WO2019026173A1 - Motor, and method for manufacturing rotor - Google Patents

Motor, and method for manufacturing rotor Download PDF

Info

Publication number
WO2019026173A1
WO2019026173A1 PCT/JP2017/027853 JP2017027853W WO2019026173A1 WO 2019026173 A1 WO2019026173 A1 WO 2019026173A1 JP 2017027853 W JP2017027853 W JP 2017027853W WO 2019026173 A1 WO2019026173 A1 WO 2019026173A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
piece
protrusion
insertion portion
core
Prior art date
Application number
PCT/JP2017/027853
Other languages
French (fr)
Japanese (ja)
Inventor
修也 福田
石園 文彦
増本 浩二
裕貴 田村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201790001766.9U priority Critical patent/CN211377720U/en
Priority to PCT/JP2017/027853 priority patent/WO2019026173A1/en
Priority to JP2019533771A priority patent/JP6827544B2/en
Publication of WO2019026173A1 publication Critical patent/WO2019026173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a motor and a method of manufacturing a rotor, and more particularly to a motor including a rotor including a magnet and a method of manufacturing a rotor including a magnet.
  • a conventional motor comprises a rotatable rotor provided in the shell of the compressor and having a shaft inserted therein, and a stator provided in the shell of the compressor and provided around the rotor
  • the rotor of the motor of Patent Document 1 includes an elongated magnet including a first surface and a second surface opposite to the first surface, and a rotor core in which a magnet insertion portion is formed. There is.
  • the rotor core is configured by stacking a plurality of disk-shaped core pieces.
  • a force may be applied to the magnet in a direction orthogonal to the axial direction of the rotor and parallel to the first wall surface of the magnet insertion portion. Since this force is a force to shift the position of the magnet, this force is referred to herein as a shift force.
  • a shift force is applied to the magnet, a frictional force is generated between the magnet and the magnet insertion portion to prevent the position of the magnet from shifting. The frictional force is generated between the first wall surface and the first surface of the magnet and between the second wall surface and the second surface of the magnet.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a motor and a method of manufacturing a rotor capable of more reliably preventing positional deviation of magnets provided in a rotor core.
  • the purpose is.
  • a motor according to the present invention comprises a rotor including a rotor core and a magnet inserted in the rotor core, and a stator provided around the rotor core, the rotor core having a shaft hole into which the shaft is inserted, and A magnet insertion portion extending in parallel to the rotation axis direction and elongated in a cross section orthogonal to the rotation axis direction, and including a magnet insertion portion in which a magnet is inserted, the magnet being in contact with the magnet insertion portion of the rotor core
  • the magnet insertion portion includes an outer peripheral surface, the magnet insertion portion is formed at an end portion in the longitudinal direction of the magnet insertion portion in a cross section orthogonal to the rotation axis direction, and includes a protrusion protruding toward the magnet. It includes a top in contact with the surface and a standoff spaced from the outer circumferential surface of the magnet.
  • the magnet insertion portion is formed at an end portion in the longitudinal direction of the magnet insertion portion in a cross section orthogonal to the rotation axis direction, and includes a projecting portion protruding toward the magnet. For this reason, even if the displacement force is applied to the magnet, the end of the magnet abuts on the protrusion and the movement of the magnet in the direction of the displacement force is restricted. Therefore, according to the present invention, even if a displacement force is applied to the magnet, it is possible to more reliably prevent the displacement of the magnet.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor 1 according to a first embodiment. It is an expansion explanatory view of rotor 4a shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 8 is an enlarged view of a protrusion tf1 shown in FIG. 7 and the periphery thereof.
  • FIG. 8 is a cross-sectional view of the rotor core 4c taken along the line CC shown in FIG. 7;
  • difference force F etc. are added to the magnet 4d, it is a schematic diagram which shows a mode that the motion in the magnet insertion part 4j of the magnet 4d is controlled.
  • 6 is a first modification of the scroll compressor 1 according to the first embodiment.
  • 7 is a second modification of the scroll compressor 1 according to the first embodiment.
  • FIG. 16 is an enlarged view of a protrusion tf3 shown in FIG. 15 and the periphery thereof. It is explanatory drawing of the magnet insertion part 34j of the core piece 4c1 of 1st group G1. It is explanatory drawing of the magnet 43d. It is the figure which showed the state in which the magnet 43d was inserted in the magnet insertion part 34j of core piece 4c1.
  • FIG. 10 is a cross-sectional view of a rotor core 4c of a scroll compressor according to Embodiment 4. It is structure explanatory drawing of 1st end side magnet piece Dv2.
  • FIG. 20 is a cross-sectional view of a rotor core 4c of a scroll compressor according to Embodiment 5. It is structure explanatory drawing of center magnet piece Dv11. A state in which the first end magnet piece Dv12 is inserted into the magnet insertion portion 45j is shown. A state in which the second end magnet piece Dv13 is inserted into the magnet insertion portion 45j is shown. It shows a state in which the central magnet piece Dv11 is inserted into the magnet insertion portion 45j.
  • FIG. 1 is a schematic cross-sectional view of the scroll compressor 1 according to the first embodiment.
  • the scroll compressor 1 compresses the refrigerant to a high temperature and a high pressure.
  • the scroll compressor 1 constitutes an outer shell of the scroll compressor 1 and is provided with a shell 2 having an oil reservoir 3a at its lower portion, and an oil pump 3 housed in the shell 2 and sucking up oil from the oil reservoir 3a And a motor 4 including a stator 4b fixed to the shell 2 and a rotor 4a provided on the
  • the scroll compressor 1 further includes a compression unit 5 including a fixed scroll 30 and a swing scroll 40, a frame 6 accommodating the swing scroll 40, and a shaft 7 fixed to the rotor 4a.
  • the scroll compressor 1 further includes a suction pipe 11 for guiding the refrigerant into the shell 2 and a discharge pipe 12 for guiding the refrigerant compressed by the compression unit 5 from the inside of the shell 2 to the outside of the shell 2.
  • the scroll compressor 1 includes a discharge chamber 13 provided on the fixed scroll 30, a valve 13A provided on the discharge chamber 13, and a muffler 14 provided on the discharge chamber 13.
  • the scroll compressor 1 also includes an Oldham ring 15 for restricting the oscillating scroll 40 to rotate, a cylindrical slider 16 provided at the upper end of the shaft 7, and a main provided at the frame 6.
  • a bearing 8 a and a sleeve 17 provided between the main bearing 8 a and the shaft 7 are provided.
  • the scroll compressor 1 includes a first balancer 18 provided on the shaft 7, a sub-frame 20 fixed to the lower part of the shell 2, a sub bearing 8b provided on the sub-frame 20, and a frame 6 and an oil discharge pipe 21 for discharging excess oil.
  • the shell 2 includes a cylindrical body 2A, a dome-shaped upper shell 2a provided at the upper end of the body 2A, and a dome-shaped lower shell 2b provided at the lower end of the body 2A. ing.
  • the oil pump 3 supplies the oil sucked from the oil reservoir 3 a to an oil passage 7 a formed in the shaft 7.
  • the motor 4 rotates the shaft 7.
  • the motor 4 is provided below the compression unit 5 and above the sub-frame 20. Electric power is supplied to the stator 4 b of the motor 4 from an inverter (not shown).
  • the rotor 4a rotates as power is supplied to the stator 4b.
  • the compression unit 5 compresses the refrigerant.
  • the fixed scroll 30 is fixed to the body 2A of the shell 2.
  • a discharge chamber 13 is provided on the fixed scroll 30.
  • the rocking scroll 40 has a hollow cylindrical boss 40a into which the upper end of the shaft 7 is inserted.
  • a rocking bearing 8c is provided on the inner peripheral portion of the boss 40a.
  • the rocking scroll 40 performs a rocking operation by rotation of the shaft 7.
  • the fixed scroll 30 is provided with a spiral wrap 31, and the oscillating scroll 40 is provided with a spiral wrap 41 for compressing the refrigerant together with the wrap 31. In a space between the wrap portion 31 and the wrap portion 41, a compression chamber 5a in which the refrigerant is compressed is formed.
  • the fixed scroll 30 is formed with a discharge port 30a through which the refrigerant compressed in the compression chamber 5a passes.
  • the frame 6 is fixed to the shell 2.
  • the frame 6 supports the shaft 7 via the main bearing 8a. Further, the frame 6 supports the oscillating scroll 40.
  • the frame 6 is formed with a suction port 6 a for guiding the refrigerant located below the frame 6 to the compression chamber 5 a. Further, in the frame 6, an Oldham space 15b in which an Oldham ring 15 is provided is formed. Further, a concave space 6 d in which the boss 40 a is disposed is formed in the frame 6. Further, the frame 6 is provided with a thrust bearing 6b on which the oscillating scroll 40 slides.
  • the shaft 7 transmits the rotational force of the rotor 4 a to the oscillating scroll 40.
  • the shaft 7 is rotatably supported by the main bearing 8a and the auxiliary bearing 8b.
  • the suction pipe 11 is provided on the body 2 A of the shell 2, and the discharge pipe 12 is provided on the upper shell 2 a of the shell 2.
  • the discharge chamber 13 is formed with a space 13a into which the refrigerant that has passed through the discharge port 30a of the fixed scroll 30 flows, and a discharge port 13b which communicates with the space 13a and is closed by the valve 13A.
  • the valve 13A separates from the discharge port 13b.
  • the muffler 14 suppresses the pulsation of the refrigerant discharged from the discharge chamber 13.
  • the slider 16 is provided between the oscillating scroll 40 and the upper end of the shaft 7.
  • the slider 16 is provided inside the swing bearing 8c.
  • the first balancer 18 is provided between the frame 6 and the rotor 4a.
  • the first balancer 18 is housed in the cover 18a.
  • the sub-frame 20 supports the shaft 7 via the auxiliary bearing 8b.
  • the upper end of the oil discharge pipe 21 is provided in the Oldham space 15b of the frame 6, and the lower end of the oil discharge pipe 21 is provided along the circumferential surface of the body 2A.
  • FIG. 2 is an enlarged explanatory view of the rotor 4a shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB shown in FIG.
  • the rotor 4a has a cylindrical rotor core 4c, a first end plate 4e provided on one end surface of the rotor core 4c, and a second end provided on the other end surface of the rotor core 4c.
  • a plate 4f and a second balancer 4g provided on the second end plate 4f are provided.
  • the rotor 4a includes a rivet 4h1 inserted in the first end plate 4e, the rotor core 4c and the second end plate 4f, a first end plate 4e, a rotor core 4c, a second end plate 4f and a second And a rivet 4h2 inserted into the balancer 4g.
  • the rotor core 4 c is configured by stacking a plurality of core pieces. That is, the rotor core 4c includes a plurality of core pieces 4c1 belonging to the first group G1, a plurality of core pieces 4c2 belonging to the second group G2, and a plurality of core pieces 4c3 belonging to the third group G3. There is.
  • the core piece 4c1, the core piece 4c2, and the core piece 4c3 have a disk shape.
  • the core piece 4c1 belonging to the first group G1 corresponds to the first core piece
  • the core piece 4c3 belonging to the third group G3 corresponds to the second core piece
  • the core piece 4c2 belongs to the second group G2 Corresponds to the third core piece.
  • the shape of the core piece 4c1 is the same as the shape of the core piece 4c3, but the shape of the core piece 4c1 is different from the shape of the core piece 4c2.
  • the second group G2 is disposed between the first group G1 and the third group G3. As shown in FIG. 2, a shaft hole 4i into which the shaft 7 is inserted is formed at the central portion of the rotor core 4c.
  • the rotational axis direction Dr1 of the shaft 7 is parallel to the direction in which the core pieces of the rotor core 4c are stacked.
  • the rotor core 4c is formed with a magnet insertion portion 4j extending in parallel to the rotation axis direction Dr1.
  • the magnet insertion portion 4j is formed in a long shape in a cross section orthogonal to the rotation axis direction Dr1.
  • the magnet insertion portion 4j is formed with a through hole into which the magnet 4d is inserted.
  • Six magnet insertion parts 4j are formed in the rotor core 4c.
  • the two adjacent magnet insertion parts 4j are disposed at an angle of 60 degrees with respect to the center of the rotor core 4c.
  • a plurality of through holes 4L are formed on the outer peripheral surface side of the position where the magnet insertion portion 4j is formed in the rotor core 4c.
  • the first end plate 4e and the second end plate 4f prevent the magnet 4d from jumping out of the magnet insertion portion 4j.
  • a shaft hole 4e1 into which the shaft 7 is inserted is formed at the center of the first end plate 4e, and a shaft hole 4e1 into which the shaft 7 is inserted is also formed at the center of the second end plate 4f.
  • the rivet 4h1 is a member for attaching the first end plate 4e and the second end plate 4f to the rotor core 4c.
  • the rivet 4h2 is a member for attaching the first end plate 4e and the second end plate 4f to the rotor core 4c and attaching the second balancer 4g to the second end plate 4f.
  • the second balancer 4 g secures the balance of the shaft 7, the rotor 4 a and the oscillating scroll 40 when the shaft 7, the rotor 4 a and the oscillating scroll 40 are moving.
  • FIG. 5 is an explanatory view of the magnet insertion portion 4j of the core piece 4c1 of the first group G1 shown in FIG.
  • FIG. 6 is an explanatory view of the magnet 4 d.
  • FIG. 7 is a view showing a state in which the magnet 4 d is inserted into the magnet insertion portion 4 j of the core piece 4 c 1.
  • FIG. 8 is an enlarged view of the protrusion tf1 shown in FIG. 7 and the periphery thereof.
  • the direction Dr2 is a longitudinal direction of the magnet insertion portion 4j when the magnet insertion portion 4j is viewed in a cross section orthogonal to the rotation axis direction Dr1.
  • the configuration of the magnet 4d and the configuration of the core piece 4c1 will be described on the basis of FIGS. 5 to 8 and FIGS. 2 to 4 described above.
  • the core piece 4c3 has the same shape as the core piece 4c1, and therefore the description thereof is omitted.
  • the magnet 4d includes an outer circumferential surface 4D in contact with the magnet insertion portion 4j of the rotor core 4c.
  • the outer peripheral surface 4D includes an inner side surface SF1 which is a plane formed on the shaft hole 4i side, and an outer side surface SF2 which is a plane parallel to the inner side surface SF1.
  • the distance from the outer side surface SF2 to the shaft hole 4i is longer than the distance from the inner side surface SF1 to the shaft hole 4i.
  • the outer peripheral surface 4D has a first contact surface sf1 provided at a first end 4d1 extending in parallel to the rotation axis direction Dr1, and a first end And a second contact surface sf2 provided at a second end 4d2 extending parallel to the portion 4d1.
  • the first end 4d1 is one end in the direction Dr2 of the inner surface SF1 and the second end 4d2 is the other end in the direction Dr2 of the inner surface SF1.
  • the first contact surface sf1 and the second contact surface sf2 have the same shape, and the first contact surface sf1 and the second contact surface sf2 are flat. Furthermore, as shown in FIG.
  • the outer peripheral surface 4D is provided at one end in the direction Dr2 of the outer surface SF2, and is provided at the end face SF3 orthogonal to the outer surface SF2 and the other end in the direction Dr2 of the outer surface SF2.
  • the end face SF3 and the end face SF4 have the same shape, and the end face SF3 and the end face SF4 are flat.
  • the first surface TF1 and the second surface TF2 are planar. Further, as shown in FIGS.
  • the magnet insertion portion 4j has a protrusion tf1 formed at one end of the magnet insertion portion 4j in the longitudinal direction in a cross section orthogonal to the rotation axis direction Dr1, and the rotation axis direction And a protrusion tf2 formed at the other end in the longitudinal direction of the magnet insertion portion 4j in a cross section orthogonal to the Dr1.
  • the protrusion tf1 protrudes toward the first contact surface sf1
  • the protrusion tf2 protrudes toward the second contact surface sf2. As shown in FIGS.
  • the protrusion tf1 is provided on the first end 4d1 side of the inner side surface SF1, and the protrusion tf2 is provided on the second end 4d2 side of the inner side surface SF1.
  • One of the protrusion tf1 and the protrusion tf2 corresponds to the first protrusion, and the other corresponds to the second protrusion.
  • the protrusion tf1 has a top portion tfa in contact with the first contact surface sf1 of the magnet 4d, a separated portion tfb spaced from the first contact surface sf1 of the magnet 4d, and the magnet And a separation portion tfc which is separated from the first contact surface sf1 of 4d.
  • the top tfa is sandwiched between the separation part tfb and the separation part tfc.
  • the protrusion tf2 has the same shape as the protrusion tf1. That is, the protrusion tf2 is separated from the top tfa in contact with the second contact surface sf2, the separation tfb apart from the second contact surface sf2, and the separation from the second contact surface sf2 And tFC.
  • FIG. 9 is an explanatory view of the core piece 4c2 of the second group G2 shown in FIG.
  • FIG. 10 is a view showing a state in which the magnet 4 d is inserted into the magnet insertion portion 4 j of the core piece 4 c 2.
  • FIG. 11 is a cross-sectional view when the rotor core 4c is viewed in the CC cross section shown in FIG. Next, the configuration of the core piece 4c2 will be described.
  • the shape of the core piece 4c2 is different from the shape of the core piece 4c1 in the point to be described next, but is otherwise the same.
  • the protrusion tf1 and the protrusion tf2 described above are not formed on the core piece 4c2. That is, as shown in FIGS.
  • the magnet insertion portion 4j contacts the inner circumferential surface TF3 facing each other without contacting the first contact surface sf1 of the magnet 4d and the second contact surface sf2 of the magnet 4d.
  • the inner surface TF4 facing each other is formed.
  • the inner circumferential surface TF3 is provided between the protrusion tf1 of the core piece 4c1 and the protrusion tf1 of the core piece 4c3.
  • the inner peripheral surface TF4 is provided between the protrusion tf2 of the core piece 4c1 and the protrusion tf2 of the core piece 4c3.
  • the second contact surface sf2 of the magnet 4d is in contact with the projection tf2 of the core piece 4c1 of the first group G1 and the projection tf2 of the core piece 4c3 of the third group G3, but the second group There is no contact with the core piece 4c2 of G2. That is, a gap 4Q is formed between the core piece 4c2 of the second group G2 and the second contact surface sf2.
  • the magnet 4d has an end 4dt whose width parallel to the direction Dr2 is tapered.
  • the magnet 4d is inserted into the magnet insertion portion 4j of the rotor core 4c, while the end 4dt is a portion of the magnet 4d that is first inserted into the magnet insertion portion 4j.
  • Embodiment 1 The operation of the scroll compressor 1 will be described based on FIG. 1 described above.
  • the stator 4b receives supply of power from an inverter (not shown)
  • the rotor 4a rotates.
  • the shaft 7 rotates.
  • the oil of the oil reservoir 3 a is pulled up by the oil pump 3 and flows into the oil passage 7 a of the shaft 7.
  • the oil that has flowed into the oil passage 7a is supplied to the space 6d formed in the frame 6 after lubricating the rocking bearing 8c.
  • the oil in the space 6d is supplied to the oldham space 15b while lubricating the thrust bearing 6b.
