WO2019022212A1 - Polarized-light-emitting element, polarized-light-emitting plate, display device, and method for manufacturing polarized-light-emitting element - Google Patents

Polarized-light-emitting element, polarized-light-emitting plate, display device, and method for manufacturing polarized-light-emitting element Download PDF

Info

Publication number
WO2019022212A1
WO2019022212A1 PCT/JP2018/028164 JP2018028164W WO2019022212A1 WO 2019022212 A1 WO2019022212 A1 WO 2019022212A1 JP 2018028164 W JP2018028164 W JP 2018028164W WO 2019022212 A1 WO2019022212 A1 WO 2019022212A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
light emitting
group
substrate
emitting element
Prior art date
Application number
PCT/JP2018/028164
Other languages
French (fr)
Japanese (ja)
Inventor
陵太郎 森田
典明 望月
Original Assignee
日本化薬株式会社
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社, 株式会社ポラテクノ filed Critical 日本化薬株式会社
Priority to CN201880042198.6A priority Critical patent/CN110832363B/en
Priority to JP2019532873A priority patent/JP7287889B2/en
Publication of WO2019022212A1 publication Critical patent/WO2019022212A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polarized light emitting element having high durability and exhibiting polarized light emission having a high degree of polarization (contrast), a polarized light emitting plate and a display using the same, and a method of manufacturing the polarized light emitting element.
  • a polarizing plate having a light transmitting / shielding function is a basic component of a display device such as a liquid crystal display (LCD) together with a liquid crystal having a light switching function.
  • LCD liquid crystal display
  • the application fields of this LCD also include small devices such as calculators and watches in the early days, as well as notebook computers, word processors, liquid crystal projectors, liquid crystal televisions, car navigation systems, indoor and outdoor information display devices, measuring devices, and the like.
  • such a polarizing plate is also applicable to a lens having a polarization function, and is also applied to sunglasses with improved visibility, polarization glasses corresponding to 3D TVs and the like in recent years, and wearables. Applications and practical applications to familiar information terminals such as terminals have also been made.
  • the use of the polarizing plate is in a wide range, the conditions of use are also widely applied such as low temperature to high temperature, low humidity to high humidity, low light amount to high light amount, and the like. Therefore, in order to correspond to application to each use, a polarizing plate having high polarization performance and excellent durability is required.
  • a polarizing film constituting a polarizing plate is a film of a stretched or oriented polyvinyl alcohol or a derivative thereof, or a polyene produced by forming a polyene by dehydrochlorination of a polyvinyl chloride film or dehydration of a polyvinyl alcohol film.
  • the film is produced by dyeing or containing iodine or a dichroic dye as a dichroic dye on a substrate such as a film of Since the polarizing plate configured of such a conventional polarizing film uses a dichroic dye having a light absorbing function in the visible light region, the transmittance in the visible light region is reduced.
  • the transmittance of a general polarizing plate commercially available is 35 to 45%.
  • the transmittance in the visible light region is as low as 35 to 45% is because a dichroic dye is used in the polarizing plate.
  • a dichroic dye is used in the polarizing plate in order to absorb light of either one of the uniaxials. Therefore, the transmittance in the visible light region is theoretically 50% or less with respect to the light amount of 100%. Furthermore, the transmittance drops further than 50% of the theoretical value due to the orientation of the dichroic dye, the light loss by the film medium, and the interfacial reflection of the film surface.
  • Patent Document 1 describes a polarizing plate for ultraviolet light as a technology for imparting a polarizing function while maintaining a constant transmittance in the visible light region. It is done.
  • the polarizing plate is colored yellow, and only a polarizing plate that can exhibit a polarizing function with light of about 410 nm can be provided. That is, such a polarizing plate for ultraviolet light was not a polarizing plate exhibiting a polarizing function in the visible light region, and was a polarizing plate functioning only in a specific ultraviolet or visible light region.
  • Patent Documents 2 to 6 disclose elements (polarized light emitting elements) that exhibit polarized light emission.
  • the polarized light emitting elements described in Patent Documents 2 to 4 use special metals, for example, metals having high rare value such as lanthanoids and europium. Therefore, the cost is high, and it is not suitable for mass production because the production is very difficult. Furthermore, these polarized light emitting elements are very difficult to use in displays due to their very low degree of polarization, and it is very difficult to obtain linearly polarized light emission. In addition, there is also a problem that only circularly polarized light or elliptically polarized light of a specific wavelength can be obtained as light emission. Therefore, even when the polarized light emitting elements described in Patent Documents 2 to 4 are used for displays, there are disadvantages such as dark emission luminance, low contrast, and difficulty in designing a liquid crystal cell.
  • Patent Documents 5 and 6 disclose elements which emit polarized light to emit ultraviolet light.
  • the degree of polarization of light emitted from the device is low and the durability of the device is low.
  • the contrast value of characters such as newspapers and magazines is about 10. Therefore, even in consideration of actual use for a liquid crystal display, the contrast value exceeding 10 is a value necessary for securing visibility.
  • the element showing polarized light emission described in Patent Documents 5 and 6 uses a polyvinyl alcohol film as a substrate at the time of production, but the contrast value of polarized light is lower than 10, and from the viewpoint of visibility was also unsuitable for application to liquid crystal displays.
  • a liquid crystal display exhibiting a polarized light emitting action, having a high degree of polarized light emission, and further having high transmittance in the visible light region and durability in severe environments It is desired to develop a new polarizing plate that can also be applied to the like and materials therefor.
  • the present invention exhibits polarized light emission having a high degree of polarization (contrast), and is also applicable to a liquid crystal display or the like where high durability is required under severe environments, a polarized light emitting plate using the same,
  • An object of the present invention is to provide a display device and a method of manufacturing the polarized light emitting device.
  • the inventors of the present invention are directed to a polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate by using light absorption. It has been found that the value of the order parameter based on the absorption of light of the polarized light-emitting dye significantly affects the degree of polarization of the emitted light, particularly the contrast. And based on the said knowledge, by controlling the value of the order parameter based on absorption of the light of polarization light-emitting pigment, the polarization light-emitting element which can emit light having high degree of polarization (contrast) while having high durability It was found that was obtained.
  • the gist configuration of the present invention is as follows. 1) A polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate by using absorption of light, The polarized light emitting dye exhibits a polarization action in the wavelength region of the absorbed light, and at the wavelength at which the polarization action is the highest, the value of the order parameter (OPD) calculated by the following formula (I) is 0. Polarized light-emitting element having a wavelength of 81 to 0.95.
  • Ky represents the light transmittance when light polarized orthogonal to the axis showing absorption of the highest light in the polarized light emitting element is incident
  • Kz represents the polarized light emission Indicates the light transmittance when light polarized parallel to the axis showing the highest light absorption in the device is incident.
  • L and M each independently represent a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, a naphthotriazole group which may have a substituent
  • X represents a nitro group or an amino group which may have a substituent
  • R may have a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent Represents a good amino group
  • n represents an integer of 0 to 3.
  • Y is a C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, or an aryl group which may have a substituent
  • Z represents a nitro group or an amino group which may have a substituent.
  • the secondary ion intensity derived from the boron compound measured by time-of-flight secondary ion mass spectrometry in the thickness direction of the substrate satisfies the relationship of I 2 ⁇ 30 ⁇ I 1 ,
  • I 1 is secondary ion intensity detected in the thickness detected maximum secondary least distance 1 / 2L toward the one side surface in the thickness direction of the relative ionic strength substrate at L of the base material
  • Represents the ratio of I 2 is detected between a distance of 1/4 L from the both surfaces of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate respectively in the thickness direction of the substrate 15.
  • the polarized light-emitting device according to the above 15 which represents the maximum value of the ratio of the secondary ion intensities.
  • the secondary ion intensity derived from the boron compound further satisfies the relationship of I 3 ⁇ 5 ⁇ I 4 ,
  • I 3 is the ratio of the secondary ion intensity detected between the distance of 1 / 4L from at least one side surface of said substrate with respect to the maximum secondary ion intensity detected by the thickness L of the base material Represents the average value,
  • I 4 is a distance of 1 ⁇ 4 L in the thickness direction from the center of the thickness L to the maximum secondary ion intensity detected at the thickness L of the substrate toward both surfaces of the substrate.
  • the secondary ion intensity derived from the boron compound further satisfies the relationship of I 5 ⁇ 2 ⁇ I 6 ,
  • I 5 is the ratio of the secondary ion intensity detected between the distance of 1 / 4L from at least one side surface of said substrate with respect to the maximum secondary ion intensity detected by the thickness L of the base material
  • the polarized light-emitting element according to the above 16) or 17 which represents an integral value of the ratio of secondary ion intensities detected therebetween.
  • the polarized light emitting device wherein the visible light transmittance of the visible light absorbing dye-containing layer has a reduction rate of 50% or less.
  • 24) A polarized light emitting plate comprising the polarized light emitting device according to any one of the above 1) to 23) and a transparent protective layer provided on one side or both sides of the polarized light emitting device.
  • a display device comprising the polarized light-emitting element according to any one of 1) to 23) or the polarized light-emitting plate according to any one of 24) to 26).
  • a visible light absorbing dye-containing layer is further provided on at least one surface of the polarized light emitting element, and 27.
  • the polarized light emitting dye in a polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate using absorption of light, the polarized light emitting dye is in the wavelength region of the absorbed light
  • the value of the order parameter ( ⁇ PD) calculated by a predetermined equation is controlled to 0.81 to 0.95 at a wavelength that exhibits the polarization action and the polarization action is the highest. That is, for example, in a polarized light emitting dye that exhibits polarized light emission in the visible light region by absorbing light in the ultraviolet light region, the light emission amount of the strong axis and the light emission amount of the weak axis are controlled.
  • a polarized light emitting element exhibiting polarized light emission having a high degree of polarization (contrast) and a polarized light emitting plate using the same can do.
  • a polarized light emitting element having a high degree of polarization and a polarized light emitting plate using the same can be provided without using a highly rare earth metal such as a lanthanoid metal.
  • the polarized light emitting element according to the present invention and the polarized light emitting plate using the same exhibit excellent durability against heat, humidity and the like. Therefore, the polarized light emitting element and the polarized light emitting plate including the same can be applied to a display device such as a liquid crystal display which is required to have high transparency in a visible light region and high durability under a severe environment.
  • FIG. 1 is a view showing the relationship between the value of OPD and the value of RCE of the polarized light emitting elements manufactured in Examples 1 to 7 and Comparative Examples 1 and 2.
  • FIG. 2 is a view showing the relationship between the value of OPD and the value of RCE of the polarized light emitting elements manufactured in Examples 8 to 13 and Comparative Examples 3 to 6.
  • the polarized light emitting element according to the present invention is a polarized light emitting element in which at least one type of polarized light emitting dye capable of polarized light emission is oriented on a substrate by utilizing absorption of light.
  • the polarized light emitting dye exhibits a polarization action in the wavelength range of the absorbed light, and the value of the order parameter (OPD) calculated by the following formula (I) is 0.81 at the wavelength at which the polarization action is the highest. It is ⁇ 0.95.
  • Ky represents the light transmittance when light polarized orthogonal to the axis showing absorption of the highest light in the polarized light emitting element is incident.
  • Kz represents the light transmittance when light polarized parallel to the axis showing absorption of the highest light in the polarized light emitting element is incident.
  • a polarized light-emitting dye capable of emitting polarized light using absorption of light generally belongs to a fluorescent dye or a phosphorescent light-emitting dye, but specifically, it absorbs specific light and emits light energy using the light
  • a dye that can be converted to As such a dye any of a fluorescent dye and a phosphorescent dye may be used, but it is preferable to use a fluorescent dye.
  • the wavelength of the absorbed light and the light to be emitted are often different, and the dye may be also referred to as a wavelength conversion dye.
  • At least one type of polarized light emitting dye contained in the polarized light emitting element preferably has fluorescence emission characteristics, and in particular, by absorbing light in the ultraviolet light region to the near ultraviolet visible light region, the visible light region is It is more preferable to have fluorescence emission characteristics capable of polarized light emission.
  • the polarized light-emitting dye has light absorption anisotropy between the axis oriented to the base and the orthogonal axis, as in the dichroic dye, and thus the light absorption anisotropy That is, it expresses a polarization function.
  • Light transmittance (that is, the transmittance at the axis where the amount of light transmission is small) is Kz, while polarized at a position orthogonal to the axis showing the highest absorption in the polarized light emitting element in which the polarized light emitting dye is oriented.
  • the light transmittance when light is incident (that is, the transmittance at the axis where the amount of light transmission is large) is taken as Ky. Then, by substituting these Ky and Kz into the above formula (I), the order parameter, that is, the degree of orientational order can be calculated.
  • the order parameter (orientational order degree) is generally used as an index used to measure the orientation of substances such as liquid crystals, and the higher the value of the order parameter, the higher the value of the polarization light emitting element has higher alignment order. Show that.
  • the calculation formula of the value of the order parameter is expressed as the following formula (II) (refer to "Display material and functional pigment (CMC publication, Hiroyuki Nakasumi, P65)", formula (II)
  • the following equation (III) is derived by converting the equation represented by). By further transforming this formula (III), the order parameter (OPD) can be represented by the above formula (I).
  • a PARA is absorbance parallel to the direction of the oriented polarized light-emitting dye
  • a CROSS is orthogonal to the direction of the oriented dye
  • Absorbance of The absorbance of each is calculated by Log (A), and by substituting the absorbance obtained by Ky and Kz into Equation (III) for each absorbance calculated by Log (A), Equation (I) is derived.
  • absorption of light is used to control the degree of orientational order of the dye capable of polarized light emission, whereby a polarized light emitting element exhibiting polarized light emission having a high contrast value can be obtained.
  • the value of the order parameter in the range of 0.81 to 0.95, it is possible to obtain polarized light emission having a high contrast value, and the value of the order parameter is 0.83 to 0.95. Is preferably in the range of 0.85 to 0.94, and more preferably in the range of 0.87 to 0.93.
  • the value of the order parameter is preferably as high as possible, but when the value of the order parameter is larger than 0.95, the contrast value of the polarized light emission is not necessarily high, and the stability is lacking. Therefore, the upper limit of the value of the order parameter is set to 0.95 in order to obtain a polarized light emitting element that exhibits polarized light emission with high contrast stably in production.
  • OPD (A PARA- A CROSS ) / (A PARA + 2 x A CROSS ) (II)
  • OPD (A PARA / A CROSS -1) / (A PARA / A CROSS +2) (III)
  • a polarized light emitting element showing polarized light emission is obtained by containing one or a plurality of polarized light emitting dyes in a base material and orienting the same.
  • Such a polarized light emitting element exhibits various emission colors by adjusting the blending ratio of the polarized light emitting dye.
  • the absolute value of chromaticity a * measured according to JIS Z 8781-4: 2013 is 5 or less and the absolute value of hue b * is 5 or less
  • the emission color from the polarized light emitting element is white
  • the chromaticity a * value and the hue b * value in accordance with the standard of JIS Z 8781-4: 2013 are values obtained at the time of measuring the hue of light.
  • the display method of the object color defined in the standard corresponds to the display method of the object color defined by the International Commission on Illumination (abbr .: CIE).
  • CIE International Commission on Illumination
  • the measurement of chromaticity a * value and b * value is usually performed by irradiating natural light to the measurement sample, but in the polarized light emitting element used in the present invention, light of short wavelength such as ultraviolet light is used for the polarized light emitting element.
  • the chromaticity a * value and the b * value can be confirmed by measuring the light emitted from the polarized light emitting element.
  • the hue b * be the emitted light
  • the absolute value of the hue b * is 5 or less
  • it can be perceived as white preferably 4 or less, more preferably 3 or less, more preferably 2 or less, particularly Preferably it is 1 or less.
  • the absolute values of the chromaticity a * and b * are independently 5 or less, it can be perceived as white by the human eye, and it is more preferable if both are 5 or less. It can be perceived as white light emission. Since the polarized light to be emitted is white, it can be used as a natural light source such as sunlight, a light source for paper white terminals and the like.
  • a polarized light emitting element can be utilized as a white polarized light emitting polarized light emitting element, and application to a display using a color filter or the like is simple.
  • a display using a color filter or the like.
  • the emitted light intensity of white light if emitted light can be visually detected, it is possible to apply to a display.
  • the light emission In order for the light emission to be sensed visually, it is particularly important that the light emission has a high degree of polarization and that the transmission in the visible range is high.
  • the polarized light emitting dye is preferably a compound having a stilbene skeleton or a biphenyl skeleton as a basic skeleton or a salt thereof.
  • the polarization light emitting dye having such a basic skeleton is oriented to the base material so that the value of the order parameter is controlled in the range of 0.81 to 0.95 while showing the fluorescence emission characteristic. It is possible to emit light having a higher degree of polarization than other polarized light emitting dyes, that is, light having high contrast.
  • the stilbene skeleton and the biphenyl skeleton as the basic skeleton of the polarized light emitting dye have the function of exhibiting fluorescence properties by the respective skeletons themselves and exhibiting high dichroism by orienting on the substrate. Since this action is due to the structures of the basic skeletons of the stilbene skeleton and the biphenyl skeleton, further arbitrary substituents may be bonded to the basic skeleton structure.
  • an azo group is substituted in the basic skeleton structure, although a high degree of polarization can be realized as in a conventional dye-based polarizing plate, depending on the position at which the azo group is substituted, the amount of emitted light is significantly reduced. Sometimes light intensity can not be obtained. Therefore, when substituting an azo group in each basic skeleton, the substitution position becomes important.
  • the polarized light emitting dyes may be used alone or in combination of two or more.
  • the polarized light emitting dye has fluorescence emission characteristics capable of polarized light of light in the visible light region by absorbing light in the ultraviolet light region to the near ultraviolet visible light region. Specifically, after the polarized light emitting dye is contained in the base material, irradiation with light in the ultraviolet light region to the near ultraviolet visible light region enables 0.04 ⁇ W in the visible light region, for example, the wavelength region of 400 to 700 nm.
  • ultraviolet light generally indicates light in a wavelength range of 400 nm or less
  • light in a wavelength range of 430 nm or less is also extremely low as human visual sensitivity. Therefore, light in the ultraviolet light region to the near ultraviolet visible light region can be defined as light invisible to human eyes, and for example, light in the wavelength region of 300 nm to 430 nm is preferable.
  • a polarized light emitting dye it is possible to absorb invisible light and obtain a polarized light emitting element capable of polarized light emission.
  • the polarized light-emitting dye having a stilbene skeleton is preferably a compound represented by the following formula (1) or a salt thereof.
  • L and M each independently have a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, or a substituent Naphthotriazole group, C 1 -C 20 alkyl group which may have a substituent, vinyl group which may have a substituent, amido group which may have a substituent, have a substitution It is selected from the group consisting of an optionally ureido group, or an optionally substituted aryl group and an optionally substituted carbonyl group, but is not limited thereto.
  • the compound having a stilbene skeleton represented by the formula (1) exhibits fluorescence and dichroism can be obtained by orientation. Since the light emission characteristics are attributed to the stilbene skeleton, the substituent to which each of the L and M groups can be bound is not particularly limited as long as it has no azo group, and is any substituent. You may
  • an amino group which may have a substituent for example, an unsubstituted amino group; Methylamino group, ethylamino group, n-butylamino group, tertiary butylamino group, n-hexylamino group, dodecylamino group, dimethylamino group, diethylamino group, di-n-butylamino group, ethylmethylamino group, A C 1 -C 20 alkylamino group which may have a substituent such as ethylhexylamino group; An arylamino group which may have a substituent such as phenylamino group, diphenylamino group, naphthylamino group, N-phenyl-N-naphthylamino group; A C 1 -C 20 alkylcarbonylamino group which may have a substituent such as a methylcarbonylamino group, an e
  • C 1 -C 20 alkylcarbonylamino group which may have a substituent arylcarbonylamino group which may have a substituent
  • C 1 -C 20 alkylsulfonylamino group a substituent
  • the aryl sulfonylamino group which may have is preferable.
  • carbonylamido group which may have a substituent, for example, N-methyl-carbonylamido group (-CONHCH 3 ), N-ethyl-carbonylamido group (-CONHC 2 H 5 ), N-phenyl-carbonylamido Groups (-CONHC 6 H 5 ) and the like.
  • C 1 -C 20 alkyl group which may have a substituent, for example, linear ones such as methyl group, ethyl group, n-butyl group, n-hexyl group, n-octyl group and n-dodecyl group Branched C 3 -C 10 alkyl group such as C 1 -C 12 alkyl group, isopropyl group, sec-butyl group, tert-butyl group, cyclic C 3 -C 7 alkyl group such as cyclohexyl group, cyclopentyl group and the like And the like.
  • a linear or branched alkyl group is preferable, and a linear alkyl group is more preferable.
  • vinyl group which may have a substituent examples include ethenyl group, styryl group, vinyl group having alkyl group, vinyl group having alkoxy group, divinyl group, pentadiene group and the like.
  • the aryl group may be a 5- or 6-membered heterocyclic group containing 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom as ring member atoms.
  • a heterocyclic group containing an atom selected from a nitrogen atom and a sulfur atom as a ring constituent atom is preferable.
  • Examples of the carbonyl group which may have a substituent include methylcarbonyl group, ethylcarbonyl group, n-butyl-carbonyl group, phenylcarbonyl group and the like.
  • the substituent mentioned above is not particularly limited, but, for example, nitro group, cyano group, hydroxyl group, sulfonic acid group, phosphoric acid group, carboxyl group, carboxyalkyl group, halogen atom, alkoxy group, aryloxy group Etc.
  • a carboxyalkyl group a methyl carboxyl group, an ethyl carboxyl group etc. are mentioned, for example.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned.
  • an alkoxy group a methoxy group, an ethoxy group, a propoxy group etc. are mentioned.
  • the aryloxy group include phenoxy group and naphthoxy group.
  • Examples of the compound represented by the formula (1) include Kayaphor series (manufactured by Nippon Kayaku Co., Ltd.), Whiteex RP and the like Whitetex series (manufactured by Sumitomo Chemical Co., Ltd.), and the like. Moreover, although the compound shown by Formula (1) below is illustrated, it is not limited to these.
  • X represents a nitro group or an amino group which may have a substituent.
  • the amino group which may have a substituent is defined in the same manner as the amino group which may have a substituent in the above formula (1).
  • X is a nitro group, a C 1 -C 20 alkylcarbonylamino group which may have a substituent, an arylcarbonylamino group which may have a substituent, a C 1 -C 20 alkylsulfonylamino group Or an arylsulfonylamino group which may have a substituent is preferable, and a nitro group is particularly preferable.
  • R represents a hydrogen atom, a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom, a hydroxyl group, a carboxyl group, a nitro group, an alkyl group which may have a substituent, a substituent Or an amino group which may have a substituent.
  • the alkyl group which may have a substituent is defined in the same manner as the C 1 -C 20 alkyl group which may have a substituent in the above formula (1).
  • the alkoxy group which may have a substituent is preferably a methoxy group or an ethoxy group.
  • the amino group which may have a substituent is defined in the same manner as the amino group which may have a substituent in the above formula (1), preferably a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group. A group, or a phenylamino group or the like.
  • R may be bonded to any carbon of the naphthalene ring in the naphthotriazole ring, but when the carbon fused to the triazole ring is at 1 and 2 positions, the 3, 5, or 8 position It is preferred that the Among these, R is preferably a hydrogen atom or a C 1 -C 20 alkyl group, and when R is a C 1 -C 20 alkyl group, it is preferably a methyl group.
  • n is an integer of 0 to 3, preferably 1.
  • — (SO 3 H) may be bonded to any carbon atom of the naphthalene ring in the naphthotriazole ring.
  • R is a hydrogen atom and n is 1 or 2.
  • Y is a C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, or an aryl group which may have a substituent
  • an aryl group which may have a substituent is preferable, and a naphthyl group which may have a substituent is more preferable, and a naphthyl group in which an amino group and a sulfo group are substituted as a substituent Is particularly preferred.
  • Z is defined in the same manner as X in formula (2) above, and represents a nitro group or an amino group which may have a substituent, and is preferably a nitro group.
  • the compound having a biphenyl skeleton is preferably a compound represented by the following formula (4) or a salt thereof.
  • P and Q each independently may have a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, or a substituent
  • It may be a ureido group which may be substituted, an aryl group which may have a substituent, or a carbonyl group which may have a substituent, but it is not limited thereto.
  • the fluorescence emission is significantly reduced, which is not preferable.
  • the compound represented by the above formula (4) is preferably a compound represented by the following formula (5).
  • j represents an integer of 0 to 2.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy group, an aralkyloxy group, an alkenyloxy group, C 1 -C 4 alkylsulfonyl group, C 6 -C 20 arylsulfonyl group, carbonamide group, sulfonamide group, carboxyalkyl group.
  • the position to which R 1 to R 4 is bonded is not particularly limited, but when the vinyl group is at the 1st position, the 2nd, 4th and 6th positions are preferable, and the 4th position is particularly preferable.
  • Examples of the C 1 -C 4 alkyl group include methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclobutyl group and the like.
  • Examples of the C 1 -C 4 alkoxy group include methoxy group, ethoxy group, propoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, cyclobutoxy group and the like.
  • aralkyloxy group for example, a C 7 -C 18 aralkyloxy group and the like can be mentioned.
  • alkenyloxy group for example, a C 1 -C 18 alkenyloxy group and the like can be mentioned.
  • Examples of the C 1 -C 4 alkyl sulfonyl group include methyl sulfonyl group, ethyl sulfonyl group, propyl sulfonyl group, n-butyl sulfonyl group, sec-butyl sulfonyl group, tertiary butyl sulfonyl group, cyclobutyl sulfonyl group and the like.
  • Examples of the C 6 -C 20 arylsulfonyl group include phenylsulfonyl group, naphthylsulfonyl group, biphenylsulfonyl group and the like.
  • the compound represented by the above formula (5) can be prepared by a known method, for example, can be synthesized by condensing 4-nitrobenzaldehyde-2-sulfonic acid with a phosphonate and then reducing the nitro group .
  • Specific examples of such a compound represented by the formula (5) include the following compounds described in JP-A-4-226162.
  • the salts of the compounds represented by the formulas (1) to (5) mean that the free acids of the respective compounds represented by the above formulas form salts with inorganic cations or organic cations.
  • inorganic cations include alkali metals such as lithium, sodium, potassium and other cations, or ammonium (NH 4 + ).
  • organic cation the organic ammonium etc. which are represented by following formula (A) are mentioned, for example.
  • Z 1 to Z 4 each independently represent a hydrogen atom, an alkyl group, a hydroxyalkyl group or a hydroxyalkoxyalkyl group, and at least one of Z 1 to Z 4 is hydrogen It is a group other than an atom.
  • Z 1 to Z 4 include, for example, a C 1 to C 6 alkyl group such as methyl group, ethyl group, butyl group, pentyl group and hexyl group, preferably a C 1 to C 4 alkyl group; hydroxymethyl group Hydroxy C 1 -C 6 alkyl group such as 2-hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 4-hydroxybutyl group, 3-hydroxybutyl group, 2-hydroxybutyl group, preferably hydroxy C 1 -C 4 alkyl group; and, hydroxyethoxy methyl group, 2-hydroxyethoxy ethyl group, 3-hydroxy-ethoxypropyl, 3-hydroxyethoxy-butyl group, 2-hydroxyethoxy butyl hydroxy C 1 -C 6 alkoxy C 1 -C 6 alkyl group, preferably a hydroxy C 1 -C 4 alkoxy C 1 - C 4 alkyl group and the like.
  • inorganic cations or organic cations cations of sodium, potassium, lithium, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ammonium and the like are more preferable, Particular preference is given to inorganic cations of lithium, ammonium or sodium.
  • the polarized light emitting dye having the above structure does not have an azo group in the molecule, so that the absorption of light due to the azo bond is suppressed.
  • a compound having a stilbene skeleton exhibits a light emitting action by irradiation with ultraviolet light, and the molecule is stabilized by the presence of a strong carbon-carbon double bond of the stilbene skeleton. Therefore, a polarized light emitting element using a polarized light emitting dye having such a specific structure can absorb light and utilize its energy to exhibit a polarized light emitting action in the visible light region.
  • the polarized light emitting element exhibiting the above-mentioned characteristics may further contain at least one kind of fluorescent dye and / or organic dye different from the above-mentioned polarized light emitting dye as long as the polarization performance of the polarized light emitting element is not impaired.
  • a fluorescent dye to be used in combination for example, C.I. I. Fluorescent Brightener 5, C.I. I. Fluorescent Brightener 8, C.I. I. Fluorescent Brightener 12, C.I. I. Fluorescent Brightener 28, C.I. I. Fluorescent Brightener 30, C.I. I. Fluorescent Brightener 33, C.I. I. Fluorescent Brightener 350, C.I. I. Fluorescent Brightener 360, C.I. I. Fluorescent Brightener 365 etc. are mentioned.
  • organic dye for example, C.I. Eye. direct. Yellow 12, Sea. Eye. direct. Yellow 28, Sea. Eye. direct. Yellow 44, C.I. Eye. direct. Orange 26, Sea. Eye. direct. Orange 39, Sea. Eye. direct. Orange 71, Sea. Eye. direct. Orange 107, C.I. Eye. direct. Red 2, Sea. Eye. direct. Red 31, Sea. Eye. direct. Red 79, Sea. Eye. direct. Red 81, Sea. Eye. direct. Red 247, Sea. Eye. direct. Blue 69, Sea. Eye. direct. Blue 78, Sea. Eye. direct. Green 80 and C.I. Eye. direct. Green 59 and the like.
  • organic dyes may be free acids or may be alkali metal salts (eg Na, K, Li), ammonium salts or salts of amines.
  • a polarized light emitting element comprises a substrate that can contain and can be oriented with a polarized light emitting dye.
  • the substrate preferably contains a hydrophilic polymer capable of adsorbing a polarized light emitting dye and containing a boron derivative and being crosslinkable, and a hydrophilic polymer film obtained by forming the hydrophilic polymer into a film, in particular It is preferable that it is an oriented hydrophilic polymer film.
  • the hydrophilic polymer is not particularly limited, but for example, polyvinyl alcohol resins and starch resins are preferable.
  • the hydrophilic polymer preferably contains a polyvinyl alcohol-based resin or a derivative thereof from the viewpoint of dyeability, processability and crosslinkability of a polarized light-emitting dye, and more preferably polyvinyl alcohol.
  • polyvinyl alcohol resins or derivatives thereof include polyvinyl alcohol or derivatives thereof, polyvinyl alcohol or derivatives thereof such as ethylene, olefins such as propylene, crotonic acid, acrylic acid, methacrylic acid, and maleic acid Resin etc. which were denatured by the unsaturated carboxylic acid etc. are mentioned.
  • the substrate is preferably a film made of polyvinyl alcohol or a derivative thereof.
  • a method of adsorbing and orienting a polarized light emitting dye using a base material containing a polyvinyl alcohol-based resin will be exemplified.
  • a commercial product may be used for the base material containing polyvinyl alcohol system resin, for example, and it may produce it by forming a polyvinyl alcohol system resin into a film.
  • the film forming method of the polyvinyl alcohol-based resin is not particularly limited, and, for example, a method of melt-extruding water-containing polyvinyl alcohol, a cast film forming method, a wet film forming method, a gel film forming method After gelation, a known film-forming method such as a method of extracting and removing a solvent, a cast film-forming method (flowing a polyvinyl alcohol aqueous solution on a substrate and drying), and a combination thereof may be employed.
  • the thickness of the substrate can be designed as appropriate, and is usually 10 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • a base material further contains a boron compound.
  • the boron compound is contained so as to be substantially uniform in the thickness direction (depth direction from the surface) of the substrate, that is, the boro compound has a concentration with almost no difference between the surface and the central portion of the substrate. It is preferred that the compound is contained in the substrate.
  • Boron compounds include, for example, inorganic compounds such as boric acid, borax, boron oxide and boron hydroxide, alkenylboronic acid which is boronic acid, arylboronic acid, alkylboronic acid, boronic acid ester, boronic acid ester, trifluoroborate or salts thereof Of these, boric acid and borax are preferred, with boric acid being particularly preferred.
  • boric acid and borax are preferred, with boric acid being particularly preferred.
  • a base material In order to make a base material contain a boron compound, it is necessary to perform the dyeing process which makes a base material contain a polarization light emitting element. This is because, even if the substrate containing the boron compound is intended to contain the polarized light-emitting dye, the dyeability of the polarized light-emitting dye is significantly inhibited since the substrate is crosslinked by the boron compound, and in the depth direction This is because the polarized light emitting dye is not impregnated. In addition, when the draw ratio of the substrate is too high, the dyeing solution is not sufficiently adsorbed to the substrate, and as a result, the polarized light emitting dye is significantly inhibited from being contained in the interior of the substrate.
  • the staining process before the draw ratio reaches 3.5 times the original length, more preferably before reaching 3.0 times the original length, and before reaching 2.0 times Is particularly preferred.
  • the stage of the raw material for forming the film of the substrate for example, in the method of forming a film of a substrate from a mixture of water, polyvinyl alcohol and a polarized light emitting pigment and stretching it, The luminescent dye may be eluted, and film thickness unevenness may occur during film formation of the substrate, and this film thickness unevenness may cause unevenness in the transmittance of the film, so it is unsuitable for mass production.
  • the polarized light emitting dye is not contained in the film forming step of the base material, and before the step of containing the boron derivative, and
  • the draw ratio is preferably 3.5 times or less of the original length.
  • the distribution state in which the boron compound is present in the cross section of the base material may be confirmed.
  • the cross section of the substrate can be confirmed by ToF-SIMS measurement.
  • ToF-SIMS is time-of-flight secondary ion mass spectrometry and is an abbreviation of Time Of Flight Secondary Ion Mass Spectrometry.
  • a mass spectrum of the outermost surface of the sample can be obtained.
  • the surface component of the sample can be detected as a molecular ion maintaining a chemical structure, a fragment that is partially cleaved, whereby the elemental composition and chemistry of the outermost surface of the sample. You can get structural information.
  • Boron compounds in the cross section of the material, ie in the thickness direction can be detected.
  • the concentration distribution (content distribution) of the boron compound in the thickness direction of the substrate and the content ratio thereof can be confirmed by the ToF-SIMS measurement.
  • secondary ion intensity derived from the boron compound measured by time-of-flight secondary ion mass spectrometry in the thickness direction of the substrate on at least one side Preferably satisfies the relation of I 2 ⁇ 30 ⁇ I 1 , more preferably satisfies the relation of I 2 ⁇ 15 ⁇ I 1 , and still more preferably satisfies the relation of I 2 ⁇ 5 ⁇ I 1 .
  • I 1 is detected at a distance of 1/2 L from the surface of at least one side of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate 2 It represents the ratio of the secondary ion intensity.
  • I 2 is detected from the both surfaces of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate, respectively, up to a distance of 1 ⁇ 4 L in the thickness direction of the substrate Represents the maximum value of the ratio of secondary ion intensities.
  • the above relationship is preferably satisfied from both surfaces of the substrate.
  • the secondary ion strength derived from the boron compound further satisfy the relationship of I 3 ⁇ 5 ⁇ I 4 , and further preferably the relationship of I 3 ⁇ 3 ⁇ I 4 , I 3 ⁇ 1. It is particularly preferred to further satisfy the relationship of 5 ⁇ I 4 .
  • I 3 is the secondary ion intensity detected from the surface of at least one side of the substrate to the distance of 1 ⁇ 4 L with respect to the maximum secondary ion intensity detected at the thickness L of the substrate Represents the average value of the ratio of
  • I 4 is between the center of the thickness L to the maximum secondary ion intensity detected by the thickness L of the substrate to a distance of each 1 / 4L in the thickness direction toward the both surfaces of the substrate Represents the average value of the ratio of secondary ion intensities detected in The above relationship is preferably satisfied from both surfaces of the substrate.
  • the secondary ionic strength derived from the boron compound further satisfy the relation of I 5 ⁇ 2 ⁇ I 6 , and it is more preferable to further satisfy the relation of I 5 ⁇ I 6 .
  • I 5 is the secondary ion intensity detected from the surface of at least one side of the substrate to a distance of 1 ⁇ 4 L relative to the maximum secondary ion intensity detected at the thickness L of the substrate Represents the integral value of the ratio of
  • I 6 is between the center of the thickness L to the maximum secondary ion intensity detected by the thickness L of the substrate to a distance of each 1 / 4L in the thickness direction toward the both surfaces of the substrate Represents the integral value of the ratio of secondary ion intensities detected in The above relationship is preferably satisfied from both surfaces of the substrate.
  • “at least one surface of the substrate” means either the surface or the back of the substrate, unless the front surface or the back surface of the substrate is described. Good.
  • “secondary ion intensity detected between the surface of at least one surface of the substrate and a distance of 1 ⁇ 4 L” is detected between the surface of the front side of the substrate and a distance of 1 ⁇ 4 L. It may be any of the secondary ion intensity and the secondary ion intensity detected between the surface on the back side of the substrate and a distance of 1 ⁇ 4 L.
  • the degree of polarization of polarized light emission can be further improved by controlling the concentration distribution of a boron compound such as boric acid in the substrate.
  • the boron compound is contained not only in the surface layer portion but also in the central portion of the substrate.
  • the concentration distribution of secondary ion intensity derived from the boron compound is preferably present at least between 3 ⁇ m and 20 ⁇ m from the surface of the substrate, and is present at a depth of at least 5 ⁇ m from the surface of the substrate Is more preferably present to a depth of at least 8 ⁇ m, and particularly preferred to be at a depth of at least 10 ⁇ m. More preferably, the relationship is satisfied from both surfaces of the substrate.
  • Raman analysis is mentioned as this method.
  • a substance is irradiated with light, light scattering occurs, and in the scattered light, light of the same wavelength as the incident light is scattered (elastic scattering), and Raman is scattered by the molecular vibration to a wavelength different from the incident light There is scattering (inelastic scattering).
  • a method of analyzing the structure of molecular level from the obtained Raman spectrum by dispersing the Raman light is Raman spectroscopy.
  • the energy in the thickness direction of the substrate can be sensed on the order of micrometers, so that the thickness of the substrate containing the polarized light emitting dye can be accurately confirmed.
  • Raman spectroscopy while scanning in the thickness direction with respect to the cross section of the base material, it is possible to measure the extent to which the polarized light emitting dye is contained in the base material.
  • the stilbene compound described above for example, the compound described in Compound Example 5-1
  • energy based on each of 1170 to 1180 cm -1 and 1560 to 1600 cm -1 can be detected.
  • Raman spectroscopy is applied while scanning the detected energy in the thickness direction with respect to the cross section of the substrate.
  • the method for producing a polarized light emitting device is not limited to the following production method, but it is preferable to mainly orient the above-mentioned polarized light emitting dye in a film using polyvinyl alcohol or a derivative thereof.
  • a method of manufacturing a polarized light emitting device will be described by taking polyvinyl alcohol or a derivative thereof as an example.
  • the method for producing a polarized light emitting device comprises the steps of preparing a substrate, swelling the substrate by immersing the substrate in a swelling solution, and swelling the substrate, and one of the polarized light emitting dyes mentioned above.
  • a dyeing step of impregnating a dye solution containing at least the above with a dye solution for adsorbing a polarized light-emitting dye, and immersing a substrate with the polarized light-emitting dye adsorbed thereon in a solution containing boric acid The step of crosslinking in the material, the step of uniaxially stretching the base material obtained by crosslinking the polarized light-emitting dye in a fixed direction, and arranging the polarized light-emitting dye in a fixed direction, and, if necessary, the stretched group Washing the material with a washing solution and / or drying the washed substrate.
  • the swelling step is preferably performed by immersing the above-mentioned substrate in a swelling solution at 20 to 50 ° C. for 30 seconds to 10 minutes, and the swelling solution is preferably water.
  • the draw ratio of the substrate by the swelling solution is preferably adjusted to 1.00 to 1.50 times, and more preferably adjusted to 1.10 to 1.35 times.
  • At least one polarized light emitting dye is impregnated and adsorbed onto the substrate obtained by the swelling treatment in the swelling step.
  • the dyeing process is not particularly limited as long as it is a method of impregnating and adsorbing a polarized light emitting dye to a substrate, but for example, a method of immersing a substrate in a dyeing solution containing a polarized light emitting dye, the substrate The method of apply
  • the concentration of the polarized light emitting dye in the staining solution is not particularly limited as long as the polarized light emitting dye is sufficiently adsorbed in the substrate, and for example, it is 0.0001 to 1% by mass in the staining solution Is preferable, and 0.001 to 0.5% by mass is more preferable.
  • the temperature of the dyeing solution in the dyeing step is preferably 5 to 80 ° C., more preferably 20 to 50 ° C., particularly preferably 40 to 50 ° C.
  • the time to immerse the substrate in the staining solution is important when controlling the value of the order parameter. In order to control the value of the order parameter indicated by the polarized light emitting element within the desired range, the time for immersing the substrate in the staining solution is preferably adjusted between 6 and 20 minutes, preferably between 7 and 10 minutes. More preferable.
  • the polarized light emitting dyes contained in the staining solution may be used alone or in combination of two or more.
  • the light emission color of the above-mentioned polarized light emitting dye differs depending on the compound, and therefore, by containing one or more kinds of the above polarized light emitting dye in the base material, it is possible to appropriately adjust the emitted light color to be various colors.
  • the staining solution may further contain one or more organic dyes and / or fluorescent dyes different from the polarized light emitting dye.
  • the blending ratio of the fluorescent dye or the organic dye is not particularly limited depending on the preparation purpose, generally, the total amount of the fluorescent dye and / or the organic dye is 0.01 relative to 100 parts by mass of the polarizing element. It is preferable to use in the range of ⁇ 10 parts by mass.
  • a dyeing assistant may be further used in combination.
  • the dyeing assistant include sodium carbonate, sodium hydrogencarbonate, sodium chloride, sodium sulfate (sodium sulfate), anhydrous sodium sulfate, sodium tripolyphosphate and the like, with preference given to sodium sulfate.
  • the content of the dyeing assistant can be optionally adjusted by the above-mentioned immersion time, temperature at the time of dyeing, etc. based on the dyeability of the dichroic dye to be used, but in 0.0001 to 10% by mass in the dyeing solution Is preferable, and more preferably 0.0001 to 2% by mass.
  • a preliminary washing process can be optionally performed.
  • the washing method is preferably to immerse the dyed substrate in the washing solution, while washing can also be carried out by applying the washing solution to the substrate.
  • the washing time is not particularly limited, but is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds.
  • the temperature of the cleaning solution in this preliminary cleaning step needs to be a temperature at which the material constituting the substrate does not dissolve, and the cleaning process is generally performed at 5 to 40.degree.
  • the pre-cleaning step can be omitted because the performance of the polarizing element is not particularly affected.
  • the crosslinker can be contained in the substrate after the dyeing step or the pre-cleaning step. It is preferable to immerse a base material in the processing solution containing a crosslinking agent as a method of making a base material contain a crosslinking agent, and on the other hand, you may apply
  • a crosslinking agent in the treatment solution for example, a solution containing a boron compound is used.
  • Boron compounds include, for example, inorganic compounds such as boric acid, borax, boron oxide and boron hydroxide, alkenylboronic acid which is boronic acid, arylboronic acid, alkylboronic acid, boronic acid ester, boronic acid ester, trifluoroborate or salts thereof Of these, boric acid and borax are preferred, with boric acid being particularly preferred.
  • the solvent in the treatment solution is not particularly limited, water is preferred.
  • the concentration of the boron derivative in the treatment solution is preferably 0.1 to 15% by mass, and more preferably 0.1 to 10% by mass.
  • the temperature of the treatment solution is preferably 30 to 80 ° C., and more preferably 40 to 75 ° C.
  • the treatment time of this crosslinking step is preferably 30 seconds to 10 minutes, and more preferably 1 to 6 minutes.
  • the polarized light emitting element obtained by this crosslinking step exhibits high contrast. This is a completely unexpected effect from the function of the boron compound used in the prior art for the purpose of improving water resistance or light transmission.
  • the fix treatment may be additionally performed with an aqueous solution containing a cation or a cationic polymer compound.
  • the cation is an ion derived from a metal such as sodium, potassium, calcium, magnesium, aluminum, iron, barium and the like, and preferably a divalent ion is used.
  • a cationic polymer compound for example, dicyanamide as a dicyanamide and formalin polymerization condensate, polycyanate as a dicyandiamide • diethylenetriamine polycondensate, polycation as an epichlorohydrin • dimethylamine addition polymer, dimethyldiallylammonate
  • dicyanamide as a dicyanamide and formalin polymerization condensate
  • polycyanate as a dicyandiamide • diethylenetriamine polycondensate
  • polycation as an epichlorohydrin • dimethylamine addition polymer
  • dimethyldiallylammonate A sodium chloride / dioxide ion copolymer, a diallylamine salt polymer, a dimethyldiallyl ammonium chloride polymer, a polymer of allylamine salt, a dialkylaminoethyl acrylate quaternary salt polymer or the like is used.
  • the stretching step is carried out.
  • the stretching step is performed by uniaxially stretching the substrate in a fixed direction.
  • the stretching method may be either a wet stretching method or a dry stretching method.
  • the draw ratio of the substrate is also important in controlling the value of the order parameter.
  • the stretching ratio of the substrate is preferably 3.3 times or more, more preferably 3.3 to 8.0 times It is more preferably 3.5 to 6.0 times, particularly preferably 4.0 to 5.0 times.
  • the substrate is preferably stretched in water, a water-soluble organic solvent or a mixed solution thereof. More preferably, the stretching treatment is performed while immersing the substrate in a solution containing at least one crosslinking agent.
  • the crosslinking agent for example, the boron compound in the above crosslinking agent step can be used, and preferably, the stretching treatment can be performed in the treatment solution used in the crosslinking step.
  • the stretching temperature is preferably 40 to 60 ° C., and more preferably 45 to 58 ° C.
  • the stretching time is usually 30 seconds to 20 minutes, preferably 2 to 7 minutes.
  • the wet drawing process may be carried out by one-step drawing or by two or more multi-step drawing.
  • the stretching treatment may optionally be carried out before the dyeing step, in which case the orientation of the polarized luminescent dye can be carried out together at the time of dyeing.
  • the stretching heating medium is an air medium
  • the humidity is preferably in an atmosphere of 20 to 95% RH.
  • the method for heating the substrate include, but are not limited to, a roll-to-roll zone drawing method, a roll heating drawing method, a hot pressure drawing method, an infrared heating drawing method, and the like.
  • the dry stretching step may be carried out in one step of stretching or in two or more steps of multi-step stretching.
  • the substrate containing a polarized light emitting dye can be stretched while containing a boron derivative, or the boron compound can be stretched after being contained in a substrate, but the boron compound is contained in the substrate It is preferable to carry out a stretching treatment after the treatment.
  • the temperature at which the boron derivative is applied is preferably 40 to 90 ° C., more preferably 50 to 75 ° C.
  • the concentration of the boron compound is preferably 1 to 10%, more preferably 3 to 8%.
  • the processing time for dry stretching is preferably 1 to 15 minutes, more preferably 2 to 12 minutes, and still more preferably 3 to 10 minutes.
  • a cleaning step of cleaning the surface of the substrate can be performed.
  • the washing time is preferably 1 second to 5 minutes.
  • the cleaning method preferably immerses the substrate in the cleaning solution, while the cleaning solution can also be cleaned by coating or coating on the substrate. Water is preferred as the cleaning solution.
  • the washing treatment may be carried out in one step, or may be carried out in two or more steps.
  • the temperature of the washing solution in the washing step is not particularly limited, but is usually 5 to 50 ° C., preferably 10 to 40 ° C., and may be normal temperature.
  • a solvent for the solution or treatment liquid used in each of the above steps other than the above water, for example, dimethyl sulfoxide, N-methyl pyrrolidone, methanol, ethanol, propanol, isopropyl alcohol, glycerin, ethylene glycol, propylene glycol, diethylene glycol, Examples thereof include alcohols such as triethylene glycol, tetraethylene glycol or trimethylolpropane, and amines such as ethylene diamine and diethylene triamine.
  • the solvent of the solution or treatment solution is, but not limited to, most preferably water. Moreover, the solvent of these solutions or a process liquid may be used individually by 1 type, and 2 or more types may be mixed and used.
  • the substrate is dried.
  • the drying process can be performed by natural drying, it can be performed by compression with a roll or removal of water on the surface by an air knife, a water absorption roll, etc., in order to further increase the drying efficiency. It is also possible to do.
  • the temperature of the drying treatment is preferably 20 to 100 ° C., and more preferably 60 to 100 ° C.
  • the drying time is preferably 30 seconds to 20 minutes, and more preferably 5 to 10 minutes.
  • the polarized light emitting device according to the present invention can be manufactured by the above-described manufacturing method, and the obtained polarized light emitting device has high durability and exhibits polarized light emission having a high degree of polarization (contrast).
  • the polarized light emitting element exhibits polarized light emission in the visible light region using energy obtained by light absorption, particularly absorption of light in the ultraviolet light region. In order to further improve the lightness difference of this polarized light emission, it is preferable that the polarized light emission has a high degree of polarization (contrast). Since the light emitted from the polarized light emitting element is polarized light in the visible light range, when the polarized light emitting element is observed through a general polarizing plate having a polarizing function with respect to light in the visible light range, By changing the angle of the axis, it is possible to view polarized light emission and non-emission light.
  • the polarization degree of the polarized light emitted by the polarized light emitting element is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more.
  • the light transmittance of the polarized light emitting element in the visible light range is, for example, 60% or more, preferably 70 %, More preferably 80% or more, still more preferably 85% or more, particularly preferably 90% or more.
  • a polarized light emitting element Since such a polarized light emitting element has a high degree of polarization, the absorption in the visible light range becomes small in the non-emitting state, whereby a polarized light emitting element with high transparency can be obtained.
  • a high degree of polarization of polarized light emission by the polarized light emitting element is important because a bright display with high contrast can be realized, and it is also important that the transmittance of light in the visible light range is high. It is effective as a new transparent liquid crystal display.
  • the polarized light emitting element preferably further includes a visible light absorbing dye-containing layer on at least one surface of the polarized light emitting element as a layer that absorbs polarized light.
  • a visible light absorbing dye-containing layer on at least one surface of the polarized light emitting element as a layer that absorbs polarized light.
  • the method for further forming a visible light absorbing type dye-containing layer on a polarized light emitting element is not particularly limited, but a polarized light emitting element absorbs a light in the visible light region and does not exhibit a light emitting function. It is preferable to provide the containing layer.
  • the visible light absorbing dye is directly applied to the surface of the polarized light emitting dye, or the visible light absorbing dye is contained only on the surface of the polarized light emitting element, or visible light absorbing
  • a transparent protective layer can be obtained by using an adhesive layer containing a visible light absorbing dye.
  • a visible light absorbing dye-containing layer is formed in the polarized light emitting device by forming a visible light absorbing dye-containing layer with the polarized light emitting device, or by including a visible light absorbing dye in the transparent protective layer.
  • the direction of absorption of polarized light emitted by the visible light absorbing dye-containing layer is not necessarily limited as to whether it has light absorption anisotropy, but the visible light absorbing dye-containing layer has light absorption anisotropy
  • the absorption direction of light based on the light absorption anisotropy is orthogonal to the polarized light emission by the polarized light emitting element.
  • the visible light absorbing dye-containing layer may be provided on the surface layer of the polarized light emitting element, may be provided only on one side of the polarized light emitting element, or may be laminated on both sides of the polarized light emitting element .
  • the visible light absorbing dye is a dye having a low fluorescence quantum yield ( ⁇ ) and which can not confirm light emission such as fluorescence or phosphorescence visually when absorbing light.
  • the fluorescence quantum yield is the ratio of the number of photons absorbed to the number of photons emitted (number of photons emitted / number of photons absorbed), and the higher the fluorescence quantum yield, the better the emission. It is recognized as a pigment. That is, as the fluorescence quantum yield approaches 1 it may be recognized as a better light emitting dye, but the visible light absorbing dye is not particularly limited as long as its fluorescence quantum yield is low. Specifically, in a display medium such as a display, it is preferable that the light emission can not be visually confirmed through the visible light absorbing dye-containing layer.
  • the emission intensity (F) of the visible light absorbing dye is generally represented by the following formula (IV).
  • ⁇ 0 represents the intensity of light (excitation light) irradiated to the visible light absorbing dye
  • represents the absorption intensity of the visible light absorbing dye for light of a certain wavelength, ie, Represents molecular absorption efficiency
  • represents the above-mentioned fluorescence quantum yield
  • C represents the molar concentration of the visible light absorbing dye.
  • the light emitted to the visible light absorbing dye varies depending on the environment in which the display medium is used and the irradiation device, and the light emission intensity (F) is also the molecular absorption efficiency ( ⁇ ) of the visible light absorbing dye and the concentration ( It also fluctuates according to C). Therefore, it is difficult to limit the preferred visible light absorbing dye to be applied to the display medium only with the fluorescence quantum yield ( ⁇ ) of the visible light absorbing dye.
  • the visible light absorbing dye may be a dye which can not confirm the light emission from the polarized light emitting element visually, and for example, a dye having a fluorescence quantum yield ( ⁇ ) of 0.1 or less is used
  • the fluorescence quantum yield ( ⁇ ) is preferably 0.01 or less, more preferably 0.001 or less.
  • Luminescence intensity (F) ⁇ 0 ⁇ ⁇ ⁇ ⁇ ⁇ C (IV)
  • the absorption wavelength of the visible light absorbing dye can absorb only the light of the emission wavelength of the polarized light emitting dye used for the polarized light emitting element, while the absorption of the visible light absorbing dye at the absorption wavelength of the polarized light emitting dye It is more preferable that there is little or no. Thereby, the contrast in polarized light emission of the polarized light emitting element can be improved, and the absorption efficiency of the polarized light emitting dye can be further improved.
  • the visible light transmittance of the visible light absorbing dye-containing layer is not particularly limited, but the light emission of the layer interface of the polarized light emitting element, in particular, the interface of the surface layer is suppressed by the visible light absorbing dye.
  • the contrast in polarized light emission of the device is improved.
  • the visible light absorbing dye-containing layer absorbs visible light to an extent not affected by the measurement of visible light transmittance, and can exhibit the above effects even when the reduction rate (loss) of visible light transmittance is 0%. is there.
  • the visible light transmittance of the polarized light emitting element is 90% or more
  • the visible light transmittance of the visible light absorbing dye-containing layer is 0 to 50%, so that the visible light transmittance of general polarizing plate or more Can be realized. Therefore, if the reduction rate of the visible light transmittance by the visible light absorbing dye-containing layer is 50% or less, the contrast exhibited by the polarized light emission from the polarized light emitting element can be improved, and thus the polarized light capable of exhibiting the polarization function It is useful as a light emitting element. Moreover, unlike a general polarizing plate, since it can also be used as a light emission type polarizing functional film, it can be used in various fields.
  • the reduction rate (loss) of the visible light transmittance by the visible light absorbing dye-containing layer is preferably 50% or less, more preferably 0 to 30%, still more preferably 0 to 20%, and 0 to 10%. Particularly preferred. By setting the reduction rate of the visible light transmittance to 0 to 10%, it is possible to maintain high transmittance while improving the contrast of polarized light emission.
  • a polarized light emitting plate according to the present invention comprises the above-described polarized light emitting element, and a transparent protective layer provided on one side or both sides of the polarized light emitting element.
  • a transparent protective layer is used to improve the water resistance, the handleability and the like of the polarized light emitting element. Therefore, such a transparent protective layer does not have any influence on the polarization action of the polarized light emitting device according to the present invention.
  • the transparent protective layer preferably does not have an ultraviolet light absorbing function, and in particular, a plastic film not having an ultraviolet light absorbing function Is preferred.
  • the transparent protective layer is preferably a transparent protective film excellent in optical transparency and mechanical strength. Further, the transparent protective layer is preferably a film having a layer shape capable of maintaining the shape of the polarized light emitting element, and is a plastic film which is excellent in thermal stability, moisture shielding property, etc. in addition to transparency and mechanical strength. Is preferred.
  • a material for forming such a protective film for example, a cellulose acetate film, an acrylic film, a fluorine film such as tetrafluoroethylene / hexafluoropropylene copolymer, a polyester resin, a polyolefin resin
  • a film made of a polyamide-based resin may, for example, be mentioned.
  • a triacetyl cellulose (TAC) film or a cycloolefin-based film is used.
  • the thickness of the transparent protective layer is preferably in the range of 1 ⁇ m to 200 ⁇ m, more preferably in the range of 10 ⁇ m to 150 ⁇ m, and particularly preferably 40 ⁇ m to 100 ⁇ m.
  • the method for producing a polarized light emitting plate is not particularly limited.
  • a polarized light emitting plate can be produced by laminating a transparent protective layer on a polarized light emitting element and laminating it according to a known formulation.
  • the polarized light emitting plate may further include, between the transparent protective layer and the polarized light emitting element, an adhesive layer for bonding the transparent protective layer to the polarized light emitting element.
  • the adhesive constituting the adhesive layer is not particularly limited, and polyvinyl alcohol adhesives, urethane emulsion adhesives, acrylic adhesives, polyester-isocyanate adhesives, etc. may be mentioned, with preference given to polyvinyl An alcohol adhesive is used.
  • the polarized light emitting plate can be produced by drying or heat treatment at an appropriate temperature.
  • the polarized light emitting plate may be appropriately provided with known various functional layers such as an antireflection layer, an antiglare layer, and a further transparent protective layer on the exposed surface of the transparent protective layer.
  • various functional layers such as an antireflection layer, an antiglare layer, and a further transparent protective layer on the exposed surface of the transparent protective layer.
  • an anti-reflective layer can also be provided on exposure of a transparent protective layer.
  • the antireflective layer can be formed, for example, by vapor deposition or sputtering of a substance such as silicon dioxide or titanium oxide on the transparent protective layer, or thinly coating a fluorine-based substance on the transparent protective layer.
  • the polarized light-emitting plate according to the present invention may further include a support layer, if necessary.
  • a support layer for example, a transparent support such as glass, quartz, sapphire or the like can be further provided.
  • a support preferably has a flat portion to be attached to a polarized light emitting plate, and is preferably a transparent substrate from the viewpoint of optical use.
  • the transparent substrate is divided into an inorganic substrate and an organic substrate. Examples of the inorganic substrate include soda glass, borosilicate glass, quartz substrate, sapphire substrate, spinel substrate and the like, and organic substrates are acrylic, polycarbonate, etc.
  • Examples include substrates made of polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer and the like.
  • the thickness and size of the transparent substrate are not particularly limited, and can be determined as appropriate.
  • a transparent adhesive (adhesive) agent may be applied to the flat surface of the support, and then the polarized light emitting plate according to the present invention may be attached to this coated surface.
  • the adhesive or pressure-sensitive adhesive to be used is not particularly limited, and a commercially available one may be used, and an acrylic ester-based adhesive or pressure-sensitive adhesive is preferable.
  • the polarizing plate according to the present invention can also be used as an element or a circularly polarized light emitting plate that emits circularly polarized light, or an element that emits elliptically polarized light, or an elliptically polarized light emitting plate by attaching a retardation plate.
  • a support or the like is further provided on the polarized light emitting plate, the support may be provided on the side of the retardation plate or on the side of the polarized light emitting plate.
  • the polarized light emitting plate can be further provided with various functional layers, supports, etc.
  • Such a polarized light emitting plate is, for example, a liquid crystal projector, a calculator, a watch, a notebook computer, a word processor, a liquid crystal television, It can be used for various products such as car navigation and indoor / outdoor measuring instruments and displays, lenses, or glasses.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention exhibit a high degree of polarization in the ultraviolet light region, and further exhibit polarized light emitting action and high transmittance in the visible light region.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention show excellent durability against heat, humidity, light and the like, their performance can be maintained even under severe environments, It has higher durability than iodine-based polarizers.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention are liquid crystal displays which are required to have high transparency in the visible light region and high durability under severe environments, such as television, wearable terminal, tablet terminal, smartphone
  • the present invention can be applied to various display devices such as in-vehicle monitors, digital signage used outdoors or indoors, and smart windows.
  • the display device includes the polarized light emitting element or the polarized light emitting plate in the present invention. Therefore, such a display device can form a display capable of displaying an image while emitting light by being irradiated with light of a specific wavelength.
  • a display device can form a display capable of displaying an image while emitting light by being irradiated with light of a specific wavelength.
  • the surface of a substrate that absorbs only a specific wavelength, ie has a specific color can emit polarized light of different color wavelengths.
  • a polarized light emitting action is shown in the visible light region, and by using this action, an image can be displayed on the display.
  • the liquid crystal display by combining the above-mentioned polarized light emitting element or polarized light emitting plate with the liquid crystal display, it can be used as a self-luminous liquid crystal display unlike a conventional liquid crystal display using a general polarizing plate.
  • the visible light absorbing dye-containing layer is further provided on at least one surface of the polarized light emitting element, the visible light absorbing dye-containing layer is provided at least on the viewer side. Is preferred. By arranging the visible light absorbing dye-containing layer on the viewer side, it is possible to improve the contrast of high contrast to the viewer.
  • the display device according to the present invention has high transmittance in the visible light region, there is no decrease in transmittance in the visible light region as in the conventional polarizing plate, or even if there is a decrease in transmittance,
  • the decrease in transmittance is significantly less than that of the conventional polarizing plate.
  • the visibility correction in the visible light region is 35 to 43 It needs to be around%.
  • the conventional polarizing plate has both the vertical axis and the horizontal axis as an absorption axis of light, but one of the vertical axis or the horizontal axis is incident to obtain a degree of polarization of approximately 100%.
  • polarization occurs. In such a case, the light in one axis is absorbed and does not transmit, so the transmissivity necessarily becomes 50% or less.
  • the conventional polarizing plate orientates a dichroic dye in a stretched film to produce a polarizing plate
  • the dichroic dye is not necessarily 100% oriented, and light It also has a light absorbing action on the transmission axis of Therefore, the degree of polarization of 100% can not be realized unless the transmittance is about 43% or less due to the surface reflection of the substance, that is, the degree of polarization can not be realized unless the transmittance is reduced.
  • the polarized light emitting element or the polarized light emitting plate according to the present invention absorbs light in the ultraviolet light range, the light absorption axis is about 400 nm or less.
  • the polarized light emitting element or the polarized light emitting plate exhibits a polarized light emitting action of emitting light polarized in the visible light region, but hardly absorbs light in the visible light region, so the transmittance in the visible light region is very high. Get higher. Furthermore, in the visible light region, since it exhibits a polarized light emitting action, the loss of light is smaller than in the case of using a conventional polarizing plate, that is, the decrease in transmittance as in the conventional polarizing plate is very small.
  • a display using the polarized light emitting element or the polarized light emitting plate according to the present invention for example, a liquid crystal display can obtain higher luminance than a liquid crystal display using a conventional polarizing plate. Furthermore, since the display device including the polarized light emitting element or the polarized light emitting plate according to the present invention has high transparency, it is possible to obtain a display that is very nearly transparent, although it is a liquid crystal display. In addition, since it can be designed to transmit polarized light when displaying characters and images, it is possible to obtain a display that can be displayed even though it is a transparent liquid crystal display, that is, a display that can display characters and the like on a transparent display. Be Therefore, the display device according to the present invention is effective for application as a transparent liquid crystal display without light loss, particularly as a see-through display.
  • the display device according to the present invention can be polarized by, for example, ultraviolet light invisible to human eyes, it can be applied to a liquid crystal display capable of displaying by ultraviolet light.
  • a liquid crystal display capable of displaying by ultraviolet light.
  • the display device exhibits, for example, a polarized light emitting action by irradiating ultraviolet light, and a liquid crystal display using the polarized light emission can be manufactured. Therefore, it is also possible to realize a liquid crystal display using ultraviolet light, not a normal liquid crystal display using visible light. That is, even in a dark space where there is no light, if it is a space that can be irradiated with ultraviolet light, it is possible to fabricate a self-luminous liquid crystal display in which displayed characters, images, and the like are displayed.
  • the visible light region is a liquid crystal display portion that can be displayed by the light in the visible light region and the light displayed by the polarized light emitting action by the ultraviolet light. It is also possible to produce a display capable of two different displays in which the liquid crystal display portion coexists. Although two displays capable of different displays exist to date, there are no displays capable of different displays by different light sources in the ultraviolet light region and the visible light region although they are the same liquid crystal panel . From this, the display device according to the present invention can produce a novel display by having the above-mentioned polarized light emitting element or polarized light emitting plate.
  • the display device may be a liquid crystal display for on-vehicle use or outdoor display.
  • the liquid crystal cell to be used is not limited to, for example, TN liquid crystal, STN liquid crystal, VA liquid crystal, IPS liquid crystal, etc. in a liquid crystal display for vehicle or outdoor display, and the liquid crystal display can be used in all liquid crystal display modes. It is possible.
  • the polarized light emitting element according to the present invention is excellent in polarization performance and further suppresses discoloration and deterioration in polarization performance even in a car or outdoors under high temperature and high humidity, thus improving the long-term reliability of the liquid crystal display for vehicle or outdoor display Can contribute to
  • A Order parameter (OPD) The value of the order parameter of the polarized light emitting device was evaluated using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technologies Corporation).
  • Each polarized light emitting element (measurement sample) manufactured in each example and comparative example is absolutely irradiated with light (hereinafter referred to as “absolutely polarized light”) having approximately 100% polarized light in a wavelength range of 220 nm to 2600 nm
  • a polarization gram tailor prism was installed, and the transmittance of light of each wavelength was measured when each measurement sample was irradiated with absolute polarization.
  • the light transmittance measured when light polarized orthogonally to the axis showing absorption of the highest light in a polarized light emitting element irradiated with absolute polarized light and oriented with a polarized light emitting dye is Ky, absolute polarized light
  • the light transmittance measured when light polarized parallel to the axis showing absorption of the highest light in the polarized light emitting element in which the polarized light emitting dye is oriented is Kz, the respective values Were substituted into the following formula (I). The obtained value was evaluated as the value of the order parameter (OPD) of the polarized light emitting element.
  • OPD order parameter
  • (B) Visibility correction single transmittance Ys The visual sensitivity correction single transmittance Ys of each measurement sample is substituted for the above-mentioned Ky and Kz obtained for each predetermined wavelength interval d ⁇ (here, 5 nm) in the wavelength range of 400 to 700 nm in the visible light region. Then, the single transmittance Ts of each wavelength is calculated, and the transmittance is corrected to the visibility according to JIS Z 8722: 2009. Specifically, the single transmittance Ts was substituted into the following formula (VI) to calculate.
  • P ⁇ represents the spectral distribution of standard light (C light source)
  • y ⁇ represents a two-degree visual field color matching function.
  • the degree of polarization ⁇ of each measurement sample was determined by substituting the parallel transmittance Tp and the orthogonal transmittance Tc into the following equation (VII).
  • the parallel transmittance Tp was measured using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technologies Corporation), by superposing two measurement samples so that the absorption axis direction is parallel. It is the spectral transmittance of each wavelength.
  • the orthogonal position transmittance Tc is a spectral transmittance measured by superposing two polarizing plates with their absorption axes orthogonal to each other using a spectrophotometer. The measurements were taken over a wavelength of 220-780 nm.
  • a 395 nm hand light type LED black light (“FBA_VS-FL01 JP (ASIN: B01 EAJB9BA)” manufactured by Vansky JAPAN) is used.
  • the company made "IUV-340" to cut visible light.
  • a polarizing plate having a polarizing function with respect to light in the visible light region and the ultraviolet light region (“SKN-18043P” manufactured by Polatechno, thickness 180 ⁇ m, Ys 43%) or less “referred to as“ measuring polarizing plate ”
  • the polarized light emitting plate obtained in each of the examples and the comparative examples, and the polarized light emitted by the polarized light emitting plate is measured using a spectral radiance meter (“USR-40” manufactured by USHIO INC.) It was measured.
  • the light from the light source passes through the ultraviolet light transmitting / visible cut filter, the measurement polarizing plate and each polarized light emitting plate in this order, and the polarized light from each polarized light emitting plate enters the spectral irradiometer. Measured.
  • Lw is the spectral light emission amount of each wavelength measured by superposing the absorption axis at which absorption of light in the ultraviolet light region of each polarized light emitting plate is maximum with the absorption axis of the polarizing plate for measurement parallel.
  • the obtained intermediate (62.3 parts of the formula (6)) was added to 300 parts of water and stirred, and the pH was adjusted to 10.0 using a 25% aqueous sodium hydroxide solution. Twenty parts of 28% aqueous ammonia and 9.0 parts of copper sulfate pentahydrate were added to the obtained solution, and the mixture was stirred at 90 ° C. for 2 hours. To the resulting reaction solution, 25 parts of sodium chloride was added, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 40.0 parts of a wet cake of a compound of the formula (7). The wet cake was dried with a hot air dryer at 80 ° C. to obtain 20.0 parts of a compound ( ⁇ max: 376 nm) of the following formula (7).
  • composition example 2 A commercially available sodium 4,4'-diaminostilbene-2,2'-disulfonate 41.4 parts was added to 300 parts of water at 10 ° C in the presence of sodium carbonate and stirred. Further, 34.0 parts of a compound represented by the formula (8) is added and reacted at pH 10, 60 parts of sodium chloride is added to the obtained reaction solution, and the precipitated solid is separated by filtration and further washed with 100 parts of acetone. As a result, 68.4 parts of a wet cake of a compound of the formula (9) was obtained. The wet cake was dried by a hot air drier at 80 ° C. to obtain 33 parts of a compound ( ⁇ max: 356 nm) of the following formula (9).
  • composition example 3 6.0 parts of a compound of the following formula (10) synthesized by the method described in WO 2005/033211 and 1.6 parts of potassium carbonate were added to 50 parts of N-methyl-2-pyrrolidone and stirred. To the resulting solution was added 2.1 parts of 4-methoxybenzoyl chloride, and the mixture was stirred at 90 ° C. for 4 hours. The obtained reaction solution was added to 300 parts of a 20% aqueous sodium chloride solution, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 20.0 parts of a wet cake of a compound of the formula (11). The wet cake was dried with a hot air drier at 80 ° C. to obtain 5.0 parts of a compound of the following formula (11) ( ⁇ max: 372 nm).
  • composition example 4 A commercially available sodium 4,4'-diaminostilbene-2,2'-disulfonate 41.4 parts was added to 300 parts of water and stirred, and the pH was adjusted to 0.5 using 35% hydrochloric acid. 10.9 parts of 40% aqueous sodium nitrite solution is added to the obtained solution and stirred at 10 ° C. for 1 hour, and then 34.4 parts of 6-aminonaphthalene-2-sulfonic acid is added, and a 15% aqueous sodium carbonate solution is used. The pH was adjusted to 4.0 and stirred for 4 hours. 60 parts of sodium chloride was added to the obtained reaction liquid, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 124.0 parts of a wet cake of a compound of the formula (12) as an intermediate. .
  • composition example 5 4.0 parts of commercially available 4-amino-4'-nitrostilbene-2,2'-disulfonic acid and 2.8 parts of sodium carbonate are added to 30 parts of N-methyl-2-pyrrolidone and then 4-methoxybenzoyl chloride After 3.4 parts were dropped for 5 minutes, the mixture was stirred at 110 ° C. for 6 hours. The obtained reaction solution was added to 100 parts of water, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 10.0 parts of a wet cake. The wet cake was dried with a hot air dryer at 80 ° C. to obtain 3.0 parts of a compound ( ⁇ max: 370 nm) of the following formula (14).
  • Synthesis Example 6 Surfactant (0.22 parts of "Leocor TD90" manufactured by Lion Corporation) is added to 400 parts of ice water with reference to Japanese Patent Publication No. 50-033814 and Japanese Patent Publication No. 03-294598, and the mixture is vigorously stirred. The reaction mixture was added with 18.4 parts of cyanuric chloride and stirred at 0-5 ° C. for 30 minutes to obtain a suspension, to which 25.3 parts of aniline-2,5-disulfonic acid was added, and the pH was 4-6. The mixture was stirred at 0 to 30 ° C.
  • Synthesis Example 7 A compound of the following formula (16) was prepared by the same method as in Synthesis Example 6 except that 25.3 parts of aniline-2,5-disulfonic acid used in Synthesis Example 6 was changed to 17.3 parts of 4-aminobenzenesulfonic acid. (lambda) max: 370 nm) 23.0 parts were obtained.
  • Synthesis Example 8 By the same method as in Synthesis Example 6 except that 11 parts of diethanolamine used in Synthesis Example 6 was changed to 18.8 parts of phenol, 15.0 parts of a compound ( ⁇ max: 370 nm) of the following formula (17) was obtained.
  • Synthesis Example 9 A compound of the following formula (18) by the same method as in Synthesis Example 6 except that 25.3 parts of aniline-2,5-disulfonic acid used in Synthesis Example 6 is changed to 17.2 parts of 4-aminobenzenesulfonic acid amide 23.0 parts of ( ⁇ max: 370 nm) were obtained.
  • Example 1 (Production of polarized light emitting element) A 75 ⁇ m thick polyvinyl alcohol film (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling was prepared by adding 0.05 part of an aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (TAFOPAL NFW Liquid, manufactured by BASF) described in Compound Example 5-1, and 1.0 part of sodium sulfate. The plate was immersed in an aqueous solution of 45 ° C. containing 1000 parts of water for 10 minutes.
  • VF-PS # 7500 manufactured by Kuraray Co., Ltd.
  • the obtained film was immersed in a 3% aqueous boric acid solution for 5 minutes at 50 ° C. and stretched 5.0 times.
  • the film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
  • the visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 92.3%.
  • Examples 2 to 7 In the polarized light-emitting element produced in Example 1, the time (10 minutes) for immersing the swollen film in an aqueous solution at 45 ° C. containing the compound described in Compound Example 5-1 is 9 minutes, 30 seconds, 9 minutes, 8 minutes Polarized light emitting elements having different values of order parameters were produced in the same manner as in Example 1 except that the film was immersed for 30 minutes, 8 minutes, 7 minutes 40 seconds, and 7 minutes 30 seconds.
  • the ECR exhibited the highest value of the order parameter (OPD) at the wavelength at which the difference between Ky and Kz is the largest and the measured contrast (ECR).
  • OPD order parameter
  • ECR measured contrast
  • Example 8 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (7) produced in Synthesis Example 1 was used instead of Compound Example 5-1 used in Example 1. .
  • the visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.8%.
  • Example 9 In the polarized light emitting device produced in Example 8, after the compound represented by the above formula (7) is contained in a base material, the draw ratio (5.0 times) of the base material is 4.5, 4. Polarized light-emitting elements different in value of the order parameter were produced in the same manner as in Example 8 except that the magnification was changed to 3 times, 4.0 times, 3.5 times, and 3.3 times, respectively.
  • Example 14 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (15) produced in Synthesis Example 6 was used instead of the compound example 5-1 used in Example 1. .
  • the visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 92.1%.
  • Example 15 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (16) produced in Synthesis Example 7 was used instead of Compound Example 5-1 used in Example 1. .
  • the visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.7%.
  • Example 16 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (17) produced in Synthesis Example 8 was used instead of Compound Example 5-1 used in Example 1. .
  • the visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.5%.
  • Example 17 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (18) produced in Synthesis Example 9 was used instead of Compound Example 5-1 used in Example 1. .
  • the visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.6%.
  • Comparative Example 7 A polarized light emitting device was produced according to the same formulation as the method described in Example 1 of US Pat. No. 3,276,316. Specifically, a 75 ⁇ m thick polyvinyl alcohol film (“VF-PS # 7500” manufactured by Kuraray Co., Ltd.) was stretched by 4 times. The obtained film is immersed in a dyeing solution at normal temperature contained in Compound Example 5-1, taken out from the immersed solution, and then stretched so that the length of the substrate is 4.2 times, and polarized light A light emitting element was obtained. A polarized light emitting plate was produced in the same manner as the method for producing a polarized light emitting plate in Example 1 except that this polarized light emitting element was used. The OPD value of the obtained polarized light emitting element was 0.753, and the ECR value of the polarized light emission was 5.0.
  • VF-PS # 7500 manufactured by Kuraray Co., Ltd.
  • Comparative Example 8 A polarized light emitting element was produced according to the same formulation as the method described in Example 1 of JP-A-4-226162. Specifically, 0.43% by weight of a compound represented by Compound Example 5-1 is added to a polyvinyl alcohol resin ("PVA-117" manufactured by Kuraray Co., Ltd.) having a degree of hydrolysis of 99% or more, mixed, and dried. By forming a film so as to have a film thickness of 75 ⁇ m later, a polyvinyl alcohol film as a substrate was manufactured. Subsequently, uniaxial light stretching was carried out so that the length of the produced film might be 7.0 times, and a polarization light emitting element was produced. The OPD value of the obtained polarized light emitting element was 0.679, and the ECR value of the polarized light emission was 3.4.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • Example 18 (Production of polarized light emitting element) A polyvinyl alcohol film ("VF-PS # 7500" manufactured by Kuraray Co., Ltd.) having a thickness of 75 ⁇ m was immersed in water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling was obtained by adding 0.3 parts of the compound of the formula (7) obtained in Synthesis Example 1, 0.15 parts of the compound of the formula (9) obtained in Synthesis Example 2, and 1 The film was immersed in an aqueous solution at 45 ° C. containing 0.05 parts of water and 1000 parts of water for 4 minutes to contain the compound of formula (7) and the compound of formula (9) in a film.
  • VF-PS # 7500 manufactured by Kuraray Co., Ltd.
  • the obtained film was immersed in a 3% aqueous boric acid solution for 5 minutes at 50 ° C. and stretched 5.0 times.
  • the film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
  • Example 19 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
  • 0.3 part of the compound of Formula (11) obtained in Synthesis Example 3 and A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that 0.15 part of the compound of the formula (13) was used.
  • Example 20 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) In place of 0.3 part of the compound of Formula (7) and 0.15 part of the compound of Formula (9), 0.3 part of the compound of Formula (14) obtained in Synthesis Example 5 and A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that 0.15 part of the compound of the formula (13) was used.
  • Example 21 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
  • 0.3 part of the compound of formula (14) obtained in Synthesis Example 5 and Compound Example 5-1 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that 1.0 part of the aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl dibasic (Tinopal NFW Liquid, manufactured by BASF) was used. did.
  • Comparative Example 9 In place of the compound of the formula (7) and the compound of the formula (9), C.I. that is a general dichroic dye that does not show fluorescence emission represented by the formula (19) I. A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that Direct Yellow 4 was used.
  • Comparative Example 10 Example except using the compound which is a general dichroic dye which does not show fluorescence emission shown by Formula (20) instead of the compound of Formula (7) and the compound of Formula (9) In the same manner as in No. 18, a polarized light emitting element and a polarized light emitting plate were produced.
  • Comparative Example 11 Example except using the compound which is a general dichroic dye which does not show fluorescence emission shown by Formula (21) instead of the compound of Formula (7) and the compound of Formula (9) In the same manner as in No. 18, a polarized light emitting element and a polarized light emitting plate were produced.
  • Table 6 shows the single light transmittance (Ts) at the wavelength showing the maximum degree of polarization of the polarized light emitting devices manufactured in Examples 18 to 21 and Comparative Examples 9 to 11, and the parallel transmittance (Tp) at the wavelength showing the maximum degree of polarization.
  • Tc single light transmittance
  • degree of polarization
  • Ys visibility corrected single transmittance
  • the polarized light emitting elements produced in Examples 18 to 21 function as polarized light emitting elements having an absorption characteristic of light in the ultraviolet light region because the wavelength showing the maximum degree of polarization is 380 nm or less. It turned out that it was doing.
  • the transmittance in the visible light region (visual sensitivity correction transmittance Ys) is about 90%, and it was found that the ultraviolet light region exhibits a high transparency in the visible light region while having a polarization function.
  • the polarization degree ⁇ also showed a high value of 95% or more.
  • the wavelength showing the maximum degree of polarization is 400 nm or more, and the visible light correction single transmittance (Ys) is also lowered. A decrease in the rate was observed.
  • the polarized light emitting elements manufactured in Examples 18 to 21 since Lw and Ls were detected, it was found that these polarized light emitting elements emit light when irradiated with ultraviolet light. In addition, since the polarized light emitting elements manufactured in Examples 18 to 21 had a difference between the value of Lw and the value of Ls, it was found that the light emission was polarized. Furthermore, the polarized light emitting elements produced in Examples 18 to 21 exhibit polarized light emission over a broad band of 400 to 700 nm by irradiation with ultraviolet light, and the absolute values of the chromaticity a * and the hue b * are both It was 5 or less.
  • the polarized light emitting elements produced in Examples 18 to 21 function as white light emitting type polarized light emitting elements that emit white polarized light by irradiation of ultraviolet light.
  • the polarized light emitting elements produced in Comparative Examples 9 to 11 had low values of Ls and did not detect Lw, and therefore showed no polarized light emission or only weak polarized light emission. Therefore, the polarized light emitting elements produced in Comparative Examples 9 to 11 were out of the measurement range for the chromaticity a * .
  • Example 22 (Production of polarized light emitting element) A 75 ⁇ m thick polyvinyl alcohol film (“VF-PS # 7500” manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling was a 0.54 part aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (Tinopal NFW Liquid manufactured by BASF) described in Compound Example 5-1, and 1.0 part of mirabilite. The substrate was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 8 minutes. The obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C. for 5 minutes and stretched 5.0 times. The film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
  • VF-PS # 7500 manufactured by Kuraray Co., Ltd.
  • the thickness of the substrate was 32 ⁇ m.
  • the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) Information on the ratio of secondary ion intensity derived from boric acid as shown in Table 8 was obtained. The concentration distribution of boric acid derived from this result was obtained as shown in Table 9.
  • Example 23 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 22 except that the compound of the above formula (7) produced in Synthesis Example 1 was used instead of the compound example 5-1 used in Example 22. . Tables 8 and 9 show information on the concentration distribution of boron. The content of the polarized light emitting dye (the compound of the above formula (7)) in the film thickness section was equivalent to that of Example 22.
  • Comparative Example 13 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 22 except that boron was not used.
  • the thickness of the substrate was 31 ⁇ m.
  • the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) It confirmed that it did not contain boron.
  • Comparative Example 14 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
  • the polarized light-emitting element described in Comparative Example 7 was produced by the same formulation as the method described in Example 1 of US Pat. No. 3,276,316.
  • a polarized light emitting plate was produced in the same manner as in Example 22 except that this polarized light emitting element was used.
  • the thickness of the substrate was 35 ⁇ m.
  • the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) It confirmed that it did not contain boron.
  • Comparative Example 15 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) A polarized light emitting device was produced by impregnating the polarized light emitting device manufactured in Comparative Example 14 with an aqueous solution at 40 ° C. containing 5% by weight of boron for 5 seconds. A polarized light emitting plate was produced in the same manner as in Example 22 except that this polarized light emitting element was used.
  • the thickness of the substrate was 32 ⁇ m.
  • the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) Information on the ratio of secondary ion intensity derived from boric acid as shown in Table 8 was obtained. The concentration distribution of boric acid derived from this result was obtained as shown in Table 9.
  • Comparative Example 16 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) A polarized light emitting element was produced according to the same formulation as the method described in Example 1 of JP-A-4-226162. Specifically, 0.43% by weight of a compound represented by Compound Example 5-1 is added to a polyvinyl alcohol resin ("PVA-117" manufactured by Kuraray Co., Ltd.) having a degree of hydrolysis of 99% or more, mixed, and dried. By forming a film so as to have a film thickness of 75 ⁇ m later, a polyvinyl alcohol film as a substrate was manufactured. Next, uniaxial light stretching was performed at 130 ° C. for 14 minutes so that the length of the produced film was 7.0 times, to prepare a polarized light emitting element.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • the thickness of the substrate was 28 ⁇ m.
  • the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) It confirmed that it did not contain boron.
  • Tables 8 and 9 below show data on the ratio (intensity ratio) of secondary ion intensity obtained by the ToF-SIMS measurement in the polarized light emitting elements manufactured in Examples 22 and 23 and Comparative Example 15, respectively.
  • the ratio of the secondary ion intensity is measured at each distance with respect to the secondary ion intensity value, where the value of the highest secondary ion intensity (maximum secondary ion intensity) in each measurement is 1 in each polarization light emitting element. Is the ratio of the secondary ion intensity values.
  • the thickness of the substrate (film thickness of the polarized light emitting element) is represented by L.
  • the ratio of the secondary ion intensity at a distance of 1 / 2L toward the thickness direction from the substrate front surface represents I 1, toward the thickness direction from the substrate front surface (0 .mu.m)
  • the ratio of the secondary ion intensity detected up to a distance of 1 ⁇ 4 L and the secondary ion intensity detected up to a distance of 1 ⁇ 4 L in the thickness direction from the substrate backside surface (32 ⁇ m)
  • the intensity ratio showing the maximum value represents I 2 among the ratios of
  • the ratio of the secondary ion intensity (0 to 1/4 L average 1) is the ratio of the secondary ion intensity detected from the front surface of the base to the distance of 1 ⁇ 4 L.
  • the ratio of the secondary ion strength (average between 1/2 and 1/4 L) is 1 in the thickness direction from the half (center) of the thickness L of the substrate toward the front and back surfaces of the substrate. It represents the average value (I 4 ) of the ratio of secondary ion intensities detected up to a distance of 4 L.
  • the ratio of secondary ion intensities (0 to 1/4 L average 2) means the average value (I 3 ) of the ratio of secondary ion intensities detected from the back surface of the substrate to a distance of 1 ⁇ 4 L Represent.
  • the integral value is the integral of the value obtained every 2 ⁇ m in the thickness direction of the substrate.
  • the polarized light emitting elements produced in Examples 22 and 23 have relatively high values also in the vicinity of the center (between 1/2 L and 1/4 L) in the thickness direction of the substrate. Shows the ratio of secondary ion intensity. From this, it can be seen that in the polarized light emitting elements produced in Examples 22 and 23, a large amount of boron is present not only near the surface of the substrate but also near the center. On the other hand, in the polarized light emitting element produced in Comparative Example 15, the value of the ratio of the secondary ion intensity near the center was low, and the amount of boron near the center was significantly less than that near the surface of the substrate.
  • Table 10 shows the wavelengths indicating the maximum degree of polarization of the polarized light emitting elements produced in Examples 22 and 23 and Comparative Examples 12 to 16, the single transmittance (Ts) at the wavelength indicating the maximum degree of polarization, and the parallel transmittance ( Tp), orthogonal position transmittance (Tc), polarization degree ((), and visibility corrected single transmittance (Ys) are shown.
  • Table 11 shows the wavelengths showing the maximum polarized light emission in the polarized light emitting elements manufactured in Examples 22 and 23 and Comparative Examples 13 to 16, Ls and Lw at that wavelength, and the ratio of Ls to Lw.
  • the polarized light emitting element produced in Comparative Example 12 did not exhibit polarized light emission, Ls and Lw were not measured.
  • the polarized light emitting elements produced in Examples 22 and 23 absorb light of the following wavelength band at 400 nm, and have a polarization function in that band.
  • the polarization light emitting devices produced in Examples 22 and 23 have a higher degree of polarization than the polarization light emitting devices produced in Comparative Examples 13 to 16, their polarization function is superior to that of Comparative Examples 12 to 16.
  • the polarized light emitting elements produced in Examples 22 and 23 had a transmittance in the visible range (visual sensitivity corrected transmittance Ys) of about 90%, and also had high transparency in the visible light range.
  • the polarized light emitting elements produced in Examples 22 and 23 exhibited polarized light emission by irradiation with ultraviolet light, and the polarization degree of the polarized light ( Ls / Lw) was also higher than that of the polarized light-emitting element produced in Comparative Examples 13-16. Furthermore, Comparative Example 12 using a dichroic dye used in a general polarizing plate did not exhibit polarized light. From the above evaluation results, it can be seen that the polarized light emitting elements produced in Examples 22 and 23 can emit polarized light and have a high degree of polarization in polarized light emission.
  • Example 24 (Production of polarized light emitting element) A 75 ⁇ m thick polyvinyl alcohol film (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling is a 0.34 part aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (Tinopal NFW Liquid, manufactured by BASF) described as the compound example 5-1, and 1.0 part of mirabilite. The plate was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 8 minutes.
  • VF-PS # 7500 manufactured by Kuraray Co., Ltd.
  • the obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C. for 5 minutes and stretched 5.0 times.
  • the film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
  • a triacetyl cellulose film treated with sodium hydroxide on both sides of a polarized light emitting element is 4% by weight of a polyvinyl alcohol resin (NH-26 manufactured by Nippon Shokubai Bi-Poval), generally black as a visible light absorbing type dye Polarized luminescence in which a visible light absorbing dye-containing layer is further provided as an adhesive layer by laminating with an aqueous solution containing 0.2% by weight of the compound described in Example 1 of Patent No. 4764829 used as a dye A polarized light emitting plate provided with an element was produced.
  • a polyvinyl alcohol resin NH-26 manufactured by Nippon Shokubai Bi-Poval
  • Example 25 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) Polarized light-emitting device and polarized light in the same manner as in Example 24 except that in addition to Compound Example 5-1 used in Example 24, the compound of the above formula (7) prepared in Synthesis Example 1 was used in 0.08 part A board was made.
  • Example 26 (Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate) Generally used as an orange dye instead of an aqueous solution containing 0.2% by weight of the compound (visible light absorbing dye) described in Example 1 of the real patent No. 4764 829 used in Example 24 C. which has the highest light absorption action at 445 nm.
  • a polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 24 except that an aqueous solution containing 0.1% by weight of Direct Orange 39 was used.
  • Example 27 (Production of polarized light emitting element) A 75 ⁇ m thick polyvinyl alcohol film (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling is a 0.34 part aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (Tinopal NFW Liquid manufactured by BASF) described in Compound Example 5-1, 1.0 part of mirabilite The substrate was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 8 minutes. The obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C.
  • VF-PS # 7500 manufactured by Kuraray Co., Ltd.
  • a polarized light emitting plate was obtained by laminating a triacetyl cellulose film treated with sodium hydroxide on both sides of a polarized light emitting element via an aqueous solution containing 4% of polyvinyl alcohol resin (NH-26 manufactured by Nippon Shokuhin Bobival Co., Ltd.) Made.
  • the produced polarized light emitting plate exhibited the same optical characteristics as the polarized light emitting element.
  • Example 28 (Production of polarized light emitting element)
  • the film obtained by stretching was maintained in tension, and 0.1 part of the compound described in Example 1 of Patent No. 4764429 and 1.0 part of sodium tripolyphosphate 40 It was immersed in 1000 parts of hot water of 20 ° C. for 20 seconds and stretched 5.0 times. Thereafter, a polarized light emitting element having absorption oriented also in the orthogonal direction in the same manner as in Example 27 except that the polarized light emitting element was produced while drying it while drawing it further 1.3 times in the orthogonal direction to the drawing direction. And the polarization light-emitting plate was produced and used as a measurement sample.
  • Comparative Example 17 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 24 except that the compound described in Example 1 of Japanese Patent No. 4764 829 as a visible light absorbing dye was not used.
  • Comparative Example 18 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 25 except that the compound described in Example 1 of Japanese Patent No. 4764 829 as a visible light absorbing dye was not used.
  • Comparative Example 19 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 27 except that the compound described in Example 1 of Japanese Patent No. 4764 829 as a visible light absorbing dye was not used.
  • the ultraviolet rays of 365 nm were irradiated from a light source ("LED M365L2", Thorlabs), and they were prepared in Examples 24 to 28 and Comparative Examples 17 to 19 using a spectroscope ("Spectropolarimeter Poxi-Spectora", Tokyo Instruments)
  • the Stokes spectrum of the polarized light emission from the polarized light emitting plate was measured, and the degree of polarization of the polarized light was measured.
  • Table 12 shows the wavelength ( ⁇ abs max) showing the maximum degree of polarization in the polarized light emitting plates manufactured in Examples 24 to 28 and Comparative Examples 17 to 19, the maximum transmittance wavelength of visible light correction single transmittance (Ys) and polarized light emission The result of the degree of polarization (DOP) in the range of (460 nm) to ⁇ 30 nm is shown.
  • the polarized light emitting plates manufactured in Examples 24 to 28 have high transmittance in the visible light region while having the function of absorbing light in the ultraviolet light to near-ultraviolet visible light region. It can be seen that it has polarized light emission. Moreover, compared with the polarized light emitting plates manufactured in Comparative Examples 17 to 19, the polarized light emitting boards manufactured in Examples 24 to 28 actually showed a degree of emission polarization, although the decrease in transmittance was less than 2%. It can be seen that (DOP) is higher. In particular, when Example 25 is compared with Comparative Example 18, the DOP of the polarized light emitting plate manufactured in Example 25 is improved by 3.48%.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention can be applied as a self-luminous polarizing film, that is, a polarized light emitting film.
  • a polarized light emitting element and a polarized light emitting plate have high transmittance in the visible light range while having excellent durability.
  • the contrast value exceeds 10
  • the visibility by human eyes is dramatically improved.
  • the contrast value of characters in newspaper paper and the contrast value of general book characters are in the range of 5 to 10.
  • the polarized light emitting element and the polarized light emitting plate according to the present invention enable polarized light emission having a contrast value which greatly exceeds this range.
  • the polarized light emitting element and the display device using the polarized light emitting plate according to the present invention have high transparency in the visible light region and can display an image by polarized light emission over a long period of time. Furthermore, it is applicable to a wide range of applications, such as a transparent display (see-through display). Furthermore, a polarized light emitting element produced using a stilbene compound as the present polarized light emitting dye can emit light by ultraviolet light. Therefore, in the polarized light emitting element and the polarized light emitting plate according to the invention, a functional medium such as a display, a sensor or the like which requires high security such that the functional expression is required by irradiation of non-visible light such as ultraviolet light It is also possible to apply to

Abstract

The present invention relates to a polarized-light-emitting element that exhibits polarized-light emission having a high degree of polarization (contrast) and that can also be applied to a liquid crystal display or the like in which high durability in harsh environments is required, to a polarized-light-emitting plate and a display device, and to a method for manufacturing the polarized-light-emitting element. In such a polarized-light-emitting element, at least one type of polarized-light-emitting pigment capable of utilizing light absorption to emit polarized light is arranged on a substrate, the polarized-light-emitting pigment exhibiting a light-polarizing effect in the wavelength region of the absorbed light, and the value of the order parameter (OPD) calculated by a predetermined formula (I) being 0.81-0.95 at the wavelength at which the light-polarizing effect is highest.

