WO2019026191A1 - Image capture device and control method - Google Patents

Image capture device and control method Download PDF

Info

Publication number
WO2019026191A1
WO2019026191A1 PCT/JP2017/027943 JP2017027943W WO2019026191A1 WO 2019026191 A1 WO2019026191 A1 WO 2019026191A1 JP 2017027943 W JP2017027943 W JP 2017027943W WO 2019026191 A1 WO2019026191 A1 WO 2019026191A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
condition
spectral information
light
imaging
Prior art date
Application number
PCT/JP2017/027943
Other languages
French (fr)
Japanese (ja)
Inventor
静児 坂元
正法 三井
卓二 堀江
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/027943 priority Critical patent/WO2019026191A1/en
Publication of WO2019026191A1 publication Critical patent/WO2019026191A1/en
Priority to US16/739,858 priority patent/US11070722B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/665Control of cameras or camera modules involving internal camera communication with the image sensor, e.g. synchronising or multiplexing SSIS control signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof

Definitions

  • the present invention relates to an imaging device and a control method.
  • a multi-band spectral image including three primary colors of R, G, and B has high resolution in the color or wavelength direction, and is used for high color reproduction, object analysis, and the like.
  • a technique for acquiring spectral information with high accuracy from such a spectral image a technique is known in which a user selects a desired image from images acquired by irradiating a plurality of different illumination lights and sets an acquisition condition. (See, for example, Patent Document 1).
  • Patent Document 2 sets the acquisition condition of spectral information according to the measurement result of the spectral characteristic of the subject, it can not judge whether the acquisition condition is appropriate or not. Therefore, there has been a demand for a technology capable of acquiring highly accurate spectral information of an object under appropriate acquisition conditions.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an imaging device and a control method capable of acquiring highly accurate spectral information of an object under appropriate acquisition conditions.
  • an imaging device includes an illumination unit including components of a plurality of wavelength bands, each component generating illumination light having a characteristic according to the setting;
  • An imaging unit configured to generate an image signal by imaging light from a subject;
  • a condition setting unit configured to set acquisition conditions of spectral information of the subject including conditions related to operations of the illumination unit and the imaging unit;
  • An image analysis unit that analyzes an image signal generated based on the acquisition condition to acquire spectral information of the subject, and an end condition for the spectral information acquired by the image analysis unit to end acquisition of the spectral information
  • a determination unit that determines whether or not the condition is satisfied, and the condition setting unit changes the acquisition condition of the spectral information when the determination unit determines that the end condition is not satisfied.
  • the imaging apparatus is characterized in that, in the above-mentioned invention, the condition setting unit sets a photographing condition at the time of main photographing by the imaging unit when the judgment unit judges that the termination condition is satisfied. .
  • the imaging apparatus is characterized in that, in the above-mentioned invention, the condition setting unit can selectively set any one of the plurality of acquisition conditions.
  • the imaging device is characterized in that, in the above-mentioned invention, the condition setting unit improves sensitivity of at least a part of wavelength bands in the image signal when changing the acquisition condition.
  • the imaging apparatus is characterized in that, in the above-mentioned invention, the condition setting unit determines a wavelength band for improving the sensitivity based on a signal value of the image signal.
  • the imaging apparatus is characterized in that, in the above invention, the condition setting unit improves wavelength resolution of at least a part of wavelength bands in the image signal when changing the acquisition condition.
  • the imaging device is characterized in that, in the above-mentioned invention, the condition setting unit determines a wavelength band for improving the wavelength resolution based on a change in signal value of the image signal.
  • the illumination unit may be a flat filter whose light transmission center wavelength continuously changes along a preset direction, and a side from which light is emitted from the filter A liquid crystal portion that selectively transmits a part of the wavelength band of the light transmitted through the filter, and a light emission portion located on the side from which the light is emitted from the liquid crystal portion, and diffusing the light transmitted through the liquid crystal portion And a diffusion optical system that makes the light uniform, and the liquid crystal unit is capable of changing the wavelength band of light to be transmitted.
  • a control method generates an image signal by capturing an image of light from an object, using an illumination unit that generates illumination light that is composed of components of a plurality of wavelength bands and each component has a characteristic according to a setting.
  • FIG. 1 is a block diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically showing the characteristics of the wavelength selection filter.
  • FIG. 3 is a view schematically showing the transmittance of light at representative positions of the wavelength selection filter.
  • FIG. 4 is a diagram showing a setting example of a region where the liquid crystal part transmits light.
  • FIG. 5 is a flowchart showing an outline of processing until the imaging device according to Embodiment 1 of the present invention acquires spectral information of a subject and sets conditions for main shooting.
  • FIG. 6 is a diagram for explaining an operation example of the illumination unit at the time of pre-shooting.
  • FIG. 1 is a block diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically showing the characteristics of the wavelength selection filter.
  • FIG. 3 is a view schematically showing the transmittance of light at representative positions of the wavelength selection filter
  • FIG. 7 is a diagram showing the relationship between the light amount when the illumination unit emits illumination light and the spectral information calculated by the image analysis unit based on the image signal.
  • FIG. 8 is a diagram showing an example of changing the acquisition condition and spectral information acquired after the change of the acquisition condition.
  • FIG. 9 is a diagram showing an example of changing the acquisition condition performed by the condition setting unit when the end condition is not satisfied in the first modification of the first embodiment of the present invention and spectral information acquired after the acquisition condition is changed.
  • FIG. 10 is a diagram showing an example of changing the acquisition condition performed by the condition setting unit when the end condition is not satisfied and the spectral information acquired after the change of the acquisition condition in the second modification of the first embodiment of the present invention.
  • FIG. 11A shows that the imaging device according to Embodiment 2 of the present invention performs illumination light having components of four bands equal to each other in the light amount of the transmission center wavelength and the half width as an initial state to perform two pre-shootings. It is a figure (the 1) which shows the relationship between the spectral information in the case of, and a wavelength.
  • FIG. 11B shows that the imaging device according to Embodiment 2 of the present invention performs illumination light having components of four bands having the same light intensity at the transmission center wavelength and the half bandwidth equal to each other in the initial state to perform two pre-shootings. It is a figure (the 2) which shows the relationship between the spectral information in the case of, and a wavelength.
  • FIG. 1 shows that the imaging device according to Embodiment 2 of the present invention performs illumination light having components of four bands equal to each other in the light amount of the transmission center wavelength and the half width as an initial state to perform two pre-shootings.
  • FIG. 11B shows that the imaging device according to Em
  • FIG. 12A is acquired according to the acquisition condition changed by the condition setting unit and the acquisition condition when it is determined that the spectral information does not satisfy the termination condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is a figure (the 1) showing spectral information.
  • FIG. 12B is acquired according to the acquisition condition changed by the condition setting unit and the acquisition condition when it is determined that the spectral information does not satisfy the termination condition by the determination unit of the imaging device according to Embodiment 2 of the present invention It is a figure (the 2) showing spectral information.
  • FIG. 12A is acquired according to the acquisition condition changed by the condition setting unit and the acquisition condition when it is determined that the spectral information does not satisfy the termination condition by the determination unit of the imaging device according to Embodiment 2 of the present invention It is a figure (the 2) showing spectral information.
  • FIG. 12A is acquired according to the acquisition condition changed by the condition setting unit and the acquisition condition when it is determined that the spectral information does not satisfy the termination condition by
  • FIG. 13A is acquired according to the last acquisition condition set by the condition setting unit and the acquisition condition when it is determined that the spectral information satisfies the end condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is a figure (the 1) showing the spectrum information which was carried out.
  • FIG. 13B is acquired according to the last acquisition condition set by the condition setting unit and the acquisition condition when it is determined that the spectral information satisfies the end condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is the figure which shows the spectrum information which is done (the 2).
  • FIG. 1 is acquired according to the last acquisition condition set by the condition setting unit and the acquisition condition when it is determined that the spectral information satisfies the end condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is the figure which shows the spectrum information which is done (the 2).
  • FIG. 14A shows spectral information of two subjects individually acquired by irradiating an illumination light having four bands of components having the same amount of light at the transmission center wavelength and the half bandwidth equal to each other with the imaging device according to Embodiment 3 of the present invention It is a figure which shows the relationship of a wavelength.
  • FIG. 14B is a diagram showing a relationship between spectral information and wavelengths of two objects acquired after the condition setting unit of the imaging device according to Embodiment 3 of the present invention changes the acquisition condition.
  • FIG. 15A shows the relationship between wavelength and spectral information obtained by the imaging device according to Embodiment 4 of the present invention emitting illumination light having four band components having equal light intensity and half bandwidth at the transmission center wavelength.
  • FIG. 15B shows the relationship between the wavelength and the spectral information obtained by the imaging device according to Embodiment 4 of the present invention emitting illumination light in which the maximum light amounts of the two bands whose spectral information has reached the saturation value are reduced.
  • FIG. FIG. 15C is a diagram showing the relationship between the spectral information and the wavelength acquired by the imaging device according to Embodiment 4 of the present invention emitting illumination light in which the half width of the illumination light at the transmission center wavelength is narrowed.
  • FIG. 16 is a view showing the relationship between the light receiving sensitivity of the image pickup device imaging device according to Embodiment 5 of the present invention, and the light amount of illumination light emitted from the illumination unit and the wavelength.
  • FIG. 1 is a block diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention.
  • the imaging device 1 shown in the figure includes an imaging unit 2, a lighting unit 3, an input unit 4, an output unit 5, a control unit 6, and a storage unit 7.
  • the imaging unit 2 photoelectrically converts light from the subject formed by focusing the light from the subject by imaging the imaging optical system 21 that collects light from the subject and forms an imaging signal. And an element 22.
  • the imaging optical system 21 is configured using one or more lenses.
  • the imaging device 22 is configured using, for example, a monochrome image sensor such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • the imaging device 22 may be an image sensor having R, G, B color filters, or may be a multi-band image sensor of four or more bands.
  • the illumination unit 3 includes a light source unit 31 that outputs white light, and a flat wavelength selection filter (linear variable filter: hereinafter referred to as “LVF”) 32 that transmits white light at different transmission wavelengths according to the incident position.
  • the liquid crystal unit 33 is located on the side where light is emitted from the LVF 32 and selectively transmits a predetermined wavelength band of the light transmitted through the LVF 32, and the liquid crystal unit 33 is located on the side where light is emitted from the liquid crystal unit 33
  • diffusive optical system 34 that diffuses the transmitted light and illuminates the light as illumination light.
  • the light source unit 31 outputs white light using, for example, a light emitting diode (LED) or a laser light source.
  • the light source unit 31 may be configured using a white LED or a white laser, and outputs white light by combining three or more LEDs or lasers including red (R), green (G), and blue (B). It is good also as composition.
  • the light source unit 31 may be configured using a xenon lamp or a halogen lamp.
  • the LVF 32 has a flat plate shape, and the transmission center wavelength of light continuously changes along the preset direction of the main surface.
  • FIG. 2 is a diagram schematically showing the characteristics of the LVF 32, and is a diagram showing the relationship between the position in the filter and the transmission center wavelength at which the transmittance is the highest.
  • the wavelength band ⁇ min ⁇ ⁇ ⁇ ⁇ max is a visible region.
  • the four vertical lines described in the LVF 32 in FIG. 2 are virtual lines connecting the positions where the wavelength bands to be transmitted are the same. These lines are orthogonal to the direction in which the transmission center wavelength changes, that is, the x-axis direction in FIG.
  • FIG. 3 is a view schematically showing the light transmittance at representative positions of the LVF 32.
  • the spectrum of the transmitted light at each position of the LVF 32 is substantially uniform in transmittance at the transmission center wavelength, and substantially uniform in bandwidth.
  • a multicolor LED light source may be used in which a plurality of LEDs of four or more colors outputting light in different wavelength bands are arranged two-dimensionally.
  • the liquid crystal unit 33 is located on the exit surface side of the LVF 32, and is configured using a liquid crystal panel capable of selectively outputting light of a preset wavelength band from the transmitted light transmitted through the LVF 32.
  • the liquid crystal unit 33 can selectively switch transmission / non-transmission of incident light for each region by changing the state of liquid crystal molecules in each region under the control of the control unit 6.
  • the transmission wavelength band of the LVF 32 and the incident position of the liquid crystal unit 33 are associated with each other and stored in a position information storage unit 72 of the storage unit 7 described later.
  • FIG. 4 is a diagram showing a setting example of a region where the liquid crystal unit 33 transmits light.
  • the hatched area is an area that transmits light.
  • the horizontal direction in the drawing corresponds to the wavelength change direction of the LVF 32.
  • the width of the transmission region in the left and right direction in the drawing corresponds to the width of the wavelength band of the transmitted light.
  • the height in the vertical direction in the figure corresponds to the light amount of the transmitted light. For example, since the second transmission region from the right in FIG. 4 penetrates in the vertical direction, the light amount of the wavelength component included in the transmission region is maximum.
  • region of the transmitted light may be making shapes other than a rectangle.
  • the diffusion optical system 34 is configured using, for example, a diffusion plate for diffusing the light flux, or an optical element for homogenizing the light flux diffused by the diffusion plate, and illuminates the light flux obtained by uniforming the illuminance distribution of the light transmitted through the liquid crystal section 33. It illuminates the subject as light.
  • the illumination unit 3 includes components of a plurality of wavelength bands different from one another, and generates illumination light in which each component has a characteristic according to the setting.
  • the illumination unit 3 sequentially illuminates each component of the illumination light in time division.
  • the number (band number) of the components of the wavelength band included in the illumination light and the half width of each wavelength band can be set by the user inputting via the input unit 4.
  • the input unit 4 receives input of various signals including an instruction signal for operating the imaging device 1.
  • the input unit 4 includes input devices such as a keyboard, various buttons, various switches, and pointing devices such as a mouse and a touch panel, receives an input of a signal according to an external operation on these devices, and outputs the signal to the control unit 6 .
  • the input unit 4 may have a microphone for voice input.
  • the output unit 5 outputs various information including an image corresponding to the imaging signal generated by the imaging unit 2.
  • the output unit 5 is configured using liquid crystal, organic EL (Electro Luminescence), or the like, and includes a monitor that outputs various information including images and characters, and a speaker that outputs sound.
  • the control unit 6 includes an image analysis unit 61, a condition setting unit 62, a determination unit 63, a photographing control unit 64, and a lighting control unit 65.
  • the image analysis unit 61 acquires spectral information of a subject by analyzing an image using an image signal generated and output by the imaging unit 2. Specifically, the image analysis unit 61 calculates an average of signal values of pixels in a region of interest (ROI) set in advance in an image corresponding to an image signal, and uses this average as spectral information. It is stored in the storage unit 7 in association with the wavelength component of the illumination light at the time of shooting.
  • the region of interest is set by the input unit 4 receiving an input.
  • the region of interest may be the entire image.
  • the image analysis unit 61 may calculate statistical values such as the maximum value or the mode value of the signal values of the pixels in the region of interest instead of the average of the signal values of the pixels in the region of interest.
  • spectral signal value a statistical value of signal values of pixels in a region of interest as spectral information is referred to as “spectral signal value”.
  • the condition setting unit 62 sets the imaging condition of the imaging unit 2 and outputs the imaging condition to the imaging control unit 64, and sets the illumination condition of the illumination unit 3 and outputs the illumination condition to the illumination control unit 65.
  • the shooting conditions include a frame rate at the time of shooting and the like. Further, as the illumination condition, there are the number of bands at the time of photographing one image, the central wavelength of the bands, the half width, and the like.
  • the imaging conditions and the illumination conditions constitute acquisition conditions of spectral information and are related to each other. For example, when the illumination unit 3 sequentially illuminates each component of illumination light in time division, the imaging unit 2 captures an image each time the band of the illumination unit 3 is switched, and generates and outputs an imaging signal.
  • the condition setting unit 62 changes the acquisition condition of the spectral information according to the determination result of the determination unit 63 described later.
  • the condition setting unit 62 changes the sensitivity of at least a part of wavelength bands in the image signal when changing the acquisition condition. Specifically, the condition setting unit 62 increases the maximum light amount of the band having a spectral signal value smaller than a predetermined threshold according to a predetermined rule.
  • the predetermined rule is determined, for example, as a function of the maximum light intensity before the change.
  • the determination unit 63 determines whether the spectral information acquired by the image analysis unit 61 by the pre-shooting satisfies the end condition for ending the acquisition of the spectral information by the pre-shooting.
  • the termination condition in the first embodiment is, for example, “all spectral signal values are larger than a predetermined threshold”.
  • the condition setting unit 62 changes the acquisition condition of the spectral information based on the determination result.
  • the imaging control unit 64 controls the imaging operation performed by the imaging unit 2 based on the imaging conditions set by the condition setting unit 62.
  • the illumination control unit 65 controls the operation of the illumination unit 3 in synchronization with the photographing control unit 64 based on the illumination condition set by the condition setting unit 62. Specifically, the illumination control unit 65 controls the transmission pattern of each wavelength component in the liquid crystal unit 33 by controlling the state of the liquid crystal unit 33 at a predetermined timing, and sequentially illuminates multiple bands of illumination light in time division. Control to
  • the control unit 6 is configured using, for example, a general-purpose processor such as a central processing unit (CPU) or a dedicated integrated circuit that executes a specific function such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • a general-purpose processor such as a central processing unit (CPU) or a dedicated integrated circuit that executes a specific function such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the storage unit 7 stores the filter information storage unit 71 storing transmission characteristics including the wavelength band of the transmitted light at each transmission position of the LVF 32, and position information storing the transmission position of the LVF 32 and the incident position in the liquid crystal unit 33 in association with each other.
  • the storage unit 7 also stores a plurality of programs executed by the control unit 6 and various setting information.
  • the program may be written and stored in a computer readable recording medium.
  • the program may be written to the storage unit 7 or the recording medium when the computer or the recording medium is shipped as a product, or may be downloaded through a communication network.
  • the storage unit 7 is configured using volatile memory such as random access memory (RAM) and non-volatile memory such as read only memory (ROM).
  • volatile memory such as random access memory (RAM) and non-volatile memory such as read only memory (ROM).