  • the oil supplied to the Oldham space 15 b lubricates the Oldham ring 15. Further, the oil supplied to the Oldham space 15b returns to the oil reservoir 3a through the oil drainage pipe 21.
  • the refrigerant flows from the suction pipe 11 into the shell 2.
  • the refrigerant flowing into the shell 2 flows into the compression chamber 5 a through the suction port 6 a of the frame 6.
  • the oscillating scroll 40 oscillates.
  • the refrigerant is compressed in the compression chamber 5a.
  • the refrigerant compressed in the compression chamber 5 a flows to the discharge pipe 12 through the discharge port 30 a of the fixed scroll 30, the discharge port 13 b of the discharge chamber 13, and the muffler 14.
  • FIG. 12 is a schematic view showing how the movement of the magnet 4d is restricted when the shift force F or the like is applied to the magnet 4d.
  • the force that causes the positional displacement of the magnet 4d such as the displacement force F, occurs when the rotor 4a is rotating.
  • the direction of the shift force F is parallel to the direction from the protrusion tf2 to the protrusion tf1.
  • the magnet 4d receives the reaction force f from the protrusion tf1 because the magnet 4d is in contact with the protrusion tf1.
  • the component fx parallel to the direction Dr2 of the reaction force f is equal to the displacement force F.
  • the magnet 4d is restricted from moving in the direction of the shift force F because the first contact surface sf1 of the magnet 4d receives the reaction force f from the protrusion tf1.
  • the component fy orthogonal to the direction Dr2 of the reaction force f acts to press the outer surface SF2 of the magnet 4d against the second surface TF2.
  • the magnet 4d abuts on the protrusion tf1 and the protrusion tf2, so that the magnet 4d is restricted from moving in the direction of the shift force F2.
  • the direction of the shift force F2 is the direction from the first surface TF1 to the second surface TF2.
  • the shift force F3 is applied to the rotor 4a, since the magnet 4d abuts on the second surface TF2, movement of the magnet 4d in the direction of the shift force F3 is restricted.
  • the direction of the shift force F3 is the opposite direction to the direction of the shift force F2.
  • the magnet insertion part 4j is formed at an end of the magnet insertion part 4j in the longitudinal direction in a cross section orthogonal to the rotation axis direction Dr1, and includes a projection part tf1 projecting toward the magnet 4d. Therefore, even if the shift force F is applied to the magnet 4d, the magnet 4d receives the reaction force f from the projection tf1, and the movement of the magnet 4d in the direction of the shift force F is restricted. Therefore, when the rotor 4a is rotating, the positional deviation of the magnet 4d is more reliably prevented.
  • the positional deviation of the magnet 4d is more reliably prevented, it is possible to prevent the collision of the magnet 4d and the inner peripheral surface of the magnet insertion portion 4j when the rotor 4a is rotating. As a result, damage to the magnet 4 d and the rotor 4 a and noise generation due to collision between the magnet 4 d and the inner peripheral surface of the magnet insertion portion 4 j are suppressed.
  • the protrusion tf1 includes a top tfa, a separation part tfb and a separation part tfc. Since the top part tfa contacts the magnet 4d, the separation part tfb and the separation part tfc do not contact the magnet 4d, so the contact area of the core piece 4c1 with the magnet 4d is suppressed. Thus, it is possible to suppress the friction between the outer peripheral surface 4D of the magnet 4d and the inner peripheral surface of the magnet insertion portion 4j when the magnet 4d is press-fitted into the magnet insertion portion 4j. Therefore, the work load when pressing the magnet 4d into the magnet insertion portion 4j is suppressed.
  • the magnet insertion portion 4j includes a protrusion tf2 having a configuration similar to that of the protrusion tf1, in addition to the protrusion tf1. Therefore, the effect of preventing the positional deviation of the magnet 4d described above, the effect of preventing the collision between the magnet 4d and the inner circumferential surface of the magnet insertion portion 4j, and the press-fitting of the magnet 4d into the magnet insertion portion 4j The effect of reducing the work load when doing is further improved.
  • the core piece 4c2 of the second group Gr2 includes an inner circumferential surface TF3 spaced from the outer circumferential surface 4D of the magnet 4d and an inner circumferential surface TF4 spaced from the outer circumferential surface 4D of the magnet 4d. For this reason, the core piece 4c2 is reduced in contact area with the magnet 4d by the inner circumferential surface TF3 and the inner circumferential surface TF4. Thus, it is possible to suppress the friction between the outer peripheral surface 4D of the magnet 4d and the core piece 4c2 when the magnet 4d is pressed into the magnet insertion portion 4j. Therefore, the work load when pressing the magnet 4d into the magnet insertion portion 4j is suppressed.
  • the refrigerant has larger magnetic resistance than iron or the like that constitutes the rotor core 4c. For this reason, the magnetic flux of the magnet 4d does not easily pass through the refrigerant.
  • the outer surface SF2 of the magnet 4d and the second surface TF2 of the magnet insertion portion 4j are in contact with each other. Thus, the refrigerant does not flow between the outer surface SF2 and the second surface TF2. As a result, in the area around the magnet 4d, the portion where the magnetic flux of the magnet 4d is difficult to pass is reduced. Therefore, the motor 4 is prevented from lowering its operating efficiency.
  • the form of the rotor core 4c having the core piece 4c2 different in shape from the core piece 4c1 has been described, but the present invention is not limited to this form. That is, the shape of all the core pieces provided in the rotor core 4c may be the same as the shape of the core piece 4c1.
  • the mode in which the motor 4 is applied to the scroll compressor 1 has been described, but the present invention is not limited to this mode.
  • the motor 4 may be applied to an object other than a compressor.
  • FIG. 13 is a first modification of the scroll compressor 1 according to the first embodiment.
  • the separation part tfb and the separation part tfc may be flat.
  • the top tfa of the first modification becomes sharper than the top tfa of the first embodiment.
  • the contact area between the projection tf10 of the first modification and the magnet 4d is smaller than the contact area between the projection tf1 of the first embodiment and the magnet 4d. Even in the first modification, the same effect as that of the first embodiment can be obtained.
  • FIG. 14 is a second modification of the scroll compressor 1 according to the first embodiment.
  • protrusion tf1 is formed at one end in the longitudinal direction of magnet insertion portion 4j in a cross section orthogonal to rotation axis direction Dr1
  • protrusion tf2 is a cross section orthogonal to rotation axis direction Dr1 in magnet insertion portion 4j. It was formed at the other end in the longitudinal direction.
  • a protrusion tf1 is formed at one end in the longitudinal direction of the magnet insertion portion 4j in a cross section orthogonal to the rotation axis direction Dr1.
  • a support surface tf20 is formed at the other end in the longitudinal direction of the magnet insertion portion 4j in the cross section orthogonal to the rotation axis direction Dr1 instead of the protrusion tf2.
  • the support surface tf20 is in contact with the second contact surface sf2 of the magnet 4d.
  • the support surface tf20 may not project toward the second contact surface sf2. Even in the second modification, the same effect as that of the first embodiment can be obtained.
  • FIG. 15 is a view showing a state in which the magnet 4d is inserted into the magnet insertion portion 24j of the core piece 4c1.
  • FIG. 16 is an enlarged view of the protrusion tf3 shown in FIG. 15 and the periphery thereof. Since the core piece 4c3 has the same shape as the core piece 4c1, the description of the core piece 4c3 is omitted in the embodiment.
  • An outer circumferential surface 42D of the magnet 42d is provided with a third contact surface sf3 provided at a third end 4d3 extending parallel to the rotation axis direction Dr1 and a third contact surface sf3 extending parallel to the third end 4d3. And a fourth contact surface sf4 provided at the end 4d4 of the fourth part.
  • the third end 4d3 is an end in the direction Dr2 of the outer surface SF2, and the fourth end 4d4 is the other end in the direction Dr2 of the outer surface SF2.
  • the third contact surface sf3 and the fourth contact surface sf4 have the same shape, and the third contact surface sf3 and the fourth contact surface sf4 are flat.
  • the outer peripheral surface 42D includes an end face SF5 provided at one end in the direction Dr2 of the inner side face SF1 and an end face SF6 provided at the other end in the direction Dr2 of the inner side face SF1.
  • the end face SF5 and the end face SF6 have the same shape, and the end face SF5 and the end face SF6 are flat.
  • the first surface TF1 is in contact with the inner surface SF1, and the second surface TF2 faces the outer surface SF2 with a gap.
  • the magnet insertion portion 24j has a protrusion tf3 formed at one end in the longitudinal direction of the magnet insertion portion 24j in a cross section orthogonal to the rotation axis direction Dr1, and a magnet insertion portion 24j in a cross section orthogonal to the rotation axis direction Dr1. And a projection tf4 formed at the other end in the longitudinal direction.
  • the protrusion tf3 protrudes toward the third contact surface sf3, and the protrusion tf4 protrudes toward the fourth contact surface sf4.
  • the protrusion tf3 is provided on the side of the third end 4d3 of the outer surface SF2, and the protrusion tf4 is provided on the side of the fourth end 4d4 of the outer surface SF2.
  • the shape of the protrusions tf3 and the protrusions tf4 are the same. Therefore, the shape of the protrusion tf3 will be mainly described here.
  • One of the protrusion tf3 and the protrusion tf4 corresponds to the third protrusion, and the other corresponds to the fourth protrusion.
  • the protrusion tf3 has a top portion tfa in contact with the third contact surface sf3 of the magnet 42d, a separated portion tfb spaced from the third contact surface sf3 of the magnet 42d, and the magnet And a separation portion tfc separated from the third contact surface sf3 of 42d.
  • the protrusion tf4 also has the same shape as the protrusion tf3. That is, the protrusion tf4 is separated from the top tfa in contact with the fourth contact surface sf4, the separation portion tfb apart from the fourth contact surface sf4, and the separation from the fourth contact surface sf4. And tFC.
  • the shape of the core piece 4c2 is the same as the core piece 4c1 except that the above-mentioned protrusion tf3 and the protrusion tf4 are not formed.
  • the second embodiment also has the same effect as the first embodiment.
  • the protrusion tf3 and the protrusion tf4 may be in the form as in the first modification of the first embodiment.
  • FIG. 17 is an explanatory view of the magnet insertion portion 34j of the core piece 4c1 of the first group G1.
  • FIG. 18 is an explanatory view of the magnet 43 d.
  • FIG. 19 is a view showing a state in which the magnet 43d is inserted into the magnet insertion portion 34j of the core piece 4c1.
  • the outer peripheral surface 43D of the magnet 43d has the first contact surface sf1 described in the first embodiment, the second contact surface sf2 described in the first embodiment, and the third contact surface described in the second embodiment. and sf3 and the fourth contact surface sf4 described in the second embodiment.
  • the outer peripheral surface 43D of the magnet 43d is an end face SF7 formed from the end of the first contact surface sf1 to the end of the third contact surface sf3, and the fourth contact surface from the end of the second contact surface sf2 and an end face SF8 formed to the end of sf4.
  • the end face SF7 and the end face SF8 have the same shape, and the end face SF7 and the end face SF8 are flat.
  • the first surface TF1 faces the inner surface SF1 with a gap, and the second surface TF2 also faces the outer surface SF2 with a gap.
  • the third embodiment also has the following effect in addition to the same effect as the first embodiment.
  • the first surface TF1 and the second surface TF2 are not in contact with the magnet insertion portion 34j. Therefore, the contact area between the magnet 43d and the magnet insertion portion 34j is further reduced. Therefore, the work load when pressing the magnet 43d into the magnet insertion portion 34j is further suppressed.
  • the protruding portion tf1, the protruding portion tf2, the protruding portion tf3, and the protruding portion tf4 may have a form as in the first modification of the first embodiment.
  • FIG. 20 is a cross-sectional view of a rotor core 4c of a scroll compressor according to a fourth embodiment.
  • FIG. 21 is a configuration explanatory view of the first end side magnet segment Dv2.
  • the configuration of all the core pieces of the rotor core 4c of the fourth embodiment is the same as the configuration of the core piece 4c1 described in the first embodiment.
  • the magnet 44d is a split type. That is, as shown in FIGS. 20 and 21, the magnet 44d is provided with the elongated central magnet piece Dv1 and the elongated first end side including the end portion Dvt2 tapered in the thickness direction.
  • a magnet piece Dv2 and a second end magnet piece Dv3 having the same shape as the first end magnet piece Dv2 are included.
  • FIG. 22 shows how the central magnet piece Dv1 is inserted into the magnet insertion portion 44j.
  • FIG. 23 shows how the first end magnet piece Dv2 is inserted into the magnet insertion portion 44j.
  • FIG. 24 shows how the second end magnet piece Dv3 is inserted into the magnet insertion portion 44j.
  • a plurality of core pieces 4c1 are stacked to produce a rotor core 4c.
  • the rotor core 4c is provided with a magnet insertion portion 44j into which the magnet 44d is inserted.
  • the central magnet segment Dv1, the first end magnet segment Dv2, and the second end magnet segment Dv3 are prepared. Then, as shown in FIG.
  • the central magnet segment Dv1 is inserted into the magnet insertion portion 44j, and is pressed into the magnet insertion portion 44j.
  • the tapered end Dvt2 of the first end magnet piece Dv2 is inserted into the gap Sr1.
  • the gap Sr1 is formed between one end of the central magnet piece Dv1 and the inner circumferential surface of the magnet insertion portion 44j.
  • the first end magnet piece Dv2 is pressed into the gap Sr1.
  • the tapered end Dvt3 of the second end-side magnet piece Dv3 is inserted into the gap Sr2.
  • the gap Sr2 is formed between the other end of the central magnet piece Dv1 and the inner circumferential surface of the magnet insertion portion 44j.
  • the second end magnet piece Dv3 is pressed into the gap Sr2.
  • the stator generates magnetism when power is supplied to the stator. Interaction between the magnetism of the rotor magnet and the magnetism of the stator causes the rotor to rotate. The magnetism generated by the stator passes through the magnets of the rotor. Therefore, eddy currents are generated in the magnets of the rotor. When an eddy current is generated in the magnet of the rotor, the magnet generates heat to demagnetize the magnet, which lowers the operation efficiency of the motor. Here, the magnitude of the eddy current increases in proportion to the increase of the surface area of the rotor magnet. In the fourth embodiment, since the magnet 44d is divided into three, the surface area of each magnet can be suppressed.
  • the surface area of the central magnet segment Dv1 is smaller than the surface area of the magnet 44d when the magnet 44d is not divided.
  • the surface area of the first end magnet piece Dv2 and the surface area of the second end magnet piece Dv3 are the same. Therefore, the eddy current generated in the central magnet piece Dv1 is smaller than the eddy current generated in the magnet 44d if the magnet 44d is not divided. The same applies to the eddy current generated in the first end magnet piece Dv2 and the eddy current generated in the second end magnet piece Dv3.
  • the heat generation of the central magnet segment Dv1 can be suppressed.
  • the heat generation of each magnet can be suppressed. Therefore, in the fourth embodiment, since the heat generation of each magnet can be suppressed, it is possible to suppress the decrease in the driving efficiency of the motor.
  • the magnet 44 d is divided into three in the fourth embodiment, the same effect can be obtained whether the magnet 44 d is divided into two or four or more. That is, even if the magnet 44d is divided into two or four or more, heat generation of each magnet can be suppressed, and a reduction in the operating efficiency of the motor can be suppressed.
  • the work load at the time of press-fitting 1st end side magnet piece Dv2 tends to increase.
  • the end Dvt2 of the first end magnet piece Dv2 is tapered in the thickness direction. Therefore, the work load when press-fitting the first end-side magnet segment Dv2 into the gap Sr1 can be suppressed.
  • the end Dvt3 of the second end magnet piece Dv3 is also tapered in the thickness direction, it is possible to suppress the work load when the second end magnet piece Dv3 is press-fit into the gap Sr2. .
  • Embodiment 5 In the fifth embodiment, the parts common to the first to fourth embodiments are assigned the same reference numerals and explanation thereof is omitted, and differences from the first to fourth embodiments will be mainly described.
  • FIG. 25 is a cross-sectional view of a rotor core 4c of a scroll compressor according to a fifth embodiment.
  • FIG. 26 is a configuration explanatory view of the central magnet segment Dv11.
  • the configuration of all the core pieces of the rotor core 4c of the fifth embodiment is the same as the configuration of the core piece 4c1 described in the first embodiment.
  • the magnet 45d is divided into three. That is, as shown in FIG. 25 and FIG. 26, the magnet 45d has a tapered first end magnet piece Dv12, a long second magnet piece Dv13, and a Dr2 width. And an elongated central magnet piece Dv11 having an end Dvt11.
  • the Dr2 direction is a direction orthogonal to the thickness direction of the magnet 45d.
  • FIG. 27 shows how the first end magnet piece Dv12 is inserted into the magnet insertion portion 45j.
  • FIG. 28 shows how the second end magnet piece Dv13 is inserted into the magnet insertion portion 45j.
  • FIG. 29 shows how the central magnet piece Dv11 is inserted into the magnet insertion portion 45j.
  • a plurality of core pieces 4c1 are stacked to produce a rotor core 4c.
  • the rotor core 4c is provided with a magnet insertion portion 44j into which the magnet 44d is inserted.
  • the first end magnet piece Dv12, the second end magnet piece Dv13, and the central magnet piece Dv11 are prepared. As shown in FIG.
  • the end of the first end magnet piece Dv12 is inserted into the magnet insertion portion 45j. Then, the first end magnet piece Dv12 is pressed into the magnet insertion portion 45j. Subsequently, as shown in FIG. 28, the end of the second end magnet piece Dv13 is separated by a predetermined distance Ds between the first end magnet piece Dv12 and the second end magnet piece Dv13. Then, insert it into the magnet insertion part 45j. Then, the second end magnet piece Dv13 is press-fitted into the magnet insertion portion 45j.
  • the distance Ds is set to be narrower than the width dimension in the direction parallel to the direction Dr2 of the central magnet segment Dv11. Furthermore, as shown in FIG. 29, the tapered end Dvt11 of the central magnet piece Dv11 is inserted between the first end magnet piece Dv12 and the second end magnet piece Dv13. Then, the central magnet piece Dv11 is pressed into the magnet insertion portion 45j.
  • the magnet 45d is a magnet insertion portion It is possible to prevent backlash within 45j.
  • the selected central magnet piece Dv11 is inserted between the first end magnet piece Dv12 and the second end magnet piece Dv13. Thereby, it is possible to press-fit the central magnet piece Dv11 of the optimum size into the magnet insertion portion 45j, and it is possible to prevent the magnet 45d from rattling in the magnet insertion portion 45j.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