Description

偏光発光素子、偏光発光板、表示装置及び偏光発光素子の製造方法Polarized light emitting element, polarized light emitting plate, display device, and method of manufacturing polarized light emitting element
 本発明は、高い耐久性を具備し、かつ、高い偏光度(コントラスト)を有する偏光発光を示す偏光発光素子、これを用いた偏光発光板及び表示装置、並びに該偏光発光素子の製造方法に関する。 The present invention relates to a polarized light emitting element having high durability and exhibiting polarized light emission having a high degree of polarization (contrast), a polarized light emitting plate and a display using the same, and a method of manufacturing the polarized light emitting element.
 光の透過・遮へい機能を有する偏光板は、光のスイッチング機能を有する液晶とともに液晶ディスプレイ(Liquid Crystal Display:LCD)等の表示装置の基本的な構成要素である。このLCDの適用分野も、初期の頃の電卓及び時計等の小型機器、さらにはノートパソコン、ワープロ、液晶プロジェクター、液晶テレビ、カーナビゲーション、及び屋内外の情報表示装置、計測機器等が挙げられる。また、このような偏光板は、偏光機能を有するレンズへの適用も可能であり、視認性の向上したサングラス、近年では3Dテレビなどに対応する偏光メガネなどへも応用されており、さらに、ウェアラブル端末をはじめとする身近な情報端末への応用・実用化もされている。このように、偏光板の用途は広範囲にわたっているため、使用条件も低温~高温、低湿度~高湿度、低光量~高光量等幅広く適用される。そのため、各用途への適用に対応すべく、偏光性能が高くかつ耐久性に優れた偏光板が求められている。 A polarizing plate having a light transmitting / shielding function is a basic component of a display device such as a liquid crystal display (LCD) together with a liquid crystal having a light switching function. The application fields of this LCD also include small devices such as calculators and watches in the early days, as well as notebook computers, word processors, liquid crystal projectors, liquid crystal televisions, car navigation systems, indoor and outdoor information display devices, measuring devices, and the like. In addition, such a polarizing plate is also applicable to a lens having a polarization function, and is also applied to sunglasses with improved visibility, polarization glasses corresponding to 3D TVs and the like in recent years, and wearables. Applications and practical applications to familiar information terminals such as terminals have also been made. As described above, since the use of the polarizing plate is in a wide range, the conditions of use are also widely applied such as low temperature to high temperature, low humidity to high humidity, low light amount to high light amount, and the like. Therefore, in order to correspond to application to each use, a polarizing plate having high polarization performance and excellent durability is required.
 一般に、偏光板を構成する偏光膜は、延伸配向したポリビニルアルコール又はその誘導体のフィルム、あるいは、ポリ塩化ビニルフィルムの脱塩酸又はポリビニルアルコール系フィルムの脱水によりポリエンを生成して、配向せしめたポリエン系のフィルム等の基材に、二色性色素としてヨウ素や二色性染料を染色又は含有することにより製造される。このような従来の偏光膜から構成される偏光板は、可視光領域に光の吸収作用を有する二色性色素を用いているため、可視光領域での透過率が低下する。例えば、市販されている一般的な偏光板の透過率は35~45%である。 In general, a polarizing film constituting a polarizing plate is a film of a stretched or oriented polyvinyl alcohol or a derivative thereof, or a polyene produced by forming a polyene by dehydrochlorination of a polyvinyl chloride film or dehydration of a polyvinyl alcohol film. The film is produced by dyeing or containing iodine or a dichroic dye as a dichroic dye on a substrate such as a film of Since the polarizing plate configured of such a conventional polarizing film uses a dichroic dye having a light absorbing function in the visible light region, the transmittance in the visible light region is reduced. For example, the transmittance of a general polarizing plate commercially available is 35 to 45%.
 可視光領域における透過率が35~45%と低くなる理由は、偏光板に二色性色素が用いられているためである。偏光板が100%の偏光度を示すためには、2次元平面においてx軸及びy軸の光が存在する場合、一方の軸の光が吸収される必要がある。そのどちらか一方の一軸の光を吸収するために、偏光板には二色性色素が用いられている。よって、可視光領域における透過率は、理論的に100%の光量に対して50%以下になってしまう。更に、二色性色素の配向、フィルム媒体による光損失、及び、フィルム表面の界面反射などが原因で、透過率は理論値の50%よりさらに低下してしまう。こうした従来の偏光板の透過率が低くなってしまう問題に鑑み、可視光領域において、一定の透過率を保持しつつ、偏光機能を付与する技術として、特許文献1には紫外線用偏光板が記載されている。しかし、この紫外線用偏光板を利用する場合、偏光板が黄色く着色してしまい、また、約410nm付近の光によって偏光機能を発現する偏光板しか提供できない。つまり、このような紫外線用偏光板は、可視光領域において偏光機能を発現するものではなく、特定の紫外又は可視光領域のみで機能する偏光板であった。 The reason why the transmittance in the visible light region is as low as 35 to 45% is because a dichroic dye is used in the polarizing plate. In order for the polarizing plate to exhibit a degree of polarization of 100%, light in one axis needs to be absorbed when light in the x-axis and y-axis is present in a two-dimensional plane. A dichroic dye is used in the polarizing plate in order to absorb light of either one of the uniaxials. Therefore, the transmittance in the visible light region is theoretically 50% or less with respect to the light amount of 100%. Furthermore, the transmittance drops further than 50% of the theoretical value due to the orientation of the dichroic dye, the light loss by the film medium, and the interfacial reflection of the film surface. In view of the problem that the transmittance of the conventional polarizing plate becomes low, Patent Document 1 describes a polarizing plate for ultraviolet light as a technology for imparting a polarizing function while maintaining a constant transmittance in the visible light region. It is done. However, when this UV polarizing plate is used, the polarizing plate is colored yellow, and only a polarizing plate that can exhibit a polarizing function with light of about 410 nm can be provided. That is, such a polarizing plate for ultraviolet light was not a polarizing plate exhibiting a polarizing function in the visible light region, and was a polarizing plate functioning only in a specific ultraviolet or visible light region.
 通常、可視光領域の透過率が低い偏光板、あるいは、偏光度の低い偏光板をディスプレイ等に用いると、ディスプレイ全体の輝度又はコントラストが低下する。この問題を解決すべく、従来の偏光板を用いずに偏光を得る方法が研究されている。その方法の1つとして、特許文献2~6には、偏光発光を示す素子(偏光発光素子)が開示されている。 Usually, when a polarizing plate having a low transmittance in the visible light region or a polarizing plate having a low degree of polarization is used for a display or the like, the brightness or contrast of the entire display is lowered. In order to solve this problem, methods for obtaining polarization without using a conventional polarizing plate have been studied. As one of the methods, Patent Documents 2 to 6 disclose elements (polarized light emitting elements) that exhibit polarized light emission.
国際公開第2005/01527号International Publication No. 2005/01527 特開2008-224854号公報JP 2008-224854 A 特許第5849255号公報Patent No. 5849255 特許第5713360号公報Patent No. 5713360 米国特許第3,276,316号明細書U.S. Pat. No. 3,276,316 特開平4-226162号公報JP-A-4-226162
 しかし、特許文献2~4に記載される偏光発光素子は、特殊な金属、例えばランタノイドやユーロピウム等の希少価値が高い金属を用いている。そのため、コストが高く、また、製造が非常に難しいため大量生産には不向きである。さらに、これらの偏光発光素子は、偏光度が非常に低いためディスプレイに使用することが難しく、また、直線偏光である発光を得ることが非常に難しい。また、発光としても特定の波長の円偏光発光または楕円偏光発光しか得られない問題がある。このため、特許文献2~4に記載される偏光発光素子をディスプレイに使用しても、発光輝度が暗く、コントラストが低く、液晶セルの設計が難しいなどの不利点があった。 However, the polarized light emitting elements described in Patent Documents 2 to 4 use special metals, for example, metals having high rare value such as lanthanoids and europium. Therefore, the cost is high, and it is not suitable for mass production because the production is very difficult. Furthermore, these polarized light emitting elements are very difficult to use in displays due to their very low degree of polarization, and it is very difficult to obtain linearly polarized light emission. In addition, there is also a problem that only circularly polarized light or elliptically polarized light of a specific wavelength can be obtained as light emission. Therefore, even when the polarized light emitting elements described in Patent Documents 2 to 4 are used for displays, there are disadvantages such as dark emission luminance, low contrast, and difficulty in designing a liquid crystal cell.
 一方で、特許文献5、6には、紫外光を照射して偏光発光を示す素子が開示されている。しかしながら、その素子が発光する光の偏光度は低く、かつ、素子の耐久性が低いといった問題があった。一般的に、コントラスト値が10を超えると人の目による視認性は飛躍的に向上することが知られている。例えば、新聞、雑誌等の文字のコントラスト値は10程度である。そのため、液晶ディスプレイへの実使用を考慮しても、コントラスト値が10を超えていることは、視認性確保のために必要な値である。 On the other hand, Patent Documents 5 and 6 disclose elements which emit polarized light to emit ultraviolet light. However, there is a problem that the degree of polarization of light emitted from the device is low and the durability of the device is low. In general, it is known that when the contrast value exceeds 10, the visibility by human eyes is dramatically improved. For example, the contrast value of characters such as newspapers and magazines is about 10. Therefore, even in consideration of actual use for a liquid crystal display, the contrast value exceeding 10 is a value necessary for securing visibility.
 特許文献5、6に記載されている偏光発光を示す素子は、その作製時に、基材としてポリビニルアルコールフィルムを用いているが、偏光した光のコントラスト値は10よりも低く、視認性の観点からも液晶ディスプレイへの適用には不向きであった。このような従来の偏光素子の欠点に鑑み、偏光発光作用を示し、その偏光発光度が高く、さらには、可視光領域での透過率が高く、過酷な環境下における耐久性が求められる液晶ディスプレイ等にも応用可能な新たな偏光板とそのための材料の開発が望まれている。 The element showing polarized light emission described in Patent Documents 5 and 6 uses a polyvinyl alcohol film as a substrate at the time of production, but the contrast value of polarized light is lower than 10, and from the viewpoint of visibility Was also unsuitable for application to liquid crystal displays. In view of such drawbacks of the conventional polarizing element, a liquid crystal display exhibiting a polarized light emitting action, having a high degree of polarized light emission, and further having high transmittance in the visible light region and durability in severe environments It is desired to develop a new polarizing plate that can also be applied to the like and materials therefor.
 本発明は、高い偏光度(コントラスト)を有する偏光発光を示し、かつ、過酷な環境下で高い耐久性が求められる液晶ディスプレイ等にも応用可能な偏光発光素子、これを用いた偏光発光板及び表示装置、並びに該偏光発光素子の製造方法を提供することを目的とする。 The present invention exhibits polarized light emission having a high degree of polarization (contrast), and is also applicable to a liquid crystal display or the like where high durability is required under severe environments, a polarized light emitting plate using the same, An object of the present invention is to provide a display device and a method of manufacturing the polarized light emitting device.
 本発明者らは、かかる目的を達成すべく鋭意研究を進めた結果、光の吸収を利用して偏光発光可能な少なくとも1種の偏光発光色素を基材に配向させた偏光発光素子において、配向する偏光発光色素の光の吸収に基づくオーダーパラメーターの値が、発光する光の偏光度、特にコントラストに対して大きく影響を及ぼすとの知見を得た。そして、当該知見に基づき、偏光発光色素の光の吸収に基づくオーダーパラメーターの値を制御することにより、高い耐久性を具備しつつ、高い偏光度(コントラスト)を有する光を発光可能な偏光発光素が得られることを見出した。 As a result of intensive studies to achieve such an object, the inventors of the present invention are directed to a polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate by using light absorption. It has been found that the value of the order parameter based on the absorption of light of the polarized light-emitting dye significantly affects the degree of polarization of the emitted light, particularly the contrast. And based on the said knowledge, by controlling the value of the order parameter based on absorption of the light of polarization light-emitting pigment, the polarization light-emitting element which can emit light having high degree of polarization (contrast) while having high durability It was found that was obtained.
 すなわち、本発明の要旨構成は、以下の通りである。
1)
 光の吸収を利用して偏光発光可能な少なくとも1種の偏光発光色素を基材に配向させた偏光発光素子であって、
 前記偏光発光色素が、吸収された光の波長領域において偏光作用を示し、かつ、前記偏光作用が最も高い波長において、下記式(I)で算出されるオーダーパラメーター(OPD)の値が、0.81~0.95である、偏光発光素子。
Figure JPOXMLDOC01-appb-M000005
(上記式(I)中、Kyは、前記偏光発光素子において最も高い光の吸収を示す軸に対して直交位に偏光した光が入射した場合の光透過率を表し、Kzは、前記偏光発光素子において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した場合の光透過率を表す。)
2)
 前記少なくとも1種の偏光発光色素が、蛍光発光特性を有する、上記1)に記載の偏光発光素子。
3)
 前記少なくとも1種の偏光発光色素が、紫外光領域~近紫外可視光領域の光を吸収することにより可視光領域の光を偏光発光可能な蛍光発光特性を有する、上記1)または2)に記載の偏光発光素子。
4)
 前記少なくとも1種の偏光発光色素が、ビフェニル骨格又はスチルベン骨格を有する、上記1)~3)のいずれかに記載の偏光発光素子。
5)
 前記偏光発光素子が、JJIS Z 8781-4:2013に従って測定される色度aの絶対値が5以下であり、かつ色相bの絶対値が5以下である発光色を示す、上記4)に記載の偏光発光素子。
6)
 前記少なくとも1種の偏光発光色素が、下記式(1)で表される化合物又はその塩である、上記4)または5)に記載の偏光発光素子。
Figure JPOXMLDOC01-appb-C000006
(式中、L及びMは、各々独立に、ニトロ基、置換基を有してもよいアミノ基、置換基を有してもよいカルボニルアミド基、置換基を有してもよいナフトトリアゾール基、置換基を有してもよいC-C20アルキル基、置換基を有してもよいビニル基、置換基を有してもよいアミド基、置換基を有してもよいウレイド基、置換基を有してもよいアリール基及び置換基を有してもよいカルボニル基からなる群から選択される。)
7)
 前記式(1)で表される化合物が、下記式(2)又は式(3)で表される化合物である、上記6)に記載の偏光発光素子。
Figure JPOXMLDOC01-appb-C000007
(式(2)中、Xはニトロ基、又は置換基を有してもよいアミノ基を表し、
Rは水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、ニトロ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよいアミノ基を表し、
nは0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(式(3)中、Yは置換基を有していてもよいC-C20アルキル基、置換基を有していてもよいビニル基、又は置換基を有していてもよいアリール基を表し、Zは、ニトロ基、又は置換基を有してもよいアミノ基を表す。)
8)
 前記式(2)において、Xはニトロ基、置換基を有してもよいC-C20アルキルカルボニルアミノ基、置換基を有してもよいアリールカルボニルアミノ基、C-C20アルキルスルホニルアミノ基、又は置換基を有してもよいアリールスルホニルアミノ基である、上記7)に記載の偏光発光素子。
9)
 前記式(2)において、Rが水素原子であり、nが1または2である、上記7)又は8)に記載の偏光発光素子。
10)
 前記式(2)において、Rがメチル基である、上記7)又は8)に記載の偏光発光素子。
11)
 前記式(3)において、Yが置換基を有してもよいアリール基である、上記7)~10)のいずれかに記載の偏光発光素子。
12)
 前記基材が親水性高分子を含む、上記1)~11)のいずれかに記載の偏光発光素子。
13)
 上記親水性高分子が、ポリビニルアルコールを含む、上記12)に記載の偏光発光素子。
14)
 前記基材が、配向された親水性高分子フィルムである、上記1)~13)のいずれかに記載の偏光発光素子。
15)
 前記基材が、ホウ素化合物をさらに含む、上記1)~14)のいずれかに記載の偏光発光素子。
16)
 前記基材の厚さ方向において飛行時間型二次イオン質量分析法により測定された前記ホウ素化合物に由来する2次イオン強度が、I≦30×Iの関係を満たし、
が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の少なくとも片面の表面から厚さ方向に向けて1/2Lの距離において検出された2次イオン強度の比を表し、
が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の両表面からそれぞれ前記基材の厚さ方向に向けて1/4Lの距離までの間で検出された2次イオン強度の比の最大値を表す、上記15)に記載の偏光発光素子。
17)
 前記ホウ素化合物に由来する2次イオン強度が、I≦5×Iの関係をさらに満たし、
が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度の比の平均値を表し、
が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記厚さLの中心から前記基材の両表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の平均値を表す、上記16)に記載の偏光発光素子。
18)
 前記ホウ素化合物に由来する2次イオン強度が、I≦2×Iの関係をさらに満たし、
が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度の比の積分値を表し、
が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記厚さLの中心から前記基材の両表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の積分値を表す、上記16)又は17)に記載の偏光発光素子。
19)
 前記ホウ素化合物に由来する2次イオン強度の濃度分布が、前記基材の表面から3μm~20μmの間に少なくとも存在する、上記16)~18)のいずれかに記載の偏光発光素子。
20)
 前記偏光発光素子が、前記偏光発光色素とは異なる少なくとも1種の有機染料及び/又は蛍光染料をさらに含む、上記1)~19)のいずれかに記載の偏光発光素子。
21)
 前記偏光発光素子の少なくとも一方の表面に、可視光吸収型色素含有層がさらに備えられている、上記1)~20)のいずれかに記載の偏光発光素子。
22)
 前記可視光吸収型色素含有層による可視光透過率の低下率が、50%以下である、上記21)に記載の偏光発光素子。
23)
 前記可視光吸収型色素含有層が光吸収異方性を有し、該光吸収異方性に基づく光の吸収方向が、前記偏光発光素子による偏光発光に対して直交方向である、上記21)または22)に記載の偏光発光素子。
24)
 上記1)~23)のいずれかに記載の偏光発光素子と、該偏光発光素子の片面又は両面に設けられた透明保護層とを備える偏光発光板。
25)
 前記透明保護層が、紫外光吸収機能を有さないプラスチックフィルムである、上記24)に記載の偏光発光板。
26)
 さらに支持体層を含む、上記24)または25)に記載の偏光発光板。
27)
 上記1)~23)のいずれかに記載の偏光発光素子、又は上記24)~26)のいずれかに記載の偏光発光板を含む表示装置。
28)
 前記偏光発光素子の少なくとも一方の表面に、可視光吸収型色素含有層がさらに設けられ、かつ、
前記可視光吸収型色素含有層が、少なくとも観察者側に設けられている、上記27)に記載の表示装置。
29)
 前記偏光発光色素を含有する基材に前記ホウ素化合物を含有させながら延伸させるか、又は前記ホウ素化合物を基材に含有させた後に延伸させる、上記15)~19)のいずれかに記載の偏光発光素子の製造方法。
That is, the gist configuration of the present invention is as follows.
1)
A polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate by using absorption of light,
The polarized light emitting dye exhibits a polarization action in the wavelength region of the absorbed light, and at the wavelength at which the polarization action is the highest, the value of the order parameter (OPD) calculated by the following formula (I) is 0. Polarized light-emitting element having a wavelength of 81 to 0.95.
Figure JPOXMLDOC01-appb-M000005
(In the above formula (I), Ky represents the light transmittance when light polarized orthogonal to the axis showing absorption of the highest light in the polarized light emitting element is incident, and Kz represents the polarized light emission Indicates the light transmittance when light polarized parallel to the axis showing the highest light absorption in the device is incident.)
2)
The polarized light emitting device according to 1) above, wherein the at least one polarized light emitting dye has a fluorescence emitting property.
3)
The above-mentioned 1) or 2) described in the above 1) or 2), wherein the at least one polarized light-emitting dye has fluorescence emission characteristics capable of polarized light emission of light in the visible light region by absorbing light in the ultraviolet light region Polarized light emitting element.
4)
The polarized light-emitting device according to any one of the above 1) to 3), wherein the at least one polarized light-emitting dye has a biphenyl skeleton or a stilbene skeleton.
5)
The above-mentioned 4), wherein the polarized light-emitting element exhibits an emission color having an absolute value of chromaticity a * of 5 or less and an absolute value of hue b * of 5 or less measured according to JJIS Z 8781-4: 2013. The polarized light emitting element as described in.
6)
The polarized light-emitting device according to the above 4) or 5), wherein the at least one polarized light-emitting dye is a compound represented by the following formula (1) or a salt thereof.
Figure JPOXMLDOC01-appb-C000006
(Wherein, L and M each independently represent a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, a naphthotriazole group which may have a substituent) A C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, an amido group which may have a substituent, a ureide group which may have a substituent, It is selected from the group consisting of an aryl group which may have a substituent and a carbonyl group which may have a substituent.)
7)
The polarized light-emitting device according to the above 6), wherein the compound represented by the formula (1) is a compound represented by the following formula (2) or formula (3).
Figure JPOXMLDOC01-appb-C000007
(In formula (2), X represents a nitro group or an amino group which may have a substituent,
R may have a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent Represents a good amino group,
n represents an integer of 0 to 3. )
Figure JPOXMLDOC01-appb-C000008
(In the formula (3), Y is a C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, or an aryl group which may have a substituent And Z represents a nitro group or an amino group which may have a substituent.)
8)
In the above formula (2), X is a nitro group, a C 1 -C 20 alkylcarbonylamino group which may have a substituent, an arylcarbonylamino group which may have a substituent, C 1 -C 20 alkylsulfonyl The polarized light-emitting device according to the above 7), which is an amino group or an arylsulfonylamino group which may have a substituent.
9)
The polarized light-emitting device according to the above 7) or 8), wherein, in the formula (2), R is a hydrogen atom and n is 1 or 2.
10)
The polarized light-emitting element according to the above 7) or 8), wherein in the formula (2), R is a methyl group.
11)
The polarized light-emitting device according to any one of 7) to 10) above, wherein in the formula (3), Y is an aryl group which may have a substituent.
12)
12. The polarized light-emitting device according to any one of 1) to 11), wherein the substrate contains a hydrophilic polymer.
13)
12. The polarized light-emitting device according to 12), wherein the hydrophilic polymer contains polyvinyl alcohol.
14)
The polarized light-emitting device according to any one of 1) to 13), wherein the substrate is an oriented hydrophilic polymer film.
15)
The polarized light-emitting device according to any one of the above 1) to 14), wherein the substrate further comprises a boron compound.
16)
The secondary ion intensity derived from the boron compound measured by time-of-flight secondary ion mass spectrometry in the thickness direction of the substrate satisfies the relationship of I 2 ≦ 30 × I 1 ,
I 1 is secondary ion intensity detected in the thickness detected maximum secondary least distance 1 / 2L toward the one side surface in the thickness direction of the relative ionic strength substrate at L of the base material Represents the ratio of
I 2 is detected between a distance of 1/4 L from the both surfaces of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate respectively in the thickness direction of the substrate 15. The polarized light-emitting device according to the above 15), which represents the maximum value of the ratio of the secondary ion intensities.
17)
The secondary ion intensity derived from the boron compound further satisfies the relationship of I 3 ≦ 5 × I 4 ,
I 3 is the ratio of the secondary ion intensity detected between the distance of 1 / 4L from at least one side surface of said substrate with respect to the maximum secondary ion intensity detected by the thickness L of the base material Represents the average value,
I 4 is a distance of 1⁄4 L in the thickness direction from the center of the thickness L to the maximum secondary ion intensity detected at the thickness L of the substrate toward both surfaces of the substrate The polarized light-emitting device according to the above 16), which represents the average value of the ratio of secondary ion intensities detected between the two.
18)
The secondary ion intensity derived from the boron compound further satisfies the relationship of I 5 ≦ 2 × I 6 ,
I 5 is the ratio of the secondary ion intensity detected between the distance of 1 / 4L from at least one side surface of said substrate with respect to the maximum secondary ion intensity detected by the thickness L of the base material Represents an integral value,
I 6 up to a distance of 1⁄4 L each in the thickness direction from the center of the thickness L to the maximum secondary ion intensity detected at the thickness L of the substrate from the center to both surfaces of the substrate The polarized light-emitting element according to the above 16) or 17), which represents an integral value of the ratio of secondary ion intensities detected therebetween.
19)
The polarized light-emitting element according to any one of the above 16) to 18), wherein the concentration distribution of the secondary ion intensity derived from the boron compound is present at least between 3 μm and 20 μm from the surface of the substrate.
20)
The polarized light emitting device according to any one of 1) to 19), wherein the polarized light emitting device further comprises at least one organic dye and / or a fluorescent dye different from the polarized light emitting dye.
21)
The polarized light emitting device according to any one of the above 1) to 20), further comprising a visible light absorbing dye-containing layer on at least one surface of the polarized light emitting device.
22)
22. The polarized light emitting device according to 21), wherein the visible light transmittance of the visible light absorbing dye-containing layer has a reduction rate of 50% or less.
23)
The above-mentioned 21), wherein the visible light absorbing dye-containing layer has light absorption anisotropy, and the light absorption direction based on the light absorption anisotropy is orthogonal to polarized light emission by the polarized light emitting element. Or 22).
24)
A polarized light emitting plate comprising the polarized light emitting device according to any one of the above 1) to 23) and a transparent protective layer provided on one side or both sides of the polarized light emitting device.
25)
The polarized light-emitting plate according to the above 24), wherein the transparent protective layer is a plastic film having no ultraviolet light absorption function.
26)
The polarized light-emitting plate according to the above 24) or 25), further comprising a support layer.
27)
A display device comprising the polarized light-emitting element according to any one of 1) to 23) or the polarized light-emitting plate according to any one of 24) to 26).
28)
A visible light absorbing dye-containing layer is further provided on at least one surface of the polarized light emitting element, and
27. The display device according to 27), wherein the visible light absorbing dye-containing layer is provided at least on the viewer side.
29)
The polarized light emission according to any one of the above 15) to 19), wherein the substrate is stretched while containing the boron compound in the substrate containing the polarized light-emitting dye, or is stretched after containing the boron compound in the substrate Method of manufacturing a device
 本発明によれば、光の吸収を利用して偏光発光可能な少なくとも1種の偏光発光色素を基材に配向させた偏光発光素子において、該偏光発光色素が、吸収された光の波長領域において偏光作用を示し、かつ、その偏光作用が最も高い波長において、所定の式で算出されるオーダーパラメーター(ОPD)の値が、0.81~0.95に制御されている。すなわち、例えば、紫外光領域の光を吸収することで可視光領域に偏光発光を示す偏光発光色素において、偏光発光が強い軸の発光量と弱い軸の発光量が制御されている。これにより、その可視光領域における偏光発光のコントラストを飛躍的に向上させることができ、その結果、高い偏光度(コントラスト)を有する偏光発光を示す偏光発光素子及びこれを用いた偏光発光板を提供することができる。また、希少性の高いランタノイド金属等を使用しなくとも、高い偏光度を有する偏光発光素子及びこれを用いた偏光発光板を提供することができる。さらに、本発明に係る偏光発光素子及びこれを用いた偏光発光板は、熱、湿度等に対して優れた耐久性を示す。そのため、当該偏光発光素子及びこれを含む偏光発光板は、可視光領域での高い透過性及び過酷な環境下での高い耐久性が求められる液晶ディスプレイ等の表示装置に応用することができる。 According to the present invention, in a polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate using absorption of light, the polarized light emitting dye is in the wavelength region of the absorbed light The value of the order parameter (ОPD) calculated by a predetermined equation is controlled to 0.81 to 0.95 at a wavelength that exhibits the polarization action and the polarization action is the highest. That is, for example, in a polarized light emitting dye that exhibits polarized light emission in the visible light region by absorbing light in the ultraviolet light region, the light emission amount of the strong axis and the light emission amount of the weak axis are controlled. Thereby, the contrast of polarized light emission in the visible light region can be dramatically improved, and as a result, a polarized light emitting element exhibiting polarized light emission having a high degree of polarization (contrast) and a polarized light emitting plate using the same are provided. can do. In addition, a polarized light emitting element having a high degree of polarization and a polarized light emitting plate using the same can be provided without using a highly rare earth metal such as a lanthanoid metal. Furthermore, the polarized light emitting element according to the present invention and the polarized light emitting plate using the same exhibit excellent durability against heat, humidity and the like. Therefore, the polarized light emitting element and the polarized light emitting plate including the same can be applied to a display device such as a liquid crystal display which is required to have high transparency in a visible light region and high durability under a severe environment.
図1は、実施例1~7、比較例1及び2で作製した偏光発光素子のOPDの値とRCEの値との関係を示す図である。FIG. 1 is a view showing the relationship between the value of OPD and the value of RCE of the polarized light emitting elements manufactured in Examples 1 to 7 and Comparative Examples 1 and 2. 図2は、実施例8~13、比較例3~6で作製した偏光発光素子のOPDの値とRCEの値との関係を示す図である。FIG. 2 is a view showing the relationship between the value of OPD and the value of RCE of the polarized light emitting elements manufactured in Examples 8 to 13 and Comparative Examples 3 to 6.
<偏光発光素子>
 本発明に係る偏光発光素子は、光の吸収を利用して偏光発光可能な少なくとも1種の偏光発光色素を基材に配向させた偏光発光素子である。また、偏光発光色素が、吸収された光の波長領域において偏光作用を示し、その偏光作用が最も高い波長において、下記式(I)で算出されるオーダーパラメーター(OPD)の値が、0.81~0.95である。
<Polarized light emitting element>
The polarized light emitting element according to the present invention is a polarized light emitting element in which at least one type of polarized light emitting dye capable of polarized light emission is oriented on a substrate by utilizing absorption of light. In addition, the polarized light emitting dye exhibits a polarization action in the wavelength range of the absorbed light, and the value of the order parameter (OPD) calculated by the following formula (I) is 0.81 at the wavelength at which the polarization action is the highest. It is ̃0.95.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記式(I)におけるKyは、偏光発光素子において最も高い光の吸収を示す軸に対して直交位に偏光した光が入射した場合の光透過率を表す。一方、Kzは、偏光発光素子において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した場合の光透過率を表す。 In the above-mentioned formula (I), Ky represents the light transmittance when light polarized orthogonal to the axis showing absorption of the highest light in the polarized light emitting element is incident. On the other hand, Kz represents the light transmittance when light polarized parallel to the axis showing absorption of the highest light in the polarized light emitting element is incident.
 光の吸収を利用して偏光発光可能な偏光発光色素は、一般的には蛍光色素又は燐光発光色素に属するが、具体的には、特定の光を吸収し、その光を利用して発光エネルギーに変換しうる色素を指す。このような色素として、蛍光色素、燐光発光色素のいずれを用いてもよいが、蛍光色素を使用することが好適である。また、該色素は、吸収した光の波長と、発光する光とが異なることが多く、波長変換色素とも呼ばれることがある。このように、偏光発光素子に含まれる少なくとも1種の偏光発光色素は、蛍光発光特性を有することが好ましく、特に、紫外光領域~近紫外可視光領域の光を吸収することにより可視光領域の光を偏光発光可能な蛍光発光特性を有することがより好ましい。 A polarized light-emitting dye capable of emitting polarized light using absorption of light generally belongs to a fluorescent dye or a phosphorescent light-emitting dye, but specifically, it absorbs specific light and emits light energy using the light Refers to a dye that can be converted to As such a dye, any of a fluorescent dye and a phosphorescent dye may be used, but it is preferable to use a fluorescent dye. In addition, the wavelength of the absorbed light and the light to be emitted are often different, and the dye may be also referred to as a wavelength conversion dye. As described above, at least one type of polarized light emitting dye contained in the polarized light emitting element preferably has fluorescence emission characteristics, and in particular, by absorbing light in the ultraviolet light region to the near ultraviolet visible light region, the visible light region is It is more preferable to have fluorescence emission characteristics capable of polarized light emission.
 また、偏光発光色素は、基材に配向させることにより、二色性色素のように、基材に配向した軸とその直交軸とで光吸収異方性を有し、光の吸収異方性、すなわち、偏光機能を発現する。 In addition, as in the case of a dichroic dye, the polarized light-emitting dye has light absorption anisotropy between the axis oriented to the base and the orthogonal axis, as in the dichroic dye, and thus the light absorption anisotropy That is, it expresses a polarization function.
 偏光機能を発現した偏光発光色素の各波長の透過率に着目し、偏光発光色素を配向させた偏光発光素子において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した場合の光透過率(すなわち、光の透過量が少ない軸での透過率)をKzとし、一方、偏光発光色素を配向させた偏光発光素子において最も高い吸収を示す軸に対して直交位に偏光した光が入射した場合の光透過率(すなわち、光の透過量が多い軸での透過率)をKyとする。そして、これらKy、Kzを上記式(I)に代入することより、オーダーパラメーター、すなわち配向秩序度を算出することができる。 Focusing on the transmittance of each wavelength of the polarized light-emitting dye that has developed the polarization function, when light polarized parallel to the axis showing the highest light absorption is incident on the polarized light-emitting element in which the polarized light-emitting dye is oriented Light transmittance (that is, the transmittance at the axis where the amount of light transmission is small) is Kz, while polarized at a position orthogonal to the axis showing the highest absorption in the polarized light emitting element in which the polarized light emitting dye is oriented. The light transmittance when light is incident (that is, the transmittance at the axis where the amount of light transmission is large) is taken as Ky. Then, by substituting these Ky and Kz into the above formula (I), the order parameter, that is, the degree of orientational order can be calculated.
 オーダーパラメーター(配向秩序度)とは、液晶等の物質の配向を計測するために用いる指標として一般的に使用され、オーダーパラメーターの値が高い数値を示すほど偏光発光素子が高い配向秩序を有していることを示している。一般的に、オーダーパラメーターの値の算出式は、下記式(II)のように表され(「ディスプレイ材料と機能性色素(CMC出版、中澄博行監修,、P65)」参照)、式(II)で表される数式を変換すると、下記式(III)が導き出される。この式(III)をさらに変換することにより、オーダーパラメーター(OPD)を、上記式(I)で表わすことができる。この際、式(II)及び式(III)中の要素として、APARAは配向した偏光発光色素の向きに対して平行方向の吸光度であり、ACROSSは配向した色素の向きに対して直交方向の吸光度である。それぞれの吸光度はLog(A)によって算出され、Log(A)で算出されたそれぞれの吸光度に、Ky及びKzによって得られる吸光度を式(III)に代入することによって、式(I)が導かれる。この式(I)に基づき、光の吸収を利用して偏光発光可能な色素の配向秩序度を制御し、これにより、高いコントラスト値を有する偏光発光を示す偏光発光素子を得ることができる。このように、オーダーパラメーターの値を0.81~0.95の範囲に制御することにより、高いコントラスト値を有する偏光発光を得ることができ、オーダーパラメーターの値は、0.83~0.95の範囲であることが好ましく、0.85~0.94の範囲であることがより好ましく、0.87~0.93の範囲であることがさらに好ましい。オーダーパラメーターの値は、高い程好ましいものの、オーダーパラメーターの値が0.95より大きい場合、偏光発光が有するコントラスト値が必ずしも高くなるとは限らず、安定性に欠ける。そのため、生産上、安定して高いコントラストを有する偏光発光を示す偏光発光素子を得るため、オーダーパラメーターの値の上限値は、0.95に設定される。 The order parameter (orientational order degree) is generally used as an index used to measure the orientation of substances such as liquid crystals, and the higher the value of the order parameter, the higher the value of the polarization light emitting element has higher alignment order. Show that. Generally, the calculation formula of the value of the order parameter is expressed as the following formula (II) (refer to "Display material and functional pigment (CMC publication, Hiroyuki Nakasumi, P65)", formula (II) The following equation (III) is derived by converting the equation represented by). By further transforming this formula (III), the order parameter (OPD) can be represented by the above formula (I). In this case, as a factor in the formulas (II) and (III), A PARA is absorbance parallel to the direction of the oriented polarized light-emitting dye, and A CROSS is orthogonal to the direction of the oriented dye Absorbance of The absorbance of each is calculated by Log (A), and by substituting the absorbance obtained by Ky and Kz into Equation (III) for each absorbance calculated by Log (A), Equation (I) is derived. . Based on this formula (I), absorption of light is used to control the degree of orientational order of the dye capable of polarized light emission, whereby a polarized light emitting element exhibiting polarized light emission having a high contrast value can be obtained. Thus, by controlling the value of the order parameter in the range of 0.81 to 0.95, it is possible to obtain polarized light emission having a high contrast value, and the value of the order parameter is 0.83 to 0.95. Is preferably in the range of 0.85 to 0.94, and more preferably in the range of 0.87 to 0.93. The value of the order parameter is preferably as high as possible, but when the value of the order parameter is larger than 0.95, the contrast value of the polarized light emission is not necessarily high, and the stability is lacking. Therefore, the upper limit of the value of the order parameter is set to 0.95 in order to obtain a polarized light emitting element that exhibits polarized light emission with high contrast stably in production.
 OPD=(APARA-ACROSS)/(APARA+2×ACROSS)・・・(II) OPD = (A PARA- A CROSS ) / (A PARA + 2 x A CROSS ) (II)
 OPD=(APARA/ACROSS-1)/(APARA/ACROSS+2)・・・(III) OPD = (A PARA / A CROSS -1) / (A PARA / A CROSS +2) (III)
 偏光発光色素を1種又は複数用いて基材中に含有させ、配向させることにより偏光発光を示す偏光発光素子が得られる。このような偏光発光素子は、偏光発光色素の配合割合を調整することによって、様々な発光色を示す。例えば、JIS Z 8781-4:2013に従って測定される色度aの絶対値が5以下であり、かつ色相bの絶対値が5以下であることによって、偏光発光素子からの発光色は白色を示す。JIS Z 8781-4:2013の基準に従う色度a値及び色相b値は、光の色相測定時に求められる値である。当該基準に定められる物体色の表示方法は、国際照明委員会(略称:CIE)が定める物体色の表示方法に相当する。色度a値及びb値の測定は、通常、測定試料に自然光を照射して行われるが、本発明に使用される偏光発光素子においては、偏光発光素子に紫外線等の短波長の光を照射し、偏光発光素子から発光した光を測定することによって色度a値及びb値を確認することができる。紫外光領域の光を照射しても、偏光発光を示す光の色度aの絶対値が5以下であり、色相bの絶対値が5以下であることにより、白色の偏光発光を示す偏光発光素子が得られていることを意味する。発光した偏光の色度aの絶対値が、5以下であれば、白色として感知できるが、好ましくは4以下、より好ましくは3以下、さらに好ましくは2以下、特に好ましくは1以下である。また、発光した光の色相bも同様に、色相bの絶対値が5以下であれば、白色として感知できるが、好ましくは4以下、より好ましくは3以下、さらに好ましくは2以下、特に好ましくは1以下である。このように、色度a及びbの絶対値が、それぞれ独立に5以下であれば、人間の目では白色として感知することができ、さらに、各々が共に5以下であれば、より好ましい白色発光として感知することができる。発光する偏光が白色であることにより、太陽光のような自然な光源、ペーパーホワイト端末等の光源として利用が可能である。そのため、このような偏光発光素子を白色偏光発光型の偏光発光素子として利用することができ、また、カラーフィルタなどを用いるディスプレイに置いても応用が簡易である。尚、白色光の発光強度については、発光が視覚的に感知できればディスプレイに応用することは可能である。発光が視覚的に感知するためには、特に、発光が高い偏光度を有し、かつ、可視域の透過率が高いことが重要である。 A polarized light emitting element showing polarized light emission is obtained by containing one or a plurality of polarized light emitting dyes in a base material and orienting the same. Such a polarized light emitting element exhibits various emission colors by adjusting the blending ratio of the polarized light emitting dye. For example, when the absolute value of chromaticity a * measured according to JIS Z 8781-4: 2013 is 5 or less and the absolute value of hue b * is 5 or less, the emission color from the polarized light emitting element is white Indicates The chromaticity a * value and the hue b * value in accordance with the standard of JIS Z 8781-4: 2013 are values obtained at the time of measuring the hue of light. The display method of the object color defined in the standard corresponds to the display method of the object color defined by the International Commission on Illumination (abbr .: CIE). The measurement of chromaticity a * value and b * value is usually performed by irradiating natural light to the measurement sample, but in the polarized light emitting element used in the present invention, light of short wavelength such as ultraviolet light is used for the polarized light emitting element. The chromaticity a * value and the b * value can be confirmed by measuring the light emitted from the polarized light emitting element. Even when light in the ultraviolet light region is irradiated, white polarized light emission is exhibited because the absolute value of the chromaticity a * of light exhibiting polarized light emission is 5 or less and the absolute value of the hue b * is 5 or less It means that a polarized light emitting element is obtained. If the absolute value of the chromaticity a * of the emitted polarized light is 5 or less, it can be perceived as white, but preferably 4 or less, more preferably 3 or less, still more preferably 2 or less, particularly preferably 1 or less. Further, as the hue b * be the emitted light, as long as the absolute value of the hue b * is 5 or less, it can be perceived as white, preferably 4 or less, more preferably 3 or less, more preferably 2 or less, particularly Preferably it is 1 or less. Thus, if the absolute values of the chromaticity a * and b * are independently 5 or less, it can be perceived as white by the human eye, and it is more preferable if both are 5 or less. It can be perceived as white light emission. Since the polarized light to be emitted is white, it can be used as a natural light source such as sunlight, a light source for paper white terminals and the like. Therefore, such a polarized light emitting element can be utilized as a white polarized light emitting polarized light emitting element, and application to a display using a color filter or the like is simple. In addition, about the emitted light intensity of white light, if emitted light can be visually detected, it is possible to apply to a display. In order for the light emission to be sensed visually, it is particularly important that the light emission has a high degree of polarization and that the transmission in the visible range is high.
<偏光発光色素>
 偏光発光色素は、スチルベン骨格またはビフェニル骨格を基本骨格として有する化合物又はその塩であることが好ましい。このような基本骨格を有する偏光発光色素が、蛍光発光特性を示しつつ、かつ、オーダーパラメーターの値が0.81~0.95の範囲に制御されるよう基材に配向されるにことにより、他の偏光発光色素よりも高い偏光度を有する光、すなわち、高いコントラストを有する光を発光させることができる。偏光発光色素の基本骨格としてのスチルベン骨格及びビフェニル骨格は、それぞれの骨格自体が蛍光発光特性を示し、かつ、基材に配向させることにより高い二色性を示す作用を有する。この作用は、スチルベン骨格及びビフェニル骨格の各基本骨格の構造に起因するため、基本骨格構造にはさらに任意の置換基が結合されていてもよい。ただし、基本骨格構造にアゾ基を置換する場合、従来の染料系偏光板のように高い偏光度を実現できるものの、アゾ基が置換される位置によっては発光光量が著しく低下し、所望とする発光光量が得られないことがある。そのため、各基本骨格にアゾ基を置換する場合、その置換位置が重要となる。偏光発光色素は、1種単独で使用してもよく、2種以上組み合わせて併用してもよい。
<Polarized light emitting dye>
The polarized light emitting dye is preferably a compound having a stilbene skeleton or a biphenyl skeleton as a basic skeleton or a salt thereof. The polarization light emitting dye having such a basic skeleton is oriented to the base material so that the value of the order parameter is controlled in the range of 0.81 to 0.95 while showing the fluorescence emission characteristic. It is possible to emit light having a higher degree of polarization than other polarized light emitting dyes, that is, light having high contrast. The stilbene skeleton and the biphenyl skeleton as the basic skeleton of the polarized light emitting dye have the function of exhibiting fluorescence properties by the respective skeletons themselves and exhibiting high dichroism by orienting on the substrate. Since this action is due to the structures of the basic skeletons of the stilbene skeleton and the biphenyl skeleton, further arbitrary substituents may be bonded to the basic skeleton structure. However, when an azo group is substituted in the basic skeleton structure, although a high degree of polarization can be realized as in a conventional dye-based polarizing plate, depending on the position at which the azo group is substituted, the amount of emitted light is significantly reduced. Sometimes light intensity can not be obtained. Therefore, when substituting an azo group in each basic skeleton, the substitution position becomes important. The polarized light emitting dyes may be used alone or in combination of two or more.
 上述のように、偏光発光色素は、紫外光領域~近紫外可視光領域の光を吸収することにより可視光領域の光を偏光発光可能な蛍光発光特性を有することが好ましい。具体的には、偏光発光色素を基材に含有させた後、紫外光領域~近紫外可視光領域の光を照射することにより、可視光域、例えば400~700nmの波長域において、0.04μW/cm以上の発光強度の偏光発光を示すことが好ましく、0.05μW/cm以上の発光強度の偏光発光を示すことがよりに好ましく、0.1μW/cm以上の発光強度の偏光発光を示すことがさらに好ましい。尚、一般的に紫外光は400nm以下の波長領域の光を示すものの、430nm以下の波長領域の光も人間の視感度としては著しく低い。そのため、紫外光領域~近紫外可視光領域の光は、人の目に見えない光として定義することができ、例えば、300nm~430nm波長領域の光であることが好ましい。偏光発光色素を使用することにより、目に見えない光を吸収して偏光発光可能な偏光発光素子を得ることができる。 As described above, it is preferable that the polarized light emitting dye has fluorescence emission characteristics capable of polarized light of light in the visible light region by absorbing light in the ultraviolet light region to the near ultraviolet visible light region. Specifically, after the polarized light emitting dye is contained in the base material, irradiation with light in the ultraviolet light region to the near ultraviolet visible light region enables 0.04 μW in the visible light region, for example, the wavelength region of 400 to 700 nm. it may show polarized luminescence of / cm 2 or more light-emitting intensity, preferably it is more indicative of the polarized luminescence of 0.05MyuW / cm 2 or more light-emitting intensity, polarized luminescence of 0.1MyuW / cm 2 or more luminous intensity More preferably, Although ultraviolet light generally indicates light in a wavelength range of 400 nm or less, light in a wavelength range of 430 nm or less is also extremely low as human visual sensitivity. Therefore, light in the ultraviolet light region to the near ultraviolet visible light region can be defined as light invisible to human eyes, and for example, light in the wavelength region of 300 nm to 430 nm is preferable. By using a polarized light emitting dye, it is possible to absorb invisible light and obtain a polarized light emitting element capable of polarized light emission.