  • ROM read only memory
  • the storage unit 7 may be configured using a computer readable recording medium such as a memory card that can be externally mounted.
  • FIG. 5 is a flowchart showing an outline of processing until the imaging device 1 acquires spectral information of a subject and sets conditions for main imaging.
  • the condition setting unit 62 sets an acquisition condition for acquiring spectral information (step S1).
  • the condition setting unit 62 sets an acquisition condition according to, for example, the setting instruction signal received by the input unit 4.
  • FIG. 6 is a diagram for explaining an operation example of the illumination unit 3 at the time of pre-shooting, and schematically showing a light transmission region of the LVF 32. As shown in FIG. In the case shown in FIG.
  • the imaging unit 2 performs imaging each time the illumination light of the illumination unit 3 is switched.
  • the image analysis unit 61 acquires spectral information by analyzing an image signal generated by the imaging unit 2 in advance to generate spectral information and stores the spectral information in the spectral information storage unit 75 (step S3).
  • the spectral information is, as described above, statistical values of pixels in the region of interest set in the image corresponding to the image signal, for example.
  • FIG. 7 shows the light amount K of the illumination light when the illumination unit 3 irradiates the illumination light as shown in FIG. 6 and the spectral signal in the region of interest, which is the spectral information calculated by the image analysis unit 61 based on the image signal. It is a figure which shows the relationship with the value I. Maximum light amount of the illumination light is the same value K 1 in all bands.
  • a spectral signal value when the transmission center wavelength is irradiated with illumination light of lambda n is set to I n.
  • I th shown in FIG. 7 is a predetermined threshold for giving an end condition.
  • the determination unit 63 refers to the condition storage unit 73 to determine whether or not the spectral information satisfies the predetermined end condition (step S4). Exit conditions in the case shown in FIG. 7 is a "spectral signal value I n of all the bands is larger than the threshold value I th." In FIG. 7, since the spectral signal values I 1 and I 2 are equal to or less than the threshold value I th , the determination unit 63 determines that the end condition is not satisfied.
  • step S5 the imaging device 1 ends the series of processes.
  • step S4 as a result of the determination by the determination unit 63, when the spectral information does not satisfy the termination condition (step S4: No), the condition setting unit 62 changes the acquisition condition of the spectral information with reference to the condition storage unit 73 (Ste S6).
  • FIG. 8 is a diagram showing a modification example of the acquisition condition and spectral signal values acquired after the change of the acquisition condition.
  • the condition setting unit 62 sets the light quantity of the illumination light of the transmission center wavelengths ⁇ 1 and ⁇ 2 having the spectral signal values I 1 and I 2 equal to or less than the threshold value I th to K 2 larger than the light quantity K 1. It is set to.
  • the quantity K 2 is a function of the quantity K 1.
  • the light quantity K 2 is obtained by multiplying a predetermined magnification ⁇ (> 1) to the light quantity K 1.
  • the condition setting unit 62 changes the acquisition condition so as to perform the pre-shooting by irradiating the illumination of two bands in which the light amount is changed.
  • the imaging device 1 returns to step S2 and acquires spectral information again.
  • two spectral signal values I 1 ′ and I 2 ′ respectively acquired again by irradiating the bands of transmission center wavelength ⁇ 1 and ⁇ 2 and performing pre-shooting are larger than the threshold I th . Therefore, in this case, the determination unit 63 determines in step S4 that the spectral information satisfies the end condition. If the determination unit 63 determines that the end condition is not satisfied again, the condition setting unit 62 further changes the acquisition condition and repeats the process after step S2. Specifically, to obtain the spectral information is multiplied by a factor ⁇ in quantity K 2.
  • the output unit 5 may output an error message to the effect that spectral information can not be acquired, and the series of processes may be ended.
  • the condition setting unit 62 may set the condition at the time of main photographing based on the latest acquisition condition.
  • the condition setting unit changes the acquisition condition of the spectral information, so the acquisition condition is set to It is possible to acquire spectral information of a subject with high accuracy by setting it as appropriate according to the characteristics.
  • the sensitivity of the wavelength band is increased to improve the S / N ratio by increasing the maximum light amount of the illumination light component of the wavelength band smaller than the threshold, and thus the spectral characteristics of the object. It is possible to acquire highly accurate spectral information according to
  • the time during which the user is adjusting the composition and focus for the main shooting is utilized. Control can be performed.
  • the first modification of the first embodiment is different from the first embodiment in the method of changing the end condition and the acquisition condition.
  • the end condition in the first modification is, for example, “whether or not identification with already acquired spectral information or spectral information serving as a reference is possible”.
  • FIG. 9 is a diagram showing an example of changing the acquisition condition performed by the condition setting unit 62 when the end condition is not satisfied, and spectral signal values acquired after changing the acquisition condition.
  • the condition setting unit 62 emits illumination light of three bands (transmission center wavelengths ⁇ 5 , ⁇ 6 , ⁇ 7 ) different from the illumination light shown in FIG. 7 as acquisition conditions.
  • wavelength resolution can be improved and more accurate spectral information can be acquired.
  • pre-shooting is performed after the change, only shooting of the newly added three bands may be performed, or shooting of seven bands including the band before the change may be performed.
  • the newly added band has no overlap with the initial band, but adjacent bands may have an overlap as long as their transmission center wavelengths are different from each other. If the end condition is not satisfied even under the condition shown in FIG. 9, pre-shooting is performed by further increasing the bands having different transmission center wavelengths. In that case, illumination light of a new band whose emission center wavelength is, for example, a wavelength between the adjacent transmission center wavelengths is emitted.
  • the end condition in the case of changing the acquisition condition so as to increase the number of bands is not limited to the one described above. Further, the method of increasing the number of bands is not limited to the method described above.
  • FIG. 10 is a diagram showing a modification example of the acquisition condition performed by the condition setting unit 62 when the end condition is not satisfied, and spectral signal values acquired after the acquisition condition is changed.
  • the condition setting unit 62 performs a change of narrowing the half width of each band according to a predetermined rule as a change of the acquisition condition. In order to narrow the full width at half maximum of each band, it is sufficient to reduce the area of the liquid crystal portion 33 where the transmitted light of the LVF 32 passes.
  • the predetermined rule is given, for example, as a function of half width before change.
  • the spectral information is generally smaller than before the change, so that it is possible to suppress spectral signal values that are likely to be saturated. Further, by narrowing the half width, for example, it is possible to improve the determination accuracy in the case where the difference between the maximum value and the minimum value of the spectral information of each band is important in determining the characteristics of the subject.
  • the end condition in the case of changing the acquisition condition so as to narrow the half width of the band is not limited to the one described above.
  • the end condition may be set such that the information of such a band can be accurately acquired, and the method of changing the acquisition condition may be set.
  • the light amount of the illumination light of this band may be increased to reacquire spectral information.
  • transmission center wavelength lambda 3 may be re-acquire the spectral information by increasing the number of bands in the vicinity of lambda 4, the transmission center wavelength lambda 3, the spectral information by increasing the half width in the vicinity of lambda 4 May be reacquired.
  • the wavelength resolution can be improved by changing the acquisition condition, and the spectral characteristics of the subject can be acquired with higher accuracy.
  • Second Embodiment In the second embodiment of the present invention, two curves are obtained based on spectral signal values as spectral information obtained when two images are pre-photographed by shifting the wavelength of the illumination light of each band by a predetermined amount.
  • the degree of similarity is determined, and the pre-shooting is ended when the degree of similarity falls within a predetermined range. That is, the end condition in the second embodiment is "the similarity between two curves obtained based on the spectral signal values of two images acquired in different bands is within a predetermined range".
  • this end condition is not satisfied, the number of bands of illumination light is increased and the half width of the band is decreased and two pre-photographs are again performed in the same manner as described above, and Determine the degree of similarity. The above process is repeated until the similarity between the two curves falls within a predetermined range.
  • the configuration of the imaging device according to the second embodiment is the same as the configuration (see FIG. 1) of the imaging device 1 described in the first embodiment.
  • the outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as in the first embodiment (see FIG. 5).
  • FIGS. 11A and 11B show spectral signal values and wavelengths obtained by performing two pre-shootings by irradiating illumination light having four band components whose light intensity at the transmission center wavelength and half width are equal to each other in the initial state. It is a figure which shows a relation.
  • polygonal line P 11 obtained by connecting the spectral information adjacent a straight line is a curve of the similarity determination target.
  • polygonal line P 12 obtained by connecting a straight line spectral information adjacent in the same manner as FIG. 11A is a curve of the similarity determination target.
  • the wavelength ⁇ (1) n + 4 is a wavelength obtained by increasing ⁇ (1) n by a predetermined amount ⁇ 1 .
  • ⁇ 1 is the same for all ⁇ (1) n
  • ⁇ 1 ( ⁇ (1) 2 ⁇ (1) 1 ) / 2.
  • Determining unit 63 determines the similarity of the polygonal line P 11 and line P 12.
  • the determination unit 63 makes a determination using any of various methods conventionally known. As such a method, for example, a similarity evaluation method using a correlation coefficient, pattern matching of an image, and the like can be raised.
  • the spectral information is end condition It is a figure which shows the acquisition condition which the condition setting part 62 changed, when it determines with not satisfying
  • Polygonal line P 21 is obtained by connecting the spectral information adjacent to each other in a straight line.
  • Similar to the polygonal line P 22 also polygonal line P 21, obtained by connecting the spectral information adjacent to each other in a straight line.
  • the full widths at half maximum of each band shown in FIGS. 12A and 12 are all equal and smaller than the full width at half maximum of each band shown in FIGS. 11A and 11B.
  • Determining unit 63 determines the similarity of polygonal line P 21 and line P 22. As a result of the determination, if the degree of similarity satisfies a predetermined criterion (step S4: Yes), the process proceeds to setting of the main photographing condition. On the other hand, as a result of the determination, if the degree of similarity does not satisfy the predetermined standard (step S4: No), the condition setting unit 62 changes the acquisition condition again. Hereinafter, the description will be continued as the similarity of the polygonal line P 21 and a line P 22 does not satisfy the termination condition.
  • FIGS. 13A and 13B follow the last acquisition condition set by the condition setting unit 62 and the acquisition condition thereof. It is a figure which shows the spectroscopy signal value at the time of pre imaging
  • the broken line P N1 is obtained by connecting adjacent spectral information with a straight line.
  • the broken line P N2 is also obtained by connecting adjacent spectral information with a straight line.
  • the method of changing the acquisition condition described in the second embodiment is suitable, for example, in the case where the profile of spectral information of a wide band is important in determining the characteristics of a subject.
  • approximation is performed using a curve that passes all spectral information, for example, by using a method such as the least squares method. May be
  • only the number of bands of illumination light may be increased to not change the half width of the band, or the light amount of the transmission center wavelength may be changed along with the number of bands. May be
  • the wavelength may be divided into a plurality of sections, and the determination unit 63 may determine the similarity of the curves in each section.
  • the condition setting unit 62 may change the acquisition condition so as to narrow the half value width only for the section (non-similar section) determined that the degree of similarity does not fall within the predetermined range.
  • the third embodiment of the present invention calculates the maximum slope of the curve showing the relationship between the wavelength of the illumination light and the spectral signal value of the photographed image, and halves the band of the illumination light until this slope becomes larger than a predetermined slope. Increase the number of bands while narrowing the price range.
  • the configuration of the imaging apparatus according to the third embodiment is the same as the configuration (see FIG. 1) of the imaging apparatus 1 described in the first embodiment.
  • the outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as in the first embodiment (see FIG. 5).
  • FIG. 14A is a diagram showing the relationship between the spectral signal values and the wavelengths of two objects separately pre-photographed by irradiating illumination light having four bands of components having the light intensity of the transmission center wavelength and the half width equal to each other.
  • Polygonal line P 101 and P 102 are shown in the figure, there is a large difference between the spectral information in the spectral information transmission center wavelength lambda 3 both in transmission center wavelength lambda 2, are both maximum slope of the broken line.
  • the termination condition in this case is, for example, “the maximum value of the change rate (slope) of the spectral signal value adjacent to the wavelength direction with respect to the wavelength is a predetermined value or more”.
  • the condition setting unit 62 changes the acquisition condition (Step S 6 in FIG. 5). Specifically, a section including the transmission center wavelengths ⁇ 2 and ⁇ 3 is set as the wavelength band in which the slopes of the broken lines P 101 and P 102 are maximum, and the number of bands in this section is increased to 6 (transmission Center wavelength: ⁇ 5 to ⁇ 10 ), narrow the half bandwidth of each band.
  • FIG. 14B is a diagram showing a relationship between spectral signal values of two subjects obtained by performing preliminary pre-shooting individually after the condition setting unit 62 changes the acquisition condition, and the wavelength.
  • the broken lines P 201 and P 202 shown in FIG. 14B correspond to the broken lines P 101 and P 102 respectively.
  • Wavelengths ⁇ 5 to ⁇ 10 shown in FIG. 14B are transmission center wavelengths of the respective bands based on the changed acquisition conditions.
  • the half width of each band is approximately half of the half width of the band shown in FIG. 14A. Generally, the half width of each band after change is determined as a function having a smaller value than the half width of the band before change.
  • the maximum inclination of the broken line P 202 is the inclination between the transmission center wavelength ⁇ 5 and the transmission center wavelength ⁇ 6 .
  • the maximum inclination of the broken line P 201 is the inclination between the transmission center wavelength ⁇ 8 and the transmission center wavelength ⁇ 9 .
  • These maximum slopes are respectively larger than the maximum slopes of broken lines P 101 and P 102 shown in FIG. 14A.
  • the third embodiment it is possible to analyze spectral information with higher accuracy by improving the wavelength resolution of a portion where the change in spectral signal value with respect to the change in wavelength is large.
  • the third embodiment is suitable for the case where the rate of change of the spectral information with respect to the wavelength and the wavelength band thereof are important in determining the spectral characteristics of the subject.
  • the increase ratio of the maximum inclination before and after division of the finely divided wavelength section is equal to or less than a predetermined value.
  • the end condition may be
  • Embodiment 4 The termination condition in the fourth embodiment of the present invention is, for example, "spectral signal values of all bands are not saturated".
  • the sensitivity is lowered by lowering the maximum light amount among the acquisition conditions for the wavelength band in which the spectral signal value is saturated, and the pre-shooting is performed but is still saturated.
  • the pre-shooting is performed by further reducing the sensitivity by narrowing the half width while maintaining the maximum light intensity.
  • the configuration of the imaging device according to the fourth embodiment is the same as the configuration of the imaging device 1 described in the first embodiment (see FIG. 1).
  • the outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as in the first embodiment (see FIG. 5).
  • FIG. 15A is a diagram showing a relationship between spectral signal values and wavelengths when pre-photographed by irradiating illumination light having four bands of components having the same amount of light at the transmission center wavelength and the half bandwidth equal to each other.
  • FIG. 15A shows a state in which the spectral signal value reaches the saturation value I max when pre-shooting is performed on two bands having the transmission center wavelengths ⁇ 3 and ⁇ 4 respectively. Therefore, in this case, the determination unit 63 determines that the above-described end condition is not satisfied (step S4 in FIG. 5: No).
  • the condition setting unit 62 reduces the maximum light amount of the band (transmission center wavelengths ⁇ 3 and ⁇ 4 ) for which the saturation value is obtained according to a predetermined rule (step S6 in FIG. 5).
  • the predetermined rule is determined, for example, as a function of the maximum light intensity before the change.
  • FIG. 15B shows the relationship between the spectral signal value and the wavelength when pre-photographed by irradiating illumination light in which the maximum light intensity of the two bands for which the spectral signal value has reached the saturation value I max is K 4 smaller than K 3.
  • FIG. 15B shows the case shown in FIG. 15B, since the spectral signal value obtained by the pre-shooting with the illumination light of the transmission center wavelengths ⁇ 3 and ⁇ 4 still reaches the saturation value I max , the determination unit 63 does not satisfy the end condition described above. It is determined that
  • the condition setting unit 62 narrows the half bandwidth of the transmission center wavelengths ⁇ 3 and ⁇ 4 in accordance with a predetermined rule.
  • the predetermined rule is determined, for example, as a function of the half width before change.
  • FIG. 15C is a diagram showing a relationship between spectral signal values and wavelengths when pre-photographed by irradiating illumination light whose half width is narrowed while the maximum light quantity of the illumination light of the transmission center wavelengths ⁇ 3 and ⁇ 4 is K 4 . It is.
  • the spectral signal values of the transmission center wavelengths ⁇ 3 and ⁇ 4 are below the saturation value I max . Therefore, the determination unit 63 determines that the above-described termination condition is satisfied for the first time in the situation illustrated in FIG. 15C.
  • the fourth embodiment by changing the light quantity and the half width alternately to adjust the sensitivity, it is possible to make the saturated spectral signal value an appropriate signal level, and the spectral characteristic is further increased. It becomes possible to judge accurately.
  • condition setting unit 62 reduces the half value width when the value does not fall below the saturation value I max even if the condition change of reducing the maximum light amount of the transmission center wavelength of the band is repeated a predetermined number of times.
  • condition change to reduce the maximum light quantity of the transmission center wavelength of the band and the condition change to reduce the half width of the band may be alternately repeated.
  • condition setting unit 62 when the condition setting unit 62 changes the acquisition condition a plurality of times, only one of the processing for reducing the maximum light quantity of the transmission center wavelength of the band and the processing for narrowing the half width of the band. It may be performed continuously.
  • the imaging unit provided in the imaging apparatus according to Embodiment 5 of the present invention has an image sensor with a color filter as an imaging element.
  • the sensor sensitivity for each wavelength of the color filter is known, and the transmission center wavelength and half of each band of the illumination light are divided so as to divide the RGB wavelength band into a predetermined number according to the sensor sensitivity. Determine the price range.
  • the configuration of the imaging device excluding the imaging element is the same as the configuration of the imaging device 1 described in Embodiment 1 (see FIG. 1).
  • the outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as that of the first embodiment (see FIG. 5).
  • FIG. 16 is a view showing the relationship between the light receiving sensitivity S of the imaging device of the imaging device according to the fifth embodiment and the light amount K of the illumination light emitted by the illumination unit and the wavelength ⁇ .
  • broken lines R, G, and B respectively indicate the sensitivities S of the R component, the G component, and the B component.
  • the R component, the G component, and the B component of the illumination light are each divided into three bands.
  • the imaging device according to the fifth embodiment emits illumination light of nine bands.
  • the frame rate in the imaging unit can be improved.
  • spectral information is obtained by dividing each component of R, G, and B into arbitrary M (M is an integer) band and irradiating illumination light of 3 M band in 1 / M time. May be acquired.
  • the spectral information is not limited to the spectral signal value, and may be any information that reflects the spectral characteristics of the subject and can be acquired from the captured image.
  • the end condition is that the rate of change of spectral information with respect to the wavelength is equal to or higher than a predetermined threshold, and the number of bands is reduced in the wavelength section smaller than the threshold, the half bandwidth is increased, or both are implemented. You may As a result, the number of bands at the time of main imaging can be reduced, and speeding up of imaging and reduction of data capacity can be realized.