This invention comprises a rotor, which includes a rotor core and magnets inserted into the rotor core, and a stator provided around the rotor core. The rotor core includes a shaft hole into which a shaft is inserted, and magnet insertion parts into which the magnets are inserted, the magnet insertion parts extending parallel to the direction of the rotation axis of the shaft and having an elongated shape in cross-section orthogonal to the direction of the rotation axis. The magnets include an outer peripheral surface in contact with a magnet insertion part of the rotor core. The magnet insertion parts include a projection projecting towards a magnet, the projection being formed on a longitudinal end part of the magnet insertion part in a cross-section orthogonal to the direction of the rotation axis. The projections include a top part in contact with the outer peripheral surface of a magnet and a set-apart part set apart from the outer peripheral surface of the magnet.

Description

モータ、及びロータの製造方法Motor and rotor manufacturing method
 本発明は、モータ、及びロータの製造方法に関し、特に、磁石を含むロータを備えているモータ、及び磁石を含むロータの製造方法に関する。 The present invention relates to a motor and a method of manufacturing a rotor, and more particularly to a motor including a rotor including a magnet and a method of manufacturing a rotor including a magnet.
 従来のモータには、圧縮機のシェル内に設けられ、シャフトが挿入されている回転自在のロータと、圧縮機のシェル内に設けられ、ロータの周囲に設けられているステータとを備えているものが提案されている(例えば、特許文献1参照)。特許文献1のモータのロータは、第1の面及び第1の面の反対の面である第2の面を含む長尺状の磁石と、磁石挿入部が形成されているロータコアとを備えている。なお、ロータコアは円板状の複数のコア片が積み重ねられて構成されている。特許文献1のモータのロータコアの磁石挿入部には、磁石の第1の面に接触する第1の壁面と、磁石の第2の面に接触し、第1の壁面に平行な第2の壁面とが形成されている。特許文献1に記載の技術において、磁石は第1の壁面と第2の壁面とによって挟まれることでロータコアに固定される。 A conventional motor comprises a rotatable rotor provided in the shell of the compressor and having a shaft inserted therein, and a stator provided in the shell of the compressor and provided around the rotor A thing is proposed (for example, refer to patent documents 1). The rotor of the motor of Patent Document 1 includes an elongated magnet including a first surface and a second surface opposite to the first surface, and a rotor core in which a magnet insertion portion is formed. There is. The rotor core is configured by stacking a plurality of disk-shaped core pieces. In the magnet insertion portion of the rotor core of the motor of Patent Document 1, a first wall surface in contact with the first surface of the magnet and a second wall surface in contact with the second surface of the magnet and parallel to the first wall surface And are formed. In the technology described in Patent Document 1, the magnet is fixed to the rotor core by being sandwiched between the first wall surface and the second wall surface.
特開平9-200982号公報Japanese Patent Laid-Open No. 9-200982
 ロータが回転しているときにおいて、磁石には、ロータの軸方向に直交し且つ磁石挿入部の第1の壁面に平行な方向の力が加わることがある。この力は磁石の位置をずらそうとする力であるので、ここでは、この力をずれ力と称する。磁石にずれ力が加わった場合において、磁石と磁石挿入部との間には、磁石の位置がずれないように作用する摩擦力が発生する。この摩擦力は、第1の壁面と磁石の第1の面との間に生じるとともに、第2の壁面と磁石の第2の面との間に生じる。しかし、磁石と磁石挿入部との摩擦力だけでは、磁石のずれを防止できなくなる可能性が高まる。 When the rotor is rotating, a force may be applied to the magnet in a direction orthogonal to the axial direction of the rotor and parallel to the first wall surface of the magnet insertion portion. Since this force is a force to shift the position of the magnet, this force is referred to herein as a shift force. When a shift force is applied to the magnet, a frictional force is generated between the magnet and the magnet insertion portion to prevent the position of the magnet from shifting. The frictional force is generated between the first wall surface and the first surface of the magnet and between the second wall surface and the second surface of the magnet. However, it is likely that the friction between the magnet and the magnet insertion portion alone can not prevent the displacement of the magnet.
 本発明は、上記のような課題を解決するためになされたもので、ロータコアに設けられている磁石の位置ずれをより確実に防止することができるモータ、及びロータの製造方法を提供することを目的としている。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a motor and a method of manufacturing a rotor capable of more reliably preventing positional deviation of magnets provided in a rotor core. The purpose is.
 本発明に係るモータは、ロータコアとロータコアに挿入されている磁石とを含むロータと、ロータコアの周囲に設けられているステータと、を備え、ロータコアは、シャフトが挿入されるシャフト孔と、シャフトの回転軸方向に平行に延びており且つ回転軸方向に直交する断面において長尺状であり、磁石が挿入されている磁石挿入部とを含み、磁石は、ロータコアの磁石挿入部に接触している外周面を含み、磁石挿入部は、回転軸方向に直交する断面において磁石挿入部の長手方向の端部に形成され、磁石に向けて突出している突出部を含み、突出部は、磁石の外周面と接触している頂部と、磁石の外周面から離間している離間部とを含む。 A motor according to the present invention comprises a rotor including a rotor core and a magnet inserted in the rotor core, and a stator provided around the rotor core, the rotor core having a shaft hole into which the shaft is inserted, and A magnet insertion portion extending in parallel to the rotation axis direction and elongated in a cross section orthogonal to the rotation axis direction, and including a magnet insertion portion in which a magnet is inserted, the magnet being in contact with the magnet insertion portion of the rotor core The magnet insertion portion includes an outer peripheral surface, the magnet insertion portion is formed at an end portion in the longitudinal direction of the magnet insertion portion in a cross section orthogonal to the rotation axis direction, and includes a protrusion protruding toward the magnet. It includes a top in contact with the surface and a standoff spaced from the outer circumferential surface of the magnet.
 本発明によれば、磁石挿入部は回転軸方向に直交する断面において磁石挿入部の長手方向の端部に形成され、磁石に向けて突出している突出部を含んでいる。このため、磁石にずれ力が加わったとしても、磁石の端が突出部に突き当たり、磁石がずれ力の方向に動くことが規制される。したがって、本発明によれば、磁石にずれ力が加わったとしても、磁石の位置ずれをより確実に防止することができる。 According to the present invention, the magnet insertion portion is formed at an end portion in the longitudinal direction of the magnet insertion portion in a cross section orthogonal to the rotation axis direction, and includes a projecting portion protruding toward the magnet. For this reason, even if the displacement force is applied to the magnet, the end of the magnet abuts on the protrusion and the movement of the magnet in the direction of the displacement force is restricted. Therefore, according to the present invention, even if a displacement force is applied to the magnet, it is possible to more reliably prevent the displacement of the magnet.
実施の形態1に係るスクロール圧縮機1の断面模式図である。FIG. 1 is a schematic cross-sectional view of a scroll compressor 1 according to a first embodiment. 図1に示すロータ4aの拡大説明図である。It is an expansion explanatory view of rotor 4a shown in FIG. 図2に示すA-A断面図である。FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. 図3に示すB-B断面図である。FIG. 4 is a cross-sectional view taken along the line BB shown in FIG. 図4に示す第1のグループG1のコア片4c1の磁石挿入部4jの説明図である。It is explanatory drawing of the magnet insertion part 4j of core piece 4c1 of 1st group G1 shown in FIG. 磁石4dの説明図である。It is explanatory drawing of the magnet 4d. 磁石4dがコア片4c1の磁石挿入部4jに挿入された状態を示した図である。It is the figure which showed the state in which the magnet 4d was inserted in the magnet insertion part 4j of core piece 4c1. 図7に示す突出部tf1及びその周囲の拡大図である。FIG. 8 is an enlarged view of a protrusion tf1 shown in FIG. 7 and the periphery thereof. 図4に示す第2のグループG2のコア片4c2の説明図である。It is explanatory drawing of core piece 4c2 of 2nd group G2 shown in FIG. 磁石4dがコア片4c2の磁石挿入部4jに挿入された状態を示した図である。It is the figure which showed the state in which the magnet 4d was inserted in the magnet insertion part 4j of core piece 4c2. 図7に示すC-C断面でロータコア4cを見たときの断面図である。FIG. 8 is a cross-sectional view of the rotor core 4c taken along the line CC shown in FIG. 7; ずれ力F等が磁石4dに加わったときにおいて、磁石4dが磁石挿入部4j内での動きが規制される様子を示す模式図である。When shift | offset | difference force F etc. are added to the magnet 4d, it is a schematic diagram which shows a mode that the motion in the magnet insertion part 4j of the magnet 4d is controlled. 実施の形態1に係るスクロール圧縮機1の変形例1である。6 is a first modification of the scroll compressor 1 according to the first embodiment. 実施の形態1に係るスクロール圧縮機1の変形例2である。7 is a second modification of the scroll compressor 1 according to the first embodiment. 磁石4dがコア片4c1の磁石挿入部24jに挿入された状態を示した図である。It is the figure which showed the state in which the magnet 4d was inserted in the magnet insertion part 24j of core piece 4c1. 図15に示す突出部tf3及びその周囲の拡大図である。FIG. 16 is an enlarged view of a protrusion tf3 shown in FIG. 15 and the periphery thereof. 第1のグループG1のコア片4c1の磁石挿入部34jの説明図である。It is explanatory drawing of the magnet insertion part 34j of the core piece 4c1 of 1st group G1. 磁石43dの説明図である。It is explanatory drawing of the magnet 43d. 磁石43dがコア片4c1の磁石挿入部34jに挿入された状態を示した図である。It is the figure which showed the state in which the magnet 43d was inserted in the magnet insertion part 34j of core piece 4c1. 実施の形態4に係るスクロール圧縮機のロータコア4cの断面図である。FIG. 10 is a cross-sectional view of a rotor core 4c of a scroll compressor according to Embodiment 4. 第1の端側磁石片Dv2の構成説明図である。It is structure explanatory drawing of 1st end side magnet piece Dv2. 中央磁石片Dv1を磁石挿入部44jへ差し込む様子を示している。A state is shown in which the central magnet piece Dv1 is inserted into the magnet insertion portion 44j. 第1の端側磁石片Dv2を磁石挿入部44jへ差し込む様子を示している。A state in which the first end magnet piece Dv2 is inserted into the magnet insertion portion 44j is shown. 第2の端側磁石片Dv3を磁石挿入部44jへ差し込む様子を示している。A state in which the second end magnet piece Dv3 is inserted into the magnet insertion portion 44j is shown. 実施の形態5に係るスクロール圧縮機のロータコア4cの断面図である。FIG. 20 is a cross-sectional view of a rotor core 4c of a scroll compressor according to Embodiment 5. 中央磁石片Dv11の構成説明図である。It is structure explanatory drawing of center magnet piece Dv11. 第1の端側磁石片Dv12を磁石挿入部45jへ差し込む様子を示している。A state in which the first end magnet piece Dv12 is inserted into the magnet insertion portion 45j is shown. 第2の端側磁石片Dv13を磁石挿入部45jへ差し込む様子を示している。A state in which the second end magnet piece Dv13 is inserted into the magnet insertion portion 45j is shown. 中央磁石片Dv11を磁石挿入部45jへ差し込む様子を示している。It shows a state in which the central magnet piece Dv11 is inserted into the magnet insertion portion 45j.
実施の形態1.
 以下、図面を適宜参照しながら実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Embodiment 1
Hereinafter, embodiments will be described with reference to the drawings as appropriate. In addition, in the following drawings including FIG. 1, the relationship of the magnitude | size of each structural member may differ from an actual thing.
<実施の形態1の構成>
 図1は、実施の形態1に係るスクロール圧縮機1の断面模式図である。スクロール圧縮機1は、冷媒を圧縮して高温且つ高圧にする。スクロール圧縮機1は、スクロール圧縮機1の外郭を構成し、下部に油溜まり3aが形成されているシェル2と、シェル2に収容され、油溜まり3aから油を吸い上げる油ポンプ3と、回転自在に設けられているロータ4a及びシェル2に固定されているステータ4bを含むモータ4とを備えている。また、スクロール圧縮機1は、固定スクロール30及び揺動スクロール40を含む圧縮部5と、揺動スクロール40を収容しているフレーム6と、ロータ4aに固定されているシャフト7とを備えている。また、スクロール圧縮機1は、シェル2内に冷媒を導く吸入管11と、圧縮部5で圧縮した冷媒をシェル2内からシェル2外へ導く吐出管12とを備えている。
<Configuration of Embodiment 1>
FIG. 1 is a schematic cross-sectional view of the scroll compressor 1 according to the first embodiment. The scroll compressor 1 compresses the refrigerant to a high temperature and a high pressure. The scroll compressor 1 constitutes an outer shell of the scroll compressor 1 and is provided with a shell 2 having an oil reservoir 3a at its lower portion, and an oil pump 3 housed in the shell 2 and sucking up oil from the oil reservoir 3a And a motor 4 including a stator 4b fixed to the shell 2 and a rotor 4a provided on the The scroll compressor 1 further includes a compression unit 5 including a fixed scroll 30 and a swing scroll 40, a frame 6 accommodating the swing scroll 40, and a shaft 7 fixed to the rotor 4a. . The scroll compressor 1 further includes a suction pipe 11 for guiding the refrigerant into the shell 2 and a discharge pipe 12 for guiding the refrigerant compressed by the compression unit 5 from the inside of the shell 2 to the outside of the shell 2.
 スクロール圧縮機1は、固定スクロール30上に設けられている吐出チャンバ13と、吐出チャンバ13上に設けられている弁13Aと、吐出チャンバ13上に設けられているマフラー14とを備えている。また、スクロール圧縮機1は、揺動スクロール40が自転運転することを規制するオルダムリング15と、シャフト7の上端部に設けられている筒状のスライダ16と、フレーム6に設けられている主軸受8aと、主軸受8aとシャフト7との間に設けられているスリーブ17とを備えている。更に、スクロール圧縮機1は、シャフト7に設けられている第1のバランサ18と、シェル2の下部に固定されているサブフレーム20と、サブフレーム20に設けられている副軸受8bと、フレーム6上の余剰な油を排出する排油パイプ21とを備えている。 The scroll compressor 1 includes a discharge chamber 13 provided on the fixed scroll 30, a valve 13A provided on the discharge chamber 13, and a muffler 14 provided on the discharge chamber 13. The scroll compressor 1 also includes an Oldham ring 15 for restricting the oscillating scroll 40 to rotate, a cylindrical slider 16 provided at the upper end of the shaft 7, and a main provided at the frame 6. A bearing 8 a and a sleeve 17 provided between the main bearing 8 a and the shaft 7 are provided. Furthermore, the scroll compressor 1 includes a first balancer 18 provided on the shaft 7, a sub-frame 20 fixed to the lower part of the shell 2, a sub bearing 8b provided on the sub-frame 20, and a frame 6 and an oil discharge pipe 21 for discharging excess oil.
 シェル2は円筒形状の胴部2Aと、胴部2Aの上端部に設けられているドーム状の上部シェル2aと、胴部2Aの下端部に設けられているドーム状の下部シェル2bとを備えている。油ポンプ3は油溜まり3aから吸い上げた油をシャフト7内に形成されている油通路7aに供給する。モータ4はシャフト7を回転させる。モータ4は圧縮部5よりも下側であってサブフレーム20よりも上側に設けられている。モータ4のステータ4bには図示省略のインバータから電力が供給される。ステータ4bに電力が供給されることでロータ4aは回転する。圧縮部5は冷媒を圧縮する。固定スクロール30はシェル2の胴部2Aに固定されている。固定スクロール30上には吐出チャンバ13が設けられている。揺動スクロール40はシャフト7の上端部が挿入されている中空円筒状のボス部40aを備えている。ボス部40aの内周部は揺動軸受8cが設けられている。揺動スクロール40はシャフト7が回転することで揺動運転をする。固定スクロール30は渦巻状のラップ部31を備え、揺動スクロール40はラップ部31とともに冷媒を圧縮する渦巻状のラップ部41を備えている。ラップ部31とラップ部41との間の空間には冷媒が圧縮される圧縮室5aが形成されている。固定スクロール30には圧縮室5aで圧縮された冷媒が通過する吐出口30aが形成されている。 The shell 2 includes a cylindrical body 2A, a dome-shaped upper shell 2a provided at the upper end of the body 2A, and a dome-shaped lower shell 2b provided at the lower end of the body 2A. ing. The oil pump 3 supplies the oil sucked from the oil reservoir 3 a to an oil passage 7 a formed in the shaft 7. The motor 4 rotates the shaft 7. The motor 4 is provided below the compression unit 5 and above the sub-frame 20. Electric power is supplied to the stator 4 b of the motor 4 from an inverter (not shown). The rotor 4a rotates as power is supplied to the stator 4b. The compression unit 5 compresses the refrigerant. The fixed scroll 30 is fixed to the body 2A of the shell 2. A discharge chamber 13 is provided on the fixed scroll 30. The rocking scroll 40 has a hollow cylindrical boss 40a into which the upper end of the shaft 7 is inserted. A rocking bearing 8c is provided on the inner peripheral portion of the boss 40a. The rocking scroll 40 performs a rocking operation by rotation of the shaft 7. The fixed scroll 30 is provided with a spiral wrap 31, and the oscillating scroll 40 is provided with a spiral wrap 41 for compressing the refrigerant together with the wrap 31. In a space between the wrap portion 31 and the wrap portion 41, a compression chamber 5a in which the refrigerant is compressed is formed. The fixed scroll 30 is formed with a discharge port 30a through which the refrigerant compressed in the compression chamber 5a passes.
 フレーム6はシェル2に固定されている。フレーム6は主軸受8aを介してシャフト7を支持している。また、フレーム6は揺動スクロール40を支持している。フレーム6には、フレーム6の下側に位置する冷媒を圧縮室5aへ導く吸入ポート6aが形成されている。また、フレーム6には、オルダムリング15が設けられているオルダム空間15bが形成されている。また、フレーム6にはボス部40aが配置される凹状の空間6dが形成されている。更に、フレーム6には揺動スクロール40が摺動するスラスト軸受6bが設けられている。シャフト7はロータ4aの回転力を揺動スクロール40に伝達する。シャフト7は主軸受8a及び副軸受8bによって回転自在に支持されている。吸入管11はシェル2の胴部2Aに設けられ、吐出管12はシェル2の上部シェル2aに設けられている。吐出チャンバ13には、固定スクロール30の吐出口30aを通過した冷媒が流れ込む空間13aと、空間13aに連通し、弁13Aによって塞がれている吐出口13bと、が形成されている。空間13aの圧力が予め定められた圧力より高くなると弁13Aは吐出口13bから離間する。マフラー14は吐出チャンバ13から吐出された冷媒の脈動を抑制する。 The frame 6 is fixed to the shell 2. The frame 6 supports the shaft 7 via the main bearing 8a. Further, the frame 6 supports the oscillating scroll 40. The frame 6 is formed with a suction port 6 a for guiding the refrigerant located below the frame 6 to the compression chamber 5 a. Further, in the frame 6, an Oldham space 15b in which an Oldham ring 15 is provided is formed. Further, a concave space 6 d in which the boss 40 a is disposed is formed in the frame 6. Further, the frame 6 is provided with a thrust bearing 6b on which the oscillating scroll 40 slides. The shaft 7 transmits the rotational force of the rotor 4 a to the oscillating scroll 40. The shaft 7 is rotatably supported by the main bearing 8a and the auxiliary bearing 8b. The suction pipe 11 is provided on the body 2 A of the shell 2, and the discharge pipe 12 is provided on the upper shell 2 a of the shell 2. The discharge chamber 13 is formed with a space 13a into which the refrigerant that has passed through the discharge port 30a of the fixed scroll 30 flows, and a discharge port 13b which communicates with the space 13a and is closed by the valve 13A. When the pressure in the space 13a becomes higher than a predetermined pressure, the valve 13A separates from the discharge port 13b. The muffler 14 suppresses the pulsation of the refrigerant discharged from the discharge chamber 13.
 スライダ16は揺動スクロール40とシャフト7の上端部との間に設けられている。スライダ16は揺動軸受8cの内側に設けられている。第1のバランサ18はフレーム6とロータ4aとの間に設けられている。第1のバランサ18はカバー18aに収容されている。サブフレーム20は副軸受8bを介してシャフト7を支持する。排油パイプ21の上端はフレーム6のオルダム空間15bに設けられ、排油パイプ21の下端は胴部2Aの周面に沿って設けられている。 The slider 16 is provided between the oscillating scroll 40 and the upper end of the shaft 7. The slider 16 is provided inside the swing bearing 8c. The first balancer 18 is provided between the frame 6 and the rotor 4a. The first balancer 18 is housed in the cover 18a. The sub-frame 20 supports the shaft 7 via the auxiliary bearing 8b. The upper end of the oil discharge pipe 21 is provided in the Oldham space 15b of the frame 6, and the lower end of the oil discharge pipe 21 is provided along the circumferential surface of the body 2A.
