WO2019024337A1 - 一种基于光电感应的隔空手势识别方法及其控制装置 - Google Patents

一种基于光电感应的隔空手势识别方法及其控制装置 Download PDF

Info

Publication number
WO2019024337A1
WO2019024337A1 PCT/CN2017/112524 CN2017112524W WO2019024337A1 WO 2019024337 A1 WO2019024337 A1 WO 2019024337A1 CN 2017112524 W CN2017112524 W CN 2017112524W WO 2019024337 A1 WO2019024337 A1 WO 2019024337A1
Authority
WO
WIPO (PCT)
Prior art keywords
gesture
image
gesture recognition
photoelectric
image processing
Prior art date
Application number
PCT/CN2017/112524
Other languages
English (en)
French (fr)
Inventor
曾德智
肖永贵
符震宙
Original Assignee
深圳市汇春科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇春科技股份有限公司 filed Critical 深圳市汇春科技股份有限公司
Publication of WO2019024337A1 publication Critical patent/WO2019024337A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the invention relates to the field of human-computer interaction, in particular to a photoelectric gesture-based gesture recognition method and a control device thereof.
  • Human-computer interaction (Human-Computer Interaction, referred to as HCI), is a major technological change in the perception layer (or terminal layer) of the information technology architecture. Under the two-wheel drive of technology and demand, human-computer interaction technology has developed rapidly. From the early development of mouse and keyboard to new human-computer interaction devices such as touch sensing, speech recognition, image recognition and gesture recognition control, the user experience has been significantly improved. .
  • Gesture interaction is the use of techniques such as computer graphics to identify a person's body language and translate it into commands to operate the device.
  • Gesture communication is a human instinct. Before you learn language and words, you can use body language to communicate with people.
  • the main components of the gesture interaction system people, gesture input devices, gesture analysis recognition, and operated terminal device objects.
  • Gesture recognition control can be applied to smart home, smart wear, automotive electronics, medical equipment, children's education, virtual reality and other fields.
  • Gesture recognition methods can be divided into two types based on data gloves and machine vision-based technologies.
  • Data gloves can be used to accurately sense and recognize the small movements of the hands, but special data gloves are required to be used.
  • the method is troublesome and the user experience is very bad.
  • the method of gesture recognition based on machine vision requires the hand image to be closer to the image sensor in order to obtain an image image with sufficient recognition processing, but this method has higher requirements for ambient illumination. .
  • the traditional gesture recognition process requires multiple complex steps and processes such as gesture modeling, gesture segmentation, and gesture analysis.
  • Gesture recognition can be subdivided into two types: static gesture recognition and dynamic gesture recognition.
  • the static gesture corresponds to a point in the gesture model parameter space
  • the dynamic gesture corresponds to a trajectory in the gesture model space, so the time and space relationship is involved.
  • different users may have rate differences, trajectory differences, proficiency differences, etc. when performing gestures, which causes the gesture modeling trajectory to cause nonlinear fluctuations on the time axis, and this non- The elimination of linear fluctuations is very difficult and complicated, so the traditional dynamic recognition rate based on two-dimensional images is generally not high enough.
  • an object of the present invention is to provide an air gap gesture recognition method based on photoelectric induction and a control device therefor.
  • the invention provides a method for identifying an empty space gesture based on photoelectric induction, comprising the following steps:
  • the corresponding operation instruction is output to the terminal device.
  • the method further includes driving the infrared light emitting diode to perform gesture signal detection.
  • the method further comprises: eliminating the influence of the external environment on the gesture of the gap by collecting the difference in the intensity of the photosensitive image between the on and off states of the infrared light emitting diode.
  • the gesture image includes at least one of a forward movement operation, a backward movement operation, a left movement operation, a right movement operation, an up movement operation, a down movement operation, and a flapping operation.
  • the method further includes performing a corresponding operation when the relevant machine/power-on gesture is detected.
  • the present invention further provides a photoelectric gesture-based gesture recognition control device, which is applicable to the method for identifying an air gap gesture, comprising: an image acquisition module, an image processing module, an MCU, an infrared light emitting diode, An output end of the image acquisition module is connected to an input end of the image processing module, an output end of the image processing module is connected to an input end of the MCU, and the MCU is connected to the infrared light emitting diode.
  • the image acquisition module includes a photoelectric image sensor, and an output end of the photoelectric image sensor is connected to an input end of the image processing module.
  • the infrared light emitting diode can be placed around the device for conveniently collecting gesture signals of various places.
  • the present invention also provides a photoelectric gesture-based gesture recognition control device, comprising:
  • An optoelectronic acquisition module configured to perform steps to acquire an image of the gap gesture by photoelectric induction
  • Processing an identification module configured to perform step analysis on the gesture image processing, and complete gesture recognition
  • the output control module is configured to execute the step to output a corresponding operation instruction to the terminal device.
