装材として、ブリスターパックやトレイ、お弁当の蓋等の食品容器、工業部品の輸送や保護に用いる工業用トレイに用いることができる、前記<48>又は<49>記載の成形体。
<51> JIS K7127に基づいて、成形体の2号試験片を作製して、その引張弾性率(GPa)と引張破断歪(%)を測定した際の、前述の式(I)より算出した破断歪向上率が、好ましくは120%以上、更に好ましくは150%以上、更に好ましくは200%以上である、前記<48>~<50>いずれか記載の成形体。
<52> JIS K7127に基づいて、成形体の2号試験片を作製して、その引張弾性率(GPa)と引張破断歪(%)を測定した際の、前述の式(II)より算出した弾性率向上率が、好ましくは120%以上、更に好ましくは150%以上、更に好ましくは200%以上である、前記<48>~<51>いずれか記載の成形体。
<53> 前記<1>~<34>いずれか記載の樹脂組成物を、好ましくは、押出成形、射出成形、プレス成形、注型成形又は溶媒キャスト法によって加工して成形体とする、前記<48>~<52>いずれか記載の成形体の製造方法。
<41> When the thermoplastic resin is polyethylene, the content of the compatibilizer in the resin composition is preferably 5 parts by mass or more, preferably 17 parts by mass or less, more preferably 100 parts by mass of the thermoplastic resin. The method for producing a resin composition according to any one of <35> to <39>, which is 14 parts by mass or less, more preferably 11 parts by mass or less, still more preferably 8 parts by mass or less.
The weight average molecular weight of the <42> compatibilizer is preferably 1000 or more, more preferably 5000 or more, still more preferably 10000 or more, still more preferably 20000 or more, preferably 100000 or less, more preferably 90000 or less, more preferably The method for producing a resin composition according to any one of the above <35> to <41>, wherein the ratio is 80000 or less, more preferably 70000 or less, still more preferably 60000 or less.
<43> The method for producing a resin composition according to any one of <35> to <42>, wherein the compatibilizer more preferably contains at least one selected from the group shown below:
Compatibilizer: having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin.
The weight ratio of the <44> compatibilizer to the non-crystallized cellulose (compatibilizer / non-crystallized cellulose) is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.4 or less, and further preferably The above <35> to <43> is preferably 0.3 or less, preferably 0.06 or more, more preferably 0.08 or more, still more preferably 0.1 or more, and still more preferably 0.15 or more. The manufacturing method of the resin composition in any one description.
<45> The method for producing a resin composition according to any one of <35> to <44>, wherein the thermoplastic resin comprises a polyolefin.
The manufacturing method of the resin composition of the said <45> description whose <46> polyolefin is 1 type or 2 types chosen from polyethylene and a polypropylene.
<47> The method for producing a resin composition according to any one of <35> to <46>, wherein a crystal nucleating agent is further used.
<48> A molded article containing the resin composition according to any one of the above <1> to <34>.
The <49> molded article is a sheet-like molded article, and the thickness thereof is preferably 0.05 mm or more, more preferably 0.1 mm or more, still more preferably 0.15 mm or more, preferably 1.5 mm or less The molded article according to <48>, more preferably 1.0 mm or less, further preferably 0.5 mm or less.
<50> Preferably, it can be used as a packaging material for daily necessities, cosmetics, household appliances, etc., for food containers such as blister packs and trays, lids for lunch boxes, and industrial trays used for transportation and protection of industrial parts, The molded object as described in <48> or <49>.
<51> Based on JIS K7127, the No. 2 test piece of a molded object was produced, and when the tensile elastic modulus (GPa) and the tensile breaking strain (%) were measured, it computed from the above-mentioned formula (I) The molded article according to any one of the above <48> to <50>, wherein the breaking strain improvement rate is preferably 120% or more, more preferably 150% or more, and still more preferably 200% or more.
<52> Based on JIS K7127, the No. 2 test piece of a molded object was produced, and when it measured the tensile elasticity modulus (GPa) and the tensile breaking strain (%), it computed from the above-mentioned formula (II) The molded article according to any one of <48> to <51>, wherein the elastic modulus improvement rate is preferably 120% or more, more preferably 150% or more, and still more preferably 200% or more.
<53> The resin composition according to any one of <1> to <34> is preferably processed by extrusion molding, injection molding, press molding, cast molding, or solvent casting to obtain a molded article. 48. A method for producing a molded body according to any one of <52>.
 以下、実施例を示して本発明を具体的に説明する。なお、この実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。例中の部は、特記しない限り質量部である。 Hereinafter, the present invention will be specifically described by way of examples. Note that this example is merely an example of the present invention and does not mean any limitation. Parts in the examples are parts by weight unless otherwise stated.
〔セルロース繊維の平均繊維径〕
 平均繊維径は、レーザー回折/散乱式粒度分布測定装置「LA-920」(堀場製作所社製)を用いて測定する。測定条件は、測定前に超音波で1分間処理し、測定時の分散媒体として水を用い、体積基準のメジアン径を温度25℃にて測定する。
[Average fiber diameter of cellulose fiber]
The average fiber diameter is measured using a laser diffraction / scattering type particle size distribution measuring apparatus “LA-920” (manufactured by Horiba, Ltd.). As measurement conditions, ultrasonic waves are treated for 1 minute before measurement, water is used as a dispersion medium at the time of measurement, and a volume-based median diameter is measured at a temperature of 25 ° C.
