WO2019022160A1 - Nucleic acid structure for gene expression, and use thereof - Google Patents

Nucleic acid structure for gene expression, and use thereof Download PDF

Info

Publication number
WO2019022160A1
WO2019022160A1 PCT/JP2018/027963 JP2018027963W WO2019022160A1 WO 2019022160 A1 WO2019022160 A1 WO 2019022160A1 JP 2018027963 W JP2018027963 W JP 2018027963W WO 2019022160 A1 WO2019022160 A1 WO 2019022160A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
ltr
virus
blv
Prior art date
Application number
PCT/JP2018/027963
Other languages
French (fr)
Japanese (ja)
Inventor
間 陽子
寛幸 大附
太一 野呂
泰子 永井
Original Assignee
国立研究開発法人理化学研究所
株式会社微生物化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所, 株式会社微生物化学研究所 filed Critical 国立研究開発法人理化学研究所
Publication of WO2019022160A1 publication Critical patent/WO2019022160A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a nucleic acid construct for gene expression and its use, and in one aspect of the present invention, to a nucleic acid construct which is particularly suitable for the production of a polypeptide and its use.
  • Techniques for producing a target polypeptide by expressing a gene are widely spread not only in the field of academic research but also in industry.
  • various techniques for obtaining a target polypeptide more efficiently and in a large amount have been considered in the production of peptide pharmaceuticals including peptide vaccines.
  • target polypeptides there are those which can be relatively easily mass-produced by expressing genes, and those which are difficult to mass-produce.
  • An example of a target polypeptide which is difficult to mass-produce is bovine leukemia virus (BLV).
  • BLV is a retrovirus that causes endemic bovine leukemia (EBL), a malignant B lymphoma. About 5% of BLV-infected cattle develop leukemia and die after a long incubation period (5 to 10 years). There is no effective preventive and root treatment, and the infection rate and the incidence rate are increasing at home and abroad, and there is concern about the impact on the livestock industry.
  • the current remedy is isolation or bribery, but has not been able to prevent the spread. Therefore, the establishment of preventive methods and therapeutic methods by medicines such as peptide vaccines is urgently needed.
  • BLV has long terminal repeats (LTRs) at the 5 'and 3' ends of its provirus, and each LTR is composed of U3, R and U5 regions. Transcription of the BLV provirus into mRNA is initiated at the boundary of the U3 and R regions of the 5 'LTR. These LTRs exert efficient transcription promoter activity only in cells that are proliferatively infected by BLV (Non-patent Document 1). Although BLV can be integrated into various sites of the host genome, transcription of the BLV gene does not seem to be essential in tumorigenic cells (Non-patent Document 2). In fact, transcription of the BLV genome in new tumor cells or peripheral blood mononuclear cells (PBMCs) from infected individuals is almost undetectable by conventional techniques (Non-patent Documents 2 and 3).
  • PBMCs peripheral blood mononuclear cells
  • Patent Document 1 the prior art described in Patent Document 1 or the like is a technology that utilizes only a small portion of the polypeptides that constitute BLV. Since the animal's immune mechanism is extremely complex, for example, when producing a peptide vaccine, when using substantially all of the BLV-constituting polypeptides and using only a small portion, It is unclear whether they can elicit a similar immune response. Therefore, in order to present various options regarding available polypeptides, establishment of a method capable of obtaining the target polypeptide more efficiently and in a large amount even when targeting genes that are relatively difficult to express, etc. Is required.
  • one aspect of the present invention aims to provide a nucleic acid construct suitable for producing a polypeptide, and its use.
  • the present invention includes the following one mode.
  • a nucleic acid construct for gene expression in animal cells comprising a forward-directed sequence derived from the long terminal repeat (LTR) of bovine leukemia virus (BLV).
  • LTR long terminal repeat
  • BLV bovine leukemia virus
  • nucleic acid construct suitable for producing a polypeptide there is an effect that a nucleic acid construct suitable for producing a polypeptide, and its use can be provided.
  • the nucleic acid construct according to this embodiment is a novel nucleic acid construct used for gene expression in animal cells, and in one example, is suitable for producing a polypeptide.
  • the nucleic acid construct is derived from an expression control sequence derived from the promoter region of the virus and a long terminal repeat (LTR) of bovine leukemia virus (BLV), which is disposed in the positive direction downstream of the expression control sequence.
  • LTR long terminal repeat
  • BLV bovine leukemia virus
  • gene expression refers to both or one of transcription of a gene and translation of transcribed RNA into a polypeptide.
  • gene expression control refers to control performed at any time from transcription of a gene to translation into a polypeptide, and the timing at which the control is performed and the mechanism thereof are not particularly limited.
  • the "expression control sequence" of a gene refers to a "polynucleotide” that controls the expression of the gene.
  • An example of the "expression control sequence” is the sequence of a promoter region.
  • sequences other than the “expression control sequence” also contribute to the control of gene expression is not excluded.
  • nucleic acid refers to a polynucleotide, and includes DNA, RNA and the like.
  • the nucleic acid may be single stranded or double stranded.
  • the expression control sequence is derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40) and rous sarcoma virus (RSV). An expression control sequence derived from any of the above viruses is used.
  • CMV human cytomegalovirus
  • SV40 simian virus 40
  • RSV rous sarcoma virus
  • a "promoter region" derived from a certain virus is a region including a promoter and an enhancer in a target virus, and also referred to as a promoter / enhancer or a whole promoter.
  • the sequence derived from the promoter region of the virus is not limited to the full length of the promoter region of the virus, and may be part of the promoter region, such as, for example, only the promoter or only the enhancer.
  • the expression control sequence is derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40) and rous sarcoma virus (RSV), 1) to 3) below: Including any of).
  • CMV human cytomegalovirus
  • SV40 simian virus 40
  • RSV rous sarcoma virus
  • 1) Promoter 2) Enhancer 3) Promoter and Enhancer As promoters or enhancers of each virus, for example, the following can be used.
  • CMV promoter / enhancer CMV IE promoter / IE enhancer ⁇ SV40 promoter / enhancer: SV40 early promoter / enhancer ⁇ RSV Promoter / Enhancer: RSV LTR
  • the expression control sequence comprises a promoter and an enhancer derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40), rous sarcoma virus (RSV) (For example, the case where the entire length of the promoter region described above is included corresponds to this preferred case).
  • CMV human cytomegalovirus
  • SV40 simian virus 40
  • RSV rous sarcoma virus
  • the expression control sequence contains a promoter and enhancer derived from a virus selected from the above, it is possible to more preferably express the gene in animal cells more preferably.
  • the sequence derived from the virus promoter region may not have the same sequence as the sequence in the wild type virus promoter region, and may be a sequence modified from the wild type virus promoter region.
  • the CMV IE promoter constituting the pIRES vector which is a commercially available vector for gene expression, is included in the “promoter derived from the promoter region of virus” according to the present embodiment.
  • the expression control sequence is preferably derived from the CMV promoter region.
  • gene expression can be particularly suitably induced in animal cells.
  • the expression control sequence comprises any of the following 1) to 3) derived from the promoter region of CMV. 1) Promoter 2) Enhancer 3) Promoter and Enhancer Further preferably, the expression control sequence comprises a promoter and an enhancer derived from the promoter region of CMV.
  • the expression control sequence is the full length CMV IE promoter constituting the pIRES vector.
  • gene expression can be particularly suitably induced in animal cells by using the full-length CMV IE promoter as the expression control sequence.
  • a sequence containing the full length of the CMV IE promoter and a sequence containing the CMV IE enhancer are shown as an example.
  • the full-length CMV IE promoter and the CMV IE enhancer in the following sequences may be partially different from the full-length CMV IE promoter and the sequence of the CMV IE enhancer registered in known databases and the like.
  • the CMV promoter or enhancer is 90% or more in sequence identity with the full-length CMV IE promoter contained in 1) above, or the sequence of CMV IE enhancer contained in 2) In a preferred embodiment, it has a sequence identity of 95% or more, more preferably 96% or more, particularly preferably 97% or more, 98% or 99% or more.
  • LTR-derived sequence The sequence derived from the LTR of BLV (hereinafter also referred to as LTR-derived sequence) is not limited to the full length of LTR of BLV, and may be only a part of LTR of BLV.
  • the sequence derived from LTR of BLV may be, for example, one lacking part of any of the U3, R and U5 regions of LTR.
  • the LTR derived sequence lacks at least a portion of the U3 region.
  • the LTR-derived sequence lacks any one (more preferably both) of the following 1) or 2) of the U3 region.
  • the U3 region in the BLV provirus (DNA) is a region not transcribed to mRNA, and even if the U3 region is absent, it is considered that the function of LTR after transcription is not affected.
  • the LTR-derived sequence lacks the entire length of the U3 region.
  • the LTR-derived sequence lacking the full length of the U3 region enables gene expression in animal cells to be performed more suitably.
  • the LTR-derived sequence may not have the same sequence as the wild-type BLV LTR, and may be a sequence modified from the wild-type BLV LTR sequence.
  • the above LTR-derived sequence functionally linked to the downstream side of the expression control sequence may be derived from either the 5 'LTR or the 3' LTR, preferably a sequence derived from the 5 'LTR. It is.
  • a sequence including the sequence of the 5 'LTR of BLV and the sequence lacking the entire length of the 5' LTR to U3 region of BLV (hereinafter also referred to as ⁇ U3 sequence) is shown as an example.
  • the sequences of LV 5 'LTR and BLV ⁇ U 3 contained in the following sequences may be partially different from BLV 5' LTR and BLV ⁇ U 3 sequences registered in known databases etc. There is sex.
  • 5 'LTR of BLV SEQ ID NO: 3
  • ⁇ U3 sequence of BLV SEQ ID NO: 4
  • the 5 'LTR of BLV and the ⁇ U 3 sequence of BLV have a sequence identity of 90% or more with the ⁇ U 3 sequence of BLV contained in 5' LTR of BLV or 2) included in 1) above. And more preferably 95% or more, still more preferably 96% or more, particularly preferably 97% or more, 98% or 99% or more.
  • the above-mentioned LTR-derived sequence is disposed in the positive direction on the downstream side of the above-mentioned expression control sequence.
  • the LTR-derived sequence is located 3 'to the expression control sequence.
  • the LTR-derived sequence is “arranged in the positive direction” means that the LTR-derived sequence is arranged in the same direction as the transcription direction in the transcription of wild-type BLV. That is, on the downstream side of the expression control sequence, the U3 region, the R sequence, and the U5 sequence are arranged in the order of the U3 region-R sequence-U5 sequence. As described above, the LTR-derived sequence may be a deletion of a part of the U3 region, the R sequence, and the U5 sequence.
  • the expression control sequence is functionally arranged at least relative to the LTR-derived sequence located downstream thereof.
  • “functionally arranged” indicates that the expression control sequence is at least involved in the transcriptional control of the LTR-derived sequence.
  • the expression control sequence is a sequence located downstream of the LTR-derived sequence and the LTR-derived sequence (proteins alone or in cooperation with the LTR-derived sequence) It is presumed to upregulate the transcription of the coding sequence, which may be coding or non-coding sequence which does not code for proteins (also referred to as "sequence of interest").
  • the LTR-derived sequence and the sequence located downstream of the LTR-derived sequence are transcribed as components constituting the same mRNA.
  • LTR-derived sequences after being transcribed to mRNA are presumed to upregulate their translation when the sequence located downstream of the LTR-derived sequences is a coding sequence.
  • nucleic acid construct is DNA
  • no promoter and / or enhancer is inserted between the LTR-derived sequence and the target sequence.
  • the nucleic acid construct may, in a preferred embodiment, be, for example, a gene expression vector.
  • the gene expression vector is generally a double-stranded DNA construct that is often used, but an embodiment in which a single-stranded DNA construct or the like is also included in the scope of the present embodiment. More preferably, the gene expression vector is a plasmid vector.
  • the gene expression vector is not limited to a protein expression vector into which a coding sequence encoding a protein is inserted as a sequence located downstream of the LTR-derived sequence.
  • RNA expression vectors into which non-coding sequences which do not encode proteins are inserted are also included in the category of gene expression vectors of the present invention.
  • the gene of the present invention is also a form before inserting the above-mentioned target sequence downstream of the LTR-derived sequence (a form before inserting the target sequence into the nucleic acid fragment insertion site provided downstream of the LTR-derived sequence). Included in the category of expression vectors.
  • the gene expression vector according to this embodiment can also be prepared, for example, by replacing the promoter of a known gene expression vector with a combination of the expression control sequence described above and an LTR-derived sequence.
  • Transformed cells can be prepared by introducing the above-described nucleic acid construct (but containing, as the above-mentioned target sequence, a nucleic acid sequence encoding a polypeptide) into a suitable host cell.
  • the prepared transformed cells, their culture progeny, tissues derived from transformed cells, etc. may be individuals but exclude human individuals
  • at least a part of the nucleic acid construct can express the polypeptide encoded by the nucleic acid construct.
  • the full-length or part of the above-described nucleic acid construct may be integrated into the genome of the host.
  • the host cell is not particularly limited as long as transcription and translation of the above-mentioned nucleic acid construct are possible, but animal cells are preferred.