(a)スチルベン骨格を有する偏光発光色素
 スチルベン骨格を有する偏光発光色素は、好ましくは、下記式(1)で表される化合物又はその塩である。
(A) Polarized Light-Emitting Dye Having a Stilbene Skeleton The polarized light-emitting dye having a stilbene skeleton is preferably a compound represented by the following formula (1) or a salt thereof.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、L及びMは、各々独立して、ニトロ基、置換基を有してもよいアミノ基、置換基を有してもよいカルボニルアミド基、置換基を有してもよいナフトトリアゾール基、置換基を有していてもよいC-C20アルキル基、置換基を有していてもよいビニル基、置換基を有していてもよいアミド基、置換を有していてもよいウレイド基、または置換基を有してもよいアリール基及び置換基を有してもよいカルボニル基からなる群から選択されるが、これらに限定されるものではない。式(1)で示されるスチルベン骨格を有する化合物は、蛍光発光を示し、また、配向させることによって二色性が得られる。発光特性は、スチルベン骨格に起因するものであるため、L及びMの各基が結合し得る置換基はアゾ基を有していなければ、特に限定されるものではなく、任意の置換基であってよい。 In the above formula (1), L and M each independently have a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, or a substituent Naphthotriazole group, C 1 -C 20 alkyl group which may have a substituent, vinyl group which may have a substituent, amido group which may have a substituent, have a substitution It is selected from the group consisting of an optionally ureido group, or an optionally substituted aryl group and an optionally substituted carbonyl group, but is not limited thereto. The compound having a stilbene skeleton represented by the formula (1) exhibits fluorescence and dichroism can be obtained by orientation. Since the light emission characteristics are attributed to the stilbene skeleton, the substituent to which each of the L and M groups can be bound is not particularly limited as long as it has no azo group, and is any substituent. You may
 置換基を有してもよいアミノ基としては、例えば、非置換のアミノ基;
メチルアミノ基、エチルアミノ基、n-ブチルアミノ基、ターシャリブチルアミノ基、n-ヘキシルアミノ基、ドデシルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ-n-ブチルアミノ基、エチルメチルアミノ基、エチルヘキシルアミノ基等の置換基を有してもよいC-C20アルキルアミノ基;
フェニルアミノ基、ジフェニルアミノ基、ナフチルアミノ基、N-フェニル-N-ナフチルアミノ基等の置換基を有してもよいアリールアミノ基;
メチルカルボニルアミノ基、エチルカルボニルアミノ基、n-ブチル-カルボニルアミノ基等の置換基を有してもよいC-C20アルキルカルボニルアミノ基;
フェニルカルボニルアミノ基、ビフェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等の置換基を有してもよいアリールカルボニルアミノ基;
メチルスルホニルアミノ基、エチルスルホニルアミノ基、プロピルスルホニルアミノ基、n-ブチル-スルホニルアミノ基等のC-C20アルキルスルホニルアミノ基、フェニルスルホニルアミノ基、ナフチルスルホニルアミノ基等の置換基を有してもよいアリールスルホニルアミノ等が挙げられる。
As an amino group which may have a substituent, for example, an unsubstituted amino group;
Methylamino group, ethylamino group, n-butylamino group, tertiary butylamino group, n-hexylamino group, dodecylamino group, dimethylamino group, diethylamino group, di-n-butylamino group, ethylmethylamino group, A C 1 -C 20 alkylamino group which may have a substituent such as ethylhexylamino group;
An arylamino group which may have a substituent such as phenylamino group, diphenylamino group, naphthylamino group, N-phenyl-N-naphthylamino group;
A C 1 -C 20 alkylcarbonylamino group which may have a substituent such as a methylcarbonylamino group, an ethylcarbonylamino group, an n-butyl-carbonylamino group and the like;
An arylcarbonylamino group which may have a substituent such as phenylcarbonylamino group, biphenylcarbonylamino group, naphthylcarbonylamino group and the like;
It has a substituent such as C 1 -C 20 alkylsulfonylamino group such as methylsulfonylamino group, ethylsulfonylamino group, propylsulfonylamino group, n-butyl-sulfonylamino group, phenylsulfonylamino group, naphthylsulfonylamino group and the like And arylsulfonylamino which may be mentioned.
 これらのアミノ基の中でも、置換基を有してもよいC-C20アルキルカルボニルアミノ基、置換基を有してもよいアリールカルボニルアミノ基、C-C20アルキルスルホニルアミノ基、置換基を有してもよいアリールスルホニルアミノ基が好ましい。 Among these amino groups, C 1 -C 20 alkylcarbonylamino group which may have a substituent, arylcarbonylamino group which may have a substituent, C 1 -C 20 alkylsulfonylamino group, a substituent The aryl sulfonylamino group which may have is preferable.
 置換基を有してもよいカルボニルアミド基としては、例えば、N-メチル-カルボニルアミド基(-CONHCH)、N-エチル-カルボニルアミド基(-CONHC)、N-フェニル-カルボニルアミド基(-CONHC)等が挙げられる。 As a carbonylamido group which may have a substituent, for example, N-methyl-carbonylamido group (-CONHCH 3 ), N-ethyl-carbonylamido group (-CONHC 2 H 5 ), N-phenyl-carbonylamido Groups (-CONHC 6 H 5 ) and the like.
 置換基を有していてもよいC-C20アルキル基として、例えば、メチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-ドデシル基等の直鎖状のC-C12アルキル基、イソプロピル基、sec-ブチル基、tert-ブチル基等の分岐鎖状のC-C10アルキル基、シクロヘキシル基、シクロペンチル基等の環状のC-Cアルキル基等が挙げられる。これらの中でも、直鎖状又は分岐鎖状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。 As the C 1 -C 20 alkyl group which may have a substituent, for example, linear ones such as methyl group, ethyl group, n-butyl group, n-hexyl group, n-octyl group and n-dodecyl group Branched C 3 -C 10 alkyl group such as C 1 -C 12 alkyl group, isopropyl group, sec-butyl group, tert-butyl group, cyclic C 3 -C 7 alkyl group such as cyclohexyl group, cyclopentyl group and the like And the like. Among these, a linear or branched alkyl group is preferable, and a linear alkyl group is more preferable.
 置換基を有していてもよいビニル基として、例えば、エテニル基、スチリル基、アルキル基を有するビニル基、アルコキシ基を有するビニル基、ジビニル基、ペンタジエン基等が挙げられる。 Examples of the vinyl group which may have a substituent include ethenyl group, styryl group, vinyl group having alkyl group, vinyl group having alkoxy group, divinyl group, pentadiene group and the like.
 置換基を有していてもよいアミド基として、例えば、アセトアミド基(-NHCOCH)、ベンズアミド基(-NHCOC)等が挙げられる。 Examples of the amido group which may have a substituent include acetamide group (-NHCOCH 3 ), benzamide group (-NHCOC 6 H 5 ) and the like.
 置換基を有していてもよいウレイド基として、例えば、モノアルキルウレイド基、ジアルキルウレイド基、モノアリールウレイド基、ジアリールウレイド基等が挙げられる。 Examples of the ureido group which may have a substituent include monoalkyl ureido group, dialkyl ureido group, monoaryl ureido group, and diaryl ureido group.
 置換基を有していてもよいアリール基として、例えば、フェニル基、ナフチル基、アントラセニル基、ビフェニル基等が挙げられ、好ましくはC-C12アリール基である。アリール基は、環構成原子として窒素原子、酸素原子および硫黄原子からなる群から選択される1~3つのヘテロ原子を含む5員環又は6員環の複素環基であってもよい。このような複素環基の中でも、窒素原子および硫黄原子から選択される原子を環構成原子として含む複素環基であることが好ましい。 Examples of the aryl group which may have a substituent include phenyl group, naphthyl group, anthracenyl group, biphenyl group and the like, with preference given to C 6 -C 12 aryl group. The aryl group may be a 5- or 6-membered heterocyclic group containing 1 to 3 hetero atoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom as ring member atoms. Among such heterocyclic groups, a heterocyclic group containing an atom selected from a nitrogen atom and a sulfur atom as a ring constituent atom is preferable.
 置換基を有してもよいカルボニル基としては、例えば、メチルカルボニル基、エチルカルボニル基、n-ブチル-カルボニル基、フェニルカルボニル基等が挙げられる。 Examples of the carbonyl group which may have a substituent include methylcarbonyl group, ethylcarbonyl group, n-butyl-carbonyl group, phenylcarbonyl group and the like.
 上述した置換基としては、特に限定されるものではないが、例えば、ニトロ基、シアノ基、水酸基、スルホン酸基、リン酸基、カルボキシル基、カルボキシアルキル基、ハロゲン原子、アルコキシ基、アリールオキシ基等が挙げられる。 The substituent mentioned above is not particularly limited, but, for example, nitro group, cyano group, hydroxyl group, sulfonic acid group, phosphoric acid group, carboxyl group, carboxyalkyl group, halogen atom, alkoxy group, aryloxy group Etc.
 カルボキシアルキル基としては、例えば、メチルカルボキシル基、エチルカルボキシル基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。アリールオキシ基としては、フェノキシ基、ナフトキシ基等が挙げられる。 As a carboxyalkyl group, a methyl carboxyl group, an ethyl carboxyl group etc. are mentioned, for example. As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned. As an alkoxy group, a methoxy group, an ethoxy group, a propoxy group etc. are mentioned. Examples of the aryloxy group include phenoxy group and naphthoxy group.
 式(1)で示される化合物として、例えば、Kayaphorシリーズ(日本化薬社製)、Whitex RP等のホワイテックスシリーズ(住友化学社製)等が挙げられる。また、下記に式(1)で示される化合物が例示されるが、これらに限定されるものではない。 Examples of the compound represented by the formula (1) include Kayaphor series (manufactured by Nippon Kayaku Co., Ltd.), Whiteex RP and the like Whitetex series (manufactured by Sumitomo Chemical Co., Ltd.), and the like. Moreover, although the compound shown by Formula (1) below is illustrated, it is not limited to these.
[化合物例1]
Figure JPOXMLDOC01-appb-C000011
Compound Example 1
Figure JPOXMLDOC01-appb-C000011
 スチルベン骨格を有する他の化合物として下記式(2)または式(3)で示される化合物またはその塩であることが好ましい。これらの化合物を用いることによって、より鮮明な白色発光をする偏光発光素子を得ることができる。さらに、下記式(2)および式(3)で示される化合物もスチルベン骨格に起因して蛍光発光を示し、また、配向させることによって二色性が得られる。 It is preferable that it is a compound or its salt shown by following formula (2) or Formula (3) as another compound which has stilbene frame | skeleton. By using these compounds, it is possible to obtain a polarized light emitting element that emits sharper white light. Furthermore, the compounds represented by the following formulas (2) and (3) also exhibit fluorescence due to the stilbene skeleton, and dichroism can be obtained by orientation.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(2)において、Xは、ニトロ基又は置換基を有していてもよいアミノ基を表す。置換基を有してもよいアミノ基は、上記式(1)における置換基を有してもよいアミノ基と同様に定義される。これらの中でも、Xは、ニトロ基、置換基を有してもよいC-C20アルキルカルボニルアミノ基、置換基を有してもよいアリールカルボニルアミノ基、C-C20アルキルスルホニルアミノ基、または置換基を有してもよいアリールスルホニルアミノ基であることが好ましく、特に、ニトロ基であることがより好ましい。 In the above formula (2), X represents a nitro group or an amino group which may have a substituent. The amino group which may have a substituent is defined in the same manner as the amino group which may have a substituent in the above formula (1). Among these, X is a nitro group, a C 1 -C 20 alkylcarbonylamino group which may have a substituent, an arylcarbonylamino group which may have a substituent, a C 1 -C 20 alkylsulfonylamino group Or an arylsulfonylamino group which may have a substituent is preferable, and a nitro group is particularly preferable.
 上記式(2)中、Rは、水素原子、塩素原子、臭素原子またはフッ素原子等のハロゲン原子、ヒドロキシル基、カルボキシル基、ニトロ基、置換基を有してもいてもよいアルキル基、置換基を有していてもよいアルコキシ基、または置換基を有していてもよいアミノ基を表す。置換基を有していてもよいアルキル基としては、上記式(1)における置換基を有していてもよいC-C20アルキル基と同様に定義される。置換基を有してもいてもよいアルコキシ基は、好ましくはメトキシ基、又はエトキシ基等である。置換基を有していてもよいアミノ基は、上記式(1)における置換基を有してもよいアミノ基と同様に定義され、好ましくはメチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、またはフェニルアミノ基等である。Rは、ナフトトリアゾール環中のナフタレン環の任意の炭素に結合していてよいが、トリアゾール環と縮合している炭素を1位、及び2位とした場合、3位、5位、又は8位に結合していることが好ましい。これらの中でも、Rは、水素原子又はC-C20アルキル基であることが好ましく、RがC-C20アルキル基である場合、メチル基であることが好ましい。 In the above formula (2), R represents a hydrogen atom, a halogen atom such as a chlorine atom, a bromine atom or a fluorine atom, a hydroxyl group, a carboxyl group, a nitro group, an alkyl group which may have a substituent, a substituent Or an amino group which may have a substituent. The alkyl group which may have a substituent is defined in the same manner as the C 1 -C 20 alkyl group which may have a substituent in the above formula (1). The alkoxy group which may have a substituent is preferably a methoxy group or an ethoxy group. The amino group which may have a substituent is defined in the same manner as the amino group which may have a substituent in the above formula (1), preferably a methylamino group, a dimethylamino group, an ethylamino group, a diethylamino group. A group, or a phenylamino group or the like. R may be bonded to any carbon of the naphthalene ring in the naphthotriazole ring, but when the carbon fused to the triazole ring is at 1 and 2 positions, the 3, 5, or 8 position It is preferred that the Among these, R is preferably a hydrogen atom or a C 1 -C 20 alkyl group, and when R is a C 1 -C 20 alkyl group, it is preferably a methyl group.
 上記式(2)中、nは0~3の整数であり、好ましくは1である。また、上記式(2)中、-(SOH)は、ナフトトリアゾール環中のナフタレン環の任意の炭素原子に結合していてよい。-(SOH)のナフタレン環における位置は、トリアゾール環と縮合している炭素原子を1位、2位とした場合、n=1であれば、4位、6位、または7位であることが好ましく、n=2であれば、5位と7位、および6位と8位であることが好ましく、n=3であれば、3位と6位と8位の組み合わせであることが好ましい。これらのうち、Rが水素原子であり、かつnが1または2であることが特に好ましい。 In the above formula (2), n is an integer of 0 to 3, preferably 1. In the above formula (2), — (SO 3 H) may be bonded to any carbon atom of the naphthalene ring in the naphthotriazole ring. The position of naphthalene ring in-(SO 3 H) is 4-, 6-, or 7-position if n = 1 if the carbon atom fused to triazole ring is 1- or 2-position If n = 2, then it is preferred to be at the 5th and 7th positions and at the 6th and 8th positions, and if n = 3 it is a combination of the 3rd, 6th and 8th positions preferable. Among these, it is particularly preferable that R is a hydrogen atom and n is 1 or 2.
 式(3)中、Yは、置換基を有していてもよいC-C20アルキル基、置換基を有していてもよいビニル基、又は置換基を有していてもよいアリール基を表す。これらの中でも、置換基を有してもよいアリール基であることが好ましく、置換基を有してもよいナフチル基であることがさらに好ましく、置換基としてアミノ基とスルホ基が置換したナフチル基であることが特に好ましい。 In formula (3), Y is a C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, or an aryl group which may have a substituent Represents Among these, an aryl group which may have a substituent is preferable, and a naphthyl group which may have a substituent is more preferable, and a naphthyl group in which an amino group and a sulfo group are substituted as a substituent Is particularly preferred.
 式(3)中、Zは、上記式(2)におけるXと同様に定義され、ニトロ基、又は、置換基を有してもよいアミノ基を表し、ニトロ基であることが好ましい。 In formula (3), Z is defined in the same manner as X in formula (2) above, and represents a nitro group or an amino group which may have a substituent, and is preferably a nitro group.
 ビフェニル骨格を有する化合物は、好ましくは下記式(4)で示される化合物またはその塩である。 The compound having a biphenyl skeleton is preferably a compound represented by the following formula (4) or a salt thereof.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(4)において、P及びQは、それぞれ独立に、ニトロ基、置換基を有してもよいアミノ基、置換基を有してもよいカルボニルアミド基、置換基を有してもよいナフトトリアゾール基、置換基を有してもよいC-C20アルキル基、置換基を有してもよいビニル基、置換基を有していてもよいアミド基、置換基を有していてもよいウレイド基、または置換基を有していてもよいアリール基、置換基を有していてもよいカルボニル基を表すが、これらに限定されるものではない。ただし、ビフェニル骨格のP位置、および/または、Q位置にアゾ基を有する場合、蛍光発光は著しく小さくなるため好適ではない。 In the above formula (4), P and Q each independently may have a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, or a substituent A naphthotriazole group, a C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, an amido group which may have a substituent, and a substituent It may be a ureido group which may be substituted, an aryl group which may have a substituent, or a carbonyl group which may have a substituent, but it is not limited thereto. However, when it has an azo group at the P position and / or the Q position of the biphenyl skeleton, the fluorescence emission is significantly reduced, which is not preferable.
 上記式(4)で表される化合物は、好ましくは、下記式(5)で表される化合物である。 The compound represented by the above formula (4) is preferably a compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(5)中、jは0~2の整数を示す。また、-(SOH)が結合される位置は、-CH=CH-が結合されている炭素原子を1位とした場合、2位、4位、6位が好ましく、4位が特に好ましい。 In the above formula (5), j represents an integer of 0 to 2. The position to which-(SO 3 H) is bonded is preferably the 2-, 4- or 6-position, particularly preferably the 4-position, when the carbon atom to which -CH = CH- is bonded is 1-position. .
 上記式(5)中、R、R、R及びRはそれぞれ独立に、水素原子、C-Cアルキル基、C-Cアルコキシ基、アラルキロキシ基、アルケニロキシ基、C-Cアルキルスルホニル基、C-C20アリールスルホニル基、カルボンアミド基、スルホンアミド基、カルボキシアルキル基である。R~Rが結合される位置は、特に限定されるものではないが、ビニル基を1位とした場合、2位、4位、6位が好ましく、4位が特に好ましい。 In the above formula (5), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy group, an aralkyloxy group, an alkenyloxy group, C 1 -C 4 alkylsulfonyl group, C 6 -C 20 arylsulfonyl group, carbonamide group, sulfonamide group, carboxyalkyl group. The position to which R 1 to R 4 is bonded is not particularly limited, but when the vinyl group is at the 1st position, the 2nd, 4th and 6th positions are preferable, and the 4th position is particularly preferable.
 C-Cアルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基等が挙げられる。 Examples of the C 1 -C 4 alkyl group include methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclobutyl group and the like.
 C-Cアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基等が挙げられる。 Examples of the C 1 -C 4 alkoxy group include methoxy group, ethoxy group, propoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, cyclobutoxy group and the like.
 アラルキロキシ基としては、例えば、C-C18アラルキロキシ基等が挙げられる。 As the aralkyloxy group, for example, a C 7 -C 18 aralkyloxy group and the like can be mentioned.
 アルケニロキシ基としては、例えば、C-C18アルケニロキシ基等が挙げられる。 As the alkenyloxy group, for example, a C 1 -C 18 alkenyloxy group and the like can be mentioned.
 C-Cアルキルスルホニル基としては、例えば、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、n-ブチルスルホニル基、sec-ブチルスルホニル基、ターシャリブチルスルホニル基、シクロブチルスルホニル基等が挙げられる。 Examples of the C 1 -C 4 alkyl sulfonyl group include methyl sulfonyl group, ethyl sulfonyl group, propyl sulfonyl group, n-butyl sulfonyl group, sec-butyl sulfonyl group, tertiary butyl sulfonyl group, cyclobutyl sulfonyl group and the like. Be
 C-C20アリールスルホニル基としては、フェニルスルホニル基、ナフチルスルホニル基、ビフェニルスルホニル基等が挙げられる。 Examples of the C 6 -C 20 arylsulfonyl group include phenylsulfonyl group, naphthylsulfonyl group, biphenylsulfonyl group and the like.
 上記式(5)で表される化合物は公知の方法で作製可能であり、例えば、4-ニトロベンズアルデヒド-2-スルホン酸をホスホネートと縮合させ、次いでニトロ基を還元することによって合成することができる。
 このような式(5)で示される化合物の具体例は、例えば、特開平4-226162号公報に記載されている下記の化合物が挙げられる。
The compound represented by the above formula (5) can be prepared by a known method, for example, can be synthesized by condensing 4-nitrobenzaldehyde-2-sulfonic acid with a phosphonate and then reducing the nitro group .
Specific examples of such a compound represented by the formula (5) include the following compounds described in JP-A-4-226162.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(1)~(5)で示される化合物の塩とは、上記各式で示される各化合物の遊離酸が無機陽イオン又は有機陽イオンと共に塩を形成している状態を意味する。無機陽イオンとしては、アルカリ金属、例えばリチウム、ナトリウム、カリウム等の各陽イオン、又は、アンモニウム(NH )等が挙げられる。また、有機陽イオンとしては、例えば、下記式(A)で表される有機アンモニウム等が挙げられる。 The salts of the compounds represented by the formulas (1) to (5) mean that the free acids of the respective compounds represented by the above formulas form salts with inorganic cations or organic cations. Examples of inorganic cations include alkali metals such as lithium, sodium, potassium and other cations, or ammonium (NH 4 + ). Moreover, as an organic cation, the organic ammonium etc. which are represented by following formula (A) are mentioned, for example.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(A)中、Z1~Z4は、各々独立して、水素原子、アルキル基、ヒドロキシアルキル基又はヒドロキシアルコキシアルキル基を表わし、かつ、Z1~Z4の少なくともいずれか1つは水素原子以外の基である。 In formula (A), Z 1 to Z 4 each independently represent a hydrogen atom, an alkyl group, a hydroxyalkyl group or a hydroxyalkoxyalkyl group, and at least one of Z 1 to Z 4 is hydrogen It is a group other than an atom.
 Z1~Z4の具体例としては、例えば、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基等のC-Cアルキル基、好ましくはC-Cアルキル基;ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、2-ヒドロキシプロピル基、4-ヒドロキシブチル基、3-ヒドロキシブチル基、2-ヒドロキシブチル等のヒドロキシC-Cアルキル基、好ましくはヒドロキシC-Cアルキル基;並びに、ヒドロキシエトキシメチル基、2-ヒドロキシエトキシエチル基、3-ヒドロキシエトキシプロピル基、3-ヒドロキシエトキシブチル基、2-ヒドロキシエトキシブチル等のヒドロキシC-CアルコキシC-Cアルキル基、好ましくはヒドロキシC-CアルコキシC-Cアルキル基等が挙げられる。 Specific examples of Z 1 to Z 4 include, for example, a C 1 to C 6 alkyl group such as methyl group, ethyl group, butyl group, pentyl group and hexyl group, preferably a C 1 to C 4 alkyl group; hydroxymethyl group Hydroxy C 1 -C 6 alkyl group such as 2-hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 4-hydroxybutyl group, 3-hydroxybutyl group, 2-hydroxybutyl group, preferably hydroxy C 1 -C 4 alkyl group; and, hydroxyethoxy methyl group, 2-hydroxyethoxy ethyl group, 3-hydroxy-ethoxypropyl, 3-hydroxyethoxy-butyl group, 2-hydroxyethoxy butyl hydroxy C 1 -C 6 alkoxy C 1 -C 6 alkyl group, preferably a hydroxy C 1 -C 4 alkoxy C 1 - C 4 alkyl group and the like.
 これらの無機陽イオン又は有機陽イオンの中でも、ナトリウム、カリウム、リチウム、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、アンモニウム等の各陽イオンがより好ましく、リチウム、アンモニウム又はナトリウムの各無機陽イオンが特に好ましい。 Among these inorganic cations or organic cations, cations of sodium, potassium, lithium, monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ammonium and the like are more preferable, Particular preference is given to inorganic cations of lithium, ammonium or sodium.
 上記のような構造を有する偏光発光色素は、分子中にアゾ基を有さないため、アゾ結合に起因する光の吸収が抑制される。特に、スチルベン骨格を有する化合物は、紫外光の照射により発光作用を示し、また、スチルベン骨格の強い炭素-炭素二重結合の存在により分子が安定する。そのため、このような特定構造を有する偏光発光色素を用いた偏光発光素子は、光を吸収し、そのエネルギーを利用して、可視光領域に偏光発光作用を示すことができる。 The polarized light emitting dye having the above structure does not have an azo group in the molecule, so that the absorption of light due to the azo bond is suppressed. In particular, a compound having a stilbene skeleton exhibits a light emitting action by irradiation with ultraviolet light, and the molecule is stabilized by the presence of a strong carbon-carbon double bond of the stilbene skeleton. Therefore, a polarized light emitting element using a polarized light emitting dye having such a specific structure can absorb light and utilize its energy to exhibit a polarized light emitting action in the visible light region.
(その他の色素)
 上記の特性を示す偏光発光素子は、偏光発光素子の偏光性能を阻害しない範囲で、上述した偏光発光色素とは異なる少なくとも1種の蛍光染料及び/又は有機染料をさらに含んでいてもよい。併用される蛍光染料としては、例えば、C.I.Fluorescent Brightener 5、C.I.Fluorescent Brightener 8、C.I.Fluorescent Brightener 12、C.I.Fluorescent Brightener 28、C.I.Fluorescent Brightener 30、C.I.Fluorescent Brightener 33、C.I.Fluorescent Brightener 350、C.I.Fluorescent Brightener 360、C.I.Fluorescent Brightener 365等が挙げられる。
(Other pigments)
The polarized light emitting element exhibiting the above-mentioned characteristics may further contain at least one kind of fluorescent dye and / or organic dye different from the above-mentioned polarized light emitting dye as long as the polarization performance of the polarized light emitting element is not impaired. As a fluorescent dye to be used in combination, for example, C.I. I. Fluorescent Brightener 5, C.I. I. Fluorescent Brightener 8, C.I. I. Fluorescent Brightener 12, C.I. I. Fluorescent Brightener 28, C.I. I. Fluorescent Brightener 30, C.I. I. Fluorescent Brightener 33, C.I. I. Fluorescent Brightener 350, C.I. I. Fluorescent Brightener 360, C.I. I. Fluorescent Brightener 365 etc. are mentioned.
 有機染料としては、例えば、シー.アイ.ダイレクト.イエロー12、シー.アイ.ダイレクト.イエロー28、シー.アイ.ダイレクト.イエロー44、シー.アイ.ダイレクト.オレンジ26、シー.アイ.ダイレクト.オレンジ39、シー.アイ.ダイレクト.オレンジ71、シー.アイ.ダイレクト.オレンジ107、シー.アイ.ダイレクト.レッド2、シー.アイ.ダイレクト.レッド31、シー.アイ.ダイレクト.レッド79、シー.アイ.ダイレクト.レッド81、シー.アイ.ダイレクト.レッド247、シー.アイ.ダイレクト.ブルー69、シー.アイ.ダイレクト.ブルー78、シー.アイ.ダイレクト.グリーン80、及びシー.アイ.ダイレクト.グリーン59等が挙げられる。これらの有機染料は遊離酸であっても、あるいはアルカリ金属塩(例えばNa塩、K塩、Li塩)、アンモニウム塩又はアミン類の塩であってもよい。 As an organic dye, for example, C.I. Eye. direct. Yellow 12, Sea. Eye. direct. Yellow 28, Sea. Eye. direct. Yellow 44, C.I. Eye. direct. Orange 26, Sea. Eye. direct. Orange 39, Sea. Eye. direct. Orange 71, Sea. Eye. direct. Orange 107, C.I. Eye. direct. Red 2, Sea. Eye. direct. Red 31, Sea. Eye. direct. Red 79, Sea. Eye. direct. Red 81, Sea. Eye. direct. Red 247, Sea. Eye. direct. Blue 69, Sea. Eye. direct. Blue 78, Sea. Eye. direct. Green 80 and C.I. Eye. direct. Green 59 and the like. These organic dyes may be free acids or may be alkali metal salts (eg Na, K, Li), ammonium salts or salts of amines.
<基材>
 偏光発光素子は、偏光発光色素を含有することができ、かつ、配向することができる基材を備える。基材は、偏光発光色素を吸着し、かつ、ホウ素誘導体を含有し架橋しうる親水性高分子を含むことが好ましく、該親水性高分子を製膜して得られる親水性高分子フィルム、特に配向された親水性高分子フィルムであることが好ましい。親水性高分子は、特に限定されないが、例えば、ポリビニルアルコール系樹脂、デンプン系樹脂が好ましい。親水性高分子は、偏光発光色素の染色性、加工性及び架橋性などの観点からポリビニルアルコール系樹脂又はその誘導体を含むことが好ましく、ポリビニルアルコールを含むことがより好ましい。ポリビニルアルコール系樹脂又はその誘導体としては、例えば、ポリビニルアルコール又はその誘導体、ポリビニルアルコール又はその誘導体のいずれかをエチレン、プロピレンのようなオレフィンや、クロトン酸、アクリル酸、メタクリル酸、及びマレイン酸のような不飽和カルボン酸等で変性した樹脂等が挙げられる。これらのなかでも、偏光発光色素の吸着性及び配向性の点から、基材は、ポリビニルアルコール又はその誘導体から作製されたフィルムが好ましい。
<Base material>
A polarized light emitting element comprises a substrate that can contain and can be oriented with a polarized light emitting dye. The substrate preferably contains a hydrophilic polymer capable of adsorbing a polarized light emitting dye and containing a boron derivative and being crosslinkable, and a hydrophilic polymer film obtained by forming the hydrophilic polymer into a film, in particular It is preferable that it is an oriented hydrophilic polymer film. The hydrophilic polymer is not particularly limited, but for example, polyvinyl alcohol resins and starch resins are preferable. The hydrophilic polymer preferably contains a polyvinyl alcohol-based resin or a derivative thereof from the viewpoint of dyeability, processability and crosslinkability of a polarized light-emitting dye, and more preferably polyvinyl alcohol. Examples of polyvinyl alcohol resins or derivatives thereof include polyvinyl alcohol or derivatives thereof, polyvinyl alcohol or derivatives thereof such as ethylene, olefins such as propylene, crotonic acid, acrylic acid, methacrylic acid, and maleic acid Resin etc. which were denatured by the unsaturated carboxylic acid etc. are mentioned. Among these, in terms of the adsorptivity and orientation of the polarized light-emitting dye, the substrate is preferably a film made of polyvinyl alcohol or a derivative thereof.
 以下、ポリビニルアルコール系樹脂を含む基材を用いて偏光発光色素を吸着し配向させる方法について例示する。ポリビニルアルコール系樹脂を含む基材は、例えば、市販品を用いてもよく、ポリビニルアルコール系樹脂を製膜することにより作製してもよい。ポリビニルアルコール系樹脂の製膜方法は特に限定されるものではなく、例えば、含水ポリビニルアルコールを溶融押出する方法、流延製膜法、湿式製膜法、ゲル製膜法(ポリビニルアルコール水溶液を一旦冷却ゲル化した後、溶媒を抽出除去)、キャスト製膜法(ポリビニルアルコール水溶液を基盤上に流し、乾燥)、及びこれらの組み合わせによる方法等、公知の製膜方法を採用することができる。基材の厚さは適宜設計することができるが、通常10~100μmである、好ましくは20~80μmである。 Hereinafter, a method of adsorbing and orienting a polarized light emitting dye using a base material containing a polyvinyl alcohol-based resin will be exemplified. A commercial product may be used for the base material containing polyvinyl alcohol system resin, for example, and it may produce it by forming a polyvinyl alcohol system resin into a film. The film forming method of the polyvinyl alcohol-based resin is not particularly limited, and, for example, a method of melt-extruding water-containing polyvinyl alcohol, a cast film forming method, a wet film forming method, a gel film forming method After gelation, a known film-forming method such as a method of extracting and removing a solvent, a cast film-forming method (flowing a polyvinyl alcohol aqueous solution on a substrate and drying), and a combination thereof may be employed. The thickness of the substrate can be designed as appropriate, and is usually 10 to 100 μm, preferably 20 to 80 μm.
 また、基材は、ホウ素化合物をさらに含むことが好ましい。特に、ホウ素化合物が基材の厚さ方向(表面からの深さ方向)に、ほぼ均一になるよう含有していること、すなわち、基材の表面と中心部との差がほとんどない濃度でホウ化合物が基材に含まれていることが好ましい。ホウ素化合物は、例えば、ホウ酸、硼砂、酸化ホウ素、水酸化ホウ素等の無機化合物、ボロン酸であるアルケニルボロン酸、アリールボロン酸、アルキルボロン酸、ボロン酸エステル、トリフルオロボラート又はその塩等が挙げられ、ホウ酸、硼砂が好ましくは、ホウ酸が特に好ましくい。基材の膜厚方向に対して中心部までホウ素化合物がより高い濃度で含有されていることにより、偏光発光素子の偏光発光のコントラストをさらに向上させることができる。また、ホウ素化合物が基材の中心部まで含有されていることにより、偏光発光素子により高い耐久性を付与することができる。 Moreover, it is preferable that a base material further contains a boron compound. In particular, the boron compound is contained so as to be substantially uniform in the thickness direction (depth direction from the surface) of the substrate, that is, the boro compound has a concentration with almost no difference between the surface and the central portion of the substrate. It is preferred that the compound is contained in the substrate. Boron compounds include, for example, inorganic compounds such as boric acid, borax, boron oxide and boron hydroxide, alkenylboronic acid which is boronic acid, arylboronic acid, alkylboronic acid, boronic acid ester, boronic acid ester, trifluoroborate or salts thereof Of these, boric acid and borax are preferred, with boric acid being particularly preferred. By containing the boron compound at a higher concentration up to the central portion with respect to the film thickness direction of the base material, the contrast of the polarized light emission of the polarized light emitting element can be further improved. Further, by containing the boron compound up to the central portion of the base material, it is possible to impart higher durability to the polarized light emitting element.
 基材にホウ素化合物を含有させるためには、基材に偏光発光素子を含有させる染色工程を行っておくことが必要である。これは、ホウ素化合物が含有されている基材に偏光発光色素を含有させようとしても、基材がホウ素化合物により架橋しているため、偏光発光色素の染色性が著しく阻害され、深さ方向に偏光発光色素が含浸しないためである。また、基材の延伸倍率が高すぎると、基材に染色溶液が十分に吸着されず、結果として偏光発光色素が基材の内部まで含有することを著しく阻害してしまう。そのため、延伸倍率が元の長さの3.5倍に達する前に染色工程を適用することが好ましく、元の長さの3.0倍に達する前がより好ましく、2.0倍に達する前が特に好ましい。また、基材を製膜する原料の段階、例えば、水とポリビニルアルコールと偏光発光色素との混合物から基材を製膜し、それを延伸して得る方法においては、基材の膨潤工程で偏光発光色素が溶出してしまうことがあり、また、基材の製膜時に膜厚ムラが発生し、この膜厚ムラによりフィルムの透過率のムラの原因になることがあるため、量産には不向きとなることがある。よって、基材に偏光発光色素を含有させる時点では、基材の製膜段階では偏光発光色素が含有されておらず、かつ、ホウ素誘導体を含有する工程の前であって、かつ、基材の延伸倍率が元の長に対して3.5倍以下であることが好ましい。 In order to make a base material contain a boron compound, it is necessary to perform the dyeing process which makes a base material contain a polarization light emitting element. This is because, even if the substrate containing the boron compound is intended to contain the polarized light-emitting dye, the dyeability of the polarized light-emitting dye is significantly inhibited since the substrate is crosslinked by the boron compound, and in the depth direction This is because the polarized light emitting dye is not impregnated. In addition, when the draw ratio of the substrate is too high, the dyeing solution is not sufficiently adsorbed to the substrate, and as a result, the polarized light emitting dye is significantly inhibited from being contained in the interior of the substrate. Therefore, it is preferable to apply the staining process before the draw ratio reaches 3.5 times the original length, more preferably before reaching 3.0 times the original length, and before reaching 2.0 times Is particularly preferred. Also, in the stage of the raw material for forming the film of the substrate, for example, in the method of forming a film of a substrate from a mixture of water, polyvinyl alcohol and a polarized light emitting pigment and stretching it, The luminescent dye may be eluted, and film thickness unevenness may occur during film formation of the substrate, and this film thickness unevenness may cause unevenness in the transmittance of the film, so it is unsuitable for mass production. It can be Therefore, at the time of including the polarized light emitting dye in the base material, the polarized light emitting dye is not contained in the film forming step of the base material, and before the step of containing the boron derivative, and The draw ratio is preferably 3.5 times or less of the original length.
 基材にホウ素化合物が含有していることを確認する方法としては、基材の断面においてホウ素化合物が存在している分布状態を確認すればよい。ホウ素化合物が基材の断面にどのように存在するかを確認する方法として、基材の断面をToF-SIMS測定によって確認することができる。ToF-SIMSとは、飛行時間型二次イオン質量分析法であり、Time Of Flight Secondary Ion Mass Spectometryの略である。試料に超高真空下で1次イオンビームを照射すると、試料の極表面(1~3nm)から2次イオンが放出される。放出された2次イオンを飛行時間型質量分析計へ導入することで、試料最表面の質量スペクトルが得られる。1次イオンビームの照射量を低く抑えることにより、試料の表面成分を、化学構造を保った分子イオン、部分的に開裂したフラグメントとして検出することができ、これにより試料最表面の元素組成、化学構造の情報を得ることができる。この分析法を基材の断面測定に適用することによって、ホウ素化合物、例えばホウ酸、硼砂の場合には、その構成元素であるホウ素、酸化ホウ素、水酸化ホウ素等が検出されることによって、基材の断面、すなわち厚さ方向のホウ素化合物を検出することができる。このように、ToF-SIMS測定により、基材の厚さ方向におけるホウ素化合物の濃度分布(含有分布)、さらにはその含有比率を確認することができる。 As a method of confirming that the boron compound is contained in the base material, the distribution state in which the boron compound is present in the cross section of the base material may be confirmed. As a method of confirming how the boron compound is present in the cross section of the substrate, the cross section of the substrate can be confirmed by ToF-SIMS measurement. ToF-SIMS is time-of-flight secondary ion mass spectrometry and is an abbreviation of Time Of Flight Secondary Ion Mass Spectrometry. When the sample is irradiated with a primary ion beam under ultra-high vacuum, secondary ions are released from the pole surface (1 to 3 nm) of the sample. By introducing the emitted secondary ions into a time-of-flight mass spectrometer, a mass spectrum of the outermost surface of the sample can be obtained. By reducing the irradiation amount of the primary ion beam, the surface component of the sample can be detected as a molecular ion maintaining a chemical structure, a fragment that is partially cleaved, whereby the elemental composition and chemistry of the outermost surface of the sample. You can get structural information. By applying this analysis method to cross-sectional measurement of a base material, in the case of a boron compound, for example, boric acid or borax, by detecting its constituent element boron, boron oxide, boron hydroxide etc. Boron compounds in the cross section of the material, ie in the thickness direction, can be detected. As described above, the concentration distribution (content distribution) of the boron compound in the thickness direction of the substrate and the content ratio thereof can be confirmed by the ToF-SIMS measurement.
 少なくとも1種以上の偏光発光色素とホウ素化合物とを含む基材において、少なくとも片面の基材の厚さ方向において飛行時間型二次イオン質量分析法により測定されたホウ素化合物に由来する2次イオン強度が、I≦30×Iの関係を満たすことが好ましく、I≦15×Iの関係を満たすことがより好ましく、I≦5×Iの関係を満たすことがさらに好ましい。この関係式において、Iは、基材の厚さLにて検出された最大2次イオン強度に対する基材の少なくとも片面の表面から厚さ方向に向けて1/2Lの距離において検出された2次イオン強度の比を表す。また、Iは、基材の厚さLにて検出された最大2次イオン強度に対する基材の両表面からそれぞれ基材の厚さ方向に向けて1/4Lの距離までの間で検出された2次イオン強度の比の最大値を表す。上記の関係は基材の両表面から満たされることが好ましい。 In a substrate comprising at least one or more polarized light emitting dyes and a boron compound, secondary ion intensity derived from the boron compound measured by time-of-flight secondary ion mass spectrometry in the thickness direction of the substrate on at least one side Preferably satisfies the relation of I 2 ≦ 30 × I 1 , more preferably satisfies the relation of I 2 ≦ 15 × I 1 , and still more preferably satisfies the relation of I 2 ≦ 5 × I 1 . In this relation, I 1 is detected at a distance of 1/2 L from the surface of at least one side of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate 2 It represents the ratio of the secondary ion intensity. In addition, I 2 is detected from the both surfaces of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate, respectively, up to a distance of 1⁄4 L in the thickness direction of the substrate Represents the maximum value of the ratio of secondary ion intensities. The above relationship is preferably satisfied from both surfaces of the substrate.
 また、ホウ素化合物に由来する2次イオン強度が、I≦5×Iの関係をさらに満たすことが好ましく、I≦3×Iの関係をさらに満たすことがより好ましく、I≦1.5×Iの関係をさらに満たすことが特に好ましい。この関係式において、Iは、基材の厚さLにて検出された最大2次イオン強度に対する基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度の比の平均値を表す。また、Iは、基材の厚さLにて検出された最大2次イオン強度に対する厚さLの中心から基材の両表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の平均値を表す。上記の関係は基材の両表面から満たされることが好ましい。 Further, it is preferable that the secondary ion strength derived from the boron compound further satisfy the relationship of I 3 ≦ 5 × I 4 , and further preferably the relationship of I 3 ≦ 3 × I 4 , I 3 ≦ 1. It is particularly preferred to further satisfy the relationship of 5 × I 4 . In this relation, I 3 is the secondary ion intensity detected from the surface of at least one side of the substrate to the distance of 1⁄4 L with respect to the maximum secondary ion intensity detected at the thickness L of the substrate Represents the average value of the ratio of Also, I 4 is between the center of the thickness L to the maximum secondary ion intensity detected by the thickness L of the substrate to a distance of each 1 / 4L in the thickness direction toward the both surfaces of the substrate Represents the average value of the ratio of secondary ion intensities detected in The above relationship is preferably satisfied from both surfaces of the substrate.
 さらに、ホウ素化合物に由来する2次イオン強度が、I≦2×Iの関係をさらに満たすことが好ましく、I≦Iの関係をさらに満たすことがより好ましい。この関係式において、Iは、基材の厚さLにて検出された最大2次イオン強度に対する基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度の比の積分値を表す。また、Iは、基材の厚さLにて検出された最大2次イオン強度に対する厚さLの中心から基材の両表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の積分値を表す。上記の関係は基材の両表面から満たされることが好ましい。尚、上記の各関係式において、「基材の少なくとも片面の表面」とは、基材の表側の表面又は裏側の表面等の記載のない限り、基材の表面と裏面のいずれであってもよい。例えば「基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度」とは、基材の表側の表面から1/4Lの距離までの間で検出された2次イオン強度と、基材の裏側の表面から1/4Lの距離までの間で検出された2次イオン強度のいずれであってもよい。 Furthermore, it is preferable that the secondary ionic strength derived from the boron compound further satisfy the relation of I 5 ≦ 2 × I 6 , and it is more preferable to further satisfy the relation of I 5 ≦ I 6 . In this relation, I 5 is the secondary ion intensity detected from the surface of at least one side of the substrate to a distance of 1⁄4 L relative to the maximum secondary ion intensity detected at the thickness L of the substrate Represents the integral value of the ratio of Also, I 6 is between the center of the thickness L to the maximum secondary ion intensity detected by the thickness L of the substrate to a distance of each 1 / 4L in the thickness direction toward the both surfaces of the substrate Represents the integral value of the ratio of secondary ion intensities detected in The above relationship is preferably satisfied from both surfaces of the substrate. In each of the above-mentioned relational expressions, “at least one surface of the substrate” means either the surface or the back of the substrate, unless the front surface or the back surface of the substrate is described. Good. For example, “secondary ion intensity detected between the surface of at least one surface of the substrate and a distance of 1⁄4 L” is detected between the surface of the front side of the substrate and a distance of 1⁄4 L. It may be any of the secondary ion intensity and the secondary ion intensity detected between the surface on the back side of the substrate and a distance of 1⁄4 L.
 このように、ホウ素化合物、例えばホウ酸の基材における濃度分布を制御することにより、偏光発光の偏光度をより向上させることができる。 Thus, the degree of polarization of polarized light emission can be further improved by controlling the concentration distribution of a boron compound such as boric acid in the substrate.
 より高い偏光度を有する偏光発光を得るためには、ホウ素化合物が基材の表層部だけでなく中心部にも含まれることが好ましい。具体的には、ホウ素化合物に由来する2次イオン強度の濃度分布が、基材の表面から3μm~20μmの間に少なくとも存在することが好ましく、基材の表面から少なくとも5μmの深さまで存在することがより好ましく、少なくとも8μmの深さまで存在することがさらに好ましく、少なくとも10μmの深さまで存在することが特に好ましい。さらに好ましくは基材の両表面より、該関係が満たされることが好ましい。 In order to obtain polarized light emission having a higher degree of polarization, it is preferable that the boron compound is contained not only in the surface layer portion but also in the central portion of the substrate. Specifically, the concentration distribution of secondary ion intensity derived from the boron compound is preferably present at least between 3 μm and 20 μm from the surface of the substrate, and is present at a depth of at least 5 μm from the surface of the substrate Is more preferably present to a depth of at least 8 μm, and particularly preferred to be at a depth of at least 10 μm. More preferably, the relationship is satisfied from both surfaces of the substrate.
 また、偏光発光色素が基材の厚さのどの程度まで含有しているかを確認することもできる。この方法として、ラマン分析法が挙げられる。物質に光を照射すると光の散乱が起こり、散乱光のなかには入射した光と同じ波長の光が散乱されるレイリー散乱(弾性散乱)と、分子振動によって入射光とは異なる波長に散乱されるラマン散乱(非弾性散乱)が存在する。そのラマン光を分光し、得られたラマンスペクトルより、分子レベルの構造を解析する手法がラマン分光法である。顕微ラマン分光光度計を適用することによって、マイクロメートルオーダーで基材の厚さ方向のエネルギーを感知できるため、偏光発光色素が含有されている基材の厚さを正確に確認することができる。このように、基材の断面に対して厚さ方向に走査しながらラマン分光を適用することによって、偏光発光色素が基材に含有している程度を測定することができる。具体的には、上述のスチルベン化合物、例えば化合物例5-1に記載の化合物であれば、1170~1180cm-1及び1560~1600cm-1のそれぞれに基づくエネルギーを検出することができる。そして、検出されたエネルギーを基材の断面に対して厚さ方向に走査しながらラマン分光を適用する。このような方法により、偏光発光色素が基材の厚さのどの程度まで含有しているかを確認することができる。 In addition, it can also be confirmed to what extent the thickness of the substrate of the polarized light emitting dye is contained. Raman analysis is mentioned as this method. When a substance is irradiated with light, light scattering occurs, and in the scattered light, light of the same wavelength as the incident light is scattered (elastic scattering), and Raman is scattered by the molecular vibration to a wavelength different from the incident light There is scattering (inelastic scattering). A method of analyzing the structure of molecular level from the obtained Raman spectrum by dispersing the Raman light is Raman spectroscopy. By applying the micro-Raman spectrophotometer, the energy in the thickness direction of the substrate can be sensed on the order of micrometers, so that the thickness of the substrate containing the polarized light emitting dye can be accurately confirmed. As described above, by applying Raman spectroscopy while scanning in the thickness direction with respect to the cross section of the base material, it is possible to measure the extent to which the polarized light emitting dye is contained in the base material. Specifically, in the case of the stilbene compound described above, for example, the compound described in Compound Example 5-1, energy based on each of 1170 to 1180 cm -1 and 1560 to 1600 cm -1 can be detected. Then, Raman spectroscopy is applied while scanning the detected energy in the thickness direction with respect to the cross section of the substrate. By such a method, it can be confirmed to what extent of the thickness of the substrate the polarized light emitting dye is contained.
<偏光発光素子の製造方法>
 偏光発光素子の製造方法は、以下の製法に限定されるものではないが、主に、ポリビニルアルコール又はその誘導体を用いたフィルムに上述した偏光発光色素を配向させることが好適である。以下、ポリビニルアルコール又はその誘導体を用いた場合を例とした偏光発光素子の作製方法について説明する。
<Method of manufacturing polarized light emitting element>
The method for producing a polarized light emitting device is not limited to the following production method, but it is preferable to mainly orient the above-mentioned polarized light emitting dye in a film using polyvinyl alcohol or a derivative thereof. Hereinafter, a method of manufacturing a polarized light emitting device will be described by taking polyvinyl alcohol or a derivative thereof as an example.
