WO2019024788A1 - 一种信号处理方法及通信芯片结构 - Google Patents

一种信号处理方法及通信芯片结构 Download PDF

Info

Publication number
WO2019024788A1
WO2019024788A1 PCT/CN2018/097477 CN2018097477W WO2019024788A1 WO 2019024788 A1 WO2019024788 A1 WO 2019024788A1 CN 2018097477 W CN2018097477 W CN 2018097477W WO 2019024788 A1 WO2019024788 A1 WO 2019024788A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
input signal
channel
sampling
Prior art date
Application number
PCT/CN2018/097477
Other languages
English (en)
French (fr)
Inventor
范明俊
郑健华
唐戴平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019024788A1 publication Critical patent/WO2019024788A1/zh
Priority to US16/750,200 priority Critical patent/US10904054B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/148Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using filters, including PLL-type filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1072Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal by tuning the receiver frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/001Modulated-carrier systems using chaotic signals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a signal processing method and a communication chip structure.
  • a low-bandwidth continuous-time summing differential analog-to-digital converter (CT Sigma-delta ADC) (bandwidth less than 200 MHz) is mostly used in the chip of the mobile terminal for sampling and quantizing the received signal.
  • CA Carrier Aggregation
  • ADCs analog-to-digital converters
  • the first implementation method is: sampling and quantizing the signal by means of receiving channel double-spelling or multi-splicing, one receiving channel includes a CT Sigma-delta ADC; but adopting the first type
  • multiple low-bandwidth ADCs have already encountered the chip area and power consumption bottleneck of the chip, so the second implementation is used, specifically: using a radio frequency analog-to-digital converter (RFADC) to signal Sample quantization is performed.
  • RFADC radio frequency analog-to-digital converter
  • the RFADC is technically unable to meet the large bandwidth input of the non-continuous CA and 5G scenarios between the 4G bands, and at the same time meet the high linearity requirements in the 2G scenario.
  • the embodiment of the present application provides a signal processing method and a communication chip structure, and has a sampling processing channel that supports a preset narrow bandwidth span signal and a preset large bandwidth span signal, so that the communication chip structure can support non-continuous CA and 5G between 4G bands.
  • the large bandwidth input in the scenario can meet the high linearity requirements in the 2G scenario, while reducing the power consumption and area of the communication chip structure.
  • the first aspect of the present application provides a communication chip structure, including:
  • a digital baseband module a channel selection module, a first sampling quantization channel, and a second sampling quantization channel, wherein the first sampling quantization channel is used for sampling quantization processing to preset a narrow bandwidth span signal, and the second sampling quantization channel is used for quantization Processing preset large bandwidth span signals;
  • the first sampling quantization channel and the second sampling quantization channel are connected to the channel selection module and the digital baseband module, and the channel selection module is connected to the digital baseband module;
  • the channel selection module is configured to receive an input signal, where the input signal is the preset narrow bandwidth span signal or the preset large bandwidth span signal;
  • the digital baseband module is configured to control the channel selection module to select the first sampling quantization channel when the input signal is the preset narrow bandwidth span signal;
  • the digital baseband module is further configured to: when the input signal is the preset large bandwidth span signal, control the channel selection module to select the second sampling quantization channel;
  • the channel selection module is further configured to send the input signal to the first sampling quantization channel or the second sampling quantization channel, so that the first sampling quantization channel or the second sampling quantization channel is sample quantized Processing the input signal.
  • the communication chip structure includes a digital baseband module, a channel selection module, a first sampling quantization channel, and a second sampling quantization channel.
  • the first sampling quantization channel is used for sampling and quantization processing to preset a narrow bandwidth span signal
  • the preset narrow bandwidth span signal may be a signal in a 2G, 3G, 4G single carrier (Single Carrier) and a 4G continuous CA scene.
  • the bandwidth of the lower signal is relatively narrow, generally less than 200 MHz. Therefore, the standard for presetting the narrow bandwidth span signal may be a preset narrow bandwidth span of less than 200 MHz; the second sampling quantization channel is used for presetting the large bandwidth span signal by using quantization processing.
  • the large bandwidth span signal may be a signal in a non-continuous CA and a 5G scenario between 4G bands.
  • the bandwidth of the signal bandwidth in the discontinuous CA and 5G scenarios between the 4G bands is relatively large, and must be larger than the preset narrow bandwidth span signal.
  • the first sampling quantization channel and the second sampling quantization channel are connected to the channel selection module and the digital baseband module, the channel selection module is connected to the digital baseband module, and the channel selection module receives the input signal, and the input signal is a preset narrow bandwidth span signal or a preset large The bandwidth span signal, the digital baseband module allocates the input signal to the first sampling quantization channel or the second sampling quantization channel according to the scene where the input signal is located, specifically when the input signal is a preset narrow bandwidth span signal, the number
  • the baseband module control channel selection module selects the first sampling quantization channel; when the input signal is a preset large bandwidth span signal, the control channel selection module selects the second sampling quantization channel.
  • the channel selection module is equivalent to a selection switch, and is connected to the first sampling quantization channel or the second sampling quantization channel, and sends the input signal to the first sampling quantization channel or the second sampling quantization channel.
  • the first sampling quantization channel can perform sampling and quantization processing on the preset narrow bandwidth span signal, and the second sampling quantization channel does not need to be processed, so that the first implementation manner is the same as the existing one.
  • the communication chip structure can support large bandwidth input in non-continuous CA and 5G scenarios between 4G bands, and can meet the high linearity requirement in the 2G scenario, and reduce the power consumption and area of the communication chip structure.
  • the first sampling quantization channel includes:
  • the low pass filtering unit is connected to the channel selection module and the low bandwidth analog to digital conversion unit;
  • the low pass filtering unit is configured to perform filtering processing on the input signal
  • the low bandwidth analog to digital conversion unit is configured to perform sampling and quantization processing on the filtered input signal.
  • a sampling quantization channel needs to include a low pass filtering unit and a low bandwidth analog to digital conversion unit, the low pass filtering unit is configured to filter the input signal to filter out the interference signal, and the low bandwidth analog to digital conversion unit is used for filtering the processed signal.
  • the input signal is sampled and quantized.
  • the low bandwidth analog to digital conversion unit is a CT Sigma-delta ADC.
  • the proportion of digital circuits in the system can be increased, the proportion of analog circuits can be reduced, and monolithic integration with digital systems can be achieved, because high precision can be achieved at a lower cost.
  • the A/D converter, then using the CT Sigma-delta ADC as the low bandwidth analog-to-digital conversion unit can be preferred.
  • the second sampling quantization channel includes:
  • An RFADC is configured to perform sample quantization processing on the input signal.
  • the second sampling quantization channel processes the preset large bandwidth span signal
  • the second sampling quantization channel can specifically use the RFADC, and the RFADC can digitally quantize the signal bandwidth of several hundred MHz.
  • the communication chip structure further includes:
  • Filter module gain adjustment module, mixing module and signal synthesis module
  • the filter module is connected to the gain adjustment module, the gain adjustment module is connected to the digital baseband module and the channel selection module, and the mixing module is in the channel selection module and the first sampling quantization channel
  • the signal synthesis module is between the channel selection module and the second sampling quantization channel
  • the filtering module is configured to receive an original signal, and perform filtering processing on the original signal to obtain at least one sub-signal, wherein a frequency band of each sub-signal of the at least one sub-signal is different;
  • the gain adjustment module is configured to receive the at least one sub-signal
  • the digital baseband module is further configured to control a gain adjustment range of the gain adjustment module
  • the gain adjustment module is further configured to perform gain adjustment on the at least one sub-signal according to the gain adjustment amplitude to obtain an input signal, and send the input signal to the channel selection module, where the input signal includes at least One way input signal;
  • the mixing module is configured to receive the input signal sent by the channel selection module, and modulate a frequency band of the input signal into a baseband frequency band;
  • the signal synthesizing module is configured to receive the input signal sent by the channel selection module, and synthesize at least one sub-input signal of the input signal.
  • the input signal is a signal that can be directly sampled and quantized by the first sampling quantization channel and the second sampling quantization channel.
  • the original signal is not directly usable for sampling quantization. Therefore, the communication chip structure further includes a filtering module, a gain adjustment module, a mixing module, and a signal synthesis module.
  • the filtering module receives the original signal, and performs filtering processing on the original signal to obtain at least one sub-signal, at least one sub-signal.
  • the frequency bands of the signals are different. Generally, the four sub-signals can be obtained by filtering according to the rules of the low frequency band, the middle frequency band, the high frequency band and the ultra high frequency band.
  • the gain adjustment module receives at least one sub-signal, and sends at least one sub-signal to the gain adjustment module
  • the digital baseband module controls the gain adjustment range of the gain adjustment module
  • the gain adjustment module performs gain adjustment on the at least one sub-signal according to the gain adjustment amplitude, Input signal, and send the input signal to the channel selection module
  • the input signal includes at least one sub-input signal
  • the mixing module receives the input signal sent by the channel selection module, and modulates the frequency band of the input signal into a baseband frequency band, thereby facilitating the first Sampling quantization processing of the sampling quantization channel; after receiving the input signal sent by the channel selection module, the signal synthesis module synthesizes at least one sub-input signal of the input signal, thereby facilitating sampling quantization processing of the second sampling quantization channel.
  • the filtering module includes N filters
  • the gain adjustment module includes N gain adjustment units
  • the channel selection module includes N selection switches
  • the mixing module comprising N mixers
  • the number of the low pass filtering unit and the low bandwidth analog to digital converting unit in the first sampling quantization channel is N.
  • the filtering module specifically includes N filters
  • the original signal is filtered to obtain N sub-signals, and each sub-signal is subjected to gain adjustment. Therefore, the gain adjustment module includes N gain adjustment units corresponding to channel selection.
  • the channel selection function of the module, the channel selection module includes N selection switches.
  • the channel selection module selects the first sampling quantization channel, one sub-signal is output to a mixer in the mixing module through a selection switch, in the mixing module.
  • the number of mixers is N
  • the first sampling quantization channel separately samples and quantizes each sub-input signal of the input signal, then the low-pass filtering unit and the low-bandwidth analog-to-digital conversion unit in the first sampling quantization channel The number is N.
  • the second aspect of the present application provides a signal processing method, which is applied to a communication chip structure, where the communication chip structure includes a digital baseband module, a channel selection module, a first sampling quantization channel, and a second sampling quantization channel, and the first sampling quantization
  • the channel is used for sampling quantization processing to preset a narrow bandwidth span signal
  • the second sampling quantization channel is configured to preset a large bandwidth span signal by using a quantization process
  • the signal processing method includes:
  • the channel selection module receives an input signal, and the input signal is the preset narrow bandwidth span signal or the preset large bandwidth span signal;
  • the digital baseband module When the digital baseband module detects that the input signal is the preset narrow bandwidth span signal, the digital baseband module sends a first control signal to the channel selection module;
  • the channel selection module sends the input signal to the first sampling quantization channel according to the first control signal
  • the first sampling quantization channel performs sampling and quantization processing on the input signal
  • the digital baseband module When the digital baseband module detects that the input signal is the preset large bandwidth span signal, the digital baseband module sends a second control signal to the channel selection module;
  • the channel selection module sends the input signal to the second sampling quantization channel according to the second control signal
  • the second sampling quantization channel performs sampling and quantization processing on the input signal.
  • the communication chip structure includes a digital baseband module, a channel selection module, a first sampling quantization channel, and a second sampling quantization channel.
  • the first sampling quantization channel is used for sampling and quantization processing to preset a narrow bandwidth span signal
  • the preset narrow bandwidth span signal may be a signal in a 2G, 3G, 4G single carrier (Single Carrier) and a 4G continuous CA scene.
  • the bandwidth of the lower signal is relatively narrow, generally less than 200 MHz. Therefore, the standard for presetting the narrow bandwidth span signal may be a preset narrow bandwidth span of less than 200 MHz; the second sampling quantization channel is used for presetting the large bandwidth span signal by using quantization processing.
  • the large bandwidth span signal may be a signal in a non-continuous CA and a 5G scenario between 4G bands.
  • the bandwidth of the signal bandwidth in the discontinuous CA and 5G scenarios between the 4G bands is relatively large, and must be larger than the preset narrow bandwidth span signal.
  • the channel selection module receives the input signal, and the input signal is a preset narrow bandwidth span signal or a preset large bandwidth span signal. When the digital baseband module detects that the input signal is a preset narrow bandwidth span signal, the digital baseband module sends the channel selection module to the channel selection module.
  • the channel selection module sends the input signal to the first sampling quantization channel according to the first control signal, and the first sampling quantization channel performs sampling quantization processing on the input signal; when the digital baseband module detects the input signal as a preset large bandwidth span During the signal, the digital baseband module sends a second control signal to the channel selection module, the channel selection module sends the input signal to the second sampling quantization channel according to the second control signal, and the second sampling quantization channel performs sampling quantization processing on the input signal.