〔セルロース繊維の結晶構造の確認〕
 セルロース繊維の結晶構造は、リガク社製の「RigakuRINT 2500VC X-RAY diffractometer」を用いて以下の条件で測定することにより確認する。測定条件は、X線源:Cu/Kα-radiation、管電圧:40kv、管電流:120mA、測定範囲:回折角2θ=5~45°、X線のスキャンスピード:10°/minとする。測定用サンプルは面積320mm×厚さ1mmのペレットを圧縮し作製する。また、セルロースI型結晶構造の結晶化度は得られたX線回折強度を、以下の式(A)に基づいて算出する。
  セルロースI型結晶化度(%)=[(I22.6-I18.5)/I22.6]×100  (A)
〔式中、I22.6はX線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5はアモルファス部(回折角2θ=18.5°)の回折強度を示す〕
[Confirmation of Crystal Structure of Cellulose Fiber]
The crystal structure of the cellulose fiber is confirmed by measurement under the following conditions using “Rigaku RINT 2500VC X-RAY diffractometer” manufactured by Rigaku Corporation. Measurement conditions are: X-ray source: Cu / Kα-radiation, tube voltage: 40 kv, tube current: 120 mA, measurement range: diffraction angle 2θ = 5-45 °, X-ray scan speed: 10 ° / min. The measurement sample is produced by compressing a pellet of area 320 mm 2 × thickness 1 mm. Moreover, the crystallinity degree of a cellulose I-type crystal structure calculates the obtained X-ray-diffraction intensity based on the following formula (A).
Cellulose type I crystallinity (%) = [(I 22.6-I 18.5) / I 22.6] × 100 (A)
[Wherein, I22.6 indicates the diffraction intensity of the grating surface (002 plane) (diffraction angle 2θ = 22.6 °) in X-ray diffraction, I18.5 indicates the diffraction intensity of the amorphous part (diffraction angle 2θ = 18.5 °)]
〔相溶化剤の重量平均分子量〕
 重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)により、下記の測定条件で測定する。
<測定条件>
カラム:昭和電工社製 Shodex HT-806M×1本+Shodex HT-803×2本
カラム温度:130℃
検出器:RI
溶離液:o-ジクロロベンゼン
流速:1.0mL/min
サンプル濃度:1mg/mL
注入量:0.1mL
換算標準:ポリスチレン
[Weight average molecular weight of compatibilizer]
The weight average molecular weight (Mw) is measured by GPC (gel permeation chromatography) under the following measurement conditions.
<Measurement conditions>
Column: Showa Denko Shodex HT-806M x 1 + Shodex HT- 803 x 2 columns Column temperature: 130 ° C
Detector: RI
Eluent: o-dichlorobenzene flow rate: 1.0 mL / min
Sample concentration: 1 mg / mL
Injection volume: 0.1 mL
Conversion standard: polystyrene
製造例1:非晶化セルロース1
(1)裁断処理
 セルロース含有原料として、シート状パルプ〔Tembec社製、BioflocHV+、相対結晶化度:82%、水分含有量:8.5質量%〕を、裁断機〔荻野精機製作所製、スーパーカッター RK6―800〕を用いて、約3mm×1.5mm×1mmのチップ状に裁断した。
(2)乾燥処理
 前記(1)より得られたチップ状のパルプを、2軸横型攪拌乾燥機〔奈良機械製作所製、2軸パドルドライヤー NPD-3W(1/2)〕を用いて、連続処理にて乾燥した。このとき乾燥機の加熱媒体は150℃のスチームを用い、パルプの供給速度は45kg/hとした。連続処理で得られた乾燥パルプの水分含有量は0.5質量%であった。
(3)セルロース粗粉砕処理
 前記(2)より得られた乾燥パルプを、連続式振動ミル〔ユーラステクノ社製、バイブロミル YAMT-200、第1及び第2粉砕室の容量:112L〕を用いて粗粉砕した。第1及び第2粉砕室には、直径30mm、長さ1300mmのステンレス製の丸棒状の粉砕媒体を80本ずつ収容した。連続式振動ミルを振動数16.7Hz、振幅13.4mmの条件下、乾燥パルプを20kg/hで投入し、パルプを粗粉砕した。得られた粗粉砕セルロースの嵩密度は223kg/mであった。
(4)セルロース非晶化処理
 前記(3)より得られた粗粉砕セルロースを、高速回転式微粉砕機〔ダルトン社製、アトマイザー AIIW-7.5型〕を用いて処理した。目開き1.0mmのスクリーンを装着し、ローター周速度を91m/sで駆動すると共に、原料供給部から粗粉砕セルロースを20kg/hの供給速度で供給した。得られたセルロースは、相対結晶化度-9.4%、メジアン径62.5μmであった。
Production Example 1: Amorphous Cellulose 1
(1) Cutting process As a cellulose-containing raw material, sheet-like pulp (manufactured by Tembec, Biofloc HV +, relative crystallinity: 82%, water content: 8.5% by mass) was cut using a cutting machine [Superno Cutter, manufactured by Kuwano Seiki Co., Ltd.] Using RK6-800], it was cut into chips of about 3 mm × 1.5 mm × 1 mm.