 図2は、図1に示すロータ4aの拡大説明図である。図3は、図2に示すA-A断面図である。図4は、図3に示すB-B断面図である。図2に示すように、ロータ4aは、筒状のロータコア4cと、ロータコア4cの一端面に設けられている第1の端板4eと、ロータコア4cの他端面に設けられている第2の端板4fと、第2の端板4fに設けられている第2のバランサ4gとを備えている。また、ロータ4aは、第1の端板4e、ロータコア4c及び第2の端板4fに挿入されているリベット4h1と、第1の端板4e、ロータコア4c、第2の端板4f及び第2のバランサ4gに挿入されているリベット4h2とを備えている。図4に示すように、ロータコア4cは複数のコア片が積み重ねられて構成されている。すなわち、ロータコア4cは、第1のグループG1に属する複数のコア片4c1と、第2のグループG2に属する複数のコア片4c2と、第3のグループG3に属する複数のコア片4c3とを備えている。コア片4c1、コア片4c2及びコア片4c3は円板状である。第1のグループG1に属するコア片4c1は第1のコア片に対応し、第3のグループG3に属するコア片4c3は第2のコア片に対応し、第2のグループG2に属するコア片4c2は第3のコア片に対応する。コア片4c1の形状とコア片4c3の形状とは同じであるが、コア片4c1の形状とコア片4c2の形状は異なる。第2のグループG2は第1のグループG1と第3のグループG3との間に配置されている。図2に示すように、ロータコア4cの中央部には、シャフト7が挿入されるシャフト孔4iが形成されている。シャフト7の回転軸方向Dr1はロータコア4cのコア片が積み重ねられる方向に平行である。また、図3及び図4に示すように、ロータコア4cには、回転軸方向Dr1に平行に延びる磁石挿入部4jが形成されている。磁石挿入部4jは回転軸方向Dr1に直交する断面において長尺状に形成されている。磁石挿入部4jには磁石4dが挿入される貫通孔が形成されている。ロータコア4cには磁石挿入部4jが6つ形成されている。隣り合う2つの磁石挿入部4jは、ロータコア4cの中心に対して60度の角度をなして配置されている。更に、図3及び図4に示すように、ロータコア4cのうち磁石挿入部4jが形成されている位置よりも外周面側には、複数の貫通穴4Lが形成されている。 FIG. 2 is an enlarged explanatory view of the rotor 4a shown in FIG. FIG. 3 is a cross-sectional view taken along line AA shown in FIG. FIG. 4 is a cross-sectional view taken along the line BB shown in FIG. As shown in FIG. 2, the rotor 4a has a cylindrical rotor core 4c, a first end plate 4e provided on one end surface of the rotor core 4c, and a second end provided on the other end surface of the rotor core 4c. A plate 4f and a second balancer 4g provided on the second end plate 4f are provided. Further, the rotor 4a includes a rivet 4h1 inserted in the first end plate 4e, the rotor core 4c and the second end plate 4f, a first end plate 4e, a rotor core 4c, a second end plate 4f and a second And a rivet 4h2 inserted into the balancer 4g. As shown in FIG. 4, the rotor core 4 c is configured by stacking a plurality of core pieces. That is, the rotor core 4c includes a plurality of core pieces 4c1 belonging to the first group G1, a plurality of core pieces 4c2 belonging to the second group G2, and a plurality of core pieces 4c3 belonging to the third group G3. There is. The core piece 4c1, the core piece 4c2, and the core piece 4c3 have a disk shape. The core piece 4c1 belonging to the first group G1 corresponds to the first core piece, the core piece 4c3 belonging to the third group G3 corresponds to the second core piece, and the core piece 4c2 belongs to the second group G2 Corresponds to the third core piece. The shape of the core piece 4c1 is the same as the shape of the core piece 4c3, but the shape of the core piece 4c1 is different from the shape of the core piece 4c2. The second group G2 is disposed between the first group G1 and the third group G3. As shown in FIG. 2, a shaft hole 4i into which the shaft 7 is inserted is formed at the central portion of the rotor core 4c. The rotational axis direction Dr1 of the shaft 7 is parallel to the direction in which the core pieces of the rotor core 4c are stacked. Further, as shown in FIGS. 3 and 4, the rotor core 4c is formed with a magnet insertion portion 4j extending in parallel to the rotation axis direction Dr1. The magnet insertion portion 4j is formed in a long shape in a cross section orthogonal to the rotation axis direction Dr1. The magnet insertion portion 4j is formed with a through hole into which the magnet 4d is inserted. Six magnet insertion parts 4j are formed in the rotor core 4c. The two adjacent magnet insertion parts 4j are disposed at an angle of 60 degrees with respect to the center of the rotor core 4c. Further, as shown in FIGS. 3 and 4, a plurality of through holes 4L are formed on the outer peripheral surface side of the position where the magnet insertion portion 4j is formed in the rotor core 4c.
 第1の端板4e及び第2の端板4fは磁石4dが磁石挿入部4jから飛び出すことを防止している。第1の端板4eの中央部にはシャフト7が挿入されるシャフト孔4e1が形成され、第2の端板4fの中央部にもシャフト7が挿入されるシャフト孔4e1が形成されている。リベット4h1は第1の端板4e及び第2の端板4fをロータコア4cに取り付ける部材である。リベット4h2は第1の端板4e及び第2の端板4fをロータコア4cに取り付けるとともに、第2のバランサ4gを第2の端板4fに取り付ける部材である。第2のバランサ4gはシャフト7、ロータ4a及び揺動スクロール40が動いているときに、シャフト7、ロータ4a及び揺動スクロール40のバランスを確保する。 The first end plate 4e and the second end plate 4f prevent the magnet 4d from jumping out of the magnet insertion portion 4j. A shaft hole 4e1 into which the shaft 7 is inserted is formed at the center of the first end plate 4e, and a shaft hole 4e1 into which the shaft 7 is inserted is also formed at the center of the second end plate 4f. The rivet 4h1 is a member for attaching the first end plate 4e and the second end plate 4f to the rotor core 4c. The rivet 4h2 is a member for attaching the first end plate 4e and the second end plate 4f to the rotor core 4c and attaching the second balancer 4g to the second end plate 4f. The second balancer 4 g secures the balance of the shaft 7, the rotor 4 a and the oscillating scroll 40 when the shaft 7, the rotor 4 a and the oscillating scroll 40 are moving.
 図5は、図4に示す第1のグループG1のコア片4c1の磁石挿入部4jの説明図である。図6は、磁石4dの説明図である。図7は、磁石4dがコア片4c1の磁石挿入部4jに挿入された状態を示した図である。図8は、図7に示す突出部tf1及びその周囲の拡大図である。なお、方向Dr2は、磁石挿入部4jを回転軸方向Dr1に直交する断面で見たときにおける、磁石挿入部4jの長手方向である。図5~図8と先述の図2~図4とに基づいて、磁石4dの構成及びコア片4c1の構成の説明をする。なお、コア片4c3はコア片4c1と形状が同じなので説明を省略する。 FIG. 5 is an explanatory view of the magnet insertion portion 4j of the core piece 4c1 of the first group G1 shown in FIG. FIG. 6 is an explanatory view of the magnet 4 d. FIG. 7 is a view showing a state in which the magnet 4 d is inserted into the magnet insertion portion 4 j of the core piece 4 c 1. FIG. 8 is an enlarged view of the protrusion tf1 shown in FIG. 7 and the periphery thereof. The direction Dr2 is a longitudinal direction of the magnet insertion portion 4j when the magnet insertion portion 4j is viewed in a cross section orthogonal to the rotation axis direction Dr1. The configuration of the magnet 4d and the configuration of the core piece 4c1 will be described on the basis of FIGS. 5 to 8 and FIGS. 2 to 4 described above. The core piece 4c3 has the same shape as the core piece 4c1, and therefore the description thereof is omitted.
 図6に示すように、磁石4dは、ロータコア4cの磁石挿入部4jに接触している外周面4Dを含む。外周面4Dは、シャフト孔4i側に形成されている平面である内側面SF1と、内側面SF1に平行な平面である外側面SF2とを含んでいる。ここで、図3及び図6に示すように、外側面SF2からシャフト孔4iまでの距離は、内側面SF1からシャフト孔4iまでの距離よりも長い。また、図4及び図6に示すように、外周面4Dは、回転軸方向Dr1に平行に延びている第1の端部4d1に設けられている第1の接触面sf1と、第1の端部4d1に平行に延びている第2の端部4d2に設けられている第2の接触面sf2とを含んでいる。第1の端部4d1は内側面SF1の方向Dr2における一端部であり、第2の端部4d2は内側面SF1の方向Dr2における他端部である。第1の接触面sf1及び第2の接触面sf2は同じ形状であり、第1の接触面sf1及び第2の接触面sf2は平面である。更に、図6に示すように、外周面4Dは、外側面SF2の方向Dr2における一端部に設けられ、外側面SF2に直交する端面SF3と、外側面SF2の方向Dr2における他端部に設けられ、外側面SF2に直交する端面SF4とを含んでいる。端面SF3及び端面SF4は同じ形状であり、端面SF3及び端面SF4は平面である。 As shown in FIG. 6, the magnet 4d includes an outer circumferential surface 4D in contact with the magnet insertion portion 4j of the rotor core 4c. The outer peripheral surface 4D includes an inner side surface SF1 which is a plane formed on the shaft hole 4i side, and an outer side surface SF2 which is a plane parallel to the inner side surface SF1. Here, as shown in FIGS. 3 and 6, the distance from the outer side surface SF2 to the shaft hole 4i is longer than the distance from the inner side surface SF1 to the shaft hole 4i. In addition, as shown in FIGS. 4 and 6, the outer peripheral surface 4D has a first contact surface sf1 provided at a first end 4d1 extending in parallel to the rotation axis direction Dr1, and a first end And a second contact surface sf2 provided at a second end 4d2 extending parallel to the portion 4d1. The first end 4d1 is one end in the direction Dr2 of the inner surface SF1 and the second end 4d2 is the other end in the direction Dr2 of the inner surface SF1. The first contact surface sf1 and the second contact surface sf2 have the same shape, and the first contact surface sf1 and the second contact surface sf2 are flat. Furthermore, as shown in FIG. 6, the outer peripheral surface 4D is provided at one end in the direction Dr2 of the outer surface SF2, and is provided at the end face SF3 orthogonal to the outer surface SF2 and the other end in the direction Dr2 of the outer surface SF2. , And an end face SF4 orthogonal to the outer side face SF2. The end face SF3 and the end face SF4 have the same shape, and the end face SF3 and the end face SF4 are flat.
 図5及び図7に示すように、磁石挿入部4jには、磁石4dの内側面SF1に隙間を空けて向かい合う第1の面TF1と、磁石4dの外側面SF2に接触している第2の面TF2と、を備えている。第1の面TF1及び第2の面TF2は平面である。また、図3及び図5に示すように、磁石挿入部4jは、回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の一端部に形成されている突出部tf1と、回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の他端部に形成されている突出部tf2と、を備えている。突出部tf1は第1の接触面sf1に向けて突出し、突出部tf2は第2の接触面sf2に向けて突出している。図5~図7に示すように、突出部tf1は内側面SF1の第1の端部4d1側に設けられ、突出部tf2は内側面SF1の第2の端部4d2側に設けられている。突出部tf1及び突出部tf2のうちの一方が第1の突出部に対応し、他方が第2の突出部に対応している。 As shown in FIGS. 5 and 7, in the magnet insertion portion 4j, a first surface TF1 facing the inner surface SF1 of the magnet 4d with a gap in between and a second surface TF1 contacting the outer surface SF2 of the magnet 4d. And a surface TF2. The first surface TF1 and the second surface TF2 are planar. Further, as shown in FIGS. 3 and 5, the magnet insertion portion 4j has a protrusion tf1 formed at one end of the magnet insertion portion 4j in the longitudinal direction in a cross section orthogonal to the rotation axis direction Dr1, and the rotation axis direction And a protrusion tf2 formed at the other end in the longitudinal direction of the magnet insertion portion 4j in a cross section orthogonal to the Dr1. The protrusion tf1 protrudes toward the first contact surface sf1, and the protrusion tf2 protrudes toward the second contact surface sf2. As shown in FIGS. 5 to 7, the protrusion tf1 is provided on the first end 4d1 side of the inner side surface SF1, and the protrusion tf2 is provided on the second end 4d2 side of the inner side surface SF1. One of the protrusion tf1 and the protrusion tf2 corresponds to the first protrusion, and the other corresponds to the second protrusion.
 ここで、突出部tf1及び突出部tf2の配置は対称であるが、突出部tf1の形状と突出部tf2の形状は同じである。このため、ここでは突出部tf1の形状を中心に説明する。図8に示すように、突出部tf1は、磁石4dの第1の接触面sf1と接触している頂部tfaと、磁石4dの第1の接触面sf1から離間している離間部tfbと、磁石4dの第1の接触面sf1から離間している離間部tfcとを含んでいる。頂部tfaは離間部tfbと離間部tfcとの間に挟まれている。図示は省略しているが、突出部tf2も突出部tf1と同様の形状を有している。つまり、突出部tf2は、第2の接触面sf2と接触している頂部tfaと、第2の接触面sf2から離間している離間部tfbと、第2の接触面sf2から離間している離間部tfcとを含んでいる。 Here, the arrangement of the protrusions tf1 and the protrusions tf2 is symmetrical, but the shape of the protrusions tf1 and the shape of the protrusions tf2 are the same. Therefore, the shape of the protrusion tf1 will be mainly described here. As shown in FIG. 8, the protrusion tf1 has a top portion tfa in contact with the first contact surface sf1 of the magnet 4d, a separated portion tfb spaced from the first contact surface sf1 of the magnet 4d, and the magnet And a separation portion tfc which is separated from the first contact surface sf1 of 4d. The top tfa is sandwiched between the separation part tfb and the separation part tfc. Although not shown, the protrusion tf2 has the same shape as the protrusion tf1. That is, the protrusion tf2 is separated from the top tfa in contact with the second contact surface sf2, the separation tfb apart from the second contact surface sf2, and the separation from the second contact surface sf2 And tFC.
 図9は、図4に示す第2のグループG2のコア片4c2の説明図である。図10は、磁石4dがコア片4c2の磁石挿入部4jに挿入された状態を示した図である。図11は、図7に示すC-C断面でロータコア4cを見たときの断面図である。次に、コア片4c2の構成の説明をする。コア片4c2の形状はコア片4c1の形状と次に説明する点で異なっているが、それ以外は同じである。コア片4c2には上述した突出部tf1及び突出部tf2が形成されていない。つまり、図9及び図10に示すように、磁石挿入部4jには、磁石4dの第1の接触面sf1に接触しないで向かい合う内周面TF3と、磁石4dの第2の接触面sf2に接触しないで向かい合う内周面TF4と、が形成されている。図11に示すように、内周面TF3はコア片4c1の突出部tf1とコア片4c3の突出部tf1との間に設けられている。また、内周面TF4はコア片4c1の突出部tf2とコア片4c3の突出部tf2との間に設けられている。 FIG. 9 is an explanatory view of the core piece 4c2 of the second group G2 shown in FIG. FIG. 10 is a view showing a state in which the magnet 4 d is inserted into the magnet insertion portion 4 j of the core piece 4 c 2. FIG. 11 is a cross-sectional view when the rotor core 4c is viewed in the CC cross section shown in FIG. Next, the configuration of the core piece 4c2 will be described. The shape of the core piece 4c2 is different from the shape of the core piece 4c1 in the point to be described next, but is otherwise the same. The protrusion tf1 and the protrusion tf2 described above are not formed on the core piece 4c2. That is, as shown in FIGS. 9 and 10, the magnet insertion portion 4j contacts the inner circumferential surface TF3 facing each other without contacting the first contact surface sf1 of the magnet 4d and the second contact surface sf2 of the magnet 4d. The inner surface TF4 facing each other is formed. As shown in FIG. 11, the inner circumferential surface TF3 is provided between the protrusion tf1 of the core piece 4c1 and the protrusion tf1 of the core piece 4c3. Further, the inner peripheral surface TF4 is provided between the protrusion tf2 of the core piece 4c1 and the protrusion tf2 of the core piece 4c3.
 図11に示すように、磁石4dの第1の接触面sf1は、第1のグループG1のコア片4c1の突出部tf1及び第3のグループG3のコア片4c3の突出部tf1とは接触するが、第2のグループG2のコア片4c2とは接触しない。つまり、図10及び図11に示すように、第2のグループG2のコア片4c2と第1の接触面sf1との間には隙間4Qが形成されている。また、磁石4dの第2の接触面sf2は、第1のグループG1のコア片4c1の突出部tf2及び第3のグループG3のコア片4c3の突出部tf2とは接触するが、第2のグループG2のコア片4c2とは接触しない。つまり、第2のグループG2のコア片4c2と第2の接触面sf2との間には隙間4Qが形成されている。 As shown in FIG. 11, although the first contact surface sf1 of the magnet 4d is in contact with the protrusion tf1 of the core piece 4c1 of the first group G1 and the protrusion tf1 of the core piece 4c3 of the third group G3. , And the core piece 4c2 of the second group G2 are not in contact. That is, as shown in FIGS. 10 and 11, a gap 4Q is formed between the core piece 4c2 of the second group G2 and the first contact surface sf1. The second contact surface sf2 of the magnet 4d is in contact with the projection tf2 of the core piece 4c1 of the first group G1 and the projection tf2 of the core piece 4c3 of the third group G3, but the second group There is no contact with the core piece 4c2 of G2. That is, a gap 4Q is formed between the core piece 4c2 of the second group G2 and the second contact surface sf2.
 更に、図11に基づいて磁石4dの形状の説明をする。図11に示すように、磁石4dは方向Dr2に平行な幅が先細りになっている端部4dtを備えている。磁石4dはロータコア4cの磁石挿入部4jに挿入されるが、端部4dtは磁石4dのうち磁石挿入部4jに最初に挿入される部分である。 Further, the shape of the magnet 4d will be described based on FIG. As shown in FIG. 11, the magnet 4d has an end 4dt whose width parallel to the direction Dr2 is tapered. The magnet 4d is inserted into the magnet insertion portion 4j of the rotor core 4c, while the end 4dt is a portion of the magnet 4d that is first inserted into the magnet insertion portion 4j.
<実施の形態1の動作>
 先述の図1に基づいてスクロール圧縮機1の動作説明をする。ステータ4bが図示省略のインバータから電力の供給を受けると、ロータ4aが回転する。ロータ4aが回転することで、シャフト7が回転する。シャフト7が回転することで、油溜まり3aの油は、油ポンプ3によって引き上げられ、シャフト7の油通路7aに流入する。油通路7aに流入した油は、揺動軸受8cを潤滑した後に、フレーム6に形成されている空間6dに供給される。空間6dの油は、スラスト軸受6bを潤滑しながらオルダム空間15bに供給される。オルダム空間15bに供給された油はオルダムリング15を潤滑する。また、オルダム空間15bに供給された油は排油パイプ21を通って油溜まり3aに戻る。
<Operation of Embodiment 1>
The operation of the scroll compressor 1 will be described based on FIG. 1 described above. When the stator 4b receives supply of power from an inverter (not shown), the rotor 4a rotates. As the rotor 4a rotates, the shaft 7 rotates. As the shaft 7 rotates, the oil of the oil reservoir 3 a is pulled up by the oil pump 3 and flows into the oil passage 7 a of the shaft 7. The oil that has flowed into the oil passage 7a is supplied to the space 6d formed in the frame 6 after lubricating the rocking bearing 8c. The oil in the space 6d is supplied to the oldham space 15b while lubricating the thrust bearing 6b. The oil supplied to the Oldham space 15 b lubricates the Oldham ring 15. Further, the oil supplied to the Oldham space 15b returns to the oil reservoir 3a through the oil drainage pipe 21.
 冷媒は吸入管11からシェル2内に流入する。シェル2内に流入した冷媒は、フレーム6の吸入ポート6aを通って圧縮室5aに流入する。ここで、ロータ4aが回転することで、揺動スクロール40が揺動運動する。揺動スクロール40が揺動運動をすることで、冷媒は圧縮室5aにおいて圧縮される。圧縮室5aで圧縮された冷媒は、固定スクロール30の吐出口30a、吐出チャンバ13の吐出口13b及びマフラー14を介して吐出管12へ流れる。 The refrigerant flows from the suction pipe 11 into the shell 2. The refrigerant flowing into the shell 2 flows into the compression chamber 5 a through the suction port 6 a of the frame 6. Here, as the rotor 4a rotates, the oscillating scroll 40 oscillates. As the oscillating scroll 40 oscillates, the refrigerant is compressed in the compression chamber 5a. The refrigerant compressed in the compression chamber 5 a flows to the discharge pipe 12 through the discharge port 30 a of the fixed scroll 30, the discharge port 13 b of the discharge chamber 13, and the muffler 14.
 図12は、ずれ力F等が磁石4dに加わったときにおいて、磁石4dの動きが規制される様子を示す模式図である。ずれ力F等の磁石4dの位置ずれの原因となる力は、ロータ4aが回転しているときに発生する。ここでは、ずれ力Fの方向は突出部tf2から突出部tf1に向かう方向に平行である。磁石4dにずれ力Fが加わった場合には、磁石4dは突出部tf1に突き当たっているため、磁石4dは突出部tf1から反力fを受ける。反力fの方向Dr2に平行な成分fxはずれ力Fに等しい。つまり、ずれ力Fが磁石4dに加わったとしても、磁石4dの第1の接触面sf1が突出部tf1より反力fを受けるため、磁石4dはずれ力Fの方向に動くことが規制される。なお、反力fの方向Dr2に直交する成分fyは、磁石4dの外側面SF2を第2の面TF2に押しつけるように作用する。 FIG. 12 is a schematic view showing how the movement of the magnet 4d is restricted when the shift force F or the like is applied to the magnet 4d. The force that causes the positional displacement of the magnet 4d, such as the displacement force F, occurs when the rotor 4a is rotating. Here, the direction of the shift force F is parallel to the direction from the protrusion tf2 to the protrusion tf1. When the shift force F is applied to the magnet 4d, the magnet 4d receives the reaction force f from the protrusion tf1 because the magnet 4d is in contact with the protrusion tf1. The component fx parallel to the direction Dr2 of the reaction force f is equal to the displacement force F. That is, even if the shift force F is applied to the magnet 4d, the magnet 4d is restricted from moving in the direction of the shift force F because the first contact surface sf1 of the magnet 4d receives the reaction force f from the protrusion tf1. The component fy orthogonal to the direction Dr2 of the reaction force f acts to press the outer surface SF2 of the magnet 4d against the second surface TF2.
 図示は省略しているが、ずれ力の方向が突出部tf1から突出部tf2に向かう方向に平行である場合には、磁石4dは突出部tf2に突き当たり、磁石4dは突出部tf2から反力fを受け、磁石4dの動きは規制される。 Although illustration is omitted, when the direction of the shift force is parallel to the direction from the protrusion tf1 to the protrusion tf2, the magnet 4d strikes the protrusion tf2, and the magnet 4d receives the reaction force f from the protrusion tf2. The movement of the magnet 4d is restricted.
 また、ずれ力F2がロータ4aに加わったとしても、磁石4dは突出部tf1及び突出部tf2に突き当たっているため、磁石4dはずれ力F2の方向に動くことが規制される。なお、ずれ力F2の方向は第1の面TF1から第2の面TF2へ向かう方向である。更に、ずれ力F3がロータ4aに加わったとしても、磁石4dは第2の面TF2に突き当たっているため、磁石4dはずれ力F3の方向に動くことが規制される。なお、ずれ力F3の方向はずれ力F2の方向の反対方向である。 In addition, even if the shift force F2 is applied to the rotor 4a, the magnet 4d abuts on the protrusion tf1 and the protrusion tf2, so that the magnet 4d is restricted from moving in the direction of the shift force F2. The direction of the shift force F2 is the direction from the first surface TF1 to the second surface TF2. Furthermore, even if the shift force F3 is applied to the rotor 4a, since the magnet 4d abuts on the second surface TF2, movement of the magnet 4d in the direction of the shift force F3 is restricted. The direction of the shift force F3 is the opposite direction to the direction of the shift force F2.
<実施の形態1の効果>
 磁石挿入部4jは、回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の端部に形成され、磁石4dに向けて突出している突出部tf1を備えている。このため、ずれ力Fが磁石4dに加わったとしても、磁石4dは突出部tf1から反力fを受け、磁石4dがずれ力Fの方向に動くことが規制される。したがって、ロータ4aが回転しているときにおいて、磁石4dの位置ずれがより確実に防止される。また、磁石4dの位置ずれがより確実に防止されるので、ロータ4aが回転しているときに磁石4dと磁石挿入部4jの内周面とが衝突してしまうことを防止できる。その結果、磁石4d及びロータ4aが損傷してしまうこと、及び、磁石4dと磁石挿入部4jの内周面との衝突によって騒音が発生すること、が抑制される。
<Effect of Embodiment 1>
The magnet insertion part 4j is formed at an end of the magnet insertion part 4j in the longitudinal direction in a cross section orthogonal to the rotation axis direction Dr1, and includes a projection part tf1 projecting toward the magnet 4d. Therefore, even if the shift force F is applied to the magnet 4d, the magnet 4d receives the reaction force f from the projection tf1, and the movement of the magnet 4d in the direction of the shift force F is restricted. Therefore, when the rotor 4a is rotating, the positional deviation of the magnet 4d is more reliably prevented. Further, since the positional deviation of the magnet 4d is more reliably prevented, it is possible to prevent the collision of the magnet 4d and the inner peripheral surface of the magnet insertion portion 4j when the rotor 4a is rotating. As a result, damage to the magnet 4 d and the rotor 4 a and noise generation due to collision between the magnet 4 d and the inner peripheral surface of the magnet insertion portion 4 j are suppressed.
 突出部tf1は頂部tfa、離間部tfb及び離間部tfcを含んでいる。頂部tfaでは磁石4dに接触しているが、離間部tfb及び離間部tfcでは磁石4dに接触していないため、コア片4c1は磁石4dとの接触面積が抑えられている。これにより、磁石4dを磁石挿入部4jに圧入するときにおける、磁石4dの外周面4Dと磁石挿入部4jの内周面との摩擦を抑制することができる。したがって、磁石4dを磁石挿入部4jに圧入するときの作業負担が抑制される。 The protrusion tf1 includes a top tfa, a separation part tfb and a separation part tfc. Since the top part tfa contacts the magnet 4d, the separation part tfb and the separation part tfc do not contact the magnet 4d, so the contact area of the core piece 4c1 with the magnet 4d is suppressed. Thus, it is possible to suppress the friction between the outer peripheral surface 4D of the magnet 4d and the inner peripheral surface of the magnet insertion portion 4j when the magnet 4d is press-fitted into the magnet insertion portion 4j. Therefore, the work load when pressing the magnet 4d into the magnet insertion portion 4j is suppressed.
 磁石挿入部4jは、突出部tf1に加え、突出部tf1と同様の構成を有する突出部tf2を備えている。このため、上述した、磁石4dの位置ずれを防止する効果、磁石4dと磁石挿入部4jの内周面とが衝突してしまうことを防止する効果、及び、磁石4dを磁石挿入部4jに圧入するときの作業負担が抑制される効果は、より向上する。 The magnet insertion portion 4j includes a protrusion tf2 having a configuration similar to that of the protrusion tf1, in addition to the protrusion tf1. Therefore, the effect of preventing the positional deviation of the magnet 4d described above, the effect of preventing the collision between the magnet 4d and the inner circumferential surface of the magnet insertion portion 4j, and the press-fitting of the magnet 4d into the magnet insertion portion 4j The effect of reducing the work load when doing is further improved.
 第2のグループGr2のコア片4c2は、磁石4dの外周面4Dから離間している内周面TF3と、磁石4dの外周面4Dから離間している内周面TF4とを含んでいる。このため、コア片4c2は、内周面TF3及び内周面TF4の分、磁石4dと接触面積が抑えられている。これにより、磁石4dを磁石挿入部4jに圧入するときにおける、磁石4dの外周面4Dとコア片4c2との摩擦を抑制することができる。したがって、磁石4dを磁石挿入部4jに圧入するときの作業負担が抑制される。 The core piece 4c2 of the second group Gr2 includes an inner circumferential surface TF3 spaced from the outer circumferential surface 4D of the magnet 4d and an inner circumferential surface TF4 spaced from the outer circumferential surface 4D of the magnet 4d. For this reason, the core piece 4c2 is reduced in contact area with the magnet 4d by the inner circumferential surface TF3 and the inner circumferential surface TF4. Thus, it is possible to suppress the friction between the outer peripheral surface 4D of the magnet 4d and the core piece 4c2 when the magnet 4d is pressed into the magnet insertion portion 4j. Therefore, the work load when pressing the magnet 4d into the magnet insertion portion 4j is suppressed.
 冷媒は、ロータコア4cを構成する鉄等よりも、磁気抵抗が大きい。このため、磁石4dの磁束は冷媒を通過しにくい。ここで、磁石4dの外側面SF2と磁石挿入部4jの第2の面TF2とは接触している。このため、外側面SF2と第2の面TF2との間に冷媒は流れ込まない。これにより、磁石4dの周囲の領域のうち磁石4dの磁束が通りにくくなる部分は少なくなっている。したがって、モータ4は運転効率の低下が抑制される。 The refrigerant has larger magnetic resistance than iron or the like that constitutes the rotor core 4c. For this reason, the magnetic flux of the magnet 4d does not easily pass through the refrigerant. Here, the outer surface SF2 of the magnet 4d and the second surface TF2 of the magnet insertion portion 4j are in contact with each other. Thus, the refrigerant does not flow between the outer surface SF2 and the second surface TF2. As a result, in the area around the magnet 4d, the portion where the magnetic flux of the magnet 4d is difficult to pass is reduced. Therefore, the motor 4 is prevented from lowering its operating efficiency.
 実施の形態1の説明において、コア片4c1とは形状が異なるコア片4c2を備えたロータコア4cの形態を説明したがその形態に限定されるものではない。つまり、ロータコア4cが備える全てのコア片の形状がコア片4c1の形状と同じであってもよい。また、実施の形態1の説明において、モータ4をスクロール圧縮機1に適用した形態を説明したがその形態に限定されるものではない。モータ4は圧縮機以外の対象に適用されてもよい。 In the description of the first embodiment, the form of the rotor core 4c having the core piece 4c2 different in shape from the core piece 4c1 has been described, but the present invention is not limited to this form. That is, the shape of all the core pieces provided in the rotor core 4c may be the same as the shape of the core piece 4c1. Further, in the description of the first embodiment, the mode in which the motor 4 is applied to the scroll compressor 1 has been described, but the present invention is not limited to this mode. The motor 4 may be applied to an object other than a compressor.
<変形例1>
 図13は、実施の形態1に係るスクロール圧縮機1の変形例1である。実施の形態1では突出部tf1が曲面状に形成された形態を説明したがその形態に限定されるものではない。図13に示すように、離間部tfb及び離間部tfcは、平面であってもよい。これにより、実施の形態1の頂部tfaよりも変形例1の頂部tfaの方が鋭くなる。その結果、変形例1の突出部tf10と磁石4dとの接触面積は、実施の形態1の突出部tf1と磁石4dとの接触面積よりも狭くなる。変形例1であっても実施の形態1と同様の効果を得ることができる。
<Modification 1>
FIG. 13 is a first modification of the scroll compressor 1 according to the first embodiment. Although the embodiment in which the protrusion tf1 is formed to have a curved surface is described in the first embodiment, the present invention is not limited to this embodiment. As shown in FIG. 13, the separation part tfb and the separation part tfc may be flat. Thus, the top tfa of the first modification becomes sharper than the top tfa of the first embodiment. As a result, the contact area between the projection tf10 of the first modification and the magnet 4d is smaller than the contact area between the projection tf1 of the first embodiment and the magnet 4d. Even in the first modification, the same effect as that of the first embodiment can be obtained.
<変形例2>
 図14は、実施の形態1に係るスクロール圧縮機1の変形例2である。実施の形態1において突出部tf1が回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の一端部に形成され、突出部tf2が回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の他端部に形成されていた。しかし、この形態に限定されるものではない。変形例2において回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の一端部には突出部tf1が形成されている。一方、回転軸方向Dr1に直交する断面において磁石挿入部4jの長手方向の他端部には突出部tf2の代わりに支持面tf20が形成されている。支持面tf20は、磁石4dの第2の接触面sf2に接触している。なお、支持面tf20は、第2の接触面sf2に向けて突出していなくてもよい。変形例2であっても実施の形態1と同様の効果を得ることができる。
<Modification 2>
FIG. 14 is a second modification of the scroll compressor 1 according to the first embodiment. In the first embodiment, protrusion tf1 is formed at one end in the longitudinal direction of magnet insertion portion 4j in a cross section orthogonal to rotation axis direction Dr1, and protrusion tf2 is a cross section orthogonal to rotation axis direction Dr1 in magnet insertion portion 4j. It was formed at the other end in the longitudinal direction. However, it is not limited to this form. In the second modification, a protrusion tf1 is formed at one end in the longitudinal direction of the magnet insertion portion 4j in a cross section orthogonal to the rotation axis direction Dr1. On the other hand, a support surface tf20 is formed at the other end in the longitudinal direction of the magnet insertion portion 4j in the cross section orthogonal to the rotation axis direction Dr1 instead of the protrusion tf2. The support surface tf20 is in contact with the second contact surface sf2 of the magnet 4d. The support surface tf20 may not project toward the second contact surface sf2. Even in the second modification, the same effect as that of the first embodiment can be obtained.
実施の形態2.
 実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。実施の形態1において、磁石4dの内側面SF1の端側と磁石挿入部4jとが接触している。一方、実施の形態2において、磁石42dの外側面SF2の端側と磁石挿入部24jとが接触している。図15は、磁石4dがコア片4c1の磁石挿入部24jに挿入された状態を示した図である。図16は、図15に示す突出部tf3及びその周囲の拡大図である。なお、コア片4c3はコア片4c1と形状が同じなので実施の形態ではコア片4c3の説明を省略する。
Second Embodiment
In the second embodiment, parts common to the first embodiment are assigned the same reference numerals and explanations thereof will be omitted, and differences from the first embodiment will be mainly described. In the first embodiment, the end of the inner side surface SF1 of the magnet 4d is in contact with the magnet insertion portion 4j. On the other hand, in the second embodiment, the end of the outer surface SF2 of the magnet 42d is in contact with the magnet insertion portion 24j. FIG. 15 is a view showing a state in which the magnet 4d is inserted into the magnet insertion portion 24j of the core piece 4c1. FIG. 16 is an enlarged view of the protrusion tf3 shown in FIG. 15 and the periphery thereof. Since the core piece 4c3 has the same shape as the core piece 4c1, the description of the core piece 4c3 is omitted in the embodiment.
<実施の形態2の構成>
 磁石42dの外周面42Dは、回転軸方向Dr1に平行に延びている第3の端部4d3に設けられている第3の接触面sf3と、第3の端部4d3に平行に延びている第4の端部4d4に設けられている第4の接触面sf4とを含んでいる。第3の端部4d3は外側面SF2の方向Dr2における一端部であり、第4の端部4d4は外側面SF2の方向Dr2における他端部である。第3の接触面sf3及び第4の接触面sf4は同じ形状であり、第3の接触面sf3及び第4の接触面sf4は平面である。また、図15に示すように、外周面42Dは、内側面SF1の方向Dr2における一端部に設けられている端面SF5と、内側面SF1の方向Dr2における他端部に設けられている端面SF6とを含んでいる。端面SF5及び端面SF6は同じ形状であり、端面SF5及び端面SF6は平面である。第1の面TF1は内側面SF1に接触しており、第2の面TF2は外側面SF2に隙間を空けて向かい合っている。
<Configuration of Embodiment 2>
An outer circumferential surface 42D of the magnet 42d is provided with a third contact surface sf3 provided at a third end 4d3 extending parallel to the rotation axis direction Dr1 and a third contact surface sf3 extending parallel to the third end 4d3. And a fourth contact surface sf4 provided at the end 4d4 of the fourth part. The third end 4d3 is an end in the direction Dr2 of the outer surface SF2, and the fourth end 4d4 is the other end in the direction Dr2 of the outer surface SF2. The third contact surface sf3 and the fourth contact surface sf4 have the same shape, and the third contact surface sf3 and the fourth contact surface sf4 are flat. Further, as shown in FIG. 15, the outer peripheral surface 42D includes an end face SF5 provided at one end in the direction Dr2 of the inner side face SF1 and an end face SF6 provided at the other end in the direction Dr2 of the inner side face SF1. Contains. The end face SF5 and the end face SF6 have the same shape, and the end face SF5 and the end face SF6 are flat. The first surface TF1 is in contact with the inner surface SF1, and the second surface TF2 faces the outer surface SF2 with a gap.
 磁石挿入部24jには、回転軸方向Dr1に直交する断面において磁石挿入部24jの長手方向の一端部に形成されている突出部tf3と、回転軸方向Dr1に直交する断面において磁石挿入部24jの長手方向の他端部に形成されている突出部tf4と、を備えている。突出部tf3は第3の接触面sf3に向けて突出し、突出部tf4は第4の接触面sf4に向けて突出している。突出部tf3は外側面SF2の第3の端部4d3側に設けられ、突出部tf4は外側面SF2の第4の端部4d4側に設けられている。突出部tf3及び突出部tf4の配置は対称であるが、突出部tf3の形状と突出部tf4の形状は同じである。このため、ここでは突出部tf3の形状を中心に説明する。突出部tf3及び突出部tf4のうちの一方が第3の突出部に対応し、他方が第4の突出部に対応している。 The magnet insertion portion 24j has a protrusion tf3 formed at one end in the longitudinal direction of the magnet insertion portion 24j in a cross section orthogonal to the rotation axis direction Dr1, and a magnet insertion portion 24j in a cross section orthogonal to the rotation axis direction Dr1. And a projection tf4 formed at the other end in the longitudinal direction. The protrusion tf3 protrudes toward the third contact surface sf3, and the protrusion tf4 protrudes toward the fourth contact surface sf4. The protrusion tf3 is provided on the side of the third end 4d3 of the outer surface SF2, and the protrusion tf4 is provided on the side of the fourth end 4d4 of the outer surface SF2. Although the arrangement of the protrusions tf3 and the protrusions tf4 is symmetrical, the shape of the protrusions tf3 and the shape of the protrusions tf4 are the same. Therefore, the shape of the protrusion tf3 will be mainly described here. One of the protrusion tf3 and the protrusion tf4 corresponds to the third protrusion, and the other corresponds to the fourth protrusion.
 図16に示すように、突出部tf3は、磁石42dの第3の接触面sf3と接触している頂部tfaと、磁石42dの第3の接触面sf3から離間している離間部tfbと、磁石42dの第3の接触面sf3から離間している離間部tfcとを含んでいる。図示は省略しているが、突出部tf4も突出部tf3と同様の形状を有している。つまり、突出部tf4は、第4の接触面sf4と接触している頂部tfaと、第4の接触面sf4から離間している離間部tfbと、第4の接触面sf4から離間している離間部tfcとを含んでいる。 As shown in FIG. 16, the protrusion tf3 has a top portion tfa in contact with the third contact surface sf3 of the magnet 42d, a separated portion tfb spaced from the third contact surface sf3 of the magnet 42d, and the magnet And a separation portion tfc separated from the third contact surface sf3 of 42d. Although not shown, the protrusion tf4 also has the same shape as the protrusion tf3. That is, the protrusion tf4 is separated from the top tfa in contact with the fourth contact surface sf4, the separation portion tfb apart from the fourth contact surface sf4, and the separation from the fourth contact surface sf4. And tFC.
 図示は省略するが、コア片4c2の形状は、上述した突出部tf3及び突出部tf4が形成されていない点を除いては、コア片4c1と同じである。 Although illustration is omitted, the shape of the core piece 4c2 is the same as the core piece 4c1 except that the above-mentioned protrusion tf3 and the protrusion tf4 are not formed.
<実施の形態2の効果>
 実施の形態2も実施の形態1と同様の効果を有する。
<Effect of Second Embodiment>
The second embodiment also has the same effect as the first embodiment.
 なお、突出部tf3及び突出部tf4は実施の形態1の変形例1のような形態であってもよい。 The protrusion tf3 and the protrusion tf4 may be in the form as in the first modification of the first embodiment.
実施の形態3.
 本実施の形態3では、実施の形態1、2と共通する部分は同一の符号を付して説明を省略し、実施の形態1、2との相違点を中心に説明する。実施の形態3は実施の形態1と実施の形態2とを組み合わせた形態である。図17は、第1のグループG1のコア片4c1の磁石挿入部34jの説明図である。図18は、磁石43dの説明図である。図19は、磁石43dがコア片4c1の磁石挿入部34jに挿入された状態を示した図である。
Third Embodiment
In the third embodiment, parts common to the first and second embodiments are assigned the same reference numerals and explanations thereof will be omitted, and differences from the first and second embodiments will be mainly described. The third embodiment is a combination of the first embodiment and the second embodiment. FIG. 17 is an explanatory view of the magnet insertion portion 34j of the core piece 4c1 of the first group G1. FIG. 18 is an explanatory view of the magnet 43 d. FIG. 19 is a view showing a state in which the magnet 43d is inserted into the magnet insertion portion 34j of the core piece 4c1.
<実施の形態3の構成>
 磁石43dの外周面43Dは、実施の形態1で説明した第1の接触面sf1と、実施の形態1で説明した第2の接触面sf2と、実施の形態2で説明した第3の接触面sf3と、実施の形態2で説明した第4の接触面sf4とを含んでいる。また、磁石43dの外周面43Dは、第1の接触面sf1の端から第3の接触面sf3の端にかけて形成されている端面SF7と、第2の接触面sf2の端から第4の接触面sf4の端にかけて形成されている端面SF8とを含んでいる。端面SF7及び端面SF8は同じ形状であり、端面SF7及び端面SF8は平面である。第1の面TF1は内側面SF1に隙間を空けて向かい合っており、また、第2の面TF2も外側面SF2に隙間を空けて向かい合っている。
<Configuration of Embodiment 3>
The outer peripheral surface 43D of the magnet 43d has the first contact surface sf1 described in the first embodiment, the second contact surface sf2 described in the first embodiment, and the third contact surface described in the second embodiment. and sf3 and the fourth contact surface sf4 described in the second embodiment. The outer peripheral surface 43D of the magnet 43d is an end face SF7 formed from the end of the first contact surface sf1 to the end of the third contact surface sf3, and the fourth contact surface from the end of the second contact surface sf2 and an end face SF8 formed to the end of sf4. The end face SF7 and the end face SF8 have the same shape, and the end face SF7 and the end face SF8 are flat. The first surface TF1 faces the inner surface SF1 with a gap, and the second surface TF2 also faces the outer surface SF2 with a gap.
<実施の形態3の効果>
 実施の形態3も実施の形態1と同様の効果を有することに加えて次の効果を有する。実施の形態3において、第1の面TF1及び第2の面TF2は磁石挿入部34jと接触していない。このため、磁石43dと磁石挿入部34jとの接触面積が更に抑えられている。したがって、磁石43dを磁石挿入部34jに圧入するときの作業負担が更に抑制される。
<Effect of Embodiment 3>
The third embodiment also has the following effect in addition to the same effect as the first embodiment. In the third embodiment, the first surface TF1 and the second surface TF2 are not in contact with the magnet insertion portion 34j. Therefore, the contact area between the magnet 43d and the magnet insertion portion 34j is further reduced. Therefore, the work load when pressing the magnet 43d into the magnet insertion portion 34j is further suppressed.
 なお、突出部tf1、突出部tf2、突出部tf3及び突出部tf4は、実施の形態1の変形例1のような形態であってもよい。 The protruding portion tf1, the protruding portion tf2, the protruding portion tf3, and the protruding portion tf4 may have a form as in the first modification of the first embodiment.
実施の形態4.
 本実施の形態4では、実施の形態1~3と共通する部分は同一の符号を付して説明を省略し、実施の形態1~3との相違点を中心に説明する。
Fourth Embodiment
In the fourth embodiment, parts common to the first to third embodiments are assigned the same reference numerals and explanations thereof will be omitted, and differences from the first to third embodiments will be mainly described.
<実施の形態4の構成>
 図20は、実施の形態4に係るスクロール圧縮機のロータコア4cの断面図である。図21は、第1の端側磁石片Dv2の構成説明図である。図20に示すように、実施の形態4のロータコア4cの全てのコア片の構成は、実施の形態1で説明したコア片4c1の構成と同じである。また、磁石44dは分割型である。つまり、図20及び図21に示すように、磁石44dは、長尺状の中央磁石片Dv1と、厚み方向に先細りになっている端部Dvt2を備えている長尺状の第1の端側磁石片Dv2と、第1の端側磁石片Dv2と同じ形状の第2の端側磁石片Dv3と、を含んでいる。
<Configuration of Fourth Embodiment>
FIG. 20 is a cross-sectional view of a rotor core 4c of a scroll compressor according to a fourth embodiment. FIG. 21 is a configuration explanatory view of the first end side magnet segment Dv2. As shown in FIG. 20, the configuration of all the core pieces of the rotor core 4c of the fourth embodiment is the same as the configuration of the core piece 4c1 described in the first embodiment. Moreover, the magnet 44d is a split type. That is, as shown in FIGS. 20 and 21, the magnet 44d is provided with the elongated central magnet piece Dv1 and the elongated first end side including the end portion Dvt2 tapered in the thickness direction. A magnet piece Dv2 and a second end magnet piece Dv3 having the same shape as the first end magnet piece Dv2 are included.
<実施の形態4の製造方法>
 図22は、中央磁石片Dv1を磁石挿入部44jへ差し込む様子を示している。図23は、第1の端側磁石片Dv2を磁石挿入部44jへ差し込む様子を示している。図24は、第2の端側磁石片Dv3を磁石挿入部44jへ差し込む様子を示している。まず、コア片4c1を複数積み重ねてロータコア4cを作製する。ロータコア4cには磁石44dを挿入する磁石挿入部44jが形成されている。次に、中央磁石片Dv1、第1の端側磁石片Dv2及び第2の端側磁石片Dv3を準備する。そして、図22に示すように、中央磁石片Dv1を、磁石挿入部44jに差し込み、磁石挿入部44j内に圧入する。引き続いて、図23に示すように、第1の端側磁石片Dv2の先細りになっている端部Dvt2を隙間Sr1に差し込む。隙間Sr1は、中央磁石片Dv1の一方の端と磁石挿入部44jの内周面との間に形成されている。そして、第1の端側磁石片Dv2を隙間Sr1内に圧入する。更に、図24に示すように、第2の端側磁石片Dv3の先細りになっている端部Dvt3を隙間Sr2に差し込む。隙間Sr2は、中央磁石片Dv1の他方の端と磁石挿入部44jの内周面との間に形成されている。そして、第2の端側磁石片Dv3を隙間Sr2内に圧入する。
<Manufacturing Method of Fourth Embodiment>
FIG. 22 shows how the central magnet piece Dv1 is inserted into the magnet insertion portion 44j. FIG. 23 shows how the first end magnet piece Dv2 is inserted into the magnet insertion portion 44j. FIG. 24 shows how the second end magnet piece Dv3 is inserted into the magnet insertion portion 44j. First, a plurality of core pieces 4c1 are stacked to produce a rotor core 4c. The rotor core 4c is provided with a magnet insertion portion 44j into which the magnet 44d is inserted. Next, the central magnet segment Dv1, the first end magnet segment Dv2, and the second end magnet segment Dv3 are prepared. Then, as shown in FIG. 22, the central magnet segment Dv1 is inserted into the magnet insertion portion 44j, and is pressed into the magnet insertion portion 44j. Subsequently, as shown in FIG. 23, the tapered end Dvt2 of the first end magnet piece Dv2 is inserted into the gap Sr1. The gap Sr1 is formed between one end of the central magnet piece Dv1 and the inner circumferential surface of the magnet insertion portion 44j. Then, the first end magnet piece Dv2 is pressed into the gap Sr1. Furthermore, as shown in FIG. 24, the tapered end Dvt3 of the second end-side magnet piece Dv3 is inserted into the gap Sr2. The gap Sr2 is formed between the other end of the central magnet piece Dv1 and the inner circumferential surface of the magnet insertion portion 44j. Then, the second end magnet piece Dv3 is pressed into the gap Sr2.
<実施の形態4の効果>
 ステータに電力が供給されるとステータは磁気を発生する。ロータの磁石の磁気とステータの磁気とが相互作用することでロータは回転する。ステータの発生する磁気はロータの磁石を通過する。したがって、ロータの磁石には渦電流が発生する。ロータの磁石に渦電流が発生すると磁石が発熱して磁石が減磁し、モータの運転効率が低下する。ここで、渦電流の大きさはロータの磁石の表面積の増加に比例して大きくなる。実施の形態4において、磁石44dは3分割されているため、各磁石の表面積を抑えることができる。つまり、仮に磁石44dが分割されていなかった場合における磁石44dの表面積よりも、中央磁石片Dv1の表面積は小さい。第1の端側磁石片Dv2の表面積及び第2の端側磁石片Dv3の表面積も同様である。したがって、中央磁石片Dv1に発生する渦電流は、仮に磁石44dが分割されていなかった場合に磁石44dに発生する渦電流よりも、小さくなる。第1の端側磁石片Dv2に発生する渦電流及び第2の端側磁石片Dv3に発生する渦電流も同様である。このように、実施の形態4において、中央磁石片Dv1に発生する渦電流を抑えることができるので中央磁石片Dv1の発熱を抑制することができる。また、第1の端側磁石片Dv2に発生する渦電流を抑えることができるので第1の端側磁石片Dv2の発熱を抑制することができる。更に、第2の端側磁石片Dv3に発生する渦電流を抑えることができるので第2の端側磁石片Dv3の発熱を抑制することができる。したがって、実施の形態4では各磁石の発熱を抑制することができるので、モータの運転効率の低下を抑制することができる。なお、実施の形態4において磁石44dは3分割されているが、磁石44dは2分割であっても4分割以上であっても、同様の効果を得ることができる。つまり、磁石44dは2分割であっても4分割以上であっても、各磁石の発熱を抑制し、モータの運転効率の低下を抑制することができる。
<Effect of Fourth Embodiment>
The stator generates magnetism when power is supplied to the stator. Interaction between the magnetism of the rotor magnet and the magnetism of the stator causes the rotor to rotate. The magnetism generated by the stator passes through the magnets of the rotor. Therefore, eddy currents are generated in the magnets of the rotor. When an eddy current is generated in the magnet of the rotor, the magnet generates heat to demagnetize the magnet, which lowers the operation efficiency of the motor. Here, the magnitude of the eddy current increases in proportion to the increase of the surface area of the rotor magnet. In the fourth embodiment, since the magnet 44d is divided into three, the surface area of each magnet can be suppressed. That is, the surface area of the central magnet segment Dv1 is smaller than the surface area of the magnet 44d when the magnet 44d is not divided. The surface area of the first end magnet piece Dv2 and the surface area of the second end magnet piece Dv3 are the same. Therefore, the eddy current generated in the central magnet piece Dv1 is smaller than the eddy current generated in the magnet 44d if the magnet 44d is not divided. The same applies to the eddy current generated in the first end magnet piece Dv2 and the eddy current generated in the second end magnet piece Dv3. Thus, in the fourth embodiment, since the eddy current generated in the central magnet segment Dv1 can be suppressed, the heat generation of the central magnet segment Dv1 can be suppressed. Further, since the eddy current generated in the first end magnet piece Dv2 can be suppressed, the heat generation of the first end magnet piece Dv2 can be suppressed. Furthermore, since the eddy current generated in the second end magnet piece Dv3 can be suppressed, the heat generation of the second end magnet piece Dv3 can be suppressed. Therefore, in the fourth embodiment, since the heat generation of each magnet can be suppressed, it is possible to suppress the decrease in the driving efficiency of the motor. Although the magnet 44 d is divided into three in the fourth embodiment, the same effect can be obtained whether the magnet 44 d is divided into two or four or more. That is, even if the magnet 44d is divided into two or four or more, heat generation of each magnet can be suppressed, and a reduction in the operating efficiency of the motor can be suppressed.
 第1の端側磁石片Dv2を圧入するときにおいて、第1の端側磁石片Dv2は磁石挿入部44jとの摩擦だけではなく、中央磁石片Dv1との摩擦が生じる。このため、第1の端側磁石片Dv2を圧入するときの作業負担が増大しやすい。しかし、第1の端側磁石片Dv2の端部Dvt2は厚み方向に先細りになっている。したがって、第1の端側磁石片Dv2を隙間Sr1内に圧入するときの作業負担を抑制することができる。なお、第2の端側磁石片Dv3の端部Dvt3も厚み方向に先細りになっているので、第2の端側磁石片Dv3を隙間Sr2内に圧入するときの作業負担も抑制することができる。 When the first end magnet piece Dv2 is press-fitted, not only the friction with the magnet insertion portion 44j but also the friction with the central magnet piece Dv1 occurs in the first end magnet piece Dv2. For this reason, the work load at the time of press-fitting 1st end side magnet piece Dv2 tends to increase. However, the end Dvt2 of the first end magnet piece Dv2 is tapered in the thickness direction. Therefore, the work load when press-fitting the first end-side magnet segment Dv2 into the gap Sr1 can be suppressed. In addition, since the end Dvt3 of the second end magnet piece Dv3 is also tapered in the thickness direction, it is possible to suppress the work load when the second end magnet piece Dv3 is press-fit into the gap Sr2. .
実施の形態5.
 本実施の形態5では、実施の形態1~4と共通する部分は同一の符号を付して説明を省略し、実施の形態1~4との相違点を中心に説明する。
Embodiment 5
In the fifth embodiment, the parts common to the first to fourth embodiments are assigned the same reference numerals and explanation thereof is omitted, and differences from the first to fourth embodiments will be mainly described.
<実施の形態5の構成>
 図25は、実施の形態5に係るスクロール圧縮機のロータコア4cの断面図である。図26は、中央磁石片Dv11の構成説明図である。図25に示すように、実施の形態5のロータコア4cの全てのコア片の構成は、実施の形態1で説明したコア片4c1の構成と同じである。また、磁石45dは3分割されている。つまり、図25及び図26に示すように、磁石45dは、長尺状の第1の端側磁石片Dv12と、長尺状の第2の端側磁石片Dv13と、Dr2方向の幅が先細りになっている端部Dvt11を備えている長尺状の中央磁石片Dv11と、を含んでいる。Dr2方向は磁石45dの厚み方向に直交する方向である。
<Configuration of Fifth Embodiment>
FIG. 25 is a cross-sectional view of a rotor core 4c of a scroll compressor according to a fifth embodiment. FIG. 26 is a configuration explanatory view of the central magnet segment Dv11. As shown in FIG. 25, the configuration of all the core pieces of the rotor core 4c of the fifth embodiment is the same as the configuration of the core piece 4c1 described in the first embodiment. Moreover, the magnet 45d is divided into three. That is, as shown in FIG. 25 and FIG. 26, the magnet 45d has a tapered first end magnet piece Dv12, a long second magnet piece Dv13, and a Dr2 width. And an elongated central magnet piece Dv11 having an end Dvt11. The Dr2 direction is a direction orthogonal to the thickness direction of the magnet 45d.
<実施の形態5の製造方法>
 図27は、第1の端側磁石片Dv12を磁石挿入部45jへ差し込む様子を示している。図28は、第2の端側磁石片Dv13を磁石挿入部45jへ差し込む様子を示している。図29は、中央磁石片Dv11を磁石挿入部45jへ差し込む様子を示している。まず、コア片4c1を複数積み重ねてロータコア4cを作製する。ロータコア4cには磁石44dを挿入する磁石挿入部44jが形成されている。次に、第1の端側磁石片Dv12、第2の端側磁石片Dv13及び中央磁石片Dv11を準備する。図27に示すように、第1の端側磁石片Dv12の端部を磁石挿入部45jへ差し込む。そして、第1の端側磁石片Dv12を磁石挿入部45j内に圧入する。引き続いて、図28に示すように、第2の端側磁石片Dv13の端部を、第1の端側磁石片Dv12と第2の端側磁石片Dv13とが予め定められた間隔Dsをあけた状態で、磁石挿入部45jへ差し込む。そして、第2の端側磁石片Dv13を磁石挿入部45j内に圧入する。間隔Dsは、中央磁石片Dv11の方向Dr2に平行な方向の幅寸法よりも狭く設定されている。更に、図29に示すように、中央磁石片Dv11の先細りになっている端部Dvt11を、第1の端側磁石片Dv12と第2の端側磁石片Dv13との間へ差し込む。そして、中央磁石片Dv11を磁石挿入部45j内に圧入する。
<Manufacturing Method of Fifth Embodiment>
FIG. 27 shows how the first end magnet piece Dv12 is inserted into the magnet insertion portion 45j. FIG. 28 shows how the second end magnet piece Dv13 is inserted into the magnet insertion portion 45j. FIG. 29 shows how the central magnet piece Dv11 is inserted into the magnet insertion portion 45j. First, a plurality of core pieces 4c1 are stacked to produce a rotor core 4c. The rotor core 4c is provided with a magnet insertion portion 44j into which the magnet 44d is inserted. Next, the first end magnet piece Dv12, the second end magnet piece Dv13, and the central magnet piece Dv11 are prepared. As shown in FIG. 27, the end of the first end magnet piece Dv12 is inserted into the magnet insertion portion 45j. Then, the first end magnet piece Dv12 is pressed into the magnet insertion portion 45j. Subsequently, as shown in FIG. 28, the end of the second end magnet piece Dv13 is separated by a predetermined distance Ds between the first end magnet piece Dv12 and the second end magnet piece Dv13. Then, insert it into the magnet insertion part 45j. Then, the second end magnet piece Dv13 is press-fitted into the magnet insertion portion 45j. The distance Ds is set to be narrower than the width dimension in the direction parallel to the direction Dr2 of the central magnet segment Dv11. Furthermore, as shown in FIG. 29, the tapered end Dvt11 of the central magnet piece Dv11 is inserted between the first end magnet piece Dv12 and the second end magnet piece Dv13. Then, the central magnet piece Dv11 is pressed into the magnet insertion portion 45j.
<実施の形態5の効果>
 実施の形態5では実施の形態4のように磁石45dが3分割されているので、実施の形態4と同様の効果を得ることができる。つまり、各磁石の発熱を抑制することができるので、モータの運転効率の低下を抑制することができる。
<Effect of Fifth Embodiment>
In the fifth embodiment, since the magnet 45d is divided into three as in the fourth embodiment, the same effect as that of the fourth embodiment can be obtained. That is, since the heat generation of each magnet can be suppressed, it is possible to suppress the decrease in the driving efficiency of the motor.
 中央磁石片Dv11を圧入するときにおいて、中央磁石片Dv11には磁石挿入部45jとの摩擦だけではなく、第1の端側磁石片Dv12及び第2の端側磁石片Dv13との摩擦が生じる。このため、中央磁石片Dv11を圧入するときの作業負担が増大しやすい。しかし、中央磁石片Dv11の端部Dvt11はDr2方向の幅が先細りになっている。したがって、中央磁石片Dv11を磁石挿入部45j内に圧入するときの作業負担を抑制することができる。 When the central magnet piece Dv11 is press-fitted, not only the friction with the magnet insertion portion 45j but also the friction with the first end side magnet piece Dv12 and the second end side magnet piece Dv13 occurs in the central magnet piece Dv11. For this reason, the work load at the time of press-fitting central magnet piece Dv11 tends to increase. However, the end Dvt11 of the central magnet piece Dv11 is tapered in width in the Dr2 direction. Therefore, it is possible to suppress the work load when the central magnet piece Dv11 is press-fitted into the magnet insertion portion 45j.
 また、中央磁石片Dv11の寸法が適切に設定されていれば、第1の端側磁石片Dv12の寸法及び第2の端側磁石片Dv13の寸法がばらついていても、磁石45dが磁石挿入部45j内でがたついてしまうことを防止することができる。まず、Dr2方向の寸法が異なる複数の中央磁石片Dv11を準備しておくとよい。そして、第1の端側磁石片Dv12及び第2の端側磁石片Dv13を磁石挿入部45j内に圧入し終えた後に、間隔Dsを計測する。そして、中央磁石片Dv11のうち、Dr2方向の寸法が間隔Dsよりも広いものを選択する。そして、選択した中央磁石片Dv11を第1の端側磁石片Dv12と第2の端側磁石片Dv13との間に差し込む。これにより、最適な寸法の中央磁石片Dv11を磁石挿入部45j内に圧入することができ、磁石45dが磁石挿入部45j内でがたついてしまうことを防止することができる。 In addition, if the dimensions of the central magnet segment Dv11 are appropriately set, even if the dimensions of the first end magnetic segment Dv12 and the dimensions of the second end magnetic segment Dv13 vary, the magnet 45d is a magnet insertion portion It is possible to prevent backlash within 45j. First, it is preferable to prepare a plurality of central magnet pieces Dv11 having different dimensions in the Dr2 direction. Then, after the first end magnet piece Dv12 and the second end magnet piece Dv13 have been pressed into the magnet insertion portion 45j, the distance Ds is measured. Then, among the central magnet segments Dv11, one having a dimension in the Dr2 direction larger than the interval Ds is selected. Then, the selected central magnet piece Dv11 is inserted between the first end magnet piece Dv12 and the second end magnet piece Dv13. Thereby, it is possible to press-fit the central magnet piece Dv11 of the optimum size into the magnet insertion portion 45j, and it is possible to prevent the magnet 45d from rattling in the magnet insertion portion 45j.
 1 スクロール圧縮機、2 シェル、2A 胴部、2a 上部シェル、2b 下部シェル、3 油ポンプ、3a 油溜まり、4 モータ、4D 外周面、4L 貫通穴、4Q 隙間、4a ロータ、4b ステータ、4c ロータコア、4c1 コア片、4c2 コア片、4c3 コア片、4d 磁石、4d1 第1の端部、4d2 第2の端部、4d3 第3の端部、4d4 第4の端部、4dt 端部、4e 第1の端板、4e1 シャフト孔、4f 第2の端板、4g 第2のバランサ、4h1 リベット、4h2 リベット、4i シャフト孔、4j 磁石挿入部、5 圧縮部、5a 圧縮室、6 フレーム、6a 吸入ポート、6b スラスト軸受、6d 空間、7 シャフト、7a 油通路、8a 主軸受、8b 副軸受、8c 揺動軸受、11 吸入管、12 吐出管、13 吐出チャンバ、13A 弁、13a 空間、13b 吐出口、14 マフラー、15 オルダムリング、15b オルダム空間、16 スライダ、17 スリーブ、18 第1のバランサ、18a カバー、20 サブフレーム、21 排油パイプ、24j 磁石挿入部、30 固定スクロール、30a 吐出口、31 ラップ部、34j 磁石挿入部、40 揺動スクロール、40a ボス部、41 ラップ部、42D 外周面、42d 磁石、43D 外周面、43d 磁石、44d 磁石、44j 磁石挿入部、45d 磁石、45j 磁石挿入部、Dv1 中央磁石片、Dv11 中央磁石片、Dv12 第1の端側磁石片、Dv13 第2の端側磁石片、Dv2 第1の端側磁石片、Dv3 第2の端側磁石片、Dvt 端部、Dvt11 端部、Dvt2 端部、Dvt3 端部、G1 第1のグループ、G2 第2のグループ、G3 第3のグループ、Gr2 第2のグループ、SF1 内側面、SF2 外側面、SF3 端面、SF4 端面、SF5 端面、SF6 端面、SF7 端面、SF8 端面、Sr1 隙間、Sr2 隙間、TF1 第1の面、TF2 第2の面、TF3 内周面、TF4 内周面、sf1 第1の接触面、sf2 第2の接触面、sf3 第3の接触面、sf4 第4の接触面、tf1 突出部、tf10 突出部、tf2 突出部、tf20 支持面、tf3 突出部、tf4 突出部、tfa 頂部、tfb 離間部、tfc 離間部。 Reference Signs List 1 scroll compressor, 2 shells, 2A body, 2a upper shell, 2b lower shell, 3 oil pump, 3a oil reservoir, 4 motor, 4D outer peripheral surface, 4L through hole, 4Q gap, 4a rotor, 4b stator, 4c rotor core , 4c1 core piece, 4c2 core piece, 4c3 core piece, 4d magnet, 4d1 first end, 4d2 second end, 4d3 third end, 4d4 fourth end, 4dt end, 4e first 1 end plate, 4e1 shaft hole, 4f second end plate, 4g second balancer, 4h1 rivet, 4h2 rivet, 4i shaft hole, 4j magnet insertion portion, 5 compression portion, 5a compression chamber, 6 frame, 6a suction Port, 6b thrust bearing, 6d space, 7 shaft, 7a oil passage, 8a main bearing, 8b sub bearing, 8 Swing bearing, 11 suction pipe, 12 discharge pipe, 13 discharge chamber, 13A valve, 13a space, 13b discharge port, 14 muffler, 15 oldham ring, 15b oldham space, 16 slider, 17 sleeve, 18 first balancer, 18a Cover, 20 subframes, 21 oil drainage pipe, 24j magnet insertion portion, 30 fixed scroll, 30a discharge port, 31 lap portion, 34j magnet insertion portion, 40 rocking scroll, 40a boss portion, 41 lap portion, 42D outer peripheral surface, 42d magnet, 43D outer peripheral surface, 43d magnet, 44d magnet, 44j magnet insertion part, 45d magnet, 45j magnet insertion part, Dv1 central magnet piece, Dv11 central magnet piece, Dv12 first end magnet piece, Dv13 second end Side magnet piece, Dv2 first end side magnet Dv3 second end magnet piece Dvt end Dvt11 end Dvt2 end Dvt3 end G1 first group G2 second group G3 third group Gr2 second group , SF1 inner side, SF2 outer side, SF3 end face, SF4 end face, SF5 end face, SF6 end face, SF7 end face, SF8 end face, Sr1 gap, Sr2 gap, TF1 first face, TF2 second face, TF3 inner circumferential face, TF4 inner surface, sf1 first contact surface, sf2 second contact surface, sf3 third contact surface, sf4 fourth contact surface, tf1 protrusion, tf10 protrusion, tf2 protrusion, tf20 support surface, tf3 Projection, tf 4 Projection, tfa top, tfb separation, tfc separation.

Claims (10)

  1.  ロータコアと前記ロータコアに挿入されている磁石とを含むロータと、
     前記ロータコアの周囲に設けられているステータと、
     を備え、
     前記ロータコアは、シャフトが挿入されるシャフト孔と、前記シャフトの回転軸方向に平行に延びており且つ前記回転軸方向に直交する断面において長尺状であり、前記磁石が挿入されている磁石挿入部とを含み、
     前記磁石は、前記ロータコアの前記磁石挿入部に接触している外周面を含み、
     前記磁石挿入部は、前記回転軸方向に直交する断面において前記磁石挿入部の長手方向の端部に形成され、前記磁石に向けて突出している突出部を含み、
     前記突出部は、前記磁石の前記外周面と接触している頂部と、前記磁石の前記外周面から離間している離間部とを含む
     モータ。
    A rotor including a rotor core and a magnet inserted in the rotor core;
    A stator provided around the rotor core;
    Equipped with
    The rotor core has a shaft hole into which the shaft is inserted, and a magnet inserted in parallel to the rotation axis direction of the shaft and having a cross section perpendicular to the rotation axis direction, and in which the magnet is inserted Including
    The magnet includes an outer circumferential surface in contact with the magnet insertion portion of the rotor core,
    The magnet insertion portion is formed at an end portion in a longitudinal direction of the magnet insertion portion in a cross section orthogonal to the rotation axis direction, and includes a protrusion protruding toward the magnet,
    The protrusion includes a top portion in contact with the outer circumferential surface of the magnet, and a separated portion spaced from the outer circumferential surface of the magnet.
  2.  前記磁石の前記外周面は、前記シャフト孔側に形成されている内側面と、前記シャフト孔までの距離が前記シャフト孔から前記内側面までの距離よりも長い外側面と、前記内側面の一端部であって前記回転軸方向に平行に延びている第1の端部に設けられている第1の接触面とを含み、
     前記第1の接触面は、前記頂部に接触している
     請求項1に記載のモータ。
    The outer peripheral surface of the magnet is an inner surface formed on the shaft hole side, an outer surface whose distance to the shaft hole is longer than a distance from the shaft hole to the inner surface, and one end of the inner surface A first contact surface provided at a first end that extends parallel to the rotation axis direction,
    The motor according to claim 1, wherein the first contact surface is in contact with the top.
  3.  前記磁石の前記外周面は、前記内側面の他端部であって前記第1の端部に平行に延びている第2の端部に設けられている第2の接触面を更に含み、
     前記突出部は、前記頂部及び前記離間部を有する第1の突出部と、前記頂部及び前記離間部を有する第2の突出部とを含み、
     前記第1の接触面は、前記第1の突出部の前記頂部に接触し、
     前記第2の接触面は、前記第2の突出部の前記頂部に接触している
     請求項2に記載のモータ。
    The outer circumferential surface of the magnet further includes a second contact surface provided at the other end of the inner surface and at a second end extending parallel to the first end;
    The protrusion includes a first protrusion having the top and the separation, and a second protrusion having the top and the separation.
    The first contact surface contacts the top of the first protrusion,
    The motor according to claim 2, wherein the second contact surface is in contact with the top of the second protrusion.
  4.  前記磁石の前記外周面は、前記シャフト孔側に形成されている内側面と、前記シャフト孔までの距離が前記シャフト孔から前記内側面までの距離よりも長い外側面と、前記外側面の一端部であって前記回転軸方向に平行に延びている第3の端部に設けられている第3の接触面とを含み、
     前記第3の接触面は、前記頂部に接触している
     請求項1に記載のモータ。
    The outer peripheral surface of the magnet is an inner surface formed on the shaft hole side, an outer surface whose distance to the shaft hole is longer than a distance from the shaft hole to the inner surface, and one end of the outer surface A third contact surface provided at a third end that extends parallel to the rotation axis direction,
    The motor according to claim 1, wherein the third contact surface is in contact with the top.
  5.  前記磁石の前記外周面は、前記外側面の他端部であって前記第3の端部に平行に延びている第4の端部に設けられている第4の接触面を更に含み、
     前記突出部は、前記頂部及び前記離間部を有する第3の突出部と、前記頂部及び前記離間部を有する第4の突出部とを含み、
     前記第3の接触面は、前記第3の突出部の前記頂部に接触し、
     前記第4の接触面は、前記第4の突出部の前記頂部に接触している
     請求項4に記載のモータ。
    The outer circumferential surface of the magnet further includes a fourth contact surface provided at the other end of the outer surface and at a fourth end extending parallel to the third end;
    The protrusion includes a third protrusion having the top and the separation, and a fourth protrusion having the top and the separation.
    The third contact surface contacts the top of the third protrusion;
    The motor according to claim 4, wherein the fourth contact surface is in contact with the top of the fourth protrusion.
  6.  前記磁石の前記外周面は、前記シャフト孔側に形成されている内側面と、前記シャフト孔までの距離が前記シャフト孔から前記内側面までの距離よりも長い外側面と、前記内側面の一端部であって前記回転軸方向に平行に延びている第1の端部に設けられている第1の接触面と、前記内側面の他端部であって前記第1の端部に平行に延びている第2の端部に設けられている第2の接触面と、前記外側面の一端部であって前記回転軸方向に平行に延びている第3の端部に設けられている第3の接触面と、前記外側面の他端部であって前記第3の端部に平行に延びている第4の端部に設けられている第4の接触面とを含み、
     前記突出部は、前記頂部及び前記離間部を有する第1の突出部と、前記頂部及び前記離間部を有する第2の突出部と、前記頂部及び前記離間部を有する第3の突出部と、前記頂部及び前記離間部を有する第4の突出部とを含み、
     前記第1の接触面は、前記第1の突出部の前記頂部に接触し、
     前記第2の接触面は、前記第2の突出部の前記頂部に接触し、
     前記第3の接触面は、前記第3の突出部の前記頂部に接触し、
     前記第4の接触面は、前記第4の突出部の前記頂部に接触している
     請求項1に記載のモータ。
    The outer peripheral surface of the magnet is an inner surface formed on the shaft hole side, an outer surface whose distance to the shaft hole is longer than a distance from the shaft hole to the inner surface, and one end of the inner surface A first contact surface provided at a first end extending in parallel to the rotational axis direction, and a second contact surface at the other end of the inner side parallel to the first end A second contact surface provided at the extending second end, and a third end provided at one end of the outer surface and extending parallel to the rotation axis direction And a fourth contact surface provided at a fourth end of the other end of the outer surface, the fourth end extending parallel to the third end,
    The protrusion includes a first protrusion having the top and the separation, a second protrusion having the top and the separation, and a third protrusion having the top and the separation. And a fourth protrusion having the top and the spaced portion,
    The first contact surface contacts the top of the first protrusion,
    The second contact surface contacts the top of the second protrusion,
    The third contact surface contacts the top of the third protrusion;
    The motor according to claim 1, wherein the fourth contact surface is in contact with the top of the fourth protrusion.
  7.  前記ロータは、前記ロータコアの一端面に設けられている第1の端板と、前記ロータコアの他端面に設けられている第2の端板とを含み、
     前記ロータコアは、前記第1の端板側に設けられている板状の第1のコア片と、前記第2の端板側に設けられている板状の第2のコア片と、前記第1のコア片と前記第2のコア片との間に設けられている板状の第3のコア片とを備え、
     前記第1のコア片及び前記第2のコア片には、前記突出部が形成されており、
     前記第3のコア片は、前記第1のコア片の前記突出部と前記第2のコア片の前記突出部との間に設けられている内周面を含み、
     前記第3のコア片の前記内周面は、前記磁石の前記外周面から離間している
     請求項1に記載のモータ。
    The rotor includes a first end plate provided on one end surface of the rotor core and a second end plate provided on the other end surface of the rotor core,
    The rotor core includes a plate-like first core piece provided on the first end plate side, a plate-like second core piece provided on the second end plate side, and the first core piece. A plate-like third core piece provided between the first core piece and the second core piece;
    The protrusion is formed on the first core piece and the second core piece,
    The third core piece includes an inner circumferential surface provided between the protrusion of the first core piece and the protrusion of the second core piece,
    The motor according to claim 1, wherein the inner circumferential surface of the third core piece is separated from the outer circumferential surface of the magnet.
  8.  前記磁石は分割型になっている
     請求項1~7のいずれか一項に記載のモータ。
    The motor according to any one of claims 1 to 7, wherein the magnet is divided.
  9.  ロータの製造方法であって、
     コア片を複数積み重ね、磁石を挿入する磁石挿入部が形成されるロータコアを作製し、
     厚み方向に先細りになっている端部を備えている長尺状の第1の端側磁石片と、厚み方向に先細りになっている端部を備えている長尺状の第2の端側磁石片と、長尺状の中央磁石片とを準備し、
     前記中央磁石片の端部を前記磁石挿入部へ差し込み、
     前記中央磁石片を前記磁石挿入部内に圧入し、
     前記第1の端側磁石片の先細りになっている端部を、前記中央磁石片の一方の端と前記磁石挿入部の内周面との間の隙間へ差し込み、
     前記第1の端側磁石片を前記磁石挿入部内に圧入し、
     前記第2の端側磁石片の先細りになっている端部を、前記中央磁石片の他方の端と前記磁石挿入部の内周面との間の隙間へ差し込み、
     前記第2の端側磁石片を前記磁石挿入部内に圧入する
     ロータの製造方法。
    A method of manufacturing a rotor,
    Producing a rotor core in which a plurality of core pieces are stacked to form a magnet insertion portion for inserting a magnet;
    An elongated first end magnet piece having an end tapered in the thickness direction, and an elongated second end including the end tapered in the thickness direction Prepare a magnet piece and a long central magnet piece,
    Inserting an end of the central magnet piece into the magnet insertion part;
    Press fitting the central magnet piece into the magnet insertion part;
    Inserting the tapered end of the first end magnet piece into the gap between one end of the central magnet piece and the inner circumferential surface of the magnet insertion portion;
    Press fitting the first end magnet piece into the magnet insertion portion;
    Inserting the tapered end of the second end magnet piece into the gap between the other end of the central magnet piece and the inner circumferential surface of the magnet insertion portion;
    A method of manufacturing a rotor, comprising: pressing the second end magnet piece into the magnet insertion portion.
  10.  ロータの製造方法であって、
     コア片を複数積み重ね、磁石を挿入する磁石挿入部が形成されるロータコアを作製し、
     長尺状の第1の端側磁石片と、長尺状の第2の端側磁石片と、厚み方向に直交する方向の幅が先細りになっている端部を備えている長尺状の中央磁石片とを準備し、
     前記第1の端側磁石片の端部を前記磁石挿入部へ差し込み、
     前記第1の端側磁石片を前記磁石挿入部内に圧入し、
     前記第2の端側磁石片の端部を、前記第1の端側磁石片と前記第2の端側磁石片とが予め定められた間隔をあけた状態で、前記磁石挿入部へ差し込み、
     前記第2の端側磁石片を前記磁石挿入部内に圧入し、
     前記中央磁石片の先細りになっている端部を、前記第1の端側磁石片と前記第2の端側磁石片との間へ差し込み、
     前記中央磁石片を前記磁石挿入部内に圧入する
     ロータの製造方法。
    A method of manufacturing a rotor,
    Producing a rotor core in which a plurality of core pieces are stacked to form a magnet insertion portion for inserting a magnet;
    A long strip comprising an elongated first end magnet piece, a elongated second end magnet piece, and an end portion whose width in a direction orthogonal to the thickness direction is tapered. Prepare the central magnet piece and
    Inserting an end of the first end magnet piece into the magnet insertion portion;
    Press fitting the first end magnet piece into the magnet insertion portion;
    The end of the second end magnet piece is inserted into the magnet insertion portion with the first end magnet piece and the second end magnet piece separated by a predetermined distance,
    Press fitting the second end magnet piece into the magnet insertion portion;
    Inserting the tapered end of the central magnet piece between the first end magnet piece and the second end magnet piece;
    A method of manufacturing a rotor, comprising pressing the central magnet piece into the magnet insertion portion.
PCT/JP2017/027853 2017-08-01 2017-08-01 Motor, and method for manufacturing rotor WO2019026173A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201790001766.9U CN211377720U (en) 2017-08-01 2017-08-01 Motor with a stator having a stator core
PCT/JP2017/027853 WO2019026173A1 (en) 2017-08-01 2017-08-01 Motor, and method for manufacturing rotor
JP2019533771A JP6827544B2 (en) 2017-08-01 2017-08-01 How to manufacture motors and rotors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027853 WO2019026173A1 (en) 2017-08-01 2017-08-01 Motor, and method for manufacturing rotor