  • the first sampling quantization channel can perform sampling and quantization processing on the preset narrow bandwidth span signal, and the second sampling quantization channel does not need to be processed, so that the first implementation manner is the same as the existing one.
  • the second sampling quantization channel can sample and quantize the preset large bandwidth span signal, and the first sampling quantization channel does not need to be processed, and
  • the high linearity requirement required for the 2G scenario is not required, and only a large bandwidth input is required, which can save power consumption and area of the second sampling quantization channel. Therefore, the communication chip structure can support large bandwidth input in non-continuous CA and 5G scenarios between 4G bands, and can meet the high linearity requirement in the 2G scenario, and reduce the power consumption and area of the communication chip structure.
  • the first sampling quantization channel includes a low pass filtering unit and a low bandwidth analog to digital conversion unit
  • the first sampling quantization channel performs sampling and quantization processing on the input signal, and includes:
  • the low pass filtering unit performs filtering processing on the input signal
  • the low bandwidth analog to digital conversion unit performs sampling and quantization processing on the filtered input signal.
  • the first sampling quantization channel is for processing a preset narrow bandwidth span signal, and the preset narrow bandwidth span signal may specifically be a signal in a 2G, 3G, 4G single carrier, and 4G continuous CA scenario
  • the first sampling quantization channel It is required to include a low pass filtering unit and a low bandwidth analog to digital conversion unit.
  • the low pass filtering unit filters the input signal to filter out the interference signal, and the low bandwidth analog to digital conversion unit performs sampling and quantization processing on the filtered input signal.
  • the low bandwidth analog to digital conversion unit is a CT Sigma-delta ADC.
  • the proportion of digital circuits in the system can be increased, the proportion of analog circuits can be reduced, and monolithic integration with digital systems can be achieved, because high precision can be achieved at a lower cost.
  • the A/D converter, then using the CT Sigma-delta ADC as the low bandwidth analog-to-digital conversion unit can be preferred.
  • the second sampling quantization channel includes an RFADC
  • the second sampling quantization channel performs sampling and quantization processing on the input signal, including:
  • the RFADC performs a sample quantization process on the input signal.
  • the second sampling quantization channel processes the preset large bandwidth span signal
  • the second sampling quantization channel can specifically use the RFADC, and the RFADC can digitally quantize the signal bandwidth of several hundred MHz.
  • the communication chip structure further includes filtering. Module, gain adjustment module and mixing module,
  • the method further includes:
  • the filtering module receives the original signal, and performs filtering processing on the original signal to obtain at least one sub-signal, wherein each of the at least one sub-signal has a different frequency band;
  • the gain adjustment module receives the at least one sub-signal
  • the digital baseband module sends a third control signal to the gain adjustment module, where the third control signal is used to control a gain adjustment range of the gain adjustment module;
  • the gain adjustment module performs gain adjustment on the at least one sub-signal according to the gain adjustment amplitude to obtain an input signal, and sends the input signal to the channel selection module, where the input signal includes at least one sub-input signal .
  • the input signal is not directly obtained, and the general communication chip structure obtains the original signal.
  • the original signal is not directly usable for sampling and quantization, so the communication chip structure is further The filter module, the gain adjustment module and the mixing module are included.
  • the filtering module receives the original signal and performs filtering processing on the original signal to obtain at least one sub-signal, and at least one sub-signal of each sub-signal Different frequency bands can generally be obtained by filtering according to the rules of low frequency band, medium frequency band, high frequency band and ultra high frequency band.
  • the gain adjustment module receives at least one sub-signal, the digital baseband module sends a third control signal to the gain adjustment module, the third control signal is used to control the gain adjustment range of the gain adjustment module, and the gain adjustment module performs at least one sub-signal according to the gain adjustment amplitude.
  • the gain is adjusted to obtain an input signal, and the input signal is sent to the channel selection module, and the input signal includes at least one sub-input signal.
  • the communication chip structure further includes a mixing module.
  • the method further includes:
  • the mixing module receives the input signal sent by the channel selection module, and modulates a frequency band of the input signal into a baseband frequency band.
  • the module receives the input signal sent by the channel selection module and modulates the frequency band of the input signal into a baseband frequency band.
  • the communication chip structure further includes a signal synthesis module.
  • the method further includes
  • the signal synthesis module receives the input signal sent by the channel selection module, and synthesizes at least one sub-input signal of the input signal.
  • the second sampling quantization channel Before the second sampling quantization channel performs sampling and quantization processing on the input signal, since the input signal includes multiple sub-input signals, if sampling quantization processing is to be performed, then it is necessary to synthesize into one signal before, specifically, the signal synthesis module The input signal sent by the channel selection module is received, and at least one sub-input signal of the input signal is synthesized.
  • FIG. 1 is a schematic structural diagram of a conventional communication chip provided by the present application.
  • FIG. 2 is a schematic structural diagram of another conventional communication chip provided by the present application.
  • FIG. 3 is a schematic structural diagram of an embodiment of a communication chip structure provided by the present application.
  • FIG. 4 is a schematic structural diagram of another embodiment of a communication chip structure provided by the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a communication chip structure provided by the present application.
  • FIG. 6 is a schematic structural diagram of a specific example of a structure of a communication chip provided by the present application.
  • FIG. 7 is a schematic flowchart diagram of an embodiment of a signal processing method provided by the present application.
  • the embodiment of the present application provides a signal processing method and a communication chip structure, and has a sampling processing channel that supports a preset narrow bandwidth span signal and a preset large bandwidth span signal, so that the communication chip structure can support non-continuous CA between 4G bands.
  • Large bandwidth input in 5G scenarios can meet the high linearity requirements in 2G scenarios, while reducing the power consumption and area of the communication chip structure.
  • Communication terminals need to support 2G, 3G, 4G and future 5G standards.
  • 2G, 3G, 4G single-carrier and 4G continuous multi-carrier scenarios the signals are in one frequency band or adjacent frequency bands, and most of the chips in mobile terminals use CT Sigma.
  • the -delta ADC is used for sample quantization processing of signals.
  • the chip needs to use multiple ADCs to sample and quantize the signal.
  • the first implementation is shown in Figure 1.
  • Channel Filters can divide the original signal into four frequency band signals, including low frequency band signals (LB), medium Band signal (MB), high-band signal (HB) and ultra-high band signal (UHB), each signal is amplitude-amplified by Gain Tuning, and each signal is modulated to the baseband by a mixer (Mixer) In the frequency band, each signal passes through a Low Pass Filter (LPF) and is sampled and quantized by a CT Sigma-delta AD.
  • LPF Low Pass Filter
  • the Frequency Synthesizer provides the local oscillator clock for the Mixer, Gain Tuning and LPF.
  • the DBB control, Phase Lock Loop (PLL) provides the working clock for the CT Sigma-delta ADC.
  • the final digital base band (DBB) is sampled and quantized.
  • the number of CT Sigma-delta AD is the channel.
  • the number of filters changes as a function of the number of filters.
  • multiple CT Sigma-delta AD have encountered bottlenecks in chip area and power consumption.
  • the second implementation is shown in Figure 2.
  • the four signals are combined into one channel by a signal synthesizer (Adder), sampled and quantized by an RFADC, and the Frequency Synthesizer provides a local oscillator clock for the RFADC.
  • the second implementation has advantages in area and power consumption.
  • the large bandwidth input has to meet the high linearity requirements of the 2G scene, and the RFADC is still immature.
  • the embodiment of the present application provides a communication chip structure, including:
  • the first sampling quantization channel 303 and the second sampling quantization channel 304 are connected to the channel selection module 302 and the digital baseband module 301, and the channel selection module 302 is connected to the digital baseband module 301;
  • the channel selection module 302 is configured to receive an input signal, where the input signal is a preset narrow bandwidth span signal or a preset large bandwidth span signal;
  • the digital baseband module 301 is configured to: when the input signal is a preset narrow bandwidth span signal, the control channel selection module 302 selects the first sampling quantization channel 303;
  • the digital baseband module 301 is further configured to: when the input signal is a preset large bandwidth span signal, the control channel selection module 302 selects the second sampling quantization channel 304;
  • the channel selection module 302 is further configured to send the input signal to the first sample quantization channel 303 or the second sample quantization channel 304 such that the first sample quantization channel 303 or the second sample quantization channel 304 samples the quantization process input signal.
  • the communication chip structure includes a digital baseband module 301, a channel selection module 302, a first sampling quantization channel 303, and a second sampling quantization channel 304.
  • the first sampling quantization channel 303 is configured to sample the quantization process to preset a narrow bandwidth span signal, and the preset narrow bandwidth span signal may be a signal in a 2G, 3G, 4G single carrier, and a 4G continuous CA scenario, and the signal bandwidth in the above scenario.
  • the span is relatively narrow, generally less than 200 MHz, so the standard for presetting a narrow bandwidth span signal may be a preset narrow bandwidth span of less than 200 MHz; the second sample quantization channel 304 is used for pre-setting a large bandwidth span signal by using quantization processing, and preset a large bandwidth.
  • the span signal may be a signal in a non-continuous CA and a 5G scenario between 4G bands.
  • the bandwidth of the signal bandwidth in the non-continuous CA and 5G scenarios between the 4G bands is relatively large, and must be greater than the preset narrow bandwidth span signal.
  • the first sampling quantization channel 303 and the second sampling quantization channel 304 are connected to the channel selection module 302 and the digital baseband module 301, the channel selection module 302 is connected to the digital baseband module 301, and the channel selection module 302 receives the input signal, and the input signal is preset narrow.
  • the digital baseband module 301 allocates the input signal to the first sampling quantization channel or the second sampling quantization channel according to the scene in which the input signal is located, specifically when the input signal is pre-
  • the digital baseband module 301 controls the channel selection module 302 to select the first sample quantization channel 303; when the input signal is the preset large bandwidth span signal, the control channel selection module 302 selects the second sample quantization channel 304.
  • the channel selection module 302 is equivalent to a selection switch, and is connected to the first sample quantization channel 303 or the second sample quantization channel 304 to transmit the input signal to the first sample quantization channel 303 or the second sample quantization channel 304.
  • the first sample quantization channel 303 can perform sample quantization processing on the preset narrow bandwidth span signal, and the second sample quantization channel 304 does not need to be processed, thus the first type Compared with the implementation mode, the power consumption and the performance are unchanged; when the input signal is a preset large bandwidth span signal, the second sampling quantization channel 304 can perform sampling and quantization processing on the preset large bandwidth span signal, and the first sampling quantization channel 303 No need to deal with, compared with the existing second implementation, there is no need to support the high linearity requirement required by the 2G scenario, only need to support large bandwidth input, and the power consumption and area of the second sampling quantization channel can be saved. Therefore, the communication chip structure can support large bandwidth input in non-continuous CA and 5G scenarios between 4G bands, and can meet the high linearity requirement in the 2G scenario, and reduce the power consumption and area of the communication chip structure.
  • the first sampling quantization channel 303 includes:
  • the low pass filtering unit 401 is connected to the channel selection module 302 and the low bandwidth analog to digital conversion unit 402;
  • a low pass filtering unit 401 configured to perform filtering processing on the input signal
  • the low bandwidth analog to digital conversion unit 402 is configured to perform sampling and quantization processing on the filtered input signal.
  • the first sampling quantization channel 303 is configured to process a preset narrow bandwidth span signal, and the preset narrow bandwidth span signal may be a signal in a 2G, 3G, 4G single carrier, and 4G continuous CA scenario.
  • the first sample quantization channel 303 needs to include a low pass filtering unit 401 and a low bandwidth analog to digital conversion unit 402.
  • the low pass filtering unit 401 is configured to filter the input signal to filter out the interference signal, and the low bandwidth analog to digital conversion unit
  • the 402 is configured to perform sampling and quantization processing on the filtered input signal.
  • the proportion of the digital circuit in the system can be increased, the proportion of the analog circuit can be reduced, and the monolithic integration with the digital system can be easily realized because it can be lower.
  • the cost of implementing a high-precision A/D converter, then using a CT Sigma-delta ADC as the low-bandwidth analog-to-digital conversion unit 402 can be preferred.
  • the second sampling quantization channel 303 includes:
  • the RFADC 403 is used for sampling and quantizing the input signal.
  • the second sampling quantization channel 303 since the second sampling quantization channel 303 processes the preset large bandwidth span signal, the second sampling quantization channel may specifically use an RFADC, and the RFADC can digitally quantize the signal bandwidth of several hundred MHz.
  • the communications chip structure further includes:
  • Filtering module 501 gain adjustment module 502, mixing module 503 and signal synthesis module 504;
  • the filtering module 501 is connected to the gain adjustment module 502, the gain adjustment module 502 is connected to the digital baseband module 301 and the channel selection module 302, the mixing module 503 is between the channel selection module 302 and the first sampling quantization channel 304, and the signal synthesis module 504 is Between the channel selection module 302 and the second sample quantization channel 303;
  • the filtering module 501 is configured to receive the original signal, and perform filtering processing on the original signal to obtain at least one sub-signal, wherein the frequency band of each sub-signal of the at least one sub-signal is different;
  • a gain adjustment module 502 configured to receive at least one sub-signal