(2) Drying treatment The chip-like pulp obtained from the above (1) is continuously treated using a twin-screw horizontal stirring dryer [two-axis paddle dryer NPD-3W (1/2), manufactured by Nara Machinery Co., Ltd.] It dried with At this time, the heating medium of the dryer used steam at 150 ° C., and the feed rate of pulp was 45 kg / h. The water content of the dried pulp obtained by the continuous treatment was 0.5% by mass.
(3) Cellulose coarse pulverization treatment The dried pulp obtained from the above (2) is coarsely treated using a continuous vibration mill (Vibro Mill YAMT-200, volume of first and second pulverizing chambers: 112 L, manufactured by Eurus Techno Co., Ltd.). Crushed. In the first and second grinding chambers, 80 pieces of stainless steel round rod-shaped grinding media having a diameter of 30 mm and a length of 1300 mm were accommodated. The dry pulp was charged at 20 kg / h under the conditions of a continuous vibration mill at a frequency of 16.7 Hz and an amplitude of 13.4 mm, and the pulp was roughly crushed. The bulk density of the obtained coarsely pulverized cellulose was 223 kg / m 3 .
(4) Cellulose Amorphization Treatment The coarsely pulverized cellulose obtained from the above (3) was treated using a high-speed rotary pulverizer (manufactured by Dalton, Atomizer AIIW-7.5 type). A 1.0 mm screen was attached, the rotor peripheral speed was driven at 91 m / s, and coarsely pulverized cellulose was supplied from the raw material supply section at a supply speed of 20 kg / h. The obtained cellulose had a relative crystallinity of -9.4% and a median diameter of 62.5 μm.
製造例2:非晶化セルロース2
(1)裁断処理
 セルロース含有原料として、シート状パルプ〔Tembec社製、BioflocHV+、相対結晶化度:82%、水分含有量:8.5質量%〕を、裁断機〔ホーライ社製、シートペレタイザ SG(E)-220〕を用いて、約3mm×1.5mm×1mmのチップ状に裁断した。
(2)乾燥処理
 前記(1)より得られたチップ状のパルプを、2軸横型攪拌乾燥機〔奈良機械製作所製、2軸パドルドライヤー NPD-1.6W(1/2)〕を用いて、連続処理にて乾燥した。このとき乾燥機の加熱媒体は150℃のスチームを用い、パルプの供給速度は20kg/hとした。連続処理で得られた乾燥パルプの水分含有量は0.5質量%であった。
(3)セルロース粗粉砕処理
 前記(2)より得られた乾燥パルプを、バッチ式振動ミル〔中央化工機社製 FV-10、粉砕室の容量:33L〕を用いて粗粉砕した。粉砕室には、直径30mm、長さ510mmのステンレス製の丸棒状の粉砕媒体を63本収容した。振動数20Hz、振幅8mmの条件下、乾燥パルプを920g仕込み、パルプを粗粉砕した。得られた粗粉砕セルロースの嵩密度は235kg/mであった。
(4)セルロース非晶化処理
 前記(3)より得られた粗粉砕セルロースを、高速回転式微粉砕機〔ダルトン社製、サンプルミル KIIW-1型〕を用いて処理した。目開き1.0mmのスクリーンを装着し、ローター周速度を80m/sで駆動すると共に、原料供給部から粗粉砕セルロースを18kg/hの供給速度で供給した。得られたセルロースは、相対結晶化度-43.2%、メジアン径27.8μmであった。
Production Example 2: Amorphous Cellulose 2
(1) Cutting treatment As a cellulose-containing raw material, sheet-like pulp (manufactured by Tembec, Biofloc HV +, relative crystallinity: 82%, water content: 8.5% by mass) was added to a cutting machine [sheet pelletizer manufactured by Horai, The resultant was cut into chips of about 3 mm × 1.5 mm × 1 mm using SG (E) -220].
(2) Drying treatment The chip-like pulp obtained from the above (1) was subjected to a twin-screw horizontal stirring dryer [made by Nara Machinery Co., Ltd., a twin-paddle dryer NPD-1.6 W (1/2)]. It dried by continuous processing. At this time, the heating medium of the dryer used steam at 150 ° C., and the feed rate of the pulp was 20 kg / h. The water content of the dried pulp obtained by the continuous treatment was 0.5% by mass.
(3) Cellulose Coarse Grinding Treatment The dried pulp obtained from the above (2) was roughly ground using a batch-type vibration mill [FV-10 manufactured by Chuo Kakoki Co., Ltd .; volume of grinding chamber: 33 L]. The grinding chamber contained 63 stainless steel round rod-like grinding media having a diameter of 30 mm and a length of 510 mm. Under the conditions of a frequency of 20 Hz and an amplitude of 8 mm, 920 g of dry pulp was charged, and the pulp was roughly crushed. The bulk density of the obtained coarsely pulverized cellulose was 235 kg / m 3 .