Abstract

An image capture device is provided with: an illumination unit that generates illumination light consisting of components of a plurality of wavelength bands, each component having a characteristic in accordance with a setting; an image capture unit that captures an image of light from a subject, thereby generating an image signal; a condition setting unit that sets acquisition conditions of spectral information of the subject including conditions related to the operations of the illumination unit and of the image capture unit; an image analysis unit that analyzes the image signal generated, on the basis of the acquisition conditions, by the image capture unit, thereby acquiring the spectral information of the subject; and a determination unit that determines whether the spectral information acquired by the image analysis unit satisfies a termination condition for terminating the acquisition of the spectral information, wherein the condition setting unit changes the acquisition conditions of the spectral information if the determination unit determines that the termination condition is not satisfied.

Description

撮像装置および制御方法Imaging device and control method
 本発明は、撮像装置および制御方法に関する。 The present invention relates to an imaging device and a control method.
 従来、R、G、Bの3原色を含む多バンドの分光画像は、色または波長方向の分解能が高く、高色再現や被写体分析等に利用されている。このような分光画像から高精度の分光情報を取得するための技術として、複数の異なる照明光を照射して取得した画像からユーザが所望の画像を選択することによって取得条件を設定する技術が知られている(例えば、特許文献1を参照)。 Conventionally, a multi-band spectral image including three primary colors of R, G, and B has high resolution in the color or wavelength direction, and is used for high color reproduction, object analysis, and the like. As a technique for acquiring spectral information with high accuracy from such a spectral image, a technique is known in which a user selects a desired image from images acquired by irradiating a plurality of different illumination lights and sets an acquisition condition. (See, for example, Patent Document 1).
 ところが上述した技術では、被写体の分光特性に応じた分光情報の取得条件を設定することはできない。そこで、被写体の分光特性を計測する分光計側部を備え、計測結果に応じて取得条件を設定して分光画像を撮像する技術が開示されている(例えば、特許文献2を参照)。 However, according to the above-described technique, it is not possible to set acquisition conditions of spectral information according to the spectral characteristics of the subject. Therefore, a technique has been disclosed that includes a spectrometer side that measures the spectral characteristics of a subject, sets an acquisition condition according to the measurement result, and captures a spectral image (see, for example, Patent Document 2).
特開2015-127777号公報JP, 2015-127777, A 特許第5806504号公報Patent No. 5806504 gazette
 しかしながら、特許文献2に記載の技術は、被写体の分光特性の計測結果に応じて分光情報の取得条件を設定しているものの、その取得条件が適切であるか否かについて判断することはできない。このため、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる技術が求められていた。 However, although the technique described in Patent Document 2 sets the acquisition condition of spectral information according to the measurement result of the spectral characteristic of the subject, it can not judge whether the acquisition condition is appropriate or not. Therefore, there has been a demand for a technology capable of acquiring highly accurate spectral information of an object under appropriate acquisition conditions.
 本発明は、上記に鑑みてなされたものであって、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる撮像装置および制御方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an imaging device and a control method capable of acquiring highly accurate spectral information of an object under appropriate acquisition conditions.
 上述した課題を解決し、目的を達成するために、本発明に係る撮像装置は、複数の波長帯域の成分からなり、各成分が設定に応じた特性を有する照明光を生成する照明部と、被写体からの光を撮像することによって画像信号を生成する撮像部と、前記照明部および前記撮像部の動作に関する条件を含む前記被写体の分光情報の取得条件を設定する条件設定部と、前記撮像部が前記取得条件に基づいて生成した画像信号を解析して前記被写体の分光情報を取得する画像解析部と、前記画像解析部が取得した分光情報が該分光情報の取得を終了するための終了条件を満足するか否かを判定する判定部と、を備え、前記条件設定部は、前記判定部が前記終了条件を満足しないと判定した場合、前記分光情報の取得条件を変更することを特徴とする。 In order to solve the problems described above and to achieve the object, an imaging device according to the present invention includes an illumination unit including components of a plurality of wavelength bands, each component generating illumination light having a characteristic according to the setting; An imaging unit configured to generate an image signal by imaging light from a subject; a condition setting unit configured to set acquisition conditions of spectral information of the subject including conditions related to operations of the illumination unit and the imaging unit; An image analysis unit that analyzes an image signal generated based on the acquisition condition to acquire spectral information of the subject, and an end condition for the spectral information acquired by the image analysis unit to end acquisition of the spectral information And a determination unit that determines whether or not the condition is satisfied, and the condition setting unit changes the acquisition condition of the spectral information when the determination unit determines that the end condition is not satisfied. Do
 本発明に係る撮像装置は、上記発明において、前記条件設定部は、前記判定部が前記終了条件を満足すると判定した場合、前記撮像部による本撮影時の撮影条件を設定することを特徴とする。 The imaging apparatus according to the present invention is characterized in that, in the above-mentioned invention, the condition setting unit sets a photographing condition at the time of main photographing by the imaging unit when the judgment unit judges that the termination condition is satisfied. .
 本発明に係る撮像装置は、上記発明において、前記条件設定部は、複数の前記取得条件のいずれかを選択的に設定可能であることを特徴とする。 The imaging apparatus according to the present invention is characterized in that, in the above-mentioned invention, the condition setting unit can selectively set any one of the plurality of acquisition conditions.
 本発明に係る撮像装置は、上記発明において、前記条件設定部は、前記取得条件を変更する際、前記画像信号における少なくとも一部の波長帯域の感度を向上させることを特徴とする。 The imaging device according to the present invention is characterized in that, in the above-mentioned invention, the condition setting unit improves sensitivity of at least a part of wavelength bands in the image signal when changing the acquisition condition.
 本発明に係る撮像装置は、上記発明において、前記条件設定部は、前記画像信号の信号値に基づいて前記感度を向上させる波長帯域を決定することを特徴とする。 The imaging apparatus according to the present invention is characterized in that, in the above-mentioned invention, the condition setting unit determines a wavelength band for improving the sensitivity based on a signal value of the image signal.
 本発明に係る撮像装置は、上記発明において、前記条件設定部は、前記取得条件を変更する際、前記画像信号における少なくとも一部の波長帯域の波長分解能を向上させることを特徴とする。 The imaging apparatus according to the present invention is characterized in that, in the above invention, the condition setting unit improves wavelength resolution of at least a part of wavelength bands in the image signal when changing the acquisition condition.
 本発明に係る撮像装置は、上記発明において、前記条件設定部は、前記画像信号の信号値の変化に基づいて前記波長分解能を向上させる波長帯域を決定することを特徴とする。 The imaging device according to the present invention is characterized in that, in the above-mentioned invention, the condition setting unit determines a wavelength band for improving the wavelength resolution based on a change in signal value of the image signal.
 本発明に係る撮像装置は、上記発明において、前記照明部は、光の透過中心波長が予め設定された方向に沿って連続的に変化する平板状のフィルタと、前記フィルタから光が出射する側に位置し、前記フィルタを透過した光の一部の波長帯域を選択的に透過する液晶部と、前記液晶部から光が出射する側に位置し、前記液晶部を透過した光を拡散して均一化する拡散光学系と、を有し、前記液晶部は、透過する光の波長帯域を変更可能であることを特徴とする。 In the imaging device according to the present invention, in the above-mentioned invention, the illumination unit may be a flat filter whose light transmission center wavelength continuously changes along a preset direction, and a side from which light is emitted from the filter A liquid crystal portion that selectively transmits a part of the wavelength band of the light transmitted through the filter, and a light emission portion located on the side from which the light is emitted from the liquid crystal portion, and diffusing the light transmitted through the liquid crystal portion And a diffusion optical system that makes the light uniform, and the liquid crystal unit is capable of changing the wavelength band of light to be transmitted.
 本発明に係る制御方法は、複数の波長帯域の成分からなり、各成分が設定に応じた特性を有する照明光を生成する照明部と、被写体からの光を撮像することによって画像信号を生成する撮像部と、を備えた撮像装置が実行する制御方法であって、前記照明部および前記撮像部の動作に関する条件を含む前記被写体の分光情報の取得条件を記憶部から読み出して設定する条件設定ステップと、前記撮像部が前記取得条件に基づいて前記画像信号を生成する画像信号生成ステップと、前記画像信号生成ステップで生成した画像信号を解析して前記被写体の分光情報を取得する画像解析ステップと、前記画像解析ステップで取得した分光情報が終了条件を満足するか否かを判定する判定ステップと、前記判定ステップで前記終了条件を満足しないと判定した場合、前記分光情報の取得条件を変更する条件変更ステップと、前記条件変更ステップで変更した条件に基づいて、前記画像信号生成ステップおよび前記画像解析ステップを再度実行することを特徴とする。 A control method according to the present invention generates an image signal by capturing an image of light from an object, using an illumination unit that generates illumination light that is composed of components of a plurality of wavelength bands and each component has a characteristic according to a setting. A control method executed by an imaging apparatus including an imaging unit, wherein a condition setting step of reading and setting acquisition conditions of spectral information of the subject including a condition regarding operations of the illumination unit and the imaging unit. An image signal generation step of generating the image signal based on the acquisition condition, and an image analysis step of analyzing the image signal generated in the image signal generation step to acquire spectral information of the subject. A determination step of determining whether or not the spectral information acquired in the image analysis step satisfies an end condition; and the end condition is not satisfied in the determination step. When it is determined, a condition changing step of changing the acquisition condition of the spectral information, on the basis of the conditions changed by the condition change step, and executes the image signal generating step and the image analysis step again.
 本発明によれば、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる。 According to the present invention, it is possible to acquire highly accurate spectral information of an object under appropriate acquisition conditions.
図1は、本発明の実施の形態1に係る撮像装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention. 図2は、波長選択フィルタの特性を模式的に示す図である。FIG. 2 is a diagram schematically showing the characteristics of the wavelength selection filter. 図3は、波長選択フィルタの代表的な位置における光の透過率を模式的に示す図である。FIG. 3 is a view schematically showing the transmittance of light at representative positions of the wavelength selection filter. 図4は、液晶部が光を透過する領域の設定例を示す図である。FIG. 4 is a diagram showing a setting example of a region where the liquid crystal part transmits light. 図5は、本発明の実施の形態1に係る撮像装置が被写体の分光情報を取得して本撮影時の条件を設定するまでの処理の概要を示すフローチャートである。FIG. 5 is a flowchart showing an outline of processing until the imaging device according to Embodiment 1 of the present invention acquires spectral information of a subject and sets conditions for main shooting. 図6は、プレ撮影時における照明部の動作例を説明する図である。FIG. 6 is a diagram for explaining an operation example of the illumination unit at the time of pre-shooting. 図7は、照明部が照明光を照射した場合の光量と、画像解析部が画像信号に基づいて算出した分光情報でとの関係を示す図である。FIG. 7 is a diagram showing the relationship between the light amount when the illumination unit emits illumination light and the spectral information calculated by the image analysis unit based on the image signal. 図8は、取得条件の変更例および取得条件の変更後に取得した分光情報を示す図である。FIG. 8 is a diagram showing an example of changing the acquisition condition and spectral information acquired after the change of the acquisition condition. 図9は、本発明の実施の形態1の変形例1において、終了条件を満足しない場合に条件設定部が行う取得条件の変更例および取得条件の変更後に取得した分光情報を示す図である。FIG. 9 is a diagram showing an example of changing the acquisition condition performed by the condition setting unit when the end condition is not satisfied in the first modification of the first embodiment of the present invention and spectral information acquired after the acquisition condition is changed. 図10は、本発明の実施の形態1の変形例2において、終了条件を満足しない場合に条件設定部が行う取得条件の変更例および取得条件の変更後に取得した分光情報を示す図である。FIG. 10 is a diagram showing an example of changing the acquisition condition performed by the condition setting unit when the end condition is not satisfied and the spectral information acquired after the change of the acquisition condition in the second modification of the first embodiment of the present invention. 図11Aは、本発明の実施の形態2に係る撮像装置が、初期状態として透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射して2回のプレ撮影を行った場合の分光情報と波長との関係を示す図(その1)である。FIG. 11A shows that the imaging device according to Embodiment 2 of the present invention performs illumination light having components of four bands equal to each other in the light amount of the transmission center wavelength and the half width as an initial state to perform two pre-shootings. It is a figure (the 1) which shows the relationship between the spectral information in the case of, and a wavelength. 図11Bは、本発明の実施の形態2に係る撮像装置が、初期状態として透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射して2回のプレ撮影を行った場合の分光情報と波長との関係を示す図(その2)である。FIG. 11B shows that the imaging device according to Embodiment 2 of the present invention performs illumination light having components of four bands having the same light intensity at the transmission center wavelength and the half bandwidth equal to each other in the initial state to perform two pre-shootings. It is a figure (the 2) which shows the relationship between the spectral information in the case of, and a wavelength. 図12Aは、本発明の実施の形態2に係る撮像装置の判定部によって分光情報が終了条件を満足しないと判定された場合に条件設定部が変更した取得条件、およびその取得条件にしたがって取得した分光情報を示す図(その1)である。FIG. 12A is acquired according to the acquisition condition changed by the condition setting unit and the acquisition condition when it is determined that the spectral information does not satisfy the termination condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is a figure (the 1) showing spectral information. 図12Bは、本発明の実施の形態2に係る撮像装置の判定部によって分光情報が終了条件を満足しないと判定された場合に条件設定部が変更した取得条件、およびその取得条件にしたがって取得した分光情報を示す図(その2)である。FIG. 12B is acquired according to the acquisition condition changed by the condition setting unit and the acquisition condition when it is determined that the spectral information does not satisfy the termination condition by the determination unit of the imaging device according to Embodiment 2 of the present invention It is a figure (the 2) showing spectral information. 図13Aは、本発明の実施の形態2に係る撮像装置の判定部によって分光情報が終了条件を満足すると判定された場合、条件設定部が設定した最後の取得条件、およびその取得条件にしたがって取得した分光情報を示す図(その1)である。FIG. 13A is acquired according to the last acquisition condition set by the condition setting unit and the acquisition condition when it is determined that the spectral information satisfies the end condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is a figure (the 1) showing the spectrum information which was carried out. 図13Bは、本発明の実施の形態2に係る撮像装置の判定部によって分光情報が終了条件を満足すると判定された場合、条件設定部が設定した最後の取得条件、およびその取得条件にしたがって取得した分光情報を示す図(その2)である。FIG. 13B is acquired according to the last acquisition condition set by the condition setting unit and the acquisition condition when it is determined that the spectral information satisfies the end condition by the determination unit of the imaging apparatus according to Embodiment 2 of the present invention It is the figure which shows the spectrum information which is done (the 2). 図14Aは、本発明の実施の形態3に係る撮像装置が透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射して個別に取得した2つの被写体の分光情報と波長の関係を示す図である。FIG. 14A shows spectral information of two subjects individually acquired by irradiating an illumination light having four bands of components having the same amount of light at the transmission center wavelength and the half bandwidth equal to each other with the imaging device according to Embodiment 3 of the present invention It is a figure which shows the relationship of a wavelength. 図14Bは、本発明の実施の形態3に係る撮像装置の条件設定部が取得条件を変更した後に取得した2つの被写体の分光情報と波長の関係を示す図である。FIG. 14B is a diagram showing a relationship between spectral information and wavelengths of two objects acquired after the condition setting unit of the imaging device according to Embodiment 3 of the present invention changes the acquisition condition. 図15Aは、本発明の実施の形態4に係る撮像装置が、透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射して取得した分光情報と波長の関係を示す図である。FIG. 15A shows the relationship between wavelength and spectral information obtained by the imaging device according to Embodiment 4 of the present invention emitting illumination light having four band components having equal light intensity and half bandwidth at the transmission center wavelength. FIG. 図15Bは、本発明の実施の形態4に係る撮像装置が、分光情報が飽和値に達している2つのバンドの最大光量を小さくした照明光を照射して取得した分光情報と波長の関係を示す図である。FIG. 15B shows the relationship between the wavelength and the spectral information obtained by the imaging device according to Embodiment 4 of the present invention emitting illumination light in which the maximum light amounts of the two bands whose spectral information has reached the saturation value are reduced. FIG. 図15Cは、本発明の実施の形態4に係る撮像装置が、透過中心波長の照明光の半値幅を狭くした照明光を照射して取得した分光情報と波長の関係を示す図である。FIG. 15C is a diagram showing the relationship between the spectral information and the wavelength acquired by the imaging device according to Embodiment 4 of the present invention emitting illumination light in which the half width of the illumination light at the transmission center wavelength is narrowed. 図16は、本発明の実施の形態5に係る撮像装置撮像素子の受光感度および照明部が照射する照明光の光量と波長との関係をそれぞれ示す図である。FIG. 16 is a view showing the relationship between the light receiving sensitivity of the image pickup device imaging device according to Embodiment 5 of the present invention, and the light amount of illumination light emitted from the illumination unit and the wavelength.
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。 Hereinafter, a mode for carrying out the present invention (hereinafter, referred to as “embodiment”) will be described with reference to the attached drawings.
(実施の形態1)
 図1は、本発明の実施の形態1に係る撮像装置の構成を示すブロック図である。同図に示す撮像装置1は、撮像部2、照明部3、入力部4、出力部5、制御部6および記憶部7を備える。
Embodiment 1
FIG. 1 is a block diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention. The imaging device 1 shown in the figure includes an imaging unit 2, a lighting unit 3, an input unit 4, an output unit 5, a control unit 6, and a storage unit 7.
 撮像部2は、被写体からの光を集光して結像する撮像光学系21と、撮像光学系21が集光して結像した被写体からの光を光電変換して撮像信号を生成する撮像素子22とを有する。撮像光学系21は、1または複数のレンズを用いて構成される。撮像素子22は、例えばCCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等のモノクロのイメージセンサを用いて構成される。なお、撮像素子22は、R、G、Bのカラーフィルタを有するイメージセンサでもよいし、4バンド以上の多バンドのイメージセンサでもよい。 The imaging unit 2 photoelectrically converts light from the subject formed by focusing the light from the subject by imaging the imaging optical system 21 that collects light from the subject and forms an imaging signal. And an element 22. The imaging optical system 21 is configured using one or more lenses. The imaging device 22 is configured using, for example, a monochrome image sensor such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). The imaging device 22 may be an image sensor having R, G, B color filters, or may be a multi-band image sensor of four or more bands.
 照明部3は、白色光を出力する光源部31と、白色光を入射位置に応じて異なる透過波長で透過する平板状の波長選択フィルタ(リニアバリアブルフィルタ:以下、「LVF」という)32と、LVF32から光が出射する側に位置し、LVF32を透過した光のうち所定の波長帯域を選択的に透過する液晶部33と、液晶部33から光が出射する側に位置し、液晶部33を透過した光を拡散して均一化した光を照明光として照射する拡散光学系34とを有する。 The illumination unit 3 includes a light source unit 31 that outputs white light, and a flat wavelength selection filter (linear variable filter: hereinafter referred to as “LVF”) 32 that transmits white light at different transmission wavelengths according to the incident position. The liquid crystal unit 33 is located on the side where light is emitted from the LVF 32 and selectively transmits a predetermined wavelength band of the light transmitted through the LVF 32, and the liquid crystal unit 33 is located on the side where light is emitted from the liquid crystal unit 33 And diffusive optical system 34 that diffuses the transmitted light and illuminates the light as illumination light.
 光源部31は、例えばLED(Light Emitting Diode)またはレーザ光源を用いて白色光を出力する。光源部31は、白色LEDまたは白色レーザを用いた構成としてもよいし、赤(R)、緑(G)、青(B)を含む3つ以上のLEDまたはレーザを組み合わせて白色光を出力する構成としてもよい。なお、光源部31をキセノンランプまたはハロゲンランプ等を用いて構成してもよい。 The light source unit 31 outputs white light using, for example, a light emitting diode (LED) or a laser light source. The light source unit 31 may be configured using a white LED or a white laser, and outputs white light by combining three or more LEDs or lasers including red (R), green (G), and blue (B). It is good also as composition. The light source unit 31 may be configured using a xenon lamp or a halogen lamp.