  • Animal cells include insect cells, amphibian cells, reptile cells, avian cells, fish cells, mammalian cells and the like, with preference given to mammalian cells.
  • insect cells include, for example, silkworm cells.
  • mammalian cells include HEK 293 cells, HeLa cells, COS cells, BHK cells, CHL cells or CHO cells.
  • SV40 T antigen may be expressed in host cells (for example, HEK293T or COS cells are used as host cells) or may be added to host cell culture systems.
  • Transformation of the host cell may be appropriately selected depending on the type of host cell and the like, and can be performed by, for example, the electroporation method, lithium acetate method, calcium phosphate method, lipofection method, particle gun method, or the like.
  • the above-mentioned transformed cell is cultured and the like under conditions which allow the expression of the introduced above-mentioned nucleic acid construct.
  • the polypeptide encoded by the above-mentioned nucleic acid construct can be produced by translating the nucleic acid construct in a cell-free protein synthesis system or in a host cell.
  • the type of host cell is not particularly limited as long as transcription and translation of the nucleic acid construct are possible, but it is preferably the above-mentioned animal cell.
  • the produced polypeptide may be purified as needed.
  • the method of purification may be appropriately selected from known methods according to the polypeptide to be produced, but in the case of a polypeptide accumulated in the host cell, purification may be carried out after disrupting the host cell, and the host In the case of a polypeptide released extracellularly (a virus particle or virus like particle described later is one example), for example, the polypeptide may be purified from the culture supernatant of the host cell and recovered.
  • a virus is expressed by expressing a nucleic acid sequence encoding a polypeptide necessary to construct a virus particle (VP) or a virus-like particle (VLP). Particles or virus like particles can be produced.
  • VP virus particle
  • VLP virus-like particle
  • the polypeptides necessary for constructing virus-like particles may differ depending on the type of virus, but in the case of BLV, they are Gag polypeptides. .
  • the above nucleic acid sequence encoding a polypeptide is constructed so as not to contain a functional packaging signal ( ⁇ ).
  • the polypeptides necessary to construct the virus particles of BLV may differ from one type of virus to another, but in the case of BLV, they are Gag polypeptides.
  • the nucleic acid sequence encoding the polypeptide is constructed to include a functional packaging signal ( ⁇ ), whereby the RNA of the nucleic acid construct is incorporated into the viral particle.
  • the above-mentioned nucleic acid sequence encoding a polypeptide may further encode Env polypeptide, Pol polypeptide and the like in addition to the Gag polypeptide.
  • these multiple types of polypeptides may be encoded on different nucleic acid sequences.
  • the pharmaceutical composition according to one aspect of the present invention is an anti-BLV vaccine composition comprising the following active ingredients 1) and / or 2).
  • active ingredient 1) When it contains the active ingredient 1), it is a nucleic acid vaccine composition, and when it contains the active ingredient 2), it is a peptide vaccine composition.
  • the content of the active ingredient in the pharmaceutical composition is not particularly limited, and may be set appropriately.
  • nucleic acid construct (but containing a sequence corresponding to the full length of the polypeptide-encoding nucleic acid sequence between the 5 'LTR and the 3' LTR of BLV or a portion thereof as a nucleic acid sequence encoding a polypeptide) More preferably, they contain 85% or more, 90% or more, or 95% or more of the total length of the polypeptide-encoding nucleic acid sequence).
  • the nucleic acid construct may be composed of RNA, but in terms of stability etc., it is preferably composed of DNA.
  • polypeptide including a sequence corresponding to the full length or a part of the polypeptide encoded by the polypeptide-encoding nucleic acid sequence between the 5 'LTR and the 3' LTR of BLV. More preferably, they comprise 85% or more, 90% or more, or 95% or more of the total length of the polypeptide encoded by the nucleic acid sequence).
  • the above-mentioned polypeptide may be in the form of virus particles (VP) of BLV or virus-like particles (VLP) of BLV not containing the virus genome of BLV. It is preferable that the virus particles be BLV virus particles. From the same point of view, it is preferable that the above-mentioned nucleic acid construct is one encoding BLV virus particles or BLV virus-like particles.
  • the virus particles of BLV may be natural virus particles themselves, or subjected to inactivation treatment with heat or a drug or the like, or attenuated treatment with acclimatizing operation such as cell passaging or animal passaging or genetic manipulation. It may be a virus particle.
  • BLV virus-like particles are obtained by expressing the BLV gag gene as a polypeptide-encoding nucleic acid sequence as described above, this VLP is another antigenic peptide (eg, a partial sequence of BLV Pol or Env, etc.) May be further included.
  • the pharmaceutical composition also includes pharmaceutically acceptable carriers, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for osmotic pressure adjustment, buffers, coloring agents, antioxidants, viscosities. Modifiers, activators (concepts including carbonated apatite as an immunostimulant, sodium hydroxide, alum, incomplete / complete Freund's adjuvant, etc.), nanoparticles, etc. may be included.
  • pharmaceutically acceptable carriers include, but are not limited to, water, various salt solutions, alcohols, vegetable oils, mineral oils and the like.
  • the form of the pharmaceutical composition is also not particularly limited, and examples thereof include injections, solutions, suspensions, emulsions, powders, granules, and capsules.
  • the administration mode of the pharmaceutical composition is also not particularly limited, and may be oral administration or parenteral administration (subcutaneous administration, nasal administration, intraperitoneal administration, membrane administration, intramuscular administration, intravenous administration, etc.) It may be.
  • the pharmaceutical composition can be suitably used for the prevention or treatment of bovine leukemia. Therefore, the present invention also provides a method for preventing or treating bovine leukemia, preferably a method for preventing or treating bovine leukemia, which comprises the step of inoculating or administering a pharmaceutical composition according to one aspect of the present invention to a target animal.
  • Target animals to which the pharmaceutical composition is to be administered include human and non-human animals that can be infected with BLV.
  • Non-human animals are not particularly limited.
  • mammals such as Bos taurus, Bos indicus, Buffalo (Bubalus bubalis), sheep, goats, pigs, mice, rats, rabbits, cats, monkeys and the like
  • cattle include dairy species, meat species, milk and meat combination species, utility species, and meat and meat combination species. Specific examples thereof include, but are not limited to, varieties such as Japanese beef such as Japanese black beef and Japanese short horn, Holstein, Jersey, and native species of each country.
  • the subject animals are preferably cattle, boar cattle and buffalo, more preferably cattle and buffalo, and further preferably cattle.
  • the present invention includes the following features in order to solve the problems described above.
  • the present invention includes the following one mode.
  • a nucleic acid construct for gene expression in animal cells comprising a forward-directed sequence derived from the long terminal repeat (LTR) of bovine leukemia virus (BLV).
  • LTR long terminal repeat
  • BLV bovine leukemia virus
  • the BLV infectious molecular clone pBLV-IF (Inabe et al., 1998, Virology 245: 53-64) is digested with the restriction enzymes SpeI and HindIII, and the 5 'side of the proviral sequence in pBLV-IF is pBluescript II KS (-) Cloned into Using PrimeSTAR MAX, using primers 5 'pBLV-del-F (TCTAGACATGTTTGTATGAAAGATCATGCC (SEQ ID NO: 5)) and 5' pBLV-del-R (TTCATACACATAGTTTCTAGAGCGGCC (SEQ ID NO: 6)) using the plasmid obtained by cloning as a template PCR was performed.
  • the resulting PCR product is used to transform E. coli XL1-blue MRF 'to construct a plasmid in which a sequence having a sequence further upstream than the 5' LTR deleted from the 5 'side of the BLV provirus (5 'pBLV-IF2 / pKS).
  • pBLV-IF was digested with HindIII and KpnI, and the 3 'side of the proviral sequence in pBLV-IF was cloned into pBluescript II KS (-).
  • PCR was performed using primers 3 'pBLV-del-F (GGGCAAACAGGTACCCCAGCTTTTGTTC (SEQ ID NO: 7)) and 3' pBLV-del-R (GGCAAACACCGGTACCCAATTCGCCCTA (SEQ ID NO: 8)). The resulting PCR product was used to transform E.
  • human cytomegalovirus is prepared using primers SpeI-CMV-En-R (aaaaaaACTAGTCATGGTAATAGCGATGAC (SEQ ID NO: 9)) and SpeI-CMVp-R (aaaaaACTAGTTCATCAACAGACAGCTCTG (SEQ ID NO: 10)) using the pIRES vector as a template.
  • the enhancer region (CMVen) in the promoter region was PCR amplified.
  • the resulting PCR product was digested with restriction enzyme SpeI and ligated to the SpeI site of 5'pBLV-IF2 / pKS described above to obtain 5'CMVen-pBLV-IF2 / pKS.
  • CMVp full-length promoter region of CMV
  • NotI-CMV-F primers NotI-CMV-F (aaaaaGCGGCCGCGTTACATAACTTACGG (SEQ ID NO: 11)) and SpeI-CMVp-R, using pIRES vector as a template, and restriction enzymes SpeI and It was digested with NotI and ligated to the corresponding site of 5 'pBLV-IF2 / pKS to obtain 5' CMV p-pBLV-IF2 / pKS.
  • the 3 'pBLV-IF2 / pKS is digested with the restriction enzymes HindIII and KpnI, and the corresponding regions of 5' CMV p-pBLV-IF2 / pKS, 5 'CMVen-pBLV-IF2 / pKS, and 5' CMV ⁇ U3-pBLV-IF2 / pKS Each of these plasmids was introduced into the vector to obtain three types of plasmids: (1) CMVp-pBLV-IF2, (2) CMVen-pBLV-IF2, and (3) CMV ⁇ U3-pBLV-IF2.
  • CMVp-pBLV-IF2 is a plasmid in which the full length of the proviral sequence of BLV is disposed in the forward direction on the downstream side of CMVp.
  • CMVen-pBLV-IF2 is a plasmid having a structure in which the full length of the BLV proviral sequence is disposed in a forward direction on the downstream side of CMVen.
  • CMV ⁇ U3-pBLV-IF2 is a plasmid having a structure in which a sequence in which 5 'LTR U3 is deleted from the full length of BLV proviral sequence on the downstream side of CMVp is disposed in a forward direction.
  • Sequence 1) shown below includes (1) the sequence from CMVp of CMVp-pBLV-IF2 to the 5 'LTR of BLV.
  • Sequence from CMVp of CMVp-pBLV-IF2 to 5 'LTR of BLV (SEQ ID NO: 14)
  • Sequence 2) shown below includes (2) the sequence from CMVen of CMVen-pBLV-IF2 to the 5 ′ LTR of BLV.
  • a sequence including CMVen of CMVen-pBLV-IF2 to the 5 ′ LTR of BLV SEQ ID NO: 15
  • the sequence 3) shown below includes (3) the sequence from CMV ⁇ U3 of CMV ⁇ U3-pBLV-IF2 to the 5 ′ LTR of BLV.
  • Cell lysate was prepared using the recovered cells and RIPA buffer, and the protein amount of cell lysate was measured by the BCA method.
  • 5 mL of culture supernatant was collected, subjected to ultracentrifugation at 40,000 ⁇ g and 40 min, and the obtained precipitate was suspended in PBS ( ⁇ ).
  • Laemmli buffer was added to the cell lysate and the culture supernatant concentrated after ultracentrifugation, incubated at 100 ° C. for 5 minutes, and used as a sample.
  • a 12.5% SDS-polyacrylamide gel was prepared, the sample applied and subjected to electrophoresis (SDS-PAGE).
  • the proteins after migration were transferred to a PVDF membrane and blocked for 30 minutes with 5% skimmed milk. After washing the membrane with PBS-T, it was stained using anti-BLV-gp51 antibody (BLV-2, VMRD) and anti-BLV-p24 antibody (BLV-3, VMRD) as primary antibodies.
  • BLV-2, VMRD anti-BLV-gp51 antibody
  • BLV-3, VMRD anti-BLV-p24 antibody
  • the membrane was washed with PBS-T, stained with HRP-labeled anti-mouse IgG1 antibody, washed with PBS-T, and chemiluminescence was performed with Super Signal west pico (Thermo Fisher Scientific) to detect a signal.
  • RT-PCR Reverse transcription polymerase chain reaction
  • the amount of viral RNA in the supernatant was measured by RT-PCR assay.
  • Viral RNA was extracted from 140 uL of culture supernatant using QIAamp viral RNA mini kit (QIAGEN) and treated with TURBO DNase-free kit (Thermo Fisher Scientific).
  • Reverse transcription reaction was performed using the High Capacity RNA-to-cDNA Kit (ThermoFisher Scientific) with the processed viral RNA as a template, and the amount of virus was quantified by CoCoMo-BLV-PCR kit (RIKEN GENESIS).
  • an anti-BLV-gp51 antibody (BLV-2, VMRD) or an anti-BLV-p24 antibody (BLV-3, VMRD) as a primary antibody is diluted 5000 times with 3% skimmed milk and added to each well.
  • HRP-labeled anti-mouse IgG1 antibody was diluted 2000-fold with 3% skimmed milk and added to each well and incubated for 1 hour.
  • FIG. 1 is a diagram showing comparison of the amount of virus production of mutants into which each plasmid was introduced.
  • the abbreviations in the following figures indicate the results of mutants into which the following plasmids were introduced in addition to pEGFP-N1, respectively.
  • FIG. 1 shows the results of RT-PCR assay.
  • B of FIG. 1 is a figure which shows the result of sandwich ELISA.
  • C of FIG. 1 is a figure which shows the result of flow cytometry using anti-Gag antibody.
  • D of FIG. 1 shows the results of flow cytometry using an anti-Env antibody.
  • FIG. 2 shows the results of Western blotting.
  • (A) and (b) of FIG. 2 show the result of the experiment performed independently, respectively.
  • arrows are used to indicate the positions of the gp51 and p24 bands.
  • FIG. 3 is a diagram comparing the enhancement effect of virus production of each mutant depending on the presence or absence of Tax expression. Abbreviations newly used in the figure refer to the results of mutants in which the following plasmids were introduced in addition to pEGFP-N1, respectively.
  • FIG. 3 shows the results of RT-PCR assay.
  • B of FIG. 3 is a figure which shows the result of sandwich ELISA.
  • C of FIG. 3 shows the results of flow cytometry using an anti-Gag antibody.
  • D of FIG. 3 shows the results of flow cytometry using an anti-Env antibody.
  • FIG. 4 shows the results of Western blotting.
  • (A) and (b) of FIG. 4 show the result of the experiment performed independently, respectively.
  • arrows are used to indicate the positions of the gp51 and p24 bands.
  • the present invention can be used, for example, for the production of a BLV vaccine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided is a nucleic acid structure for gene expression in animal cells, said nucleic acid structure including: an expression regulating sequence that is derived from a promoter region of a virus selected from the group consisting of the human cytomegalovirus (CMV), simian virus 40 (SV40) and Rous sarcoma virus (RSV); and a sequence that is derived from the long terminal repeat (LTR) of the bovine leukemia virus (BLV) and provided downstream of the expression regulating sequence in the positive direction.