(4) Cellulose Amorphization Treatment The coarsely pulverized cellulose obtained from the above (3) was treated using a high-speed rotary pulverizer [Sample Mill KIIW-1 manufactured by Dalton, Inc.]. A 1.0 mm screen was attached, the rotor peripheral speed was driven at 80 m / s, and coarsely pulverized cellulose was supplied from the raw material supply portion at a supply speed of 18 kg / h. The obtained cellulose had a relative crystallinity of 43.2% and a median diameter of 27.8 μm.
製造例3:非晶化セルロース3
(1)裁断処理
 セルロース含有原料として、シート状パルプ〔APRIL(Asia Pacific Resources International)社製、RIAU ACACIA PULP、相対結晶化度:80%、水分含有量:9.8質量%〕を、裁断機〔ホーライ社製、シートペレタイザ SG(E)-220〕を用いて、約3mm×1.5mm×1mmのチップ状に裁断した。
(2)乾燥処理
 前記(1)より得られたチップ状のパルプを、2軸横型攪拌乾燥機〔奈良機械製作所製、2軸パドルドライヤー NPD-1.6W(1/2)〕を用いて、連続処理にて乾燥した。このとき乾燥機の加熱媒体は150℃のスチームを用い、パルプの供給速度は20kg/hとした。連続処理で得られた乾燥パルプの水分含有量は0.5質量%であった。
(3)セルロース粗粉砕処理
 前記(2)より得られた乾燥パルプを、バッチ式振動ミル〔中央化工機社製 FV-10、粉砕室の容量:33L〕を用いて粗粉砕した。粉砕室には、直径30mm、長さ510mmのステンレス製の丸棒状の粉砕媒体を63本収容した。振動数20Hz、振幅8mmの条件下、乾燥パルプを920g仕込み、パルプを粗粉砕した。得られた粗粉砕セルロースの嵩密度は230kg/mであった。
(4)セルロース非晶化処理
 前記(3)より得られた粗粉砕セルロースを、高速回転式微粉砕機〔アーステクニカ社製、クリプトロンエディ KTE0型〕を用いて処理した。ローター周速度を145m/sで駆動すると共に、原料供給部から粗粉砕セルロースを7kg/hの供給速度で供給した。得られたセルロースは、相対結晶化度4.1%、メジアン径10.1μmであった。
Production Example 3: Amorphous Cellulose 3
(1) Cutting treatment As a cellulose-containing raw material, a sheet-like pulp (manufactured by APRIL (Asia Pacific Resources International), RIAU ACACIA PULP, relative crystallinity: 80%, water content: 9.8 mass%), a cutting machine It was cut into chips of about 3 mm × 1.5 mm × 1 mm using a sheet pelletizer SG (E) -220 manufactured by Horai Co., Ltd.
(2) Drying treatment The chip-like pulp obtained from the above (1) was subjected to a twin-screw horizontal stirring dryer [made by Nara Machinery Co., Ltd., a twin-paddle dryer NPD-1.6 W (1/2)]. It dried by continuous processing. At this time, the heating medium of the dryer used steam at 150 ° C., and the feed rate of the pulp was 20 kg / h. The water content of the dried pulp obtained by the continuous treatment was 0.5% by mass.
(3) Cellulose Coarse Grinding Treatment The dried pulp obtained from the above (2) was roughly ground using a batch-type vibration mill [FV-10 manufactured by Chuo Kakoki Co., Ltd .; volume of grinding chamber: 33 L]. The grinding chamber contained 63 stainless steel round rod-like grinding media having a diameter of 30 mm and a length of 510 mm. Under the conditions of a frequency of 20 Hz and an amplitude of 8 mm, 920 g of dry pulp was charged, and the pulp was roughly crushed. The bulk density of the obtained coarsely pulverized cellulose was 230 kg / m 3 .
(4) Cellulose Amorphization Treatment The coarsely pulverized cellulose obtained from the above (3) was treated using a high-speed rotary pulverizer [Cryptron Eddy KTE0 type manufactured by Earth Technica Co., Ltd.]. While driving the rotor circumferential speed at 145 m / s, coarsely pulverized cellulose was fed from the raw material feed section at a feed rate of 7 kg / h. The obtained cellulose had a relative crystallinity of 4.1% and a median diameter of 10.1 μm.