  • the digital baseband module 301 is further configured to control a gain adjustment range of the gain adjustment module 502.
  • the gain adjustment module 502 is further configured to perform gain adjustment on the at least one sub-signal according to the gain adjustment amplitude, obtain an input signal, and send the input signal to the channel selection module 302, where the input signal includes at least one sub-input signal;
  • the mixing module 503 is configured to receive an input signal sent by the channel selection module 302, and modulate a frequency band of the input signal into a baseband frequency band;
  • the signal synthesizing module 504 is configured to receive an input signal sent by the channel selection module 302, and synthesize at least one sub-input signal of the input signal.
  • the input signal is a signal that can be directly sampled and quantized by the first sampling quantization channel and the second sampling quantization channel.
  • the original signal is not directly usable for sampling quantization, so the communication chip
  • the structure further includes a filtering module 501, a gain adjusting module 502, a mixing module 503, and a signal synthesizing module 504.
  • the filtering module 501 receives the original signal, and performs filtering processing on the original signal to obtain at least one sub-signal, at least one sub-signal.
  • the frequency bands of the road sub-signals are different.
  • the four sub-signals can be obtained by filtering according to the rules of the low frequency band, the middle frequency band, the high frequency band and the ultra high frequency band.
  • the gain adjustment module 502 receives at least one sub-signal, and sends at least one sub-signal to the channel selection module 302.
  • the digital baseband module 301 controls the gain adjustment range of the gain adjustment module 502, and the gain adjustment module performs at least one sub-signal according to the gain adjustment amplitude.
  • the gain is adjusted to obtain an input signal, and the input signal is sent to the channel selection module 302.
  • the input signal includes at least one sub-input signal, and the mixing module 503 receives the input signal sent by the channel selection module, and modulates the frequency band of the input signal into a baseband frequency band.
  • the sampling quantization processing of the first sampling quantization channel 303 is facilitated; after receiving the input signal sent by the channel selection module, the signal synthesis module 504 synthesizes at least one sub-input signal of the input signal, thereby facilitating the second sampling quantization channel 304. Sampling quantization processing.
  • the filtering module 501 includes N filters
  • the gain adjustment module 502 includes N gain adjustment units
  • the channel selection module 302 includes N selection switches
  • the mixing Module 503 includes N mixers.
  • the number of low pass filtering units and low bandwidth analog to digital conversion units in the first sample quantization channel 303 is N.
  • the filtering module 501 specifically includes N filters
  • the original signal is filtered to obtain an N-way sub-signal, and each sub-signal is subjected to gain adjustment. Therefore, the gain adjustment module 502 includes N
  • the gain adjustment unit corresponds to the channel selection function of the channel selection module 303.
  • the channel selection module 303 includes N selection switches. When the channel selection module 303 selects the first sampling quantization channel, one sub-signal is output to the mixing module through a selection switch.
  • the number of mixers in the mixing module is N
  • the first sampling quantization channel separately samples and quantizes each sub-input signal of the input signal, then the first sampling quantization channel
  • the number of low-pass filter units and low-bandwidth analog-to-digital conversion units is N.
  • FIG. 6 is a schematic structural diagram of a specific example of a communication chip structure of the present application.
  • the original signal is filtered by a channel filter, and is divided into four frequency band signals, a low frequency band signal (LB), and a medium frequency band signal (MB).
  • LB low frequency band signal
  • MB medium frequency band signal
  • HB High-band signal
  • UHB ultra-high-band signal
  • DBB digital baseband module
  • each signal passes through the Gain Tuning module, and its amplitude is amplified to the required size
  • the channel selection module (DeMux) performs sub-scenario processing on the signal: (1) For 2G, 3G, 4G single-carrier and 4G continuous CA signal scenarios, the signal is first modulated by the mixing module (Mixer) to the baseband band, and then Select to enter the first sample quantization channel, in which the signal is quantized by the CT Sigma-delta ADC after passing through the LPF.
  • the signal synthesis module (Adder) and the second sample quantization channel are not working to save power;
  • the signal will be selected into the second sampling quantization channel. Before this channel, different signals from multiple signals are first processed into a signal by Adder, and then the signal is sent to RFA. The DC is quantized.
  • the Mixer and the first sample quantization channel do not work to save power.
  • the Frequency Synthesizer provides the local oscillator clock and sample clock for the Mixer and RFADC, respectively.
  • the gain adjustment module, channel selection module, and Frequency Synthesizer are all controlled by the DBB output signal.
  • the PLL provides the operating clock for the CT Sigma-delta ADC.
  • Gain Tuning, DeMux and Adder in Figure 6 can be designed together to optimize structure and performance.
  • the LPF in Figure 6 can be fused in a CT sigma-delta ADC.
  • the communication chip structure of the present application is described in the above embodiment, and the signal processing method for the structure of the communication chip will be described below.
  • the present application provides a signal processing method, which is applied to the communication chip structure shown in FIG. 3, and includes:
  • the channel selection module receives an input signal, where the input signal is a preset narrow bandwidth span signal or a preset large bandwidth span signal;
  • the communication chip structure includes a digital baseband module, a channel selection module, a first sampling quantization channel, and a second sampling quantization channel.
  • the first sampling quantization channel is used for sampling quantization processing to preset a narrow bandwidth span signal, and the preset narrow bandwidth span signal may be a signal in a 2G, 3G, 4G single carrier, and a 4G continuous CA scenario, and the signal bandwidth span in the above scenario.
  • the standard for presetting a narrow bandwidth span signal may be a preset narrow bandwidth span of less than 200MHz;
  • the second sampling quantization channel is used for pre-setting a large bandwidth span signal by using quantization processing, and presetting a large bandwidth span signal Specifically, it may be a signal in a non-continuous CA and a 5G scenario between 4G bands.
  • the bandwidth of the signal bandwidth in the non-continuous CA and 5G scenarios between the 4G bands is relatively large, and must be larger than the preset narrow bandwidth span signal.
  • the channel selection module receives the input signal, and the input signal is a preset narrow bandwidth span signal or a preset large bandwidth span signal.
  • the digital baseband module When the digital baseband module detects that the input signal is a preset narrow bandwidth span signal, the digital baseband module sends the first control signal to the channel selection module.
  • the digital baseband module when the digital baseband module detects that the input signal is a preset narrow bandwidth span signal, the digital baseband module sends a first control signal to the channel selection module.
  • the first control signal is used to control the channel selection module to select the first sample quantization channel.
  • the channel selection module sends the input signal to the first sampling quantization channel according to the first control signal.
  • the channel selection module after receiving the first control signal sent by the digital baseband module, the channel selection module sends the input signal to the first sampling quantization channel according to the first control signal.
  • the first sampling quantization channel performs sampling and quantization processing on the input signal.
  • the digital baseband module detects that the input signal is a preset large bandwidth span signal, the digital baseband module sends a second control signal to the channel selection module.
  • the digital baseband module when the digital baseband module detects that the input signal is a preset large bandwidth span signal, the digital baseband module sends a second control signal to the channel selection module.
  • the second control signal is used to control the channel selection module to select the second sample quantization channel.
  • the channel selection module sends the input signal to the second sampling quantization channel according to the second control signal.
  • the channel selection module after receiving the second control signal sent by the digital baseband module, the channel selection module sends the input signal to the second sampling quantization channel according to the second control signal.
  • the second sampling quantization channel performs sampling and quantization processing on the input signal.
  • the first sampling quantization channel when the input signal is a preset narrow bandwidth span signal, the first sampling quantization channel can perform sampling and quantization processing on the preset narrow bandwidth span signal, and the second sampling quantization channel does not need to be processed, thus Compared with the first implementation, the power consumption and performance are unchanged; when the input signal is a preset large bandwidth span signal, the second sampling quantization channel can perform sampling and quantization processing on the preset large bandwidth span signal, and the first sampling quantization The channel does not need to be processed. Compared with the existing second implementation mode, it does not need to support the high linearity requirement required by the 2G scenario, and only needs to support a large bandwidth input, which can save power consumption and area of the second sampling quantization channel. Therefore, the communication chip structure can support large bandwidth input in non-continuous CA and 5G scenarios between 4G bands, and can meet the high linearity requirement in the 2G scenario, and reduce the power consumption and area of the communication chip structure.
  • the first sampling quantization channel includes a low pass filtering unit and a low bandwidth analog to digital conversion unit.
  • the first sample quantization channel performs sample quantization processing on the input signal, including:
  • the low pass filtering unit performs filtering processing on the input signal
  • the low bandwidth analog to digital conversion unit performs sampling and quantization processing on the filtered input signal.
  • the first sampling quantization channel is used to process a preset narrow bandwidth span signal
  • the preset narrow bandwidth span signal may be a signal in a 2G, 3G, 4G single carrier, and 4G continuous CA scenario.
  • the first sampling quantization channel needs to include a low pass filtering unit and a low bandwidth analog to digital conversion unit, and the low pass filtering unit filters the input signal to filter out the interference signal, and the low bandwidth analog to digital conversion unit filters the processed input signal. Perform sample quantization processing.
  • the low bandwidth analog to digital conversion unit is a CT Sigma-delta ADC.
  • the proportion of the digital circuit in the system can be increased, the proportion of the analog circuit can be reduced, and the monolithic integration with the digital system can be easily realized because the high-performance can be realized at a low cost.
  • the use of a CT Sigma-delta ADC as the low bandwidth analog-to-digital converter is preferred.
  • the second sampling quantization channel includes an RFADC
  • the second sampling quantization channel performs sampling and quantization processing on the input signal, including:
  • the RFADC samples and quantizes the input signal.
  • the second sampling quantization channel since the second sampling quantization channel processes the preset large bandwidth span signal, the second sampling quantization channel may specifically use an RFADC, and the RFADC can digitally quantize the signal bandwidth of several hundred MHz.
  • the communications chip structure further includes a filtering module, a gain adjusting module, and a mixing module.
  • the channel selection module receives the input signal, it also includes:
  • the filtering module receives the original signal and performs filtering processing on the original signal to obtain at least one sub-signal, and the frequency band of each sub-signal of at least one sub-signal is different;
  • the gain adjustment module receives at least one sub-signal
  • the digital baseband module sends a third control signal to the gain adjustment module, and the third control signal is used to control the gain adjustment range of the gain adjustment module;
  • the gain adjustment module performs gain adjustment on at least one sub-signal according to the gain adjustment amplitude to obtain an input signal, and sends the input signal to the channel selection module, where the input signal includes at least one sub-input signal.
  • the input signal is not directly obtained.
  • the general communication chip structure obtains the original signal.
  • the original signal is not directly used for sampling and quantization, so the communication chip structure further includes a filtering module.
  • the gain adjustment module and the mixing module before the channel selection module receives the input signal, the filtering module receives the original signal, and filters the original signal to obtain at least one sub-signal, and at least one sub-signal has a different frequency band, generally
  • the four sub-signals can be obtained by filtering according to the rules of the low frequency band, the middle frequency band, the high frequency band and the ultra high frequency band.
  • the gain adjustment module receives at least one sub-signal, the digital baseband module sends a third control signal to the gain adjustment module, the third control signal is used to control the gain adjustment range of the gain adjustment module, and the gain adjustment module performs at least one sub-signal according to the gain adjustment amplitude.
  • the gain is adjusted to obtain an input signal, and the input signal is sent to the channel selection module, and the input signal includes at least one sub-input signal.
  • the communications chip structure further includes a mixing module.
  • the method further includes:
  • the mixing module receives the input signal sent by the channel selection module and modulates the frequency band of the input signal into a baseband frequency band.
  • the mixing module receives the input signal sent by the channel selection module, and modulates the frequency band of the input signal into a baseband frequency band.
  • the communications chip structure further includes a signal synthesizing module.
  • the second sample quantization channel Before the second sample quantization channel performs sample quantization processing on the input signal, it also includes
  • the signal synthesis module receives the input signal sent by the channel selection module, and synthesizes at least one sub-input signal of the input signal.
  • the second sampling quantization channel Before the second sampling quantization channel performs sampling and quantization processing on the input signal, since the input signal includes multiple sub-input signals, if sampling quantization processing is to be performed, then it is necessary to synthesize into one signal before, specifically, the signal synthesis module The input signal sent by the channel selection module is received, and at least one sub-input signal of the input signal is synthesized.
  • the mixing module receives the input signal sent by the channel selection module, and modulates the frequency band of the input signal into a baseband frequency band.
  • the present application also provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the signal processing methods described in the above embodiments.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the signal processing methods described in the above embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请公开一种信号处理方法及通信芯片结构,使得通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少通信芯片结构的功耗和面积。本申请实施例通信芯片结构包括:通道选择模块,用于接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号;数字基带模块,用于当输入信号为预置窄带宽跨度信号时,控制通道选择模块选择第一采样量化通道;数字基带模块,还用于当输入信号为预置大带宽跨度信号时,控制通道选择模块选择第二采样量化通道;通道选择模块,还用于将输入信号发送至第一采样量化通道或第二采样量化通道,使得第一采样量化通道或第二采样量化通道采样量化处理输入信号。