Description

遺伝子発現用の核酸構築物、およびその利用Nucleic acid construct for gene expression and use thereof
 本発明は、遺伝子発現用の核酸構築物、およびその利用に関し、本発明の一態様では、特にポリペプチドの製造に適している核酸構築物、およびその利用に関する。 The present invention relates to a nucleic acid construct for gene expression and its use, and in one aspect of the present invention, to a nucleic acid construct which is particularly suitable for the production of a polypeptide and its use.
 遺伝子を発現させることによって目的ポリペプチドを製造する技術は、学術研究の分野のみならず、産業界においても広く普及している。特に産業界においては、ペプチドワクチンを含むペプチド医薬品の製造に際して、目的ポリペプチドをより効率的かつ大量に得る様々な手法が検討されている。 Techniques for producing a target polypeptide by expressing a gene are widely spread not only in the field of academic research but also in industry. In particular, in the industrial field, various techniques for obtaining a target polypeptide more efficiently and in a large amount have been considered in the production of peptide pharmaceuticals including peptide vaccines.
 目的ポリペプチドの中には、遺伝子を発現させることによって比較的容易に大量製造できるものと、大量製造が困難なものとが存在する。大量製造が困難な目的ポリペプチドの一例としては、牛白血病ウイルス(BLV)が挙げられる。 Among the target polypeptides, there are those which can be relatively easily mass-produced by expressing genes, and those which are difficult to mass-produce. An example of a target polypeptide which is difficult to mass-produce is bovine leukemia virus (BLV).
 BLVは、悪性Bリンパ腫である地方病性牛白血病(EBL)を引き起こすレトロウイルスである。BLV感染牛は、長い潜伏期間(5~10年)の後に、その約5%が白血病を発症して死に至る。有効な予防法および根治療法はなく、国内外で感染率および発症率が増加しており、畜産界への打撃が懸念されている。現在の対処法は、隔離または淘汰であるが、拡大を防ぐに至っていない。そのため、ペプチドワクチン等の医薬品による予防法および治療法の確立が急がれている。 BLV is a retrovirus that causes endemic bovine leukemia (EBL), a malignant B lymphoma. About 5% of BLV-infected cattle develop leukemia and die after a long incubation period (5 to 10 years). There is no effective preventive and root treatment, and the infection rate and the incidence rate are increasing at home and abroad, and there is concern about the impact on the livestock industry. The current remedy is isolation or bribery, but has not been able to prevent the spread. Therefore, the establishment of preventive methods and therapeutic methods by medicines such as peptide vaccines is urgently needed.
 BLVは、そのプロウイルスの5’末端側および3’末端側にロングターミナルリピート(LTR)を有しており、各LTRは、U3、RおよびU5領域から構成される。BLVプロウイルスのmRNAへの転写は5’LTRのU3とR領域の境界から開始される。これらのLTRは、BLVによる増殖感染している細胞においてのみ、効率的な転写プロモータ活性を発揮する(非特許文献1)。BLVは、宿主ゲノムの様々な部位に組み込まれ得るが、腫瘍化細胞においてはBLV遺伝子の転写は必須ではないと思われる(非特許文献2)。実際に、感染個体からの新しい腫瘍細胞または末梢血単核細胞(PBMC)におけるBLVゲノムの転写は、従来技術によってほとんど検出不可能である(非特許文献2、3)。 BLV has long terminal repeats (LTRs) at the 5 'and 3' ends of its provirus, and each LTR is composed of U3, R and U5 regions. Transcription of the BLV provirus into mRNA is initiated at the boundary of the U3 and R regions of the 5 'LTR. These LTRs exert efficient transcription promoter activity only in cells that are proliferatively infected by BLV (Non-patent Document 1). Although BLV can be integrated into various sites of the host genome, transcription of the BLV gene does not seem to be essential in tumorigenic cells (Non-patent Document 2). In fact, transcription of the BLV genome in new tumor cells or peripheral blood mononuclear cells (PBMCs) from infected individuals is almost undetectable by conventional techniques (Non-patent Documents 2 and 3).
 以上に一端を示すように、BLVゲノムの転写制御には複雑な機構が働いているため、細胞においてBLVゲノムの転写を活性化して、BLVウイルス粒子を効率的に製造することは容易ではない。 As described above, it is difficult to efficiently produce BLV virus particles by activating transcription of the BLV genome in cells, because a complex mechanism is working for transcriptional control of the BLV genome.
 そのため、例えば、特許文献1等に記載のように、T細胞エピトープ及び/又はB細胞エピトープとなり得るBLV由来の部分ペプチドを特定し、この部分ペプチドを用いてペプチド医薬品を製造する試みもなされている。 Therefore, for example, as described in Patent Document 1 etc., attempts have been made to identify a BLV-derived partial peptide that can be a T cell epitope and / or a B cell epitope, and to manufacture a peptide drug using this partial peptide .
国際公開WO2014/157595(2014年10月2日公開)International Publication WO 2014/157595 (October 2, 2014 published)
 しかしながら、特許文献1等に記載の従来技術は、BLVを構成するポリペプチドのごく一部のみを利用する技術である。動物の免疫機構は極めて複雑であるから、例えばペプチドワクチンを製造する際に、BLVを構成するポリペプチドの実質的に全部を利用する場合と、ごく一部のみを利用する場合とで、動物に対して同様の免疫応答を惹起し得るかは不明である。従って、利用可能なポリペプチドに関して様々な選択肢を提示するためには、発現等が比較的困難な遺伝子を対象とする場合でも、目的ポリペプチドをより効率的かつ大量に得ることが出来る手法の確立が求められている。 However, the prior art described in Patent Document 1 or the like is a technology that utilizes only a small portion of the polypeptides that constitute BLV. Since the animal's immune mechanism is extremely complex, for example, when producing a peptide vaccine, when using substantially all of the BLV-constituting polypeptides and using only a small portion, It is unclear whether they can elicit a similar immune response. Therefore, in order to present various options regarding available polypeptides, establishment of a method capable of obtaining the target polypeptide more efficiently and in a large amount even when targeting genes that are relatively difficult to express, etc. Is required.
 すなわち、本発明の一態様は、ポリペプチドの製造に適している核酸構築物、およびその利用を提供することを目的とする。 That is, one aspect of the present invention aims to provide a nucleic acid construct suitable for producing a polypeptide, and its use.
 上記の課題を解決するために、本発明は、以下の一態様を含む。
1) ヒトサイトメガロウイルス(CMV)、シミアンウイルス40(SV40)、ラウス肉腫ウイルス(RSV)からなる群から選択されるウイルスのプロモータ領域に由来する発現制御配列と、上記発現制御配列の下流側に正方向に配置される、牛白血病ウイルス(BLV)のロングターミナルリピート(LTR)に由来する配列と、を含む、動物細胞内での遺伝子発現用の核酸構築物。
In order to solve the above-mentioned subject, the present invention includes the following one mode.
1) An expression control sequence derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40), and rous sarcoma virus (RSV), and downstream of the above expression control sequence A nucleic acid construct for gene expression in animal cells, comprising a forward-directed sequence derived from the long terminal repeat (LTR) of bovine leukemia virus (BLV).
 本発明の一態様によれば、ポリペプチドの製造に適している核酸構築物、およびその利用を提供することが出来るという効果を奏する。 According to one aspect of the present invention, there is an effect that a nucleic acid construct suitable for producing a polypeptide, and its use can be provided.
本発明の実施例1に係る各変異体のウイルス産生量を比較した図である。It is the figure which compared the virus production amount of each mutant based on Example 1 of this invention. 本発明の実施例1に係る各変異体の細胞内および培養上清中のウイルス抗原発現を比較した図である。It is the figure which compared the viral antigen expression in the cell of each variant based on Example 1 of this invention, and in culture supernatant. 本発明の実施例1に係る各変異体のウイルス産生量を比較した図である。It is the figure which compared the virus production amount of each mutant based on Example 1 of this invention. 本発明の実施例1に係る各変異体の細胞内および培養上清中のウイルス抗原発現を比較した図である。It is the figure which compared the viral antigen expression in the cell of each variant based on Example 1 of this invention, and in culture supernatant.
 以下、本発明の一実施形態について、詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
 〔核酸構築物〕
 本実施形態に係る核酸構築物は、動物細胞内での遺伝子発現に用いられる新規の核酸構築物であり、一例においては、ポリペプチドの製造に適している。具体的には、核酸構築物は、ウイルスのプロモータ領域に由来する発現制御配列と、発現制御配列の下流側に正方向に配置される、牛白血病ウイルス(BLV)のロングターミナルリピート(LTR)に由来する配列とを含む。
[Nucleic acid construct]
The nucleic acid construct according to this embodiment is a novel nucleic acid construct used for gene expression in animal cells, and in one example, is suitable for producing a polypeptide. Specifically, the nucleic acid construct is derived from an expression control sequence derived from the promoter region of the virus and a long terminal repeat (LTR) of bovine leukemia virus (BLV), which is disposed in the positive direction downstream of the expression control sequence. And the sequence to be
 なお、本明細書中において、「遺伝子発現」は、遺伝子の転写、および転写されたRNAのポリペプチドへの翻訳の両方または一方を指すものとする。また、「遺伝子発現制御」とは、遺伝子の転写からポリペプチドへの翻訳までのいずれかの時点で行なわれる制御を指し、制御が行われるタイミングおよびその機構は、特に限定されるものではない。 In the present specification, "gene expression" refers to both or one of transcription of a gene and translation of transcribed RNA into a polypeptide. Also, “gene expression control” refers to control performed at any time from transcription of a gene to translation into a polypeptide, and the timing at which the control is performed and the mechanism thereof are not particularly limited.
 また、本明細書において、遺伝子の「発現制御配列」は、遺伝子の発現を制御している「ポリヌクレオチド」を指す。「発現制御配列」の一例としては、プロモータ領域の配列などが挙げられる。但し、後述するように、本実施形態においては「発現制御配列」以外の配列も、遺伝子発現の制御に寄与する可能性を排除はしていない。 Moreover, in the present specification, the "expression control sequence" of a gene refers to a "polynucleotide" that controls the expression of the gene. An example of the "expression control sequence" is the sequence of a promoter region. However, as described later, in this embodiment, the possibility that sequences other than the “expression control sequence” also contribute to the control of gene expression is not excluded.
 また、本明細書中「核酸」とは、ポリヌクレオチドを意味し、DNA、RNAなどが含まれる。核酸は、一本鎖であっても二本鎖であってもよい。 Also, as used herein, the term "nucleic acid" refers to a polynucleotide, and includes DNA, RNA and the like. The nucleic acid may be single stranded or double stranded.
 (発現制御配列)
 発現制御配列は、ヒトサイトメガロウイルス(CMV)、シミアンウイルス40(SV40)、ラウス肉腫ウイルス(RSV)からなる群から選択されるウイルスのプロモータ領域に由来する。上記いずれかのウイルスに由来する発現制御配列を用いる。
(Expression control sequence)
The expression control sequence is derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40) and rous sarcoma virus (RSV). An expression control sequence derived from any of the above viruses is used.
 なお、本明細書中で、あるウイルスに由来する「プロモータ領域」とは、対象とするウイルスにおいてプロモータおよびエンハンサを含む領域であり、プロモータ/エンハンサ又はホールプロモータとも称される。ウイルスのプロモータ領域に由来する配列は、ウイルスのプロモータ領域の全長に限定されず、例えば、プロモータのみ、またはエンハンサのみ等、プロモータ領域の一部であり得る。 In the present specification, a "promoter region" derived from a certain virus is a region including a promoter and an enhancer in a target virus, and also referred to as a promoter / enhancer or a whole promoter. The sequence derived from the promoter region of the virus is not limited to the full length of the promoter region of the virus, and may be part of the promoter region, such as, for example, only the promoter or only the enhancer.
 好ましくは、発現制御配列は、ヒトサイトメガロウイルス(CMV)、シミアンウイルス40(SV40)、ラウス肉腫ウイルス(RSV)からなる群から選択されるウイルスのプロモータ領域に由来する、以下の1)~3)のいずれかを含む。
1)プロモータ
2)エンハンサ
3)プロモータおよびエンハンサ
 各ウイルスのプロモータ、またはエンハンサとしては、例えば下記のものを利用することができる。
・CMVのプロモータ/エンハンサ:CMV IEプロモータ/IEエンハンサ
・SV40のプロモータ/エンハンサ:SV40 early promoter/enhancer
・RSVのプロモータ/エンハンサ:RSV LTR
 発現制御配列が、上記1)~3)のいずれかを含むことにより、動物細胞内で遺伝子を好適に高発現させることが可能である。
Preferably, the expression control sequence is derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40) and rous sarcoma virus (RSV), 1) to 3) below: Including any of).
1) Promoter 2) Enhancer 3) Promoter and Enhancer As promoters or enhancers of each virus, for example, the following can be used.
· CMV promoter / enhancer: CMV IE promoter / IE enhancer · SV40 promoter / enhancer: SV40 early promoter / enhancer
・ RSV Promoter / Enhancer: RSV LTR
When the expression control sequence contains any one of the above 1) to 3), it is possible to suitably overexpress the gene in animal cells.
 より好ましくは、発現制御配列は、ヒトサイトメガロウイルス(CMV)、シミアンウイルス40(SV40)、ラウス肉腫ウイルス(RSV)からなる群から選択されるウイルスのプロモータ領域に由来する、プロモータおよびエンハンサを含む(例えば、上述のプロモータ領域の全長を含む場合が、この好ましいケースに相当する)。発現制御配列が、上記から選ばれるウイルスに由来するプロモータおよびエンハンサを含むことで、動物細胞内で遺伝子をより好適に高発現させることが可能である。 More preferably, the expression control sequence comprises a promoter and an enhancer derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40), rous sarcoma virus (RSV) (For example, the case where the entire length of the promoter region described above is included corresponds to this preferred case). When the expression control sequence contains a promoter and enhancer derived from a virus selected from the above, it is possible to more preferably express the gene in animal cells more preferably.
 ウイルスのプロモータ領域に由来する配列は、野生型ウイルスのプロモータ領域中の配列と同一の配列を有していなくてもよく、野生型ウイルスのプロモータ領域の配列から改変された配列であり得る。例えば、市販の遺伝子発現用ベクターであるpIRESベクターを構成しているCMV IEプロモータは、本実施形態に係る「ウイルスのプロモータ領域に由来する、プロモータ」に包含される。 The sequence derived from the virus promoter region may not have the same sequence as the sequence in the wild type virus promoter region, and may be a sequence modified from the wild type virus promoter region. For example, the CMV IE promoter constituting the pIRES vector, which is a commercially available vector for gene expression, is included in the “promoter derived from the promoter region of virus” according to the present embodiment.
 発現制御配列は、CMVのプロモータ領域に由来することが好ましい。発現制御配列が、CMVのプロモータ領域に由来することで、動物細胞内で特に好適に遺伝子発現を誘導することが可能である。 The expression control sequence is preferably derived from the CMV promoter region. When the expression control sequence is derived from the promoter region of CMV, gene expression can be particularly suitably induced in animal cells.
 より好ましくは、発現制御配列は、CMVのプロモータ領域に由来する、以下の1)~3)のいずれかを含む。
1)プロモータ
2)エンハンサ
3)プロモータおよびエンハンサ
 さらに好ましくは、発現制御配列は、CMVのプロモータ領域に由来する、プロモータおよびエンハンサを含む。
More preferably, the expression control sequence comprises any of the following 1) to 3) derived from the promoter region of CMV.
1) Promoter 2) Enhancer 3) Promoter and Enhancer Further preferably, the expression control sequence comprises a promoter and an enhancer derived from the promoter region of CMV.
 特に好ましくは、発現制御配列は、pIRESベクターを構成しているCMV IEプロモータの全長である。実施例においても示す通り、発現制御配列としてCMV IEプロモータの全長を用いることで、動物細胞内で特に好適に遺伝子発現を誘導することが可能である。 Particularly preferably, the expression control sequence is the full length CMV IE promoter constituting the pIRES vector. As also shown in the examples, gene expression can be particularly suitably induced in animal cells by using the full-length CMV IE promoter as the expression control sequence.
 以下では、CMV IEプロモータの全長を含む配列、およびCMV IEエンハンサを含む配列を一例として示す。なお、下記配列中のCMV IEプロモータの全長およびCMV IEエンハンサは、公知のデータベース等に登録されているCMV IEプロモータの全長およびCMV IEエンハンサの配列とは一部異なる可能性がある。
1)CMV IEプロモータの全長を含む配列(配列番号1)
CGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGA
2)CMV IEエンハンサを含む配列(配列番号2)
GTGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGA
 好ましい態様では、CMVのプロモータまたはエンハンサは、上記の1)に含まれるCMV IEプロモータの全長、または2)に含まれるCMV IEエンハンサの配列と、90%以上の配列同一性のものであり、より好ましい態様では95%以上、さらに好ましい態様では96%以上、特に好ましくは97%以上、98%、または99%以上の配列同一性の配列を有する。
In the following, a sequence containing the full length of the CMV IE promoter and a sequence containing the CMV IE enhancer are shown as an example. The full-length CMV IE promoter and the CMV IE enhancer in the following sequences may be partially different from the full-length CMV IE promoter and the sequence of the CMV IE enhancer registered in known databases and the like.
1) Sequence including the full length of CMV IE promoter (SEQ ID NO: 1)