 偏光発光素子の作製方法は、基材を準備する工程と、該基材を膨潤液に浸漬し、該基材を膨潤させる膨潤工程と、膨潤させた該基材を上記偏光発光色素の1種以上を少なくとも含む染色溶液に含浸させ、基材に偏光発光色素を吸着させる染色工程と、偏光発光色素を吸着させた基材を、ホウ酸を含有する溶液に浸漬することにより偏光発光色素を基材中で架橋させる架橋工程と、偏光発光色素を架橋させた基材を一定の方向に一軸延伸して偏光発光色素を一定の方向に配列させる延伸工程と、必要に応じて、延伸させた基材を洗浄液で洗浄する洗浄工程および/または洗浄させた基材を乾燥させる乾燥工程と、を含んでいる。 The method for producing a polarized light emitting device comprises the steps of preparing a substrate, swelling the substrate by immersing the substrate in a swelling solution, and swelling the substrate, and one of the polarized light emitting dyes mentioned above. A dyeing step of impregnating a dye solution containing at least the above with a dye solution for adsorbing a polarized light-emitting dye, and immersing a substrate with the polarized light-emitting dye adsorbed thereon in a solution containing boric acid The step of crosslinking in the material, the step of uniaxially stretching the base material obtained by crosslinking the polarized light-emitting dye in a fixed direction, and arranging the polarized light-emitting dye in a fixed direction, and, if necessary, the stretched group Washing the material with a washing solution and / or drying the washed substrate.
(膨潤工程)
 膨潤工程は、20~50℃の膨潤液に、上記基材を30秒~10分間浸漬させることにより行うことが好ましく、膨潤液は水であることが好ましい。膨潤液による基材の延伸倍率は、1.00~1.50倍に調整することが好ましく、1.10~1.35倍に調整することがより好ましい。
(Swelling process)
The swelling step is preferably performed by immersing the above-mentioned substrate in a swelling solution at 20 to 50 ° C. for 30 seconds to 10 minutes, and the swelling solution is preferably water. The draw ratio of the substrate by the swelling solution is preferably adjusted to 1.00 to 1.50 times, and more preferably adjusted to 1.10 to 1.35 times.
(染色工程)
 上記膨潤工程にて膨潤処理を施して得られた基材に、少なくとも1種の偏光発光色素を含浸及び吸着させる。染色工程は、偏光発光色素を基材に含浸及び吸着させる方法であれば特に限定されるものではないが、例えば、基材を、偏光発光色素を含む染色溶液に浸漬させる方法、基材に該染色溶液を塗布し、吸着させる方法等が挙げられる。これらのうち、偏光発光色素を含む染色溶液に浸漬させる方法が好ましい。染色溶液中の偏光発光色素の濃度は、基材中に偏光発光色素が十分に吸着されていれば特に限定されるものではないが、例えば、染色溶液中に0.0001~1質量%であることが好ましく、0.001~0.5質量%であることがより好ましい。
(Staining process)
At least one polarized light emitting dye is impregnated and adsorbed onto the substrate obtained by the swelling treatment in the swelling step. The dyeing process is not particularly limited as long as it is a method of impregnating and adsorbing a polarized light emitting dye to a substrate, but for example, a method of immersing a substrate in a dyeing solution containing a polarized light emitting dye, the substrate The method of apply | coating and adsorb | sucking a dyeing | staining solution etc. are mentioned. Among these, the method of immersing in a staining solution containing a polarized light emitting dye is preferred. The concentration of the polarized light emitting dye in the staining solution is not particularly limited as long as the polarized light emitting dye is sufficiently adsorbed in the substrate, and for example, it is 0.0001 to 1% by mass in the staining solution Is preferable, and 0.001 to 0.5% by mass is more preferable.
 染色工程における染色溶液の温度は、5~80℃が好ましく、20~50℃がより好ましく、40~50℃が特に好ましい。染色溶液に基材を浸漬する時間は、オーダーパラメーターの値を制御する際、重要である。偏光発光素子が示すオーダーパラメーターの値を、所望の範囲に制御するため、染色溶液に基材を浸漬する時間は、6~20分の間で調節するのが好ましく、7~10分の間がより好ましい。 The temperature of the dyeing solution in the dyeing step is preferably 5 to 80 ° C., more preferably 20 to 50 ° C., particularly preferably 40 to 50 ° C. The time to immerse the substrate in the staining solution is important when controlling the value of the order parameter. In order to control the value of the order parameter indicated by the polarized light emitting element within the desired range, the time for immersing the substrate in the staining solution is preferably adjusted between 6 and 20 minutes, preferably between 7 and 10 minutes. More preferable.
 染色溶液に含まれる偏光発光色素は、1種単独で使用してもよく、2種以上を併用してもよい。上記偏光発光色素は、化合物によりその発光色が異なるため、基材に、上記偏光発光色素を1種以上含有させることにより、生じる発光色を様々な色になるように適宜調整することができる。また、必要に応じて、染色溶液は、偏光発光色素とは異なる1種以上の有機染料及び/又は蛍光染料をさらに含んでいてもよい。 The polarized light emitting dyes contained in the staining solution may be used alone or in combination of two or more. The light emission color of the above-mentioned polarized light emitting dye differs depending on the compound, and therefore, by containing one or more kinds of the above polarized light emitting dye in the base material, it is possible to appropriately adjust the emitted light color to be various colors. In addition, as necessary, the staining solution may further contain one or more organic dyes and / or fluorescent dyes different from the polarized light emitting dye.
 蛍光染料及び/又は有機染料を併用する場合、所望とする偏光素子の色調整のために、配合する染料を選択し、配合比率等を調整することが可能である。調製目的により、蛍光染料または有機染料の配合割合は特に限定されるものではないが、一般的には、偏光素子100質量部に対して、これら蛍光染料及び/又は有機染料の総量が0.01~10質量部の範囲で用いることが好ましい。 When a fluorescent dye and / or an organic dye are used in combination, it is possible to select the dye to be blended and adjust the blending ratio etc. for the desired color adjustment of the polarizing element. Although the blending ratio of the fluorescent dye or the organic dye is not particularly limited depending on the preparation purpose, generally, the total amount of the fluorescent dye and / or the organic dye is 0.01 relative to 100 parts by mass of the polarizing element. It is preferable to use in the range of ̃10 parts by mass.
 また、上記の各染料に加え、必要に応じてさらに染色助剤を併用してもよい。染色助剤としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、塩化ナトリウム、硫酸ナトリウム(芒硝)、無水硫酸ナトリウム及びトリポリリン酸ナトリウム等が挙げられ、好ましくは硫酸ナトリウムである。染色助剤の含有量は、使用される二色性色素の染色性に基づく上記浸漬時間、染色時の温度等によって任意に調整可能であるが、染色溶液中に0.0001~10質量%であることが好ましく、0.0001~2質量%であることがより好ましい。 Further, in addition to the above-described dyes, if necessary, a dyeing assistant may be further used in combination. Examples of the dyeing assistant include sodium carbonate, sodium hydrogencarbonate, sodium chloride, sodium sulfate (sodium sulfate), anhydrous sodium sulfate, sodium tripolyphosphate and the like, with preference given to sodium sulfate. The content of the dyeing assistant can be optionally adjusted by the above-mentioned immersion time, temperature at the time of dyeing, etc. based on the dyeability of the dichroic dye to be used, but in 0.0001 to 10% by mass in the dyeing solution Is preferable, and more preferably 0.0001 to 2% by mass.
 上記染色工程後、当該染色工程で基材の表面に付着した染色溶液を除去するために、任意に予備洗浄工程を実施することができる。予備洗浄工程を実施することによって、次に処理する液中に基材の表面に残存する偏光発光色素が移行することを抑制することができる。予備洗浄工程では、洗浄液として一般的には水が用いられる。洗浄方法は、洗浄液に染色した基材を浸漬することが好ましく、一方で、洗浄液を当該基材に塗布することによって洗浄することもできる。洗浄時間は、特に限定されるものではないが、好ましくは1~300秒であり、より好ましくは1~60秒である。この予備洗浄工程における洗浄液の温度は、基材を構成する材料が溶解しない温度であることが必要となり、一般的には5~40℃で洗浄処理が施される。尚、予備洗浄工程の工程がなくとも、偏光素子の性能には特段大きな影響を及ぼさないため、予備洗浄工程は省略することも可能である。 After the above-mentioned dyeing process, in order to remove the dyeing solution adhering to the surface of the substrate in the dyeing process concerned, a preliminary washing process can be optionally performed. By carrying out the preliminary washing step, it is possible to suppress migration of the polarized luminescent dye remaining on the surface of the substrate in the solution to be treated next. In the preliminary washing step, water is generally used as the washing solution. The washing method is preferably to immerse the dyed substrate in the washing solution, while washing can also be carried out by applying the washing solution to the substrate. The washing time is not particularly limited, but is preferably 1 to 300 seconds, and more preferably 1 to 60 seconds. The temperature of the cleaning solution in this preliminary cleaning step needs to be a temperature at which the material constituting the substrate does not dissolve, and the cleaning process is generally performed at 5 to 40.degree. In addition, even if there is no step of the pre-cleaning step, the pre-cleaning step can be omitted because the performance of the polarizing element is not particularly affected.
(架橋工程)
 染色工程又は予備洗浄工程の後、基材に架橋剤を含有させることができる。基材に架橋剤を含有させる方法は、架橋剤を含む処理溶液に基材を浸漬させることが好ましく、一方で、当該処理溶液を基材に塗布又は塗工してもよい。処理溶液中の架橋剤としては、例えば、ホウ素化合物を含有する溶液を使用する。ホウ素化合物は、例えば、ホウ酸、硼砂、酸化ホウ素、水酸化ホウ素等の無機化合物、ボロン酸であるアルケニルボロン酸、アリールボロン酸、アルキルボロン酸、ボロン酸エステル、トリフルオロボラート又はその塩等が挙げられ、ホウ酸、硼砂が好ましくは、ホウ酸が特に好ましい。処理溶液中の溶媒は、特に限定されるものではないが、水が好ましい。処理溶液中のホウ素誘導体の濃度は、0.1~15質量%であることが好ましく、0.1~10質量%であることがより好ましい。処理溶液の温度は、30~80℃が好ましく、40~75℃がより好ましい。また、この架橋工程の処理時間は30秒~10分が好ましく、1~6分がより好ましい。この架橋工程により、得られる偏光発光素子は、高いコントラストを示す。このことは、従来技術において、耐水性又は光透過性を改善する目的で使用されていたホウ素化合物の機能からは全く予期し得ない優れた作用である。また、架橋工程においては、必要に応じて、カチオン、カチオン系高分子化合物を含む水溶液で、フィックス処理をさらに併せて行ってもよい。カチオンとはナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、鉄、バリウムなどの金属に由来するイオンであり、好ましくは2価のイオンが用いられる。具体的には塩化カルシウム、塩化マグネシウム、塩化鉄、塩化バリウム等である。フィックス処理により、基材中における偏光発光色素の固定化が可能となる。このとき、カチオン系高分子化合物として、例えば、ジシアン系としてジシアンアミドとホルマリン重合縮合物、ポリアミン系としてジシアンジアミド・ジエチレントリアミン重縮合物、ポリカチオン系としてエピクロロヒドリン・ジメチルアミン付加重合物、ジメチルジアリルアモンニウムクロライド・二酸化イオン共重合物、ジアリルアミン塩重合物、ジメチルジアリルアンモニウムクロライド重合物、アリルアミン塩の重合物、ジアルキルアミノエチルアクリレート四級塩重合物等が使用される。
(Crosslinking step)
The crosslinker can be contained in the substrate after the dyeing step or the pre-cleaning step. It is preferable to immerse a base material in the processing solution containing a crosslinking agent as a method of making a base material contain a crosslinking agent, and on the other hand, you may apply | coat or apply the said processing solution to a base material. As the crosslinking agent in the treatment solution, for example, a solution containing a boron compound is used. Boron compounds include, for example, inorganic compounds such as boric acid, borax, boron oxide and boron hydroxide, alkenylboronic acid which is boronic acid, arylboronic acid, alkylboronic acid, boronic acid ester, boronic acid ester, trifluoroborate or salts thereof Of these, boric acid and borax are preferred, with boric acid being particularly preferred. Although the solvent in the treatment solution is not particularly limited, water is preferred. The concentration of the boron derivative in the treatment solution is preferably 0.1 to 15% by mass, and more preferably 0.1 to 10% by mass. The temperature of the treatment solution is preferably 30 to 80 ° C., and more preferably 40 to 75 ° C. In addition, the treatment time of this crosslinking step is preferably 30 seconds to 10 minutes, and more preferably 1 to 6 minutes. The polarized light emitting element obtained by this crosslinking step exhibits high contrast. This is a completely unexpected effect from the function of the boron compound used in the prior art for the purpose of improving water resistance or light transmission. In addition, in the crosslinking step, if necessary, the fix treatment may be additionally performed with an aqueous solution containing a cation or a cationic polymer compound. The cation is an ion derived from a metal such as sodium, potassium, calcium, magnesium, aluminum, iron, barium and the like, and preferably a divalent ion is used. Specifically, calcium chloride, magnesium chloride, iron chloride, barium chloride and the like. Fixing allows the immobilization of the polarized luminescent dye in the substrate. At this time, as a cationic polymer compound, for example, dicyanamide as a dicyanamide and formalin polymerization condensate, polycyanate as a dicyandiamide • diethylenetriamine polycondensate, polycation as an epichlorohydrin • dimethylamine addition polymer, dimethyldiallylammonate A sodium chloride / dioxide ion copolymer, a diallylamine salt polymer, a dimethyldiallyl ammonium chloride polymer, a polymer of allylamine salt, a dialkylaminoethyl acrylate quaternary salt polymer or the like is used.
(延伸工程)
 上記架橋工程を行った後、延伸工程を実施する。延伸工程は、基材を一定の方向に一軸延伸することにより行われる。延伸方法は、湿式延伸法又は乾式延伸法のいずれであってもよい。基材の延伸倍率もまた、オーダーパラメーターの値を制御する際、重要である。偏光発光素子が示すオーダーパラメーターの値を所望の範囲に制御するため、基材の延伸倍率は、3.3倍以上であることが好ましく、3.3~8.0倍であることがより好ましく、3.5~6.0倍であることがさらに好ましく、4.0~5.0倍であることが特に好ましい。
(Stretching process)
After carrying out the above crosslinking step, the stretching step is carried out. The stretching step is performed by uniaxially stretching the substrate in a fixed direction. The stretching method may be either a wet stretching method or a dry stretching method. The draw ratio of the substrate is also important in controlling the value of the order parameter. In order to control the value of the order parameter indicated by the polarized light emitting element within a desired range, the stretching ratio of the substrate is preferably 3.3 times or more, more preferably 3.3 to 8.0 times It is more preferably 3.5 to 6.0 times, particularly preferably 4.0 to 5.0 times.
 上記湿式延伸法においては、水、水溶性有機溶剤又はその混合溶液中で基材を延伸することが好ましい。より好ましくは、架橋剤を少なくとも1種含有する溶液中に基材を浸漬しながら延伸処理を行う。架橋剤は、例えば、上記架橋剤工程におけるホウ素化合物を用いることができ、好ましくは、架橋工程で使用した処理溶液中で延伸処理を行うことができる。延伸温度は40~60℃であることが好ましく、45~58℃がより好ましい。延伸時間は通常30秒~20分であり、好ましくは2~7分である。湿式延伸工程は、一段階の延伸で実施しても、二段階以上の多段延伸で実施してもよい。尚、延伸処理は、任意に、染色工程の前に行ってもよく、この場合には、染色の時点で偏光発光色素の配向も一緒に行うことができる。 In the wet stretching method, the substrate is preferably stretched in water, a water-soluble organic solvent or a mixed solution thereof. More preferably, the stretching treatment is performed while immersing the substrate in a solution containing at least one crosslinking agent. As the crosslinking agent, for example, the boron compound in the above crosslinking agent step can be used, and preferably, the stretching treatment can be performed in the treatment solution used in the crosslinking step. The stretching temperature is preferably 40 to 60 ° C., and more preferably 45 to 58 ° C. The stretching time is usually 30 seconds to 20 minutes, preferably 2 to 7 minutes. The wet drawing process may be carried out by one-step drawing or by two or more multi-step drawing. The stretching treatment may optionally be carried out before the dyeing step, in which case the orientation of the polarized luminescent dye can be carried out together at the time of dyeing.
 上記乾式延伸法において、延伸加熱媒体が空気媒体である場合には、空気媒体の温度が常温~180℃で基材を延伸するのが好ましい。また、湿度は20~95%RHの雰囲気中であることが好ましい。基材の加熱方法としては、例えば、ロール間ゾーン延伸法、ロール加熱延伸法、熱間圧延伸法及び赤外線加熱延伸法等が挙げられるが、これらの延伸方法に限定されるものではない。乾式延伸工程は、一段階の延伸で実施しても、二段階以上の多段延伸で実施してもよい。乾式延伸工程においては、偏光発光色素を含有する基材にホウ素誘導体を含有させながら延伸させるか、又はホウ素化合物を基材に含有させた後に延伸させることができるが、ホウ素化合物を基材に含有させた後に延伸処理することが好ましい。ホウ素誘導体を適用する温度は40~90℃が好ましく、50~75℃がより好ましい。ホウ素化合物の濃度は1~10%であることが好ましく、3~8%であることがより好ましい。乾式延伸の処理時間は、1~15分であることが好ましく、2~12分であることがより好ましく、3~10分であることがさらに好ましい。 In the above-mentioned dry stretching method, when the stretching heating medium is an air medium, it is preferable to stretch the substrate at a temperature of the air medium of from normal temperature to 180 ° C. The humidity is preferably in an atmosphere of 20 to 95% RH. Examples of the method for heating the substrate include, but are not limited to, a roll-to-roll zone drawing method, a roll heating drawing method, a hot pressure drawing method, an infrared heating drawing method, and the like. The dry stretching step may be carried out in one step of stretching or in two or more steps of multi-step stretching. In the dry stretching step, the substrate containing a polarized light emitting dye can be stretched while containing a boron derivative, or the boron compound can be stretched after being contained in a substrate, but the boron compound is contained in the substrate It is preferable to carry out a stretching treatment after the treatment. The temperature at which the boron derivative is applied is preferably 40 to 90 ° C., more preferably 50 to 75 ° C. The concentration of the boron compound is preferably 1 to 10%, more preferably 3 to 8%. The processing time for dry stretching is preferably 1 to 15 minutes, more preferably 2 to 12 minutes, and still more preferably 3 to 10 minutes.
(洗浄工程)
 上記延伸工程を実施した後には、基材の表面に架橋剤の析出又は異物が付着することがあるため、基材の表面を洗浄する洗浄工程を行うことができる。洗浄時間は1秒~5分が好ましい。洗浄方法は、基材を洗浄液に浸漬することが好ましく、一方で、洗浄液を基材に塗布又は塗工によって洗浄することもできる。洗浄液としては、水が好ましい。洗浄処理は一段階で実施しても、2段階以上の多段処理で実施してもよい。洗浄工程の洗浄溶の温度は、特に限定されるものではないが、通常、5~50℃、好ましくは10~40℃であり、常温であってよい。
(Washing process)
After the stretching step is carried out, since the deposition of the crosslinking agent or foreign substances may adhere to the surface of the substrate, a cleaning step of cleaning the surface of the substrate can be performed. The washing time is preferably 1 second to 5 minutes. The cleaning method preferably immerses the substrate in the cleaning solution, while the cleaning solution can also be cleaned by coating or coating on the substrate. Water is preferred as the cleaning solution. The washing treatment may be carried out in one step, or may be carried out in two or more steps. The temperature of the washing solution in the washing step is not particularly limited, but is usually 5 to 50 ° C., preferably 10 to 40 ° C., and may be normal temperature.
 上記各工程で用いる溶液又は処理液の溶媒としては、上記水の他にも、例えば、ジメチルスルホキシド、N-メチルピロリドン、メタノール、エタノール、プロパノール、イソプロピルアルコール、グリセリン、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール又はトリメチロールプロパン等のアルコール類、エチレンジアミン及びジエチレントリアミン等のアミン類等が挙げられる。当該溶液又は処理液の溶媒は、これらに限定されるものではないが、最も好ましくは水である。又、これらの溶液又は処理液の溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。 As a solvent for the solution or treatment liquid used in each of the above steps, other than the above water, for example, dimethyl sulfoxide, N-methyl pyrrolidone, methanol, ethanol, propanol, isopropyl alcohol, glycerin, ethylene glycol, propylene glycol, diethylene glycol, Examples thereof include alcohols such as triethylene glycol, tetraethylene glycol or trimethylolpropane, and amines such as ethylene diamine and diethylene triamine. The solvent of the solution or treatment solution is, but not limited to, most preferably water. Moreover, the solvent of these solutions or a process liquid may be used individually by 1 type, and 2 or more types may be mixed and used.
(乾燥工程)
 上記洗浄工程の後、基材の乾燥工程を行う。乾燥処理は、自然乾燥により行うことができるものの、より乾燥効率を高めるため、ロールによる圧縮やエアーナイフ又は吸水ロール等による表面の水分除去等により行うことが可能であり、さらには、送風乾燥を行うことも可能である。乾燥処理の温度は、20~100℃であることが好ましく、60~100℃であることがより好ましい。乾燥時間は、30秒~20分であることが好ましく、5~10分であることがより好ましい。
(Drying process)
After the washing step, the substrate is dried. Although the drying process can be performed by natural drying, it can be performed by compression with a roll or removal of water on the surface by an air knife, a water absorption roll, etc., in order to further increase the drying efficiency. It is also possible to do. The temperature of the drying treatment is preferably 20 to 100 ° C., and more preferably 60 to 100 ° C. The drying time is preferably 30 seconds to 20 minutes, and more preferably 5 to 10 minutes.
 上述の製造方法により、本発明に係る偏光発光素子を作製することができ、得られた偏光発光素子は、高い耐久性を有すると共に、高い偏光度(コントラスト)を有する偏光発光を示す。 The polarized light emitting device according to the present invention can be manufactured by the above-described manufacturing method, and the obtained polarized light emitting device has high durability and exhibits polarized light emission having a high degree of polarization (contrast).
 偏光発光素子は、光の吸収、特に紫外光域の光の吸収により得られたエネルギーを利用して、可視光領域に偏光発光を示す。この偏光発光の明度の差をより向上させるため、偏光発光が高い偏光度(コントラスト)を有することが好ましい。偏光発光素子より発光する光が可視光域の偏光であることから、可視光域の光に対して偏光機能を有する一般的な偏光板を介して偏光発光素子を観察した場合、その偏光板の軸の角度を変えることによって、偏光発光と非発光とを視認することができる。偏光発光素子が発光する偏光の偏光度は、例えば70%以上であり、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上である。また、コントラストは高いほど好ましく、偏光度が高いほど、高い傾向を示す。偏光発光素子が、可視光域の光を吸収せずに透過させる場合、偏光発光素子の可視光域の光の透過率は、視感度補正透過率において、例えば60%以上であり、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは85%以上、特に好ましくは90%以上である。このような偏光発光素子は、高い偏光度を有するため、非発光状態において可視光域での吸収が小さくなり、これにより、透明度の高い偏光発光素子を得ることができる。また、偏光発光素子による偏光発光の偏光度が高いことは、輝度が明るく、高コントラストのディスプレイを実現することができるため、重要であり、さらに、可視光域の光の透過率が高いことは、透明性が高い新たな液晶ディスプレイの提供として有効である。 The polarized light emitting element exhibits polarized light emission in the visible light region using energy obtained by light absorption, particularly absorption of light in the ultraviolet light region. In order to further improve the lightness difference of this polarized light emission, it is preferable that the polarized light emission has a high degree of polarization (contrast). Since the light emitted from the polarized light emitting element is polarized light in the visible light range, when the polarized light emitting element is observed through a general polarizing plate having a polarizing function with respect to light in the visible light range, By changing the angle of the axis, it is possible to view polarized light emission and non-emission light. The polarization degree of the polarized light emitted by the polarized light emitting element is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more. The higher the contrast, the better, and the higher the degree of polarization, the higher the tendency. When the polarized light emitting element transmits light in the visible light range without absorption, the light transmittance of the polarized light emitting element in the visible light range is, for example, 60% or more, preferably 70 %, More preferably 80% or more, still more preferably 85% or more, particularly preferably 90% or more. Since such a polarized light emitting element has a high degree of polarization, the absorption in the visible light range becomes small in the non-emitting state, whereby a polarized light emitting element with high transparency can be obtained. In addition, a high degree of polarization of polarized light emission by the polarized light emitting element is important because a bright display with high contrast can be realized, and it is also important that the transmittance of light in the visible light range is high. It is effective as a new transparent liquid crystal display.
<可視光吸収型色素含有層>
 偏光発光素子は、偏光発光を吸収する層として、偏光発光素子の少なくとも一方の表面に、可視光吸収型色素含有層をさらに備えることが好ましい。これにより、偏光発光のコントラスト、すなわち、偏光した発光において発光の強い軸の光の強度と、発光の弱い軸の光の強度との差が大きい偏光発光素子を得ることができる。
<Visible light absorbing dye containing layer>
The polarized light emitting element preferably further includes a visible light absorbing dye-containing layer on at least one surface of the polarized light emitting element as a layer that absorbs polarized light. As a result, it is possible to obtain a polarized light emitting element having a large difference between the contrast of polarized light emission, that is, the intensity of light of the strong axis of light emission and the intensity of light of the weak axis of light emission in polarized light.
 偏光発光素子に可視光吸収型色素含有層をさらに形成する方法は、特に限定されるものではないが、偏光発光素子に、可視光領域の光を吸収し、かつ、発光機能を示さない色素を含む層を設けることが好ましい。このような可視光吸収型色素含有層は、可視光吸収型色素を偏光発光色素の表面に直接塗布したり、偏光発光素子の表面にのみ可視光吸収型色素を含ませたり、可視光吸収型色素を含ませた樹脂層を偏光発光素子上に形成したり、偏光発光素子に後述する透明保護層を形成する際に可視光吸収型色素を含ませた接着層を用いることで透明保護層と偏光発光素子との間に可視光吸収型色素含有層を形成したり、または、透明保護層に可視光吸収型色素を含ませることにより、偏光発光素子に可視光吸収型色素含有層を形成することができる。可視光吸収型色素含有層による偏光発光の吸収方向は、光吸収異方性を有するかどうかは必ずしも限定されるものではないが、可視光吸収型色素含有層が光吸収異方性を有し、該光吸収異方性に基づく光の吸収方向が、偏光発光素子による偏光発光に対して直交方向であることが好ましい。これにより、偏光発光素子からの偏光発光の偏光軸(発光軸)と直交方向の光を強く吸収することができ、その結果、より高い偏光度(コントラスト)を有する偏光発光を得ることができる。尚、可視光吸収型色素含有層は、偏光発光素子の表層に設けられていればよく、偏光発光素子の片面のみに設けられていても良く、偏光発光素子の両面に積層されていてもよい。 The method for further forming a visible light absorbing type dye-containing layer on a polarized light emitting element is not particularly limited, but a polarized light emitting element absorbs a light in the visible light region and does not exhibit a light emitting function. It is preferable to provide the containing layer. In such a visible light absorbing dye-containing layer, the visible light absorbing dye is directly applied to the surface of the polarized light emitting dye, or the visible light absorbing dye is contained only on the surface of the polarized light emitting element, or visible light absorbing When a resin layer containing a dye is formed on a polarized light emitting element, or when a transparent protective layer to be described later is formed on a polarized light emitting element, a transparent protective layer can be obtained by using an adhesive layer containing a visible light absorbing dye. A visible light absorbing dye-containing layer is formed in the polarized light emitting device by forming a visible light absorbing dye-containing layer with the polarized light emitting device, or by including a visible light absorbing dye in the transparent protective layer. be able to. The direction of absorption of polarized light emitted by the visible light absorbing dye-containing layer is not necessarily limited as to whether it has light absorption anisotropy, but the visible light absorbing dye-containing layer has light absorption anisotropy Preferably, the absorption direction of light based on the light absorption anisotropy is orthogonal to the polarized light emission by the polarized light emitting element. Thereby, light in a direction orthogonal to the polarization axis (emission axis) of polarized light emission from the polarized light emitting element can be strongly absorbed, and as a result, polarized light emission having a higher degree of polarization (contrast) can be obtained. The visible light absorbing dye-containing layer may be provided on the surface layer of the polarized light emitting element, may be provided only on one side of the polarized light emitting element, or may be laminated on both sides of the polarized light emitting element .
 可視光吸収型色素とは、蛍光量子収率(φ)が低く、光を吸収する際、目視で蛍光又は燐光などの発光を確認できない色素である。蛍光量子収率とは、吸収された光子数に対する放出された光子数で表される割合(放出された光子数/吸収された光子数)であり、蛍光量子収率が高いほど、良好な発光色素として認識される。つまり、蛍光量子収率が1に近づくほど優れた発光色素として認識され得るが、可視光吸収型色素はその蛍光量子収率が低いものであれば特に限定されるものではない。具体的には、ディスプレイ等の表示媒体において、可視光吸収型色素含有層を介して発光が目視にて確認できなければよい。 The visible light absorbing dye is a dye having a low fluorescence quantum yield (φ) and which can not confirm light emission such as fluorescence or phosphorescence visually when absorbing light. The fluorescence quantum yield is the ratio of the number of photons absorbed to the number of photons emitted (number of photons emitted / number of photons absorbed), and the higher the fluorescence quantum yield, the better the emission. It is recognized as a pigment. That is, as the fluorescence quantum yield approaches 1 it may be recognized as a better light emitting dye, but the visible light absorbing dye is not particularly limited as long as its fluorescence quantum yield is low. Specifically, in a display medium such as a display, it is preferable that the light emission can not be visually confirmed through the visible light absorbing dye-containing layer.
 可視光吸収型色素の発光強度(F)は、一般的に、下記式(IV)で表される。式(IV)中、Ιは、可視光吸収型色素に照射される光(励起光)の強度を表し、εは、一定波長の光に対する可視光吸収型色素の吸収の強さを、すなわち、分子吸収効率を表し、φは、上述の蛍光量子収率を表し、Cは、可視光吸収型色素のモル濃度を表す。可視光吸収型色素に照射される光は、表示媒体が使用される環境、照射装置によって変動し、また、発光強度(F)も、可視光吸収型色素の分子吸収効率(ε)、濃度(C)によっても変動する。そのため、可視光吸収型色素の蛍光量子収率(φ)のみで表示媒体に適用する好ましい可視光吸収型色素を限定することは困難である。このような観点から、可視光吸収型色素は、目視にて偏光発光素子からの発光が確認できない色素であればよく、例えば、蛍光量子収率(φ)が0.1以下の色素を利用することができ、蛍光量子収率(φ)が0.01以下であることが好ましく、0.001以下であることがより好ましい。 The emission intensity (F) of the visible light absorbing dye is generally represented by the following formula (IV). In formula (IV), Ι 0 represents the intensity of light (excitation light) irradiated to the visible light absorbing dye, and ε represents the absorption intensity of the visible light absorbing dye for light of a certain wavelength, ie, Represents molecular absorption efficiency, φ represents the above-mentioned fluorescence quantum yield, and C represents the molar concentration of the visible light absorbing dye. The light emitted to the visible light absorbing dye varies depending on the environment in which the display medium is used and the irradiation device, and the light emission intensity (F) is also the molecular absorption efficiency (ε) of the visible light absorbing dye and the concentration ( It also fluctuates according to C). Therefore, it is difficult to limit the preferred visible light absorbing dye to be applied to the display medium only with the fluorescence quantum yield (φ) of the visible light absorbing dye. From such a point of view, the visible light absorbing dye may be a dye which can not confirm the light emission from the polarized light emitting element visually, and for example, a dye having a fluorescence quantum yield (φ) of 0.1 or less is used The fluorescence quantum yield (φ) is preferably 0.01 or less, more preferably 0.001 or less.
   発光強度(F)=Ι×ε×φ×C・・・(IV) Luminescence intensity (F) = Ι 0 × ε × φ × C (IV)
 可視光吸収型色素が有する吸収波長は、偏光発光素子に用いる偏光発光色素の発光波長の光のみを吸収し得ることが好ましく、一方で、偏光発光色素の吸収波長に可視光吸収型色素の吸収が少ない、又は皆無であることがより好ましい。これにより、偏光発光素子の偏光発光におけるコントラストは向上し、かつ、偏光発光色素の吸収効率をより向上させることができる。 It is preferable that the absorption wavelength of the visible light absorbing dye can absorb only the light of the emission wavelength of the polarized light emitting dye used for the polarized light emitting element, while the absorption of the visible light absorbing dye at the absorption wavelength of the polarized light emitting dye It is more preferable that there is little or no. Thereby, the contrast in polarized light emission of the polarized light emitting element can be improved, and the absorption efficiency of the polarized light emitting dye can be further improved.
 可視光吸収型色素含有層の可視光透過率は特に限定されるものではないが、偏光発光素子の層界面、特に表層界面の発光が、可視光吸収型色素によって抑制されることにより、偏光発光素子の偏光発光におけるコントラストは向上する。可視光吸収型色素含有層は、可視光透過率の測定時に影響されない程度の可視光を吸収し、かつ、可視光透過率の低下率(損失)が0%でも上記の効果を発揮することもある。例えば、偏光発光素子の可視光透過率が90%以上である場合、可視光吸収型色素含有層による可視光透過率は0~50%であることにより一般的な偏光板以上の可視光透過率を実現することができる。そのため、可視光吸収型色素含有層による可視光透過率の低下率が、50%以下であれば、偏光発光素子からの偏光発光が示すコントラストを向上させることができるため、偏光機能を発現できる偏光発光素子として利用価値が高い。また、一般的な偏光板とは異なり、発光型偏光機能フィルムとしても利用可能であるため、様々な分野で利用可能である。偏光発光をより吸収し、かつ、可視光吸収型色素含有層による可視光透過率が高いほど偏光発光素子として可視光透過率が向上する。そのために可視光吸収型色素含有層による可視光透過率の低下率(損失)は、50%以下が好ましく、0~30%がより好ましくで、0~20%がさらに好ましく、0~10%が特に好ましい。可視光透過率の低下率が0~10%であることにより、偏光発光のコントラストは向上しつつ、高い透過率を維持することができる。 The visible light transmittance of the visible light absorbing dye-containing layer is not particularly limited, but the light emission of the layer interface of the polarized light emitting element, in particular, the interface of the surface layer is suppressed by the visible light absorbing dye. The contrast in polarized light emission of the device is improved. The visible light absorbing dye-containing layer absorbs visible light to an extent not affected by the measurement of visible light transmittance, and can exhibit the above effects even when the reduction rate (loss) of visible light transmittance is 0%. is there. For example, when the visible light transmittance of the polarized light emitting element is 90% or more, the visible light transmittance of the visible light absorbing dye-containing layer is 0 to 50%, so that the visible light transmittance of general polarizing plate or more Can be realized. Therefore, if the reduction rate of the visible light transmittance by the visible light absorbing dye-containing layer is 50% or less, the contrast exhibited by the polarized light emission from the polarized light emitting element can be improved, and thus the polarized light capable of exhibiting the polarization function It is useful as a light emitting element. Moreover, unlike a general polarizing plate, since it can also be used as a light emission type polarizing functional film, it can be used in various fields. As the visible light transmittance of the visible light absorbing dye-containing layer is higher by absorbing polarized light more, the visible light transmittance of the polarized light emitting device is improved. Therefore, the reduction rate (loss) of the visible light transmittance by the visible light absorbing dye-containing layer is preferably 50% or less, more preferably 0 to 30%, still more preferably 0 to 20%, and 0 to 10%. Particularly preferred. By setting the reduction rate of the visible light transmittance to 0 to 10%, it is possible to maintain high transmittance while improving the contrast of polarized light emission.
[偏光発光板]
 本発明に係る偏光発光板は、上述の偏光発光素子と、該偏光発光素子の片面又は両面に設けられた透明保護層とを備えている。このような透明保護層は、偏光発光素子の耐水性、取扱性等を向上させるために使用される。そのため、このような透明保護層は、本発明に係る偏光発光素子が示す偏光作用に何ら影響を与えるものではない。但し、偏光発光素子が紫外光域の光を吸収して偏光発光を示す場合、透明保護層は、紫外光吸収機能を有さないことが好ましく、特に、紫外光吸収機能を有さないプラスチックフィルムであることが好ましい。
[Polarized light emitting plate]
A polarized light emitting plate according to the present invention comprises the above-described polarized light emitting element, and a transparent protective layer provided on one side or both sides of the polarized light emitting element. Such a transparent protective layer is used to improve the water resistance, the handleability and the like of the polarized light emitting element. Therefore, such a transparent protective layer does not have any influence on the polarization action of the polarized light emitting device according to the present invention. However, when the polarized light emitting element absorbs light in the ultraviolet light range to exhibit polarized light emission, the transparent protective layer preferably does not have an ultraviolet light absorbing function, and in particular, a plastic film not having an ultraviolet light absorbing function Is preferred.
 透明保護層は、光学的透明性及び機械的強度に優れる透明保護膜であることが好ましい。また、透明保護層は、偏光発光素子の形状を維持できる層形状を有するフィルムであることが好ましく、透明性及び機械的強度の他に、熱安定性、水分遮蔽性等にも優れるプラスチックフィルムであることが好ましい。このような保護膜を形成する材料としては、例えば、セルロースアセテート系フィルム、アクリル系フィルム、四フッ化エチレン/六フッ化プロピレン系共重合体のようなフッ素系フィルム、あるいは、ポリエステル樹脂、ポリオレフィン樹脂又はポリアミド系樹脂からなるフィルム等が挙げられ、好ましくはトリアセチルセルロース(TAC)フィルムやシクロオレフィン系フィルムが用いられる。透明保護層の厚さは、1μm~200μmの範囲が好ましく、10μm~150μmの範囲がより好ましく、40μm~100μmが特に好ましい。偏光発光板を製造する方法は、特に限定されるものではないが、例えば、偏光発光素子に透明保護層を重ねて、公知の処方にてラミネートすることによって偏光発光板を作製することができる。 The transparent protective layer is preferably a transparent protective film excellent in optical transparency and mechanical strength. Further, the transparent protective layer is preferably a film having a layer shape capable of maintaining the shape of the polarized light emitting element, and is a plastic film which is excellent in thermal stability, moisture shielding property, etc. in addition to transparency and mechanical strength. Is preferred. As a material for forming such a protective film, for example, a cellulose acetate film, an acrylic film, a fluorine film such as tetrafluoroethylene / hexafluoropropylene copolymer, a polyester resin, a polyolefin resin Alternatively, a film made of a polyamide-based resin may, for example, be mentioned. Preferably, a triacetyl cellulose (TAC) film or a cycloolefin-based film is used. The thickness of the transparent protective layer is preferably in the range of 1 μm to 200 μm, more preferably in the range of 10 μm to 150 μm, and particularly preferably 40 μm to 100 μm. The method for producing a polarized light emitting plate is not particularly limited. For example, a polarized light emitting plate can be produced by laminating a transparent protective layer on a polarized light emitting element and laminating it according to a known formulation.
 偏光発光板は、透明保護層と偏光発光素子との間に、透明保護層を偏光発光素子に貼り合わせるための接着剤層をさらに備えていてもよい。接着剤層を構成する接着剤は、特に限定されるものではないが、ポリビニルアルコール系接着剤、ウレタンエマルジョン系接着剤、アクリル系接着剤、ポリエステル-イソシアネート系接着剤等が挙げられ、好ましくはポリビニルアルコール系接着剤が用いられる。透明保護層と偏光発光素子とを接着剤により貼り合せた後、適切な温度で乾燥又は熱処理を行うことによって偏光発光板を作製することができる。 The polarized light emitting plate may further include, between the transparent protective layer and the polarized light emitting element, an adhesive layer for bonding the transparent protective layer to the polarized light emitting element. The adhesive constituting the adhesive layer is not particularly limited, and polyvinyl alcohol adhesives, urethane emulsion adhesives, acrylic adhesives, polyester-isocyanate adhesives, etc. may be mentioned, with preference given to polyvinyl An alcohol adhesive is used. After bonding the transparent protective layer and the polarized light emitting element with an adhesive, the polarized light emitting plate can be produced by drying or heat treatment at an appropriate temperature.
 また、偏光発光板は、透明保護層の露出面に、反射防止層、防眩層、さらなる透明保護層等の公知の各種機能性層を適宜備えていてもよい。このような各種機能性を有する層を作製する場合、各種機能性を有する材料を透明保護層の露出面に塗工する方法が好ましく、一方、そのような機能を有する層又はフィルムを接着剤若しくは粘着剤を介して透明保護層の露出面に貼合せることも可能である。 In addition, the polarized light emitting plate may be appropriately provided with known various functional layers such as an antireflection layer, an antiglare layer, and a further transparent protective layer on the exposed surface of the transparent protective layer. When producing layers having such various functionalities, it is preferable to apply a material having various functionalities to the exposed surface of the transparent protective layer, and on the other hand, a layer or film having such a function as an adhesive or It is also possible to bond to the exposed surface of the transparent protective layer via an adhesive.
 さらなる透明保護層としては、例えば、アクリル系、ポリシロキサン系等のハードコート層、ウレタン系の保護層等が挙げられる。また、単体透過率をより向上させるために、透明保護層の露出上に反射防止層を設けることもできる。反射防止層は、例えば、二酸化珪素、酸化チタン等の物質を、透明保護層上に蒸着又はスパッタリング処理するか、あるいは、フッ素系物質を透明保護層上薄く塗布することにより形成することができる。 As a further transparent protective layer, hard coat layers, such as an acryl type and a polysiloxane type, a urethane type protective layer etc. are mentioned, for example. Moreover, in order to improve single-piece | unit transmittance | permeability further, an anti-reflective layer can also be provided on exposure of a transparent protective layer. The antireflective layer can be formed, for example, by vapor deposition or sputtering of a substance such as silicon dioxide or titanium oxide on the transparent protective layer, or thinly coating a fluorine-based substance on the transparent protective layer.
 本発明に係る偏光発光板は、必要に応じて、さらに支持体層を含んでいてもよい。支持体層としては、例えば、ガラス、水晶、サファイヤ等の透明な支持体等をさらに設けることができる。このような支持体は、偏光発光板に貼り付けるため、平面部を有していることが好ましく、また、光学用途の観点から、透明基板であることが好ましい。透明基板としては、無機基板と有機基板に分けられ、例えば、無機基板としては、ソーダガラス、ホウ珪酸ガラス、水晶基板、サファイヤ基板、スピネル基板等が挙げられ、有機基板としては、アクリル、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー等から構成される基板が挙げられる。透明基板の厚さ、大きさは特に限定されるものでなく、適宜決定することができる。また、このような透明基板を有する偏光発光板には、単体透過率をより向上させるために、その支持体面又は偏光発光板面の一方もしくは双方の面に反射防止層を設けることが好ましい。偏光発光板と支持体平面部とを接着させるためには、透明な接着(粘着)剤を支持体平面部に塗布し、次いで、この塗布面に本発明に係る偏光発光板を貼付すればよい。使用する接着剤又は粘着剤は、特に限定されるものではなく、市販されているものを用いることができ、アクリル酸エステル系の接着剤又は粘着剤が好ましい。 The polarized light-emitting plate according to the present invention may further include a support layer, if necessary. As the support layer, for example, a transparent support such as glass, quartz, sapphire or the like can be further provided. Such a support preferably has a flat portion to be attached to a polarized light emitting plate, and is preferably a transparent substrate from the viewpoint of optical use. The transparent substrate is divided into an inorganic substrate and an organic substrate. Examples of the inorganic substrate include soda glass, borosilicate glass, quartz substrate, sapphire substrate, spinel substrate and the like, and organic substrates are acrylic, polycarbonate, etc. Examples include substrates made of polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer and the like. The thickness and size of the transparent substrate are not particularly limited, and can be determined as appropriate. In addition, in the polarized light emitting plate having such a transparent substrate, in order to further improve the single transmittance, it is preferable to provide an antireflection layer on one or both of the support surface or the polarized light emitting plate surface. In order to bond the polarized light emitting plate to the flat surface of the support, a transparent adhesive (adhesive) agent may be applied to the flat surface of the support, and then the polarized light emitting plate according to the present invention may be attached to this coated surface. . The adhesive or pressure-sensitive adhesive to be used is not particularly limited, and a commercially available one may be used, and an acrylic ester-based adhesive or pressure-sensitive adhesive is preferable.
 本発明に係る偏光発光板は、位相差板を貼付すことにより、円偏光を発光する素子若しくは円偏光発光板、又は楕円偏光を発光する素子又は楕円偏光発光板として使用することもできる。偏光発光板に支持体等をさらに設ける場合、支持体は、位相差板側に設けても、偏光発光板側に設けてもよい。このように、偏光発光板には様々な機能性層、支持体等をさらに設けることができ、このような偏光発光板は、例えば、液晶プロジェクター、電卓、時計、ノートパソコン、ワープロ、液晶テレビ、カーナビゲーション及び屋内外の計測器や表示器等、レンズ、あるいはメガネ等の様々な製品に使用できる。 The polarizing plate according to the present invention can also be used as an element or a circularly polarized light emitting plate that emits circularly polarized light, or an element that emits elliptically polarized light, or an elliptically polarized light emitting plate by attaching a retardation plate. When a support or the like is further provided on the polarized light emitting plate, the support may be provided on the side of the retardation plate or on the side of the polarized light emitting plate. Thus, the polarized light emitting plate can be further provided with various functional layers, supports, etc. Such a polarized light emitting plate is, for example, a liquid crystal projector, a calculator, a watch, a notebook computer, a word processor, a liquid crystal television, It can be used for various products such as car navigation and indoor / outdoor measuring instruments and displays, lenses, or glasses.
 本発明に係る偏光発光素子及び偏光発光板は、紫外光領域において高い偏光度を示すと共に、さらには、可視光領域において偏光発光作用、高い透過率を示す。また、本発明に係る偏光発光素子及び偏光発光板は、熱、湿度、光等に対して優れた耐久性を示すため、過酷な環境下でも、その性能を維持することが可能であり、従来のヨウ素系偏光板よりも高い耐久性を有する。そのため、本発明に係る偏光発光素子及び偏光発光板は、可視光領域での高い透明性及び過酷な環境下での高い耐久性が求められる液晶ディスプレイ、例えば、テレビ、ウェアラブル端末、タブレット端末、スマートフォン、車載モニター、屋外又は屋内にて用いられるデジタルサイネージ、スマートウィンドウ等の各種表示装置に応用することができる。 The polarized light emitting element and the polarized light emitting plate according to the present invention exhibit a high degree of polarization in the ultraviolet light region, and further exhibit polarized light emitting action and high transmittance in the visible light region. In addition, since the polarized light emitting element and the polarized light emitting plate according to the present invention show excellent durability against heat, humidity, light and the like, their performance can be maintained even under severe environments, It has higher durability than iodine-based polarizers. Therefore, the polarized light emitting element and the polarized light emitting plate according to the present invention are liquid crystal displays which are required to have high transparency in the visible light region and high durability under severe environments, such as television, wearable terminal, tablet terminal, smartphone The present invention can be applied to various display devices such as in-vehicle monitors, digital signage used outdoors or indoors, and smart windows.