製造例4:非晶化セルロース4
(1)裁断処理
 セルロース含有原料として、シート状木材パルプ(Borregard社製「Blue Bear Ultra Ether」、800mm×600mm×1.5mm、セルロース含有量96重量%(セルロース含有原料から水を除いた残余の成分中の含有量、セルロースI型結晶化度81%、水分含量7.0重量%、嵩密度200kg/m)を、シートペレタイザ(ホーライ社製、「SG(E)-220」)にかけ、約4mm×4mm×1.5mmの大きさに粗粉砕した。
(2)乾燥処理
 前記(1)により得られたパルプを、棚乾燥機〔アドバンテック(ADVANTEC)社製 真空定温乾燥機「DRV320DA」〕を用いて、乾燥後のパルプの水分含量が、0.8質量%になるように乾燥した。
(3)粗粉砕・非晶化処理
 前記(2)により得られたパルプ50gを、粉砕機として振動ミル(中央化工機社製、「MB-1」、容器全容量3.5L)に投入し、ロッド(断面形状:円形、直径:30mm、長さ:218mm、材質:ステンレス)11本を振動ミルに充填(充填率48%)して、振幅8mm、回転数1200回転/分の条件で、40分間処理を行った。操作の際の温度は、30℃であった。
 処理終了後、粉砕機内の壁面や底部にパルプの固着物等は見られなかった。得られた粉砕処理物を粉砕機から取り出し、75μm目開きの篩をかけ、メジアン径30μm、相対結晶化度-34.3%の非晶化セルロースを得た。
(4)混合粉砕処理
 前記(3)によって得られた非晶化セルロース50gと、粉砕助剤としてMA-PP(マレイン酸変性ポリプロピレン、三洋化成工業社製、ユーメックス1010)5gとを混合し、その混合物の全量を、粉砕機として振動ミル(中央化工機社製、「MB-1」、容器全容量3.5L)に投入し、ロッド(断面形状:円形、外径:30mm、長さ:218mm、材質:ステンレス)11本を振動ミルに充填(充填率48%)して、振幅8mm、回転数1200回転/分の条件で15分間粉砕処理を行って、メジアン径12.0μm、相対結晶化度-40.8%の非晶化セルロース4を得た。)
Production Example 4: Amorphous Cellulose 4
(1) Cutting treatment As a cellulose-containing material, sheet-like wood pulp ("Blue Bear Ultra Ether" manufactured by Borregard, 800 mm x 600 mm x 1.5 mm, the cellulose content 96% by weight (the remainder obtained by removing water from the cellulose-containing material) The content in the ingredients, cellulose type I crystallinity 81%, water content 7.0 wt%, bulk density 200 kg / m 3 ) was applied to a sheet pelletizer ("SG (E) -220" manufactured by Horai) , Roughly 4 mm × 4 mm × 1.5 mm.
(2) Drying treatment The pulp obtained in the above (1) was treated with a shelf drier (vacuum constant temperature drier "DRV 320 DA" manufactured by ADVANTEC, Inc.), and the water content of the pulp after drying was 0.8. It dried so that it might become mass%.
(3) Coarse grinding and decrystallization treatment 50 g of the pulp obtained in the above (2) is charged into a vibrating mill ("MB-1" manufactured by Chuo Kakoki Co., Ltd., container total volume 3.5 L) as a grinder. , 11 rods (cross-sectional shape: circular, diameter: 30 mm, length: 218 mm, material: stainless steel) in a vibrating mill (filling rate 48%), amplitude 8 mm, rotation speed 1200 rpm / min, The treatment was performed for 40 minutes. The temperature during the operation was 30.degree.
After completion of the treatment, no fixed matter of pulp was found on the wall surface or bottom of the crusher. The resulting pulverized product was removed from the pulverizer and sieved with a 75 μm mesh to obtain non-crystallized cellulose having a median diameter of 30 μm and a relative crystallinity of -34.3%.
(4) Mixing and grinding treatment 50 g of the non-crystallized cellulose obtained by the above (3) and 5 g of MA-PP (maleic acid modified polypropylene, Yumex 1010, manufactured by Sanyo Chemical Industries, Ltd.) as a grinding aid are mixed, The whole of the mixture is introduced into a vibratory mill ("MB-1", manufactured by Chuo Kakoki Co., Ltd., "MB-1", total container volume 3.5 L) as a crusher, and a rod (cross-sectional shape: circular, outer diameter: 30 mm, length: 218 mm) Material: 11 stainless steels are packed in a vibrating mill (filling rate 48%), and crushed for 15 minutes under the conditions of amplitude 8 mm, rotation speed 1200 rpm, median diameter 12.0 μm, relative crystallization Amorphous cellulose 4 with a degree of -40.8% was obtained. )
実施例1~8及び比較例1~14
 表1及び2に示す組成物原料を、混練機(東洋精機製作所製、ラボプラストミル)を用いて、回転数90rpm、表1及び2に示す温度で8分間溶融混練して、樹脂組成物を得た(表1及び2に記載の原料の使用量は質量部であり、質量%はそれらの合計量から算出される。)。
Examples 1 to 8 and Comparative Examples 1 to 14
The composition raw materials shown in Tables 1 and 2 are melt-kneaded for 8 minutes at a rotation number of 90 rpm and a temperature shown in Tables 1 and 2 using a kneader (Laboplast mill manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain a resin composition Obtained (The amounts of use of the raw materials described in Tables 1 and 2 are parts by mass, and mass% is calculated from their total amount).
 得られた樹脂組成物を、ヒートプレス機(東洋精機製作所製、ラボプレス)を用いて、240℃において0.4MPaにて1分、20MPaにて1分それぞれプレスし、次いで20℃まで冷却する事で、厚さ0.4mmのシートを成形した。 The resulting resin composition is pressed using a heat press (lab press made by Toyo Seiki Seisakusho, Ltd., 240 ° C. for 1 minute at 0.4 MPa, 1 minute at 20 MPa, and then cooled to 20 ° C. The sheet having a thickness of 0.4 mm was formed.