 LVF32は平板状をなしており、主面の予め設定された方向に沿って光の透過中心波長が連続的に変化する。図2は、LVF32の特性を模式的に示す図であり、フィルタ内の位置とその位置で最も透過率が高い透過中心波長との関係を示す図である。図2の左右方向であってLVF32の対向する2辺と平行な方向をx軸方向として、LVF32の左端の位置をx=0、右端の位置をx=xmaxとする。LVF32は、x軸方向の位置がx=0からx=xmaxに変化するにつれて、各位置における透過中心波長λが連続的にかつ線形に増加する(図2の直線Lを参照)。波長帯域λmin≦λ≦λmaxは可視領域である。例えば、左端x=0における透過中心波長λminは380nmであり、右端x=xmaxにおける透過中心波長λmaxは780nmである。図2では、x=xn(n=1~4;0<xn<xmax)における透過中心波長をλnとしている。図2においてLVF32に記載された4本の縦線は、透過する波長帯域が同じである位置を結んだ仮想的な線である。これらの線は、透過中心波長が変化する方向すなわち図2のx軸方向とそれぞれ直交している。 The LVF 32 has a flat plate shape, and the transmission center wavelength of light continuously changes along the preset direction of the main surface. FIG. 2 is a diagram schematically showing the characteristics of the LVF 32, and is a diagram showing the relationship between the position in the filter and the transmission center wavelength at which the transmittance is the highest. The two opposing sides parallel to the direction of LVF32 a lateral direction in FIG. 2 as the x-axis direction, x = 0 the position of the left edge of LVF32, the right end position and x = x max. LVF32 the position of the x-axis direction as it changes from x = 0 to x = x max, the transmission center wavelength λ at each position is increased continuously and linearly (see line L in FIG. 2). The wavelength band λ min ≦ λ ≦ λ max is a visible region. For example, the transmission center wavelength lambda min at the left end x = 0 is 380 nm, the transmission center wavelength lambda max at the right end x = x max is 780 nm. In FIG. 2, the transmission center wavelength at x = x n (n = 1 to 4; 0 <x n <x max ) is λ n . The four vertical lines described in the LVF 32 in FIG. 2 are virtual lines connecting the positions where the wavelength bands to be transmitted are the same. These lines are orthogonal to the direction in which the transmission center wavelength changes, that is, the x-axis direction in FIG.
 図3は、LVF32の代表的な位置における光の透過率を模式的に示す図である。図3では、x=0、xn(n=1~4)、xmaxをそれぞれ透過する光の透過率を模式的に示している。例えば、x=0を透過する光のスペクトルSminは、透過中心波長λminを有する。同様に、x=xnを透過する光のスペクトルSnは、透過中心波長λnを有し、x=xmaxを透過する光のスペクトルSmaxは、透過中心波長λmaxを有する。図3からも明らかなように、LVF32の各位置における透過光のスペクトルは、透過中心波長における透過率がほぼ均一であるとともに、帯域幅もほぼ均一である。 FIG. 3 is a view schematically showing the light transmittance at representative positions of the LVF 32. As shown in FIG. In FIG. 3, the transmittance of light transmitting each of x = 0, x n (n = 1 to 4) and x max is schematically shown. For example, the spectrum S min of light transmitting x = 0 has a transmission center wavelength λ min . Similarly, the spectrum S n of the light transmitted through the x = x n has a transmission center wavelength lambda n, the spectrum S max of the light transmitted through the x = x max has a transmission center wavelength lambda max. As apparent from FIG. 3, the spectrum of the transmitted light at each position of the LVF 32 is substantially uniform in transmittance at the transmission center wavelength, and substantially uniform in bandwidth.
 なお、LVF以外のフィルタを用いて照明部3を構成してもよい。例えば、互いに異なる波長帯域の光を出力する4色以上の複数のLEDを2次元的に並べて配置した多色LED光源を用いてもよい。 In addition, you may comprise the illumination part 3 using filters other than LVF. For example, a multicolor LED light source may be used in which a plurality of LEDs of four or more colors outputting light in different wavelength bands are arranged two-dimensionally.
 液晶部33は、LVF32の出射面側に位置しており、LVF32を透過した透過光から予め設定された波長帯域の光を選択的に出力可能な液晶パネルを用いて構成される。液晶部33は、制御部6の制御のもと、各領域の液晶分子の状態を変化させることにより、入射する光の透過/非透過を領域ごとに選択的に切り換え可能である。LVF32の透過波長帯域と液晶部33の入射位置は、互いに対応付けられて、後述する記憶部7の位置情報記憶部72に記憶されている。 The liquid crystal unit 33 is located on the exit surface side of the LVF 32, and is configured using a liquid crystal panel capable of selectively outputting light of a preset wavelength band from the transmitted light transmitted through the LVF 32. The liquid crystal unit 33 can selectively switch transmission / non-transmission of incident light for each region by changing the state of liquid crystal molecules in each region under the control of the control unit 6. The transmission wavelength band of the LVF 32 and the incident position of the liquid crystal unit 33 are associated with each other and stored in a position information storage unit 72 of the storage unit 7 described later.
 図4は、液晶部33が光を透過する領域の設定例を示す図である。図4においては、斜線で示した領域が光を透過する領域であることを模式的に示している。図の左右方向は、LVF32の波長変化方向に対応している。図の左右方向の透過領域の幅は、透過光の波長帯域の広さに対応している。これに対して、図の上下方向の高さは、透過光の光量に対応している。例えば、図4の右から2番目の透過領域は上下方向に貫通しているため、この透過領域に含まれる波長成分の光量は最大である。なお、透過光の領域は矩形以外の形状をなしていてもよい。 FIG. 4 is a diagram showing a setting example of a region where the liquid crystal unit 33 transmits light. In FIG. 4, it is schematically shown that the hatched area is an area that transmits light. The horizontal direction in the drawing corresponds to the wavelength change direction of the LVF 32. The width of the transmission region in the left and right direction in the drawing corresponds to the width of the wavelength band of the transmitted light. On the other hand, the height in the vertical direction in the figure corresponds to the light amount of the transmitted light. For example, since the second transmission region from the right in FIG. 4 penetrates in the vertical direction, the light amount of the wavelength component included in the transmission region is maximum. In addition, the area | region of the transmitted light may be making shapes other than a rectangle.
 拡散光学系34は、例えば光束を拡散する拡散板や、拡散板によって拡散した光束を均一化する光学素子を用いて構成され、液晶部33を透過した光の照度分布を均一化した光束を照明光として被写体へ向けて照射する。 The diffusion optical system 34 is configured using, for example, a diffusion plate for diffusing the light flux, or an optical element for homogenizing the light flux diffused by the diffusion plate, and illuminates the light flux obtained by uniforming the illuminance distribution of the light transmitted through the liquid crystal section 33. It illuminates the subject as light.
 照明部3は、互いに異なる複数の波長帯域の成分からなり、各成分が設定に応じた特性を有する照明光を生成する。照明部3は、照明光の各成分を時分割で順次照射する。照明光に含まれる波長帯域の成分の数(バンド数)および各波長帯域の半値幅は、ユーザが入力部4を介して入力することにより設定することが可能である。 The illumination unit 3 includes components of a plurality of wavelength bands different from one another, and generates illumination light in which each component has a characteristic according to the setting. The illumination unit 3 sequentially illuminates each component of the illumination light in time division. The number (band number) of the components of the wavelength band included in the illumination light and the half width of each wavelength band can be set by the user inputting via the input unit 4.
 入力部4は、撮像装置1を操作する指示信号を含む各種信号の入力を受け付ける。入力部4は、キーボード、各種ボタン、各種スイッチ等の入力デバイス、マウス、タッチパネル等のポインティングデバイスを含み、これらのデバイスに対する外部からの操作に応じた信号の入力を受け付けて制御部6に出力する。入力部4は、音声入力用のマイクロフォンを有していてもよい。 The input unit 4 receives input of various signals including an instruction signal for operating the imaging device 1. The input unit 4 includes input devices such as a keyboard, various buttons, various switches, and pointing devices such as a mouse and a touch panel, receives an input of a signal according to an external operation on these devices, and outputs the signal to the control unit 6 . The input unit 4 may have a microphone for voice input.
 出力部5は、撮像部2が生成した撮像信号に対応する画像を含む各種情報を出力する。出力部5は、液晶または有機EL(Electro Luminescence)等を用いて構成され、画像や文字を含む各種情報を出力するモニタと、音声を出力するスピーカとを有する。 The output unit 5 outputs various information including an image corresponding to the imaging signal generated by the imaging unit 2. The output unit 5 is configured using liquid crystal, organic EL (Electro Luminescence), or the like, and includes a monitor that outputs various information including images and characters, and a speaker that outputs sound.
 制御部6は、画像解析部61、条件設定部62、判定部63、撮影制御部64、および照明制御部65を有する。 The control unit 6 includes an image analysis unit 61, a condition setting unit 62, a determination unit 63, a photographing control unit 64, and a lighting control unit 65.
 画像解析部61は、撮像部2が生成して出力する画像信号を用いて画像の解析を行うことによって被写体の分光情報を取得する。具体的には、画像解析部61は、画像信号に対応する画像中で予め設定された関心領域(ROI:Region of Interest)内の画素の信号値の平均を算出し、この平均を分光情報として撮影時の照明光の波長成分と対応づけて記憶部7に記憶させる。関心領域は、入力部4が入力を受け付けることによって設定される。関心領域は画像全体であってもよい。画像解析部61は、関心領域内の画素の信号値の平均の代わりに、関心領域内の画素の信号値の最大値または最頻値等の統計値を算出するようにしてもよい。以下、分光情報としての関心領域内の画素の信号値の統計値を「分光信号値」という。 The image analysis unit 61 acquires spectral information of a subject by analyzing an image using an image signal generated and output by the imaging unit 2. Specifically, the image analysis unit 61 calculates an average of signal values of pixels in a region of interest (ROI) set in advance in an image corresponding to an image signal, and uses this average as spectral information. It is stored in the storage unit 7 in association with the wavelength component of the illumination light at the time of shooting. The region of interest is set by the input unit 4 receiving an input. The region of interest may be the entire image. The image analysis unit 61 may calculate statistical values such as the maximum value or the mode value of the signal values of the pixels in the region of interest instead of the average of the signal values of the pixels in the region of interest. Hereinafter, a statistical value of signal values of pixels in a region of interest as spectral information is referred to as “spectral signal value”.
 条件設定部62は、撮像部2の撮影条件を設定して撮影制御部64に出力する一方、照明部3の照明条件を設定して照明制御部65に出力する。撮影条件としては、撮影時のフレームレート等がある。また、照明条件としては、1枚の画像を撮影する際のバンド数やバンドの中心波長、半値幅等がある。撮影条件および照明条件は、分光情報の取得条件を構成しており、互いに関連している。例えば、照明部3が照明光の各成分を時分割で順次照射する場合、撮像部2は照明部3のバンドが切り換わるたびに画像を1枚撮影し、撮像信号を生成して出力する。 The condition setting unit 62 sets the imaging condition of the imaging unit 2 and outputs the imaging condition to the imaging control unit 64, and sets the illumination condition of the illumination unit 3 and outputs the illumination condition to the illumination control unit 65. The shooting conditions include a frame rate at the time of shooting and the like. Further, as the illumination condition, there are the number of bands at the time of photographing one image, the central wavelength of the bands, the half width, and the like. The imaging conditions and the illumination conditions constitute acquisition conditions of spectral information and are related to each other. For example, when the illumination unit 3 sequentially illuminates each component of illumination light in time division, the imaging unit 2 captures an image each time the band of the illumination unit 3 is switched, and generates and outputs an imaging signal.
 条件設定部62は、後述する判定部63の判定結果に応じて、分光情報の取得条件を変更する。条件設定部62は、取得条件を変更する際、画像信号における少なくとも一部の波長帯域の感度を変化させる。具体的には、条件設定部62は、所定の閾値よりも小さい分光信号値を有するバンドの最大光量を所定の規則に従って増加させる。所定の規則は、例えば変更前の最大光量の関数として定められる。 The condition setting unit 62 changes the acquisition condition of the spectral information according to the determination result of the determination unit 63 described later. The condition setting unit 62 changes the sensitivity of at least a part of wavelength bands in the image signal when changing the acquisition condition. Specifically, the condition setting unit 62 increases the maximum light amount of the band having a spectral signal value smaller than a predetermined threshold according to a predetermined rule. The predetermined rule is determined, for example, as a function of the maximum light intensity before the change.
 判定部63は、プレ撮影によって画像解析部61が取得した分光情報が、プレ撮影による分光情報の取得を終了するための終了条件を満足するか否かを判定する。本実施の形態1における終了条件は、例えば「すべての分光信号値が所定の閾値より大きい」である。判定部63が終了条件を満足しないと判定した場合、その判定結果に基づいて条件設定部62が分光情報の取得条件を変更する。 The determination unit 63 determines whether the spectral information acquired by the image analysis unit 61 by the pre-shooting satisfies the end condition for ending the acquisition of the spectral information by the pre-shooting. The termination condition in the first embodiment is, for example, “all spectral signal values are larger than a predetermined threshold”. When the determination unit 63 determines that the end condition is not satisfied, the condition setting unit 62 changes the acquisition condition of the spectral information based on the determination result.
 撮影制御部64は、条件設定部62によって設定された撮影条件に基づいて、撮像部2が行う撮影動作を制御する。 The imaging control unit 64 controls the imaging operation performed by the imaging unit 2 based on the imaging conditions set by the condition setting unit 62.
 照明制御部65は、条件設定部62によって設定された照明条件に基づいて、撮影制御部64と同期を取りながら照明部3の動作を制御する。具体的には、照明制御部65は、所定のタイミングで液晶部33の状態を制御することによって液晶部33における各波長成分の透過パターンを制御し、多バンドの照明光を時分割で順次照射する制御を行う。 The illumination control unit 65 controls the operation of the illumination unit 3 in synchronization with the photographing control unit 64 based on the illumination condition set by the condition setting unit 62. Specifically, the illumination control unit 65 controls the transmission pattern of each wavelength component in the liquid crystal unit 33 by controlling the state of the liquid crystal unit 33 at a predetermined timing, and sequentially illuminates multiple bands of illumination light in time division. Control to
 制御部6は、例えばCPU(Central Processing Unit)等の汎用プロセッサまたはASIC(Application Specific Integrated Circuit)もしくはFPGA(Field Programmable Gate Array)等の特定の機能を実行する専用の集積回路等を用いて構成され、記憶部7が記憶する各種プログラムを読み込むことによって撮像装置1の各種演算処理を実行する。 The control unit 6 is configured using, for example, a general-purpose processor such as a central processing unit (CPU) or a dedicated integrated circuit that executes a specific function such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA). The various arithmetic processes of the imaging device 1 are executed by reading various programs stored in the storage unit 7.
 記憶部7は、LVF32の各透過位置における透過光の波長帯域を含む透過特性を記憶するフィルタ情報記憶部71と、LVF32の透過位置と液晶部33における入射位置とを対応付けて記憶する位置情報記憶部72と、プレ撮影時における分光情報の取得条件および該取得条件の変更に関する情報、プレ撮影時の分光情報取得の終了条件、ならびに本撮影時の条件を記憶する条件記憶部73と、撮像部2が撮影した画像信号を記憶する画像情報記憶部74と、画像解析部61が取得した分光情報を記憶する分光情報記憶部75と、を有する。 The storage unit 7 stores the filter information storage unit 71 storing transmission characteristics including the wavelength band of the transmitted light at each transmission position of the LVF 32, and position information storing the transmission position of the LVF 32 and the incident position in the liquid crystal unit 33 in association with each other. A storage unit 72, a condition storage unit 73 for storing acquisition conditions of spectral information at the time of pre-shooting, information on changes of the acquisition conditions, end conditions for obtaining spectral information at the time of pre-shooting, and conditions at the time of main shooting It has the image information storage part 74 which memorize | stores the image signal which the part 2 image | photographed, and the spectral information storage part 75 which memorize | stores the spectral information which the image analysis part 61 acquired.
 記憶部7は、制御部6が実行する複数のプログラムおよび各種設定情報も記憶する。なお、プログラムは、コンピュータ読み取り可能な記録媒体に書き込んで記憶させてもよい。プログラムの記憶部7または記録媒体への書き込みは、コンピュータまたは記録媒体を製品として出荷する際に行ってもよいし、通信ネットワークを介したダウンロードにより行ってもよい。 The storage unit 7 also stores a plurality of programs executed by the control unit 6 and various setting information. The program may be written and stored in a computer readable recording medium. The program may be written to the storage unit 7 or the recording medium when the computer or the recording medium is shipped as a product, or may be downloaded through a communication network.
 記憶部7は、RAM(Random Access Memory)等の揮発性メモリおよびROM(Read Only Memory)等の不揮発性メモリを用いて構成される。なお、外部から装着可能なメモリカード等のコンピュータ読み取り可能な記録媒体を用いて記憶部7を構成してもよい。 The storage unit 7 is configured using volatile memory such as random access memory (RAM) and non-volatile memory such as read only memory (ROM). The storage unit 7 may be configured using a computer readable recording medium such as a memory card that can be externally mounted.
 図5は、撮像装置1が被写体の分光情報を取得して本撮影時の条件を設定するまでの処理の概要を示すフローチャートである。まず、条件設定部62は、分光情報を取得する際の取得条件を設定する(ステップS1)。条件設定部62は、例えば入力部4が受け付けた設定指示信号に応じて取得条件を設定する。 FIG. 5 is a flowchart showing an outline of processing until the imaging device 1 acquires spectral information of a subject and sets conditions for main imaging. First, the condition setting unit 62 sets an acquisition condition for acquiring spectral information (step S1). The condition setting unit 62 sets an acquisition condition according to, for example, the setting instruction signal received by the input unit 4.
 続いて、撮像装置1は設定された取得条件にしたがってプレ撮影を行う(ステップS2)。この際、撮影制御部64は、条件記憶部73を参照して撮像部32の動作を制御する。また、照明制御部65は、フィルタ情報記憶部71、位置情報記憶部72および条件記憶部73を参照して照明部3の動作を制御する。図6は、プレ撮影時における照明部3の動作例を説明する図であり、LVF32の光透過領域を模式的に示す図である。図6に示す場合、透過中心波長がλ1、λ2、λ3、λ4(λ1<λ2<λ3<λ4)である4バンドの照明光を順次照射する。撮像部2は、照明部3の照明光が切り換わるたびに撮影を行う。 Subsequently, the imaging device 1 performs pre-shooting according to the set acquisition condition (step S2). At this time, the imaging control unit 64 controls the operation of the imaging unit 32 with reference to the condition storage unit 73. Further, the illumination control unit 65 controls the operation of the illumination unit 3 with reference to the filter information storage unit 71, the position information storage unit 72, and the condition storage unit 73. FIG. 6 is a diagram for explaining an operation example of the illumination unit 3 at the time of pre-shooting, and schematically showing a light transmission region of the LVF 32. As shown in FIG. In the case shown in FIG. 6, four bands of illumination light having transmission center wavelengths λ 1 , λ 2 , λ 3 and λ 41234 ) are sequentially irradiated. The imaging unit 2 performs imaging each time the illumination light of the illumination unit 3 is switched.
 この後、画像解析部61は、撮像部2がプレ撮影して生成した画像信号を解析することによって分光情報を取得して分光情報記憶部75に格納する(ステップS3)。分光情報は、上述したように、例えば画像信号に対応する画像中で設定される関心領域内の画素の統計値である。 Thereafter, the image analysis unit 61 acquires spectral information by analyzing an image signal generated by the imaging unit 2 in advance to generate spectral information and stores the spectral information in the spectral information storage unit 75 (step S3). The spectral information is, as described above, statistical values of pixels in the region of interest set in the image corresponding to the image signal, for example.
 図7は、図6に示すように照明部3が照明光を照射した場合の照明光の光量Kと、画像解析部61が画像信号に基づいて算出した分光情報である関心領域内の分光信号値Iとの関係を示す図である。照明光の最大光量は全てのバンドで同じ値K1である。図7では、透過中心波長がλnの照明光を照射しているときの分光信号値をInとしている。図7に示すIthは、終了条件を与える所定の閾値である。 FIG. 7 shows the light amount K of the illumination light when the illumination unit 3 irradiates the illumination light as shown in FIG. 6 and the spectral signal in the region of interest, which is the spectral information calculated by the image analysis unit 61 based on the image signal. It is a figure which shows the relationship with the value I. Maximum light amount of the illumination light is the same value K 1 in all bands. In Figure 7, a spectral signal value when the transmission center wavelength is irradiated with illumination light of lambda n is set to I n. I th shown in FIG. 7 is a predetermined threshold for giving an end condition.
 ステップS3の後、判定部63は、条件記憶部73を参照して、分光情報が所定の終了条件を満足するか否かを判定する(ステップS4)。図7に示す場合の終了条件は、「全バンドの分光信号値Inが閾値Ithより大きい」である。図7において、分光信号値I1、I2は閾値Ith以下であるため、判定部63は終了条件を満足しないと判定する。 After step S3, the determination unit 63 refers to the condition storage unit 73 to determine whether or not the spectral information satisfies the predetermined end condition (step S4). Exit conditions in the case shown in FIG. 7 is a "spectral signal value I n of all the bands is larger than the threshold value I th." In FIG. 7, since the spectral signal values I 1 and I 2 are equal to or less than the threshold value I th , the determination unit 63 determines that the end condition is not satisfied.
 判定部63による判定の結果、分光情報が終了条件を満足する場合(ステップS4:Yes)、条件設定部62は本撮影時の条件を設定して条件記憶部73に格納する(ステップS5)。例えば、条件設定部62は、照明部3のバンド数や透過中心波長の光量を終了条件満足時のプレ撮影時の条件とする一方、撮影時のフレームレート(=照明部3における1つのバンドの照射時間)をプレ撮影とは異なる所定のフレームレートとする。このようにして終了条件を満足するプレ撮影の条件を加味して本撮影時の条件を設定することにより、本撮影の際に被写体の分光特性に適合した画像を取得することができる。ステップS5の後、撮像装置1は一連の処理を終了する。 As a result of the determination by the determination unit 63, when the spectral information satisfies the termination condition (step S4: Yes), the condition setting unit 62 sets the condition at the time of main shooting and stores the condition in the condition storage unit 73 (step S5). For example, while the condition setting unit 62 sets the number of bands of the illumination unit 3 and the light amount of the transmission center wavelength as the conditions at the time of pre-shooting when the end condition is satisfied, the frame rate at the time of shooting (= one band in the illumination unit 3). The irradiation time) is set to a predetermined frame rate different from that for the pre-shooting. In this way, by setting the conditions at the time of main shooting in consideration of the conditions for pre-shooting that satisfy the end condition, it is possible to acquire an image that matches the spectral characteristics of the subject at the time of main shooting. After step S5, the imaging device 1 ends the series of processes.