[表示装置]
 本発明に係る表示装置は、本発明における偏光発光素子又は偏光発光板を含んでいる。そのため、このような表示装置は、特定の波長の光が照射されることにより発光しながら映像を表示可能なディスプレイを形成できる。例えば、特定の波長のみ吸収する、すなわち特定の色を有する基材の表面に、異なる色の波長の偏光を発光させることができる。さらに、400nm以下の光、例えば紫外光を照射することによって可視光域に偏光発光作用を示し、この作用を利用することによって、ディスプレイ上に、映像表示が可能となる。このように、上述の偏光発光素子又は偏光発光板を液晶ディスプレイと組み合わせることによって、一般的な偏光板を用いた従来の液晶ディスプレイとは異なり、自己発光型液晶ディスプレイとしての活用が可能となる。また、表示装置において、偏光発光素子の少なくとも一方の表面に、可視光吸収型色素含有層がさらに設けられている場合、可視光吸収型色素含有層は、少なくとも観察者側に設けられていることが好ましい。可視光吸収型色素含有層を観察者側に配置することにより、観察者に対して高いコントラスの視感度を向上させることができる。
[Display device]
The display device according to the present invention includes the polarized light emitting element or the polarized light emitting plate in the present invention. Therefore, such a display device can form a display capable of displaying an image while emitting light by being irradiated with light of a specific wavelength. For example, the surface of a substrate that absorbs only a specific wavelength, ie has a specific color, can emit polarized light of different color wavelengths. Furthermore, by emitting light of 400 nm or less, for example, ultraviolet light, a polarized light emitting action is shown in the visible light region, and by using this action, an image can be displayed on the display. As described above, by combining the above-mentioned polarized light emitting element or polarized light emitting plate with the liquid crystal display, it can be used as a self-luminous liquid crystal display unlike a conventional liquid crystal display using a general polarizing plate. In the display device, when the visible light absorbing dye-containing layer is further provided on at least one surface of the polarized light emitting element, the visible light absorbing dye-containing layer is provided at least on the viewer side. Is preferred. By arranging the visible light absorbing dye-containing layer on the viewer side, it is possible to improve the contrast of high contrast to the viewer.
 本発明に係る表示装置は、可視光領域で高い透過率を有しているため、従来の偏光板のような可視光領域の透過率の低下がないか、透過率の低下があっても、従来の偏光板の透過率よりも透過率の低下が著しく少ない。例えば、従来の偏光板であるヨウ素系偏光板、他の染料化合物を使用した染料系偏光板は、偏光度をほぼ100%にするためには、可視光領域での視感度補正が35~43%程度である必要がある。その理由としては、従来の偏光板は、光の吸収軸として縦軸と横軸の両方を有しているが、ほぼ100%の偏光度を得るために縦軸又は横軸の一方の入射した光を吸収する、すなわち、一方の軸では光を吸収し、他方の軸では光を透過することによって偏光が生じる。このような場合、一方の軸での光は吸収されて透過しないことから、必然的に透過率は50%以下となってしまう。また、従来の偏光板は二色性色素を延伸されたフィルム中で配向させて偏光板を作製しているが、必ずしも二色性色素が100%配向しているとは限らず、また、光の透過軸に対しても若干ではあるが光の吸収作用を有している。そのため、物質の表面反射によって透過率を約43%以下としなければ、100%の偏光度は実現できない、つまり、透過率を低下させなければ高い偏光度を実現することができなかった。それに対して、本発明に係る偏光発光素子又は偏光発光板が紫外光域の光に吸収作用を有する場合、約400nm以下に光の吸収軸がある。この場合、偏光発光素子又は偏光発光板は可視光領域に偏光した光を発光する偏光発光作用を示す一方で、可視光領域ではほとんど光を吸収しないため、可視光領域での透過率は非常に高くなる。さらに、可視光領域では、偏光発光作用を示すため、従来の偏光板を用いるよりも光の損失は少なく、つまり、従来の偏光板のような透過率の低下は非常に少ない。このことから、本発明に係る偏光発光素子又は偏光発光板を使用した表示装置、例えば、液晶ディスプレイは、従来の偏光板を用いた液晶ディスプレイよりも高い輝度が得られる。さらに、本発明に係る偏光発光素子又は偏光発光板を含む表示装置は、透明性が高いことから、液晶ディスプレイでありながら、極めて透明に近いディスプレイが得られる。また、文字、画像の表示時には偏光発光が透過するように設計できることから、透明な液晶ディスプレイでありながらも表示可能なディスプレイが得られる、すなわち、透明なディスプレイに文字等が表示可能なディスプレイが得られる。そのため、本発明に係る表示装置は、光損失がない透明な液晶ディスプレイ、特に、シースルーディスプレイとしての適用に有効である。 Since the display device according to the present invention has high transmittance in the visible light region, there is no decrease in transmittance in the visible light region as in the conventional polarizing plate, or even if there is a decrease in transmittance, The decrease in transmittance is significantly less than that of the conventional polarizing plate. For example, in the iodine based polarizing plate, which is a conventional polarizing plate, and the dye based polarizing plate using other dye compounds, in order to make the degree of polarization approximately 100%, the visibility correction in the visible light region is 35 to 43 It needs to be around%. The reason is that the conventional polarizing plate has both the vertical axis and the horizontal axis as an absorption axis of light, but one of the vertical axis or the horizontal axis is incident to obtain a degree of polarization of approximately 100%. By absorbing light, ie by absorbing light in one axis and transmitting light in the other axis, polarization occurs. In such a case, the light in one axis is absorbed and does not transmit, so the transmissivity necessarily becomes 50% or less. Moreover, although the conventional polarizing plate orientates a dichroic dye in a stretched film to produce a polarizing plate, the dichroic dye is not necessarily 100% oriented, and light It also has a light absorbing action on the transmission axis of Therefore, the degree of polarization of 100% can not be realized unless the transmittance is about 43% or less due to the surface reflection of the substance, that is, the degree of polarization can not be realized unless the transmittance is reduced. On the other hand, when the polarized light emitting element or the polarized light emitting plate according to the present invention absorbs light in the ultraviolet light range, the light absorption axis is about 400 nm or less. In this case, the polarized light emitting element or the polarized light emitting plate exhibits a polarized light emitting action of emitting light polarized in the visible light region, but hardly absorbs light in the visible light region, so the transmittance in the visible light region is very high. Get higher. Furthermore, in the visible light region, since it exhibits a polarized light emitting action, the loss of light is smaller than in the case of using a conventional polarizing plate, that is, the decrease in transmittance as in the conventional polarizing plate is very small. From this, a display using the polarized light emitting element or the polarized light emitting plate according to the present invention, for example, a liquid crystal display can obtain higher luminance than a liquid crystal display using a conventional polarizing plate. Furthermore, since the display device including the polarized light emitting element or the polarized light emitting plate according to the present invention has high transparency, it is possible to obtain a display that is very nearly transparent, although it is a liquid crystal display. In addition, since it can be designed to transmit polarized light when displaying characters and images, it is possible to obtain a display that can be displayed even though it is a transparent liquid crystal display, that is, a display that can display characters and the like on a transparent display. Be Therefore, the display device according to the present invention is effective for application as a transparent liquid crystal display without light loss, particularly as a see-through display.
 一方で、本発明に係る表示装置は、例えば、人の目に見えない紫外光により偏光が可能であることから、紫外光によって表示可能な液晶ディスプレイへの応用が可能である。その紫外光領域に表示された画像等を、コンピュータ等によって認識することによって、紫外光の照射したときのみ視認可能とする簡易でセキュリティ性の高い液晶ディスプレイを作製することができる。 On the other hand, since the display device according to the present invention can be polarized by, for example, ultraviolet light invisible to human eyes, it can be applied to a liquid crystal display capable of displaying by ultraviolet light. By recognizing an image or the like displayed in the ultraviolet light region with a computer or the like, it is possible to manufacture a simple and highly secure liquid crystal display that can be viewed only when irradiated with ultraviolet light.
 本発明に係る表示装置は、例えば、紫外光を照射することによって偏光発光作用を示し、その偏光発光を利用した液晶ディスプレイが作製可能である。そのため、可視光を使用した通常の液晶表示ディスプレイではなく、紫外光を使用した液晶表示ディスプレイを実現することも可能とする。つまり、光のない暗い空間においても、紫外光が照射され得る空間であれば、表示される文字、画像等が表示される自己発光型液晶ディスプレイを作製することが可能となる。 The display device according to the present invention exhibits, for example, a polarized light emitting action by irradiating ultraviolet light, and a liquid crystal display using the polarized light emission can be manufactured. Therefore, it is also possible to realize a liquid crystal display using ultraviolet light, not a normal liquid crystal display using visible light. That is, even in a dark space where there is no light, if it is a space that can be irradiated with ultraviolet light, it is possible to fabricate a self-luminous liquid crystal display in which displayed characters, images, and the like are displayed.
 さらに、可視光領域と紫外光領域とでは光の吸収帯域が異なるため、可視光領域は可視光領域の光によって表示可能な液晶表示部位と、紫外光による偏光発光作用によって表示された光での液晶表示部位とが併在する異なる2つの表示が可能なディスプレイを作製することも可能である。2つの異なる表示が可能なディスプレイは、これまでにも存在はしているが、同一液晶パネルでありながら、紫外光領域と可視光領域とで別々の光源によって異なる表示が可能なディスプレイは存在しない。このことから、本発明に係る表示装置は、上記の偏光発光素子又は偏光発光板を有することによって新規なディスプレイの作製が可能となる。 Furthermore, since the absorption band of light is different between the visible light region and the ultraviolet light region, the visible light region is a liquid crystal display portion that can be displayed by the light in the visible light region and the light displayed by the polarized light emitting action by the ultraviolet light. It is also possible to produce a display capable of two different displays in which the liquid crystal display portion coexists. Although two displays capable of different displays exist to date, there are no displays capable of different displays by different light sources in the ultraviolet light region and the visible light region although they are the same liquid crystal panel . From this, the display device according to the present invention can produce a novel display by having the above-mentioned polarized light emitting element or polarized light emitting plate.
 本発明に係る表示装置は、車載用又は屋外表示用液晶ディスプレイであってもよい。車載用又は屋外表示用液晶ディスプレイにおいて、使用する液晶セルは、例えば、TN液晶、STN液晶、VA液晶、IPS液晶などに限定されるものでなく、当該液晶ディスプレイは、あらゆる液晶ディスプレイモードで使用が可能である。本発明に係る偏光発光素子は、偏光性能に優れ、さらに車内や屋外の高温、高湿状態でも変色、偏光性能の低下が抑えられるため、車載用又は屋外表示用液晶ディスプレイの長期信頼性の向上に寄与することができる。 The display device according to the present invention may be a liquid crystal display for on-vehicle use or outdoor display. The liquid crystal cell to be used is not limited to, for example, TN liquid crystal, STN liquid crystal, VA liquid crystal, IPS liquid crystal, etc. in a liquid crystal display for vehicle or outdoor display, and the liquid crystal display can be used in all liquid crystal display modes. It is possible. The polarized light emitting element according to the present invention is excellent in polarization performance and further suppresses discoloration and deterioration in polarization performance even in a car or outdoors under high temperature and high humidity, thus improving the long-term reliability of the liquid crystal display for vehicle or outdoor display Can contribute to
 以下、実施例により本発明をさらに詳細に説明するが、これらは例示的なものであって、本発明をなんら限定するものではない。下記に記載されている「%」及び「部」は、特に言及されない限り質量基準である。尚、各実施例及び比較例で使用した化合物の各構造式において、スルホ基等の酸性官能基は、遊離酸の形態で記載した。 Hereinafter, the present invention will be described in more detail by way of examples, but these are illustrative and do not limit the present invention at all. The “%” and “parts” described below are on a mass basis unless otherwise stated. In addition, in each structural formula of the compound used by each Example and comparative example, acidic functional groups, such as a sulfo group, were described in the form of a free acid.
[評価方法]
 下記の実施例及び比較例で得た各偏光発光素子又は偏光発光板を測定試料とした評価を次のようにして行った。
[Evaluation method]
Evaluation using the polarized light emitting elements or the polarized light emitting plates obtained in the following Examples and Comparative Examples as measurement samples was performed as follows.
(a)オーダーパラメーター(OPD)
 分光光度計(日立ハイテクノロジーズ社製「U-4100」)を用いて偏光発光素子のオーダーパラメーターの値を評価した。各実施例及び比較例で作製した各偏光発光素子(測定試料)に、220nm~2600nmの波長領域にほぼ100%の偏光を有する光(以下、「絶対偏光」と称する)を照射できるように絶対偏光グラムテーラープリズムを設置し、各測定試料に、絶対偏光を照射した際の各波長の光の透過率を測定した。絶対偏光を照射し、偏光発光色素が配向した偏光発光素子において最も高い光の吸収を示す軸に対して直交位に偏光した光が入射した際に測定されたた光透過率をKy、絶対偏光を照射し、偏光発光色素が配向した偏光発光素子において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した際に測定されたた光透過率をKzとして、それぞれの値を下記式(I)に代入した。得られた値を、偏光発光素子のオーダーパラメーター(OPD)の値として評価した。
(A) Order parameter (OPD)
The value of the order parameter of the polarized light emitting device was evaluated using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technologies Corporation). Each polarized light emitting element (measurement sample) manufactured in each example and comparative example is absolutely irradiated with light (hereinafter referred to as “absolutely polarized light”) having approximately 100% polarized light in a wavelength range of 220 nm to 2600 nm A polarization gram tailor prism was installed, and the transmittance of light of each wavelength was measured when each measurement sample was irradiated with absolute polarization. The light transmittance measured when light polarized orthogonally to the axis showing absorption of the highest light in a polarized light emitting element irradiated with absolute polarized light and oriented with a polarized light emitting dye is Ky, absolute polarized light And the light transmittance measured when light polarized parallel to the axis showing absorption of the highest light in the polarized light emitting element in which the polarized light emitting dye is oriented is Kz, the respective values Were substituted into the following formula (I). The obtained value was evaluated as the value of the order parameter (OPD) of the polarized light emitting element.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
(b)視感度補正単体透過率Ys
 各測定試料の視感度補正単体透過率Ysは、可視光領域における400~700nmの波長領域で、所定波長間隔dλ(ここでは5nm)毎に求めた上記Ky及びKzを記式(V)に代入して各波長の単体透過率Tsを算出し、JISZ 8722:2009に従って視感度に補正した透過率である。具体的には、単体透過率Tsを下記式(VI)に代入して算出した。なお、下記式(VI)中、Pλは標準光(C光源)の分光分布を表し、yλは2度視野等色関数を表す。
(B) Visibility correction single transmittance Ys
The visual sensitivity correction single transmittance Ys of each measurement sample is substituted for the above-mentioned Ky and Kz obtained for each predetermined wavelength interval dλ (here, 5 nm) in the wavelength range of 400 to 700 nm in the visible light region. Then, the single transmittance Ts of each wavelength is calculated, and the transmittance is corrected to the visibility according to JIS Z 8722: 2009. Specifically, the single transmittance Ts was substituted into the following formula (VI) to calculate. In the following formula (VI), Pλ represents the spectral distribution of standard light (C light source), and yλ represents a two-degree visual field color matching function.
   Ts=(Ky+Kz)/2・・・(V) Ts = (Ky + Kz) / 2 (V)
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
(c)偏光度ρ
 各測定試料の偏光度ρを、以下の式(VII)に、平行透過率Tp及び直交透過率Tcを代入して求めた。ここで、平行位透過率Tpは、分光光度計(日立ハイテクノロジーズ社製「U-4100」)を用いて、2枚の測定試料をその吸収軸方向が平行となるように重ね合せて測定した各波長の分光透過率である。また、直交位透過率Tcは、分光光度計を用いて、2枚の偏光板をその吸収軸が直交するように重ね合せて測定した分光透過率である。測定は、220~780nmの波長にわたって行った。
(C) Degree of polarization ρ
The degree of polarization ρ of each measurement sample was determined by substituting the parallel transmittance Tp and the orthogonal transmittance Tc into the following equation (VII). Here, the parallel transmittance Tp was measured using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technologies Corporation), by superposing two measurement samples so that the absorption axis direction is parallel. It is the spectral transmittance of each wavelength. Further, the orthogonal position transmittance Tc is a spectral transmittance measured by superposing two polarizing plates with their absorption axes orthogonal to each other using a spectrophotometer. The measurements were taken over a wavelength of 220-780 nm.
  ρ={(Tp-Tc)/(Tp+Tc)}1/2×100  ・・・(VII) ρ = {(Tp−Tc) / (Tp + Tc)} 1/2 × 100 (VII)
(d)偏光発光のコントラスト
 光源として、395nmハンドライトタイプ LEDブラックライト(Vansky JAPAN社製「FBA_VS-FL01 JP(ASIN:B01EAJB9BA)」)を用い、光源に紫外線透過・可視カットフィルター(五鈴精工硝子社製「IUV-340」)を設置し可視光をカットした。その上で、可視光領域及び紫外光領域の光に対して偏光機能を有する偏光板(ポラテクノ社製「SKN-18043P」、厚さ180μm、Ysは43%)以下「測定用偏光板」という)と、各実施例及び比較例で得られた偏光発光板とを設置し、偏光発光板が発光している偏光発光を、分光放射照度計(ウシオ電機社製「USR-40」)を用いて測定した。すなわち、光源からの光が、紫外線透過・可視カットフィルター、測定用偏光板及び各偏光発光板を、この順に通過し、各偏光発光板からの偏光が分光放射照度計に入射するように配置して測定した。その際、各偏光発光板の紫外光領域の光の吸収が最大になる吸収軸と、測定用偏光板の吸収軸とが平行になるように重ね合せて測定した各波長の分光発光量をLw(弱発光軸)、各偏光発光板の紫外光域の光の吸収が最大になる吸収軸と、測定用偏光板の吸収軸とが直交するように重ね合せて測定した各波長の分光発光量をLs(強発光軸)として、Lw及びLsを測定した。各偏光発光板の吸収軸と測定用偏光板の吸収軸とが平行である場合と、直交する場合との可視光域で発光された光のエネルギー量を確認し、Ls/Lwを偏光発光のコントラスト(ECR)の値とすることで、可視光域である400nm~700nmにおいて偏光発光を評価した。
(D) Polarized light emission contrast As a light source, a 395 nm hand light type LED black light ("FBA_VS-FL01 JP (ASIN: B01 EAJB9BA)" manufactured by Vansky JAPAN) is used. The company made "IUV-340" to cut visible light. Furthermore, a polarizing plate having a polarizing function with respect to light in the visible light region and the ultraviolet light region (“SKN-18043P” manufactured by Polatechno, thickness 180 μm, Ys 43%) or less “referred to as“ measuring polarizing plate ” And the polarized light emitting plate obtained in each of the examples and the comparative examples, and the polarized light emitted by the polarized light emitting plate is measured using a spectral radiance meter (“USR-40” manufactured by USHIO INC.) It was measured. That is, the light from the light source passes through the ultraviolet light transmitting / visible cut filter, the measurement polarizing plate and each polarized light emitting plate in this order, and the polarized light from each polarized light emitting plate enters the spectral irradiometer. Measured. At that time, Lw is the spectral light emission amount of each wavelength measured by superposing the absorption axis at which absorption of light in the ultraviolet light region of each polarized light emitting plate is maximum with the absorption axis of the polarizing plate for measurement parallel. (Weak emission axis), the amount of spectral emission of each wavelength measured by superposing the absorption axis at which absorption of light in the ultraviolet light range of each polarized light emission plate is maximum with the absorption axis of the polarizing plate for measurement orthogonally Lw and Ls were measured by setting Ls as Ls (strong light emission axis). Check the amount of energy of light emitted in the visible light range when the absorption axis of each polarized light emitting plate is parallel to the absorption axis of the measurement polarizing plate, and when it is orthogonal to each other. Polarized light emission was evaluated in the visible light range of 400 nm to 700 nm by using the value of the contrast (ECR).
<偏光発光色素の合成>
(合成例1)
 市販品の4-アミノ-4’-ニトロスチルベン-2,2’-ジスルホン酸35.2部を水300部に加え撹拌し、35%塩酸を用いてpH0.5とした。得られた溶液に40%亜硝酸ナトリウム水溶液10.9部を加え、10℃で1時間撹拌し、続いて6-アミノナフタレン-2-スルホン酸17.2部を加え、15%炭酸ナトリウム水溶液でpH4.0に調製後4時間撹拌した。得られた反応液に塩化ナトリウム60部を加え、析出固体をろ過分離、さらにアセトン100部にて洗浄することにより、中間体である下記式(6)の化合物のウェットケーキ124.0部を得た。
<Synthesis of polarized light emitting dye>
Synthesis Example 1
35.2 parts of commercially available 4-amino-4'-nitrostilbene-2,2'-disulfonic acid was added to 300 parts of water and stirred, and the pH was adjusted to 0.5 using 35% hydrochloric acid. 10.9 parts of 40% aqueous sodium nitrite solution is added to the obtained solution, and the mixture is stirred at 10 ° C. for 1 hour, and then 17.2 parts of 6-aminonaphthalene-2-sulfonic acid is added, and a 15% aqueous sodium carbonate solution is used. After adjusting to pH 4.0, the mixture was stirred for 4 hours. 60 parts of sodium chloride is added to the obtained reaction liquid, and the precipitated solid is separated by filtration and further washed with 100 parts of acetone to obtain 124.0 parts of a wet cake of a compound of the following formula (6) as an intermediate. The
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 得られた式(6)の中間体62.3部を水300部に加え撹拌し、25%水酸化ナトリウム水溶液を用いてpH10.0とした。得られた溶液に28%アンモニア水20部、及び硫酸銅五水和物9.0部を加え、90℃で2時間撹拌した。得られた反応液に塩化ナトリウム25部を加え、析出固体をろ過分離、さらにアセトン100部にて洗浄することにより、式(7)の化合物のウェットケーキ40.0部を得た。このウェットケーキを80℃の熱風乾燥機で乾燥することにより下記式(7)の化合物(λmax:376nm)20.0部を得た。 The obtained intermediate (62.3 parts of the formula (6)) was added to 300 parts of water and stirred, and the pH was adjusted to 10.0 using a 25% aqueous sodium hydroxide solution. Twenty parts of 28% aqueous ammonia and 9.0 parts of copper sulfate pentahydrate were added to the obtained solution, and the mixture was stirred at 90 ° C. for 2 hours. To the resulting reaction solution, 25 parts of sodium chloride was added, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 40.0 parts of a wet cake of a compound of the formula (7). The wet cake was dried with a hot air dryer at 80 ° C. to obtain 20.0 parts of a compound (λmax: 376 nm) of the following formula (7).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(合成例2)
 市販品の4,4’-ジアミノスチルベン-2,2’-ジスルホン酸ナトリウム 41.4部を炭酸ナトリウム存在下で10℃の水300部に加え撹拌した。さらに、式(8)で示す化合物34.0部を加え、pH10で反応させた後、得られた反応液に塩化ナトリウム60部を加え、析出固体をろ過分離、さらにアセトン100部にて洗浄することにより、式(9)の化合物のウェットケーキ68.4部を得た。このウェットケーキを80℃の熱風乾燥機で乾燥することにより下記式(9)の化合物(λmax:356nm)33部を得た。
(Composition example 2)
A commercially available sodium 4,4'-diaminostilbene-2,2'-disulfonate 41.4 parts was added to 300 parts of water at 10 ° C in the presence of sodium carbonate and stirred. Further, 34.0 parts of a compound represented by the formula (8) is added and reacted at pH 10, 60 parts of sodium chloride is added to the obtained reaction solution, and the precipitated solid is separated by filtration and further washed with 100 parts of acetone. As a result, 68.4 parts of a wet cake of a compound of the formula (9) was obtained. The wet cake was dried by a hot air drier at 80 ° C. to obtain 33 parts of a compound (λmax: 356 nm) of the following formula (9).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(合成例3)
 国際公開第2005/033211号に記載の方法により合成した下記式(10)の化合物6.0部と炭酸カリウム1.6部を、N-メチル-2-ピロリドン50部に加え撹拌した。得られた溶液に4-メトキシベンゾイルクロリド2.1部を添加し、90℃にて4時間撹拌した。得られた反応液を20%塩化ナトリウム水溶液300部に加え、析出固体をろ過分離、さらにアセトン100部にて洗浄することにより、式(11)の化合物のウェットケーキ20.0部を得た。このウェットケーキを80℃の熱風乾燥機で乾燥することにより下記式(11)の化合物(λmax:372nm)5.0部を得た。
(Composition example 3)
6.0 parts of a compound of the following formula (10) synthesized by the method described in WO 2005/033211 and 1.6 parts of potassium carbonate were added to 50 parts of N-methyl-2-pyrrolidone and stirred. To the resulting solution was added 2.1 parts of 4-methoxybenzoyl chloride, and the mixture was stirred at 90 ° C. for 4 hours. The obtained reaction solution was added to 300 parts of a 20% aqueous sodium chloride solution, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 20.0 parts of a wet cake of a compound of the formula (11). The wet cake was dried with a hot air drier at 80 ° C. to obtain 5.0 parts of a compound of the following formula (11) (λmax: 372 nm).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(合成例4)
 市販品の4,4’-ジアミノスチルベン-2, 2’-ジスルホン酸ナトリウム 41.4部を水300部に加え撹拌し、35%塩酸を用いてpH0.5とした。得られた溶液に40%亜硝酸ナトリウム水溶液10.9部を加え、10℃で1時間撹拌し、続いて6-アミノナフタレン-2-スルホン酸34.4部を加え、15%炭酸ナトリウム水溶液でpH4.0に調製し、4時間撹拌した。得られた反応液に塩化ナトリウム60部を加え、析出固体をろ過分離、さらにアセトン100部にて洗浄することにより、中間体である式(12)の化合物のウェットケーキ124.0部を得た。
(Composition example 4)
A commercially available sodium 4,4'-diaminostilbene-2,2'-disulfonate 41.4 parts was added to 300 parts of water and stirred, and the pH was adjusted to 0.5 using 35% hydrochloric acid. 10.9 parts of 40% aqueous sodium nitrite solution is added to the obtained solution and stirred at 10 ° C. for 1 hour, and then 34.4 parts of 6-aminonaphthalene-2-sulfonic acid is added, and a 15% aqueous sodium carbonate solution is used. The pH was adjusted to 4.0 and stirred for 4 hours. 60 parts of sodium chloride was added to the obtained reaction liquid, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 124.0 parts of a wet cake of a compound of the formula (12) as an intermediate. .
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 得られた式(12)の中間体83.8部を水300部に加え撹拌し、25%水酸化ナトリウム水溶液を用いてpH10.0とした。得られた溶液に28%アンモニア水20部、及び硫酸銅五水和物9.0部を加え、90℃で2時間撹拌した。得られた反応液に塩化ナトリウム25部を加え、析出固体をろ過分離、さらにアセトン100部にて洗浄することにより、式(13)の化合物のウェットケーキ40.0部を得た。このウェットケーキを80℃の熱風乾燥機で乾燥することにより下記式(13)で表される化合物 20.0部を得た。 83.8 parts of the obtained intermediate of the formula (12) was added to 300 parts of water and the mixture was stirred, and adjusted to pH 10.0 with a 25% aqueous sodium hydroxide solution. Twenty parts of 28% aqueous ammonia and 9.0 parts of copper sulfate pentahydrate were added to the obtained solution, and the mixture was stirred at 90 ° C. for 2 hours. 25 parts of sodium chloride was added to the obtained reaction liquid, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 40.0 parts of a wet cake of a compound of the formula (13). The wet cake was dried with a hot air dryer at 80 ° C. to obtain 20.0 parts of a compound represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(合成例5)
 市販品の4-アミノ-4’-ニトロスチルベン-2,2’-ジスルホン酸4.0部と炭酸ナトリウム2.8部をN-メチル-2-ピロリドン30部に加え、次いで4-メトキシベンゾイルクロリド3.4部を5分間滴下した後、110℃にて6時間撹拌した。得られた反応液を水100部に添加し、析出固体をろ過分離し、さらにアセトン100部にて洗浄することにより、ウェットケーキ10.0部を得た。このウェットケーキを80℃の熱風乾燥機で乾燥することにより下記式(14)の化合物(λmax:370nm)3.0部を得た。
(Composition example 5)
4.0 parts of commercially available 4-amino-4'-nitrostilbene-2,2'-disulfonic acid and 2.8 parts of sodium carbonate are added to 30 parts of N-methyl-2-pyrrolidone and then 4-methoxybenzoyl chloride After 3.4 parts were dropped for 5 minutes, the mixture was stirred at 110 ° C. for 6 hours. The obtained reaction solution was added to 100 parts of water, and the precipitated solid was separated by filtration and further washed with 100 parts of acetone to obtain 10.0 parts of a wet cake. The wet cake was dried with a hot air dryer at 80 ° C. to obtain 3.0 parts of a compound (λmax: 370 nm) of the following formula (14).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(合成例6)
 特公昭50-033814号公報及び特公平03-294598号公報を参考にして、400部の氷水中に界面活性剤(ライオン社製「レオコールTD90」0.20部を加えて激しく攪拌し、その中に塩化シアヌル18.4部を添加し0~5℃で30分間攪拌し、懸濁液を得た。この懸濁液にアニリン-2,5-ジスルホン酸25.3部を加え、pH4~6、0~30℃で4時間撹拌し、続いて4、4’-ジアミノスチルベン-2,2’-ジスルホン酸18.5部を加え、pH4~8、20~50℃で6時間撹拌した。得られた反応液にジエタノールアミン11部を加え、pH8~10、40~70℃で6時間撹拌した後、塩化ナトリウム80部を添加し析出固体をろ過分離し、さらにアセトン100部にて洗浄することにより、ウェットケーキ100.0部を得た。このウェットケーキを80℃の熱風乾燥機で乾燥することにより下記式(15)のスチルベン系化合物(λmax:370nm)30.0部を得た。
反応液を得た。
Synthesis Example 6
Surfactant (0.22 parts of "Leocor TD90" manufactured by Lion Corporation) is added to 400 parts of ice water with reference to Japanese Patent Publication No. 50-033814 and Japanese Patent Publication No. 03-294598, and the mixture is vigorously stirred. The reaction mixture was added with 18.4 parts of cyanuric chloride and stirred at 0-5 ° C. for 30 minutes to obtain a suspension, to which 25.3 parts of aniline-2,5-disulfonic acid was added, and the pH was 4-6. The mixture was stirred at 0 to 30 ° C. for 4 hours, subsequently, 18.5 parts of 4,4′-diaminostilbene-2,2′-disulfonic acid was added, and the mixture was stirred at pH 4 to 8 and 20 to 50 ° C. for 6 hours. 11 parts of diethanolamine is added to the reaction solution and stirred at pH 8-10, 40-70 ° C. for 6 hours, 80 parts of sodium chloride is added, and the precipitated solid is separated by filtration and further washed with 100 parts of acetone. , Wet wet To obtain a key 100.0 parts of a stilbene compound of the formula by drying the wet cake at 80 ° C. in a hot air dryer (15). (Λmax: 370nm) to obtain 30.0 parts.
A reaction solution was obtained.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(合成例7)
 合成例6で使用したアニリン-2,5-ジスルホン酸25.3部を4-アミノベンゼンスルホン酸17.3部とする以外は合成例6と同様の方法により、下記式(16)の化合物(λmax:370nm)23.0部を得た。
Synthesis Example 7
A compound of the following formula (16) was prepared by the same method as in Synthesis Example 6 except that 25.3 parts of aniline-2,5-disulfonic acid used in Synthesis Example 6 was changed to 17.3 parts of 4-aminobenzenesulfonic acid. (lambda) max: 370 nm) 23.0 parts were obtained.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(合成例8)
 合成例6で使用したジエタノールアミン11部をフェノール18.8部とする以外は合成例6と同様の方法により、下記式(17)の化合物(λmax:370nm)15.0部を得た。
Synthesis Example 8
By the same method as in Synthesis Example 6 except that 11 parts of diethanolamine used in Synthesis Example 6 was changed to 18.8 parts of phenol, 15.0 parts of a compound (λmax: 370 nm) of the following formula (17) was obtained.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(合成例9)
 合成例6で使用したアニリン-2,5-ジスルホン酸25.3部を4-アミノベンゼンスルホン酸アミド17.2部とする以外は合成例6と同様の方法により、下記式(18)の化合物(λmax:370nm)23.0部を得た。
Synthesis Example 9
A compound of the following formula (18) by the same method as in Synthesis Example 6 except that 25.3 parts of aniline-2,5-disulfonic acid used in Synthesis Example 6 is changed to 17.2 parts of 4-aminobenzenesulfonic acid amide 23.0 parts of (λmax: 370 nm) were obtained.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[実施例1]
(偏光発光素子の作製)
 厚さ75μmのポリビニルアルコールフィルム(クラレ社製 VF-PS#7500)を40℃の温水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、化合物例5-1に記載の4,4’-ビス-(スルホスチリル)ビフェニル2ナトリウム水溶液(BASF社製 Tinopal NFW Liquid)を0.05部、芒硝1.0部、水1000部を含む45℃の水溶液に10分間浸漬させた。得られたフィルムを3%ホウ酸水溶液中に50℃で5分間浸漬し、5.0倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま常温の水で20秒間水洗し、乾燥して偏光発光素子を得た。得られた偏光発光素子の視感度補正単体透過率(Ys)は92.3%を示した。
Example 1
(Production of polarized light emitting element)
A 75 μm thick polyvinyl alcohol film (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling was prepared by adding 0.05 part of an aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (TAFOPAL NFW Liquid, manufactured by BASF) described in Compound Example 5-1, and 1.0 part of sodium sulfate. The plate was immersed in an aqueous solution of 45 ° C. containing 1000 parts of water for 10 minutes. The obtained film was immersed in a 3% aqueous boric acid solution for 5 minutes at 50 ° C. and stretched 5.0 times. The film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device. The visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 92.3%.
(偏光発光板の作製)
 紫外線吸収剤を含有しないトリアセチルセルロースフィルム(富士フィルム社製 ZRD-60)の両面を、1.5規定の水酸化ナトリウム水溶液を用いて35℃で10分間処理し、水洗し、次いで、70℃で10分乾燥させた。水酸化ナトリウムで処理したトリアセチルセルロースフィルムを、上記で作製した偏光発光素子の両面に4%のポリビニルアルコール樹脂(日本酢ビ・ポバール社製 NH-26)を含む水溶液を介してラミネートして偏光発光板を得た。得られた偏光発光板は、偏光発光素子とほぼ同等の光学特性を示した。
(Preparation of polarized light emitting plate)
The both sides of a triacetylcellulose film (ZRD-60 manufactured by Fujifilm Co., Ltd.) containing no ultraviolet light absorber are treated with a 1.5 N aqueous solution of sodium hydroxide at 35 ° C. for 10 minutes, washed with water, and then 70 ° C. Dried for 10 minutes. A triacetyl cellulose film treated with sodium hydroxide is laminated via an aqueous solution containing 4% of polyvinyl alcohol resin (NH-26 manufactured by Nippon Shokuhin Bokubar Co., Ltd.) on both sides of the polarized light emitting element prepared above to obtain polarized light. A light emitting plate was obtained. The obtained polarized light emitting plate exhibited substantially the same optical characteristics as the polarized light emitting element.
[実施例2~7]
 実施例1で作製した偏光発光素子において、化合物例5-1に記載の化合物を含む45℃の水溶液に、膨潤したフィルムを浸漬する時間(10分間)を、9分30秒間、9分間、8分30秒間、8分間、7分40秒間、7分30秒間にそれぞれ変更して浸漬させること以外は実施例1と同様にして、各々オーダーパラメーターの値が異なる偏光発光素子を作製した。
[Examples 2 to 7]
In the polarized light-emitting element produced in Example 1, the time (10 minutes) for immersing the swollen film in an aqueous solution at 45 ° C. containing the compound described in Compound Example 5-1 is 9 minutes, 30 seconds, 9 minutes, 8 minutes Polarized light emitting elements having different values of order parameters were produced in the same manner as in Example 1 except that the film was immersed for 30 minutes, 8 minutes, 7 minutes 40 seconds, and 7 minutes 30 seconds.
[比較例1及び比較例2]
 実施例1で作製した偏光発光素子において、化合物例5-1に記載の化合物を含む45℃の水溶液に、膨潤したフィルムを浸漬する時間(10分間)を、5分間、2分間にそれぞれ変更して浸漬させること以外は実施例1と同様にして、各々オーダーパラメーターの値が異なる偏光発光素子を作製した。
[Comparative Example 1 and Comparative Example 2]
In the polarized light-emitting element produced in Example 1, the time (10 minutes) for immersing the swollen film in an aqueous solution at 45 ° C. containing the compound described in Compound Example 5-1 was changed to 5 minutes and 2 minutes, respectively. Polarized light-emitting elements different in value of order parameter were produced in the same manner as in Example 1 except for immersion.
 実施例1~7において得られた各測定試料において、KyとKzとの差が最も大きい波長におけるオーダーパラメーター(OPD)の値と、測定したコントラスト(ECR)の値において最も高い値を示したECRの値を、表1に、同様にして比較例1及び2で得られた結果を表2にそれぞれ示す。また、図1に、実施例1~7及び比較例1~2におけるOPDとECRの関係を示す。 In each of the measurement samples obtained in Examples 1 to 7, the ECR exhibited the highest value of the order parameter (OPD) at the wavelength at which the difference between Ky and Kz is the largest and the measured contrast (ECR). The values of are shown in Table 1 and the results obtained in Comparative Examples 1 and 2 in the same manner are shown in Table 2, respectively. Further, FIG. 1 shows the relationship between OPD and ECR in Examples 1 to 7 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 上記表1、2及び図1より、OPDの値が0.81以上を示すと発光コントラストが飛躍的に向上し、これに伴いECRの値が10を大きく超えることが分かる。この結果から、偏光発光素子のOPDの値が0.81以上であることにより、偏光発光のコントラストが顕著に向上することが分かる。 From the above Tables 1 and 2 and FIG. 1, it is understood that the light emission contrast is dramatically improved when the value of OPD is 0.81 or more, and the value of ECR greatly exceeds 10 along therewith. From this result, it is understood that when the OPD value of the polarized light emitting element is 0.81 or more, the contrast of polarized light emission is remarkably improved.
[実施例8]
 実施例1において用いた化合物例5-1に代えて、合成例1で作製した上記式(7)の化合物を用いた以外は実施例1と同様にして偏光発光素子及び偏光発光板を作製した。得られた偏光発光素子の視感度補正単体透過率(Ys)は91.8%を示した。
[Example 8]
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (7) produced in Synthesis Example 1 was used instead of Compound Example 5-1 used in Example 1. . The visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.8%.
[実施例9~13]
 実施例8で作製した偏光発光素子において、上記式(7)で表される化合物を基材に含有させた後、基材の延伸倍率(5.0倍)を、4.5倍、4.3倍、4.0倍、3.5倍、3.3倍にそれぞれ変更すること以外は実施例8と同様にして、各々オーダーパラメーターの値が異なる偏光発光素子を作製した。
[Examples 9 to 13]
In the polarized light emitting device produced in Example 8, after the compound represented by the above formula (7) is contained in a base material, the draw ratio (5.0 times) of the base material is 4.5, 4. Polarized light-emitting elements different in value of the order parameter were produced in the same manner as in Example 8 except that the magnification was changed to 3 times, 4.0 times, 3.5 times, and 3.3 times, respectively.
[実施例14]
 実施例1において用いた化合物例5-1に代えて、合成例6で作製した上記式(15)の化合物を用いた以外は実施例1と同様にして偏光発光素子及び偏光発光板を作製した。得られた偏光発光素子の視感度補正単体透過率(Ys)は92.1%を示した。
Example 14
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (15) produced in Synthesis Example 6 was used instead of the compound example 5-1 used in Example 1. . The visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 92.1%.
[実施例15]
 実施例1において用いた化合物例5-1に代えて、合成例7で作製した上記式(16)の化合物を用いた以外は実施例1と同様にして偏光発光素子及び偏光発光板を作製した。得られた偏光発光素子の視感度補正単体透過率(Ys)は91.7%を示した。
[Example 15]
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (16) produced in Synthesis Example 7 was used instead of Compound Example 5-1 used in Example 1. . The visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.7%.
[実施例16]
 実施例1において用いた化合物例5-1に代えて、合成例8で作製した上記式(17)の化合物を用いた以外は実施例1と同様にして偏光発光素子及び偏光発光板を作製した。得られた偏光発光素子の視感度補正単体透過率(Ys)は91.5%を示した。
[Example 16]
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (17) produced in Synthesis Example 8 was used instead of Compound Example 5-1 used in Example 1. . The visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.5%.
[実施例17]
 実施例1において用いた化合物例5-1に代えて、合成例9で作製した上記式(18)の化合物を用いた以外は実施例1と同様にして偏光発光素子及び偏光発光板を作製した。得られた偏光発光素子の視感度補正単体透過率(Ys)は91.6%を示した。
[Example 17]
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 1 except that the compound of the above formula (18) produced in Synthesis Example 9 was used instead of Compound Example 5-1 used in Example 1. . The visibility-corrected single transmittance (Ys) of the obtained polarized light emitting element showed 91.6%.
[比較例3~6]
 実施例8で作製した偏光発光素子において、式(7)で表される化合物を基材に含有させた後、基材の延伸倍率(5.0倍)を、3.2倍、3.0倍、2.8倍、2.6倍にそれぞれ変更して延伸させること以外は実施例8と同様にして、各々オーダーパラメーターの値が異なる偏光発光素子を作製した。
[Comparative Examples 3 to 6]
In the polarized light emitting device produced in Example 8, after the compound represented by the formula (7) is contained in the base material, the draw ratio (5.0 times) of the base material is 3.2 times, 3.0 Polarized light-emitting elements different in value of the order parameter were produced in the same manner as in Example 8 except that stretching was carried out by changing them by a factor of 2, 2.8 and 2.6.
 実施例8~13において得られた各測定試料において、KyとKzとの差が最も大きい波長におけるオーダーパラメーター(OPD)の値と、測定したコントラスト(ECR)の値において最も高い値を示したECRの値を表3に、同様にして比較例3~6で得られた結果を表4にそれぞれ示す。また、図2に、実施例8~13及び比較例3~6におけるOPDとECRの関係を示す。さらに、偏光発光色素が異なる実施例1、8、14~17において得られた各測定試料において、KyとKzとの差が最も大きい波長におけるオーダーパラメーター(OPD)の値と、測定したコントラスト(ECR)の値において最も高い値を示したECRの値を表5に示す。 In each of the measurement samples obtained in Examples 8 to 13, the value of the order parameter (OPD) at the wavelength at which the difference between Ky and Kz is the largest, and the ECR that showed the highest value in the values of the measured contrast (ECR) The values of are shown in Table 3, and the results obtained in Comparative Examples 3 to 6 in the same manner are shown in Table 4. Further, FIG. 2 shows the relationship between OPD and ECR in Examples 8 to 13 and Comparative Examples 3 to 6. Furthermore, in each of the measurement samples obtained in Examples 1, 8 and 14 to 17 in which polarized light emitting dyes are different, the value of the order parameter (OPD) at the wavelength at which the difference between Ky and Kz is the largest and the measured contrast (ECR) The value of ECR which showed the highest value in the value of) is shown in Table 5.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 上記表3~5及び図2より、OPDの値が0.81以上を示すと発光コントラストが飛躍的に向上し、これに伴いECRの値が10を大きく超えることが分かる。この結果から、偏光発光素子のOPDの値が0.81以上であると、偏光発光のコントラストが顕著に向上することが分かる。 From the above Tables 3 to 5 and FIG. 2, it is understood that the light emission contrast is dramatically improved when the OPD value is 0.81 or more, and the ECR value greatly exceeds 10 along with this. From this result, it is understood that the contrast of polarized light emission is remarkably improved when the OPD value of the polarized light emitting element is 0.81 or more.
[比較例7]
 米国特許第3,276,316号明細書の実施例1に記載の方法と同様の処方により、偏光発光素子を作製した。具体的には、厚さ75μmのポリビニルアルコールフィルム(クラレ社製「VF-PS#7500」)を4倍に延伸した。得られたフィルムを、化合物例5-1が含有している常温の染色液に浸漬し、浸漬した液から取り出した後、基材の長さが4.2倍になるように延伸し、偏光発光素子を得た。この偏光発光素子を用いた以外は実施例1における偏光発光板の作製方法と同様に偏光発光板を作製した。得られた偏光発光素子のOPDの値は0.753であり、偏光発光のECRの値は5.0であった。
Comparative Example 7
A polarized light emitting device was produced according to the same formulation as the method described in Example 1 of US Pat. No. 3,276,316. Specifically, a 75 μm thick polyvinyl alcohol film (“VF-PS # 7500” manufactured by Kuraray Co., Ltd.) was stretched by 4 times. The obtained film is immersed in a dyeing solution at normal temperature contained in Compound Example 5-1, taken out from the immersed solution, and then stretched so that the length of the substrate is 4.2 times, and polarized light A light emitting element was obtained. A polarized light emitting plate was produced in the same manner as the method for producing a polarized light emitting plate in Example 1 except that this polarized light emitting element was used. The OPD value of the obtained polarized light emitting element was 0.753, and the ECR value of the polarized light emission was 5.0.
[比較例8]
 特開平4-226162号公報の実施例1に記載の方法と同様の処方により、偏光発光素子を作製した。具体的には、化合物例5-1で表される化合物を、けん化度99%以上のポリビニルアルコール樹脂(クラレ社製「PVA-117」)に0.43重量%分を添加、混合し、乾燥後の膜厚が75μmになるように製膜することにより、基材となるポリビニルアルコールフィルムを作製した。次いで、作製したフィルムの長さが7.0倍になるように一軸延伸して偏光発光素子を作製した。得られた偏光発光素子のOPDの値は0.679であり、偏光発光のECRの値は3.4であった。
Comparative Example 8
A polarized light emitting element was produced according to the same formulation as the method described in Example 1 of JP-A-4-226162. Specifically, 0.43% by weight of a compound represented by Compound Example 5-1 is added to a polyvinyl alcohol resin ("PVA-117" manufactured by Kuraray Co., Ltd.) having a degree of hydrolysis of 99% or more, mixed, and dried. By forming a film so as to have a film thickness of 75 μm later, a polyvinyl alcohol film as a substrate was manufactured. Subsequently, uniaxial light stretching was carried out so that the length of the produced film might be 7.0 times, and a polarization light emitting element was produced. The OPD value of the obtained polarized light emitting element was 0.679, and the ECR value of the polarized light emission was 3.4.
[実施例18]
(偏光発光素子の作製)
 厚さ75μmのポリビニルアルコールフィルム(クラレ社製「VF-PS#7500」)を40℃の水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、合成例1で得られた式(7)の化合物を0.3部、合成例2で得られた式(9)の化合物を0.15部、芒硝を1.0部、水を1000部含有する45℃の水溶液に、4分間浸漬して、式(7)の化合物及び式(9)の化合物をフィルムに含有させた。得られたフィルムを3%ホウ酸水溶液中に50℃で5分間浸漬し、5.0倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま常温の水で20秒間水洗し、乾燥して偏光発光素子を得た。
[Example 18]
(Production of polarized light emitting element)
A polyvinyl alcohol film ("VF-PS # 7500" manufactured by Kuraray Co., Ltd.) having a thickness of 75 μm was immersed in water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling was obtained by adding 0.3 parts of the compound of the formula (7) obtained in Synthesis Example 1, 0.15 parts of the compound of the formula (9) obtained in Synthesis Example 2, and 1 The film was immersed in an aqueous solution at 45 ° C. containing 0.05 parts of water and 1000 parts of water for 4 minutes to contain the compound of formula (7) and the compound of formula (9) in a film. The obtained film was immersed in a 3% aqueous boric acid solution for 5 minutes at 50 ° C. and stretched 5.0 times. The film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
(偏光発光板の作製)
 紫外線吸収剤を含有しないトリアセチルセルロースフィルム(富士フィルム社製 ZRD-60)の両面を、1.5規定の水酸化ナトリウム水溶液を用いて35℃で10分間処理し、水洗し、次いで、70℃で10分乾燥させた。水酸化ナトリウムで処理したトリアセチルセルロースフィルムを、上記で作製した偏光発光素子の両面に4%のポリビニルアルコール樹脂(日本酢ビ・ポバール社製 NH-26)を含む水溶液を介してラミネートして偏光発光板を得た。得られた偏光発光板は、偏光発光素子とほぼ同等の光学特性を示した。