2) Sequence containing CMV IE enhancer (SEQ ID NO: 2)
GTGATGGGAGC GAG GTG GAG G
In a preferred embodiment, the CMV promoter or enhancer is 90% or more in sequence identity with the full-length CMV IE promoter contained in 1) above, or the sequence of CMV IE enhancer contained in 2) In a preferred embodiment, it has a sequence identity of 95% or more, more preferably 96% or more, particularly preferably 97% or more, 98% or 99% or more.
 (BLVのLTRに由来する配列)
 BLVのLTRに由来する配列(以下、LTR由来配列とも称する)は、BLVのLTRの全長に限定されず、BLVのLTRの一部のみであってもよい。BLVのLTRに由来する配列は、例えば、LTRのU3領域、R領域およびU5領域のうち、いずれかの領域の一部を欠いたものであってもよい。
(Sequence derived from LTR of BLV)
The sequence derived from the LTR of BLV (hereinafter also referred to as LTR-derived sequence) is not limited to the full length of LTR of BLV, and may be only a part of LTR of BLV. The sequence derived from LTR of BLV may be, for example, one lacking part of any of the U3, R and U5 regions of LTR.
 好ましくは、LTR由来配列は、U3領域の少なくとも一部を欠損している。好ましい一例では、LTR由来配列は、U3領域のうち、以下1)または2)のいずれか一つ(より好ましくは両方)を欠いている。
1)BLVのプロモータ領域(U3領域における、R領域の近傍に存在する)
2)複数のTax response element(TxRE)のうち、少なくとも一つ。好ましくはTxREの全て。
Preferably, the LTR derived sequence lacks at least a portion of the U3 region. In a preferred example, the LTR-derived sequence lacks any one (more preferably both) of the following 1) or 2) of the U3 region.
1) Promoter region of BLV (located near R region in U3 region)
2) At least one of a plurality of Tax response elements (TxRE). Preferably all of TxRE.
 上記の1)または2)を欠くことが好ましい理由は必ずしも定かではないが、上述の「発現制御配列」との機能的な干渉が防がれていることがその理由の一つと推定される。なお、BLVプロウイルス(DNA)におけるU3領域はmRNAに転写されない領域であり、仮にU3領域が欠けている場合でも、転写後のLTRの機能には影響を与えないと考えられる。 The reason why it is preferable to lack the above 1) or 2) is not necessarily clear, but it is presumed that one of the reasons is that functional interference with the above-mentioned "expression control sequence" is prevented. The U3 region in the BLV provirus (DNA) is a region not transcribed to mRNA, and even if the U3 region is absent, it is considered that the function of LTR after transcription is not affected.
 より好ましくは、LTR由来配列は、U3領域の全長を欠いている。LTR由来配列がU3領域の全長を欠いていることにより、より好適に動物細胞内での遺伝子発現を行うことが可能である。 More preferably, the LTR-derived sequence lacks the entire length of the U3 region. The LTR-derived sequence lacking the full length of the U3 region enables gene expression in animal cells to be performed more suitably.
 LTR由来配列は、野生型BLVのLTRと同一の配列を有していなくてもよく、野生型BLVのLTRの配列から改変された配列であり得る。 The LTR-derived sequence may not have the same sequence as the wild-type BLV LTR, and may be a sequence modified from the wild-type BLV LTR sequence.
 発現制御配列の下流側に機能的に連結される上記のLTR由来配列は、5’LTRおよび3’LTRのどちらに由来するものであってもよいが、好ましくは、5’LTRに由来する配列である。 The above LTR-derived sequence functionally linked to the downstream side of the expression control sequence may be derived from either the 5 'LTR or the 3' LTR, preferably a sequence derived from the 5 'LTR. It is.
 以下では、BLVの5’LTRの配列、およびBLVの5’LTRからU3領域の全長を欠いた配列(以下ではΔU3配列とも称する)を含む配列を、一例として示す。なお、下記配列中に含まれているLVの5’LTRの配列、およびBLVのΔU3配列は、公知のデータベース等に登録されているBLVの5’LTRおよびBLVのΔU3配列とは一部異なる可能性がある。
1)BLVの5’LTR(配列番号3)
ACTAGTTGTATGAAAGATCATGCCGACCTAGGCGCCGCCACCGCCCCGTAAACCAGACAGAGACGTCAGCTGCCAGAAAAGCTGGTGACGGCAGCTGGTGGCTAGAATCCCCGTACCTCCCCAACTTCCCCTTTCCCGAAAAATCCACACCCTGAGCTGCTGACCTCACCTGCTGAGAAATTAATAAAATGCCGGCCCTGTCGAGTTAGCGGCACCAGAAGCGTTCTTCTCCTGAGACCCTCGTGCTCAGCTCTCGGTCCTGAGCTCTCTTGCTCCCGAGACCTTCTGGTCGGCTATCCGGCAGCGGTCAGGTAAGGCAAACCACGGTTTGGAGGGTGGTTCTCGGCTGAGACCACCGCGAGCTCTATCTCCGGTCCTCTGACCGTCTCCACGTGGACTCTCTCCTTTGCCTCCTGACCCCGCGCTCCAAGGGCGTCTGGCTTGCACCCGCGTTTGTTTCCTGTCTTACTTTCTGTTTCTCGCGGCCCGCGCTCTCTCCTTCGGCGCCCTCTAGCGGCCAGGAGAGACCGGCAAACA
2)BLVのΔU3配列(配列番号4)
GTTCTTCTCCTGAGACCCTCGTGCTCAGCTCTCGGTCCTGAGCTCTCTTGCTCCCGAGACCTTCTGGTCGGCTATCCGGCAGCGGTCAGGTAAGGCAAACCACGGTTTGGAGGGTGGTTCTCGGCTGAGACCACCGCGAGCTCTATCTCCGGTCCTCTGACCGTCTCCACGTGGACTCTCTCCTTTGCCTCCTGACCCCGCGCTCCAAGGGCGTCTGGCTTGCACCCGCGTTTGTTTCCTGTCTTACTTTCTGTTTCTCGCGGCCCGCGCTCTCTCCTTCGGCGCCCTCTAGCGGCCAGGAGAGACCGGCAAACA
 好ましい態様では、BLVの5’LTR、およびのBLVのΔU3配列は、上記の1)に含まれるBLVの5’LTR、または2)に含まれるBLVのΔU3配列と、90%以上の配列同一性のものであり、より好ましい態様では95%以上、さらに好ましい態様では96%以上、特に好ましくは97%以上、98%、または99%以上の配列同一性の配列を有する。
In the following, a sequence including the sequence of the 5 'LTR of BLV and the sequence lacking the entire length of the 5' LTR to U3 region of BLV (hereinafter also referred to as ΔU3 sequence) is shown as an example. The sequences of LV 5 'LTR and BLV ΔU 3 contained in the following sequences may be partially different from BLV 5' LTR and BLV ΔU 3 sequences registered in known databases etc. There is sex.
1) 5 'LTR of BLV (SEQ ID NO: 3)