 ステップS4において、判定部63による判定の結果、分光情報が終了条件を満足しない場合(ステップS4:No)、条件設定部62は条件記憶部73を参照して分光情報の取得条件を変更する(ステップS6)。図8は、取得条件の変更例および取得条件の変更後に取得した分光信号値を示す図である。図8に示す場合、条件設定部62は、閾値Ith以下の分光信号値I1、I2をそれぞれ有する透過中心波長λ1、λ2の照明光の光量を、光量K1より大きいK2に設定している。この光量K2は光量K1の関数である。例えば、光量K2は光量K1に所定の倍率α(>1)を乗じることによって得られる。また、図8に示す場合、条件設定部62は、光量を変更した2バンド分の照明を照射してプレ撮影を行うように取得条件を変更する。このように取得条件を変更することにより、相対的に分光信号値が小さいバンドの分光情報を精度よく取得することが可能となる。したがって、相対的に分光信号値が低い波長成分の情報が被写体の特性を判別する上で重要であるような場合に好適である。 In step S4, as a result of the determination by the determination unit 63, when the spectral information does not satisfy the termination condition (step S4: No), the condition setting unit 62 changes the acquisition condition of the spectral information with reference to the condition storage unit 73 ( Step S6). FIG. 8 is a diagram showing a modification example of the acquisition condition and spectral signal values acquired after the change of the acquisition condition. In the case shown in FIG. 8, the condition setting unit 62 sets the light quantity of the illumination light of the transmission center wavelengths λ 1 and λ 2 having the spectral signal values I 1 and I 2 equal to or less than the threshold value I th to K 2 larger than the light quantity K 1. It is set to. The quantity K 2 is a function of the quantity K 1. For example, the light quantity K 2 is obtained by multiplying a predetermined magnification α (> 1) to the light quantity K 1. Further, in the case illustrated in FIG. 8, the condition setting unit 62 changes the acquisition condition so as to perform the pre-shooting by irradiating the illumination of two bands in which the light amount is changed. By changing the acquisition conditions in this manner, it is possible to accurately acquire spectral information of bands having relatively small spectral signal values. Therefore, it is preferable in the case where information on wavelength components having relatively low spectral signal values is important in determining the characteristics of the subject.
 この後、撮像装置1はステップS2に戻って分光情報を再度取得する。図8に示す場合、透過中心波長がλ1、λ2のバンドを照射してプレ撮影することによりそれぞれ再取得した2つの分光信号値I1’、I2’は、閾値Ithよりも大きい。したがってこの場合、判定部63は、ステップS4において分光情報が終了条件を満足すると判定する。なお、判定部63が再び終了条件を満足していないと判定した場合、条件設定部62は取得条件をさらに変更してステップS2以降の処理を繰り返す。具体的には、光量K2に倍率αを乗じて分光情報を取得する。 Thereafter, the imaging device 1 returns to step S2 and acquires spectral information again. In the case shown in FIG. 8, two spectral signal values I 1 ′ and I 2 ′ respectively acquired again by irradiating the bands of transmission center wavelength λ 1 and λ 2 and performing pre-shooting are larger than the threshold I th . Therefore, in this case, the determination unit 63 determines in step S4 that the spectral information satisfies the end condition. If the determination unit 63 determines that the end condition is not satisfied again, the condition setting unit 62 further changes the acquisition condition and repeats the process after step S2. Specifically, to obtain the spectral information is multiplied by a factor α in quantity K 2.
 なお、取得条件の変更回数が所定の回数を超えた場合、出力部5が分光情報を取得できない旨のエラーメッセージを出力して一連の処理を終了するようにしてもよい。また、取得条件の変更回数が所定の回数を超えた場合には、条件設定部62が最新の取得条件に基づいて本撮影時の条件を設定するようにしてもよい。これらの措置を講ずることにより、プレ撮影の回数の増加を抑制することができる。 In addition, when the number of times of change of the acquisition condition exceeds a predetermined number of times, the output unit 5 may output an error message to the effect that spectral information can not be acquired, and the series of processes may be ended. In addition, when the number of times of change of the acquisition condition exceeds the predetermined number, the condition setting unit 62 may set the condition at the time of main photographing based on the latest acquisition condition. By taking these measures, it is possible to suppress an increase in the number of pre-shootings.
 以上説明した本発明の実施の形態1によれば、画像解析部が取得した分光情報が終了条件を満足しない場合、条件設定部が分光情報の取得条件を変更するため、取得条件を被写体の分光特性に応じた適切なものとし、高精度な被写体の分光情報を取得することが可能となる。 According to the first embodiment of the present invention described above, when the spectral information acquired by the image analysis unit does not satisfy the end condition, the condition setting unit changes the acquisition condition of the spectral information, so the acquisition condition is set to It is possible to acquire spectral information of a subject with high accuracy by setting it as appropriate according to the characteristics.
 また、本実施の形態1によれば、閾値より小さい波長帯域の照明光成分の最大光量を高めることによってそのような波長帯域の感度を高めてS/N比を向上させるため、被写体の分光特性に応じた高精度の分光情報を取得することができる。 Further, according to the first embodiment, the sensitivity of the wavelength band is increased to improve the S / N ratio by increasing the maximum light amount of the illumination light component of the wavelength band smaller than the threshold, and thus the spectral characteristics of the object. It is possible to acquire highly accurate spectral information according to
 また、本実施の形態1によれば、プレ撮影時に分光情報の取得条件を適切に設定することができるため、ユーザが本撮影に向けて構図やフォーカスを調整している間の時間を利用して効率的な制御を行うことができる。 Further, according to the first embodiment, since acquisition conditions of spectral information can be appropriately set at the time of pre-shooting, the time during which the user is adjusting the composition and focus for the main shooting is utilized. Control can be performed.
(変形例1)
 本実施の形態1の変形例1は、終了条件および取得条件の変更方法が実施の形態1と異なる。本変形例1における終了条件は、例えば「すでに取得している分光情報または基準となる分光情報との識別が可能であるか否か」である。図9は、この終了条件を満足しない場合に条件設定部62が行う取得条件の変更例および取得条件の変更後に取得した分光信号値を示す図である。図9に示す場合、条件設定部62は、取得条件として、図7に示す照明光とは異なる3バンド(透過中心波長がλ5、λ6、λ7)の照明光を照射している。この結果、図7に示すバンドを合わせて照明光のバンド数が7となる。このように照明光のバンド数を増やすことにより、波長分解能が向上し、より正確な分光情報を取得することができる。なお、変更後にプレ撮影を行う際には、新たに増やした3バンド分の撮影のみを行ってもよいし、変更前のバンドも含む7バンド分の撮影を行ってもよい。
(Modification 1)
The first modification of the first embodiment is different from the first embodiment in the method of changing the end condition and the acquisition condition. The end condition in the first modification is, for example, “whether or not identification with already acquired spectral information or spectral information serving as a reference is possible”. FIG. 9 is a diagram showing an example of changing the acquisition condition performed by the condition setting unit 62 when the end condition is not satisfied, and spectral signal values acquired after changing the acquisition condition. In the case shown in FIG. 9, the condition setting unit 62 emits illumination light of three bands (transmission center wavelengths λ 5 , λ 6 , λ 7 ) different from the illumination light shown in FIG. 7 as acquisition conditions. As a result, the bands shown in FIG. By thus increasing the number of bands of illumination light, wavelength resolution can be improved and more accurate spectral information can be acquired. When pre-shooting is performed after the change, only shooting of the newly added three bands may be performed, or shooting of seven bands including the band before the change may be performed.
 図9では、新たに追加するバンドが初期のバンドと重なりを有していないが、隣接するバンドは、互いの透過中心波長が異なってさえいれば、重なりを有していてもよい。仮に図9に示す条件下でも終了条件を満足しない場合には、透過中心波長が異なるバンドをさらに増やしてプレ撮影を行う。その場合には、例えば隣接する透過中心波長の中間の波長を透過中心波長とする新たなバンドの照明光を照射する。 In FIG. 9, the newly added band has no overlap with the initial band, but adjacent bands may have an overlap as long as their transmission center wavelengths are different from each other. If the end condition is not satisfied even under the condition shown in FIG. 9, pre-shooting is performed by further increasing the bands having different transmission center wavelengths. In that case, illumination light of a new band whose emission center wavelength is, for example, a wavelength between the adjacent transmission center wavelengths is emitted.
 なお、バンド数を増やすように取得条件を変更する場合の終了条件は、上述したものに限られるわけではない。また、バンド数の増やし方も上述した方法に限られるわけではない。 The end condition in the case of changing the acquisition condition so as to increase the number of bands is not limited to the one described above. Further, the method of increasing the number of bands is not limited to the method described above.
(変形例2)
 本実施の形態1の変形例2は、終了条件および取得条件の変更方法が実施の形態1および変形例1と異なる。本変形例2における終了条件は、例えば「分光信号値の最大値と最小値の差が所定値以内」である。図10は、この終了条件を満足しない場合に条件設定部62が行う取得条件の変更例および取得条件の変更後に取得した分光信号値を示す図である。図10に示す場合、条件設定部62は、取得条件の変更として、各バンドの半値幅を所定の規則にしたがって狭くするという変更を行う。各バンドの半値幅を狭める場合には、液晶部33においてLVF32の透過光が透過する領域を縮小すればよい。所定の規則は、例えば変更前の半値幅の関数で与えられる。
(Modification 2)
The second modification of the first embodiment is different from the first embodiment and the first modification in the method of changing the end condition and the acquisition condition. The end condition in the second modification is, for example, "the difference between the maximum value and the minimum value of the spectral signal values is within a predetermined value". FIG. 10 is a diagram showing a modification example of the acquisition condition performed by the condition setting unit 62 when the end condition is not satisfied, and spectral signal values acquired after the acquisition condition is changed. In the case shown in FIG. 10, the condition setting unit 62 performs a change of narrowing the half width of each band according to a predetermined rule as a change of the acquisition condition. In order to narrow the full width at half maximum of each band, it is sufficient to reduce the area of the liquid crystal portion 33 where the transmitted light of the LVF 32 passes. The predetermined rule is given, for example, as a function of half width before change.
 他の条件を変更せずに各バンドの半値幅を狭くすると、一般的に分光情報は変更前と比べて小さくなるため、飽和しやすい分光信号値を抑制することができる。また、半値幅を狭くすることにより、例えば各バンドの分光情報の最大値と最小値の差が被写体の特性を判別する上で重要であるような場合の判定精度を向上させることができる。 If the half value width of each band is narrowed without changing the other conditions, the spectral information is generally smaller than before the change, so that it is possible to suppress spectral signal values that are likely to be saturated. Further, by narrowing the half width, for example, it is possible to improve the determination accuracy in the case where the difference between the maximum value and the minimum value of the spectral information of each band is important in determining the characteristics of the subject.
 なお、バンドの半値幅を狭くするように取得条件を変更する場合の終了条件は、上述したものに限られるわけではない。 The end condition in the case of changing the acquisition condition so as to narrow the half width of the band is not limited to the one described above.
(その他の変形例)
 例えば、相対的に分光信号値が大きいバンドの情報が重要である場合、そのようなバンドの情報を的確に取得できるような終了条件を設定するとともに、取得条件の変更方法を設定してもよい。例えば、図7に示す場合に透過中心波長λ3、λ4のバンドの情報が重要である場合には、このバンドの照明光の光量を増やして分光情報を再取得するようにしてもよいし、透過中心波長λ3、λ4の付近のバンド数を増やして分光情報を再取得するようにしてもよいし、この透過中心波長λ3、λ4の付近の半値幅を大きくして分光情報を再取得するようにしてもよい。これらの場合にも、取得条件を変更することによって波長分解能を向上させ、被写体の分光特性をより高精度に取得することができる。
(Other modifications)
For example, when information of a band having a relatively large spectral signal value is important, the end condition may be set such that the information of such a band can be accurately acquired, and the method of changing the acquisition condition may be set. . For example, in the case shown in FIG. 7, when the information of the band of the transmission center wavelengths λ 3 and λ 4 is important, the light amount of the illumination light of this band may be increased to reacquire spectral information. , transmission center wavelength lambda 3, may be re-acquire the spectral information by increasing the number of bands in the vicinity of lambda 4, the transmission center wavelength lambda 3, the spectral information by increasing the half width in the vicinity of lambda 4 May be reacquired. Also in these cases, the wavelength resolution can be improved by changing the acquisition condition, and the spectral characteristics of the subject can be acquired with higher accuracy.
(実施の形態2)
 本発明の実施の形態2は、各バンドの照明光の波長を所定量ずつシフトして2枚の画像をプレ撮影したときに得られる分光情報としての分光信号値に基づいて得られる2つの曲線の類似度を判定し、その類似度が所定の範囲内に入った場合にプレ撮影を終了する。すなわち、本実施の形態2における終了条件は、「異なるバンドで取得した2つの画像の分光信号値に基づいて得られる2つの曲線の類似度が所定の範囲内に入っている」である。この終了条件を満足しない場合、照明光のバンド数を増やすとともにバンドの半値幅を小さくして上記同様に2枚のプレ撮影を再度行い、各画像に対して上記同様に得られる2つの曲線の類似度を判定する。以上の処理を、2つの曲線の類似度が所定の範囲内に入るまで繰り返し行う。
Second Embodiment
In the second embodiment of the present invention, two curves are obtained based on spectral signal values as spectral information obtained when two images are pre-photographed by shifting the wavelength of the illumination light of each band by a predetermined amount. The degree of similarity is determined, and the pre-shooting is ended when the degree of similarity falls within a predetermined range. That is, the end condition in the second embodiment is "the similarity between two curves obtained based on the spectral signal values of two images acquired in different bands is within a predetermined range". When this end condition is not satisfied, the number of bands of illumination light is increased and the half width of the band is decreased and two pre-photographs are again performed in the same manner as described above, and Determine the degree of similarity. The above process is repeated until the similarity between the two curves falls within a predetermined range.
 本実施の形態2に係る撮像装置の構成は、実施の形態1で説明した撮像装置1の構成(図1を参照)と同様である。また、分光情報の取得条件の設定から本撮影時の条件の設定に至る処理の概要も、実施の形態1と同様(図5を参照)である。 The configuration of the imaging device according to the second embodiment is the same as the configuration (see FIG. 1) of the imaging device 1 described in the first embodiment. The outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as in the first embodiment (see FIG. 5).
 図11Aおよび図11Bは、初期状態として透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射して2回のプレ撮影を行った場合の分光信号値と波長との関係を示す図である。図11Aは、4つの波長λ(1) n(n=1~4)をそれぞれ透過中心波長とする4バンドの光を順次照射したときの分光情報と波長との関係を示している。図11Aでは、隣り合う分光情報を直線で結ぶことによって得られる折れ線P11が類似度判定対象の曲線である。図11Bは、4つの波長λ(1) n+4(n=1~4)をそれぞれ透過中心波長とする4バンドの光を順次照射したときの分光信号値と波長との関係を示している。図11Bでは、図11Aと同様に隣り合う分光情報を直線で結ぶことによって得られる折れ線P12が類似度判定対象の曲線である。波長λ(1) n+4は、λ(1) nを所定量Δλ1だけ大きくした波長である。図11Bに示す場合、全てのλ(1) nに対してΔλ1は同じであり、Δλ1=(λ(1) 2-λ(1) 1)/2である。 FIGS. 11A and 11B show spectral signal values and wavelengths obtained by performing two pre-shootings by irradiating illumination light having four band components whose light intensity at the transmission center wavelength and half width are equal to each other in the initial state. It is a figure which shows a relation. FIG. 11A shows the relationship between the spectral information and the wavelength when sequentially irradiated with light of four bands having four wavelengths λ (1) n (n = 1 to 4) as transmission central wavelengths. In FIG. 11A, polygonal line P 11 obtained by connecting the spectral information adjacent a straight line is a curve of the similarity determination target. FIG. 11B shows the relationship between the spectral signal value and the wavelength when sequentially irradiated with four bands of light having four wavelengths λ (1) n + 4 (n = 1 to 4) as transmission center wavelengths. . In FIG. 11B, polygonal line P 12 obtained by connecting a straight line spectral information adjacent in the same manner as FIG. 11A is a curve of the similarity determination target. The wavelength λ (1) n + 4 is a wavelength obtained by increasing λ (1) n by a predetermined amount Δλ 1 . In the case shown in FIG. 11B, Δλ 1 is the same for all λ (1) n , and Δλ 1 = (λ (1) 2 −λ (1) 1 ) / 2.
 判定部63は、図5に示すフローチャートのステップS4において、折れ線P11と折れ線P12の類似度を判定する。類似度を判定する際、判定部63は、従来から知られている様々な手法のいずれかを用いて判定する。そのような手法として、例えば相関係数を用いた類似度評価法や画像のパターンマッチング等を上げることができる。 Determining unit 63 at step S4 in the flowchart shown in FIG. 5, it determines the similarity of the polygonal line P 11 and line P 12. When determining the degree of similarity, the determination unit 63 makes a determination using any of various methods conventionally known. As such a method, for example, a similarity evaluation method using a correlation coefficient, pattern matching of an image, and the like can be raised.
 図12Aおよび図12Bは、判定部63によって折れ線P11と折れ線P12の類似度が所定範囲内にないと判定された場合、すなわち図5に示すフローチャートのステップS4において、分光情報が終了条件を満足しないと判定された場合に条件設定部62が変更した取得条件、およびその取得条件にしたがってプレ撮影したときの分光信号値を示す図である。図12Aは、6つの波長λ(2) n(n=1~6)をそれぞれ透過中心波長とし、透過中心波長の光量および半値幅が互いに等しい6バンドの光を順次照射したときの分光信号値と波長との関係を示している。折れ線P21は、隣り合う分光情報を直線で結ぶことによって得られる。図12Bは、6つの波長λ(2) n+6(n=1~6)をそれぞれ透過中心波長とする6バンドの光を順次照射したときの分光信号値と波長との関係を示している。折れ線P22も折れ線P21と同様、隣り合う分光情報を直線で結ぶことによって得られる。波長λ(2) n+6は、波長λ(2) nを所定量Δλ2=(λ(2) 2-λ(2) 1)/2だけ大きくした波長である。図12Aおよび図12に示す各バンドの半値幅はすべて等しく、図11Aおよび図11Bに示す各バンドの半値幅よりも小さい。 12A and 12B, if the similarity of the polygonal line P 11 and line P 12 by the determination unit 63 is determined not within the predetermined range, that is, in step S4 of the flowchart shown in FIG. 5, the spectral information is end condition It is a figure which shows the acquisition condition which the condition setting part 62 changed, when it determines with not satisfying | fulfilling, and a spectroscopy signal value when pre imaging | photography is carried out according to the acquisition condition. FIG. 12A shows spectral signal values when six wavelengths λ (2) n (n = 1 to 6) are transmission center wavelengths, and light of a transmission center wavelength and six bands of light having half widths equal to one another are sequentially irradiated. And the relationship between the wavelength. Polygonal line P 21 is obtained by connecting the spectral information adjacent to each other in a straight line. FIG. 12B shows the relationship between the spectral signal value and the wavelength when sequentially irradiated with six bands of light having six wavelengths λ (2) n + 6 (n = 1 to 6) as transmission center wavelengths. . Similar to the polygonal line P 22 also polygonal line P 21, obtained by connecting the spectral information adjacent to each other in a straight line. The wavelength λ (2) n + 6 is a wavelength obtained by increasing the wavelength λ (2) n by a predetermined amount Δλ 2 = (λ (2) 2(2) 1 ) / 2. The full widths at half maximum of each band shown in FIGS. 12A and 12 are all equal and smaller than the full width at half maximum of each band shown in FIGS. 11A and 11B.
 判定部63は、図5に示すフローチャートのステップS4において、折れ線P21と折れ線P22の類似度を判定する。判定の結果、類似度が所定の基準を満たしていれば(ステップS4:Yes)、本撮影条件の設定に移行する。これに対して、判定の結果、類似度が所定の基準を満たしていなければ(ステップS4:No)、条件設定部62は再び取得条件を変更する。以下、折れ線P21と折れ線P22の類似度が終了条件を満足しないとして説明を続ける。 Determining unit 63 at step S4 in the flowchart shown in FIG. 5, it determines the similarity of polygonal line P 21 and line P 22. As a result of the determination, if the degree of similarity satisfies a predetermined criterion (step S4: Yes), the process proceeds to setting of the main photographing condition. On the other hand, as a result of the determination, if the degree of similarity does not satisfy the predetermined standard (step S4: No), the condition setting unit 62 changes the acquisition condition again. Hereinafter, the description will be continued as the similarity of the polygonal line P 21 and a line P 22 does not satisfy the termination condition.
 図13Aおよび図13Bは、以上の処理を繰り返した結果、判定部63によって分光情報が終了条件を満足すると判定された場合、条件設定部62が設定した最後の取得条件、およびその取得条件にしたがってプレ撮影したときの分光信号値を示す図である。図13Aは、12個の波長λ(N) n(n=1~12)をそれぞれ透過中心波長とし、透過中心波長の光量および半値幅が互いに等しい12バンドの光を順次照射したときの分光信号値と波長との関係を示している。折れ線PN1は、隣り合う分光情報を直線で結ぶことによって得られる。図13Bは、12個の波長λ(N) n+12(n=1~12)をそれぞれ透過中心波長とする12バンドの光を順次照射したときの分光信号値と波長との関係を示している。折れ線PN2も、隣り合う分光情報を直線で結ぶことによって得られる。波長λ(N) n+12は、波長λ(N) nを所定量ΔλN=(λ(N) 2-λ(N) 1)/2だけ大きくした波長である。 As a result of repeating the above processing, when the determination unit 63 determines that the spectral information satisfies the end condition, FIGS. 13A and 13B follow the last acquisition condition set by the condition setting unit 62 and the acquisition condition thereof. It is a figure which shows the spectroscopy signal value at the time of pre imaging | photography. FIG. 13A is a spectral signal when light of 12 bands λ (N) n (n = 1 to 12) is the transmission center wavelength, and light of 12 bands having the same light intensity and half width of the transmission center wavelength is sequentially irradiated. It shows the relationship between the value and the wavelength. The broken line P N1 is obtained by connecting adjacent spectral information with a straight line. FIG. 13B shows the relationship between the spectral signal value and the wavelength when sequentially irradiated with 12 bands of light having transmission center wavelengths of 12 wavelengths λ (N) n +12 (n = 1 to 12) respectively. There is. The broken line P N2 is also obtained by connecting adjacent spectral information with a straight line. The wavelength λ (N) n + 12 is a wavelength obtained by increasing the wavelength λ (N) n by a predetermined amount Δλ N = (λ (N) 2(N) 1 ) / 2.
 以上説明した本発明の実施の形態2によれば、実施の形態1と同様、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる。 According to the second embodiment of the present invention described above, as in the first embodiment, highly accurate spectral information of an object can be acquired under appropriate acquisition conditions.