(Preparation of polarized light emitting plate)
The both sides of a triacetylcellulose film (ZRD-60 manufactured by Fujifilm Co., Ltd.) containing no ultraviolet light absorber are treated with a 1.5 N aqueous solution of sodium hydroxide at 35 ° C. for 10 minutes, washed with water, and then 70 ° C. Dried for 10 minutes. A triacetyl cellulose film treated with sodium hydroxide is laminated via an aqueous solution containing 4% of polyvinyl alcohol resin (NH-26 manufactured by Nippon Shokuhin Bokubar Co., Ltd.) on both sides of the polarized light emitting element prepared above to obtain polarized light. A light emitting plate was obtained. The obtained polarized light emitting plate exhibited substantially the same optical characteristics as the polarized light emitting element.
[実施例19]
(偏光発光素子及び偏光発光板の作製)
 式(7)の化合物0.3部及び式(9)の化合物0.15部に代えて、合成例3で得られた式(11)の化合物0.3部、及び合成例4で得られた式(13)の化合物0.15部を用いた以外は実施例18と同様にして偏光発光素子及び偏光発光板を作製した。
[Example 19]
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
In place of 0.3 part of the compound of Formula (7) and 0.15 part of the compound of Formula (9), 0.3 part of the compound of Formula (11) obtained in Synthesis Example 3 and A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that 0.15 part of the compound of the formula (13) was used.
[実施例20]
(偏光発光素子及び偏光発光板の作製)
 式(7)の化合物0.3部及び式(9)の化合物0.15部に代えて、合成例5で得られた式(14)の化合物0.3部、及び合成例4で得られた式(13)の化合物0.15部を用いた以外は実施例18と同様にして偏光発光素子及び偏光発光板を作製した。
[Example 20]
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
In place of 0.3 part of the compound of Formula (7) and 0.15 part of the compound of Formula (9), 0.3 part of the compound of Formula (14) obtained in Synthesis Example 5 and A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that 0.15 part of the compound of the formula (13) was used.
[実施例21]
(偏光発光素子及び偏光発光板の作製)
 式(7)の化合物0.3部及び式(9)の化合物0.15部に代えて、合成例5で得られた式(14)の化合物0.3部、及び化合物例5-1に記載の4,4’-ビス-(スルホスチリル)ビフェニル二ナトリウム水溶液(BASF社製 Tinopal NFW Liquid)1.0部を用いた以外は実施例18と同様にして偏光発光素子及び偏光発光板を作製した。
[Example 21]
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
In place of 0.3 part of the compound of formula (7) and 0.15 part of the compound of formula (9), 0.3 part of the compound of formula (14) obtained in Synthesis Example 5 and Compound Example 5-1 A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that 1.0 part of the aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl dibasic (Tinopal NFW Liquid, manufactured by BASF) was used. did.
[比較例9]
 式(7)の化合物及び式(9)化合物の代わりに、式(19)で表される蛍光発光を示さない一般的な二色性染料であるC.I.Direct Yellow 4を用いた以外は実施例18と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 9
In place of the compound of the formula (7) and the compound of the formula (9), C.I. that is a general dichroic dye that does not show fluorescence emission represented by the formula (19) I. A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 18 except that Direct Yellow 4 was used.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[比較例10]
 式(7)の化合物及び式(9)の化合物の代わりに、式(20)で示される蛍光発光を示さない一般的な二色性染料である化合物0.15部を用いた以外は実施例18と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 10
Example except using the compound which is a general dichroic dye which does not show fluorescence emission shown by Formula (20) instead of the compound of Formula (7) and the compound of Formula (9) In the same manner as in No. 18, a polarized light emitting element and a polarized light emitting plate were produced.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[比較例11]
 式(7)の化合物及び式(9)の化合物の代わりに、式(21)で示される蛍光発光を示さない一般的な二色性染料である化合物0.15部を用いた以外は実施例18と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 11
Example except using the compound which is a general dichroic dye which does not show fluorescence emission shown by Formula (21) instead of the compound of Formula (7) and the compound of Formula (9) In the same manner as in No. 18, a polarized light emitting element and a polarized light emitting plate were produced.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 表6に、実施例18~21及び比較例9~11で作製した偏光発光素子の最大偏光度を示す波長と、最大偏光度を示す波長における単体透過率(Ts)、平行位透過率(Tp)、直交位透過率(Tc)、偏光度(ρ)、及び視感度補正単体透過率(Ys)を示す。 Table 6 shows the single light transmittance (Ts) at the wavelength showing the maximum degree of polarization of the polarized light emitting devices manufactured in Examples 18 to 21 and Comparative Examples 9 to 11, and the parallel transmittance (Tp) at the wavelength showing the maximum degree of polarization. The orthogonal position transmittance (Tc), the degree of polarization (、), and the visibility corrected single transmittance (Ys) are shown.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 また、表7に実施例18~21及び比較例9~11で作製した偏光発光素子において、460nm、550nm、610nm及び670nmの各波長で測定されたLs及びLwの値、並びに、Lsでの偏光発光における発光色としてJIS Z 8781-4:2013に従って測定された色度aの値及び色相bの値をそれぞれ示す。 Further, in Table 7, the values of Ls and Lw measured at each wavelength of 460 nm, 550 nm, 610 nm and 670 nm and the polarization at Ls in the polarized light emitting elements manufactured in Examples 18 to 21 and Comparative Examples 9 to 11 are shown. The value of chromaticity a * and the value of hue b * measured according to JIS Z 8781-4: 2013 are shown as light emission colors in light emission.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表6に示されるように、実施例18~21で作製した偏光発光素子は、最大偏光度を示す波長が380nm以下であることから、紫外光域に光の吸収特性を有する偏光発光素子として機能していることが分かった。また、可視光域の透過率(視感度補正透過率Ys)は約90%を示しており、紫外光域に偏光機能を有しながらも可視光域では高い透明度を示すことが分かった。さらに、偏光度ρも95%以上の高い値を示していた。これに対して、比較例9~11で作製した偏光発光素子は、最大偏光度を示す波長が400nm以上であり、視感度補正単体透過率(Ys)も低下していることから、可視光透過率の低下が観察された。 As shown in Table 6, the polarized light emitting elements produced in Examples 18 to 21 function as polarized light emitting elements having an absorption characteristic of light in the ultraviolet light region because the wavelength showing the maximum degree of polarization is 380 nm or less. It turned out that it was doing. In addition, the transmittance in the visible light region (visual sensitivity correction transmittance Ys) is about 90%, and it was found that the ultraviolet light region exhibits a high transparency in the visible light region while having a polarization function. Furthermore, the polarization degree ρ also showed a high value of 95% or more. On the other hand, in the polarized light emitting elements produced in Comparative Examples 9 to 11, the wavelength showing the maximum degree of polarization is 400 nm or more, and the visible light correction single transmittance (Ys) is also lowered. A decrease in the rate was observed.
 さらに、表7に示されるように、実施例18~21で作製した偏光発光素子では、LwとLsが検出されたため、これらの偏光発光素子は紫外線を照射することによって発光することが分かった。また、実施例18~21で作製した偏光発光素子は、Lwの値とLsの値に差があることから、その発光は偏光していることが分かった。さらに、実施例18~21で作製した偏光発光素子は、紫外線を照射することによって400~700nmの広い帯域に渡って偏光発光を示し、かつ、色度a及び色相bの絶対値がともに5以下であった。このことから、実施例18~21で作製した偏光発光素子は、紫外光の照射により白色の偏光発光を示す白色発光型偏光発光素子として機能していることが示された。一方、比較例9~11で作製した偏光発光素子は、Lsの値が低く、Lwは検出されなかったため、偏光発光を示していないか、微弱な偏光発光しか示していないことが確認された。そのため、比較例9~11で作製した偏光発光素子は、色度aについては測定範囲外であった。 Furthermore, as shown in Table 7, in the polarized light emitting elements manufactured in Examples 18 to 21, since Lw and Ls were detected, it was found that these polarized light emitting elements emit light when irradiated with ultraviolet light. In addition, since the polarized light emitting elements manufactured in Examples 18 to 21 had a difference between the value of Lw and the value of Ls, it was found that the light emission was polarized. Furthermore, the polarized light emitting elements produced in Examples 18 to 21 exhibit polarized light emission over a broad band of 400 to 700 nm by irradiation with ultraviolet light, and the absolute values of the chromaticity a * and the hue b * are both It was 5 or less. From this, it is shown that the polarized light emitting elements produced in Examples 18 to 21 function as white light emitting type polarized light emitting elements that emit white polarized light by irradiation of ultraviolet light. On the other hand, it was confirmed that the polarized light emitting elements produced in Comparative Examples 9 to 11 had low values of Ls and did not detect Lw, and therefore showed no polarized light emission or only weak polarized light emission. Therefore, the polarized light emitting elements produced in Comparative Examples 9 to 11 were out of the measurement range for the chromaticity a * .
[実施例22]
(偏光発光素子の作製)
 厚さ75μmのポリビニルアルコールフィルム(クラレ社製「VF-PS#7500」)を40℃の温水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、化合物例5-1に記載の4,4’-ビス-(スルホスチリル)ビフェニル二ナトリウム水溶液(BASF社製 Tinopal NFW Liquid)0.5部、芒硝1.0部、水1000部を含む45℃の水溶液に、8分間浸漬させた。得られたフィルムを3%ホウ酸水溶液中50℃で5分間浸漬し、5.0倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま常温の水で20秒間水洗し、乾燥して偏光発光素子を得た。
Example 22
(Production of polarized light emitting element)
A 75 μm thick polyvinyl alcohol film (“VF-PS # 7500” manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling was a 0.54 part aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (Tinopal NFW Liquid manufactured by BASF) described in Compound Example 5-1, and 1.0 part of mirabilite. The substrate was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 8 minutes. The obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C. for 5 minutes and stretched 5.0 times. The film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
(ホウ素化合物に由来する2次イオン強度の測定)
 得られた偏光発光素子において、基材の厚さ(偏光発光素子の膜厚)は32μmであった。「ToF-SIMS 300」(ION-TOF社製)を用いて基材の表面から基材の厚さ方向に向けてホウ酸の含有量(基材の断面におけるホウ酸含有量)を測定したところ、表8に示すようなホウ酸に由来する2次イオン強度の比の情報が得られた。この結果から導き出されるホウ酸の濃度分布は表9のように得られた。
(Measurement of secondary ion intensity derived from boron compound)
In the obtained polarized light emitting device, the thickness of the substrate (film thickness of the polarized light emitting device) was 32 μm. When the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) Information on the ratio of secondary ion intensity derived from boric acid as shown in Table 8 was obtained. The concentration distribution of boric acid derived from this result was obtained as shown in Table 9.
(ラマン分光法による偏光発光色素の測定)
 ラマン分光光度計(サーモフィッシャー製「DXR Raman Microscope」)を用いて、得られた偏光発光素子の膜厚断面に対して厚さ方向に走査しながらラマン分光を適用した。その結果、1173cm-1及び1600cm-1に基づく化合物例5-1に記載の化合物のエネルギーが、31μmの膜厚断面において、表層から10μmまで検出された。このことから、化合物例5-1に記載の化合物が基材の表層から10μmの深さまで少なくとも含有されていることが確認された。
(Measurement of polarized light emitting dye by Raman spectroscopy)
Using a Raman spectrophotometer ("DXR Raman Microscope" manufactured by Thermo Fisher), Raman spectroscopy was applied while scanning in the thickness direction with respect to the film thickness section of the obtained polarized light emitting device. As a result, the energy of the compound described in Example Compound 5-1 based on 1173 cm -1 and 1600 cm -1 was detected from the surface layer to 10 μm in a 31 μm-thick film thickness section. From this, it was confirmed that the compound described in Compound Example 5-1 was contained at least from the surface layer of the substrate to a depth of 10 μm.
(偏光発光板の作製)
 得られた偏光発光素子の両面を、1.5規定の水酸化ナトリウム水溶液を用いて35℃で10分間処理し、水洗し、次いで、70℃で10分乾燥させた。さらに、紫外線吸収剤を含有しないトリアセチルセルロースフィルム(富士フィルム社製 ZRD-60)を、水酸化ナトリウムで処理した偏光発光素子の両面に4%のポリビニルアルコール樹脂(日本酢ビ・ポバール社製 NH-26)を含む水溶液を介してラミネートして偏光発光板を得た。
(Preparation of polarized light emitting plate)
Both sides of the obtained polarized light emitting device were treated with a 1.5 N aqueous solution of sodium hydroxide at 35 ° C. for 10 minutes, washed with water, and then dried at 70 ° C. for 10 minutes. Furthermore, a 4% polyvinyl alcohol resin (Nippon A & V: Poval Co., Ltd. NH on both sides of a polarized light emitting element treated with sodium hydroxide with a triacetyl cellulose film (ZRD-60 made by Fuji Film Co., Ltd.) containing no ultraviolet light absorber It laminated | stacked via the aqueous solution containing -26), and obtained the polarized light-emission board.
[実施例23]
(偏光発光素子及び偏光発光板の作製)
 実施例22で用いた化合物例5-1に代えて、合成例1で作製した上記式(7)の化合物を用いた以外は実施例22と同様にして偏光発光素子及び偏光発光板を作製した。ホウ素の濃度分布に関する情報を表8、9に示す。なお、偏光発光色素(上記式(7)の化合物)の膜厚断面における含有量は、実施例22と同等であった。
[Example 23]
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 22 except that the compound of the above formula (7) produced in Synthesis Example 1 was used instead of the compound example 5-1 used in Example 22. . Tables 8 and 9 show information on the concentration distribution of boron. The content of the polarized light emitting dye (the compound of the above formula (7)) in the film thickness section was equivalent to that of Example 22.
[比較例12]
 実施例22に記載の化合物5-1の代わりに、蛍光発光を示さないC.I.Direct Yellow 4を用いた以外は実施例22と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 12
In place of compound 5-1 described in Example 22, C.I. I. A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 22 except that Direct Yellow 4 was used.
[比較例13]
(偏光発光素子及び偏光発光板の作製)
 ホウ素を用いなかったことは実施例22と同様にして、偏光発光素子及び偏光発光板を作製した。
Comparative Example 13
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 22 except that boron was not used.
(ホウ素化合物に由来する2次イオン強度の測定)
 得られた偏光発光素子において、基材の厚さ(偏光発光素子の膜厚)は31μmであった。「ToF-SIMS 300」(ION-TOF社製)を用いて基材の表面から基材の厚さ方向に向けてホウ酸の含有量(基材の断面におけるホウ酸含有量)を測定したところ、ホウ素を含有していないことを確認した。
(Measurement of secondary ion intensity derived from boron compound)
In the obtained polarized light emitting device, the thickness of the substrate (film thickness of the polarized light emitting device) was 31 μm. When the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) It confirmed that it did not contain boron.
(ラマン分光法による偏光発光色素の測定)
 ラマン分光光度計(サーモフィッシャー製「DXR Raman Microscope」)を用いて、得られた偏光発光素子の膜厚断面に対して厚さ方向に走査しながらラマン分光を適用した。その結果、1173cm-1、または1600cm-1に基づく化合物例5-1に記載の化合物のエネルギーが、31μmの膜厚断面において、表層から10μmまで検出された。このことから、化合物例5-1に記載の化合物が基材の表層から10μmの深さまで少なくとも含有されていることが確認された。
(Measurement of polarized light emitting dye by Raman spectroscopy)
Using a Raman spectrophotometer ("DXR Raman Microscope" manufactured by Thermo Fisher), Raman spectroscopy was applied while scanning in the thickness direction with respect to the film thickness section of the obtained polarized light emitting device. As a result, the energy of a compound according to compound example 5-1 based on 1173Cm -1 or 1600 cm -1, is, in the film thickness cross section of 31 .mu.m, was detected from the surface to 10 [mu] m. From this, it was confirmed that the compound described in Compound Example 5-1 was contained at least from the surface layer of the substrate to a depth of 10 μm.
[比較例14]
(偏光発光素子及び偏光発光板の作製)
 米国特許第3,276,316号明細書の実施例1に記載の方法と同様の処方により、比較例7に記載の偏光発光素子を作製した。この偏光発光素子を用いた以外は実施例22と同様に偏光発光板を作製した。
Comparative Example 14
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
The polarized light-emitting element described in Comparative Example 7 was produced by the same formulation as the method described in Example 1 of US Pat. No. 3,276,316. A polarized light emitting plate was produced in the same manner as in Example 22 except that this polarized light emitting element was used.
(ホウ素化合物に由来する2次イオン強度の測定)
 得られた偏光発光素子において、基材の厚さ(偏光発光素子の膜厚)は35μmであった。「ToF-SIMS 300」(ION-TOF社製)を用いて基材の表面から基材の厚さ方向に向けてホウ酸の含有量(基材の断面におけるホウ酸含有量)を測定したところ、ホウ素を含有していないことを確認した。
(Measurement of secondary ion intensity derived from boron compound)
In the obtained polarized light emitting device, the thickness of the substrate (film thickness of the polarized light emitting device) was 35 μm. When the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) It confirmed that it did not contain boron.
(ラマン分光法による偏光発光色素の測定)
 ラマン分光光度計(サーモフィッシャー製「DXR Raman Microscope」)を用いて、得られた偏光発光素子の膜厚断面に対して厚さ方向に走査しながらラマン分光を適用した。その結果、1173cm-1、並びに1600cm-1に基づく偏光発光色素のエネルギーが、35μmの膜厚断面において、表層から2μmまで検出された。このことから、偏光発光色素は基材の表層から2μmの深さまでしか含有されていないことが確認された。
(Measurement of polarized light emitting dye by Raman spectroscopy)
Using a Raman spectrophotometer ("DXR Raman Microscope" manufactured by Thermo Fisher), Raman spectroscopy was applied while scanning in the thickness direction with respect to the film thickness section of the obtained polarized light emitting device. As a result, 1173Cm -1, as well as the energy of the polarized luminescence dyes based on 1600 cm -1 is at 35μm thickness cross section of was detected from the surface to 2 [mu] m. From this, it was confirmed that the polarized light emitting dye was contained only from the surface layer of the substrate to a depth of 2 μm.
[比較例15]
(偏光発光素子及び偏光発光板の作製)
 比較例14で作製した偏光発光素子を、ホウ素が5重量%含有した40℃の水溶液で5秒間含浸して、偏光発光素子を作製した。この偏光発光素子を用いた以外は実施例22と同様に偏光発光板を作製した。
Comparative Example 15
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
A polarized light emitting device was produced by impregnating the polarized light emitting device manufactured in Comparative Example 14 with an aqueous solution at 40 ° C. containing 5% by weight of boron for 5 seconds. A polarized light emitting plate was produced in the same manner as in Example 22 except that this polarized light emitting element was used.
(ホウ素化合物に由来する2次イオン強度の測定)
 得られた偏光発光素子において、基材の厚さ(偏光発光素子の膜厚)は32μmであった。「ToF-SIMS 300」(ION-TOF社製)を用いて基材の表面から基材の厚さ方向に向けてホウ酸の含有量(基材の断面におけるホウ酸含有量)を測定したところ、表8に示すようなホウ酸に由来する2次イオン強度の比の情報が得られた。この結果から導き出されるホウ酸の濃度分布は表9のように得られた。
(Measurement of secondary ion intensity derived from boron compound)
In the obtained polarized light emitting device, the thickness of the substrate (film thickness of the polarized light emitting device) was 32 μm. When the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) Information on the ratio of secondary ion intensity derived from boric acid as shown in Table 8 was obtained. The concentration distribution of boric acid derived from this result was obtained as shown in Table 9.
(ラマン分光法による偏光発光色素の測定)
 ラマン分光光度計(サーモフィッシャー製「DXR Raman Microscope」)を用いて、得られた偏光発光素子の膜厚断面に対して厚さ方向に走査しながらラマン分光を適用した。その結果、1173cm-1、ならびに1600cm-1に基づく偏光発光色素のエネルギーが、32μmの膜厚断面において、表層から2μmまで検出された。このことから、偏光発光色素は基材の表層から2μmの深さまでしか含有されていないことが確認された。
(Measurement of polarized light emitting dye by Raman spectroscopy)
Using a Raman spectrophotometer ("DXR Raman Microscope" manufactured by Thermo Fisher), Raman spectroscopy was applied while scanning in the thickness direction with respect to the film thickness section of the obtained polarized light emitting device. As a result, 1173cm -1, as well as the energy of the polarized luminescence dye-based 1600 cm -1, in the film thickness cross section of 32 [mu] m, was detected from the surface to 2 [mu] m. From this, it was confirmed that the polarized light emitting dye was contained only from the surface layer of the substrate to a depth of 2 μm.
[比較例16]
(偏光発光素子及び偏光発光板の作製)
 特開平4-226162号公報の実施例1に記載の方法と同様の処方により、偏光発光素子を作製した。具体的には、化合物例5-1で表される化合物を、けん化度99%以上のポリビニルアルコール樹脂(クラレ社製「PVA-117」)に0.43重量%分を添加、混合し、乾燥後の膜厚が75μmになるように製膜することにより、基材となるポリビニルアルコールフィルムを作製した。次いで、作製したフィルムの長さが7.0倍になるように130℃で14分間一軸延伸して偏光発光素子を作製した。
Comparative Example 16
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
A polarized light emitting element was produced according to the same formulation as the method described in Example 1 of JP-A-4-226162. Specifically, 0.43% by weight of a compound represented by Compound Example 5-1 is added to a polyvinyl alcohol resin ("PVA-117" manufactured by Kuraray Co., Ltd.) having a degree of hydrolysis of 99% or more, mixed, and dried. By forming a film so as to have a film thickness of 75 μm later, a polyvinyl alcohol film as a substrate was manufactured. Next, uniaxial light stretching was performed at 130 ° C. for 14 minutes so that the length of the produced film was 7.0 times, to prepare a polarized light emitting element.
(ホウ素化合物に由来する2次イオン強度の測定)
 得られた偏光発光素子において、基材の厚さ(偏光発光素子の膜厚)は28μmであった。「ToF-SIMS 300」(ION-TOF社製)を用いて基材の表面から基材の厚さ方向に向けてホウ酸の含有量(基材の断面におけるホウ酸含有量)を測定したところ、ホウ素を含有していないことを確認した。
(Measurement of secondary ion intensity derived from boron compound)
In the obtained polarized light emitting device, the thickness of the substrate (film thickness of the polarized light emitting device) was 28 μm. When the content of boric acid (boric acid content in the cross section of the substrate) was measured from the surface of the substrate to the thickness direction of the substrate using “ToF-SIMS 300” (manufactured by ION-TOF) It confirmed that it did not contain boron.
(ラマン分光法による偏光発光色素の測定)
 ラマン分光光度計(サーモフィッシャー製「DXR Raman Microscope」)を用いて、得られた偏光発光素子の膜厚断面に対して厚さ方向に走査しながらラマン分光を適用した。その結果、1150cm-1及び1600cm-1に基づく偏光発光色素のエネルギーが、28μmの膜厚断面において、表層から膜厚方向に均一に検出された。このことから、偏光発光色素は基材の表層から均一に含有されていることが確認された。
(Measurement of polarized light emitting dye by Raman spectroscopy)
Using a Raman spectrophotometer ("DXR Raman Microscope" manufactured by Thermo Fisher), Raman spectroscopy was applied while scanning in the thickness direction with respect to the film thickness section of the obtained polarized light emitting device. As a result, the energy of the polarized light emitting dye based on 1150 cm -1 and 1600 cm -1 was uniformly detected in the film thickness direction from the surface layer in a film thickness section of 28 μm. From this, it was confirmed that the polarized light emitting dye is uniformly contained in the surface layer of the substrate.
 下記表8、9に、実施例22、23及び比較例15で作製した偏光発光素子において、それぞれToF-SIMS測定により得られた2次イオン強度の比(強度比)に関するデータを示す。2次イオンの強度の比とは、各偏光発光素子においてそれぞれの測定で最も高い2次イオン強度(最大2次イオン強度)の値を1として、この2次イオン強度の値に対する各距離で測定された2次イオン強度の値の比である。また、基材の厚さ(偏光発光素子の膜厚)をLで表す。例えば、下記表8において、基材表側表面から厚さ方向に向けて1/2Lの距離における2次イオン強度の比がIを表し、基材表側表面(0μm)から厚さ方向に向けて1/4Lの距離までの間で検出された2次イオン強度の比と、基材裏側表面(32μm)から厚さ方向に向けて1/4Lの距離までの間で検出された2次イオン強度の比のうち、最大値を示す強度比がIを表す。 Tables 8 and 9 below show data on the ratio (intensity ratio) of secondary ion intensity obtained by the ToF-SIMS measurement in the polarized light emitting elements manufactured in Examples 22 and 23 and Comparative Example 15, respectively. The ratio of the secondary ion intensity is measured at each distance with respect to the secondary ion intensity value, where the value of the highest secondary ion intensity (maximum secondary ion intensity) in each measurement is 1 in each polarization light emitting element. Is the ratio of the secondary ion intensity values. In addition, the thickness of the substrate (film thickness of the polarized light emitting element) is represented by L. For example, in Table 8, the ratio of the secondary ion intensity at a distance of 1 / 2L toward the thickness direction from the substrate front surface represents I 1, toward the thickness direction from the substrate front surface (0 .mu.m) The ratio of the secondary ion intensity detected up to a distance of 1⁄4 L and the secondary ion intensity detected up to a distance of 1⁄4 L in the thickness direction from the substrate backside surface (32 μm) The intensity ratio showing the maximum value represents I 2 among the ratios of
 また、下記表9中、2次イオン強度の比(0~1/4L平均1)とは、基材の表側表面から1/4Lの距離までの間で検出された2次イオン強度の比の平均値(I)を表す。2次イオン強度の比(1/2~1/4L間平均)とは、基材の厚さLの半分(中心)から、基材の表側表面及び裏側表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の平均値(I)を表す。2次イオン強度の比(0~1/4L平均2)とは、基材の裏側表面から1/4Lの距離までの間で検出された2次イオン強度の比の平均値(I)を表す。2次イオン強度の比(0~1/4L積分1)、2次イオン強度の比(1/2~1/4L間積分)、2次イオン強度の比(0~1/4L積分2)とは、それぞれ、2次イオン強度の比の積分値を表し、2次イオン強度の比(0~1/4L積分1)及び2次イオン強度の比(0~1/4L積分2)がI、2次イオン強度の比(1/2~1/4L間積分)がIにそれぞれ相当する。なお、該積分値は、基材の厚さ方向に対して2μm毎に得られた値の積分としている。 Further, in Table 9 below, the ratio of the secondary ion intensity (0 to 1/4 L average 1) is the ratio of the secondary ion intensity detected from the front surface of the base to the distance of 1⁄4 L. Represents the average value (I 3 ). The ratio of the secondary ion strength (average between 1/2 and 1/4 L) is 1 in the thickness direction from the half (center) of the thickness L of the substrate toward the front and back surfaces of the substrate. It represents the average value (I 4 ) of the ratio of secondary ion intensities detected up to a distance of 4 L. The ratio of secondary ion intensities (0 to 1/4 L average 2) means the average value (I 3 ) of the ratio of secondary ion intensities detected from the back surface of the substrate to a distance of 1⁄4 L Represent. Ratio of secondary ion intensity (0 to 1/4 L integral 1), ratio of secondary ion intensity (1/2 to 1/4 L integral), ratio of secondary ion intensity (0 to 1/4 L integral 2) and Represents the integral value of the secondary ion intensity ratio, and the secondary ion intensity ratio (0 to 1/4 L integral 1) and the secondary ion intensity ratio (0 to 1/4 L integral 2) are I 5 , the ratio of the secondary ion intensity (1/2 ~ 1 / 4L between integration) corresponds respectively to I 6. The integral value is the integral of the value obtained every 2 μm in the thickness direction of the substrate.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 上記表8、9の結果から、実施例22及び23で作製した偏光発光素子は、基材の厚み方向に向けて、中心付近(1/2L~1/4L間)においても、比較的高い値の2次イオン強度の比を示していた。このことから、実施例22及び23で作製した偏光発光素子には、基材の表面近傍だけでなく、中心付近までホウ素が多く存在していることがわかる。一方、比較例15で作製した偏光発光素子は、中心付近の2次イオン強度の比の値が低く、基材の表面近傍に対して、中心付近のホウ素が著しく少なかった。 From the results of Tables 8 and 9 above, the polarized light emitting elements produced in Examples 22 and 23 have relatively high values also in the vicinity of the center (between 1/2 L and 1/4 L) in the thickness direction of the substrate. Shows the ratio of secondary ion intensity. From this, it can be seen that in the polarized light emitting elements produced in Examples 22 and 23, a large amount of boron is present not only near the surface of the substrate but also near the center. On the other hand, in the polarized light emitting element produced in Comparative Example 15, the value of the ratio of the secondary ion intensity near the center was low, and the amount of boron near the center was significantly less than that near the surface of the substrate.
 下記表10に、実施例22、23及び比較例12~16で作製した偏光発光素子の最大偏光度を示す波長と、最大偏光度を示す波長における単体透過率(Ts)、平行位透過率(Tp)、直交位透過率(Tc)、偏光度(ρ)及び視感度補正単体透過率(Ys)を示す。 Table 10 below shows the wavelengths indicating the maximum degree of polarization of the polarized light emitting elements produced in Examples 22 and 23 and Comparative Examples 12 to 16, the single transmittance (Ts) at the wavelength indicating the maximum degree of polarization, and the parallel transmittance ( Tp), orthogonal position transmittance (Tc), polarization degree ((), and visibility corrected single transmittance (Ys) are shown.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 また、下記表11に実施例22、23及び比較例13~16で作製した偏光発光素子における最大偏光発光を示す波長と、その波長におけるLs及びLw、並びに、LsとLwとの比を示す。尚、比較例12で作製した偏光発光素子は偏光発光を示さなかったためLs及びLwを測定していない。 Table 11 below shows the wavelengths showing the maximum polarized light emission in the polarized light emitting elements manufactured in Examples 22 and 23 and Comparative Examples 13 to 16, Ls and Lw at that wavelength, and the ratio of Ls to Lw. In addition, since the polarized light emitting element produced in Comparative Example 12 did not exhibit polarized light emission, Ls and Lw were not measured.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 上記表10に示されるように、実施例22及び23で作製した偏光発光素子は、400nmに以下の波長帯域の光を吸収し、その帯域で偏光機能を有していることが分かる。また、実施例22及び23で作製した偏光発光素子は、比較例13~16で作製した偏光発光素子よりも偏光度が高いため、その偏光機能は比較例12~16よりも優れていた。さらに、施例22及び23で作製した偏光発光素子は、可視域の透過率(視感度補正透過率Ys)は約90%を示しており、可視光域における透明度も高いことが分かった。 As shown in Table 10 above, it can be seen that the polarized light emitting elements produced in Examples 22 and 23 absorb light of the following wavelength band at 400 nm, and have a polarization function in that band. In addition, since the polarization light emitting devices produced in Examples 22 and 23 have a higher degree of polarization than the polarization light emitting devices produced in Comparative Examples 13 to 16, their polarization function is superior to that of Comparative Examples 12 to 16. Furthermore, it was found that the polarized light emitting elements produced in Examples 22 and 23 had a transmittance in the visible range (visual sensitivity corrected transmittance Ys) of about 90%, and also had high transparency in the visible light range.
 また、表11に示されるように、実施例22及び23で作製した偏光発光素子は、LwとLsが検出されたため、紫外線を照射することによって偏光発光を示し、また、その偏光の偏光度(Ls/Lw)も比較例13~16で作製した偏光発光素子よりも高かった。さらに、一般的な偏光板で使用されている二色性色素を用いた比較例12は、偏光発光を示さなかった。上記各評価結果から、実施例22及び23で作製した偏光発光素子は、偏光発光可能であり、偏光発光において高い偏光度を有することがわかる。 In addition, as shown in Table 11, since Lw and Ls were detected, the polarized light emitting elements produced in Examples 22 and 23 exhibited polarized light emission by irradiation with ultraviolet light, and the polarization degree of the polarized light ( Ls / Lw) was also higher than that of the polarized light-emitting element produced in Comparative Examples 13-16. Furthermore, Comparative Example 12 using a dichroic dye used in a general polarizing plate did not exhibit polarized light. From the above evaluation results, it can be seen that the polarized light emitting elements produced in Examples 22 and 23 can emit polarized light and have a high degree of polarization in polarized light emission.
[実施例24]
(偏光発光素子の作製)
 厚さ75μmのポリビニルアルコールフィルム(クラレ社製 VF-PS#7500)を40℃の温水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、上記化合物例5-1として記載の4,4’-ビス-(スルホスチリル)ビフェニル二ナトリウム水溶液(BASF社製 Tinopal NFW Liquid)0.3部、芒硝1.0部、水1000部を含む45℃の水溶液に、8分間浸漬させた。得られたフィルムを3%ホウ酸水溶液中50℃で5分間浸漬し、5.0倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま常温の水で20秒間水洗し、乾燥して偏光発光素子を得た。
[Example 24]
(Production of polarized light emitting element)
A 75 μm thick polyvinyl alcohol film (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling is a 0.34 part aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (Tinopal NFW Liquid, manufactured by BASF) described as the compound example 5-1, and 1.0 part of mirabilite. The plate was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 8 minutes. The obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C. for 5 minutes and stretched 5.0 times. The film obtained by stretching was washed with water at normal temperature for 20 seconds while maintaining tension, and dried to obtain a polarized light emitting device.
(偏光発光板の作製)
紫外線吸収剤を含有しないトリアセチルセルロースフィルム(富士フィルム社製 ZRD-60)の両面を、1.5規定の水酸化ナトリウム水溶液を用いて35℃で10分間処理し、水洗し、次いで、70℃で10分乾燥させた。偏光発光素子の両面に、水酸化ナトリウムで処理したトリアセチルセルロースフィルムを、4重量%のポリビニルアルコール樹脂(日本酢ビ・ポバール社製 NH-26)、可視光吸収型色素として、一般的に黒色色素として利用されている特許第4764829号の実施例1に記載されている化合物を0.2重量%含む水溶液でラミネートして、可視光吸収型色素含有層が接着層としてさらに設けられた偏光発光素子を備える偏光発光板を作製した。
(Preparation of polarized light emitting plate)
The both sides of a triacetylcellulose film (ZRD-60 manufactured by Fujifilm Co., Ltd.) containing no ultraviolet light absorber are treated with a 1.5 N aqueous solution of sodium hydroxide at 35 ° C. for 10 minutes, washed with water, and then 70 ° C. Dried for 10 minutes. A triacetyl cellulose film treated with sodium hydroxide on both sides of a polarized light emitting element is 4% by weight of a polyvinyl alcohol resin (NH-26 manufactured by Nippon Shokubai Bi-Poval), generally black as a visible light absorbing type dye Polarized luminescence in which a visible light absorbing dye-containing layer is further provided as an adhesive layer by laminating with an aqueous solution containing 0.2% by weight of the compound described in Example 1 of Patent No. 4764829 used as a dye A polarized light emitting plate provided with an element was produced.
[実施例25]
(偏光発光素子及び偏光発光板の作製)
 実施例24で用いた化合物例5-1に加えて、合成例1で作製した上記式(7)の化合物0.08部を用いた以外は実施例24と同様にして偏光発光素子及び偏光発光板を作製した。
[Example 25]
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
Polarized light-emitting device and polarized light in the same manner as in Example 24 except that in addition to Compound Example 5-1 used in Example 24, the compound of the above formula (7) prepared in Synthesis Example 1 was used in 0.08 part A board was made.
[実施例26]
(偏光発光素子及び偏光発光板の作製)
 実施例24で用いた、実特許第4764829号の実施例1に記載されている化合物(可視光吸収型色素)を0.2重量%含む水溶液に代えて、一般的に橙色色素として利用されている445nmに最も高い光の吸収作用を有するC.I.Direct Orange 39を0.1重量%含む水溶液を用いた以外は実施例24と同様にして偏光発光素子及び偏光発光板を作製した。
[Example 26]
(Preparation of Polarized Light-emitting Element and Polarized Light-emitting Plate)
Generally used as an orange dye instead of an aqueous solution containing 0.2% by weight of the compound (visible light absorbing dye) described in Example 1 of the real patent No. 4764 829 used in Example 24 C. which has the highest light absorption action at 445 nm. I. A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 24 except that an aqueous solution containing 0.1% by weight of Direct Orange 39 was used.
[実施例27]
(偏光発光素子の作製)
 厚さ75μmのポリビニルアルコールフィルム(クラレ社製 VF-PS#7500)を40℃の温水に3分間浸漬して、フィルムを膨潤させた。膨潤して得られたフィルムを、化合物例5-1に記載の4,4’-ビス-(スルホスチリル)ビフェニル二ナトリウム水溶液(BASF社製 Tinopal NFW Liquid)0.3部、芒硝1.0部、水1000部を含む45℃の水溶液に、8分間浸漬させた。得られたフィルムを3%ホウ酸水溶液中50℃で5分間浸漬し、5.0倍に延伸した。延伸して得られたフィルムを、緊張状態を保ったまま特許第4764829号の実施例1に記載されている化合物を0.1部、トリポリ燐酸ナトリウム 1.0部を含む40℃の1000部の温水に20秒間浸漬し、乾燥して偏光発光素子を作製した。
[Example 27]
(Production of polarized light emitting element)
A 75 μm thick polyvinyl alcohol film (VF-PS # 7500 manufactured by Kuraray Co., Ltd.) was immersed in warm water at 40 ° C. for 3 minutes to swell the film. A film obtained by swelling is a 0.34 part aqueous solution of 4,4'-bis- (sulfostyryl) biphenyl disodium (Tinopal NFW Liquid manufactured by BASF) described in Compound Example 5-1, 1.0 part of mirabilite The substrate was immersed in an aqueous solution at 45 ° C. containing 1000 parts of water for 8 minutes. The obtained film was immersed in a 3% aqueous boric acid solution at 50 ° C. for 5 minutes and stretched 5.0 times. A film obtained by stretching is kept at a tension, and 0.1 part of the compound described in Example 1 of Japanese Patent No. 4764 829 and 1000 parts of 40 ° C. containing 1.0 part of sodium tripolyphosphate. It was immersed in warm water for 20 seconds and dried to prepare a polarized light emitting element.
 紫外線吸収剤を含有しないトリアセチルセルロースフィルム(富士フィルム社製 ZRD-60)の両面を、1.5規定の水酸化ナトリウム水溶液を用いて35℃で10分間処理し、水洗し、次いで、70℃で10分乾燥させた。偏光発光素子の両面に、水酸化ナトリウムで処理したトリアセチルセルロースフィルムを、4%のポリビニルアルコール樹脂(日本酢ビ・ポバール社製 NH-26)を含む水溶液を介してラミネートして偏光発光板を作製した。作製した偏光発光板は、偏光発光素子と同じ光学特性を示していた。 The both sides of a triacetylcellulose film (ZRD-60 manufactured by Fujifilm Co., Ltd.) containing no ultraviolet light absorber are treated with a 1.5 N aqueous solution of sodium hydroxide at 35 ° C. for 10 minutes, washed with water, and then 70 ° C. Dried for 10 minutes. A polarized light emitting plate was obtained by laminating a triacetyl cellulose film treated with sodium hydroxide on both sides of a polarized light emitting element via an aqueous solution containing 4% of polyvinyl alcohol resin (NH-26 manufactured by Nippon Shokuhin Bobival Co., Ltd.) Made. The produced polarized light emitting plate exhibited the same optical characteristics as the polarized light emitting element.
[実施例28]
(偏光発光素子の作製)
 実施例27において、延伸して得られたフィルムを、緊張状態を保ったまま特許第4764829号の実施例1に記載されている化合物を0.1部、トリポリ燐酸ナトリウム 1.0部を含む40℃の1000部の温水に20秒間浸漬し、5.0倍に延伸した。その後、延伸方向とは直交方向に1.3倍さらに延伸しながら、乾燥して偏光発光素子を作製した以外は実施例27と同様にして、直交方向にも配向した吸収を有する偏光発光素子、及びその偏光発光板を作製し、測定試料とした。
[Example 28]
(Production of polarized light emitting element)
In Example 27, the film obtained by stretching was maintained in tension, and 0.1 part of the compound described in Example 1 of Patent No. 4764429 and 1.0 part of sodium tripolyphosphate 40 It was immersed in 1000 parts of hot water of 20 ° C. for 20 seconds and stretched 5.0 times. Thereafter, a polarized light emitting element having absorption oriented also in the orthogonal direction in the same manner as in Example 27 except that the polarized light emitting element was produced while drying it while drawing it further 1.3 times in the orthogonal direction to the drawing direction. And the polarization light-emitting plate was produced and used as a measurement sample.
[比較例17]
 可視光吸収型色素としての特許第4764829号の実施例1に記載されている化合物を用いない以外は実施例24と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 17
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 24 except that the compound described in Example 1 of Japanese Patent No. 4764 829 as a visible light absorbing dye was not used.
[比較例18]
 可視光吸収型色素としての特許第4764829号の実施例1に記載されている化合物を用いない以外は実施例25と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 18
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 25 except that the compound described in Example 1 of Japanese Patent No. 4764 829 as a visible light absorbing dye was not used.
[比較例19]
 可視光吸収型色素としての特許第4764829号の実施例1に記載されている化合物を用いない以外は実施例27と同様にして偏光発光素子及び偏光発光板を作製した。
Comparative Example 19
A polarized light emitting element and a polarized light emitting plate were produced in the same manner as in Example 27 except that the compound described in Example 1 of Japanese Patent No. 4764 829 as a visible light absorbing dye was not used.
(偏光発光の偏光度の測定)
 光源(「LED M365L2」ソーラボ社製)から365nmの紫外線を照射し、分光機(「分光ポラリメーターPoxi-Spectora」東京インスツルメンツ社製)を用いて、実施例24~28及び比較例17~19で作製した偏光発光板からの偏光発光のストークススペクトルを測定し、偏光発の偏光度を測定した。
(Measurement of polarization degree of polarized light emission)
The ultraviolet rays of 365 nm were irradiated from a light source ("LED M365L2", Thorlabs), and they were prepared in Examples 24 to 28 and Comparative Examples 17 to 19 using a spectroscope ("Spectropolarimeter Poxi-Spectora", Tokyo Instruments) The Stokes spectrum of the polarized light emission from the polarized light emitting plate was measured, and the degree of polarization of the polarized light was measured.
 表12に、実施例24~28及び比較例17~19で作製した偏光発光板における最大偏光度を示す波長(λabs max)と、視感度補正単体透過率(Ys)及び偏光発光の最大発光波長(460nm)から±30nm範囲での偏光度(DOP)の結果を示す。 Table 12 shows the wavelength (λ abs max) showing the maximum degree of polarization in the polarized light emitting plates manufactured in Examples 24 to 28 and Comparative Examples 17 to 19, the maximum transmittance wavelength of visible light correction single transmittance (Ys) and polarized light emission The result of the degree of polarization (DOP) in the range of (460 nm) to ± 30 nm is shown.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 上記表12に示されるように、実施例24~28で作製した偏光発光板は、紫外光~近紫外可視光域に光を吸収する作用を有しながらも、可視光域において高い透過率を有し、かつ偏光発光を示していることが分かる。また、実施例24~28で作製した偏光発光板は、比較例17~19で作製した偏光発光板と比較して、透過率の低下が2%未満であるにも関わらず実、発光偏光度(DOP)が高くなっていることが分かる。特に、実施例25と比較例18とを比較すると、実施例25で作製した偏光発光板のDOPは3.48%も向上した。 As shown in Table 12 above, the polarized light emitting plates manufactured in Examples 24 to 28 have high transmittance in the visible light region while having the function of absorbing light in the ultraviolet light to near-ultraviolet visible light region. It can be seen that it has polarized light emission. Moreover, compared with the polarized light emitting plates manufactured in Comparative Examples 17 to 19, the polarized light emitting boards manufactured in Examples 24 to 28 actually showed a degree of emission polarization, although the decrease in transmittance was less than 2%. It can be seen that (DOP) is higher. In particular, when Example 25 is compared with Comparative Example 18, the DOP of the polarized light emitting plate manufactured in Example 25 is improved by 3.48%.
(耐久性試験)
 実施例1~28で作製した各測定試料を、105℃の環境下で1000時間、60℃かつ相対湿度90%の環境下で1000時間、それぞれ設置し、1000時間経過前後での偏光発光の比較を行うことによる耐久性試験を実施した。この結果、偏光度の低下、偏光発光特性に顕著な変化は見られなかった。このことから実施例1~28で作製した測定試料は、いずれも苛酷な環境下においても高い耐久性を有していることが示された。
(Durability test)
Each of the measurement samples prepared in Examples 1 to 28 was placed for 1000 hours in an environment of 105 ° C., 1000 hours in an environment of 60 ° C. and 90% relative humidity, and comparison of polarized luminescence before and after 1000 hours. Conducted a durability test. As a result, no reduction in the degree of polarization and no significant change in the polarization emission characteristics were observed. From this, it is shown that all of the measurement samples produced in Examples 1 to 28 have high durability even in a severe environment.
 このように、本発明に係る偏光発光素子及び偏光発光板は、自発光型の偏光フィルム、すなわち偏光発光フィルムとして応用できる。また、このような偏光発光素子及び偏光発光板は、優れた耐久性を具備しつつ、可視光域で高い透過率を有する。一般的に、コントラスト値が10を超えると人の目による視認性は飛躍的に向上する。例えば、新聞紙面における文字のコントラスト値、一般的な書籍文字のコントラスト値は5~10の範囲である。本発明に係る偏光発光素子及び偏光発光板は、この範囲を大幅に上回るコントラスト値を有する偏光発光を可能とする。したがって、本発明に係る偏光発光素子及び偏光発光板を用いた表示装置は、可視光領域で透明性が高く、長期にわたって、偏光発光による画像表示が可能であるため、テレビ、パソコン、タブレット端末、さらには、透明ディスプレイ(シースルーディスプレイ)等、幅広い用途へ適用可能である。さらに、本偏光発光色素としてスチルベン系化合物を用いて作製された偏光発光素子は、紫外光により発光可能である。そのため、発明に係る偏光発光素子及び偏光発光板は、人間の目で認識しにくい紫外光等非可視光照射により機能発現が求められるような、高いセキュリティが要求されるディスプレイやセンサー等の機能媒体に応用することも可能である。 Thus, the polarized light emitting element and the polarized light emitting plate according to the present invention can be applied as a self-luminous polarizing film, that is, a polarized light emitting film. In addition, such a polarized light emitting element and a polarized light emitting plate have high transmittance in the visible light range while having excellent durability. In general, when the contrast value exceeds 10, the visibility by human eyes is dramatically improved. For example, the contrast value of characters in newspaper paper and the contrast value of general book characters are in the range of 5 to 10. The polarized light emitting element and the polarized light emitting plate according to the present invention enable polarized light emission having a contrast value which greatly exceeds this range. Therefore, the polarized light emitting element and the display device using the polarized light emitting plate according to the present invention have high transparency in the visible light region and can display an image by polarized light emission over a long period of time. Furthermore, it is applicable to a wide range of applications, such as a transparent display (see-through display). Furthermore, a polarized light emitting element produced using a stilbene compound as the present polarized light emitting dye can emit light by ultraviolet light. Therefore, in the polarized light emitting element and the polarized light emitting plate according to the invention, a functional medium such as a display, a sensor or the like which requires high security such that the functional expression is required by irradiation of non-visible light such as ultraviolet light It is also possible to apply to