  • the invention has the beneficial effects that the photoelectric sensing-based space-intercept gesture recognition method and the control device thereof are provided, and the user gesture signal is collected by using the photoelectric sensor and processed to be output to the device for corresponding operation, thereby realizing the gesture of empty space.
  • the non-contact human-computer interaction mode of the identification and control application eliminates the cumbersome configuration and complex processing of human-computer interaction, reduces the interference of external environmental factors, improves the detection sensitivity, improves the user experience, and enhances the gesture recognition of the space. The practicality and reliability of the treatment.
  • the scheme has simple structure, few peripheral components, low standby power consumption, high detection sensitivity, good experience and practicability, and is convenient for secondary development and application of customers.
  • the invention integrates gesture recognition and application control internally, and the user does not need to add additional single-chip microcomputer and complicated software algorithm processing, and includes programming space, and the user can develop personalized design and control scheme according to requirements, which is a complete function of gesture recognition. solution.
  • FIG. 1 is a schematic diagram of an air gap gesture recognition apparatus according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the connection of device modules according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing movements of front, rear, left, and right of the gesture of space-intercepting according to the third embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the upper and lower movements of the gesture recognition of the space gap according to the fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram of 3D movement of the gap gesture recognition according to the fifth embodiment of the present invention.
  • Figure 6 is a flow chart showing the flow control of the sixth embodiment of the present invention.
  • the invention provides a photoelectric sensing-based gesture recognition method and a control device thereof, and realizes a non-contact human-computer interaction mode for the gesture recognition and control application, which can be applied to an integrated circuit chip and a gesture recognition control module. Group and other electronic product applications.
  • the gesture chip drives the infrared light emitting diode to emit infrared light.
  • the gesture chip completes the photoelectric conversion. , digital processing, and application control operations.
  • the invention provides an air gap gesture recognition control device based on photoelectric induction, comprising: an image acquisition module, an image processing module, an MCU, an infrared light emitting diode, and referring to FIG. 2, an output end of the image acquisition module and an input of an image processing module The end of the image processing module is connected to the input end of the MCU, and the MCU is connected to the infrared light emitting diode.
  • the image acquisition module includes a photoelectric image sensor, and an output end of the photoelectric image sensor is coupled to an input end of the image processing module.
  • the infrared light emitting diode can be placed around the device for conveniently collecting gesture signals of various places.
  • the image processing module of the solution can be a separate module, which can also be analyzed by the MCU.
  • the gesture chip integrates a photoelectric sensor, an image processing module, an MCU, etc., and the internal function module is as shown in the figure, which realizes rapid detection and recognition of the gesture movement, signal output indication, and terminal application control.
  • the control device may further include a storage module such as a ROM, a SARM memory, etc., and the storage module is connected to the MCU.
  • a storage module such as a ROM, a SARM memory, etc.
  • the control device may also include a clock module, pulse width modulation, and the like.
  • the photoelectric image sensor is a photosensitive element for acquiring a gesture, converts an image formed by the subject through the lens into an electronic image, and works by a signal conversion process to form a digital signal.
  • the gesture moves, its movement trajectory is recorded as a set of coherent images.
  • the image information is transmitted to an image processing/analysis unit (DSP, ie, a digital microprocessor), and the DSP unit analyzes and processes a series of images taken on the moving track, and features on the images. The change in point position is analyzed to determine the moving direction, speed, and position of the object. Then, the motion data is transmitted to the MCU micro processing unit to perform the gesture recognition and application control of the terminal device.
  • DSP image processing/analysis unit
  • Photosensitive image phase difference technology In the process of gesture recognition in the gap, the gesture chip switch controls the infrared light emitting diode, and when the infrared light emitting diode is turned off, the intensity of the photosensitive image for detecting the ambient light is collected; when the infrared light emitting diode is turned on, the collecting environment The light and the intensity of the photosensitive image with the hand or object are calculated, and the difference between the photosensitive images before and after the infrared light-emitting diode switch is turned on is calculated, that is, the interference and influence of the ambient light on the gesture of the space can be eliminated by the phase difference technology of the photosensitive image.
  • the gesture chip can enter the sleep mode, reduce the working current and save power by adjusting the internal working module and the LED control circuit.
  • FIG. 3 it is a schematic diagram of the movement of the front, rear, left and right of the gesture recognition according to the third embodiment of the present invention.
  • the gesture recognition chip can detect the change of the intensity of the photosensitive image when the infrared light emitting diode encounters the hand or the object, and can recognize the direction and speed of the gesture movement when the hand or the object moves in a direction parallel to the gesture device directly, such as “pre Move, Move Back, Move Left, Move Right, and How Fast the Gesture Moves.