 また、本実施の形態2によれば、各バンドの照明光の透過中心波長を所定量ずつシフトして2枚の画像をプレ撮影したときの各画像の分光信号値に基づいて得られる2つの曲線の類似度を判定し、その類似度が所定の範囲内に入るまで波長分解能を向上させるように取得条件を変更するため、被写体の分光特性に応じた高精度の分光情報を取得することができる。 Further, according to the second embodiment, two of the spectral signal values of each image obtained when the two images are pre-photographed by shifting the transmission center wavelength of the illumination light of each band by a predetermined amount. In order to determine the degree of similarity of the curves and to change the acquisition condition so as to improve the wavelength resolution until the degree of similarity falls within the predetermined range, it is possible to obtain high-accuracy spectral information according to the spectral characteristics of the subject. it can.
 本実施の形態2で説明した取得条件の変更方法は、例えば広帯域の分光情報のプロファイルが被写体の特性を判別する上で重要であるような場合に好適である。 The method of changing the acquisition condition described in the second embodiment is suitable, for example, in the case where the profile of spectral information of a wide band is important in determining the characteristics of a subject.
 なお、本実施の形態2において、類似度判定対象の曲線を上述した折れ線とする代わりに、例えば最小二乗法等の手法を用いることによって全ての分光情報を通過する曲線で近似(多項式近似)してもよい。 In the second embodiment, instead of using the curve to be subjected to similarity determination as the above-described broken line, approximation (polynomial approximation) is performed using a curve that passes all spectral information, for example, by using a method such as the least squares method. May be
 また、本実施の形態2において、取得条件を変更する際に照明光のバンド数のみを増やしてバンドの半値幅を変更しないようにしてもよいし、バンド数とともに透過中心波長の光量を変更してもよい。 In the second embodiment, when the acquisition condition is changed, only the number of bands of illumination light may be increased to not change the half width of the band, or the light amount of the transmission center wavelength may be changed along with the number of bands. May be
 また、本実施の形態2において、波長を複数の区間に分割し、判定部63が各区間における曲線の類似度を判定するようにしてもよい。この場合、条件設定部62は、類似度が所定の範囲内に入っていないと判定された区間(非類似区間)に対してのみ半値幅を狭めるように取得条件を変更してもよい。 In the second embodiment, the wavelength may be divided into a plurality of sections, and the determination unit 63 may determine the similarity of the curves in each section. In this case, the condition setting unit 62 may change the acquisition condition so as to narrow the half value width only for the section (non-similar section) determined that the degree of similarity does not fall within the predetermined range.
(実施の形態3)
 本発明の実施の形態3は、照明光の波長と撮影画像の分光信号値との関係を示す曲線の最大傾きを算出し、この傾きが所定の傾きより大きくなるまで、照明光のバンドの半値幅を狭くしながらバンド数を増やす。本実施の形態3に係る撮像装置の構成は、実施の形態1で説明した撮像装置1の構成(図1を参照)と同様である。また、分光情報の取得条件の設定から本撮影時の条件の設定に至る処理の概要も、実施の形態1と同様(図5を参照)である。
Third Embodiment
The third embodiment of the present invention calculates the maximum slope of the curve showing the relationship between the wavelength of the illumination light and the spectral signal value of the photographed image, and halves the band of the illumination light until this slope becomes larger than a predetermined slope. Increase the number of bands while narrowing the price range. The configuration of the imaging apparatus according to the third embodiment is the same as the configuration (see FIG. 1) of the imaging apparatus 1 described in the first embodiment. The outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as in the first embodiment (see FIG. 5).
 図14Aは、透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射して個別にプレ撮影した2つの被写体の分光信号値と波長の関係を示す図である。同図に示す折れ線P101およびP102は、ともに透過中心波長λ2における分光情報と透過中心波長λ3における分光情報との間に大きな差があり、ともに折れ線の傾きが最大である。この場合の終了条件は、例えば「波長方向に隣接する分光信号値の波長に対する変化率(傾き)の最大値が所定値以上」である。 FIG. 14A is a diagram showing the relationship between the spectral signal values and the wavelengths of two objects separately pre-photographed by irradiating illumination light having four bands of components having the light intensity of the transmission center wavelength and the half width equal to each other. Polygonal line P 101 and P 102 are shown in the figure, there is a large difference between the spectral information in the spectral information transmission center wavelength lambda 3 both in transmission center wavelength lambda 2, are both maximum slope of the broken line. The termination condition in this case is, for example, “the maximum value of the change rate (slope) of the spectral signal value adjacent to the wavelength direction with respect to the wavelength is a predetermined value or more”.
 折れ線P101およびP102が上記終了条件を満足しない場合(図5のステップS4:No)、条件設定部62は取得条件を変更する(図5のステップS6)。具体的には、折れ線P101およびP102の折れ線の傾きが最大である波長帯域として、透過中心波長λ2、λ3を含む区間を設定し、この区間におけるバンド数を6に増やして(透過中心波長:λ5~λ10)、各バンドの半値幅を狭める。 When the polygonal lines P 101 and P 102 do not satisfy the above-described termination condition (Step S 4 in FIG. 5: No), the condition setting unit 62 changes the acquisition condition (Step S 6 in FIG. 5). Specifically, a section including the transmission center wavelengths λ 2 and λ 3 is set as the wavelength band in which the slopes of the broken lines P 101 and P 102 are maximum, and the number of bands in this section is increased to 6 (transmission Center wavelength: λ 5 to λ 10 ), narrow the half bandwidth of each band.
 図14Bは、条件設定部62が取得条件を変更した後に個別にプレ撮影することによって得られた2つの被写体の分光信号値と波長の関係を示す図である。図14Bに示す折れ線P201およびP202は、それぞれ折れ線P101およびP102にそれぞれ対応している。図14Bに示す波長λ5~λ10は、変更後の取得条件に基づく各バンドの透過中心波長である。各バンドの半値幅は、図14Aに示すバンドの半値幅の略半分である。なお、一般に変更後の各バンドの半値幅は、変更前のバンドの半値幅より小さい値を有する関数として定められる。 FIG. 14B is a diagram showing a relationship between spectral signal values of two subjects obtained by performing preliminary pre-shooting individually after the condition setting unit 62 changes the acquisition condition, and the wavelength. The broken lines P 201 and P 202 shown in FIG. 14B correspond to the broken lines P 101 and P 102 respectively. Wavelengths λ 5 to λ 10 shown in FIG. 14B are transmission center wavelengths of the respective bands based on the changed acquisition conditions. The half width of each band is approximately half of the half width of the band shown in FIG. 14A. Generally, the half width of each band after change is determined as a function having a smaller value than the half width of the band before change.
 図14Bにおいて、折れ線P202の最大傾きは、透過中心波長λ5と透過中心波長λ6との間の傾きである。また、折れ線P201の最大傾きは、透過中心波長λ8と透過中心波長λ9との間の傾きである。これらの最大傾きは、図14Aに示す折れ線P101およびP102の最大傾きよりもそれぞれ大きい。判定部63によって折れ線P201およびP202の最大傾きが終了条件を満足していると判定された場合、撮像装置1は、それぞれの被写体に対する本撮影時の条件設定を行う。 In FIG. 14B, the maximum inclination of the broken line P 202 is the inclination between the transmission center wavelength λ 5 and the transmission center wavelength λ 6 . The maximum inclination of the broken line P 201 is the inclination between the transmission center wavelength λ 8 and the transmission center wavelength λ 9 . These maximum slopes are respectively larger than the maximum slopes of broken lines P 101 and P 102 shown in FIG. 14A. When it is determined by the determination unit 63 that the maximum inclinations of the broken lines P 201 and P 202 satisfy the end condition, the imaging device 1 performs the condition setting at the time of main shooting for each subject.
 図14Bに示す場合、2つの折れ線P201およびP202は異なる折れ線として明らかに識別可能である。このようにして、図14Aでは区別がつかなかった2つの被写体の分光情報が、図14Bでは明らかに区別することが可能となる。 In the case shown in FIG. 14B, the two broken lines P 201 and P 202 are clearly distinguishable as different broken lines. In this way, the spectral information of the two objects which can not be distinguished in FIG. 14A can be clearly distinguished in FIG. 14B.
 以上説明した本発明の実施の形態3によれば、実施の形態1と同様、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる。 According to the third embodiment of the present invention described above, as in the first embodiment, highly accurate spectral information of a subject can be acquired under appropriate acquisition conditions.
 また、本実施の形態3によれば、波長の変化に対する分光信号値の変化が大きい箇所の波長分解能を向上させることによって、より高精度の分光情報の解析が可能となる。 Further, according to the third embodiment, it is possible to analyze spectral information with higher accuracy by improving the wavelength resolution of a portion where the change in spectral signal value with respect to the change in wavelength is large.
 本実施の形態3は、被写体の分光特性を判定する上で、分光情報の波長に対する変化率とその波長帯域が重要であるような場合に好適である。 The third embodiment is suitable for the case where the rate of change of the spectral information with respect to the wavelength and the wavelength band thereof are important in determining the spectral characteristics of the subject.
 なお、本実施の形態3において、照明光のバンドの半値幅を狭くしながらバンド数を増やしていく際に、細かく分割される波長区間の分割前後で最大傾きの増加割合が所定以下であることを終了条件としてもよい。 In the third embodiment, when the number of bands is increased while narrowing the half width of the illumination light band, the increase ratio of the maximum inclination before and after division of the finely divided wavelength section is equal to or less than a predetermined value. The end condition may be
(実施の形態4)
 本発明の実施の形態4における終了条件は、例えば「すべてのバンドの分光信号値が飽和していない」である。本実施の形態4において、プレ撮影の結果、分光信号値が飽和している波長帯域に対して取得条件のうち最大光量を下げることによって感度を落としてプレ撮影し、それでも飽和している場合には取得条件のうち最大光量を維持したまま半値幅を狭くすることによってさらに感度を落としてプレ撮影を行う。
Embodiment 4
The termination condition in the fourth embodiment of the present invention is, for example, "spectral signal values of all bands are not saturated". In the fourth embodiment, as a result of the pre-shooting, the sensitivity is lowered by lowering the maximum light amount among the acquisition conditions for the wavelength band in which the spectral signal value is saturated, and the pre-shooting is performed but is still saturated. Among the acquisition conditions, the pre-shooting is performed by further reducing the sensitivity by narrowing the half width while maintaining the maximum light intensity.
 本実施の形態4に係る撮像装置の構成は、実施の形態1で説明した撮像装置1の構成と同様(図1を参照)である。また、分光情報の取得条件の設定から本撮影時の条件の設定に至る処理の概要も、実施の形態1と同様(図5を参照)である。 The configuration of the imaging device according to the fourth embodiment is the same as the configuration of the imaging device 1 described in the first embodiment (see FIG. 1). The outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as in the first embodiment (see FIG. 5).
 図15Aは、透過中心波長の光量および半値幅が互いに等しい4バンドの成分を有する照明光を照射してプレ撮影したときの分光信号値と波長の関係を示す図である。図15Aでは、透過中心波長λ3、λ4をそれぞれ有する2つのバンドでプレ撮影したときの分光信号値が飽和値Imaxに達している状況を示している。したがってこの場合、判定部63は、上述した終了条件を満足しないと判定する(図5のステップS4:No)。 FIG. 15A is a diagram showing a relationship between spectral signal values and wavelengths when pre-photographed by irradiating illumination light having four bands of components having the same amount of light at the transmission center wavelength and the half bandwidth equal to each other. FIG. 15A shows a state in which the spectral signal value reaches the saturation value I max when pre-shooting is performed on two bands having the transmission center wavelengths λ 3 and λ 4 respectively. Therefore, in this case, the determination unit 63 determines that the above-described end condition is not satisfied (step S4 in FIG. 5: No).
 その後、条件設定部62は、飽和値を得たバンド(透過中心波長λ3、λ4)の最大光量を所定の規則にしたがって小さくする(図5のステップS6)。所定の規則は、例えば変更前の最大光量の関数として定められる。図15Bは、分光信号値が飽和値Imaxに達している2つのバンドの最大光量をK3より小さいK4にした照明光を照射してプレ撮影したときの分光信号値と波長の関係を示す図である。図15Bに示す場合、依然として透過中心波長λ3、λ4の照明光でのプレ撮影によって得られる分光信号値は飽和値Imaxに達しているため、判定部63は上述した終了条件を満足しないと判定する。 Thereafter, the condition setting unit 62 reduces the maximum light amount of the band (transmission center wavelengths λ 3 and λ 4 ) for which the saturation value is obtained according to a predetermined rule (step S6 in FIG. 5). The predetermined rule is determined, for example, as a function of the maximum light intensity before the change. FIG. 15B shows the relationship between the spectral signal value and the wavelength when pre-photographed by irradiating illumination light in which the maximum light intensity of the two bands for which the spectral signal value has reached the saturation value I max is K 4 smaller than K 3. FIG. In the case shown in FIG. 15B, since the spectral signal value obtained by the pre-shooting with the illumination light of the transmission center wavelengths λ 3 and λ 4 still reaches the saturation value I max , the determination unit 63 does not satisfy the end condition described above. It is determined that
 続いて、条件設定部62は、透過中心波長λ3、λ4のバンドの半値幅を所定の規則にしたがって狭くする。所定の規則は、例えば変更前の半値幅の関数として定められる。図15Cは、透過中心波長λ3、λ4の照明光の最大光量はK4のままで半値幅を狭くした照明光を照射してプレ撮影したときの分光信号値と波長の関係を示す図である。図15Cに示す場合、透過中心波長λ3、λ4の分光信号値は飽和値Imaxを下回っている。したがって、判定部63は、図15Cに示す状況において、はじめて上述した終了条件を満足すると判定する。 Subsequently, the condition setting unit 62 narrows the half bandwidth of the transmission center wavelengths λ 3 and λ 4 in accordance with a predetermined rule. The predetermined rule is determined, for example, as a function of the half width before change. FIG. 15C is a diagram showing a relationship between spectral signal values and wavelengths when pre-photographed by irradiating illumination light whose half width is narrowed while the maximum light quantity of the illumination light of the transmission center wavelengths λ 3 and λ 4 is K 4 . It is. In the case shown in FIG. 15C, the spectral signal values of the transmission center wavelengths λ 3 and λ 4 are below the saturation value I max . Therefore, the determination unit 63 determines that the above-described termination condition is satisfied for the first time in the situation illustrated in FIG. 15C.
 以上説明した本発明の実施の形態4によれば、実施の形態1と同様、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる。 According to the fourth embodiment of the present invention described above, as in the first embodiment, highly accurate spectral information of a subject can be acquired under appropriate acquisition conditions.
 また、本実施の形態4によれば、光量と半値幅を交互に変化させて感度を調整することにより、飽和している分光信号値を適切な信号レベルとすることができ、分光特性を一段と精度よく判定することが可能となる。 Further, according to the fourth embodiment, by changing the light quantity and the half width alternately to adjust the sensitivity, it is possible to make the saturated spectral signal value an appropriate signal level, and the spectral characteristic is further increased. It becomes possible to judge accurately.
 なお、本実施の形態4において、条件設定部62は、バンドの透過中心波長の最大光量を小さくするという条件変更を所定回数繰り返しても飽和値Imaxを下回らない場合に半値幅を小さくするようにしてもよいし、バンドの透過中心波長の最大光量を小さくする条件変更とバンドの半値幅を小さくする条件変更とを交互に繰り返すようにしてもよい。 In the fourth embodiment, the condition setting unit 62 reduces the half value width when the value does not fall below the saturation value I max even if the condition change of reducing the maximum light amount of the transmission center wavelength of the band is repeated a predetermined number of times. Alternatively, the condition change to reduce the maximum light quantity of the transmission center wavelength of the band and the condition change to reduce the half width of the band may be alternately repeated.
 また、本実施の形態4において、条件設定部62が取得条件を複数回変更する場合、バンドの透過中心波長の最大光量を小さくする処理とバンドの半値幅を狭くする処理のいずれか一方のみを連続して行うようにしてよい。 In the fourth embodiment, when the condition setting unit 62 changes the acquisition condition a plurality of times, only one of the processing for reducing the maximum light quantity of the transmission center wavelength of the band and the processing for narrowing the half width of the band. It may be performed continuously.
(実施の形態5)
 本発明の実施の形態5に係る撮像装置が備える撮像部は、撮像素子がカラーフィルタ付のイメージセンサを有する。本実施の形態5では、カラーフィルタの波長ごとのセンサ感度が既知であり、そのセンサ感度に応じて、RGBの波長帯域を所定数に分割するように照明光の各バンドの透過中心波長と半値幅を定める。撮像素子を除く撮像装置の構成は、実施の形態1で説明した撮像装置1の構成と同様である(図1を参照)。また、分光情報の取得条件の設定から本撮影時の条件の設定に至る処理の概要も、実施の形態1と同様である(図5を参照)。
Fifth Embodiment
The imaging unit provided in the imaging apparatus according to Embodiment 5 of the present invention has an image sensor with a color filter as an imaging element. In the fifth embodiment, the sensor sensitivity for each wavelength of the color filter is known, and the transmission center wavelength and half of each band of the illumination light are divided so as to divide the RGB wavelength band into a predetermined number according to the sensor sensitivity. Determine the price range. The configuration of the imaging device excluding the imaging element is the same as the configuration of the imaging device 1 described in Embodiment 1 (see FIG. 1). The outline of processing from setting of acquisition conditions of spectral information to setting of conditions at the time of main photographing is also the same as that of the first embodiment (see FIG. 5).
 図16は、本実施の形態5に係る撮像装置が有する撮像素子の受光感度Sおよび照明部が照射する照明光の光量Kと波長λとの関係をそれぞれ示す図である。図16では、破線R、G、BがR成分、G成分、B成分の感度Sをそれぞれ示している。図16に示す場合、照明光のR成分、G成分、B成分は、それぞれ3バンドに分割されている。照明部3は、照明光の各色成分を1つずつ含む3バンド(Ri、Gi、Bi)(i=1~3)を1組とする部分照明光を時分割で3回照射する。これにより、本実施の形態5に係る撮像装置は、9バンドの照明光を照射する。 FIG. 16 is a view showing the relationship between the light receiving sensitivity S of the imaging device of the imaging device according to the fifth embodiment and the light amount K of the illumination light emitted by the illumination unit and the wavelength λ. In FIG. 16, broken lines R, G, and B respectively indicate the sensitivities S of the R component, the G component, and the B component. In the case shown in FIG. 16, the R component, the G component, and the B component of the illumination light are each divided into three bands. The illumination unit 3 illuminates, in time division, partial illumination light in which three bands (Ri, Gi, Bi) (i = 1 to 3) including one color component of the illumination light are included as one set. As a result, the imaging device according to the fifth embodiment emits illumination light of nine bands.
 以上説明した本発明の実施の形態5によれば、実施の形態1と同様、適切な取得条件のもとで高精度な被写体の分光情報を取得することができる。 According to the fifth embodiment of the present invention described above, as in the first embodiment, highly accurate spectral information of an object can be acquired under appropriate acquisition conditions.
 また、本実施の形態5によれば、各色成分の一部を同時に点灯するため、短時間で多くのバンドの光を照射することができる。したがって、撮像部におけるフレームレートを向上させることができる。 Further, according to the fifth embodiment, since a part of each color component is simultaneously turned on, light of many bands can be irradiated in a short time. Therefore, the frame rate in the imaging unit can be improved.
 なお、本実施の形態5において、R、G、Bの各成分を任意のM(Mは整数)バンドに分割して3Mバンドの照明光を1/Mの時間で照射することにより、分光情報を取得するようにしてもよい。 In the fifth embodiment, spectral information is obtained by dividing each component of R, G, and B into arbitrary M (M is an integer) band and irradiating illumination light of 3 M band in 1 / M time. May be acquired.
(その他の実施の形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~5によってのみ限定されるべきものではない。例えば、上述した実施の形態1~5の終了条件および取得条件の変更方法を選択的に切り換え可能な構成としてもよい。
(Other embodiments)
Although the embodiments for carrying out the present invention have been described above, the present invention is not to be limited only by the above-described first to fifth embodiments. For example, the end conditions of the above-described first to fifth embodiments and the method of changing the acquisition conditions may be selectively switched.
 また、分光情報は分光信号値に限られるわけではなく、被写体の分光特性を反映し、撮影した画像から取得できるものであればいかなるものであってもよい。 The spectral information is not limited to the spectral signal value, and may be any information that reflects the spectral characteristics of the subject and can be acquired from the captured image.
 また、分光特性が類似する被写体のグループに対しては、そのうちの1つの代表被写体のみプレ撮影を行って本撮影時の条件を決定し、この条件に基づいて、グループを構成するすべての被写体の本撮影を行うようにしてもよい。 In addition, for a group of subjects having similar spectral characteristics, only one representative subject among them is pre-photographed to determine the condition at the time of main photographing, and based on this condition, all the subjects constituting the group are The main photographing may be performed.
 また、分光情報の波長に対する変化率が所定の閾値以上となることを終了条件とし、その閾値よりも小さい波長の区間でバンド数を減らしたり、半値幅を広くしたり、またはこの両者を実施したりしてもよい。これにより、本撮影時のバンド数を削減し、撮影の高速化とデータ容量の削減を実現することができる。 In addition, the end condition is that the rate of change of spectral information with respect to the wavelength is equal to or higher than a predetermined threshold, and the number of bands is reduced in the wavelength section smaller than the threshold, the half bandwidth is increased, or both are implemented. You may As a result, the number of bands at the time of main imaging can be reduced, and speeding up of imaging and reduction of data capacity can be realized.
 このように、本発明は、ここでは記載していない様々な実施の形態を含みうるものであり、請求の範囲によって特定される技術的思想の範囲内で種々の設計変更等を行うことが可能である。 Thus, the present invention can include various embodiments not described herein, and various design changes can be made within the scope of the technical idea specified by the claims. It is.
 1 撮像装置
 2 撮像部
 3 照明部
 4 入力部
 5 出力部
 6 制御部
 7 記憶部
 21 撮像光学系
 22 撮像素子
 31 光源部
 32 LVF
 33 液晶部
 34 拡散光学系
 61 画像解析部
 62 条件設定部
 63 判定部
 64 撮影制御部
 65 照明制御部
 71 フィルタ情報記憶部
 72 位置情報記憶部
 73 条件記憶部
 74 画像情報記憶部
 75 分光情報記憶部
Reference Signs List 1 imaging device 2 imaging unit 3 illumination unit 4 input unit 5 output unit 6 control unit 7 storage unit 21 imaging optical system 22 imaging device 31 light source unit 32 LVF
33 liquid crystal unit 34 diffusion optical system 61 image analysis unit 62 condition setting unit 63 determination unit 64 photographing control unit 65 illumination control unit 71 filter information storage unit 72 position information storage unit 73 condition storage unit 74 image information storage unit 75 spectral information storage unit