 尚、表1及び2における原料は以下の通りである。
<熱可塑性樹脂>
ポリエチレン樹脂:ノバテックLL UF641
ポリプロピレン樹脂:ノバテックPP EA9
<セルロース繊維>
KCフロック:日本製紙ケミカル社製、相対結晶化度78.5%、メジアン系28.0μm
<相溶化剤>
ユーメックス1001:三洋化成工業社製、無水マレイン酸変性ポリプロピレン、重量平均分子量40000
ユーメックス1010:三洋化成工業社製、マレイン酸変性ポリプロピレン、重量平均分子量30000
<エラストマー>
ハイブラー7311:クラレプラスチックス社製、ポリスチレン-ポリビニルイソプレン-ポリスチレンブロック共重合体、重量平均分子量140000
<結晶核剤>
ゲルオールMD:新日本理化社製、メチルジベンジリデンソルビトール
The raw materials in Tables 1 and 2 are as follows.
<Thermoplastic resin>
Polyethylene resin: Novatec LL UF 641
Polypropylene resin: Novatec PP EA9
<Cellulose fiber>
KC floc: Nippon Paper Chemicals Co., Ltd., relative crystallinity 78.5%, median 28.0 μm
<Compatibilizer>
Yumex 1001: Sanyo Chemical Industries, Ltd., maleic anhydride modified polypropylene, weight average molecular weight 40000
Umex 1010: Sanyo Chemical Industries, Ltd., maleic acid modified polypropylene, weight average molecular weight 30000
<Elastomer>
HYBLER 7311: Kuraray Plastics Co., Ltd., polystyrene-polyvinyl isoprene-polystyrene block copolymer, weight average molecular weight 140000
<Crystal nucleating agent>
Gelall MD: New Japan Chemical Co., Ltd., methyl dibenzylidene sorbitol
 得られた成形体の特性を、下記試験例1の方法に従って評価した。結果を表1及び2に示す。 The properties of the obtained molded body were evaluated in accordance with the method of Test Example 1 below. The results are shown in Tables 1 and 2.
試験例1(破断歪向上率、弾性率向上率)
 25℃の恒温室において、得られたシートをJIS K7127に基づき2号試験片を5個作製して、引っ張り試験を行い、引張弾性率(GPa)と引張破断歪(%)を調べ、破断歪向上率と弾性率向上率を以下の式(I)及び(II)から求めた。引っ張り試験には、SHIMADZU社製 オートグラフ精密万能試験機(AGS-10kNX)を用い、JIS K7127に従って、1サンプルにつき5点試験を行った。破断歪向上率は数値が大きいほど靱性に優れる事を示し、弾性率向上率は数値が大きいほど剛性に優れていることを示す。また、引張弾性率は0.9GPa以上であれば、優れた強度を示すものである。なお、破断歪向上率を算出する際のコントロール試験片としては、実施例1、2に対しては比較例2、実施例3に対しては比較例3、実施例4、5に対しては比較例12、実施例6に対しては比較例11、実施例7、8に対しては比較例14の樹脂組成物の試験片をそれぞれ用いた。
 破断歪向上率(%)=(ES/EB)×100      (I)
        ES:サンプル試験片5個の引張破断歪の平均値
        EB:コントロール試験片5個の引張破断歪の平均値
   コントロール試験片とは、サンプル樹脂組成物から相溶化剤のみを除いた組成の樹脂組成物の試験片のことである。
 弾性率向上率(%)=(MS/MB)×100      (II)
        MS:サンプル試験片5個の引張弾性率の平均値
        MB:ブランク試験片5個の引張弾性率の平均値
   ブランク試験片とは、後述の比較例1又は比較例13の樹脂組成物の試験片のことである。
Test example 1 (breaking strain improvement rate, elastic modulus improvement rate)
In a temperature-controlled room at 25 ° C., five sheets of No. 2 test pieces are prepared based on JIS K 7127, and a tensile test is conducted to check the tensile modulus (GPa) and the tensile breaking strain (%). The improvement rate and the elastic modulus improvement rate were obtained from the following formulas (I) and (II). For the tensile test, a 5-point test was performed per sample according to JIS K7127 using an automatic graph precision universal tester (AGS-10 kNX) manufactured by SHIMADZU. The increase in breaking strain indicates that the greater the numerical value, the better the toughness, and the increase in elastic modulus indicates that the larger the numerical value, the superior in rigidity. In addition, when the tensile elastic modulus is 0.9 GPa or more, excellent strength is exhibited. In addition, as a control test piece at the time of calculating the breaking strain improvement rate, Comparative Example 2 for Examples 1 and 2 and Comparative Example 3 for Example 3 and Examples 4 and 5 The test piece of the resin composition of Comparative Example 14 was used for Comparative Example 12 and Comparative Example 11 and Example 7 and 8 for Example 6, respectively.
Breaking strain improvement rate (%) = (ES / EB) x 100 (I)
ES: Average value of tensile breaking strain of 5 sample test pieces EB: Average value of tensile breaking strain of 5 control test pieces A control test piece is a resin composition having a composition in which only the compatibilizer is removed from the sample resin composition It is a test piece of a thing.