Claims (29)

  1.  光の吸収を利用して偏光発光可能な少なくとも1種の偏光発光色素を基材に配向させた偏光発光素子であって、
     前記偏光発光色素が、吸収された光の波長領域において偏光作用を示し、かつ、前記偏光作用が最も高い波長において、下記式(I)で算出されるオーダーパラメーター(OPD)の値が、0.81~0.95であることを特徴とする、偏光発光素子。
    Figure JPOXMLDOC01-appb-M000001
    (上記式(I)中、Kyは、前記偏光発光素子において最も高い光の吸収を示す軸に対して直交位に偏光した光が入射した場合の光透過率を表し、Kzは、前記偏光発光素子において最も高い光の吸収を示す軸に対して平行位に偏光した光が入射した場合の光透過率を表す。)
    A polarized light emitting element in which at least one polarized light emitting dye capable of polarized light emission is oriented on a substrate by using absorption of light,
    The polarized light emitting dye exhibits a polarization action in the wavelength region of the absorbed light, and at the wavelength at which the polarization action is the highest, the value of the order parameter (OPD) calculated by the following formula (I) is 0. A polarized light emitting device characterized in that it is 81 to 0.95.
    Figure JPOXMLDOC01-appb-M000001
    (In the above formula (I), Ky represents the light transmittance when light polarized orthogonal to the axis showing absorption of the highest light in the polarized light emitting element is incident, and Kz represents the polarized light emission Indicates the light transmittance when light polarized parallel to the axis showing the highest light absorption in the device is incident.)
  2.  前記少なくとも1種の偏光発光色素が、蛍光発光特性を有する、請求項1に記載の偏光発光素子。 The polarized light emitting device according to claim 1, wherein the at least one polarized light emitting pigment has fluorescence emission characteristics.
  3.  前記少なくとも1種の偏光発光色素が、紫外光領域~近紫外可視光領域の光を吸収することにより可視光領域の光を偏光発光可能な蛍光発光特性を有する、請求項1または2に記載の偏光発光素子。 The at least one type of polarized light emitting dye has a fluorescence emission characteristic capable of polarized light emission of light in the visible light region by absorbing light in the ultraviolet light region to the near ultraviolet visible light region. Polarized light emitting element.
  4.  前記少なくとも1種の偏光発光色素が、ビフェニル骨格又はスチルベン骨格を有する、請求項1~3のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 1 to 3, wherein the at least one polarized light emitting dye has a biphenyl skeleton or a stilbene skeleton.
  5.  前記偏光発光素子が、JIS Z 8781-4:2013に従って測定される色度aの絶対値が5以下であり、かつ色相bの絶対値が5以下である発光色を示す、請求項4に記載の偏光発光素子。 The polarized light emitting element exhibits an emission color having an absolute value of chromaticity a * measured according to JIS Z 8781-4: 2013 of 5 or less and an absolute value of hue b * of 5 or less. The polarized light emitting element as described in.
  6.  前記少なくとも1種の偏光発光色素が、下記式(1)で表される化合物又はその塩である、請求項4または5に記載の偏光発光素子。
    Figure JPOXMLDOC01-appb-C000002
    (式中、L及びMは、各々独立に、ニトロ基、置換基を有してもよいアミノ基、置換基を有してもよいカルボニルアミド基、置換基を有してもよいナフトトリアゾール基、置換基を有してもよいC-C20アルキル基、置換基を有してもよいビニル基、置換基を有してもよいアミド基、置換基を有してもよいウレイド基、置換基を有してもよいアリール基及び置換基を有してもよいカルボニル基からなる群から選択される。)
    The polarized light emitting element according to claim 4 or 5, wherein the at least one polarized light emitting dye is a compound represented by the following formula (1) or a salt thereof.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, L and M each independently represent a nitro group, an amino group which may have a substituent, a carbonylamide group which may have a substituent, a naphthotriazole group which may have a substituent) A C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, an amido group which may have a substituent, a ureide group which may have a substituent, It is selected from the group consisting of an aryl group which may have a substituent and a carbonyl group which may have a substituent.)
  7.  前記式(1)で表される化合物が、下記式(2)又は式(3)で表される化合物である、請求項6に記載の偏光発光素子。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、Xはニトロ基、又は置換基を有してもよいアミノ基を表し、Rは水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、ニトロ基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルコキシ基、又は置換基を有していてもよいアミノ基を表し、nは0~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(3)中、Yは置換基を有していてもよいC-C20アルキル基、置換基を有していてもよいビニル基、又は置換基を有していてもよいアリール基を表し、Zは、ニトロ基、又は置換基を有してもよいアミノ基を表す。)
    The polarized light-emitting device according to claim 6, wherein the compound represented by the formula (1) is a compound represented by the following formula (2) or formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (2), X represents a nitro group or an amino group which may have a substituent, and R has a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a nitro group or a substituent Represents an alkyl group which may be substituted, an alkoxy group which may have a substituent, or an amino group which may have a substituent, and n represents an integer of 0 to 3.)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (3), Y is a C 1 -C 20 alkyl group which may have a substituent, a vinyl group which may have a substituent, or an aryl group which may have a substituent And Z represents a nitro group or an amino group which may have a substituent.)
  8.  前記式(2)において、Xはニトロ基、置換基を有してもよいC-C20アルキルカルボニルアミノ基、置換基を有してもよいアリールカルボニルアミノ基、C-C20アルキルスルホニルアミノ基、又は置換基を有してもよいアリールスルホニルアミノ基である、請求項7に記載の偏光発光素子。 In the above formula (2), X is a nitro group, a C 1 -C 20 alkylcarbonylamino group which may have a substituent, an arylcarbonylamino group which may have a substituent, C 1 -C 20 alkylsulfonyl The polarized light-emitting device according to claim 7, which is an amino group or an arylsulfonylamino group which may have a substituent.
  9.  前記式(2)において、Rが水素原子であり、nが1または2である、請求項7又は8に記載の偏光発光素子。 The polarized light-emitting device according to claim 7 or 8, wherein in the formula (2), R is a hydrogen atom and n is 1 or 2.
  10.  前記式(2)において、Rがメチル基である、請求項7又は8に記載の偏光発光素子。 The polarized light emitting element according to claim 7 or 8, wherein in the formula (2), R is a methyl group.
  11.  前記式(3)において、Yが置換基を有してもよいアリール基である、請求項7~10のいずれか1項に記載の偏光発光素子。 The polarized light-emitting device according to any one of claims 7 to 10, wherein Y is an aryl group which may have a substituent in the formula (3).
  12.  前記基材が親水性高分子を含む、請求項1~11のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 1 to 11, wherein the substrate contains a hydrophilic polymer.
  13.  上記親水性高分子が、ポリビニルアルコールを含む、請求項12に記載の偏光発光素子。 The polarized light-emitting device according to claim 12, wherein the hydrophilic polymer comprises polyvinyl alcohol.
  14.  前記基材が、配向された親水性高分子フィルムである、請求項1~13のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 1 to 13, wherein the substrate is an oriented hydrophilic polymer film.
  15.  前記基材が、ホウ素化合物をさらに含む、請求項1~14のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 1 to 14, wherein the substrate further comprises a boron compound.
  16.  前記基材の厚さ方向において飛行時間型二次イオン質量分析法により測定された前記ホウ素化合物に由来する2次イオン強度が、I≦30×Iの関係を満たし、
    が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の少なくとも片面の表面から厚さ方向に向けて1/2Lの距離において検出された2次イオン強度の比を表し、
    が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の両表面からそれぞれ前記基材の厚さ方向に向けて1/4Lの距離までの間で検出された2次イオン強度の比の最大値を表す、請求項15に記載の偏光発光素子。
    The secondary ion intensity derived from the boron compound measured by time-of-flight secondary ion mass spectrometry in the thickness direction of the substrate satisfies the relationship of I 2 ≦ 30 × I 1 ,
    I 1 is secondary ion intensity detected in the thickness detected maximum secondary least distance 1 / 2L toward the one side surface in the thickness direction of the relative ionic strength substrate at L of the base material Represents the ratio of
    I 2 is detected between a distance of 1/4 L from the both surfaces of the substrate to the maximum secondary ion intensity detected at the thickness L of the substrate respectively in the thickness direction of the substrate The polarized light emitting device according to claim 15, which represents the maximum value of the ratio of the secondary ion intensities.
  17.  前記ホウ素化合物に由来する2次イオン強度が、I≦5×Iの関係をさらに満たし、
    が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度の比の平均値を表し、
    が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記厚さLの中心から前記基材の両表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の平均値を表す、請求項16に記載の偏光発光素子。
    The secondary ion intensity derived from the boron compound further satisfies the relationship of I 3 ≦ 5 × I 4 ,
    I 3 is the ratio of the secondary ion intensity detected between the distance of 1 / 4L from at least one side surface of said substrate with respect to the maximum secondary ion intensity detected by the thickness L of the base material Represents the average value,
    I 4 is a distance of 1⁄4 L in the thickness direction from the center of the thickness L to the maximum secondary ion intensity detected at the thickness L of the substrate toward both surfaces of the substrate The polarized light emitting device according to claim 16, which represents an average value of the ratio of secondary ion intensities detected between them.
  18.  前記ホウ素化合物に由来する2次イオン強度が、I≦2×Iの関係をさらに満たし、
    が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記基材の少なくとも片面の表面から1/4Lの距離までの間で検出された2次イオン強度の比の積分値を表し、
    が、前記基材の厚さLにて検出された最大2次イオン強度に対する前記厚さLの中心から前記基材の両表面に向けて厚さ方向にそれぞれ1/4Lの距離までの間で検出された2次イオン強度の比の積分値を表す、請求項16又は17に記載の偏光発光素子。
    The secondary ion intensity derived from the boron compound further satisfies the relationship of I 5 ≦ 2 × I 6 ,
    I 5 is the ratio of the secondary ion intensity detected between the distance of 1 / 4L from at least one side surface of said substrate with respect to the maximum secondary ion intensity detected by the thickness L of the base material Represents an integral value,
    I 6 up to a distance of 1⁄4 L each in the thickness direction from the center of the thickness L to the maximum secondary ion intensity detected at the thickness L of the substrate from the center to both surfaces of the substrate The polarized light emitting element according to claim 16 or 17, which represents an integral value of a ratio of secondary ion intensities detected between the two.
  19.  前記ホウ素化合物に由来する2次イオン強度の濃度分布が、前記基材の表面から3μm~20μmの間に少なくとも存在する、請求項16~18のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 16 to 18, wherein the concentration distribution of the secondary ion intensity derived from the boron compound is present at least between 3 μm and 20 μm from the surface of the substrate.
  20.  前記偏光発光素子が、前記偏光発光色素とは異なる少なくとも1種の蛍光染料及び/又は有機染料をさらに含む、請求項1~19のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 1 to 19, wherein the polarized light emitting device further comprises at least one fluorescent dye and / or an organic dye different from the polarized light emitting dye.
  21.  前記偏光発光素子の少なくとも一方の表面に、可視光吸収型色素含有層がさらに備えられている、請求項1~20のいずれか1項に記載の偏光発光素子。 The polarized light emitting device according to any one of claims 1 to 20, further comprising a visible light absorbing dye-containing layer on at least one surface of the polarized light emitting device.
  22.  前記可視光吸収型色素含有層による可視光透過率の低下率が、50%以下である、請求項21に記載の偏光発光素子。 22. The polarized light emitting device according to claim 21, wherein a reduction rate of visible light transmittance by the visible light absorbing dye containing layer is 50% or less.
  23.  前記可視光吸収型色素含有層が光吸収異方性を有し、該光吸収異方性に基づく光の吸収方向が、前記偏光発光素子による偏光発光に対して直交方向である、請求項21または22に記載の偏光発光素子。 22. The visible light absorbing dye-containing layer has light absorption anisotropy, and the absorption direction of light based on the light absorption anisotropy is orthogonal to polarized light emission by the polarized light emitting element. Or 22. The polarized light-emitting element as described in 22.
  24.  請求項1~23のいずれか1項に記載の偏光発光素子と、該偏光発光素子の片面又は両面に設けられた透明保護層とを備える偏光発光板。 A polarized light emitting plate comprising the polarized light emitting device according to any one of claims 1 to 23 and a transparent protective layer provided on one side or both sides of the polarized light emitting device.
  25.  前記透明保護層が、紫外光吸収機能を有さないプラスチックフィルムである、請求項24に記載の偏光発光板。 The polarized light-emitting plate according to claim 24, wherein the transparent protective layer is a plastic film having no ultraviolet light absorption function.
  26.  さらに支持体層を含む、請求項24または25に記載の偏光発光板。 26. The polarized light emitting plate according to claim 24, further comprising a support layer.
  27.  請求項1~23のいずれか1項に記載の偏光発光素子、又は請求項24~26のいずれか1項に記載の偏光発光板を含む表示装置。 A display device comprising the polarized light emitting element according to any one of claims 1 to 23, or the polarized light emitting plate according to any one of claims 24 to 26.
  28.  前記偏光発光素子の少なくとも一方の表面に、可視光吸収型色素含有層がさらに設けられ、かつ、
    前記可視光吸収型色素含有層が、少なくとも観察者側に設けられている、請求項27に記載の表示装置。
    A visible light absorbing dye-containing layer is further provided on at least one surface of the polarized light emitting element, and
    The display device according to claim 27, wherein the visible light absorbing dye-containing layer is provided at least on the viewer side.
  29.  前記偏光発光色素を含有する基材に前記ホウ素化合物を含有させながら延伸させるか、又は前記ホウ素化合物を基材に含有させた後に延伸させる、請求項15~19のいずれか1項に記載の偏光発光素子の製造方法。 20. The polarized light according to any one of claims 15 to 19, which is stretched while containing the boron compound in the substrate containing the polarized light-emitting dye, or stretched after containing the boron compound in the substrate. Method of manufacturing a light emitting device
PCT/JP2018/028164 2017-07-28 2018-07-26 Polarized-light-emitting element, polarized-light-emitting plate, display device, and method for manufacturing polarized-light-emitting element WO2019022212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880042198.6A CN110832363B (en) 2017-07-28 2018-07-26 Polarized light emitting element, polarized light emitting panel, display device, and method for manufacturing polarized light emitting element
JP2019532873A JP7287889B2 (en) 2017-07-28 2018-07-26 POLARIZED LIGHT-EMITTING ELEMENT, POLARIZED LIGHT-EMITTING PLATE, DISPLAY DEVICE, AND METHOD FOR MANUFACTURING POLARIZED LIGHT-EMITTING ELEMENT