Claims (9)

  1.  複数の波長帯域の成分からなり、各成分が設定に応じた特性を有する照明光を生成する照明部と、
     被写体からの光を撮像することによって画像信号を生成する撮像部と、
     前記照明部および前記撮像部の動作に関する条件を含む前記被写体の分光情報の取得条件を設定する条件設定部と、
     前記撮像部が前記取得条件に基づいて生成した画像信号を解析して前記被写体の分光情報を取得する画像解析部と、
     前記画像解析部が取得した分光情報が該分光情報の取得を終了するための終了条件を満足するか否かを判定する判定部と、
     を備え、
     前記条件設定部は、
     前記判定部が前記終了条件を満足しないと判定した場合、前記分光情報の取得条件を変更することを特徴とする撮像装置。
    An illumination unit configured to generate illumination light having components of a plurality of wavelength bands, each component having a characteristic according to a setting;
    An imaging unit that generates an image signal by imaging light from a subject;
    A condition setting unit configured to set an acquisition condition of spectral information of the subject including the condition regarding the operation of the illumination unit and the imaging unit;
    An image analysis unit that analyzes an image signal generated by the imaging unit based on the acquisition condition to acquire spectral information of the subject;
    A determination unit that determines whether the spectral information acquired by the image analysis unit satisfies an end condition for ending the acquisition of the spectral information;
    Equipped with
    The condition setting unit is
    An imaging apparatus characterized in that the acquisition condition of the spectral information is changed when the determination unit determines that the end condition is not satisfied.
  2.  前記条件設定部は、
     前記判定部が前記終了条件を満足すると判定した場合、前記撮像部による本撮影時の撮影条件を設定することを特徴とする請求項1に記載の撮像装置。
    The condition setting unit is
    The imaging apparatus according to claim 1, wherein when the determination unit determines that the end condition is satisfied, an imaging condition at the time of main imaging by the imaging unit is set.
  3.  前記条件設定部は、
     複数の前記取得条件のいずれかを選択的に設定可能であることを特徴とする請求項1または2に記載の撮像装置。
    The condition setting unit is
    The imaging apparatus according to claim 1, wherein one of the plurality of acquisition conditions can be selectively set.
  4.  前記条件設定部は、
     前記取得条件を変更する際、前記画像信号における少なくとも一部の波長帯域の感度を向上させることを特徴とする請求項1~3のいずれか一項に記載の撮像装置。
    The condition setting unit is
    The imaging device according to any one of claims 1 to 3, wherein when changing the acquisition condition, sensitivity of at least a part of wavelength bands in the image signal is improved.
  5.  前記条件設定部は、
     前記画像信号の信号値に基づいて前記感度を向上させる波長帯域を決定することを特徴とする請求項4に記載の撮像装置。
    The condition setting unit is
    The imaging device according to claim 4, wherein a wavelength band for improving the sensitivity is determined based on a signal value of the image signal.
  6.  前記条件設定部は、
     前記取得条件を変更する際、前記画像信号における少なくとも一部の波長帯域の波長分解能を向上させることを特徴とする請求項1~5のいずれか一項に記載の撮像装置。
    The condition setting unit is
    The imaging device according to any one of claims 1 to 5, wherein when changing the acquisition condition, the wavelength resolution of at least a part of wavelength bands in the image signal is improved.
  7.  前記条件設定部は、
     前記画像信号の信号値の変化に基づいて前記波長分解能を向上させる波長帯域を決定することを特徴とする請求項6に記載の撮像装置。
    The condition setting unit is
    The imaging device according to claim 6, wherein a wavelength band for improving the wavelength resolution is determined based on a change in a signal value of the image signal.
  8.  前記照明部は、
     光の透過中心波長が予め設定された方向に沿って連続的に変化する平板状のフィルタと、
     前記フィルタから光が出射する側に位置し、前記フィルタを透過した光の一部の波長帯域を選択的に透過する液晶部と、
     前記液晶部から光が出射する側に位置し、前記液晶部を透過した光を拡散して均一化する拡散光学系と、
     を有し、
     前記液晶部は、透過する光の波長帯域を変更可能であることを特徴とする請求項1~7のいずれか一項に記載の撮像装置。
    The lighting unit is
    A flat filter in which the transmission center wavelength of light varies continuously along a preset direction;
    A liquid crystal unit positioned on the side from which light is emitted from the filter, and selectively transmitting a part of the wavelength band of the light transmitted through the filter;
    A diffusion optical system located on the side from which light is emitted from the liquid crystal unit, and diffusing and homogenizing the light transmitted through the liquid crystal unit;
    Have
    The image pickup apparatus according to any one of claims 1 to 7, wherein the liquid crystal unit is capable of changing a wavelength band of light to be transmitted.
  9.  複数の波長帯域の成分からなり、各成分が設定に応じた特性を有する照明光を生成する照明部と、被写体からの光を撮像することによって画像信号を生成する撮像部と、を備えた撮像装置が実行する制御方法であって、
     前記照明部および前記撮像部の動作に関する条件を含む前記被写体の分光情報の取得条件を記憶部から読み出して設定する条件設定ステップと、
     前記撮像部が前記取得条件に基づいて前記画像信号を生成する画像信号生成ステップと、
     前記画像信号生成ステップで生成した画像信号を解析して前記被写体の分光情報を取得する画像解析ステップと、
     前記画像解析ステップで取得した分光情報が終了条件を満足するか否かを判定する判定ステップと、
     前記判定ステップで前記終了条件を満足しないと判定した場合、前記分光情報の取得条件を変更する条件変更ステップと、
     前記条件変更ステップで変更した条件に基づいて、前記画像信号生成ステップおよび前記画像解析ステップを再度実行することを特徴とする制御方法。
    An imaging unit comprising: an illumination unit configured to generate illumination light composed of components of a plurality of wavelength bands, each component having a characteristic according to the setting; and an imaging unit configured to generate an image signal by imaging light from a subject A control method executed by the device,
    A condition setting step of reading out and setting acquisition conditions of spectral information of the subject including the conditions relating to the operation of the illumination unit and the imaging unit;
    An image signal generation step of generating the image signal based on the acquisition condition by the imaging unit;
    An image analysis step of analyzing the image signal generated in the image signal generation step to acquire spectral information of the subject;
    A determination step of determining whether or not the spectral information acquired in the image analysis step satisfies an end condition;
    A condition change step of changing the acquisition condition of the spectral information when it is determined in the determination step that the end condition is not satisfied;
    A control method characterized in that the image signal generation step and the image analysis step are executed again based on the condition changed in the condition change step.
PCT/JP2017/027943 2017-08-01 2017-08-01 Image capture device and control method WO2019026191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/027943 WO2019026191A1 (en) 2017-08-01 2017-08-01 Image capture device and control method
US16/739,858 US11070722B2 (en) 2017-08-01 2020-01-10 Image capturing device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027943 WO2019026191A1 (en) 2017-08-01 2017-08-01 Image capture device and control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/739,858 Continuation US11070722B2 (en) 2017-08-01 2020-01-10 Image capturing device and control method