2) ΔU3 sequence of BLV (SEQ ID NO: 4)
This part is not selected from the above, A, A, A, A, A, B, A, I, A, I, I, A, I, A, I, I, A, and A. GCCC s.
In a preferred embodiment, the 5 'LTR of BLV and the ΔU 3 sequence of BLV have a sequence identity of 90% or more with the ΔU 3 sequence of BLV contained in 5' LTR of BLV or 2) included in 1) above. And more preferably 95% or more, still more preferably 96% or more, particularly preferably 97% or more, 98% or 99% or more.
 (核酸構築物の構造)
 核酸構築物では、上述のLTR由来配列は、上述の発現制御配列の下流側に正方向に配置されている。換言すれば、核酸構築物では、LTR由来配列は、上記発現制御配列よりも3’側に配置されている。
(Structure of nucleic acid construct)
In the nucleic acid construct, the above-mentioned LTR-derived sequence is disposed in the positive direction on the downstream side of the above-mentioned expression control sequence. In other words, in the nucleic acid construct, the LTR-derived sequence is located 3 'to the expression control sequence.
 なお、LTR由来配列が「正方向に配置」されているとは、LTR由来配列が、野生型のBLVの転写における転写方向と同じ方向に配置されていることを意味する。つまり、発現制御配列の下流側に、U3領域、R配列、およびU5配列が、U3領域-R配列-U5配列の順番で配置されている。なお、上述した通り、LTR由来配列は、U3領域、R配列、およびU5配列の一部が欠損したものであってもよい。 Here, that the LTR-derived sequence is “arranged in the positive direction” means that the LTR-derived sequence is arranged in the same direction as the transcription direction in the transcription of wild-type BLV. That is, on the downstream side of the expression control sequence, the U3 region, the R sequence, and the U5 sequence are arranged in the order of the U3 region-R sequence-U5 sequence. As described above, the LTR-derived sequence may be a deletion of a part of the U3 region, the R sequence, and the U5 sequence.
 核酸構築物において、発現制御配列は、少なくとも、その下流側に位置するLTR由来配列に対して機能的に配置されている。ここで、「機能的に配置される」とは、発現制御配列が、LTR由来配列の転写制御に少なくとも関与することを指す。 In the nucleic acid construct, the expression control sequence is functionally arranged at least relative to the LTR-derived sequence located downstream thereof. Here, "functionally arranged" indicates that the expression control sequence is at least involved in the transcriptional control of the LTR-derived sequence.
 核酸構築物がDNAである場合の一態様において、発現制御配列は、それ単独で、またはLTR由来配列と協働して、当該LTR由来配列、およびLTR由来配列の下流側に位置する配列(タンパク質をコードするコーディング配列であっても、タンパク質をコードしていないノンコーディング配列であってもよい:「目的配列」とも称する)の転写をアップレギュレートすると推定される。核酸構築物がDNAである場合の好ましい一態様において、LTR由来配列と、当該LTR由来配列の下流側に位置する配列とは、同一のmRNAを構成する構成要素として転写される。また、mRNAに転写された後のLTR由来配列は、当該LTR由来配列の下流側に位置する配列がコーディング配列である場合、その翻訳をアップレギュレートすると推定される。 In one embodiment when the nucleic acid construct is DNA, the expression control sequence is a sequence located downstream of the LTR-derived sequence and the LTR-derived sequence (proteins alone or in cooperation with the LTR-derived sequence) It is presumed to upregulate the transcription of the coding sequence, which may be coding or non-coding sequence which does not code for proteins (also referred to as "sequence of interest"). In a preferred embodiment where the nucleic acid construct is DNA, the LTR-derived sequence and the sequence located downstream of the LTR-derived sequence are transcribed as components constituting the same mRNA. In addition, LTR-derived sequences after being transcribed to mRNA are presumed to upregulate their translation when the sequence located downstream of the LTR-derived sequences is a coding sequence.
 核酸構築物がDNAである場合のより好ましい一態様では、LTR由来配列と目的配列との間に、プロモータおよび/またはエンハンサが挿入されない。 In a more preferred embodiment where the nucleic acid construct is DNA, no promoter and / or enhancer is inserted between the LTR-derived sequence and the target sequence.
 〔核酸構築物の好ましい態様〕
 核酸構築物は、好ましい態様では、例えば遺伝子発現ベクターとすることができる。遺伝子発現ベクターは、一般的によく利用されているものは二本鎖DNA構築物であるが、一本鎖DNA構築物等である態様も、本実施形態の範疇である。より好ましくは、遺伝子発現ベクターは、プラスミドベクターである。
[Preferred embodiment of nucleic acid construct]
The nucleic acid construct may, in a preferred embodiment, be, for example, a gene expression vector. The gene expression vector is generally a double-stranded DNA construct that is often used, but an embodiment in which a single-stranded DNA construct or the like is also included in the scope of the present embodiment. More preferably, the gene expression vector is a plasmid vector.
 遺伝子発現ベクターは、LTR由来配列の下流側に位置する配列として、タンパク質をコードするコーディング配列が挿入されたタンパク質発現ベクターに限定されない。タンパク質をコードしないノンコーディング配列が挿入されたRNA発現ベクターも、本発明の遺伝子発現ベクターの範疇に含まれる。さらに、LTR由来配列の下流側に上述の目的配列を挿入する前の形態(LTR由来配列の下流側に設けられた核酸断片挿入部位に目的配列を挿入する前の形態)も、本発明の遺伝子発現ベクターの範疇に含まれる。 The gene expression vector is not limited to a protein expression vector into which a coding sequence encoding a protein is inserted as a sequence located downstream of the LTR-derived sequence. RNA expression vectors into which non-coding sequences which do not encode proteins are inserted are also included in the category of gene expression vectors of the present invention. Furthermore, the gene of the present invention is also a form before inserting the above-mentioned target sequence downstream of the LTR-derived sequence (a form before inserting the target sequence into the nucleic acid fragment insertion site provided downstream of the LTR-derived sequence). Included in the category of expression vectors.
 なお、本実施形態に係る遺伝子発現ベクターは、例えば、公知の遺伝子発現ベクターのプロモータを、上述の発現制御配列とLTR由来配列との組合せで置換することによって作製することも出来る。 The gene expression vector according to this embodiment can also be prepared, for example, by replacing the promoter of a known gene expression vector with a combination of the expression control sequence described above and an LTR-derived sequence.
 〔核酸構築物を含む、動物細胞〕
 上述の核酸構築物(ただし、上述の目的配列として、ポリペプチドをコードする核酸配列を含むもの)を適当な宿主細胞に導入することによって形質転換細胞を作製することができる。作製された形質転換細胞、その培養後代、または形質転換細胞から誘導した組織等(個体であってもよいがヒト個体は除く)は、本発明の一態様に係る核酸構築物の全長を含んでいるか、少なくとも当該核酸構築物の一部を含んでいて、当該核酸構築物がコードするポリペプチドを発現可能である。なお、上述の核酸構築物の全長またはその一部は、宿主のゲノム中に組み込まれていてもよい。
[Animal cells containing nucleic acid construct]
Transformed cells can be prepared by introducing the above-described nucleic acid construct (but containing, as the above-mentioned target sequence, a nucleic acid sequence encoding a polypeptide) into a suitable host cell. Do the prepared transformed cells, their culture progeny, tissues derived from transformed cells, etc. (may be individuals but exclude human individuals) contain the full-length nucleic acid construct according to one aspect of the present invention? And at least a part of the nucleic acid construct can express the polypeptide encoded by the nucleic acid construct. The full-length or part of the above-described nucleic acid construct may be integrated into the genome of the host.
 宿主細胞としては、上述の核酸構築物の転写および翻訳が可能な限り特に限定されないが、動物細胞が好ましい。動物細胞としては、昆虫細胞、両生類細胞、爬虫類細胞、鳥類細胞、魚類細胞、哺乳動物細胞などが挙げられ、哺乳動物細胞であることが好ましい。昆虫細胞の例としては、例えば、カイコの細胞などが挙げられる。哺乳動物細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞などが挙げられる。なお、本発明の一態様では、上述の核酸構築物としてSV40のプロモータ領域に由来する発現制御配列が組み込まれたものを用い、SV40のT抗原を利用して、宿主細胞の不死化等を行ってもよい。SV40のT抗原は、宿主細胞に発現させてもよく(例えば、HEK293TやCOS細胞を宿主細胞として利用する)、あるいは、宿主細胞の培養系に添加してもよい。 The host cell is not particularly limited as long as transcription and translation of the above-mentioned nucleic acid construct are possible, but animal cells are preferred. Animal cells include insect cells, amphibian cells, reptile cells, avian cells, fish cells, mammalian cells and the like, with preference given to mammalian cells. Examples of insect cells include, for example, silkworm cells. Examples of mammalian cells include HEK 293 cells, HeLa cells, COS cells, BHK cells, CHL cells or CHO cells. In one aspect of the present invention, as the above-mentioned nucleic acid construct, one in which an expression control sequence derived from the promoter region of SV40 is incorporated is used to immortalize host cells using SV40 T antigen. It is also good. The SV40 T antigen may be expressed in host cells (for example, HEK293T or COS cells are used as host cells) or may be added to host cell culture systems.
 宿主細胞の形質転換は、宿主細胞の種類等に応じて適宜選択すればよく、例えば、エレクトロポレーション法、酢酸リチウム法、リン酸カルシウム法、リポフェクション法、およびパーティクルガン法などにより行うことができる。 Transformation of the host cell may be appropriately selected depending on the type of host cell and the like, and can be performed by, for example, the electroporation method, lithium acetate method, calcium phosphate method, lipofection method, particle gun method, or the like.
 本発明の一態様において、上記の形質転換細胞は、導入された上述の核酸構築物の発現が可能な条件下で、培養等を行う。 In one embodiment of the present invention, the above-mentioned transformed cell is cultured and the like under conditions which allow the expression of the introduced above-mentioned nucleic acid construct.
 〔ポリペプチドの製造方法〕
 上述の核酸構築物がコードしているポリペプチドは、この核酸構築物の翻訳を、無細胞タンパク質合成系内で、または宿主細胞内で行うことによって、製造することが出来る。宿主細胞の種類は、この核酸構築物の転写および翻訳が可能な限り特に限定されないが、上述した動物細胞であることが好ましい。
[Method for Producing Polypeptide]
The polypeptide encoded by the above-mentioned nucleic acid construct can be produced by translating the nucleic acid construct in a cell-free protein synthesis system or in a host cell. The type of host cell is not particularly limited as long as transcription and translation of the nucleic acid construct are possible, but it is preferably the above-mentioned animal cell.
 製造されたポリペプチドは、必要に応じて精製を行ってもよい。精製の方法は、製造されるポリペプチドに応じた公知の方法を適宜選択すればよいが、宿主細胞内に蓄積されるポリペプチドの場合は、宿主細胞を破砕した後に精製をすればよく、宿主細胞外に放出されるポリペプチド(後述するウイルス粒子またはウイルス様粒子はこの一例である)の場合は、例えば、宿主細胞の培養上清からポリペプチドを精製し、回収すればよい。 The produced polypeptide may be purified as needed. The method of purification may be appropriately selected from known methods according to the polypeptide to be produced, but in the case of a polypeptide accumulated in the host cell, purification may be carried out after disrupting the host cell, and the host In the case of a polypeptide released extracellularly (a virus particle or virus like particle described later is one example), for example, the polypeptide may be purified from the culture supernatant of the host cell and recovered.
 (ウイルス粒子またはウイルス様粒子の製造方法)
 上述のポリペプチドの製造方法において、ウイルス粒子(Virus Particle;VP)またはウイルス様粒子(Virus-Like Particle;VLP)を構成する上で必要なポリペプチドをコードする核酸配列を発現させることによって、ウイルス粒子またはウイルス様粒子を製造することができる。
(Method for producing virus particle or virus like particle)
In the method for producing a polypeptide as described above, a virus is expressed by expressing a nucleic acid sequence encoding a polypeptide necessary to construct a virus particle (VP) or a virus-like particle (VLP). Particles or virus like particles can be produced.
 なお、ウイルス様粒子を構成する上で必要なポリペプチド(すなわち、粒子構造をとるために必要最小限のポリペプチド)は、ウイルスの種類ごとに異なり得るが、BLVの場合はGagポリペプチドである。但し、ポリペプチドをコードする上記核酸配列は、機能的なパッケージングシグナル(Ψ)を含まないように構築される。 The polypeptides necessary for constructing virus-like particles (i.e., the minimum polypeptides necessary for obtaining the particle structure) may differ depending on the type of virus, but in the case of BLV, they are Gag polypeptides. . However, the above nucleic acid sequence encoding a polypeptide is constructed so as not to contain a functional packaging signal (Ψ).
 同様に、BLVのウイルス粒子を構成する上で必要なポリペプチドも、ウイルスの種類ごとに異なり得るが、BLVの場合はGagポリペプチドである。但し、ポリペプチドをコードする上記核酸配列は、機能的なパッケージングシグナル(Ψ)を含むように構築され、これによって核酸構築物のRNAがウイルス粒子中に取り込まれる。 Similarly, the polypeptides necessary to construct the virus particles of BLV may differ from one type of virus to another, but in the case of BLV, they are Gag polypeptides. However, the nucleic acid sequence encoding the polypeptide is constructed to include a functional packaging signal (Ψ), whereby the RNA of the nucleic acid construct is incorporated into the viral particle.
 なお、BLVのウイルス粒子またはウイルス様粒子を製造する場合、ポリペプチドをコードする上記核酸配列は、Gagポリペプチドに加えて、EnvポリペプチドやPolポリペプチド等をさらにコードしていてもよい。但し、これら複数種のポリペプチドは、異なる核酸配列上にコードされていてもよい。 In addition, when producing a virus particle or virus-like particle of BLV, the above-mentioned nucleic acid sequence encoding a polypeptide may further encode Env polypeptide, Pol polypeptide and the like in addition to the Gag polypeptide. However, these multiple types of polypeptides may be encoded on different nucleic acid sequences.
 〔BLVワクチン〕
 本発明の一態様にかかる医薬品組成物は、以下の有効成分1)および/または2)を含んでなる、抗BLV用のワクチン組成物である。有効成分1)を含む場合は核酸ワクチン組成物であり、有効成分2)を含む場合はペプチドワクチン組成物である。なお、医薬品組成物における有効成分の含有量は特に限定されず、適宜、設定すればよい。
1)上述の核酸構築物(但し、ポリペプチドをコードする核酸配列として、BLVの5’LTRから3’LTRまでの間のポリペプチドコード核酸配列の全長またはその部分に相当する配列を含むもの。当該ポリペプチドコード核酸配列の全長の85%以上、90%以上、又は95%以上の配列を含むものがより好ましい)。核酸構築物はRNAからなるものであってもよいが、安定性等の観点では、好ましくはDNAからなるものである。
2)上述のポリペプチド(但し、BLVの5’LTRから3’LTRまでの間のポリペプチドコード核酸配列によってコードされるポリペプチドの全長またはその部分に相当する配列を含むもの。当該ポリペプチドコード核酸配列によってコードされるポリペプチドの全長の85%以上、90%以上、又は95%以上の配列を含むものがより好ましい)。
[BLV vaccine]
The pharmaceutical composition according to one aspect of the present invention is an anti-BLV vaccine composition comprising the following active ingredients 1) and / or 2). When it contains the active ingredient 1), it is a nucleic acid vaccine composition, and when it contains the active ingredient 2), it is a peptide vaccine composition. The content of the active ingredient in the pharmaceutical composition is not particularly limited, and may be set appropriately.
1) The above-described nucleic acid construct (but containing a sequence corresponding to the full length of the polypeptide-encoding nucleic acid sequence between the 5 'LTR and the 3' LTR of BLV or a portion thereof as a nucleic acid sequence encoding a polypeptide) More preferably, they contain 85% or more, 90% or more, or 95% or more of the total length of the polypeptide-encoding nucleic acid sequence). The nucleic acid construct may be composed of RNA, but in terms of stability etc., it is preferably composed of DNA.
2) The above-mentioned polypeptide, including a sequence corresponding to the full length or a part of the polypeptide encoded by the polypeptide-encoding nucleic acid sequence between the 5 'LTR and the 3' LTR of BLV. More preferably, they comprise 85% or more, 90% or more, or 95% or more of the total length of the polypeptide encoded by the nucleic acid sequence).
 抗原性に優れ、大きな免疫惹起効が期待できるという観点では、上述のポリペプチドは、BLVのウイルス粒子(VP)、または、BLVのウイルスゲノムを含まないBLVのウイルス様粒子(VLP)の形態であることが好ましく、BLVのウイルス粒子であることがより好ましい。同様の観点から、上述の核酸構築物は、BLVのウイルス粒子、またはBLVのウイルス様粒子をコードしているものであることが好ましい。 From the viewpoint of excellent antigenicity and high immunity to immunity, the above-mentioned polypeptide may be in the form of virus particles (VP) of BLV or virus-like particles (VLP) of BLV not containing the virus genome of BLV. It is preferable that the virus particles be BLV virus particles. From the same point of view, it is preferable that the above-mentioned nucleic acid construct is one encoding BLV virus particles or BLV virus-like particles.
 BLVのウイルス粒子は、天然のウイルス粒子そのものであってもよいし、加熱もしくは薬剤等による不活化処理、または、細胞継代もしくは動物継代等の馴化操作または遺伝子操作等による弱毒化処理が施されたウイルス粒子であってもよい。BLVのウイルス様粒子は、上述の通り、ポリペプチドコード核酸配列としてBLVのgag遺伝子を発現させることによって得られるが、このVLPはその他の抗原ペプチド(例えば、BLVのPolまたはEnvの部分配列等)をさらに含んでいてもよい。 The virus particles of BLV may be natural virus particles themselves, or subjected to inactivation treatment with heat or a drug or the like, or attenuated treatment with acclimatizing operation such as cell passaging or animal passaging or genetic manipulation. It may be a virus particle. Although BLV virus-like particles are obtained by expressing the BLV gag gene as a polypeptide-encoding nucleic acid sequence as described above, this VLP is another antigenic peptide (eg, a partial sequence of BLV Pol or Env, etc.) May be further included.