  • an action state in which the gesture is approaching such as "upward movement”, “downward movement”, “beating”, and the like can be recognized.
  • the gesture chip can detect the dwell state and the dwell height of the hand or object.
  • a schematic diagram of the 3D of the space recognition of the gesture device is shown in FIG. 5.
  • FIG. 6 there is shown a flow control diagram of a sixth embodiment of the present invention.
  • the invention provides a method for identifying an empty space gesture based on photoelectric induction, comprising the following steps:
  • the corresponding operation instruction is output to the terminal device.
  • the method further includes driving the infrared light emitting diode to perform gesture signal detection.
  • the gesture signal is detected, the infrared light emitting diode is driven to emit a gesture image.
  • the method further includes eliminating the influence of the external environment on the gesture recognition by collecting the difference in the intensity of the photosensitive image between the on and off states of the infrared light emitting diode.
  • the gesture image includes at least one of a forward movement operation, a backward movement operation, a left movement operation, a right movement operation, an up movement operation, a down movement operation, and a flapping operation.
  • the method further includes performing a corresponding operation when the relevant machine/power-on gesture is detected.
  • the gesture device After the gesture device is initialized and configured, the gesture device is in a working state, and the gesture action can be detected in real time, and the internal MCU unit performs related terminal application control according to the gesture recognition result.
  • the device detects that there is gesture sensing, the gesture data is acquired, and the gesture recognition analysis is performed, and then the indication is output, and the operation control of the corresponding terminal device is performed.
  • the invention can recognize gestures such as “forward shifting”, “backward shifting”, “left shifting”, “right shifting”, “upward shifting”, “downward shifting”, “close to”, “beating” and “quickly waving”,
  • the gesture chip can output a variety of control states, which can be handled as “switch”, “pause”, “forward”, “back”, “dimming”, “toning”, “zooming in”, “zooming out”, “Page turning”, “Previous song”, “Next song”, “Volume up”, “Volume down”, “Mode switching” and other operations.
  • the invention can be applied to smart home, smart wear, automotive electronics, medical equipment, children education, virtual reality and other fields, such as bluetooth speakers, lighting, VR glasses, smart switches, control panels, digital products, security products, portable products, Home appliances and other end products.
  • the space-interest gesture recognition console lamp developed by the invention realizes the switch control, brightness adjustment, RGB switch control and color change operation of the LED desk lamp by detecting and recognizing the direction of the gesture action, and the traditional button Compared with the desk lamp, the gesture sensing control scheme belongs to the space sensing operation, and has higher safety, stability and reliability. It can also be used for the corresponding operation of a smart keyboard or mouse.
  • the space control gesture developed by the present invention recognizes the PC control board and is connected to the computer through the USB cable.
  • the control panel detects the direction of the gesture recognition and transforms it into related data through internal data processing.
  • the protocol command is sent to the computer through the USB interface to realize the picture browsing, zooming in and out, and scrolling and turning the document on the computer side.
  • the program can avoid cross-infection caused by contact operation and has high safety in the medical experiment application scenario.
  • the present invention also provides a photoelectric gesture-based gesture recognition control device, comprising:
  • An optoelectronic acquisition module configured to perform steps to acquire an image of the gap gesture by photoelectric induction
  • Processing an identification module configured to perform step analysis on the gesture image processing, and complete gesture recognition
  • the output control module is configured to execute the step to output a corresponding operation instruction to the terminal device.
  • the photoelectric sensing-based space-intercept gesture recognition method and the control device thereof are provided by using a photoelectric sensor to collect a user gesture signal and processing the same to output to a device for corresponding operation, thereby realizing non-contact with the gesture recognition and control application.
  • Human-computer interaction mode eliminates the cumbersome configuration and complex processing of human-computer interaction, reduces external environmental factors, improves detection sensitivity, improves user experience, and enhances the practicability and reliability of gesture recognition and processing. .
  • the scheme has simple structure, few peripheral components, low standby power consumption, high detection sensitivity, good experience and practicability, and is convenient for secondary development and application of customers.
  • the invention integrates gesture recognition and application control internally, and the user does not need to add additional single-chip microcomputer and complicated software algorithm processing, and includes programming space, and the customer can develop personalized design and control scheme according to requirements, which is a complete function of gesture recognition. solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明公开了一种基于光电感应的隔空手势识别方法,包括以下步骤:通过光电感应采集隔空手势图像;对所述手势图像处理分析,完成手势识别;输出相应操作指示至终端设备。一种基于光电感应的隔空手势识别控制装置,包括:图像采集模块、图像处理模块、MCU、红外发光二极管,所述图像采集模块的输出端与图像处理模块的输入端连接,所述图像处理模块的输出端与MCU的输入端连接。实现了以隔空手势识别与控制应用的非接触式人机交互方式,去除了人机交互时的繁琐配置与复杂处理,降低了外部环境因素干扰,提高了检测灵敏度,改善了用户体验,增强了隔空手势识别与处理的实用性与可靠性。广泛应用于人机交互领域。