Description

一种信号处理方法及通信芯片结构
本申请要求于2017年7月31日提交中国专利局、申请号为201710640769.3、申请名称为“一种信号处理方法及通信芯片结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种信号处理方法及通信芯片结构。
背景技术
随着移动通信技术的发展,移动终端(例如,手机)需要支持2G、3G、4G(LTE-Advanced)以及未来5G的标准,对2G、3G、4G单载波以及4G连续多载波场景,信号在一个频段或者相邻频段里,在移动终端的芯片中大多采用低带宽的连续时间求和差分模数转换器(CT Sigma-delta ADC)(带宽小于200MHz)用来做接收信号的采样量化处理。对4G频段间非连续载波聚合(Carrier Aggregation,CA)和5G场景,芯片就需要用多个低带宽的模数转换器(Analog-to-Digital Converter,ADC)来进行信号的采样量化。
对于不同CA频段的信号的采样量化,第一种实现方式为:通过接收通道双拼或者多拼的方法对信号进行采样量化,一个接收通道中包括一个CT Sigma-delta ADC;但是采用第一种实现方式时,多个低带宽的ADC已经遇到了芯片的芯片面积和功耗的瓶颈,因此使用第二种实现方式,具体为:采用一个射频模数转换器(Radio Frequency ADC,RFADC)对信号进行采样量化。
采用第二种实现方式时,由于目前RFADC在技术上无法满足既要能支持4G频段间非连续CA和5G场景的大带宽输入,同时又要满足2G场景下的高线性度要求。
发明内容
本申请实施例提供一种信号处理方法及通信芯片结构,具有支持预置窄带宽跨度信号和预置大带宽跨度信号的采样处理通道,使得通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少通信芯片结构的功耗和面积。
本申请第一方面提供一种通信芯片结构,包括:
数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道,所述第一采样量化通道用于采样量化处理预置窄带宽跨度信号,所述第二采样量化通道用于采用量化处理预置大带宽跨度信号;
所述第一采样量化通道及所述第二采样量化通道与所述通道选择模块和所述数字基带模块连接,所述通道选择模块与所述数字基带模块连接;
所述通道选择模块,用于接收输入信号,所述输入信号为所述预置窄带宽跨度信号或 所述预置大带宽跨度信号;
所述数字基带模块,用于当所述输入信号为所述预置窄带宽跨度信号时,控制所述通道选择模块选择所述第一采样量化通道;
所述数字基带模块,还用于当所述输入信号为所述预置大带宽跨度信号时,控制所述通道选择模块选择所述第二采样量化通道;
所述通道选择模块,还用于将所述输入信号发送至所述第一采样量化通道或所述第二采样量化通道,使得所述第一采样量化通道或所述第二采样量化通道采样量化处理所述输入信号。
通信芯片结构中包括数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道。其中,第一采样量化通道用于采样量化处理预置窄带宽跨度信号,预置窄带宽跨度信号具体可以是2G、3G、4G单载波(Single Carrier)和4G连续CA场景下的信号,以上场景下信号带宽跨度相对较窄,一般小于200MHz,因此预置窄带宽跨度信号的标准可以是预置窄带宽跨度小于200MHz;第二采样量化通道用于采用量化处理预置大带宽跨度信号,预置大带宽跨度信号具体可以是4G频带间非连续CA和5G场景下的信号,4G频带间非连续CA和5G场景下信号带宽跨度相对比较大,一定会大于预置窄带宽跨度信号。第一采样量化通道及第二采样量化通道与通道选择模块和数字基带模块连接,通道选择模块与数字基带模块连接,通道选择模块接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号,数字基带模块会根据输入信号所处的场景将输入信号分配到第一采样量化通道或者第二采样量化通道进行处理,具体的是当输入信号为预置窄带宽跨度信号时,数字基带模块控制通道选择模块选择第一采样量化通道;当输入信号为预置大带宽跨度信号时,控制通道选择模块选择第二采样量化通道。通道选择模块相当于选择开关,连接第一采样量化通道或者第二采样量化通道,将输入信号发送至第一采样量化通道或第二采样量化通道。这样输入信号是预置窄带宽跨度信号时,第一采样量化通道就能对预置窄带宽跨度信号进行采样量化处理,而第二采样量化通道无需处理,这样与现有的第一种实现方式相比,功耗和性能不变;输入信号是预置大带宽跨度信号时,第二采样量化通道就能对预置大带宽跨度信号进行采样量化处理,而第一采样量化通道无需处理,与现有的第二种实现方式相比,无需支持2G场景所要求的高线性度要求,只需要支持大带宽输入,可以节省第二采样量化通道的功耗和面积。因此,通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少了通信芯片结构的功耗和面积。
结合本申请第一方面,本申请第一方面第一实施方式中,所述第一采样量化通道包括:
低通滤波单元和低带宽模数转换单元;
所述低通滤波单元与所述通道选择模块和所述低带宽模数转换单元连接;
所述低通滤波单元,用于对所述输入信号进行滤波处理;
所述低带宽模数转换单元,用于对滤波处理后的所述输入信号进行采样量化处理。
由于第一采样量化通道是用于处理预置窄带宽跨度信号的,而预置窄带宽跨度信号具体可以是2G、3G、4G单载波(Single Carrier)和4G连续CA场景下的信号,那么第一采样量化通道需要包括低通滤波单元和低带宽模数转换单元,低通滤波单元用于对输入信号 进行滤波处理,从而滤除干扰信号,低带宽模数转换单元用于对滤波处理后的输入信号进行采样量化处理。
结合本申请第一方面第一实施方式,本申请第一方面第二实施方式中,
所述低带宽模数转换单元为CT Sigma-delta ADC。
在具体实施时,由于采样技术和Σ-Δ调制技术,可以增加系统中数字电路的比例,减少模拟电路的比例,并且易于与数字系统实现单片集成,因为能够以较低的成本实现高精度的A/D变换器,那么使用CT Sigma-delta ADC作为低带宽模数转换单元可以作为首选。
结合本申请第一方面,本申请第一方面第三实施方式中,所述第二采样量化通道包括:
RFADC,用于对所述输入信号进行采样量化处理。
由于第二采样量化通道处理的是预置大带宽跨度信号,那么第二采样量化通道具体可以使用RFADC,RFADC可以对几百MHz的信号带宽进行数字量化。
结合本申请第一方面、第一方面第一实施方式、第一方面第二实施方式或第一方面第三实施方式,本申请第一方面第四实施方式中,所述通信芯片结构还包括:
滤波模块、增益调节模块、混频模块及信号合成模块;
所述滤波模块与所述增益调节模块连接,所述增益调节模块与所述数字基带模块及所述通道选择模块连接,所述混频模块处于所述通道选择模块和所述第一采样量化通道之间,所述信号合成模块处于所述通道选择模块和所述第二采样量化通道之间;
所述滤波模块,用于接收原始信号,并对所述原始信号进行滤波处理,得到至少一路子信号,所述至少一路子信号中每一路子信号的频段不同;
所述增益调节模块,用于接收所述至少一路子信号;
所述数字基带模块,还用于控制所述增益调节模块的增益调节幅度;
所述增益调节模块,还用于根据所述增益调节幅度对所述至少一路子信号进行增益调节,得到输入信号,并将所述输入信号发送至所述通道选择模块,所述输入信号包括至少一路子输入信号;
所述混频模块,用于接收所述通道选择模块发送的所述输入信号,并将所述输入信号的频段调制为基带频段;
所述信号合成模块,用于接收所述通道选择模块发送的所述输入信号,对所述输入信号的至少一路子输入信号进行合成。
以上第一方面的各实施例中,输入信号是直接可以被第一采样量化通道和第二采样量化通道进行采样量化处理的信号,在具体实施时,原始信号并非是直接可以用于采样量化的,因此通信芯片结构还包括滤波模块、增益调节模块、混频模块及信号合成模块,滤波模块接收原始信号,并对原始信号进行滤波处理,得到至少一路子信号,至少一路子信号中每一路子信号的频段不同,一般可以按照低频段、中频段、高频段和超高频段的规则,滤波处理得到四路子信号。增益调节模块接收到至少一路子信号,将至少一路子信号发送到增益调节模块,数字基带模块控制增益调节模块的增益调节幅度,增益调节模块根据增益调节幅度对至少一路子信号进行增益调节,得到输入信号,并将输入信号发送至通道选择模块,输入信号包括至少一路子输入信号,混频模块接收通道选择模块发送的输入信号, 并将输入信号的频段调制为基带频段,从而方便于第一采样量化通道的采样量化处理;信号合成模块接收通道选择模块发送的输入信号后,对输入信号的至少一路子输入信号进行合成,从而方便于第二采样量化通道的采样量化处理。
结合本申请第一方面第四实施方式,本申请第一方面第五实施方式中,所述滤波模块包括N个滤波器,所述增益调节模块包括N个增益调节单元,所述通道选择模块包括N个选择开关,所述混频模块包括N个混频器,
所述第一采样量化通道中低通滤波单元和低带宽模数转换单元的数量为均N个。
假设滤波模块具体包括N个滤波器,那么对原始信号进行滤波处理,得到N路子信号,而每一路子信号都要进行增益调节,因此,增益调节模块包括N个增益调节单元,对应到通道选择模块的通道选择功能,通道选择模块包括N个选择开关,在通道选择模块选择第一采样量化通道时,一路子信号通过一个选择开关输出到混频模块中的一个混频器,混频模块中混频器的数量为N个,而第一采样量化通道是分别对输入信号的每一路子输入信号进行采样量化处理的,那么第一采样量化通道中低通滤波单元和低带宽模数转换单元的数量为均N个。
本申请第二方面提供一种信号处理方法,应用于通信芯片结构,所述通信芯片结构包括数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道,所述第一采样量化通道用于采样量化处理预置窄带宽跨度信号,所述第二采样量化通道用于采用量化处理预置大带宽跨度信号,所述信号处理方法包括:
所述通道选择模块接收输入信号,所述输入信号为所述预置窄带宽跨度信号或所述预置大带宽跨度信号;
当所述数字基带模块检测到所述输入信号为所述预置窄带宽跨度信号时,所述数字基带模块向所述通道选择模块发送第一控制信号;
所述通道选择模块根据所述第一控制信号将所述输入信号发送至所述第一采样量化通道;
所述第一采样量化通道对所述输入信号进行采样量化处理;
当所述数字基带模块检测到所述输入信号为所述预置大带宽跨度信号时,所述数字基带模块向所述通道选择模块发送第二控制信号;
所述通道选择模块根据所述第二控制信号将所述输入信号发送至所述第二采样量化通道;
所述第二采样量化通道对所述输入信号进行采样量化处理。