 医薬品組成物は、これらの他に、薬学的に許容される担体、潤滑剤、保存剤、安定剤、湿潤剤、乳化剤、浸透圧調整用の塩類、緩衝剤、着色剤、抗酸化剤、粘度調整剤、賦活剤(免疫賦活剤としての炭酸アパタイト、水酸化ナトリウム、アラム、不完全/完全フロイントアジュバント等も含む概念)、またはナノ粒子等を含んでいてもよい。薬学的に許容される担体としては、例えば、水、各種塩溶液、アルコール、植物油、およびミネラルオイル等が挙げられるが、これらに限定されない。 In addition to these, the pharmaceutical composition also includes pharmaceutically acceptable carriers, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for osmotic pressure adjustment, buffers, coloring agents, antioxidants, viscosities. Modifiers, activators (concepts including carbonated apatite as an immunostimulant, sodium hydroxide, alum, incomplete / complete Freund's adjuvant, etc.), nanoparticles, etc. may be included. Examples of pharmaceutically acceptable carriers include, but are not limited to, water, various salt solutions, alcohols, vegetable oils, mineral oils and the like.
 医薬品組成物の形態も特に限定されず、例えば、注射剤、液剤、懸濁剤、乳剤、散剤、顆粒剤、およびカプセル剤等が挙げられる。医薬品組成物の投与形態も特に限定されず、経口投与であってもよいし、非経口投与(皮下投与、経鼻投与、腹腔内投与、皮膜投与、筋肉内投与、または静脈内投与等)であってもよい。 The form of the pharmaceutical composition is also not particularly limited, and examples thereof include injections, solutions, suspensions, emulsions, powders, granules, and capsules. The administration mode of the pharmaceutical composition is also not particularly limited, and may be oral administration or parenteral administration (subcutaneous administration, nasal administration, intraperitoneal administration, membrane administration, intramuscular administration, intravenous administration, etc.) It may be.
 医薬品組成物は、牛白血病の予防または治療に好適に使用され得る。そのため、本発明はまた、本発明の一態様に係る医薬品組成物を対象動物に接種または投与する工程を含む、牛白血病の予防または治療方法、好ましくは予防方法を提供する。 The pharmaceutical composition can be suitably used for the prevention or treatment of bovine leukemia. Therefore, the present invention also provides a method for preventing or treating bovine leukemia, preferably a method for preventing or treating bovine leukemia, which comprises the step of inoculating or administering a pharmaceutical composition according to one aspect of the present invention to a target animal.
 医薬品組成物が投与される対象動物としては、BLVに感染し得るヒトおよび非ヒト動物が挙げられる。非ヒト動物は、特に限定されないが、例えば、ウシ(Bos taurus)、コブウシ(Bos indicus)、スイギュウ(Bubalus bubalis)、ヒツジ、ヤギ、ブタ、マウス、ラット、ウサギ、ネコ、およびサル等の哺乳動物が挙げられる。ウシとしては、乳用種、肉用種、乳肉兼用種、役用種、および役肉兼用種等が挙げられる。具体的には、例えば、黒毛和種、日本短角種等の和牛、ホルスタイン、ジャージー、および各国の在来種等の品種が挙げられるが、これらに限定されない。対象動物は、好ましくはウシ、コブウシおよびスイギュウであり、より好ましくはウシおよびスイギュウであり、さらに好ましくはウシである。 Target animals to which the pharmaceutical composition is to be administered include human and non-human animals that can be infected with BLV. Non-human animals are not particularly limited. For example, mammals such as Bos taurus, Bos indicus, Buffalo (Bubalus bubalis), sheep, goats, pigs, mice, rats, rabbits, cats, monkeys and the like Can be mentioned. Examples of cattle include dairy species, meat species, milk and meat combination species, utility species, and meat and meat combination species. Specific examples thereof include, but are not limited to, varieties such as Japanese beef such as Japanese black beef and Japanese short horn, Holstein, Jersey, and native species of each country. The subject animals are preferably cattle, boar cattle and buffalo, more preferably cattle and buffalo, and further preferably cattle.
 (まとめ)
 以上をまとめると、本発明は上記の課題を解決するために、以下の特徴を包含している。
(Summary)
Summarizing the above, the present invention includes the following features in order to solve the problems described above.
 上記の課題を解決するために、本発明は、以下の一態様を含む。
1) ヒトサイトメガロウイルス(CMV)、シミアンウイルス40(SV40)、ラウス肉腫ウイルス(RSV)からなる群から選択されるウイルスのプロモータ領域に由来する発現制御配列と、上記発現制御配列の下流側に正方向に配置される、牛白血病ウイルス(BLV)のロングターミナルリピート(LTR)に由来する配列と、を含む、動物細胞内での遺伝子発現用の核酸構築物。
2) LTRに由来する上記配列は、U3領域の少なくとも一部を欠損している、1)に記載の核酸構築物。
3) 上記発現制御配列が、CMVのプロモータ領域に由来する、1)又は2)に記載の核酸構築物。
4) 上記発現制御配列は、プロモータおよび/またはエンハンサを含む、1)~3)のいずれかに記載の核酸構築物。
5) 上記発現制御配列は、プロモータおよびエンハンサを含む、4)に記載の核酸構築物。
6) LTRに由来する上記配列の下流側に、ポリペプチドをコードする核酸配列をさらに含む、1)~5)のいずれかに記載の核酸構築物。
7) LTRに由来する上記配列と、ポリペプチドをコードする上記核酸配列とで、BLVの5’LTRから3’LTRまでの核酸配列の全長またはその部分に相当する配列を構成している、6)に記載の核酸構築物。
8) BLVの5’LTRから3’LTRまでの核酸配列の上記部分は、少なくともGagポリペプチドをコードする、7)に記載の核酸構築物。
9) 1)~8)のいずれかに記載の核酸構築物を含む、動物細胞。
10) 6)~8)のいずれかに記載の核酸構築物を発現させる工程を含む、ポリペプチドの製造方法。
11) 上記ポリペプチドとして、ウイルス粒子またはウイルス様粒子を構成するポリペプチドを製造することで、ウイルス粒子またはウイルス様粒子を製造する、10)に記載のポリペプチドの製造方法。
In order to solve the above-mentioned subject, the present invention includes the following one mode.
1) An expression control sequence derived from the promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40), and rous sarcoma virus (RSV), and downstream of the above expression control sequence A nucleic acid construct for gene expression in animal cells, comprising a forward-directed sequence derived from the long terminal repeat (LTR) of bovine leukemia virus (BLV).
2) The nucleic acid construct according to 1), wherein the sequence derived from LTR lacks at least a part of the U3 region.
3) The nucleic acid construct according to 1) or 2), wherein the expression control sequence is derived from a promoter region of CMV.
4) The nucleic acid construct according to any one of 1) to 3), wherein the expression control sequence comprises a promoter and / or an enhancer.
5) The nucleic acid construct according to 4), wherein the expression control sequence comprises a promoter and an enhancer.
6) The nucleic acid construct according to any of 1) to 5), further comprising a nucleic acid sequence encoding a polypeptide downstream of the above sequence derived from LTR.
7) A sequence corresponding to the entire length of the nucleic acid sequence from 5 'LTR to 3' LTR of BLV, or a portion thereof, comprising the above sequence derived from LTR and the above nucleic acid sequence encoding a polypeptide, 6 The nucleic acid construct as described in 2.).
8) The nucleic acid construct according to 7), wherein said portion of the nucleic acid sequence from the 5 'LTR to the 3' LTR of BLV encodes at least a Gag polypeptide.
9) An animal cell comprising the nucleic acid construct according to any one of 1) to 8).
10) A method for producing a polypeptide, comprising the step of expressing the nucleic acid construct according to any one of 6) to 8).
11) The method for producing a polypeptide according to 10), wherein a virus particle or virus-like particle is produced by producing a polypeptide that constitutes a virus particle or a virus-like particle as the above-mentioned polypeptide.
 本発明の一実施例について以下に説明する。 One embodiment of the present invention will be described below.
 <材料および方法>
 〔プラスミドの作製〕
 BLVの感染性分子クローンpBLV-IF(Inabeら、1998、Virology 245:53-64)を制限酵素SpeIおよびHindIIIで切断し、pBLV-IF中のプロウイルス配列の5’側をpBluescriptII KS(-)にクローニングした。クローニングにより得られたプラスミドをテンプレートとして、プライマー5’pBLV-del-F (TCTAGAACTAGTTTGTATGAAAGATCATGCC(配列番号5))および5’pBLV-del-R (TTCATACAACTAGTTCTAGAGCGGCC(配列番号6))を用いて、PrimeSTAR MAXを使用してPCRを行った。得られたPCR産物を用いて、大腸菌XL1-blue MRF’を形質転換し、BLVプロウイルスの5’側の配列からさらに5’LTRよりも上流の配列を欠損した配列が挿入されたプラスミドを構築した(5’pBLV-IF2/pKS)。
Materials and Methods
[Preparation of plasmid]
The BLV infectious molecular clone pBLV-IF (Inabe et al., 1998, Virology 245: 53-64) is digested with the restriction enzymes SpeI and HindIII, and the 5 'side of the proviral sequence in pBLV-IF is pBluescript II KS (-) Cloned into Using PrimeSTAR MAX, using primers 5 'pBLV-del-F (TCTAGACATGTTTGTATGAAAGATCATGCC (SEQ ID NO: 5)) and 5' pBLV-del-R (TTCATACACATAGTTTCTAGAGCGGCC (SEQ ID NO: 6)) using the plasmid obtained by cloning as a template PCR was performed. The resulting PCR product is used to transform E. coli XL1-blue MRF 'to construct a plasmid in which a sequence having a sequence further upstream than the 5' LTR deleted from the 5 'side of the BLV provirus (5 'pBLV-IF2 / pKS).
 また、pBLV-IFをHindIIIおよびKpnIで切断して、pBLV-IF中のプロウイルス配列の3’側をpBluescriptII KS(-)にクローニングした。プライマー3’pBLV-del-F (GGGCAAACAGGTACCCAGCTTTTGTTC(配列番号7))および3’pBLV-del-R (GGCAAACACCGGTACCCAATTCGCCCTA(配列番号8))を用いて、PCRを行った。得られたPCR産物を用いて大腸菌XL1-blue MRF’を形質転換し、BLVプロウイルスの3’側の配列からさらに3’LTRよりも下流の配列を欠損した配列が挿入されたプラスミドを構築した(3’pBLV-IF2/pKS)。 Also, pBLV-IF was digested with HindIII and KpnI, and the 3 'side of the proviral sequence in pBLV-IF was cloned into pBluescript II KS (-). PCR was performed using primers 3 'pBLV-del-F (GGGCAAACAGGTACCCCAGCTTTTGTTC (SEQ ID NO: 7)) and 3' pBLV-del-R (GGCAAACACCGGTACCCAATTCGCCCTA (SEQ ID NO: 8)). The resulting PCR product was used to transform E. coli XL1-blue MRF 'to construct a plasmid in which a sequence downstream of the 3' LTR was deleted from the 3 'sequence of the BLV provirus. (3 'pBLV-IF2 / pKS).
 ここで、上記3’pBLV-IF2/pKSを制限酵素HindIIIおよびKpnIで切断し、得られたBLV 3’末端側を含むDNA断片を、5’pBLV-IF2/pKSの対応領域に挿入することで、pBLV-IF2を構築した。 Here, the above 3 'pBLV-IF2 / pKS is cleaved with restriction enzymes HindIII and KpnI, and the obtained DNA fragment containing the 3' end of the BLV is inserted into the corresponding region of 5 'pBLV-IF2 / pKS. , PBLV-IF2 was constructed.
 次に、pIRES ベクターをテンプレートとして、プライマーSpeI-CMV-En-R(aaaaaaACTAGTCATGGTAATAGCGATGAC(配列番号9))およびSpeI-CMVp-R(aaaaaaACTAGTTCACTAAACGAGCTCTG(配列番号10))を用いて、ヒトサイトメガロウイルス(CMV)プロモーター領域中のエンハンサー領域(CMVen)をPCR増幅した。得られたPCR産物を、制限酵素SpeIで切断し、上記の5’pBLV-IF2/pKSのSpeIサイトにライゲーションし、5’CMVen-pBLV-IF2/pKSを得た。 Next, human cytomegalovirus (CMV) is prepared using primers SpeI-CMV-En-R (aaaaaaACTAGTCATGGTAATAGCGATGAC (SEQ ID NO: 9)) and SpeI-CMVp-R (aaaaaACTAGTTCATCAACAGACAGCTCTG (SEQ ID NO: 10)) using the pIRES vector as a template. The enhancer region (CMVen) in the promoter region was PCR amplified. The resulting PCR product was digested with restriction enzyme SpeI and ligated to the SpeI site of 5'pBLV-IF2 / pKS described above to obtain 5'CMVen-pBLV-IF2 / pKS.
 また、pIRES ベクターをテンプレートとして、プライマーNotI-CMV-F (aaaaaaGCGGCCGCGTTACATAACTTACGG(配列番号11))およびSpeI-CMVp-Rを用いて、CMVのプロモーター領域の全長(CMVp)をPCR増幅し、制限酵素SpeIおよびNotIで切断し、5’pBLV-IF2/pKSの対応箇所にライゲーションし、5’CMVp-pBLV-IF2/pKSを得た。 In addition, the full-length promoter region of CMV (CMVp) is amplified by PCR using primers NotI-CMV-F (aaaaaGCGGCCGCGTTACATAACTTACGG (SEQ ID NO: 11)) and SpeI-CMVp-R, using pIRES vector as a template, and restriction enzymes SpeI and It was digested with NotI and ligated to the corresponding site of 5 'pBLV-IF2 / pKS to obtain 5' CMV p-pBLV-IF2 / pKS.
 また、5’pBLV-IF2/pKSをテンプレートとして、プライマーSpeI-LTR-R-F(ggcaccACTAGTgttcttctcctgagac(配列番号12))およびSpeI-LTR-R-R(aagaacACTAGTggtgccgctaactcgac(配列番号13))を用いたsite-direct mutagenesisにより、BLV-IFの5' LTRのU3領域とR領域との間に、SpeIサイトを導入した。得られた核酸構築物に対し、NotIおよびSpeIサイトを利用して、上記CMVpをライゲーションした。これにより、CMVのプロモーター領域からU3領域の全長が取り除かれた発現制御配列(CMVΔU3)を含む、5’CMVΔU3-pBLV-IF2/pKSを得た。 In addition, site-direct mutagenesis using 5 'pBLV-IF2 / pKS as a template and primers SpeI-LTR-RF (ggcaccACTAGTgttcttctcctgagac (SEQ ID NO: 12)) and SpeI-LTR-RR (aagaacACTAGTggtgccgctaactcgac (SEQ ID NO: 13)) An SpeI site was introduced between the U3 and R regions of the 5 'LTR of BLV-IF. The CMVp was ligated to the obtained nucleic acid construct using NotI and SpeI sites. This resulted in 5'CMV.DELTA.U3-pBLV-IF2 / pKS containing the expression control sequence (CMV.DELTA.U3) in which the full length of U3 region was removed from the promoter region of CMV.
 3’pBLV-IF2/pKSを制限酵素HindIIIおよびKpnIで切断し、5’CMVp-pBLV-IF2/pKS、5’CMVen-pBLV-IF2/pKS、および5’CMVΔU3-pBLV-IF2/pKSの対応領域にそれぞれ導入することで、(1)CMVp-pBLV-IF2、(2)CMVen-pBLV-IF2、および(3)CMVΔU3-pBLV-IF2の計3種類のプラスミドを得た。 The 3 'pBLV-IF2 / pKS is digested with the restriction enzymes HindIII and KpnI, and the corresponding regions of 5' CMV p-pBLV-IF2 / pKS, 5 'CMVen-pBLV-IF2 / pKS, and 5' CMVΔU3-pBLV-IF2 / pKS Each of these plasmids was introduced into the vector to obtain three types of plasmids: (1) CMVp-pBLV-IF2, (2) CMVen-pBLV-IF2, and (3) CMVΔU3-pBLV-IF2.
 (1)CMVp-pBLV-IF2は、CMVpの下流側に、BLVのプロウイルス配列の全長が正方向に配置されたプラスミドである。 (1) CMVp-pBLV-IF2 is a plasmid in which the full length of the proviral sequence of BLV is disposed in the forward direction on the downstream side of CMVp.
 (2)CMVen-pBLV-IF2は、CMVenの下流側に、BLVのプロウイルス配列の全長が、正方向に配置された構造を有するプラスミドである。 (2) CMVen-pBLV-IF2 is a plasmid having a structure in which the full length of the BLV proviral sequence is disposed in a forward direction on the downstream side of CMVen.
 (3)CMVΔU3-pBLV-IF2は、CMVpの下流側に、BLVのプロウイルス配列の全長から5’LTRのU3を欠損した配列を、正方向に配置された構造を有するプラスミドである。 (3) CMVΔU3-pBLV-IF2 is a plasmid having a structure in which a sequence in which 5 'LTR U3 is deleted from the full length of BLV proviral sequence on the downstream side of CMVp is disposed in a forward direction.
 以下に示した配列1)は、(1)CMVp-pBLV-IF2のCMVpからBLVの5’LTRまでの配列を含む。
1)CMVp-pBLV-IF2のCMVpからBLVの5’LTRまでを含む配列(配列番号14)
CGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACTAGTTGTATGAAAGATCATGCCGACCTAGGCGCCGCCACCGCCCCGTAAACCAGACAGAGACGTCAGCTGCCAGAAAAGCTGGTGACGGCAGCTGGTGGCTAGAATCCCCGTACCTCCCCAACTTCCCCTTTCCCGAAAAATCCACACCCTGAGCTGCTGACCTCACCTGCTGAGAAATTAATAAAATGCCGGCCCTGTCGAGTTAGCGGCACCAGAAGCGTTCTTCTCCTGAGACCCTCGTGCTCAGCTCTCGGTCCTGAGCTCTCTTGCTCCCGAGACCTTCTGGTCGGCTATCCGGCAGCGGTCAGGTAAGGCAAACCACGGTTTGGAGGGTGGTTCTCGGCTGAGACCACCGCGAGCTCTATCTCCGGTCCTCTGACCGTCTCCACGTGGACTCTCTCCTTTGCCTCCTGACCCCGCGCTCCAAGGGCGTCTGGCTTGCACCCGCGTTTGTTTCCTGTCTTACTTTCTGTTTCTCGCGGCCCGCGCTCTCTCCTTCGGCGCCCTCTAGCGGCCAGGAGAGACCGGCAAACA
 以下に示した配列2)は、(2)CMVen-pBLV-IF2のCMVenからBLVの5’LTRまでの配列を含む。
2)CMVen-pBLV-IF2のCMVenからBLVの5’LTRまでを含む配列(配列番号15)
CGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGACTAGTTGTATGAAAGATCATGCCGACCTAGGCGCCGCCACCGCCCCGTAAACCAGACAGAGACGTCAGCTGCCAGAAAAGCTGGTGACGGCAGCTGGTGGCTAGAATCCCCGTACCTCCCCAACTTCCCCTTTCCCGAAAAATCCACACCCTGAGCTGCTGACCTCACCTGCTGAGAAATTAATAAAATGCCGGCCCTGTCGAGTTAGCGGCACCAGAAGCGTTCTTCTCCTGAGACCCTCGTGCTCAGCTCTCGGTCCTGAGCTCTCTTGCTCCCGAGACCTTCTGGTCGGCTATCCGGCAGCGGTCAGGTAAGGCAAACCACGGTTTGGAGGGTGGTTCTCGGCTGAGACCACCGCGAGCTCTATCTCCGGTCCTCTGACCGTCTCCACGTGGACTCTCTCCTTTGCCTCCTGACCCCGCGCTCCAAGGGCGTCTGGCTTGCACCCGCGTTTGTTTCCTGTCTTACTTTCTGTTTCTCGCGGCCCGCGCTCTCTCCTTCGGCGCCCTCTAGCGGCCAGGAGAGACCGGCAAACA
 以下に示した配列3)は、(3)CMVΔU3-pBLV-IF2のCMVΔU3からBLVの5’LTRまでの配列を含む。
3)CMVΔU3-pBLV-IF2のCMVΔU3からBLVの5’LTRまでを含む配列(配列番号16)
CGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTGCGATCGCCCGCCCCGTTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACTAGTGTTCTTCTCCTGAGACCCTCGTGCTCAGCTCTCGGTCCTGAGCTCTCTTGCTCCCGAGACCTTCTGGTCGGCTATCCGGCAGCGGTCAGGTAAGGCAAACCACGGTTTGGAGGGTGGTTCTCGGCTGAGACCACCGCGAGCTCTATCTCCGGTCCTCTGACCGTCTCCACGTGGACTCTCTCCTTTGCCTCCTGACCCCGCGCTCCAAGGGCGTCTGGCTTGCACCCGCGTTTGTTTCCTGTCTTACTTTCTGTTTCTCGCGGCCCGCGCTCTCTCCTTCGGCGCCCTCTAGCGGCCAGGAGAGACCGGCAAACA
 〔細胞〕
 アフリカミドリザル腎由来細胞(COS-1)細胞は、10%牛胎児血清(FBS)および1xPenicillin-Streptomycin-Glutamine (PSG)を添加したDMEM培地上で、CO2インキュベーター内で37℃で維持した。
Sequence 1) shown below includes (1) the sequence from CMVp of CMVp-pBLV-IF2 to the 5 'LTR of BLV.
1) Sequence from CMVp of CMVp-pBLV-IF2 to 5 'LTR of BLV (SEQ ID NO: 14)

Sequence 2) shown below includes (2) the sequence from CMVen of CMVen-pBLV-IF2 to the 5 ′ LTR of BLV.
2) A sequence including CMVen of CMVen-pBLV-IF2 to the 5 ′ LTR of BLV (SEQ ID NO: 15)

The sequence 3) shown below includes (3) the sequence from CMVΔU3 of CMVΔU3-pBLV-IF2 to the 5 ′ LTR of BLV.
3) A sequence including CMVΔU3 of CMVΔU3-pBLV-IF2 to the 5 ′ LTR of BLV (SEQ ID NO: 16)

〔cell〕
African green monkey kidney-derived cells (COS-1) cells were maintained at 37 ° C. in a CO 2 incubator on DMEM medium supplemented with 10% fetal bovine serum (FBS) and 1 × Penicillin-Streptomycin-Glutamine (PSG).
 〔トランスフェクション〕
 COS-1細胞5x105 cells/60mm-dishに、以下の3種類のプラスミドを混和し、FugeneHD 16uLを用いて、トランスフェクションを行った。
・pBLV-IF2 野生株(WT)、pBluescriptII KS(-)、または上記3種類のLTR改変プラスミドのいずれか1つ2.8ug
・pME18neoまたはTax-D247G/pME18neo(Tajimaら、2000、Journal of Virology、10939-49.) 1.4ug
・pEGFP-N1 0.4ug
トランスフェクションの48時間後に、細胞および培養上清を回収した。以下では、トランスフェクションを行った細胞を、「変異体」とも称する。
[Transfection]
The following three types of plasmids were mixed in 5 × 10 5 cells / 60 mm-dish of COS-1 cells, and transfection was performed using Fugene HD 16 uL.
PBLV-IF2 wild strain (WT), pBluescript II KS (-), or any one of the above three LTR modified plasmids, 2.8 ug
PME18neo or Tax-D247G / pME18neo (Tajima et al., 2000, Journal of Virology, 10939-49.) 1.4 ug
・ PEGFP-N1 0.4 ug
Cells and culture supernatants were harvested 48 hours after transfection. In the following, the transfected cells are also referred to as "mutants".
 〔ウエスタンブロット〕
 回収した細胞とRIPA bufferとを用いてセルライセートを作製し、BCA法により、セルライセートのタンパク質量を測定した。また、培養上清5mLを回収し、40,000 xg、40minの超遠心分離を行い、得られた沈殿をPBS(-)に懸濁した。セルライセートおよび超遠心後濃縮した培養上清に対してLaemmli buffer を加えて、100℃で5分間インキュベートし、サンプルとした。次に12.5%のSDS-ポリアクリルアミドゲルを作製して、サンプルをアプライし、電気泳動を行なった(SDS-PAGE)。泳動後のタンパク質をPVDFメンブレンに転写し、5%スキムミルクで30分間ブロッキングを行った。メンブレンをPBS-Tで洗浄後、一次抗体として抗BLV-gp51抗体(BLV-2、VMRD社)および抗BLV-p24抗体(BLV-3、VMRD社)を用いて染色した。メンブレンをPBS-Tで洗浄後、HRP標識抗マウスIgG1抗体で染色し、PBS-Tで洗浄後、Super Signal west pico (Thermo Fisher Scientific)で化学発光を行い、シグナルを検出した。
[Western blot]
Cell lysate was prepared using the recovered cells and RIPA buffer, and the protein amount of cell lysate was measured by the BCA method. In addition, 5 mL of culture supernatant was collected, subjected to ultracentrifugation at 40,000 × g and 40 min, and the obtained precipitate was suspended in PBS (−). Laemmli buffer was added to the cell lysate and the culture supernatant concentrated after ultracentrifugation, incubated at 100 ° C. for 5 minutes, and used as a sample. Next, a 12.5% SDS-polyacrylamide gel was prepared, the sample applied and subjected to electrophoresis (SDS-PAGE). The proteins after migration were transferred to a PVDF membrane and blocked for 30 minutes with 5% skimmed milk. After washing the membrane with PBS-T, it was stained using anti-BLV-gp51 antibody (BLV-2, VMRD) and anti-BLV-p24 antibody (BLV-3, VMRD) as primary antibodies. The membrane was washed with PBS-T, stained with HRP-labeled anti-mouse IgG1 antibody, washed with PBS-T, and chemiluminescence was performed with Super Signal west pico (Thermo Fisher Scientific) to detect a signal.
 〔逆転写ポリメラーゼ連鎖反応(RT-PCR)アッセイ〕
 上清中のウイルスRNA量をRT-PCRアッセイで測定した。培養上清140uLから、QIAamp viral RNA mini kit (QIAGEN)を使用してウイルスRNAを抽出し、TURBO DNase-free kit (Thermo Fisher Scientific) により処理した。処理後のウイルスRNAをテンプレートとして、High Capacity RNA-to-cDNA Kit (ThermoFisher Scientific) を用いて逆転写反応を行い、CoCoMo-BLV-PCR kit (理研ジェネシス)によりウイルス量を定量した。
[Reverse transcription polymerase chain reaction (RT-PCR) assay]
The amount of viral RNA in the supernatant was measured by RT-PCR assay. Viral RNA was extracted from 140 uL of culture supernatant using QIAamp viral RNA mini kit (QIAGEN) and treated with TURBO DNase-free kit (Thermo Fisher Scientific). Reverse transcription reaction was performed using the High Capacity RNA-to-cDNA Kit (ThermoFisher Scientific) with the processed viral RNA as a template, and the amount of virus was quantified by CoCoMo-BLV-PCR kit (RIKEN GENESIS).
 〔サンドイッチELISA〕
 96-Well Microplate (Beckman coulter社) に炭酸バッファー(pH9.5)で懸濁したBLV陽性牛血清を100uL加えて、4℃で一晩培養した。PBS-Tで洗浄後、3%スキムミルク 200uLで室温で1時間ブロッキングした。PBS-Tで洗浄後、回収した培養上清90uLに対して、5% NP-40を10uL加え、プレートに加えて室温で2時間インキュベートした。PBS-Tで洗浄後、一次抗体として抗BLV-gp51抗体(BLV-2、VMRD社)または抗BLV-p24抗体(BLV-3、VMRD社)を3%スキムミルクで5000倍稀釈して各ウェルに加えて、室温で90分インキュベートし、PBS-Tで洗浄後、HRP標識抗マウスIgG1抗体を3%スキムミルクで2000倍稀釈して各ウェルに加えて、1時間インキュベートした。PBS-Tでwash後、1-Step Ultra TMB-ELISA Substrate Solution (Thermo Fisher Scientific) を加えて発色反応後、2M-H2SO4で反応を停止し、プレートリーダーで吸光度OD450を測定した。
〔フローサイトメトリー解析〕
 回収した細胞に2%パラホルムアルデヒドを加えて4℃で15 分間固定を行い、0.5%FBSを含むPBS(-)で3回洗浄を行った。-20℃の70%エタノール中で膜透過処理を行い、解析時まで-20℃で保存した。エタノールを除き、0.5%FBSを含むPBS(-)で3回洗浄後、一次抗体として0.5%FBSを含むPBS(-)に100倍稀釈した抗BLV-gp51抗体(BLV-2、VMRD社)または抗BLV-p24抗体(BLV-3、VMRD社)を加えて4℃で60分インキュベートした。3回洗浄後、二次抗体として0.5%FBSを含むPBS(-)に300倍稀釈したAPC標識抗マウスIgG1抗体を加えて4℃で30分インキュベートした。3回洗浄後、各サンプルの平均蛍光強度(MFI)をFACSCalibur(BD Biosciences)を用いて解析した。
[Sandwich ELISA]
100 uL of BLV-positive bovine serum suspended in carbonic acid buffer (pH 9.5) was added to 96-Well Microplate (Beckman Coulter) and cultured overnight at 4 ° C. After washing with PBS-T, it was blocked with 200 uL of 3% skimmed milk for 1 hour at room temperature. After washing with PBS-T, 10 uL of 5% NP-40 was added to 90 uL of the collected culture supernatant, added to the plate, and incubated at room temperature for 2 hours. After washing with PBS-T, an anti-BLV-gp51 antibody (BLV-2, VMRD) or an anti-BLV-p24 antibody (BLV-3, VMRD) as a primary antibody is diluted 5000 times with 3% skimmed milk and added to each well. In addition, after incubating for 90 minutes at room temperature and washing with PBS-T, HRP-labeled anti-mouse IgG1 antibody was diluted 2000-fold with 3% skimmed milk and added to each well and incubated for 1 hour. After washing with PBS-T, 1-Step Ultra TMB-ELISA Substrate Solution (Thermo Fisher Scientific) was added for color reaction, and then the reaction was stopped with 2 M H 2 SO 4 and absorbance OD 450 was measured with a plate reader.
Flow cytometry analysis
The recovered cells were added with 2% paraformaldehyde, fixed at 4 ° C. for 15 minutes, and washed three times with PBS (−) containing 0.5% FBS. Membrane permeabilization was performed in 70% ethanol at -20 ° C and stored at -20 ° C until analysis. After washing 3 times with PBS (-) containing 0.5% FBS except ethanol, anti-BLV-gp51 antibody (BLV-2, VMRD) or 100-fold diluted in PBS (-) containing 0.5% FBS as a primary antibody or Anti-BLV-p24 antibody (BLV-3, VMRD) was added and incubated at 4 ° C. for 60 minutes. After washing three times, APC-labeled anti-mouse IgG1 antibody diluted 300-fold in PBS (−) containing 0.5% FBS as a secondary antibody was added and incubated at 4 ° C. for 30 minutes. After three washes, the mean fluorescence intensity (MFI) of each sample was analyzed using FACSCalibur (BD Biosciences).
 <結果>
 〔ウイルス産生量の比較〕
 図1は、各プラスミドを導入した変異体の、ウイルス産生量の比較を示す図である。なお、以下の図中の略号は、それぞれpEGFP-N1以外に以下のプラスミドを導入した変異体の結果を指す。
・WT:pBLV-IF2野生株およびpME18neo
・CMVp:CMVp-pBLV-IF2およびpME18neo
・CMV-en:CMVen-pBLV-IF2およびpME18neo
・CMV-ΔU3:CMVΔU3-pBLV-IF2およびpME18neo
・pKS:pBluescriptII KS(-)およびpME18neo
 図1の(a)は、RT-PCRアッセイの結果を示す図である。図1の(b)は、サンドイッチELISAの結果を示す図である。図1の(c)は、抗Gag抗体を用いたフローサイトメトリーの結果を示す図である。図1の(d)は、抗Env抗体を用いたフローサイトメトリーの結果を示す図である。
<Result>
[Comparison of virus production]
FIG. 1 is a diagram showing comparison of the amount of virus production of mutants into which each plasmid was introduced. The abbreviations in the following figures indicate the results of mutants into which the following plasmids were introduced in addition to pEGFP-N1, respectively.
WT: pBLV-IF2 wild strain and pME18neo
CMVp: CMVp-pBLV-IF2 and pME18neo
CMV-en: CMVen-pBLV-IF2 and pME18neo
CMV-ΔU3: CMVΔU3-pBLV-IF2 and pME18neo
PKS: pBluescriptII KS (-) and pME18neo
FIG. 1 (a) shows the results of RT-PCR assay. (B) of FIG. 1 is a figure which shows the result of sandwich ELISA. (C) of FIG. 1 is a figure which shows the result of flow cytometry using anti-Gag antibody. (D) of FIG. 1 shows the results of flow cytometry using an anti-Env antibody.
 〔細胞内および培養上清中のウイルス抗原発現〕
 図2は、ウエスタンブロットの結果を示す図である。図2の(a)および(b)は、それぞれ独立して行った実験の結果を示す。図中では、矢印を用いて、gp51およびp24のバンドの位置を示している。
[Expression of virus antigen in cells and in culture supernatant]
FIG. 2 shows the results of Western blotting. (A) and (b) of FIG. 2 show the result of the experiment performed independently, respectively. In the figure, arrows are used to indicate the positions of the gp51 and p24 bands.
 〔Tax発現による各変異体のウイルス産生の増強効果〕
 図3は、Tax発現の有無による、各変異体のウイルス産生の増強効果を比較した図である。本図中で新たに使用する略号は、それぞれpEGFP-N1以外に以下のプラスミドを導入した変異体の結果を指す。
・WT+Tax-D247G:pBLV-IF2 野生株(WT)およびTax-D247G/pME18neo
・CMVp+Tax-D247G:CMVp-pBLV-IF2およびTax-D247G/pME18neo
・CMVen+Tax-D247G:CMVen-pBLV-IF2およびTax-D247G/pME18neo
・CMV-ΔU3+Tax-D247G:CMVΔU3-pBLV-IF2およびTax-D247G/pME18neo
 図3の(a)は、RT-PCRアッセイの結果を示す図である。図3の(b)は、サンドイッチELISAの結果を示す図である。図3の(c)は、抗Gag抗体を用いたフローサイトメトリーの結果を示す図である。図3の(d)は、抗Env抗体を用いたフローサイトメトリーの結果を示す図である。
[Enhanced effect of virus production of each mutant by Tax expression]
FIG. 3 is a diagram comparing the enhancement effect of virus production of each mutant depending on the presence or absence of Tax expression. Abbreviations newly used in the figure refer to the results of mutants in which the following plasmids were introduced in addition to pEGFP-N1, respectively.
WT + Tax-D247G: pBLV-IF2 wild strain (WT) and Tax-D247G / pME18neo
CMVp + Tax-D247G: CMVp-pBLV-IF2 and Tax-D247G / pME18neo
CMVen + Tax-D247G: CMVen-pBLV-IF2 and Tax-D247G / pME18neo
CMV-ΔU3 + Tax-D247G: CMVΔU3-pBLV-IF2 and Tax-D247G / pME18neo
FIG. 3 (a) shows the results of RT-PCR assay. (B) of FIG. 3 is a figure which shows the result of sandwich ELISA. (C) of FIG. 3 shows the results of flow cytometry using an anti-Gag antibody. (D) of FIG. 3 shows the results of flow cytometry using an anti-Env antibody.
 〔細胞内および培養上清中のウイルス抗原発現〕
 図4は、ウエスタンブロットの結果を示す図である。図4の(a)および(b)は、それぞれ独立して行った実験の結果を示す。図中では、矢印を用いて、gp51およびp24のバンドの位置を示している。
[Expression of virus antigen in cells and in culture supernatant]
FIG. 4 shows the results of Western blotting. (A) and (b) of FIG. 4 show the result of the experiment performed independently, respectively. In the figure, arrows are used to indicate the positions of the gp51 and p24 bands.
 図4の各結果において、+Tax-D247Gと付記されている4列は、Tax-D247G/pME18neoを導入した変異体を示す。
(文献1)Inabe K, Ikuta K, Aida Y: Transmission and propagation in cell cultureof virus produced by cells transfected with an infectious molecular clone of bovine leukemia virus. Virology 1998, 245:53-64.
(文献2)Tajima, S and Aida, Y: The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. Journal of Virology 2000, 10939-49.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
In each result of FIG. 4, four columns appended with + Tax-D247G indicate variants introduced with Tax-D247G / pME18neo.
(Reference 1) Inabe K, Ikuta K, Aida Y: Transmission and propagation in cell culture produced by cells transfected with cells infected with an infectious molecular clone of bovine leukemia virus. Virology 1998, 245: 53-64.
(Ref. 2) Tajima, S and Aida, Y: The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restrictions restrictions on transactivation not only via the BLV enhancer but also via other retroviruses. Journal of Virology 2000, 10939-49.
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 (関連出願の相互参照)
 本出願は、2017年7月26日に出願された日本国特許出願:特願2017-144892に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。また本出願において引用された特許および特許出願明細書を含む全ての刊行物に記載された内容についても、その全てが参照によって本明細書に援用される。
(Cross-reference to related applications)
This application claims the benefit of priority to Japanese Patent Application No. 201-144892 filed on Jul. 26, 2017, the entire contents of which are hereby incorporated by reference. Included in this book. Also, the contents described in all the publications including the patent and patent application cited in this application are all incorporated herein by reference in their entirety.
 本発明は、例えばBLVワクチンの製造に利用することができる。 The present invention can be used, for example, for the production of a BLV vaccine.

Claims (11)

  1.  ヒトサイトメガロウイルス(CMV)、シミアンウイルス40(SV40)、ラウス肉腫ウイルス(RSV)からなる群から選択されるウイルスのプロモータ領域に由来する発現制御配列と、
     上記発現制御配列の下流側に正方向に配置される、牛白血病ウイルス(BLV)のロングターミナルリピート(LTR)に由来する配列と、を含む、
    動物細胞内での遺伝子発現用の核酸構築物。
    An expression control sequence derived from a promoter region of a virus selected from the group consisting of human cytomegalovirus (CMV), simian virus 40 (SV40) and rous sarcoma virus (RSV),
    And a sequence derived from long terminal repeat (LTR) of bovine leukemia virus (BLV), which is positively oriented downstream of the expression control sequence.
    Nucleic acid constructs for gene expression in animal cells.
  2.  LTRに由来する上記配列は、U3領域の少なくとも一部を欠損している、請求項1に記載の核酸構築物。 The nucleic acid construct according to claim 1, wherein said sequence derived from LTR lacks at least part of the U3 region.
  3.  上記発現制御配列が、CMVのプロモータ領域に由来する、請求項1又は2に記載の核酸構築物。 The nucleic acid construct according to claim 1 or 2, wherein the expression control sequence is derived from a promoter region of CMV.
  4.  上記発現制御配列は、プロモータおよび/またはエンハンサを含む、請求項1~3の何れか一項に記載の核酸構築物。 The nucleic acid construct according to any one of claims 1 to 3, wherein the expression control sequence comprises a promoter and / or an enhancer.
  5.  上記発現制御配列は、プロモータおよびエンハンサを含む、請求項4に記載の核酸構築物。 The nucleic acid construct according to claim 4, wherein the expression control sequence comprises a promoter and an enhancer.
  6.  LTRに由来する上記配列の下流側に、ポリペプチドをコードする核酸配列をさらに含む、請求項1~5の何れか一項に記載の核酸構築物。 The nucleic acid construct according to any one of claims 1 to 5, further comprising a nucleic acid sequence encoding a polypeptide downstream of said sequence derived from LTR.
  7.  LTRに由来する上記配列と、ポリペプチドをコードする上記核酸配列とで、BLVの5’LTRから3’LTRまでの核酸配列の全長またはその部分に相当する配列を構成している、請求項6に記載の核酸構築物。 7. The sequence corresponding to the entire length of the nucleic acid sequence from 5 'LTR to 3' LTR of BLV or a portion thereof with the above-mentioned sequence derived from LTR and the above-mentioned nucleic acid sequence encoding a polypeptide. The nucleic acid construct as described in.
  8.  BLVの5’LTRから3’LTRまでの核酸配列の上記部分は、少なくともGagポリペプチドをコードする、請求項7に記載の核酸構築物。 8. The nucleic acid construct of claim 7, wherein said portion of the nucleic acid sequence of the 5 'LTR to the 3' LTR of BLV encodes at least a Gag polypeptide.
  9.  請求項1~8の何れか一項に記載の核酸構築物を含む、動物細胞。 An animal cell comprising the nucleic acid construct according to any one of claims 1-8.
  10.  請求項6~8の何れか一項に記載の核酸構築物を発現させる工程を含む、ポリペプチドの製造方法。 A method for producing a polypeptide, comprising the step of expressing the nucleic acid construct according to any one of claims 6 to 8.
  11.  上記ポリペプチドとして、ウイルス粒子またはウイルス様粒子を構成するポリペプチドを製造することで、ウイルス粒子またはウイルス様粒子を製造する、請求項10に記載のポリペプチドの製造方法。 The method for producing a polypeptide according to claim 10, wherein a virus particle or a virus-like particle is produced by producing a polypeptide that constitutes a virus particle or a virus-like particle as the polypeptide.
PCT/JP2018/027963 2017-07-26 2018-07-25 Nucleic acid structure for gene expression, and use thereof WO2019022160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-144892 2017-07-26
JP2017144892A JP2019024351A (en) 2017-07-26 2017-07-26 Nucleic acid construct for gene expression, and use thereof

Publications (1)

Publication Number Publication Date
WO2019022160A1 true WO2019022160A1 (en) 2019-01-31

Family

ID=65041439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027963 WO2019022160A1 (en) 2017-07-26 2018-07-25 Nucleic acid structure for gene expression, and use thereof

Country Status (2)

Country Link
JP (1) JP2019024351A (en)
WO (1) WO2019022160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007409A1 (en) * 2021-07-28 2023-02-02 University Of Cape Town East coast fever antigenic constructs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204252A1 (en) * 2022-04-20 2023-10-26 国立大学法人 東京大学 Non-replicating bovine infectious lymphoma virus (blv) and cells for producing same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DERSE, DAVID ET AL.: "Two Elements in the Bovine Leukemia Virus Long Terminal Repeat That Regulate Gene Expression", SCIENCE, vol. 231, 1986, pages 1437 - 1440, XP055567234, ISSN: 1095-9203 *
HLAVATY, JURAJ ET AL.: "Effects of sequences of prokaryotic origin on titer and transgene expression in retroviral vectors", VIROLOGY, vol. 330, 2004, pages 351 - 360, XP004620835, ISSN: 0042-6822 *
INABE, KAZUNORI ET AL.: "Transmission and Propagation in Cell Culture of Virus Produced by Cells Transfected with an Infectious Molecular Clone of Bovine Leukemia Virus", VIROLOGY, vol. 245, 1998, pages 53 - 64, XP004445848, ISSN: 0042-6822 *
NAVIAUX, ROBERT K. ET AL.: "The pCL Vector System: Rapid Production of Helper-Free, High-Titer, Recombinant Retroviruses", J. VIROL ., vol. 70, no. 8, 1996, pages 5701 - 5705, XP000616293, ISSN: 1098-5514 *
OOTSUKI, HIROYUKI: "Improvement of yield of virus of bovine leukemia virus molecular clone by modifying promoter", LECTURE ABSTRACTS OF THE 160TH ACADEMIC CONFERENCE OF THE JAPANESE SOCIETY OF VETERINARY SCIENCE, 30 August 2017 (2017-08-30), pages 396, ISSN: 1347-8621 *
OOTSUKI, HIROYUKI: "Use of cytomegalovirus promoter in improving yield of virus of bovine leukemia virus molecular clone", THE 4TH ACADEMIC CONFERENCE OF THE JAPANESE SOCIETY OF HTLV-1 AND ASSOCIATED DISEASES, 31 August 2017 (2017-08-31), pages 87 *
ROSEN, CRAIG A. ET AL.: "Activation of Enhancer Sequences in Type II Human T- Cell Leukemia Virus and Bovine Leukemia Virus Long Terminal Repeats by Virus-Associated trans-Acting Regulatory Factors", J. VIROL., vol. 57, no. 3, 1986, pages 738 - 744, XP055567241, ISSN: 1098-5514 *
WU, CHENGXIANG ET AL.: "High-titre retroviral vector system for efficient gene delivery into human and mouse cells of haematopoietic and lymphocytic lineages", J. GEN. VIROL., vol. 91, 2010, pages 1909 - 1918, XP055567258, ISSN: 1465-2099 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007409A1 (en) * 2021-07-28 2023-02-02 University Of Cape Town East coast fever antigenic constructs

Also Published As

Publication number Publication date
JP2019024351A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US20210330783A1 (en) Hiv pre-immunization and immunotherapy
Hanlon et al. Feline leukemia virus DNA vaccine efficacy is enhanced by coadministration with interleukin-12 (IL-12) and IL-18 expression vectors
Yoshida et al. Recent advances in the molecular biology of HTLV-1: trans-activation of viral and cellular genes
Diaz et al. A lentiviral vector expressing a fusogenic glycoprotein for cancer gene therapy
ES2267101T3 (en) VACCINE AGAINST FELINE IMMUNODEFICIENCY VIRUSES.
JP5760023B2 (en) Expression vector with improved safety
US20110305749A1 (en) HIV-1 Envelope Polypeptides for HIV Vaccine
US20230321238A1 (en) Therapeutic agents comprising nucleic acids and car-modified immune cells, and uses thereof
AU2024201392A1 (en) HIV immunotherapy with no pre-immunization step
Schweneker et al. Recombinant modified vaccinia virus Ankara generating Ebola virus-like particles
Pal et al. Polyvalent DNA prime and envelope protein boost HIV‐1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolate
US20140004146A1 (en) Method for producing virus-like particle by using drosophila cell and applications thereof
JP2015116196A (en) Lentivirus-based immunogenic vectors
JP5513468B2 (en) Promoters for gene transfer into lymphocytes and blood cells and methods of use thereof
WO2019022160A1 (en) Nucleic acid structure for gene expression, and use thereof
McCurley et al. HIV transmitted/founder vaccines elicit autologous tier 2 neutralizing antibodies for the CD4 binding site
Kueng et al. General strategy for decoration of enveloped viruses with functionally active lipid-modified cytokines
Budzik et al. Oncolytic foamy virus: Generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells
Gao et al. Construction of a novel DNA vaccine candidate targeting F gene of genotype VII Newcastle disease virus and chicken IL‐18 delivered by Salmonella
CN103805635A (en) J avian leukosis virus subgroup env gene conserved sequence-based siRNA (Small Interfering RNA (Ribonucleic Acid)) recombinant interference carrier as well as preparation method and application thereof
Muratori et al. Lentivirus-based virus-like particles as a new protein delivery tool
Lietz et al. Codelivery of the chemokine CCL3 by an adenovirus-based vaccine improves protection from retrovirus infection
Bongard et al. Interference of retroviral envelope with vaccine-induced CD8+ T cell responses is relieved by co-administration of cytokine-encoding vectors
US20190062409A1 (en) Use of modified hiv-1 for generating fully human antibodies
Furuta et al. Mouse model for the equilibration interaction between the host immune system and human T-cell leukemia virus type 1 gene expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838013

Country of ref document: EP

Kind code of ref document: A1