Publications (1)

Publication Number Publication Date
WO2019026191A1 true WO2019026191A1 (en) 2019-02-07

Family

ID=65233580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027943 WO2019026191A1 (en) 2017-08-01 2017-08-01 Image capture device and control method

Country Status (2)

Country Link
US (1) US11070722B2 (en)
WO (1) WO2019026191A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154628A (en) * 2011-01-21 2012-08-16 Olympus Corp Microscope system, information processing device, and information processing program
JP2012244277A (en) * 2011-05-17 2012-12-10 Olympus Corp Image capture device and microscope system comprising the same
JP2015127777A (en) * 2013-12-27 2015-07-09 株式会社キーエンス Device, method, and program for magnifying observation, computer readable recording medium, and recording device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003252253A1 (en) * 2002-07-26 2004-02-16 Olympus Optical Co., Ltd. Image processing system
CA2581668A1 (en) * 2003-09-26 2005-04-07 Tidal Photonics, Inc Apparatus and methods relating to expanded dynamic range imaging endoscope systems
US7546032B2 (en) * 2004-09-30 2009-06-09 Casio Computer Co., Ltd. Electronic camera having light-emitting unit
JP2006154523A (en) * 2004-11-30 2006-06-15 Fuji Photo Film Co Ltd Photographing device
JP4572687B2 (en) * 2005-01-14 2010-11-04 ソニー株式会社 Backlight device and liquid crystal display device
US7570881B2 (en) * 2006-02-21 2009-08-04 Nokia Corporation Color balanced camera with a flash light unit
JP5704855B2 (en) * 2010-07-30 2015-04-22 キヤノン株式会社 Light emitting device, imaging device, and light emission control method
JP2012155149A (en) * 2011-01-26 2012-08-16 Canon Inc Imaging apparatus and method for controlling the same
US9945721B2 (en) * 2013-06-20 2018-04-17 The University Of North Carolina At Charlotte Selective wavelength imaging systems and methods
US10007109B2 (en) * 2013-06-20 2018-06-26 The University Of North Carolina At Charlotte Wavelength discriminating imaging systems and methods
US9525811B2 (en) * 2013-07-01 2016-12-20 Qualcomm Incorporated Display device configured as an illumination source
JP5968944B2 (en) * 2014-03-31 2016-08-10 富士フイルム株式会社 Endoscope system, processor device, light source device, operation method of endoscope system, operation method of processor device, operation method of light source device
JP6412709B2 (en) * 2014-04-02 2018-10-24 オリンパス株式会社 Observation image acquisition system
US10113910B2 (en) * 2014-08-26 2018-10-30 Digimarc Corporation Sensor-synchronized spectrally-structured-light imaging
EP3192430A1 (en) * 2014-09-09 2017-07-19 Olympus Corporation Imaging device and processing device
US9420248B2 (en) * 2014-09-19 2016-08-16 Qualcomm Incorporated Multi-LED camera flash for color temperature matching
JP5849150B1 (en) * 2014-12-25 2016-01-27 アキュートロジック株式会社 Imaging method
US10154256B1 (en) * 2017-06-13 2018-12-11 Qualcomm Incorporated Flash color calibration
WO2019014145A1 (en) * 2017-07-09 2019-01-17 Lumenetix, Inc. Full-spectrum flash for electronic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154628A (en) * 2011-01-21 2012-08-16 Olympus Corp Microscope system, information processing device, and information processing program
JP2012244277A (en) * 2011-05-17 2012-12-10 Olympus Corp Image capture device and microscope system comprising the same
JP2015127777A (en) * 2013-12-27 2015-07-09 株式会社キーエンス Device, method, and program for magnifying observation, computer readable recording medium, and recording device

Also Published As

Publication number Publication date
US11070722B2 (en) 2021-07-20
US20200154038A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6568719B2 (en) Imaging method and imaging apparatus
US7546032B2 (en) Electronic camera having light-emitting unit
JP2015228641A (en) Imaging apparatus, exposure adjustment method and program
US7884980B2 (en) System for capturing graphical images using hyperspectral illumination
JP2004212385A (en) Photographic device, photographing method and control method for the photographic device
US8098300B2 (en) Multi-band image photographing method and apparatus, and program for executing the method
US8705151B2 (en) Imaging device calibration methods, imaging device calibration instruments, imaging devices, and articles of manufacture
US11323631B2 (en) Image capturing device and control method
JP2015011127A5 (en)
US11596293B2 (en) Endoscope system and operation method therefor
JP2006126798A (en) Electronic camera
JP2019005096A (en) Processor device and method of operating the same
JP6654117B2 (en) Endoscope system and method of operating endoscope system
JP6891304B2 (en) Endoscope system
JP2002077955A (en) Housing for evaluating camera characteristics, as well as method and apparatus for evaluating camera characteristics
JP7015382B2 (en) Endoscope system
WO2019026191A1 (en) Image capture device and control method
JPH0545745A (en) Method for controlling photographic printing exposure
EP3993382A1 (en) Colour calibration of an imaging device
CN108886608B (en) White balance adjustment device, working method thereof and computer readable medium
US10989596B2 (en) Subject identification device and subject identification method
JP2022006624A (en) Calibration device, calibration method, calibration program, spectroscopic camera, and information processing device
JP4191531B2 (en) Multiband image photographing method, apparatus and program
JP6729578B2 (en) Optical characteristic measuring device and method for setting optical characteristic measuring device
JP2020005053A (en) Spectral sensitivity measurement method for image sensors, inspection method for spectral sensitivity measurement devices, and spectral sensitivity measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP