WO2019025193A1 - Rotor of rotating electric machine provided with a part for holding permanent magnets in three dimensions - Google Patents

Rotor of rotating electric machine provided with a part for holding permanent magnets in three dimensions Download PDF

Info

Publication number
WO2019025193A1
WO2019025193A1 PCT/EP2018/069563 EP2018069563W WO2019025193A1 WO 2019025193 A1 WO2019025193 A1 WO 2019025193A1 EP 2018069563 W EP2018069563 W EP 2018069563W WO 2019025193 A1 WO2019025193 A1 WO 2019025193A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cavity
permanent magnet
holding
electric machine
Prior art date
Application number
PCT/EP2018/069563
Other languages
French (fr)
Inventor
Michaël HANQUEZ
Virginie Leroy
Hugues Gervais
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Publication of WO2019025193A1 publication Critical patent/WO2019025193A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotating electric machine rotor provided with a permanent magnet holding part in three dimensions.
  • the rotating electrical machines comprise a stator and a rotor secured to a shaft.
  • the rotor may be integral with a driving shaft and / or driven and may belong to a rotating electrical machine in the form of an alternator, an electric motor, or a reversible machine that can operate in both modes.
  • the stator is mounted in a housing configured to rotate the shaft on bearings by bearings.
  • the stator comprises a body constituted by a stack of thin sheets forming a ring, the inner face of which is provided with notches open towards the inside to receive a coil.
  • the winding is obtained for example from a continuous wire covered with enamel or from conductive elements in the form of pins connected together by welding.
  • the winding comprises polyphase windings connected in star or delta whose outputs are connected to a bridge rectifier.
  • the rotor may comprise a body formed by a pack of sheets made of a magnetic material, in particular steel, as well as poles formed by a plurality of permanent magnets housed in cavities of the body.
  • the magnets are poorly plated inside the cavities. This is likely to cause deterioration of the magnets due to shocks between the magnets and the internal faces of the cavities during operation of the electric machine, or because of shocks between two magnets with each other during operation of the electric machine.
  • a spring 4 exerting a holding force on the corresponding magnets 3.
  • a flange 5 closing the cavities can also be used to achieve balancing of the rotor.
  • shocks between the magnets and the circumferential faces of the cavities likely to break the magnets or shocks between two magnets between them also likely to break the magnets.
  • the invention aims to effectively remedy this disadvantage by proposing a rotating electrical machine, in particular for a motor vehicle, comprising:
  • a rotor comprising:
  • a body comprising at least one cavity
  • the permanent magnet disposed in the cavity, the permanent magnet comprising at least one parallelepipedal portion,
  • a second part arranged to exert a second holding force on a second face of the permanent magnet, the second force being perpendicular to the first holding force
  • a third portion arranged to exert a third holding force on a third face of the permanent magnet, the third holding force being perpendicular to the first holding force and the second holding force.
  • the invention thus makes it possible to maintain the magnet in the three dimensions of the cavity and thus to overcome the displacements of the magnet due to the mounting clearances likely to cause its deterioration.
  • the first portion and the third portion extend in the same axial direction, projecting from the second portion. This facilitates the mounting of the magnet in the cavity.
  • the first, second and third parts of the holding part are leaf springs.
  • a spring blade comprises at least one boss, in particular located opposite a face of the permanent magnet.
  • each leaf spring comprises at least one boss arranged to perform the corresponding holding force.
  • the holding piece is a single piece.
  • the holding piece is made of a non-magnetic material, in particular stainless steel.
  • the retaining piece comprises a flap tab to ensure a retention of the permanent magnet in the cavity during assembly of a closure flange of the cavity.
  • the rotor body has a plurality of permanent magnets disposed in the cavity.
  • At least two of the three leaf springs have as many bosses as permanent magnets. This makes it possible to apply a holding force on the face of each magnet vis-à-vis the corresponding leaf spring.
  • Figure 1 already described, is an exploded perspective view of a rotor provided with holding springs according to the state of the art;
  • Figure 2 is a sectional view of the rotating electrical machine according to the present invention;
  • Figure 3 is a partial perspective view of the rotor showing by transparency the positioning of the holding parts according to the invention inside the magnet cavities;
  • Figures 4a and 4b are perspective views of a holding piece according to the present before and after respectively that the flap tab has been folded.
  • FIG. 2 shows a rotating electrical machine 10 comprising a stator 1 1 surrounding a rotor 12 mounted on a shaft 13 with the presence of an air gap between the outer periphery of the rotor 12 and the inner periphery of the stator January 1.
  • the stator January 1 is fixedly mounted inside a housing 16 rotating the shaft 13 of the rotor 12.
  • the housing 16 comprises a front bearing 17 and a rear bearing 18 each provided with a housing receiving a bearing 21, in particular a ball bearing, interposed radially between the shaft 13 and the bearing of the corresponding electrical machine.
  • the stator January 1 comprises a body 24 constituted by a stack of thin sheets forming a ring, whose inner face is provided with notches open towards the inside to receive a coil 25.
  • the coil 25 is obtained for example from a continuous wire covered with enamel or from conductive elements in the form of pins connected together by welding.
  • the winding comprises polyphase windings connected in star or delta whose outputs are connected to a bridge rectifier.
  • the rotor 12 comprises a body 28 formed by a bundle of sheets made of a magnetic material, in particular steel, as well as a plurality of permanent magnets 29 intended to be housed. in the cavities 30 of the rotor body 28.
  • the sheets of the body 28 can be held by means of rivets 33 passing axially through the rotor 12 through holes provided for this purpose. effect. Alternatively, the sheets are held together by gluing, welding, or buttoning.
  • the rotor body 28 has a central opening 35 for the passage of the shaft 13 extending along the axis X corresponding to the axis of the electric machine 10.
  • the shaft 13 can be force-fitted inside opening 35 to rotate the rotor body 28 with the shaft 13.
  • the cavities 30 may be axially through or blind configuration, that is to say they open on one axial side of the body.
  • the largest side of a cavity extends in a radial direction relative to the axis X.
  • the cavities 30 extend in a orthoradial direction by relative to the X axis.
  • two adjacent cavities form a V in the orthogonal plane P.
  • Each cavity 30 receives a plurality of magnets 29 stacked axially on each other.
  • each cavity 30 receives four magnets 29 of parallelepipedal shape.
  • the number of magnets 29 may of course be different.
  • a single magnet 29 may also be inserted inside each cavity 30.
  • the permanent magnets 29 may be made of rare earth or ferrite depending on the applications and the desired power of the electrical machine 10.
  • the magnets 29 have a parallelepiped shape but could alternatively further include a bevelled portion at one of their ends.
  • a part 37 maintains the magnets 29 inside the corresponding cavity 30.
  • This holding piece 37 is advantageously made of a non-magnetic material, in particular stainless steel.
  • This holding piece 37 has a first portion 38 arranged to exert a first holding force F1 on a first face of the magnets 29.
  • This first holding force F1 is applied in a radial direction towards an outer periphery of the rotor body 28.
  • the first part 38 takes the form of a spring strip provided with bosses 39 each located opposite a magnet 29.
  • the spring strip 38 is located on the side of the inner periphery of the rotor 12 and is interposed between the magnets 29 of the cavity 30 and an inner bearing surface of the cavity 30 facing the outer periphery of the rotor body 28.
  • Each boss 39 is compressed to the inside the cavity 30 and applies by reaction on a corresponding magnet 29 a force F1 in a radial direction relative to the axis X.
  • a second portion 40 is arranged to exert a second holding force F2 on a second face of an end magnet 29 of the cavity 30.
  • the second holding force F2 is perpendicular to the first force F1.
  • the second portion 40 takes the form of a leaf spring provided with a boss 41 for the application of an axial holding force F2 on the stack of magnets 29 inside the cavity 30 corresponding.
  • the leaf spring 40 extends substantially perpendicular to the direction of longitudinal elongation of the leaf spring 38.
  • the boss 41 is intended to be compressed between an end magnet 29 of the stack and a closure flange 48 for the application by reaction of the axial holding force F2.
  • the leaf spring 40 has two bosses 41 or more.
  • a third portion 42 is arranged to exert a third holding force F3 on a third face of the magnets 29 of the cavity 30.
  • the third holding force F3 is perpendicular to the first F1 and the second F2 holding force.
  • the third portion 42 takes the form of a leaf spring provided with bosses 43 each located vis-à-vis a magnet 29 of the cavity.
  • the leaf spring 42 is interposed between the magnets 29 of the cavity 30 and an inner orthoradial support face of the cavity 30.
  • Each boss 43 is compressed inside the cavity 30 and applies by reaction on a corresponding magnet 29 a F3 force in a direction orthoradiale relative to the axis X of the electric machine 10.
  • the leaf springs 38, 40, 42 are formed from the transformation, stamping, stamping, or other, of the same metal piece, so that the holding piece 37 is monobloc.
  • the second spring leaf 40 is folded relative to the first leaf spring 38 so as to generally have an L shape.
  • the third leaf spring 42 is derived from a longitudinal edge of the second leaf spring 40, as shown in FIG. that this is shown in Figures 4a and 4b.
  • the holding piece 37 has a flap tab 45 to allow the permanent magnets 29 to be held in the cavity 30 when a closing flange 48 of the cavity 30 is mounted.
  • a closure flange 48 visible in FIG. 2 is placed on each axial end face of the rotor body 28 in order to close one end of the cavities 30.
  • fastening members 49 such as that clamping screws are inserted inside fixing holes formed in the flanges 48 and the rotor body 28.
  • the closing flanges 48 are made of a non-magnetic material having a high mechanical rigidity, for example in non-magnetic steel.
  • These flanges 48 can further ensure a balance of the rotor 12 while allowing good retention of the magnets 29 within their cavity 30.
  • the balancing can be performed by adding or removing material. The removal of material may be performed by machining projecting studs, while the addition of material may be performed by implanting elements in openings provided for this purpose and distributed along the circumference of the flange 48.
  • the holding pieces 37 are then inserted into the cavities 30 in such a way that the first spring leaf 38 bears against the face of the cavity 30 located on the side of the shaft 13 of the rotor 12, that the second leaf spring 40 comes in abutment against the end face of the lower flange 48, and that the third spring leaf 42 bears against an orthoradial face of the cavity 30.
  • the magnets 29 are inserted in packets inside the cavities 30 so as to compress the bosses 39, 43 of the first and third spring strips 38, 42 to apply the holding forces F1 and F3 on the stack of magnets 29.
  • the flap tongues 45 are then folded to hold the magnets during the fixing operation of the upper flange 48.
  • the closing of the cavity 30 by the upper flange 48 has the effect of compressing the boss 41 of the second leaf spring 40 to apply the axial retaining force F2 on the magnets 29.
  • the holding piece 37 thus maintains the permanent magnets 29 in the three directions (axial, radial and orthoradial), which limits their movement inside the cavity 30 and therefore the risk of breakage during the phases of abrupt change of rotor speed 12.
  • Such a limitation of the displacement of the permanent magnets 29 inside the cavity 30 limits the impacts on the eq. balancing of the rotor during phases of abrupt change of the latter or during vibrations in the three directions mentioned above.

Abstract

The invention relates mainly to a rotating electric machine (10), in particular for a motor vehicle, characterised in that the rotor (12) includes at least one part (37) for holding the permanent magnet (29) including: - a first portion (38) arranged to exert a first holding force (F1) on a first face of the permanent magnet (29); - a second portion (40) arranged to exert a second holding force (F2) on a second face of the permanent magnet (29), the second force (F2) being perpendicular to the first holding force (F1); - a third portion (42) arranged to exert a third holding force (F3) on a third face of the permanent magnet (29), the third holding force (F3) being perpendicular to the first holding force (F1) and to the second holding force (F2).

Description

ROTOR DE MACHINE ÉLECTRIQUE TOURNANTE MUNI D'UNE PIÈCE DE MAINTIEN D'AIMANTS PERMANENTS SUIVANT TROIS DIMENSIONS  ROTOR OF ROTATING ELECTRIC MACHINE WITH PERMANENT MAGNET HOLDER FOLLOWING THREE DIMENSIONS
La présente invention porte sur un rotor de machine électrique tournante muni d'une pièce de maintien d'aimants permanents suivant trois dimensions. The present invention relates to a rotating electric machine rotor provided with a permanent magnet holding part in three dimensions.
De façon connue en soi, les machines électriques tournantes comportent un stator et un rotor solidaire d'un arbre. Le rotor pourra être solidaire d'un arbre menant et/ou mené et pourra appartenir à une machine électrique tournante sous la forme d'un alternateur, d'un moteur électrique, ou d'une machine réversible pouvant fonctionner dans les deux modes. In known manner, the rotating electrical machines comprise a stator and a rotor secured to a shaft. The rotor may be integral with a driving shaft and / or driven and may belong to a rotating electrical machine in the form of an alternator, an electric motor, or a reversible machine that can operate in both modes.
Le stator est monté dans un carter configuré pour porter à rotation l'arbre sur des paliers par l'intermédiaire de roulements. Le stator comporte un corps constitué par un empilage de tôles minces formant une couronne, dont la face intérieure est pourvue d'encoches ouvertes vers l'intérieur pour recevoir un bobinage. Le bobinage est obtenu par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme d'épingles reliées entre elles par soudage. Le bobinage comporte des enroulements polyphasés connectés en étoile ou en triangle dont les sorties sont reliées à un pont redresseur. Par ailleurs, le rotor peut comporter un corps formé par un paquet de tôles réalisé dans un matériau magnétique, notamment en acier, ainsi que des pôles formés par une pluralité d'aimants permanents logés dans des cavités du corps. The stator is mounted in a housing configured to rotate the shaft on bearings by bearings. The stator comprises a body constituted by a stack of thin sheets forming a ring, the inner face of which is provided with notches open towards the inside to receive a coil. The winding is obtained for example from a continuous wire covered with enamel or from conductive elements in the form of pins connected together by welding. The winding comprises polyphase windings connected in star or delta whose outputs are connected to a bridge rectifier. Furthermore, the rotor may comprise a body formed by a pack of sheets made of a magnetic material, in particular steel, as well as poles formed by a plurality of permanent magnets housed in cavities of the body.
Compte tenu des tolérances de fabrication des différentes pièces, il est possible que les aimants soient mal plaqués à l'intérieur des cavités. Cela est susceptible d'engendrer la détérioration des aimants du fait des chocs entre les aimants et les faces internes des cavités lors du fonctionnement de la machine électrique, ou du fait des chocs entre deux aimants entre eux lors du fonctionnement de la machine électrique. Comme cela est illustré sur la figure 1 , afin de compenser les jeux de montage, il est connu d'insérer dans chaque cavité 2 prévue pour accueillir les aimants 3, un ressort 4 exerçant une force de maintien sur les aimants 3 correspondants. Un flasque 5 assurant la fermeture des cavités peut également être utilisé pour réaliser un équilibrage du rotor. On pourra se référer au document WO131751 17 pour plus de détails sur ce dispositif. Toutefois, on s'est aperçu que lors des phases de changement de vitesse du rotor, il demeurait des chocs entre les aimants et les faces circonférentielles des cavités susceptibles de casser les aimants ou bien des chocs entre deux aimants entre eux aussi susceptibles de casser les aimants. Given the manufacturing tolerances of the various parts, it is possible that the magnets are poorly plated inside the cavities. This is likely to cause deterioration of the magnets due to shocks between the magnets and the internal faces of the cavities during operation of the electric machine, or because of shocks between two magnets with each other during operation of the electric machine. As illustrated in FIG. 1, in order to compensate for the mounting clearance, it is known to insert into each cavity 2 intended to accommodate the magnets 3, a spring 4 exerting a holding force on the corresponding magnets 3. A flange 5 closing the cavities can also be used to achieve balancing of the rotor. Reference can be made to WO13175117 for more details on this device. However, it was found that during the phases of rotor speed change, there remained shocks between the magnets and the circumferential faces of the cavities likely to break the magnets or shocks between two magnets between them also likely to break the magnets.
L'invention vise à remédier efficacement à cet inconvénient en proposant une machine électrique tournante, notamment pour véhicule automobile, comportant: The invention aims to effectively remedy this disadvantage by proposing a rotating electrical machine, in particular for a motor vehicle, comprising:
- un stator,  - a stator,
- un rotor comportant:  a rotor comprising:
- un corps comportant au moins une cavité,  a body comprising at least one cavity,
- au moins un aimant permanent disposé dans la cavité, l'aimant permanent comportant au moins une portion parallélépipédique,  at least one permanent magnet disposed in the cavity, the permanent magnet comprising at least one parallelepipedal portion,
caractérisée en ce que le rotor comporte au moins une pièce de maintien de l'aimant permanent comportant: characterized in that the rotor comprises at least one permanent magnet holding part comprising:
- une première partie agencée pour exercer un premier effort de maintien sur une première face de l'aimant permanent,  a first part arranged to exert a first holding force on a first face of the permanent magnet,
- une deuxième partie agencée pour exercer un deuxième effort de maintien sur une deuxième face de l'aimant permanent, le deuxième effort étant perpendiculaire au premier effort de maintien,  a second part arranged to exert a second holding force on a second face of the permanent magnet, the second force being perpendicular to the first holding force,
- une troisième partie agencée pour exercer un troisième effort de maintien sur une troisième face de l'aimant permanent, le troisième effort de maintien étant perpendiculaire au premier effort de maintien et au deuxième effort de maintien.  - A third portion arranged to exert a third holding force on a third face of the permanent magnet, the third holding force being perpendicular to the first holding force and the second holding force.
L'invention permet ainsi de maintenir l'aimant dans les trois dimensions de la cavité et donc de s'affranchir des déplacements de l'aimant dus aux jeux de montage susceptibles d'engendrer sa détérioration. The invention thus makes it possible to maintain the magnet in the three dimensions of the cavity and thus to overcome the displacements of the magnet due to the mounting clearances likely to cause its deterioration.
Selon une réalisation, la première partie et la troisième partie s'étendent dans la même direction axiale, en faisant saillie depuis la deuxième partie. Ceci permet de faciliter le montage de l'aimant dans la cavité. In one embodiment, the first portion and the third portion extend in the same axial direction, projecting from the second portion. This facilitates the mounting of the magnet in the cavity.
Selon une réalisation, les première, deuxième, et troisième parties de la pièce de maintien sont des lamelles ressorts. According to one embodiment, the first, second and third parts of the holding part are leaf springs.
Selon une réalisation, une lamelle ressort comporte au moins un bossage notamment situé en vis-à-vis d'une face de l'aimant permanent. According to one embodiment, a spring blade comprises at least one boss, in particular located opposite a face of the permanent magnet.
Selon une réalisation chaque lamelle ressort comporte au moins un bossage agencé pour effectuer l'effort de maintien correspondant. According to one embodiment each leaf spring comprises at least one boss arranged to perform the corresponding holding force.
Ceci permet de réaliser l'effort de maintien par pression contre la face de l'aimant, et de garantir un bon maintien malgré les tolérances existantes lors de la fabrication de chaque aimant permanent. This makes it possible to carry out the pressing force against the face of the magnet, and to guarantee a good hold despite the tolerances existing during the manufacture of each permanent magnet.
Selon une réalisation, la pièce de maintien est une pièce monobloc. In one embodiment, the holding piece is a single piece.
Selon une réalisation, la pièce de maintien est réalisée dans un matériau amagnétique, notamment en acier inoxydable. According to one embodiment, the holding piece is made of a non-magnetic material, in particular stainless steel.
Selon une réalisation, la pièce de maintien comporte une languette de rabat pour assurer un maintien de l'aimant permanent dans la cavité lors du montage d'un flasque de fermeture de la cavité. According to one embodiment, the retaining piece comprises a flap tab to ensure a retention of the permanent magnet in the cavity during assembly of a closure flange of the cavity.
Selon une réalisation, le corps de rotor comporte une pluralité d'aimants permanents disposés dans la cavité. In one embodiment, the rotor body has a plurality of permanent magnets disposed in the cavity.
Selon une réalisation, au moins deux des trois lamelles ressorts comportent autant de bossages que d'aimants permanents. Cela permet d'appliquer une force de maintien sur la face de chaque aimant en vis-à-vis de la lamelle ressort correspondante. In one embodiment, at least two of the three leaf springs have as many bosses as permanent magnets. This makes it possible to apply a holding force on the face of each magnet vis-à-vis the corresponding leaf spring.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. The invention will be better understood on reading the description which follows and on examining the figures which accompany it. These figures are given for illustrative but not limiting of the invention.
La figure 1 , déjà décrite, est une vue en perspective éclatée d'un rotor muni de ressorts de maintien selon l'état de la technique; La figure 2 est une vue en coupe de la machine électrique tournante selon la présente invention; Figure 1, already described, is an exploded perspective view of a rotor provided with holding springs according to the state of the art; Figure 2 is a sectional view of the rotating electrical machine according to the present invention;
La figure 3 est une vue en perspective partielle du rotor montrant par transparence le positionnement des pièces de maintien selon l'invention à l'intérieur des cavités d'aimants; Figure 3 is a partial perspective view of the rotor showing by transparency the positioning of the holding parts according to the invention inside the magnet cavities;
Les figures 4a et 4b sont des vues en perspective d'une pièce de maintien selon la présente respectivement avant et après que la languette de rabat ait été repliée. Figures 4a and 4b are perspective views of a holding piece according to the present before and after respectively that the flap tab has been folded.
Les éléments identiques, similaires, ou analogues conservent la même référence d'une figure à l'autre. Identical, similar or similar elements retain the same reference from one figure to another.
La figure 2 montre une machine électrique tournante 10 comportant un stator 1 1 entourant un rotor 12 monté sur un arbre 13 avec présence d'un entrefer entre la périphérie externe du rotor 12 et la périphérie interne du stator 1 1 . Le stator 1 1 est monté fixe à l'intérieur d'un carter 16 portant à rotation l'arbre 13 du rotor 12. A cet effet, le carter 16 comporte un palier avant 17 et un palier arrière 18 munis chacun d'un logement de réception d'un roulement 21 , notamment un roulement à billes, intercalé radialement entre l'arbre 13 et le palier de la machine électrique correspondant. FIG. 2 shows a rotating electrical machine 10 comprising a stator 1 1 surrounding a rotor 12 mounted on a shaft 13 with the presence of an air gap between the outer periphery of the rotor 12 and the inner periphery of the stator January 1. The stator January 1 is fixedly mounted inside a housing 16 rotating the shaft 13 of the rotor 12. For this purpose, the housing 16 comprises a front bearing 17 and a rear bearing 18 each provided with a housing receiving a bearing 21, in particular a ball bearing, interposed radially between the shaft 13 and the bearing of the corresponding electrical machine.
Le stator 1 1 comporte un corps 24 constitué par un empilage de tôles minces formant une couronne, dont la face intérieure est pourvue d'encoches ouvertes vers l'intérieur pour recevoir un bobinage 25. Le bobinage 25 est obtenu par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme d'épingles reliées entre elles par soudage. Le bobinage comporte des enroulements polyphasés connectés en étoile ou en triangle dont les sorties sont reliées à un pont redresseur. The stator January 1 comprises a body 24 constituted by a stack of thin sheets forming a ring, whose inner face is provided with notches open towards the inside to receive a coil 25. The coil 25 is obtained for example from a continuous wire covered with enamel or from conductive elements in the form of pins connected together by welding. The winding comprises polyphase windings connected in star or delta whose outputs are connected to a bridge rectifier.
Par ailleurs, comme on peut le voir sur la figure 3, le rotor 12 comporte un corps 28 formé par un paquet de tôles réalisé dans un matériau magnétique, notamment en acier, ainsi qu'une pluralité d'aimants permanents 29 destinés à être logés dans des cavités 30 du corps de rotor 28. Les tôles du corps 28 pourront être maintenues au moyen de rivets 33 traversant axialement le rotor 12 de part en part via des trous prévus à cet effet. En variante, les tôles sont maintenues entre elles par collage, soudage, ou boutonnage. Moreover, as can be seen in FIG. 3, the rotor 12 comprises a body 28 formed by a bundle of sheets made of a magnetic material, in particular steel, as well as a plurality of permanent magnets 29 intended to be housed. in the cavities 30 of the rotor body 28. The sheets of the body 28 can be held by means of rivets 33 passing axially through the rotor 12 through holes provided for this purpose. effect. Alternatively, the sheets are held together by gluing, welding, or buttoning.
Le corps de rotor 28 comporte une ouverture centrale 35 pour le passage de l'arbre 13 s'étendant suivant l'axe X correspondant à l'axe de la machine électrique 10. L'arbre 13 peut être emmanché en force à l'intérieur de l'ouverture 35 pour lier en rotation le corps de rotor 28 avec l'arbre 13. The rotor body 28 has a central opening 35 for the passage of the shaft 13 extending along the axis X corresponding to the axis of the electric machine 10. The shaft 13 can be force-fitted inside opening 35 to rotate the rotor body 28 with the shaft 13.
Plus précisément, les cavités 30 pourront être axialement traversantes ou de configuration borgne, c'est à dire qu'elles débouchent d'un seul côté axial du corps. Dans un plan P de coupe perpendiculaire à l'axe X, le plus grand côté d'une cavité s'étend suivant une direction radiale par rapport à l'axe X. En variante, les cavités 30 s'étendent suivant une direction orthoradiale par rapport à l'axe X. Alternativement, deux cavités adjacentes forment un V dans le plan orthogonal P. More specifically, the cavities 30 may be axially through or blind configuration, that is to say they open on one axial side of the body. In a sectional plane P perpendicular to the axis X, the largest side of a cavity extends in a radial direction relative to the axis X. Alternatively, the cavities 30 extend in a orthoradial direction by relative to the X axis. Alternatively, two adjacent cavities form a V in the orthogonal plane P.
Chaque cavité 30 reçoit une pluralité d'aimants 29 empilés axialement les uns sur les autres. En l'occurrence, chaque cavité 30 reçoit quatre aimants 29 de forme parallélépipédique. En variante, le nombre d'aimants 29 pourra bien entendu être différent. Un aimant 29 unique peut également être inséré à l'intérieur de chaque cavité 30. Les aimants permanents 29 peuvent être réalisés en terre rare ou en ferrite selon les applications et la puissance recherchée de la machine électrique 10. Les aimants 29 présentent une forme parallélépipédique mais pourraient en variante comporter en outre une portion biseauté à une de leurs extrémités. Each cavity 30 receives a plurality of magnets 29 stacked axially on each other. In this case, each cavity 30 receives four magnets 29 of parallelepipedal shape. Alternatively, the number of magnets 29 may of course be different. A single magnet 29 may also be inserted inside each cavity 30. The permanent magnets 29 may be made of rare earth or ferrite depending on the applications and the desired power of the electrical machine 10. The magnets 29 have a parallelepiped shape but could alternatively further include a bevelled portion at one of their ends.
Comme on peut le voir sur la figure 3, une pièce 37 assure un maintien des aimants 29 à l'intérieur de la cavité 30 correspondante. Cette pièce de maintien 37 est réalisée avantageusement dans un matériau amagnétique, notamment en acier inoxydable. As can be seen in FIG. 3, a part 37 maintains the magnets 29 inside the corresponding cavity 30. This holding piece 37 is advantageously made of a non-magnetic material, in particular stainless steel.
Cette pièce de maintien 37 comporte une première partie 38 agencée pour exercer un premier effort de maintien F1 sur une première face des aimants 29. Ce premier effort de maintien F1 est appliqué suivant une direction radiale vers une périphérie externe du corps de rotor 28. A cet effet, comme cela est illustré sur les figures 4a et 4b, la première partie 38 prend la forme d'une lamelle ressort munie de bossages 39 situés chacun en vis-à-vis d'un aimant 29. La lamelle ressort 38 est située du côté de la périphérie interne du rotor 12 et est intercalée entre les aimants 29 de la cavité 30 et une face interne d'appui de la cavité 30 tournée vers la périphérie externe du corps de rotor 28. Chaque bossage 39 est comprimé à l'intérieur de la cavité 30 et applique par réaction sur un aimant 29 correspondant un effort F1 suivant une direction radiale par rapport à l'axe X. This holding piece 37 has a first portion 38 arranged to exert a first holding force F1 on a first face of the magnets 29. This first holding force F1 is applied in a radial direction towards an outer periphery of the rotor body 28. For this purpose, as illustrated in FIGS. 4a and 4b, the first part 38 takes the form of a spring strip provided with bosses 39 each located opposite a magnet 29. The spring strip 38 is located on the side of the inner periphery of the rotor 12 and is interposed between the magnets 29 of the cavity 30 and an inner bearing surface of the cavity 30 facing the outer periphery of the rotor body 28. Each boss 39 is compressed to the inside the cavity 30 and applies by reaction on a corresponding magnet 29 a force F1 in a radial direction relative to the axis X.
Une deuxième partie 40 est agencée pour exercer un deuxième effort de maintien F2 sur une deuxième face d'un aimant 29 d'extrémité de la cavité 30. Le deuxième effort de maintien F2 est perpendiculaire au premier effort F1 . A second portion 40 is arranged to exert a second holding force F2 on a second face of an end magnet 29 of the cavity 30. The second holding force F2 is perpendicular to the first force F1.
A cet effet, la deuxième partie 40 prend la forme d'une lamelle ressort munie d'un bossage 41 pour l'application d'un effort de maintien axial F2 sur l'empilement d'aimants 29 à l'intérieur de la cavité 30 correspondante. For this purpose, the second portion 40 takes the form of a leaf spring provided with a boss 41 for the application of an axial holding force F2 on the stack of magnets 29 inside the cavity 30 corresponding.
La lamelle ressort 40 s'étend sensiblement perpendiculairement par rapport à la direction d'allongement longitudinale de la lamelle ressort 38. Le bossage 41 est destiné à être comprimé entre un aimant 29 d'extrémité de l'empilement et un flasque de fermeture 48 pour l'application par réaction de l'effort de maintien axial F2. En variante, la lamelle ressort 40 comporte deux bossages 41 ou plus. The leaf spring 40 extends substantially perpendicular to the direction of longitudinal elongation of the leaf spring 38. The boss 41 is intended to be compressed between an end magnet 29 of the stack and a closure flange 48 for the application by reaction of the axial holding force F2. Alternatively, the leaf spring 40 has two bosses 41 or more.
Une troisième partie 42 est agencée pour exercer un troisième effort de maintien F3 sur une troisième face des aimants 29 de la cavité 30. Le troisième effort de maintien F3 est perpendiculaire au premier F1 et au deuxième F2 effort de maintien. A third portion 42 is arranged to exert a third holding force F3 on a third face of the magnets 29 of the cavity 30. The third holding force F3 is perpendicular to the first F1 and the second F2 holding force.
A cet effet, la troisième partie 42 prend la forme d'une lamelle ressort munie de bossages 43 situés chacun en vis-à-vis d'un aimant 29 de la cavité. La lamelle ressort 42 est intercalée entre les aimants 29 de la cavité 30 et une face interne d'appui orthoradiale de la cavité 30. Chaque bossage 43 est comprimé à l'intérieur de la cavité 30 et applique par réaction sur un aimant 29 correspondant un effort F3 suivant une direction orthoradiale par rapport à l'axe X de la machine électrique 10. Avantageusement, les lamelles ressorts 38, 40, 42 sont formées à partir de la transformation, par emboutissage, estampage, ou autre, d'une même pièce en métal, de sorte que la pièce de maintien 37 est monobloc. Suivant l'exemple représenté, la deuxième lamelle ressort 40 est pliée par rapport la première lamelle ressort 38 de manière à présenter globalement une forme en L. La troisième lamelle ressort 42 est issue d'un bord longitudinal de la deuxième lamelle ressort 40, tel que cela est montré sur les figures 4a et 4b. For this purpose, the third portion 42 takes the form of a leaf spring provided with bosses 43 each located vis-à-vis a magnet 29 of the cavity. The leaf spring 42 is interposed between the magnets 29 of the cavity 30 and an inner orthoradial support face of the cavity 30. Each boss 43 is compressed inside the cavity 30 and applies by reaction on a corresponding magnet 29 a F3 force in a direction orthoradiale relative to the axis X of the electric machine 10. Advantageously, the leaf springs 38, 40, 42 are formed from the transformation, stamping, stamping, or other, of the same metal piece, so that the holding piece 37 is monobloc. According to the example shown, the second spring leaf 40 is folded relative to the first leaf spring 38 so as to generally have an L shape. The third leaf spring 42 is derived from a longitudinal edge of the second leaf spring 40, as shown in FIG. that this is shown in Figures 4a and 4b.
Avantageusement, la pièce de maintien 37 comporte une languette de rabat 45 pour permettre le maintien des aimants 29 permanents dans la cavité 30 lors du montage d'un flasque de fermeture 48 de la cavité 30. Advantageously, the holding piece 37 has a flap tab 45 to allow the permanent magnets 29 to be held in the cavity 30 when a closing flange 48 of the cavity 30 is mounted.
En effet, un flasque de fermeture 48 visible sur la figure 2, est mis en place sur chaque face d'extrémité axiale du corps de rotor 28 afin de fermer une extrémité des cavités 30. A cet effet, des organes de fixation 49, tels que des vis de serrage, sont insérés à l'intérieur de trous de fixation ménagés dans les flasques 48 et le corps de rotor 28. Avantageusement, les flasques de fermeture 48 sont réalisés dans un matériau non magnétique présentant une grande rigidité mécanique, par exemple en acier amagnétique. Ces flasques 48 peuvent en outre assurer un équilibrage du rotor 12 tout en permettant un bon maintien des aimants 29 à l'intérieur de leur cavité 30. L'équilibrage peut être effectué par ajout ou retrait de matière. Le retrait de matière peut être effectué par usinage de plots saillants, tandis que l'ajout de matière peut être effectué en implantant des éléments dans des ouvertures prévues à cet effet et réparties suivant la circonférence du flasque 48. Indeed, a closure flange 48 visible in FIG. 2 is placed on each axial end face of the rotor body 28 in order to close one end of the cavities 30. For this purpose, fastening members 49, such as that clamping screws are inserted inside fixing holes formed in the flanges 48 and the rotor body 28. Advantageously, the closing flanges 48 are made of a non-magnetic material having a high mechanical rigidity, for example in non-magnetic steel. These flanges 48 can further ensure a balance of the rotor 12 while allowing good retention of the magnets 29 within their cavity 30. The balancing can be performed by adding or removing material. The removal of material may be performed by machining projecting studs, while the addition of material may be performed by implanting elements in openings provided for this purpose and distributed along the circumference of the flange 48.
On décrit ci-après le procédé d'assemblage du rotor 12 consistant d'une part à mettre en position le flasque 48 inférieur puis, à mettre en place l'ensemble formé par l'arbre 13 et le corps de rotor 28. The method of assembly of the rotor 12 consisting first of putting the lower flange 48 in position and then of putting in place the assembly formed by the shaft 13 and the rotor body 28 is described below.
Les pièces de maintien 37 sont ensuite insérées dans les cavités 30 de telle façon que la première lamelle ressort 38 vienne en appui contre la face de la cavité 30 situé du côté de l'arbre 13 du rotor 12, que la deuxième lamelle ressort 40 vienne en appui contre la face d'extrémité du flasque inférieur 48, et que la troisième lamelle ressort 42 vienne en appui contre une face orthoradiale de la cavité 30. Les aimants 29 sont insérés par paquets à l'intérieur des cavités 30 de manière à comprimer les bossages 39, 43 des première et troisième lamelles ressort 38, 42 pour appliquer les efforts de maintien F1 et F3 sur l'empilement d'aimants 29. Les languettes de rabat 45 sont ensuite repliées pour maintenir les aimants lors de l'opération de fixation du flasque supérieur 48. La fermeture de la cavité 30 par le flasque supérieur 48 a pour effet de comprimer le bossage 41 de la deuxième lamelle ressort 40 pour appliquer l'effort de maintien axial F2 sur les aimants 29. La pièce de maintien 37 assure ainsi le maintien des aimants 29 permanents dans les trois directions (axiale, radiale et orthoradiale), ce qui limite leur déplacement à l'intérieur de la cavité 30 et donc le risque de casse lors des phases de brusque changement de vitesse du rotor 12. Une telle limitation du déplacement des aimants 29 permanents à l'intérieur de la cavité 30 limite les impacts sur l'équilibrage du rotor lors des phases de brusque changement de vitesse de ce dernier ou lors des vibrations dans les trois directions mentionnées ci-dessus. The holding pieces 37 are then inserted into the cavities 30 in such a way that the first spring leaf 38 bears against the face of the cavity 30 located on the side of the shaft 13 of the rotor 12, that the second leaf spring 40 comes in abutment against the end face of the lower flange 48, and that the third spring leaf 42 bears against an orthoradial face of the cavity 30. The magnets 29 are inserted in packets inside the cavities 30 so as to compress the bosses 39, 43 of the first and third spring strips 38, 42 to apply the holding forces F1 and F3 on the stack of magnets 29. The flap tongues 45 are then folded to hold the magnets during the fixing operation of the upper flange 48. The closing of the cavity 30 by the upper flange 48 has the effect of compressing the boss 41 of the second leaf spring 40 to apply the axial retaining force F2 on the magnets 29. The holding piece 37 thus maintains the permanent magnets 29 in the three directions (axial, radial and orthoradial), which limits their movement inside the cavity 30 and therefore the risk of breakage during the phases of abrupt change of rotor speed 12. Such a limitation of the displacement of the permanent magnets 29 inside the cavity 30 limits the impacts on the eq. balancing of the rotor during phases of abrupt change of the latter or during vibrations in the three directions mentioned above.
Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de l'invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents. Of course, the foregoing description has been given by way of example only and does not limit the scope of the invention which would not be overcome by replacing the different elements by any other equivalent.
En outre, les différentes caractéristiques, variantes, et/ou formes de réalisation de la présente invention peuvent être associées les unes avec les autres selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. In addition, the various features, variations, and / or embodiments of the present invention may be associated with each other in various combinations, to the extent that they are not incompatible or exclusive of each other.

Claims

REVENDICATIONS
1 . Machine électrique tournante (10), notamment pour véhicule automobile, comportant: 1. Rotating electrical machine (10), in particular for a motor vehicle, comprising:
- un stator (1 1 ),  a stator (1 1),
- un rotor (12) comportant:  a rotor (12) comprising:
- un corps (28) comportant au moins une cavité (30), a body (28) comprising at least one cavity (30),
- au moins un aimant permanent (29) disposé dans la cavité (30), l'aimant permanent (29) comportant au moins une portion parallélépipédique, at least one permanent magnet (29) disposed in the cavity (30), the permanent magnet (29) comprising at least one parallelepipedal portion,
caractérisée en ce que le rotor (12) comporte au moins une pièce de maintien (37) de l'aimant permanent (29) comportant:  characterized in that the rotor (12) has at least one holding piece (37) of the permanent magnet (29) comprising:
- une première partie (38) agencée pour exercer un premier effort de maintien (F1 ) sur une première face de l'aimant permanent (29),  a first part (38) arranged to exert a first holding force (F1) on a first face of the permanent magnet (29),
- une deuxième partie (40) agencée pour exercer un deuxième effort de maintien (F2) sur une deuxième face de l'aimant permanent (29), le deuxième effort (F2) étant perpendiculaire au premier effort de maintien (F1 ), a second part (40) arranged to exert a second holding force (F2) on a second face of the permanent magnet (29), the second force (F2) being perpendicular to the first holding force (F1),
- une troisième partie (42) agencée pour exercer un troisième effort de maintien (F3) sur une troisième face de l'aimant permanent (29), le troisième effort de maintien (F3) étant perpendiculaire au premier effort de maintien (F1 ) et au deuxième effort de maintien (F2). a third part (42) arranged to exert a third holding force (F3) on a third face of the permanent magnet (29), the third holding force (F3) being perpendicular to the first holding force (F1) and at the second holding effort (F2).
2. Machine électrique tournante selon la revendication 1 , caractérisée en ce que les première, deuxième, et troisième parties (38, 40, 42) de la pièce de maintien (37) sont des lamelles ressorts. 2. Rotating electrical machine according to claim 1, characterized in that the first, second, and third portions (38, 40, 42) of the holding piece (37) are leaf springs.
3. Machine électrique tournante selon la revendication 2, caractérisée en ce qu'une lamelle ressort (38, 40, 42) comporte au moins un bossage (39,3. Rotating electric machine according to claim 2, characterized in that a leaf spring (38, 40, 42) comprises at least one boss (39,
41 , 43) notamment situé en vis-à-vis d'une face de l'aimant permanent (29). 41, 43) in particular located opposite one side of the permanent magnet (29).
4. Machine électrique tournante selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la pièce de maintien (37) est une pièce monobloc. 4. rotary electric machine according to any one of claims 1 to 3, characterized in that the holding piece (37) is a single piece.
5. Machine électrique tournante selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la pièce de maintien (37) est réalisée dans un matériau amagnétique, notamment en acier inoxydable. 5. Rotating electric machine according to any one of claims 1 to 4, characterized in that the holding piece (37) is made of a non-magnetic material, especially stainless steel.
6. Machine électrique tournante selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la pièce de maintien (37) comporte une languette de rabat (45) pour assurer un maintien de l'aimant permanent (29) dans la cavité (30) lors du montage d'un flasque de fermeture (48) de la cavité (30). 6. rotary electric machine according to any one of claims 1 to 5, characterized in that the holding piece (37) comprises a flap tongue (45) to ensure a maintenance of the permanent magnet (29) in the cavity (30) when mounting a closure flange (48) of the cavity (30).
7. Machine électrique tournante selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le corps de rotor (28) comporte une pluralité d'aimants permanents (29) disposés dans la cavité (30). 7. A rotary electric machine according to any one of claims 1 to 6, characterized in that the rotor body (28) comprises a plurality of permanent magnets (29) disposed in the cavity (30).
8. Machine électrique tournante selon les revendications 3 et 7, caractérisée en ce qu'au moins deux des trois lamelles ressorts (38, 40, 42) comportent autant de bossages que d'aimants permanents (29). 8. rotary electric machine according to claims 3 and 7, characterized in that at least two of the three leaf springs (38, 40, 42) have as many bosses as permanent magnets (29).
PCT/EP2018/069563 2017-08-04 2018-07-18 Rotor of rotating electric machine provided with a part for holding permanent magnets in three dimensions WO2019025193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757529 2017-08-04
FR1757529A FR3069975B1 (en) 2017-08-04 2017-08-04 ROTATING ELECTRIC MACHINE ROTOR EQUIPPED WITH A PERMANENT MAGNET HOLDER FOLLOWING THREE DIMENSIONS