Modulus improvement rate (%) = (MS / MB) × 100 (II)
MS: Average value of tensile elastic modulus of 5 sample test pieces MB: Average value of tensile elastic modulus of 5 blank test pieces The blank test piece is a test piece of the resin composition of Comparative Example 1 or Comparative Example 13 described later It is
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2より、実施例の樹脂組成物は、引張弾性率が高く、またその向上率も高いものでありながら、破断歪の向上率も高く、良好な靱性を示し、剛性と靱性を両立するものであることが分かる。また、図1に実施例3のシート断面を、図2に比較例3のシート断面を示すが、この対比から、相溶化剤を添加することにより、非晶化セルロースがより微細になって分散性も向上し、かつ、熱可塑性樹脂とセルロース繊維の界面が安定化していることが分かる。 From Tables 1 and 2, while the resin compositions of the examples have high tensile modulus and high improvement rate, the improvement rate of breaking strain is also high, good toughness is exhibited, and rigidity and toughness are compatible. Know that it is Further, FIG. 1 shows the sheet cross section of Example 3 and FIG. 2 shows the sheet cross section of Comparative Example 3. From this comparison, the addition of the compatibilizer makes the non-crystallized cellulose finer and disperses. It is also understood that the properties are improved, and the interface between the thermoplastic resin and the cellulose fiber is stabilized.
 本発明の樹脂組成物は、剛性及び靱性を両立するものであることから、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に好適に使用することができる。 The resin composition of the present invention can be suitably used in various industrial applications such as household goods, household electric appliance parts, packaging materials for household electric appliance parts, automobile parts, etc. since it is a combination of rigidity and toughness. .

Claims (10)

  1.  熱可塑性樹脂に、該熱可塑性樹脂100質量部に対して、相対結晶化度が50%未満である非晶化セルロースを5質量部以上70質量部以下、及び相溶化剤を2質量部以上20質量部以下、ただし該熱可塑性樹脂がポリエチレンの場合には相溶化剤を4質量部以上20質量部以下含有してなる、樹脂組成物。 5 parts by mass to 70 parts by mass of non-crystallized cellulose having a relative crystallinity of less than 50% and 100 parts by mass of the thermoplastic resin, and 2 parts by mass or more of a compatibilizer to 20 parts by mass of the thermoplastic resin A resin composition comprising not more than 4 parts by mass but not less than 4 parts by mass and not more than 20 parts by mass of the compatibilizer when the thermoplastic resin is polyethylene.
  2.  相溶化剤の重量平均分子量が1000以上100000以下である、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the weight average molecular weight of the compatibilizer is 1,000 or more and 100,000 or less.
  3.  相溶化剤が以下に示す群の中から少なくとも一種類を含有する、請求項1又は2記載の樹脂組成物。
    相溶化剤:酸無水物基、カルボキシル基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、及びエポキシ基からなる群より選択される少なくとも1種の官能基を有するポリオレフィン系樹脂
    The resin composition of Claim 1 or 2 in which a compatibilizer contains at least 1 sort (s) out of the group shown below.
    Compatibilizer: having at least one functional group selected from the group consisting of an acid anhydride group, a carboxyl group, an amino group, an imino group, an alkoxysilyl group, a silanol group, a silyl ether group, a hydroxyl group, and an epoxy group Polyolefin resin
  4.  相溶化剤の非晶化セルロースに対する質量比(相溶化剤/非晶化セルロース)が0.8以下である、請求項1~3いずれか記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the mass ratio of the compatibilizer to the non-crystallized cellulose (compatibilizer / non-crystallized cellulose) is 0.8 or less.
  5.  熱可塑性樹脂がポリオレフィン、ポリスチレン、ポリエステル、及びポリアミドから選ばれる1種又は2種以上を含む、請求項1~4いずれか記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the thermoplastic resin comprises one or more selected from polyolefins, polystyrenes, polyesters, and polyamides.
  6.  熱可塑性樹脂がポリオレフィンを含む、請求項1~5いずれか記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the thermoplastic resin comprises a polyolefin.
  7.  ポリオレフィンがポリエチレン及びポリプロピレンから選ばれる1種又は2種である、請求項6記載の樹脂組成物。 The resin composition according to claim 6, wherein the polyolefin is one or two selected from polyethylene and polypropylene.
  8.  熱可塑性樹脂に、該熱可塑性樹脂100質量部に対して、相対結晶化度が50%未満である非晶化セルロースを5質量部以上70質量部以下、及び相溶化剤を2質量部以上20質量部以下、ただし該熱可塑性樹脂がポリエチレンの場合には相溶化剤を4質量部以上20質量部以下配合する、樹脂組成物の製造方法。 5 parts by mass to 70 parts by mass of non-crystallized cellulose having a relative crystallinity of less than 50% and 100 parts by mass of the thermoplastic resin, and 2 parts by mass or more of a compatibilizer to 20 parts by mass of the thermoplastic resin The manufacturing method of the resin composition which mix | blends 4 parts by mass or more and 20 parts by mass or less of the compatibilizing agent if the thermoplastic resin is polyethylene.