Description

一种基于光电感应的隔空手势识别方法及其控制装置
技术领域
本发明涉及人机交互领域,具体为基于光电感应的隔空手势识别方法及其控制装置。
背景技术
人机交互(Human-Computer Interaction,简称HCI)变革是信息技术架构体系中感知层(或终端层)的重大技术变革。在科技与需求的双轮驱动下,人机交互技术高速发展,从早期的鼠标键盘发展到触摸感应、语音识别、图像识别、手势识别控制等新型人机交互设备,在用户体验方面得到明显改进。
手势交互是利用计算机图形学等技术识别人的肢体语言,并转化为命令来操作设备。手势交流是人的本能,在学会语言和文字之前,已经能用肢体语言与人交流。手势交互系统中主要组成部分:人、手势输入设备、手势分析识别和被操作终端设备对象。手势识别控制可应用于智能家居、智能穿戴、汽车电子、医疗设备、儿童教育、虚拟现实等领域。
手势识别方法可以分为基于数据手套和基于机器视觉的技术两类,使用数据手套的方式可以较为准确的感应和识别手部的细微动作,但是需要佩戴专门的数据手套,这种隔空手势识别方法使用麻烦,用户体验非常不好。而基于机器视觉进行手势动作识别的方法,因为要求对手部图像进行识别,所以要求手部距离图像传感器较近,以便获取足够识别处理的图像画面,但这种方法对于环境光照有比较高的要求。传统的手势动作识别过程需要手势建模、手势分割、手势分析等多个复杂步骤和过程。手势识别又可细分为静态手势识别和动态手势识别两类,静态手势对应手势模型参数空间里的一个点,而动态手势则对应手势模型空间里的一条轨迹,因此要涉及时间和空间关系。特别是对于动态手势而言,不同的用户在进行手势动作的时候会存在速率差异、轨迹差异、熟练程度的差异等,从而导致手势建模轨迹在时间轴上引起非线性波动,而这种非线性波动的消除是非常困难和复杂的,所以传统的基于二维图像的动态识别率普遍不够高。
因此,该技术有必要进行改进。
发明内容
为了解决上述技术问题,本发明的目的是提供一种基于光电感应的隔空手势识别方法及其控制装置。
本发明所采用的技术方案是:
本发明提供一种基于光电感应的隔空手势识别方法,包括以下步骤:
通过光电感应采集隔空手势图像;
对所述手势图像处理分析,完成手势识别;
输出相应操作指示至终端设备。
作为该技术方案的改进,所述方法还包括驱动红外发光二极管进行手势信号检测。
作为该技术方案的改进,所述方法还包括通过采集红外发光二极管导通与关闭状态的感光图像强度差值,进而消除外界环境对隔空手势识别的影响。
进一步地,所述手势图像包括前移操作、后移操作、左移操作、右移操作、上移操作、下移操作、拍动操作中的至少一种。
进一步地,所述方法还包括当检测到有关机/开机手势时,则进行相应操作。
另一方面,本发明还提供一种基于光电感应的隔空手势识别控制装置,适用于所述的隔空手势识别方法,包括:图像采集模块、图像处理模块、MCU、红外发光二极管,所述图像采集模块的输出端与图像处理模块的输入端连接,所述图像处理模块的输出端与MCU的输入端连接,所述MCU与红外发光二极管连接。
进一步地,所述图像采集模块包括光电图像传感器,所述光电图像传感器的输出端与所述图像处理模块的输入端连接。
进一步地,所述红外发光二极管可置于装置的四周,用于方便采集各方位的手势信号。
再一方面,本发明还提供一种基于光电感应的隔空手势识别控制装置,包括:
光电采集模块,用于执行步骤通过光电感应采集隔空手势图像;
处理识别模块,用于执行步骤对所述手势图像处理分析,完成手势识别;
输出控制模块,用于执行步骤输出相应操作指示至终端设备。
本发明的有益效果是:本发明提供的基于光电感应的隔空手势识别方法及其控制装置,通过利用光电传感器采集用户手势信号并进行处理进而输出至设备进行相应操作,实现了以隔空手势识别与控制应用的非接触式人机交互方式,去除了人机交互时的繁琐配置与复杂处理,降低了外部环境因素干扰,提高了检测灵敏度,改善了用户体验,增强了隔空手势识别与处理的实用性与可靠性。