Publications (1)

Publication Number Publication Date
WO2019025193A1 true WO2019025193A1 (en) 2019-02-07

Family

ID=60515514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/069563 WO2019025193A1 (en) 2017-08-04 2018-07-18 Rotor of rotating electric machine provided with a part for holding permanent magnets in three dimensions

Country Status (2)

Country Link
FR (1) FR3069975B1 (en)
WO (1) WO2019025193A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070195A (en) * 2001-08-28 2003-03-07 Mitsuba Corp Structure of fixing magnet of rotary electric machine
WO2013175117A1 (en) 2012-05-24 2013-11-28 Valeo Equipements Electriques Moteur Electric machine rotor and associated permanent magnet holding device
US20140252892A1 (en) * 2011-10-17 2014-09-11 SPAL AUTOMATIVE S.r.I. Rotor for an electrical machine and relative assembly method
WO2016177968A1 (en) * 2015-05-07 2016-11-10 Valeo Equipements Electriques Moteur Rotor for a rotating electrical machine, equipped with at least one element for clamping a magnet inside a corresponding cavity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070195A (en) * 2001-08-28 2003-03-07 Mitsuba Corp Structure of fixing magnet of rotary electric machine
US20140252892A1 (en) * 2011-10-17 2014-09-11 SPAL AUTOMATIVE S.r.I. Rotor for an electrical machine and relative assembly method
WO2013175117A1 (en) 2012-05-24 2013-11-28 Valeo Equipements Electriques Moteur Electric machine rotor and associated permanent magnet holding device
WO2016177968A1 (en) * 2015-05-07 2016-11-10 Valeo Equipements Electriques Moteur Rotor for a rotating electrical machine, equipped with at least one element for clamping a magnet inside a corresponding cavity

Also Published As

Publication number Publication date
FR3069975B1 (en) 2020-10-02
FR3069975A1 (en) 2019-02-08

Similar Documents

Publication Publication Date Title
EP3376639B1 (en) Rotor of rotary electrical machine provided with parts for holding permanent magnets
EP2856612A1 (en) Electric machine rotor and associated permanent magnet holding device
FR2935560A1 (en) STATOR FOR ROTATING ELECTRIC MACHINE AND METHOD FOR MANUFACTURING SAME
EP3028373A2 (en) Claw pole rotor comprising a clip for retaining an end-of-winding wire and associated electric machine
EP3127217B1 (en) Rotary electric machine provided with improved means of monitoring the angular position of the rotor and corresponding transmission assembly
FR2998112A1 (en) Support for coil of stator of discoidal rotary electric machine of e.g. electric car, has groove delimited laterally by two side wings of body, and additional component made of magnetic material and is placed on one side wing of body
FR2910192A1 (en) Six pole direct current electrical rotating machine i.e. direct-drive starter, for motor vehicle, has stator with magnetized structure including sector with magnetization direction different from radial and orthoradial directions of stator
WO2019025193A1 (en) Rotor of rotating electric machine provided with a part for holding permanent magnets in three dimensions
FR3069973A1 (en) ROTOR OF ROTATING ELECTRIC MACHINE HAVING A FLANGE HAVING FUNCTION FOR HOLDING PERMANENT MAGNETS
FR3040834A1 (en) PERMANENT MAGNET ROTOR BODY AND ROTATING ELECTRIC MACHINE COMPRISING SUCH A BODY
EP2879275A1 (en) Method for assembling a rotor of a rotary electrical machine by riveting, corresponding rotor and compressor
EP3259830B1 (en) Rotor of rotary electric machine with permanent magnet segments
FR3024608A1 (en) INDUCTOR OF ROTATING ELECTRICAL MACHINE WITH IMPROVED MAGNETIC PERFORMANCE
FR3053543A1 (en) ROTATING ELECTRIC MACHINE HAVING AN INTERCONNECTOR FIXED ON THE STATOR BODY
WO2019020490A1 (en) Rotor for a rotary electric machine provided with a resin layer in the cavities of permanent magnets
FR2723490A1 (en) Electric motor assembly including permanent magnet assembly
EP3662564A1 (en) Rotor for a rotating electrical machine with an improved flange mounting system
FR2910194A1 (en) Six pole type electrical rotating machine i.e. direct drive starter, for motor vehicle, has stator including permanent magnets and support integrated to magnets, where number of magnets is greater than number of poles of machine
FR3028360A1 (en) MAGNET HOLDING DEVICE FOR ROTOR
WO2019025158A1 (en) Rotary electric machine equipped with a protective cover fastened by snap-fastening
FR3086118A1 (en) ROTATING ELECTRIC MACHINE WITH REDUCED MASS ROTOR
WO2018158517A1 (en) Rotor for a rotating electric machine comprising at least one bearing with an integrated fan
WO2017182755A1 (en) Rotating electrical machine provided with a contact casing having an optimised configuration
FR3055485A1 (en) ROTOR OF ROTATING ELECTRIC MACHINE WITH AT LEAST ONE DEFORMABLE PORTION FOR FILLING A CAVITY
FR2915033A1 (en) Electric turning machine e.g. motor, for elevator, has stator placed inside of another stator, and rotor arranged between stators, where rotor includes permanent magnets arranged circumferentially between polar parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739873

Country of ref document: EP

Kind code of ref document: A1