通信芯片结构中包括数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道。其中,第一采样量化通道用于采样量化处理预置窄带宽跨度信号,预置窄带宽跨度信号具体可以是2G、3G、4G单载波(Single Carrier)和4G连续CA场景下的信号,以上场景下信号带宽跨度相对较窄,一般小于200MHz,因此预置窄带宽跨度信号的标准可以是预置窄带宽跨度小于200MHz;第二采样量化通道用于采用量化处理预置大带宽跨度信号,预置大带宽跨度信号具体可以是4G频带间非连续CA和5G场景下的信号,4G频带间非连续CA和5G场景下信号带宽跨度相对比较大,一定会大于预置窄带宽跨度信号。通道选择 模块接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号,当数字基带模块检测到输入信号为预置窄带宽跨度信号时,数字基带模块向通道选择模块发送第一控制信号,通道选择模块根据第一控制信号将输入信号发送至第一采样量化通道,第一采样量化通道对输入信号进行采样量化处理;当数字基带模块检测到输入信号为预置大带宽跨度信号时,数字基带模块向通道选择模块发送第二控制信号,通道选择模块根据第二控制信号将输入信号发送至第二采样量化通道,第二采样量化通道对输入信号进行采样量化处理。这样输入信号是预置窄带宽跨度信号时,第一采样量化通道就能对预置窄带宽跨度信号进行采样量化处理,而第二采样量化通道无需处理,这样与现有的第一种实现方式相比,功耗和性能不变;输入信号是预置大带宽跨度信号时,第二采样量化通道就能对预置大带宽跨度信号进行采样量化处理,而第一采样量化通道无需处理,与现有的第二种实现方式相比,无需支持2G场景所要求的高线性度要求,只需要支持大带宽输入,可以节省第二采样量化通道的功耗和面积。因此,通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少了通信芯片结构的功耗和面积。
结合本申请第二方面,本申请第二方面第一实施方式中,所述第一采样量化通道包括低通滤波单元和低带宽模数转换单元,
所述第一采样量化通道对所述输入信号进行采样量化处理,包括:
所述低通滤波单元对所述输入信号进行滤波处理;
所述低带宽模数转换单元对滤波处理后的所述输入信号进行采样量化处理。
由于第一采样量化通道是用于处理预置窄带宽跨度信号的,而预置窄带宽跨度信号具体可以是2G、3G、4G单载波和4G连续CA场景下的信号,那么第一采样量化通道需要包括低通滤波单元和低带宽模数转换单元,低通滤波单元对输入信号进行滤波处理,从而滤除干扰信号,低带宽模数转换单元对滤波处理后的输入信号进行采样量化处理。
结合本申请第一方面第一实施方式,本申请第一方面第二实施方式中,
所述低带宽模数转换单元为CT Sigma-delta ADC。
在具体实施时,由于采样技术和Σ-Δ调制技术,可以增加系统中数字电路的比例,减少模拟电路的比例,并且易于与数字系统实现单片集成,因为能够以较低的成本实现高精度的A/D变换器,那么使用CT Sigma-delta ADC作为低带宽模数转换单元可以作为首选。
结合本申请第二方面,本申请第二方面第三实施方式中,所述第二采样量化通道包括RFADC,
所述第二采样量化通道对所述输入信号进行采样量化处理,包括:
所述RFADC对所述输入信号进行采样量化处理。
由于第二采样量化通道处理的是预置大带宽跨度信号,那么第二采样量化通道具体可以使用RFADC,RFADC可以对几百MHz的信号带宽进行数字量化。
结合本申请第二方面、第二方面第一实施方式、第二方面第二实施方式或第二方面第三实施方式,本申请第二方面第四实施方式中,所述通信芯片结构还包括滤波模块、增益调节模块及混频模块,
所述通道选择模块接收输入信号之前,还包括:
所述滤波模块接收原始信号,并对所述原始信号进行滤波处理,得到至少一路子信号,所述至少一路子信号中每一路子信号的频段不同;
所述增益调节模块接收所述至少一路子信号;
所述数字基带模块向所述增益调节模块发送第三控制信号,所述第三控制信号用于控制所述增益调节模块的增益调节幅度;
所述增益调节模块根据所述增益调节幅度对所述至少一路子信号进行增益调节,得到输入信号,并将所述输入信号发送至所述通道选择模块,所述输入信号包括至少一路子输入信号。
以上第二方面的各实施例中,输入信号并非是直接得到,一般通信芯片结构获取到的是原始信号,在具体实施时,原始信号并非是直接可以用于采样量化的,因此通信芯片结构还包括滤波模块、增益调节模块及混频模块,通道选择模块接收输入信号之前,滤波模块接收原始信号,并对原始信号进行滤波处理,得到至少一路子信号,至少一路子信号中每一路子信号的频段不同,一般可以按照低频段、中频段、高频段和超高频段的规则,滤波处理得到四路子信号。增益调节模块接收至少一路子信号,数字基带模块向增益调节模块发送第三控制信号,第三控制信号用于控制增益调节模块的增益调节幅度,增益调节模块根据增益调节幅度对至少一路子信号进行增益调节,得到输入信号,并将输入信号发送至所述通道选择模块,输入信号包括至少一路子输入信号。
结合本申请第二方面第四实施方式,本申请第二方面第五实施方式中,所述通信芯片结构还包括混频模块,
所述第一采样量化通道对所述输入信号进行采样量化处理之前,还包括:
所述混频模块接收所述通道选择模块发送的所述输入信号,并将所述输入信号的频段调制为基带频段。
在第一采样量化通道对输入信号进行采样量化处理之前,由于输入信号并非与数字基带模块的基带频段一致,如果要进行采样量化处理,那么在此之前需要进行混频,具体可以是,混频模块接收通道选择模块发送的输入信号,并将输入信号的频段调制为基带频段。
结合本申请第二方面第四实施方式,本申请第二方面第六实施方式中,所述通信芯片结构还包括信号合成模块,
所述第二采样量化通道对所述输入信号进行采样量化处理之前,还包括
所述信号合成模块接收所述通道选择模块发送的所述输入信号,对所述输入信号的至少一路子输入信号进行合成。
在第二采样量化通道对输入信号进行采样量化处理之前,由于输入信号是包括多路子输入信号的,如果要进行采样量化处理,那么在此之前需要合成为一路信号,具体可以是,信号合成模块接收通道选择模块发送的输入信号,对输入信号的至少一路子输入信号进行合成。
附图说明
图1为本申请提供的一种现有的通信芯片结构示意图;
图2为本申请提供的另一种现有的通信芯片结构示意图;
图3为本申请提供的一个通信芯片结构的实施例结构示意图;
图4为本申请提供的又一个通信芯片结构的实施例结构示意图;
图5为本申请提供的再一个通信芯片结构的实施例结构示意图;
图6为本申请提供的通信芯片结构的具体实例的结构示意图;
图7为本申请提供的一个信号处理方法的实施例流程示意图。
具体实施方式
本申请实施例提供了一种信号处理方法及通信芯片结构,具有支持预置窄带宽跨度信号和预置大带宽跨度信号的采样处理通道,使得通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少通信芯片结构的功耗和面积。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本申请保护的范围。
通信终端需要支持2G、3G、4G以及未来5G的标准,对2G、3G、4G单载波以及4G连续多载波场景,信号在一个频段或者相邻频段里,在移动终端的芯片中大多采用CT Sigma-delta ADC用来做信号的采样量化处理。对4G频段间非连续CA和5G场景,芯片就需要用多个ADC来进行信号的采样量化。对于不同CA频段的信号的采样量化,第一种实现方式如图1所示,4个通道滤波器(Channel Filters),可以将原始信号分成四路频带信号,包括低频段信号(LB)、中频段信号(MB)、高频段信号(HB)和超高频段信号(UHB),每路信号通过增益调节模块(Gain Tuning)进行幅度放大,通过混频器(Mixer)将每路信号调制到基带频段,每路信号通过一个低通滤波器(Low Pass Filter,LPF)后,被一个CT Sigma-delta AD进行采样量化,频率综合器(Frequency Synthesizer)为Mixer提供本振时钟,Gain Tuning和LPF由DBB控制,锁相环(Phase Lock Loop,PLL)为CT Sigma-delta ADC提供工作时钟,最终数字基带(Digital Base Band,DBB)得到采样量化后的数据,CT Sigma-delta AD的数量是随通道滤波器数量的变化而变化的。但是随着无线通信下行吞吐需求越来越高,多个CT Sigma-delta AD已经遇到了芯片的芯片面积和功耗的瓶颈。第二种实现方式如图2所示,通过信号合成器(Adder)将四路信号合成为一路,被一个RFADC进行采样量化,Frequency Synthesizer为RFADC提供本振时钟。第二种实现方式相比第一种实现方式,在面积和功耗上都有优势,但是从目前学术界和工业界的RFADC发展情况看,既要能支持4G频段间非连续CA和5G场景的大带宽输入又要满足2G场景下高线性度要求的RFADC还不成熟。
为了解决以上的问题,请参阅图3所示,本申请实施例提供一种通信芯片结构,包括:
数字基带模块301、通道选择模块302、第一采样量化通道303及第二采样量化通道304,第一采样量化通道303用于采样量化处理预置窄带宽跨度信号,第二采样量化通道 304用于采用量化处理预置大带宽跨度信号;
第一采样量化通道303及第二采样量化通道304与通道选择模块302和数字基带模块301连接,通道选择模块302与数字基带模块301连接;
通道选择模块302,用于接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号;
数字基带模块301,用于当输入信号为预置窄带宽跨度信号时,控制通道选择模块302选择第一采样量化通道303;
数字基带模块301,还用于当输入信号为预置大带宽跨度信号时,控制通道选择模块302选择第二采样量化通道304;
通道选择模块302,还用于将输入信号发送至第一采样量化通道303或第二采样量化通道304,使得第一采样量化通道303或第二采样量化通道304采样量化处理输入信号。
本申请实施例中,通信芯片结构中包括数字基带模块301、通道选择模块302、第一采样量化通道303及第二采样量化通道304。其中,第一采样量化通道303用于采样量化处理预置窄带宽跨度信号,预置窄带宽跨度信号具体可以是2G、3G、4G单载波和4G连续CA场景下的信号,以上场景下信号带宽跨度相对较窄,一般小于200MHz,因此预置窄带宽跨度信号的标准可以是预置窄带宽跨度小于200MHz;第二采样量化通道304用于采用量化处理预置大带宽跨度信号,预置大带宽跨度信号具体可以是4G频带间非连续CA和5G场景下的信号,4G频带间非连续CA和5G场景下信号带宽跨度相对比较大,一定会大于预置窄带宽跨度信号。第一采样量化通道303及第二采样量化通道304与通道选择模块302和数字基带模块301连接,通道选择模块302与数字基带模块301连接,通道选择模块302接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号,数字基带模块301会根据输入信号所处的场景将输入信号分配到第一采样量化通道或者第二采样量化通道进行处理,具体的是当输入信号为预置窄带宽跨度信号时,数字基带模块301控制通道选择模块302选择第一采样量化通道303;当输入信号为预置大带宽跨度信号时,控制通道选择模块302选择第二采样量化通道304。通道选择模块302相当于选择开关,连接第一采样量化通道303或者第二采样量化通道304,将输入信号发送至第一采样量化通道303或第二采样量化通道304。这样输入信号是预置窄带宽跨度信号时,第一采样量化通道303就能对预置窄带宽跨度信号进行采样量化处理,而第二采样量化通道304无需处理,这样与现有的第一种实现方式相比,功耗和性能不变;输入信号是预置大带宽跨度信号时,第二采样量化通道304就能对预置大带宽跨度信号进行采样量化处理,而第一采样量化通道303无需处理,与现有的第二种实现方式相比,无需支持2G场景所要求的高线性度要求,只需要支持大带宽输入,可以节省第二采样量化通道的功耗和面积。因此,通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少了通信芯片结构的功耗和面积。
可选的,如图4所示,本申请的一些实施例中,第一采样量化通道303包括:
低通滤波单元401和低带宽模数转换单元402;
低通滤波单元401与通道选择模块302和低带宽模数转换单元402连接;
低通滤波单元401,用于对输入信号进行滤波处理;
低带宽模数转换单元402,用于对滤波处理后的输入信号进行采样量化处理。
本申请实施例中,由于第一采样量化通道303是用于处理预置窄带宽跨度信号的,而预置窄带宽跨度信号具体可以是2G、3G、4G单载波和4G连续CA场景下的信号,那么第一采样量化通道303需要包括低通滤波单元401和低带宽模数转换单元402,低通滤波单元401用于对输入信号进行滤波处理,从而滤除干扰信号,低带宽模数转换单元402用于对滤波处理后的输入信号进行采样量化处理。
需要说明的是,在具体实施时,由于采样技术和Σ-Δ调制技术,可以增加系统中数字电路的比例,减少模拟电路的比例,并且易于与数字系统实现单片集成,因为能够以较低的成本实现高精度的A/D变换器,那么使用CT Sigma-delta ADC作为低带宽模数转换单元402可以作为首选。
可选的,如图4所示,本申请的一些实施例中,第二采样量化通道303包括:
RFADC403,用于对输入信号进行采样量化处理。
本申请实施例中,由于第二采样量化通道303处理的是预置大带宽跨度信号,那么第二采样量化通道具体可以使用RFADC,RFADC可以对几百MHz的信号带宽进行数字量化。
可选的,如图5所示,本申请的一些实施例中,通信芯片结构还包括:
滤波模块501、增益调节模块502、混频模块503及信号合成模块504;
滤波模块501与增益调节模块502连接,增益调节模块502与数字基带模块301及通道选择模块302连接,混频模块503处于通道选择模块302和第一采样量化通道304之间,信号合成模块504处于通道选择模块302和第二采样量化通道303之间;
滤波模块501,用于接收原始信号,并对原始信号进行滤波处理,得到至少一路子信号,至少一路子信号中每一路子信号的频段不同;
增益调节模块502,用于接收至少一路子信号;
数字基带模块301,还用于控制增益调节模块502的增益调节幅度;
增益调节模块502,还用于根据增益调节幅度对至少一路子信号进行增益调节,得到输入信号,并将输入信号发送至通道选择模块302,输入信号包括至少一路子输入信号;
混频模块503,用于接收通道选择模块302发送的输入信号,并将输入信号的频段调制为基带频段;
信号合成模块504,用于接收通道选择模块302发送的输入信号,对输入信号的至少一路子输入信号进行合成。
本申请实施例中,输入信号是直接可以被第一采样量化通道和第二采样量化通道进行采样量化处理的信号,在具体实施时,原始信号并非是直接可以用于采样量化的,因此通信芯片结构还包括滤波模块501、增益调节模块502、混频模块503及信号合成模块504,滤波模块501接收原始信号,并对原始信号进行滤波处理,得到至少一路子信号,至少一路子信号中每一路子信号的频段不同,一般可以按照低频段、中频段、高频段和超高频段的规则,滤波处理得到四路子信号。增益调节模块502接收到至少一路子信号,将至少一路子信号发送到通道选择模块302,数字基带模块301控制增益调节模块502的增益调节 幅度,增益调节模块根据增益调节幅度对至少一路子信号进行增益调节,得到输入信号,并将输入信号发送至通道选择模块302,输入信号包括至少一路子输入信号,混频模块503接收通道选择模块发送的输入信号,并将输入信号的频段调制为基带频段,从而方便于第一采样量化通道303的采样量化处理;信号合成模块504接收通道选择模块发送的输入信号后,对输入信号的至少一路子输入信号进行合成,从而方便于第二采样量化通道304的采样量化处理。
可选的,如图5所示,本申请的一些实施例中,滤波模块501包括N个滤波器,增益调节模块502包括N个增益调节单元,通道选择模块302包括N个选择开关,混频模块503包括N个混频器,
第一采样量化通道303中低通滤波单元和低带宽模数转换单元的数量为均N个。
本申请实施例中,假设滤波模块501具体包括N个滤波器,那么对原始信号进行滤波处理,得到N路子信号,而每一路子信号都要进行增益调节,因此,增益调节模块502包括N个增益调节单元,对应到通道选择模块303的通道选择功能,通道选择模块303包括N个选择开关,在通道选择模块303选择第一采样量化通道时,一路子信号通过一个选择开关输出到混频模块503中的一个混频器,混频模块中混频器的数量为N个,而第一采样量化通道是分别对输入信号的每一路子输入信号进行采样量化处理的,那么第一采样量化通道中低通滤波单元和低带宽模数转换单元的数量为均N个。
如图6所示,为本申请的通信芯片结构的一个具体实例的结构示意图,原始信号经过滤波模块(Channel Filters),分成四路频带信号,低频段信号(LB)、中频段信号(MB)、高频段信号(HB)和超高频段信号(UHB);在数字基带模块(DBB)控制下,每路信号经过增益调节模块(Gain Tuning)以后,其幅度会放大到所需的大小;通过通道选择模块(DeMux)对信号进行分场景处理:(1)、对于2G、3G、4G单载波和4G连续CA信号场景,信号先会被混频模块(Mixer)调制到基带频段,然后会被选择进入第一采样量化通道,在此通道,信号通过LPF后,被CT Sigma-delta ADC进行量化,在此场景下,信号合成模块(Adder)和第二采样量化通道不工作以节省功耗;(2)、对于4G频带间非连续CA场景,信号会被选择进入第二采样量化通道,在此通道之前,来自多路不同信号先被Adder处理成一路信号,然后此信号送给RFADC进行量化,在此场景下,Mixer和第一采样量化通道不工作以节省功耗。Frequency Synthesizer为Mixer和RFADC分别提供本振时钟和采样时钟。增益调节模块、通道选择模块以及Frequency Synthesizer都由DBB输出信号控制。PLL为CT Sigma-delta ADC提供工作时钟。
需要说明的是,图6中Gain Tuning、DeMux和Adder可以合在一起设计,优化结构和性能。图6中LPF可以融合在CT sigma-delta ADC中。
上述实施例中介绍了本申请的通信芯片结构,下面对应用于该通信芯片结构的信号处理方法进行说明。
请参阅图7,本申请提供一种信号处理方法,应用于图3所示的通信芯片结构中,包 括:
701、通道选择模块接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号;
本实施例中,已知通信芯片结构中包括数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道。其中,第一采样量化通道用于采样量化处理预置窄带宽跨度信号,预置窄带宽跨度信号具体可以是2G、3G、4G单载波和4G连续CA场景下的信号,以上场景下信号带宽跨度相对较窄,一般小于200MHz,因此预置窄带宽跨度信号的标准可以是预置窄带宽跨度小于200MHz;第二采样量化通道用于采用量化处理预置大带宽跨度信号,预置大带宽跨度信号具体可以是4G频带间非连续CA和5G场景下的信号,4G频带间非连续CA和5G场景下信号带宽跨度相对比较大,一定会大于预置窄带宽跨度信号。通道选择模块接收输入信号,输入信号为预置窄带宽跨度信号或预置大带宽跨度信号,
702、当数字基带模块检测到输入信号为预置窄带宽跨度信号时,数字基带模块向通道选择模块发送第一控制信号;
本实施例中,当数字基带模块检测到输入信号为预置窄带宽跨度信号时,数字基带模块向通道选择模块发送第一控制信号。第一控制信号用于控制通道选择模块选择第一采样量化通道。
703、通道选择模块根据第一控制信号将输入信号发送至第一采样量化通道;
本实施例中,通道选择模块接收到数字基带模块发送的第一控制信号之后,根据第一控制信号将输入信号发送至第一采样量化通道。
704、第一采样量化通道对输入信号进行采样量化处理;
705、当数字基带模块检测到输入信号为预置大带宽跨度信号时,数字基带模块向通道选择模块发送第二控制信号;
本实施例中,当数字基带模块检测到输入信号为预置大带宽跨度信号时,数字基带模块向通道选择模块发送第二控制信号。第二控制信号用于控制通道选择模块选择第二采样量化通道。
706、通道选择模块根据第二控制信号将输入信号发送至第二采样量化通道;
本实施例中,通道选择模块接收到数字基带模块发送的第二控制信号之后,根据第二控制信号将输入信号发送至第二采样量化通道。
707、第二采样量化通道对输入信号进行采样量化处理。
本申请实施例中,输入信号是预置窄带宽跨度信号时,第一采样量化通道就能对预置窄带宽跨度信号进行采样量化处理,而第二采样量化通道无需处理,这样与现有的第一种实现方式相比,功耗和性能不变;输入信号是预置大带宽跨度信号时,第二采样量化通道就能对预置大带宽跨度信号进行采样量化处理,而第一采样量化通道无需处理,与现有的第二种实现方式相比,无需支持2G场景所要求的高线性度要求,只需要支持大带宽输入,可以节省第二采样量化通道的功耗和面积。因此,通信芯片结构既能支持4G频带间非连续CA和5G场景下大带宽输入,又能满足2G场景下的高线性度要求,同时减少了通信芯片结构的功耗和面积。
可选的,本申请的一些实施例中,第一采样量化通道包括低通滤波单元和低带宽模数转换单元,
第一采样量化通道对输入信号进行采样量化处理,包括:
低通滤波单元对输入信号进行滤波处理;
低带宽模数转换单元对滤波处理后的输入信号进行采样量化处理。
本申请实施例中,由于第一采样量化通道是用于处理预置窄带宽跨度信号的,而预置窄带宽跨度信号具体可以是2G、3G、4G单载波和4G连续CA场景下的信号,那么第一采样量化通道需要包括低通滤波单元和低带宽模数转换单元,低通滤波单元对输入信号进行滤波处理,从而滤除干扰信号,低带宽模数转换单元对滤波处理后的输入信号进行采样量化处理。
可选的,本申请的一些实施例中,
低带宽模数转换单元为CT Sigma-delta ADC。
本申请实施例中,由于采样技术和Σ-Δ调制技术,可以增加系统中数字电路的比例,减少模拟电路的比例,并且易于与数字系统实现单片集成,因为能够以较低的成本实现高精度的A/D变换器,那么使用CT Sigma-delta ADC作为低带宽模数转换单元可以作为首选。
可选的,本申请的一些实施例中,第二采样量化通道包括RFADC,
第二采样量化通道对输入信号进行采样量化处理,包括:
RFADC对输入信号进行采样量化处理。
本申请实施例中,由于第二采样量化通道处理的是预置大带宽跨度信号,那么第二采样量化通道具体可以使用RFADC,RFADC可以对几百MHz的信号带宽进行数字量化。
可选的,本申请的一些实施例中,通信芯片结构还包括滤波模块、增益调节模块及混频模块,
通道选择模块接收输入信号之前,还包括:
滤波模块接收原始信号,并对原始信号进行滤波处理,得到至少一路子信号,至少一路子信号中每一路子信号的频段不同;
增益调节模块接收至少一路子信号;
数字基带模块向增益调节模块发送第三控制信号,第三控制信号用于控制增益调节模块的增益调节幅度;
增益调节模块根据增益调节幅度对至少一路子信号进行增益调节,得到输入信号,并将输入信号发送至通道选择模块,输入信号包括至少一路子输入信号。
本申请实施例中,输入信号并非是直接得到,一般通信芯片结构获取到的是原始信号,在具体实施时,原始信号并非是直接可以用于采样量化的,因此通信芯片结构还包括滤波模块、增益调节模块及混频模块,通道选择模块接收输入信号之前,滤波模块接收原始信号,并对原始信号进行滤波处理,得到至少一路子信号,至少一路子信号中每一路子信号的频段不同,一般可以按照低频段、中频段、高频段和超高频段的规则,滤波处理得到四路子信号。增益调节模块接收至少一路子信号,数字基带模块向增益调节模块发送第三控制信号,第三控制信号用于控制增益调节模块的增益调节幅度,增益调节模块根据增益调 节幅度对至少一路子信号进行增益调节,得到输入信号,并将输入信号发送至通道选择模块,输入信号包括至少一路子输入信号。
可选的,本申请的一些实施例中,通信芯片结构还包括混频模块,
第一采样量化通道对输入信号进行采样量化处理之前,还包括:
混频模块接收通道选择模块发送的输入信号,并将输入信号的频段调制为基带频段。
本申请实施例中,在第一采样量化通道对输入信号进行采样量化处理之前,由于输入信号并非与数字基带模块的基带频段一致,如果要进行采样量化处理,那么在此之前需要进行混频,具体可以是,混频模块接收通道选择模块发送的输入信号,并将输入信号的频段调制为基带频段。
可选的,本申请的一些实施例中,通信芯片结构还包括信号合成模块,
第二采样量化通道对输入信号进行采样量化处理之前,还包括
信号合成模块接收通道选择模块发送的输入信号,对输入信号的至少一路子输入信号进行合成。
在第二采样量化通道对输入信号进行采样量化处理之前,由于输入信号是包括多路子输入信号的,如果要进行采样量化处理,那么在此之前需要合成为一路信号,具体可以是,信号合成模块接收通道选择模块发送的输入信号,对输入信号的至少一路子输入信号进行合成。
本申请实施例中,在第一采样量化通道对输入信号进行采样量化处理之前,由于输入信号并非与数字基带模块的基带频段一致,如果要进行采样量化处理,那么在此之前需要进行混频,具体可以是,混频模块接收通道选择模块发送的输入信号,并将输入信号的频段调制为基带频段。
本申请还提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行以上实施例所描述的信号处理方法。
本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行以上实施例所描述的信号处理方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如, DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种通信芯片结构,其特征在于,包括:
    数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道,所述第一采样量化通道用于采样量化处理预置窄带宽跨度信号,所述第二采样量化通道用于采用量化处理预置大带宽跨度信号;
    所述第一采样量化通道及所述第二采样量化通道与所述通道选择模块和所述数字基带模块连接,所述通道选择模块与所述数字基带模块连接;
    所述通道选择模块,用于接收输入信号,所述输入信号为所述预置窄带宽跨度信号或所述预置大带宽跨度信号;
    所述数字基带模块,用于当所述输入信号为所述预置窄带宽跨度信号时,控制所述通道选择模块选择所述第一采样量化通道;
    所述数字基带模块,还用于当所述输入信号为所述预置大带宽跨度信号时,控制所述通道选择模块选择所述第二采样量化通道;
    所述通道选择模块,还用于将所述输入信号发送至所述第一采样量化通道或所述第二采样量化通道,使得所述第一采样量化通道或所述第二采样量化通道采样量化处理所述输入信号。
  2. 根据权利要求1所述的通信芯片结构,其特征在于,所述第一采样量化通道包括:
    低通滤波单元和低带宽模数转换单元;
    所述低通滤波单元与所述通道选择模块和所述低带宽模数转换单元连接;
    所述低通滤波单元,用于对所述输入信号进行滤波处理;
    所述低带宽模数转换单元,用于对滤波处理后的所述输入信号进行采样量化处理。
  3. 根据权利要求2所述的通信芯片结构,其特征在于,
    所述低带宽模数转换单元为连续时间求和差分模数转换器CT Sigma-delta ADC。
  4. 根据权利要求1所述的通信芯片结构,其特征在于,所述第二采样量化通道包括:
    射频模数转换器RFADC,用于对所述输入信号进行采样量化处理。
  5. 根据权利要求1至4中任一项所述的通信芯片结构,其特征在于,所述通信芯片结构还包括:
    滤波模块、增益调节模块、混频模块及信号合成模块;
    所述滤波模块与所述增益调节模块连接,所述增益调节模块与所述数字基带模块及所述通道选择模块连接,所述混频模块处于所述通道选择模块和所述第一采样量化通道之间,所述信号合成模块处于所述通道选择模块和所述第二采样量化通道之间;
    所述滤波模块,用于接收原始信号,并对所述原始信号进行滤波处理,得到至少一路子信号,所述至少一路子信号中每一路子信号的频段不同;
    所述增益调节模块,用于接收所述至少一路子信号;
    所述数字基带模块,还用于控制所述增益调节模块的增益调节幅度;
    所述增益调节模块,还用于根据所述增益调节幅度对所述至少一路子信号进行增益调节,得到输入信号,并将所述输入信号发送至所述通道选择模块,所述输入信号包括至少 一路子输入信号;
    所述混频模块,用于接收所述通道选择模块发送的所述输入信号,并将所述输入信号的频段调制为基带频段;
    所述信号合成模块,用于接收所述通道选择模块发送的所述输入信号,对所述输入信号的至少一路子输入信号进行合成。
  6. 根据权利要求5所述的通信芯片结构,其特征在于,所述滤波模块包括N个滤波器,所述增益调节模块包括N个增益调节单元,所述通道选择模块包括N个选择开关,所述混频模块包括N个混频器,
    所述第一采样量化通道中低通滤波单元和低带宽模数转换单元的数量为均N个。
  7. 一种信号处理方法,其特征在于,应用于通信芯片结构,所述通信芯片结构包括数字基带模块、通道选择模块、第一采样量化通道及第二采样量化通道,所述第一采样量化通道用于采样量化处理预置窄带宽跨度信号,所述第二采样量化通道用于采用量化处理预置大带宽跨度信号,所述信号处理方法包括:
    所述通道选择模块接收输入信号,所述输入信号为所述预置窄带宽跨度信号或所述预置大带宽跨度信号;
    当所述数字基带模块检测到所述输入信号为所述预置窄带宽跨度信号时,所述数字基带模块向所述通道选择模块发送第一控制信号;
    所述通道选择模块根据所述第一控制信号将所述输入信号发送至所述第一采样量化通道;
    所述第一采样量化通道对所述输入信号进行采样量化处理;
    当所述数字基带模块检测到所述输入信号为所述预置大带宽跨度信号时,所述数字基带模块向所述通道选择模块发送第二控制信号;
    所述通道选择模块根据所述第二控制信号将所述输入信号发送至所述第二采样量化通道;
    所述第二采样量化通道对所述输入信号进行采样量化处理。
  8. 根据权利要求7所述的信号处理方法,其特征在于,所述第一采样量化通道包括低通滤波单元和低带宽模数转换单元,
    所述第一采样量化通道对所述输入信号进行采样量化处理,包括:
    所述低通滤波单元对所述输入信号进行滤波处理;
    所述低带宽模数转换单元对滤波处理后的所述输入信号进行采样量化处理。
  9. 根据权利要求8所述的信号处理方法,其特征在于,
    所述低带宽模数转换单元为连续时间求和差分模数转换器CT Sigma-delta ADC。
  10. 根据权利要求7所述的信号处理方法,其特征在于,所述第二采样量化通道包括射频模数转换器RFADC,
    所述第二采样量化通道对所述输入信号进行采样量化处理,包括:
    所述RFADC对所述输入信号进行采样量化处理。
  11. 根据权利要求7至10中任一项所述的信号处理方法,其特征在于,所述通信芯片 结构还包括滤波模块、增益调节模块及混频模块,
    所述通道选择模块接收输入信号之前,还包括:
    所述滤波模块接收原始信号,并对所述原始信号进行滤波处理,得到至少一路子信号,所述至少一路子信号中每一路子信号的频段不同;
    所述增益调节模块接收所述至少一路子信号;
    所述数字基带模块向所述增益调节模块发送第三控制信号,所述第三控制信号用于控制所述增益调节模块的增益调节幅度;
    所述增益调节模块根据所述增益调节幅度对所述至少一路子信号进行增益调节,得到输入信号,并将所述输入信号发送至所述通道选择模块,所述输入信号包括至少一路子输入信号。
  12. 根据权利要求11所述的信号处理方法,其特征在于,所述通信芯片结构还包括混频模块,
    所述第一采样量化通道对所述输入信号进行采样量化处理之前,还包括:
    所述混频模块接收所述通道选择模块发送的所述输入信号,并将所述输入信号的频段调制为基带频段。
  13. 根据权利要求11所述的信号处理方法,其特征在于,所述通信芯片结构还包括信号合成模块,
    所述第二采样量化通道对所述输入信号进行采样量化处理之前,还包括
    所述信号合成模块接收所述通道选择模块发送的所述输入信号,对所述输入信号的至少一路子输入信号进行合成。
PCT/CN2018/097477 2017-07-31 2018-07-27 一种信号处理方法及通信芯片结构 WO2019024788A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/750,200 US10904054B2 (en) 2017-07-31 2020-01-23 Signal processing method and communications chip structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710640769.3 2017-07-31
CN201710640769.3A CN109327291B (zh) 2017-07-31 2017-07-31 一种信号处理方法及通信芯片结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/750,200 Continuation US10904054B2 (en) 2017-07-31 2020-01-23 Signal processing method and communications chip structure

Publications (1)

Publication Number Publication Date
WO2019024788A1 true WO2019024788A1 (zh) 2019-02-07

Family

ID=65233406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097477 WO2019024788A1 (zh) 2017-07-31 2018-07-27 一种信号处理方法及通信芯片结构

Country Status (3)

Country Link
US (1) US10904054B2 (zh)
CN (2) CN113315537B (zh)
WO (1) WO2019024788A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112601220A (zh) * 2021-03-04 2021-04-02 广州志胜游艺设备有限公司 一种选择器信号传输的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197068A1 (en) * 2004-03-08 2005-09-08 Gumm Linley F. Simultaneous ACLR measurement
WO2006096217A2 (en) * 2004-12-21 2006-09-14 Raytheon Company Configurable filter and receiver incorporating same
US20080018427A1 (en) * 2006-07-19 2008-01-24 Texas Instruments Incorporated Apparatus for and method of reducing power consumption in a cable modem
US20130147521A1 (en) * 2011-12-12 2013-06-13 Curtis Ling Method and apparatus for an energy-efficient receiver

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101228A (en) * 1997-05-22 2000-08-08 Conexant Systems, Inc. Receiver of wideband digital signal in the presence of a narrow band interfering signal
US6005506A (en) * 1997-12-09 1999-12-21 Qualcomm, Incorporated Receiver with sigma-delta analog-to-digital converter for sampling a received signal
US6411653B1 (en) * 1999-07-16 2002-06-25 Lucent Technologies Inc. Cascaded polyphase DFT-filter band for a wireless telecommunications system
US7890423B2 (en) * 2003-12-08 2011-02-15 Capital One Financial Corporation Methods and systems for adjusting account terms based on purchase transaction information
US7620381B2 (en) * 2006-05-21 2009-11-17 Realtek Semiconductor Corp. Tri-state chopper for frequency conversion
JP4973206B2 (ja) * 2007-01-16 2012-07-11 セイコーエプソン株式会社 測位装置、電子機器、フィルタ通過帯域可変方法、プログラム及び記憶媒体
US8224274B2 (en) * 2007-12-28 2012-07-17 Broadcom Corporation Scalable architecture for satellite channel switch
DE102010001147B4 (de) * 2010-01-22 2016-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfrequenzbandempfänger auf Basis von Pfadüberlagerung mit Regelungsmöglichkeiten
EP2555481B1 (en) * 2010-03-31 2018-02-14 Hytera Communications Corp., Ltd. Method and system for adaptively identifying signal bandwidth
CN104935371A (zh) * 2015-07-07 2015-09-23 江苏技睿通信科技有限公司 一种高速率ofdm无线中继传输系统
CN106533518A (zh) * 2016-10-31 2017-03-22 东南大学 一种复用模拟基带单元的多通道无线电接收机和发射机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197068A1 (en) * 2004-03-08 2005-09-08 Gumm Linley F. Simultaneous ACLR measurement
WO2006096217A2 (en) * 2004-12-21 2006-09-14 Raytheon Company Configurable filter and receiver incorporating same
US20080018427A1 (en) * 2006-07-19 2008-01-24 Texas Instruments Incorporated Apparatus for and method of reducing power consumption in a cable modem
US20130147521A1 (en) * 2011-12-12 2013-06-13 Curtis Ling Method and apparatus for an energy-efficient receiver

Also Published As

Publication number Publication date
US10904054B2 (en) 2021-01-26
US20200162294A1 (en) 2020-05-21
CN113315537A (zh) 2021-08-27
CN109327291A (zh) 2019-02-12
CN113315537B (zh) 2022-04-08
CN109327291B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
KR101323756B1 (ko) 가변 디지털-대-아날로그 변환기(dac) 샘플링 레이트들을 이용하는 간섭 감소
CN107026648B (zh) 带通模数转换器、接收电路、通信装置及模数转换方法
JPH09510075A (ja) スプリット周波数バンド信号デジタイザおよびその方法
US20090072921A1 (en) Polar Modulation Without Analog Filtering
KR20110073226A (ko) 다중 모드 광대역 무선통신 장치 및 방법
US10790849B2 (en) RFDAC (RF (Radio Frequency) DAC (Digital-to-Analog Converter)) with improved efficiency and output power
WO2017143926A1 (en) Signal processing arrangement for a transmitter
US10637523B2 (en) Methods for avoiding inter-modulation distortion and communications apparatuses utilizing the same
US9088298B2 (en) Mixed mode time interleaved digital-to-analog converter for radio-frequency applications
US10333758B2 (en) Method and apparatus for converting analog radio frequency (RF) signals to the digital domain in a multiband and multicarrier wireless communication system
WO2019024788A1 (zh) 一种信号处理方法及通信芯片结构
JPWO2016174805A1 (ja) 無線アクセスシステム及びその制御方法
JP2006505196A (ja) 信号の周波数を変換するためのシステムおよび方法
US20230155615A1 (en) Integrated high speed wireless transceiver
US10784891B2 (en) Delta-sigma loop filters with input feedforward
KR20100042817A (ko) 다단계 채널 필터를 가지는 무선 통신 시스템의 송수신 장치
CN114846776B (zh) 无线通信装置及信号处理方法
JP6661659B2 (ja) アクティブフィードバックを用いたベースバンドフィルタのための線形化方式
US20140286458A1 (en) Receiving apparatus and receiving method
US11770129B2 (en) Pipelined analog-to-digital conversion
US11431424B2 (en) Software-defined configurable cloud-based RF test device and method thereof
US10187017B2 (en) Clocking scheme in nonlinear systems for distortion improvement
KR20240071845A (ko) 위상 고정 루프를 이용한 초고속 데이터 송수신용 트랜스미터
KR101156130B1 (ko) 디지털-아날로그 변환기를 이용한 무선 송신 장치 및 그 방법
KR20100063638A (ko) 디지털 집약형 rf 수신장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842351

Country of ref document: EP

Kind code of ref document: A1