另一方面,本方案结构简单,外围元器件少,待机功耗低,检测灵敏度高,体验效果好,实用性强,便于客户的二次开发和拓展应用。
本发明内部集成手势识别和应用控制,用户无需增加额外的单片机以及复杂的软件算法处理,内含编程空间,用户可根据需求做个性化的设计与控制方案开发,是一套完整功能的手势识别解决方案。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明第一实施例的隔空手势识别装置示意图;
图2是本发明第二实施例的装置模块连接示意图;
图3是本发明第三实施例的隔空手势识别前、后、左、右移动示意图;
图4是本发明第四实施例的隔空手势识别上、下移动示意图;
图5是本发明第五实施例的隔空手势识别3D移动示意图;
图6是本发明第六实施例的流程控制示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明提出了一种基于光电感应的隔空手势识别方法及其控制装置,实现了以隔空手势识别与控制应用的非接触式人机交互方式,可应用于集成电路芯片、手势识别控制模组以及其它电子产品应用。
参照图1,是本发明第一实施例的隔空手势识别装置示意图。手势芯片驱动红外发光二极管发射出红外光线,当这些光线遇到手或其他物体时,一部分光线被手或物体吸收,一部分光线被反射进入图中所示光学结构内部的手势芯片,手势芯片完成光电转换、数字处理以及应用控制操作。
本发明提供一种基于光电感应的隔空手势识别控制装置,包括:图像采集模块、图像处理模块、MCU、红外发光二极管,参照图2,所述图像采集模块的输出端与图像处理模块的输入端连接,所述图像处理模块的输出端与MCU的输入端连接,所述MCU与红外发光二极管连接。
所述图像采集模块包括光电图像传感器,所述光电图像传感器的输出端与所述图像处理模块的输入端连接。
进一步地,所述红外发光二极管可置于装置的四周,用于方便采集各方位的手势信号。
本方案的图像处理模块可为单独的模块,其也可以利用MCU 进行分析。
其中手势芯片内部集成光电传感器、图像处理模块、MCU等,内部功能模块如图所示,其实现了手势移动的快速检测识别、信号输出指示以及终端应用控制。
所述控制装置还可包括存储模块,如ROM、SARM存储器等,所述存储模块与MCU连接。
所述控制装置还可包括时钟模块、脉宽调制等。
隔空手势识别方法与应用控制:所述光电图像传感器为用以采集手势的光敏元件,将被拍摄物通过镜头所成的影像转成电子图像,并通过信号转换处理工作,形成数字信号。
当手势移动变化时,其移动轨迹便会被记录为一组连贯图像。图像传感器完成图像信号的采集后,将图片信息传给图像处理/分析单元(DSP,即数字微处理器),DSP单元对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断物体的移动方向、速度、位置。接着将运动数据传给MCU微处理单元,进行终端设备的隔空手势识别与应用控制。
感光图像相位差技术:在隔空手势识别的过程中,手势芯片开关控制红外发光二极管,当红外发光二极管关断时,采集检测环境光线的感光图像强度;当红外发光二极管导通时,采集环境光线以及遇到有手或物体的感光图像强度,计算红外发光二极管开关导通前后的感光图像的差值,即通过感光图像相位差技术可以消除外界环境光线对隔空手势识别的干扰和影响。
此外,当没有手或者物体靠近时,手势芯片可以进入睡眠模式,通过调节内部工作模块与LED控制电路,降低工作电流,节省功耗。
参照图3,是本发明第三实施例的手势识别前、后、左、右移动示意图。手势识别芯片通过驱动并检测红外发光二极管遇到手或物体时的感光图像强度变化,当手或物体在平行于手势装置正上方的方向运动时,可以识别出手势移动的方向与速度,如“前移”、“后移”、“左移”、“右移”以及“手势移动的快慢”。
参照图4,当手或物体在垂直于手势装置的方向运动时,可以识别出手势接近的动作状态,如“上移”、“下移”、“拍动”等动作。
当手或物体移动并停留在手势装置上方时,手势芯片可检测出手或物体的停留状态与停留高度。手势装置的隔空识别3D示意图如图5所示。
参照图6,是本发明第六实施例的流程控制示意图。本发明提供一种基于光电感应的隔空手势识别方法,包括以下步骤:
通过光电感应采集隔空手势图像;
对所述手势图像处理分析,完成手势识别;
输出相应操作指示至终端设备。
作为该技术方案的改进,所述方法还包括驱动红外发光二极管进行手势信号检测。当检测到手势信号后,驱动红外发光二极管发光进而采集手势图像。
所述方法还包括通过采集红外发光二极管导通与关闭状态的感光图像强度差值,进而消除外界环境对手势识别的影响。
进一步地,所述手势图像包括前移操作、后移操作、左移操作、右移操作、上移操作、下移操作、拍动操作中的至少一种。
进一步地,所述方法还包括当检测到有关机/开机手势时,则进行相应操作。
本方案通过完成手势芯片的初始化配置后,手势装置便处于工作状态,即可实时感知检测手势动作,内部MCU单元根据手势识别结果作相关的终端应用控制。
当装置检测到有手势感应时,获取手势数据,并进行手势识别分析,然后输出指示,进行相应终端设备的操作控制。
本发明可识别“前移”、“后移”、“左移”、“右移”、“上移”、“下移”、“接近”、“拍动”“快速挥动”等手势感应,手势芯片通过内部分析,可输出多种控制状态,可处理为“开关”、“暂停”、“前进”、“后退”、“调光”、“调色”、“放大”、“缩小”、“翻页”、“上一曲”、“下一曲”、“音量加”、“音量减”、“模式切换”以及其它操作。本发明可应用于智能家居、智能穿戴、汽车电子、医疗设备、儿童教育,虚拟现实等领域,如蓝牙音箱、灯具照明、VR眼镜、智能开关、控制面板、数码产品、安防产品、便携式产品、家电产品以及其它终端产品。
作为一实施例,利用本发明开发的隔空手势识别控制台灯,通过对手势动作方向的检测识别,实现了LED台灯的开关控制、亮度调节、RGB开关控制与颜色变化等操作,与传统的按键台灯和触摸台灯相比,手势感应控制方案属于隔空感应操作,安全性、稳定性、可靠性更高。其也可以用于智能键盘或鼠标的相应操作等。
作为另一实施例,利用本发明开发的隔空手势识别PC控制板,通过USB线与电脑连接,在使用过程中,控制板检测识别手势动作方向,并通过内部数据处理,将其转变为相关的协议指令,并通过USB接口发送给电脑,实现在电脑端的图片浏览、放大缩小,文档滚动翻页功能。该方案可在医疗实验应用场景中,可以避免接触操作造成的交叉感染,安全性高。
再一方面,本发明还提供一种基于光电感应的隔空手势识别控制装置,包括:
光电采集模块,用于执行步骤通过光电感应采集隔空手势图像;
处理识别模块,用于执行步骤对所述手势图像处理分析,完成手势识别;
输出控制模块,用于执行步骤输出相应操作指示至终端设备。
本发明提供的基于光电感应的隔空手势识别方法及其控制装置,通过利用光电传感器采集用户手势信号并进行处理进而输出至设备进行相应操作,实现了以隔空手势识别与控制应用的非接触式人机交互方式,去除了人机交互时的繁琐配置与复杂处理,降低了外部环境因素干扰,提高了检测灵敏度,改善了用户体验,增强了隔空手势识别与处理的实用性与可靠性。
另一方面,本方案结构简单,外围元器件少,待机功耗低,检测灵敏度高,体验效果好,实用性强,便于客户的二次开发和拓展应用。
本发明内部集成手势识别和应用控制,用户无需增加额外的单片机以及复杂的软件算法处理,内含编程空间,客户可根据需求做个性化的设计与控制方案开发,是一套完整功能的手势识别解决方案。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

  1. 一种基于光电感应的隔空手势识别方法,其特征在于,包括以下步骤:
    通过光电感应采集隔空手势图像;
    对所述手势图像处理分析,完成手势识别;
    输出相应操作指示至终端设备。
  2. 根据权利要求1所述的基于光电感应的隔空手势识别方法,其特征在于:所述方法还包括驱动红外发光二极管进行手势信号检测。
  3. 根据权利要求2所述的基于光电感应的隔空手势识别方法,其特征在于:所述方法还包括通过采集红外发光二极管导通与关闭状态的感光图像强度差值,进而消除外界环境对隔空手势识别的影响。
  4. 根据权利要求1至3任一项所述的基于光电感应的隔空手势识别方法,其特征在于:所述手势图像包括前移操作、后移操作、左移操作、右移操作、上移操作、下移操作、拍动操作中的至少一种。
  5. 根据权利要求4所述的基于光电感应的隔空手势识别方法,其特征在于:所述方法还包括当检测到有关机/开机手势时,则进行相应操作。
  6. 一种基于光电感应的隔空手势识别控制装置,适用于权利要求1至5任一项所述的隔空手势识别方法,其特征在于,包括:图像采集模块、图像处理模块、MCU、红外发光二极管,所述图像采集模块的输出端与图像处理模块的输入端连接,所述图像处理模块的输出端与MCU的输入端连接,所述MCU与红外发光二极管连接。
  7. 根据权利要求6所述的基于光电感应的隔空手势识别控制装置,其特征在于:所述图像采集模块包括光电图像传感器,所述光电图像传感器的输出端与所述图像处理模块的输入端连接。
  8. 根据权利要求6或7所述的基于光电感应的隔空手势识别控制装置,其特征在于:所述红外发光二极管可置于装置的四周,用于方便采集各方位的手势信号。
  9. 一种基于光电感应的隔空手势识别控制装置,其特征在于,包括:
    光电采集模块,用于执行步骤通过光电感应采集隔空手势图像;
    处理识别模块,用于执行步骤对所述手势图像处理分析,完成手势识别;
    输出控制模块,用于执行步骤输出相应操作指示至终端设备。
PCT/CN2017/112524 2017-08-01 2017-11-23 一种基于光电感应的隔空手势识别方法及其控制装置 WO2019024337A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710648348.5 2017-08-01
CN201710648348.5A CN107589832A (zh) 2017-08-01 2017-08-01 一种基于光电感应的隔空手势识别方法及其控制装置

Publications (1)

Publication Number Publication Date
WO2019024337A1 true WO2019024337A1 (zh) 2019-02-07

Family

ID=61043168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112524 WO2019024337A1 (zh) 2017-08-01 2017-11-23 一种基于光电感应的隔空手势识别方法及其控制装置

Country Status (2)

Country Link
CN (1) CN107589832A (zh)
WO (1) WO2019024337A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563133A (zh) * 2018-03-16 2018-09-21 周国富 一种基于手势控制的智能家居系统
CN108632411A (zh) * 2018-05-11 2018-10-09 Oppo广东移动通信有限公司 电子装置
CN110047442A (zh) * 2018-06-21 2019-07-23 安徽赛迈特光电股份有限公司 一种显示屏背光源亮度调节装置及方法
CN108803426A (zh) * 2018-06-27 2018-11-13 常州星宇车灯股份有限公司 一种基于tof手势识别的车机控制系统
CN108919956B (zh) * 2018-07-10 2021-10-19 南方科技大学 一种人机交互显示面板及人机交互显示装置
CN108693975A (zh) * 2018-07-27 2018-10-23 广州大学 一种低功耗的手势识别装置及识别控制方法
CN109933192A (zh) * 2019-02-25 2019-06-25 努比亚技术有限公司 一种凌空手势的实现方法、终端及计算机可读存储介质
CN110209268A (zh) * 2019-04-24 2019-09-06 努比亚技术有限公司 穿戴式设备控制方法、穿戴式设备及计算机可读存储介质
CN110502159B (zh) * 2019-08-19 2024-04-30 汕头大学 基于图像处理技术的多光纤触摸式传感装置及控制方法
CN110942040B (zh) * 2019-11-29 2023-04-18 四川大学 一种基于环境光的手势识别系统和方法
CN112486394A (zh) * 2020-12-17 2021-03-12 南京维沃软件技术有限公司 信息处理方法、装置、电子设备及可读存储介质
CN116342854B (zh) * 2023-03-24 2024-01-12 深圳市汇春科技股份有限公司 微型感光传感器和感光识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472752A (zh) * 2013-09-17 2013-12-25 于金田 一种红外多档位手势识别开关及手势识别方法
CN204904207U (zh) * 2015-07-20 2015-12-23 深圳前海智云谷科技有限公司 一种具有红外手势识别的车载电子装置
US20170003748A1 (en) * 2015-06-30 2017-01-05 Motorola Mobility Llc Method and apparatus for automatically operating a gesture control system for a projection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801409B (zh) * 2011-05-23 2014-11-26 烟台瑞和控电信息系统有限公司 一种基于手势识别的智能开关
CN106022319A (zh) * 2016-06-30 2016-10-12 联想(北京)有限公司 一种手势识别方法及手势识别系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472752A (zh) * 2013-09-17 2013-12-25 于金田 一种红外多档位手势识别开关及手势识别方法
US20170003748A1 (en) * 2015-06-30 2017-01-05 Motorola Mobility Llc Method and apparatus for automatically operating a gesture control system for a projection system
CN204904207U (zh) * 2015-07-20 2015-12-23 深圳前海智云谷科技有限公司 一种具有红外手势识别的车载电子装置

Also Published As

Publication number Publication date
CN107589832A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2019024337A1 (zh) 一种基于光电感应的隔空手势识别方法及其控制装置
US10394334B2 (en) Gesture-based control system
TWI393943B (zh) 顯示器及影像擷取裝置、物件偵測程式及偵測物件之方法
TWI450159B (zh) Optical touch device, passive touch system and its input detection method
Larson et al. Heatwave: thermal imaging for surface user interaction
WO2016085212A1 (ko) 디스플레이를 제어하는 전자 장치 및 방법
GB2474536A (en) Computer vision gesture based control by hand shape recognition and object tracking
US20130127705A1 (en) Apparatus for touching projection of 3d images on infrared screen using single-infrared camera
WO2015096335A1 (zh) 交互识别系统以及显示装置
CN106201118B (zh) 触控及手势控制系统与触控及手势控制方法
KR20100064177A (ko) 전자장치 및 그의 디스플레이방법
WO2016192438A1 (zh) 一种体感交互系统激活方法、体感交互方法及系统
WO2020138602A1 (ko) 진정 사용자의 손을 식별하는 방법 및 이를 위한 웨어러블 기기
WO2018124823A1 (en) Display apparatus and controlling method thereof
US20130127704A1 (en) Spatial touch apparatus using single infrared camera
TW201624196A (zh) 三維空間中之可重置式虛擬觸控板
KR101476503B1 (ko) 착용형 디스플레이 장치를 위한 인터랙션 제공 장치 및 방법
TW201337649A (zh) 光學式輸入裝置及其輸入偵測方法
TW201709022A (zh) 非接觸式控制系統及方法
US10061440B2 (en) Optical touch sensing system, optical touch sensing device and touch detection method thereof
WO2019135513A1 (en) Electronic device and controlling method thereof
Sai Pravallika et al. Hand gesture controlled contactless elevator
CN102141859B (zh) 光学式触控显示装置及其方法
TW202141346A (zh) 偵測系統及偵測方法
Mocanu et al. Automatic recognition of hand gestures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919681

Country of ref document: EP

Kind code of ref document: A1