Publications (1)

Publication Number Publication Date
WO2019026173A1 true WO2019026173A1 (en) 2019-02-07

Family

ID=65233489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027853 WO2019026173A1 (en) 2017-08-01 2017-08-01 Motor, and method for manufacturing rotor

Country Status (3)

Country Link
JP (1) JP6827544B2 (en)
CN (1) CN211377720U (en)
WO (1) WO2019026173A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228838A (en) * 1998-12-01 2000-08-15 Toyota Motor Corp Permanent magnet motor
JP2012085409A (en) * 2010-10-08 2012-04-26 Toyota Auto Body Co Ltd Rotor for motor, and method of manufacturing the rotor
JP2012170190A (en) * 2011-02-10 2012-09-06 Mitsui High Tec Inc Rotor laminate iron core
JP2013187943A (en) * 2012-03-06 2013-09-19 Toyota Motor Corp Permanent magnet type motor and rotor thereof
JP2016197991A (en) * 2016-07-15 2016-11-24 三菱電機株式会社 Neodymium permanent magnet motor, and hermetic compressor including neodymium permanent magnet motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068318A (en) * 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd Magnet embedded type motor
JP5556400B2 (en) * 2010-06-09 2014-07-23 富士電機株式会社 Rotor core member and permanent magnet fixing method
JP2013230047A (en) * 2012-04-26 2013-11-07 Ichinomiya Denki:Kk Rotor for motor, and motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228838A (en) * 1998-12-01 2000-08-15 Toyota Motor Corp Permanent magnet motor
JP2012085409A (en) * 2010-10-08 2012-04-26 Toyota Auto Body Co Ltd Rotor for motor, and method of manufacturing the rotor
JP2012170190A (en) * 2011-02-10 2012-09-06 Mitsui High Tec Inc Rotor laminate iron core
JP2013187943A (en) * 2012-03-06 2013-09-19 Toyota Motor Corp Permanent magnet type motor and rotor thereof
JP2016197991A (en) * 2016-07-15 2016-11-24 三菱電機株式会社 Neodymium permanent magnet motor, and hermetic compressor including neodymium permanent magnet motor

Also Published As

Publication number Publication date
JPWO2019026173A1 (en) 2020-02-27
CN211377720U (en) 2020-08-28
JP6827544B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
US5775893A (en) Scroll compressor having an orbiting scroll with volute wraps on both sides of a plate
JPH07253084A (en) Scroll type machine
JP2008175188A (en) Rotary compressor and refrigerating cycle device
JP5114709B2 (en) Hermetic scroll compressor and its assembly method
CN105114316A (en) Multi-cylinder rotary compressor
EP3567212A1 (en) Compressor having oldham&#39;s ring
US11454238B2 (en) Compressor with a deformable groove
EP3163083B1 (en) Electric compressor
WO2019026173A1 (en) Motor, and method for manufacturing rotor
JP2007046537A (en) Hermetic rotary compressor and refrigeration cycle device using same
CN103912497A (en) Compressor
JP2009287473A (en) Hermetic compressor and refrigerating cycle device
KR20100081815A (en) Hermetic type compressor and refrigerator having the same
JP2013068187A (en) Electric compressor
JP5972014B2 (en) Compressor and manufacturing method of compressor
JP2014001812A (en) Thrust ball bearing
JP6989756B2 (en) Scroll compressor
JP6502078B2 (en) Compressor
JP4196070B2 (en) Vane rotary air pump
JP2001304124A (en) Hermetic compressor
JP2006177158A (en) Sealed type electric compressor and refrigerating cycle device
CN215333409U (en) Compressor
KR20210101471A (en) A compressor
JP2012154342A (en) Sealed scroll compressor
CN112049797A (en) Transmission mechanism of horizontal compressor, scroll compressor and temperature adjusting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920367

Country of ref document: EP

Kind code of ref document: A1