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2017-146354 2017-07-28
JP2017-146398 2017-07-28
JP2017146398 2017-07-28
JP2017146354 2017-07-28
JP2017-146355 2017-07-28
JP2017146355 2017-07-28
JP2017-179677 2017-09-20
JP2017179677 2017-09-20
JP2017232387 2017-12-04
JP2017-232387 2017-12-04
JP2018031820 2018-02-26
JP2018-031820 2018-02-26
JP2018094216 2018-05-16
JP2018-094216 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019022212A1 true WO2019022212A1 (en) 2019-01-31

Family

ID=65040460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028164 WO2019022212A1 (en) 2017-07-28 2018-07-26 Polarized-light-emitting element, polarized-light-emitting plate, display device, and method for manufacturing polarized-light-emitting element

Country Status (4)

Country Link
JP (1) JP7287889B2 (en)
CN (1) CN110832363B (en)
TW (1) TWI783016B (en)
WO (1) WO2019022212A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170697A1 (en) * 2019-02-22 2020-08-27 住友化学株式会社 Laminate and image display device
WO2020235413A1 (en) * 2019-05-17 2020-11-26 株式会社ポラテクノ Optical element or polarizing plate, and eyewear using same
WO2021010351A1 (en) * 2019-07-12 2021-01-21 日本化薬株式会社 Polarized light emitting element using light emitting compound or salt thereof, polarized light emitting plate, and display device
JP2021086120A (en) * 2019-11-29 2021-06-03 日本化薬株式会社 Liquid crystal cell and liquid crystal display device
WO2021106798A1 (en) * 2019-11-29 2021-06-03 日本化薬株式会社 Polarized light-emitting element, polarized light-emitting plate, and display device
WO2021166907A1 (en) * 2020-02-17 2021-08-26 日本化薬株式会社 Optical system and optical device comprising the same
JP2021123823A (en) * 2020-02-06 2021-08-30 日本化薬株式会社 Polarized light emitting fiber and method for producing the same
JP2021140052A (en) * 2020-03-06 2021-09-16 日本化薬株式会社 Coating type polarized light-emitting element
CN113474692A (en) * 2019-02-22 2021-10-01 住友化学株式会社 Laminate and image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020091478A (en) * 2018-11-22 2020-06-11 日本化薬株式会社 Polarized light emitting device, polarized light emitting plate, and display using the same
TWI826705B (en) * 2019-07-12 2023-12-21 日商日本化藥股份有限公司 Luminescent compound or salt thereof, and polarizing luminescent element, polarizing luminescent plate, and display comprising the same
JPWO2021010337A1 (en) * 2019-07-12 2021-01-21

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276316A (en) * 1961-08-02 1966-10-04 Polaroid Corp Process for polarizing ultraviolet light utilizing oriented polymer sheet with incorporated dichroic fluorescent dye
JPH0873762A (en) * 1994-09-08 1996-03-19 Mitsui Toatsu Chem Inc Azo compound and polarizing film using same
JP2001174636A (en) * 1999-12-17 2001-06-29 Asahi Kasei Corp Fluorescent polarizing plate
JP2001174809A (en) * 1999-12-15 2001-06-29 Asahi Kasei Corp Flat polarized light emitter
JP2002110363A (en) * 2000-09-29 2002-04-12 Hitachi Ltd Organic electroluminescent element and photoelectron element using the same
JP2007264011A (en) * 2006-03-27 2007-10-11 Konica Minolta Holdings Inc Display element
JP2011231245A (en) * 2010-04-28 2011-11-17 Mitsubishi Chemicals Corp Fluorescent dichroic dye, fluorescent dichroic dye composition, dye for wavelength conversion, liquid crystal composition, wavelength conversion element, and liquid crystal element using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422559B (en) * 2009-12-01 2014-01-11 Toyo Ink Mfg Co Blue coloring composition for color filter, color filter and color display
WO2012157663A1 (en) * 2011-05-18 2012-11-22 東洋紡株式会社 Liquid crystal display device, polarizing plate, and polarizer protection film
CN103649793B (en) * 2011-07-22 2017-07-21 日本化药株式会社 Polarization element and polarizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276316A (en) * 1961-08-02 1966-10-04 Polaroid Corp Process for polarizing ultraviolet light utilizing oriented polymer sheet with incorporated dichroic fluorescent dye
JPH0873762A (en) * 1994-09-08 1996-03-19 Mitsui Toatsu Chem Inc Azo compound and polarizing film using same
JP2001174809A (en) * 1999-12-15 2001-06-29 Asahi Kasei Corp Flat polarized light emitter
JP2001174636A (en) * 1999-12-17 2001-06-29 Asahi Kasei Corp Fluorescent polarizing plate
JP2002110363A (en) * 2000-09-29 2002-04-12 Hitachi Ltd Organic electroluminescent element and photoelectron element using the same
JP2007264011A (en) * 2006-03-27 2007-10-11 Konica Minolta Holdings Inc Display element
JP2011231245A (en) * 2010-04-28 2011-11-17 Mitsubishi Chemicals Corp Fluorescent dichroic dye, fluorescent dichroic dye composition, dye for wavelength conversion, liquid crystal composition, wavelength conversion element, and liquid crystal element using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMASHITA YOSHIO: "Fluorescence and Photostability of Aqueous Solution of Asymmetrically-substituted Derivatives of Sodium 4, 4'-diaminostilbene-2, 2'-disulfonate. Studies of Fluorescent Whitening Agents. Part V", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 30, no. 9, 1 September 1972 (1972-09-01), pages 818 - 822, XP009518576, ISSN: 0037-9980, DOI: 10.5059/yukigoseikyokaishi.30.818 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170697A1 (en) * 2019-02-22 2020-08-27 住友化学株式会社 Laminate and image display device
CN113474692A (en) * 2019-02-22 2021-10-01 住友化学株式会社 Laminate and image display device
WO2020235413A1 (en) * 2019-05-17 2020-11-26 株式会社ポラテクノ Optical element or polarizing plate, and eyewear using same
JPWO2020235413A1 (en) * 2019-05-17 2020-11-26
JP7442517B2 (en) 2019-05-17 2024-03-04 日本化薬株式会社 Optical elements or polarizing plates and eyewear using them
EP3971636A4 (en) * 2019-05-17 2023-06-14 Nippon Kayaku Kabushiki Kaisha Optical element or polarizing plate, and eyewear using same
WO2021010351A1 (en) * 2019-07-12 2021-01-21 日本化薬株式会社 Polarized light emitting element using light emitting compound or salt thereof, polarized light emitting plate, and display device
WO2021106798A1 (en) * 2019-11-29 2021-06-03 日本化薬株式会社 Polarized light-emitting element, polarized light-emitting plate, and display device
CN114730029A (en) * 2019-11-29 2022-07-08 日本化药株式会社 Polarized light emitting element, polarized light emitting panel and display device
JP2021086120A (en) * 2019-11-29 2021-06-03 日本化薬株式会社 Liquid crystal cell and liquid crystal display device
JP7448910B2 (en) 2019-11-29 2024-03-13 日本化薬株式会社 Liquid crystal cells and liquid crystal display devices
JP2021123823A (en) * 2020-02-06 2021-08-30 日本化薬株式会社 Polarized light emitting fiber and method for producing the same
JP7429127B2 (en) 2020-02-06 2024-02-07 日本化薬株式会社 Polarized luminescent fiber and its manufacturing method
WO2021166907A1 (en) * 2020-02-17 2021-08-26 日本化薬株式会社 Optical system and optical device comprising the same
JP2021140052A (en) * 2020-03-06 2021-09-16 日本化薬株式会社 Coating type polarized light-emitting element
JP7337007B2 (en) 2020-03-06 2023-09-01 日本化薬株式会社 Coated polarized light emitting device

Also Published As

Publication number Publication date
TWI783016B (en) 2022-11-11
TW201910439A (en) 2019-03-16
JP7287889B2 (en) 2023-06-06
CN110832363A (en) 2020-02-21
JPWO2019022212A1 (en) 2020-08-20
CN110832363B (en) 2022-07-22

Similar Documents

Publication Publication Date Title
JP7287889B2 (en) POLARIZED LIGHT-EMITTING ELEMENT, POLARIZED LIGHT-EMITTING PLATE, DISPLAY DEVICE, AND METHOD FOR MANUFACTURING POLARIZED LIGHT-EMITTING ELEMENT
CN111133347B (en) Optical system and display device
JP7200108B2 (en) Stilbene compound or salt thereof, polarizing film, polarizing plate and display device
JP2019056904A (en) Plane polarized light emitting element
EP3971636A1 (en) Optical element or polarizing plate, and eyewear using same
JP7429105B2 (en) Polarized light emitting plate and optical device equipped with the same
WO2021166907A1 (en) Optical system and optical device comprising the same
JP7336964B2 (en) optical control system
WO2021215332A1 (en) Optical member, and image display device using same
JP2020091478A (en) Polarized light emitting device, polarized light emitting plate, and display using the same
WO2021010340A1 (en) Luminescent compound or salt thereof, and polarized light emitting element, polarized light emitting plate and display device each using same
WO2021106798A1 (en) Polarized light-emitting element, polarized light-emitting plate, and display device
JP7288298B2 (en) Display device
JP7452969B2 (en) Polarized light emitting plate and optical device equipped with the same
JP7411361B2 (en) Polarized light source and display device that suppresses light reflection
TWI826705B (en) Luminescent compound or salt thereof, and polarizing luminescent element, polarizing luminescent plate, and display comprising the same
WO2021010351A1 (en) Polarized light emitting element using light emitting compound or salt thereof, polarized light emitting plate, and display device
TWI825331B (en) Luminescent compound or salt thereof, and polarizing luminescent element, polarizing luminescent plate, and display comprising the same
CN114026199B (en) Polarized light emitting film, polarized light emitting panel and display device containing water-soluble coumarin compound or salt thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838982

Country of ref document: EP

Kind code of ref document: A1