  9.  請求項1~7いずれかに記載の樹脂組成物を含有する成形体。 A molded article comprising the resin composition according to any one of claims 1 to 7.
  10.  請求項1~7いずれかに記載の樹脂組成物を加工して成形体とする、成形体の製造方法。 A method for producing a molded article, wherein the resin composition according to any one of claims 1 to 7 is processed to form a molded article.
PCT/JP2017/028312 2017-08-03 2017-08-03 Resin composition WO2019026258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028312 WO2019026258A1 (en) 2017-08-03 2017-08-03 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028312 WO2019026258A1 (en) 2017-08-03 2017-08-03 Resin composition

Publications (1)

Publication Number Publication Date
WO2019026258A1 true WO2019026258A1 (en) 2019-02-07

Family

ID=65233721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028312 WO2019026258A1 (en) 2017-08-03 2017-08-03 Resin composition

Country Status (1)

Country Link
WO (1) WO2019026258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199563A (en) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 Resin composition
WO2019220895A1 (en) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 Resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023721A1 (en) * 2006-08-22 2008-02-28 Mitsubishi Plastics, Inc. Multilayered lactic-acid-based flexible film
JP2009249489A (en) * 2008-04-04 2009-10-29 Asahi Kasei Chemicals Corp Thermoplastic resin composition and its manufacturing method
JP2011137094A (en) * 2009-12-28 2011-07-14 Kao Corp Resin composition
JP2013010855A (en) * 2011-06-29 2013-01-17 Kao Corp Polylactic acid resin composition
JP2015155535A (en) * 2014-01-16 2015-08-27 昭博 西岡 Thermoplastic resin composition in which amorphous cellulose is composited and production method thereof
WO2016157564A1 (en) * 2015-03-31 2016-10-06 日本山村硝子株式会社 Process for producing cellulose-containing olefin-based resin composition
JP2017071676A (en) * 2015-10-06 2017-04-13 花王株式会社 Resin composition
JP2017137470A (en) * 2016-02-04 2017-08-10 花王株式会社 Resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023721A1 (en) * 2006-08-22 2008-02-28 Mitsubishi Plastics, Inc. Multilayered lactic-acid-based flexible film
JP2009249489A (en) * 2008-04-04 2009-10-29 Asahi Kasei Chemicals Corp Thermoplastic resin composition and its manufacturing method
JP2011137094A (en) * 2009-12-28 2011-07-14 Kao Corp Resin composition
JP2013010855A (en) * 2011-06-29 2013-01-17 Kao Corp Polylactic acid resin composition
JP2015155535A (en) * 2014-01-16 2015-08-27 昭博 西岡 Thermoplastic resin composition in which amorphous cellulose is composited and production method thereof
WO2016157564A1 (en) * 2015-03-31 2016-10-06 日本山村硝子株式会社 Process for producing cellulose-containing olefin-based resin composition
JP2017071676A (en) * 2015-10-06 2017-04-13 花王株式会社 Resin composition
JP2017137470A (en) * 2016-02-04 2017-08-10 花王株式会社 Resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199563A (en) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 Resin composition
WO2019220895A1 (en) * 2018-05-17 2019-11-21 パナソニックIpマネジメント株式会社 Resin composition
JP7213459B2 (en) 2018-05-17 2023-01-27 パナソニックIpマネジメント株式会社 resin composition

Similar Documents

Publication Publication Date Title
JP6857468B2 (en) Resin composition
KR101962719B1 (en) Carbon-neutral bio-based plastics with enhanced mechanical properties, thermoplastic biomass composite used for preparing the same and methods for preparing them
Paul et al. Effect of green plasticizer on the performance of microcrystalline cellulose/polylactic acid biocomposites
Sato et al. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement
Klapiszewski et al. Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites
CA2770973C (en) Process of producing thermoplastic starch/polymer blends
JP2018104702A (en) Resin composition
JP2019512591A (en) Cellulose composite material including wood pulp
EP3265515A1 (en) Biodegradable polymer-based biocomposites with tailored properties and method of making those
JP6691759B2 (en) Resin composition
JP5322916B2 (en) Resin composition
CA2641924A1 (en) Environmentally degradable polymeric composition and process for obtaining an environmentally degradable polymeric composition
CA2641921A1 (en) Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend
JP6403328B2 (en) Amorphous cellulose composite thermoplastic resin composition and method for producing the same
JP5279415B2 (en) Resin composition and molded body using the same
JP7094590B1 (en) Resin composition and molded product
Carbonell-Verdu et al. Valorization of cotton industry byproducts in green composites with polylactide
WO2018123959A1 (en) Method for producing low crystallinity cellulose, and resin composition
WO2019026258A1 (en) Resin composition
JP6727085B2 (en) Resin composition
CA3223644A1 (en) Biodegradable polymer based biocomposites
Scharnowski et al. Biocomposites from Thermoplastic Postindustrial Waste Starches Filled with Mineral Fillers for Single‐Use Flexible Packaging
CN102079850A (en) Enhanced and toughened fully degradable polylactic acid packaging material and preparation method thereof
JP7184627B2 (en) Method for producing cellulose composite powder
JP7108401B2 (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP