WO2019022153A1 - Optical information reading device and method for manufacturing optical information reading device - Google Patents

Optical information reading device and method for manufacturing optical information reading device Download PDF

Info

Publication number
WO2019022153A1
WO2019022153A1 PCT/JP2018/027939 JP2018027939W WO2019022153A1 WO 2019022153 A1 WO2019022153 A1 WO 2019022153A1 JP 2018027939 W JP2018027939 W JP 2018027939W WO 2019022153 A1 WO2019022153 A1 WO 2019022153A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
lens
holder
light
optical information
Prior art date
Application number
PCT/JP2018/027939
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 誠
亮 杉浦
Original Assignee
株式会社デンソーウェーブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017163043A external-priority patent/JP6888479B2/en
Priority claimed from JP2018019580A external-priority patent/JP6904277B2/en
Application filed by 株式会社デンソーウェーブ filed Critical 株式会社デンソーウェーブ
Priority to CN201880048904.8A priority Critical patent/CN110998591B/en
Priority to US16/634,840 priority patent/US11531185B2/en
Publication of WO2019022153A1 publication Critical patent/WO2019022153A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation

Definitions

  • the present invention relates to an optical information reader and a method of manufacturing the optical information reader.
  • an optical information reading apparatus having an area sensor, in order to image and read an information code or the like at a stable distance, an area sensor and a result for forming reflected light from the information code on this area sensor
  • a lens barrel has been adopted as a member for adjusting and maintaining the relative position to the image lens at a predetermined focal position (best focus).
  • a screw portion is formed on the outer peripheral surface, and in a state in which the imaging lens is assembled inside, the screw portion is screwed into the holder on which the area sensor is assembled.
  • the relative position between the area sensor and the imaging lens has been adjusted by adjusting the screwing amount of the lens barrel.
  • the optical information reader disclosed by the following patent documents 1 is known, for example. There is.
  • information codes are used for encryption, such as using an information code for encryption and for determining authenticity, and for information security measures. Cases are being introduced.
  • invisible light such as infrared light
  • visible light is used as illumination light, and it is used by switching to invisible light such as infrared light to prevent the illumination light from being perceived as dazzling in public places where many people can easily view the illumination light
  • invisible light such as infrared light
  • a reader disclosed in Patent Document 2 below is known.
  • This reader uses up-conversion generated by simultaneous irradiation of near-infrared light and infrared light from two different light sources, and is highly effective when it receives light reflected from a two-dimensional transparent barcode. It is possible to read a signal having an output and a high S / N ratio, and improve the information identification capability.
  • a portion where the image forming performance is degraded in part of the periphery of the field of view due to manufacturing variations etc. (hereinafter, also simply referred to as one-sided blurring) May occur.
  • the resolving power changes according to the relative position of the area sensor and the imaging lens, and the resolving power measured when the relative position is an optimal focus position is the most It is highly appreciated.
  • an imaging field of view is usually selected due to restrictions on the arrangement of the light receiving sensor and each light source.
  • the irradiation range of visible light and the irradiation range of invisible light with respect to (imaging field) are different. Therefore, when the visible light irradiation state is switched to the invisible light irradiation state, the irradiation range of the invisible light can not be visually recognized. Therefore, the irradiation range which has been irradiated with the visible light can be read as a readable range.
  • the second problem may also occur in the case where the visible light and the invisible light are simultaneously irradiated to the information code and the information code is read.
  • the positional deviation between the irradiation range of visible light and the irradiation range of invisible light becomes large, and the above problem becomes remarkable.
  • the present invention has been made to solve the first problem described above, and the object of the present invention is to change the relative position between the area sensor and the imaging lens to obtain an optimal focus position. It is an object of the present invention to provide a configuration capable of suppressing the influence of one blur with respect to a change in resolution to be measured (first object).
  • the present invention has been made to solve the second problem described above, and the object of the present invention is to mount both a light source for emitting visible light and a light source for emitting invisible light. It is an object of the present invention to provide a configuration capable of suppressing a decrease in reading performance due to a shift in irradiation range (second object).
  • the reference surface is in surface contact with the holder when the lens holding unit is assembled such that light through the imaging lens forms an image on the area sensor, and the lens holding is performed along the optical axis.
  • a guide surface is formed to be in sliding contact with the reference surface when the unit is moved.
  • the lens holding unit assembled to the holder to which the area sensor is fixed while holding the imaging lens is provided with the reference surface along the optical axis of the imaging lens. Then, when the lens holding unit is assembled to the holder so that the light through the imaging lens forms an image on the area sensor, the reference surface is in surface contact, and the lens holding unit is moved along the optical axis A guide surface is formed when the reference surface slides.
  • the lens holding unit is moved along the optical axis with respect to the holder such that the reference surface is in sliding contact with the guide surface. That is, even when the imaging lens has one blur, measurement is performed because the one-blur portion does not rotate when the relative position between the area sensor and the imaging lens is changed to obtain the optimum focal position. The influence of one blur can be suppressed with respect to the change in resolution.
  • the area sensor has a rectangular light receiving surface, and the position where one-sided blurring occurs is grasped for each imaging lens.
  • the lens holding unit holds the imaging lens such that the part of the field of view in which the one-sided blur occurs is positioned outside the light receiving surface on the long side of the light receiving surface.
  • the reference surface is composed of a planar first reference surface and a planar second reference surface intersecting the first reference surface
  • the guide surface is a sliding surface of the first reference surface. It comprises a planar first guiding surface which can be brought into contact and a planar second guiding surface which can be brought into sliding contact with the second reference surface.
  • At least a part of the flat surface on the imaging lens side of the lens holding unit functions as the first reference surface
  • the holder is more than the collar unit of the lens holding unit during assembly.
  • a portion on the imaging lens side is formed to be accommodated through the opening, and at least a part of a plane on which the opening is provided functions as a first guiding surface.
  • the flange portion is formed to cover the opening in a plane that is on the imaging lens side at the time of sliding contact.
  • the light shielding property of the holder can be improved because the collar portion functions as a light shielding portion that prevents the light from entering through the opening.
  • a method of manufacturing an optical information reader for manufacturing the above-mentioned optical information reader (10), comprising: Assembling the lens holding portion holding the imaging lens such that the reference surface is in surface contact with the guide surface with respect to the holder to which the area sensor is fixed; Assembling an arm (510) movable along the optical axis to the lens holder; Measuring the resolution of the area sensor sequentially while moving the arm in a direction along the optical axis such that the reference surface is in sliding contact with the guide surface; Securing the lens holder in a state in which the arm is assembled at a peak position where the measured resolution is regarded as a peak, to the holder; Removing the arm from the lens holder; And the like.
  • the lens holding portion holding the imaging lens is assembled along the optical axis after the reference surface is in surface contact with the guide surface with respect to the holder to which the area sensor is fixed.
  • a possible arm is attached to the lens holder, and the resolution of the area sensor is sequentially measured while moving the arm in the direction along the optical axis so that the reference surface is in sliding contact with the guide surface, and the measured resolution is regarded as a peak
  • the arm is removed from the lens holder.
  • the lens holding portion when the lens holding portion is fixed to the holder at the peak position, the arm is assembled to the lens holding portion, so that the lens holding portion does not easily shift from the peak position, and the optimum determined by measuring the resolution. It is possible to reliably perform adjustment to various focal positions.
  • the peak position is determined by moving the arm in the first direction along the optical axis. After moving the arm in the second direction along the optical axis so as to exceed the position, the arm is moved in the first direction toward the peak position to fix the lens holding portion to the holder at the peak position.
  • the lens holder When switching the movement direction of the arm from the first direction to the second direction, the lens holder may not move even though the actuator is driven due to the play of the actuator for moving the arm, etc. In such a case, if the lens holder is adjusted to move in the other direction toward the peak position found while moving in the first direction, the lens may be fixed at a position deviated from the peak position. is there. Therefore, when the peak position is determined while moving in the first direction, the arm is moved in the second direction along the optical axis so as to exceed the peak position, and then the arm is moved toward the peak position.
  • the lens holder By moving the lens holder in the first direction and fixing the lens holding portion to the holder at the peak position, the occurrence of the deviation from the peak position as described above can be prevented, and the adjustment to the optimal focus position is made more reliable. Can be implemented.
  • the moving amount by the arm when measuring the resolving power equal to or more than a predetermined value is set smaller than the moving amount by the arm when the resolving power less than the predetermined value is measured.
  • the measurement time for the measurement to the vicinity of the peak position is shortened, and the measurement accuracy for the measurement near the peak position is enhanced. Therefore, it is possible to achieve both the shortening of the measurement time and the improvement of the measurement accuracy.
  • the first light source (21) emits visible light (Lf1) as illumination light toward the imaging field of view (AR) by the area sensor, and the second light source (22) emits invisible light (Lf2).
  • the first light source and the second light source may be arranged in a line along a short direction of the light receiving surface.
  • an area sensor that receives reflected light from an information code on a rectangular light receiving surface, a first light source that emits visible light as illumination light toward an imaging field of view with the area sensor, and invisible light And a second light source for emitting light, and the first light source and the second light source are arranged in a line along the short direction of the light receiving surface.
  • the irradiation range of visible light and the irradiation range of invisible light do not easily shift in the longitudinal direction of the imaging field with respect to the imaging field having a rectangular shape according to the shape of the light receiving surface.
  • the reading port is directed to the information code so that the longitudinal direction of the information code coincides with the longitudinal direction of the imaging field, that is, the longitudinal direction of the reading port become.
  • the first light source and the second light source are arranged such that the light receiving optical axis of the area sensor is located between the first light source and the second light source.
  • the center of the imaging field of view, the center of the irradiation range of visible light, and the center of the irradiation range of invisible light approach in the short direction of the imaging field of view so as to coincide with each other.
  • the size can be further reduced, and the reading performance can be improved.
  • the first light source and the second light source are arranged to be offset in the longitudinal direction of the light receiving surface with respect to the imaging lens.
  • the first light source and the second light source are disposed close to each other in the short direction of the light receiving surface, they do not interfere with the imaging lens, so that the first light source and the second light source are brought close to each other.
  • the size of the device can be reduced by the arrangement.
  • first light source and the second light source are mounted on the same substrate, not only the positional deviation between the first light source and the second light source can be suppressed, but also the first light source and the second light source Can be compactly arranged, and the device can be miniaturized.
  • the illumination lens used for the first light source and the illumination lens used for the second light source are integrally formed, not only the number of parts can be reduced for the illumination lens, but also the first light source and the second light source Can be easily arranged in a compact manner, and the device can be miniaturized.
  • the first light source and the second light source are disposed such that the irradiation range of the first light source is located below the irradiation range of the second light source as viewed from the user.
  • the reading port is directed to the information code displayed on a predetermined display surface
  • the user performs the reading operation while looking at the information code through the reading port.
  • the upper side tends to be relatively inclined to be separated from the reading port.
  • the first light source for emitting visible light whose light intensity is stronger than invisible light is the light receiving optical axis.
  • the first light source can easily enter the folded field of view. That is, since the visible light reflected on the predetermined display surface is easily reflected, if the visible light is reflected on the captured information code, the reading performance may be degraded.
  • the predetermined display surface is intervened. It becomes difficult for the first light source to enter the folded field of view, and it is possible to suppress the decrease in the reading performance due to the reflection of visible light with high light intensity.
  • symbol in each said bracket shows correspondence with the specific means as described in embodiment mentioned later.
  • FIG. 3A is a front view
  • FIG. 3B is a plan view
  • FIG. 3C is a side view.
  • FIG. 4A is a front view
  • FIG. 4B is a plan view
  • FIG. 4C is a view showing a state in which the lens holding portion is assembled to the holder in the first embodiment.
  • Fig. 3 shows a side view, partially in section, of the drawing.
  • FIG. 7A is a front view
  • FIG. 7B is a plan view
  • FIG. 7C is a side view
  • FIG. 8A is a front view
  • FIG. 8B is a plan view
  • FIG. 8C is a view showing a state in which the lens holding portion is assembled to the holder in the second embodiment. , Shows a side view.
  • FIG. 9A is a front view
  • FIG. 9B is a front view
  • FIG. 9B is a plan view
  • FIG. 9C is a side view. It is a figure which shows the state which assembled
  • FIG. 10 (A) shows a front view
  • FIG. 10 (B) shows a top view
  • FIG. 10 (C) is.
  • 11A is a front view
  • FIG. 11B is a plan view
  • FIG. 11C is a side view
  • FIG. 12 (A) shows a front view
  • FIG. 12 (B) shows a plan view
  • FIG. 12 (C) shows a state in which the lens holding portion is assembled to the holder in the fourth embodiment. , Shows a side view.
  • FIG. 10 (A) shows a front view
  • FIG. 10 (B) shows a top view
  • FIG. 10 (C) is.
  • 11A is a front view
  • FIG. 11B is a plan view
  • FIG. 13 (A) shows a front view
  • FIG. 13 (B) shows a plan view
  • FIG. 13 (C) shows a side view
  • FIG. 14A is a front view
  • FIG. 14B is a plan view
  • FIG. 14C is a view showing a state in which the lens holding portion is assembled to the holder in the fifth embodiment.
  • It is a top view which shows roughly the manufacturing apparatus utilized for the manufacturing method of the optical information reader concerning 6th Embodiment.
  • FIG. 17A is an explanatory view showing an example of a chart for measuring the contrast value
  • FIG. 17A is an explanatory view showing an example of a chart for measuring the contrast value
  • FIG. 17B is an explanatory view showing another example of the chart for measuring the contrast value.
  • FIG. 18A is an explanatory view showing the measurement results of the contrast value when the arm is moved in one direction
  • FIG. 18B is the measurement of the contrast value when the arm is moved in the other direction.
  • FIG. 21 is a block diagram schematically showing an electrical configuration of the optical information reader of FIG. 20. It is explanatory drawing explaining the positional relationship of the 1st light source and area sensor which are a direction orthogonal to the light reception optical axis in 7th Embodiment, and was seen from the 1st light source side. It is explanatory drawing explaining the positional relationship of both the light source and the area sensor which were seen from the reading opening side in 7th Embodiment. It is an explanatory view explaining an angle of an information code of a predetermined display surface at the time of reading work and an optical information reader, and Drawing 26 (A) reads an information code of a predetermined display surface in a hand-held label etc.
  • FIG. 1st light source and area sensor which are a direction orthogonal to the light reception optical axis in 7th Embodiment, and was seen from the 1st light source side. It is explanatory drawing explaining the positional relationship of both the light source and the area sensor which were seen from the reading opening side in
  • FIG. 26B shows the case where the information code C on a predetermined display surface of a label or the like on a desk is read.
  • FIG. 27A is an explanatory view for explaining a relationship between a folded visual field through a predetermined display surface and a light receiving optical axis, and FIG. 27A shows a state in which the first light source is positioned below the light receiving optical axis.
  • FIG. 27B shows a state in which the first light source is located above the light receiving optical axis.
  • FIG. 28A is an explanatory view for explaining an imaging state in which the information code is imaged in the state of FIG. 27A, and FIG. 28B shows the information code in the state of FIG. It is an explanatory view explaining an image pick-up state which picturized.
  • the optical information reader 10 is configured as an information code reader that optically reads an information code C such as a one-dimensional code or a two-dimensional code.
  • an information code C such as a one-dimensional code or a two-dimensional code.
  • the one-dimensional code for example, a so-called bar code consisting of JAN code, EAN, UPC, ITF code, CODE 39, CODE 128, NW-7 and the like is assumed.
  • the two-dimensional code for example, a square information code such as a QR code, a data matrix code, a maxi code, or an Aztec code is assumed.
  • the optical information reader 10 is configured such that the circuit unit 20 is housed inside the case CS, and the circuit unit 20 is mainly an optical source such as the illumination light source 21, the marker light irradiation unit 22, the area sensor 23, etc.
  • a system and a microcomputer (hereinafter referred to as a "microcomputer") system such as a memory 35 and a control unit 40 are provided.
  • the optical system is divided into a projection optical system and a light receiving optical system.
  • the light projecting optical system comprises an illumination light source 21 and a marker light irradiator 22.
  • the illumination light source 21 functions as an illumination light source capable of emitting the illumination light Lf, and includes, for example, an LED and a lens provided on the emission side of the LED.
  • the marker light irradiation unit 22 functions as a marker light source capable of irradiating the marker light Lm indicating the center of the imaging range by the area sensor 23.
  • the marker light irradiation unit 22 includes an LED and a lens provided on the emission side of the LED There is. Note that FIG. 1 conceptually illustrates an example in which the illumination light Lf and the marker light Lm are irradiated toward the reading target R to which the information code C is attached.
  • the light receiving optical system is configured of an area sensor 23, an imaging lens 25, and the like.
  • the area sensor 23 is configured to be capable of imaging the information code C as a light receiving sensor having a rectangular light receiving surface 23a in which light receiving elements, which are solid-state imaging devices such as C-MOS and CCD, are two-dimensionally arrayed.
  • an electric signal corresponding to the intensity of the reflected light Lr is output for each cell (pattern) of the received information code.
  • the area sensor 23 is mounted on the sensor substrate 20 a so as to be capable of receiving incident light incident through the imaging lens 25.
  • the imaging lens 25 is configured to have one or more lenses, condenses incident light incident from the outside through the reading port 13, and forms an image on the light receiving surface 23 a of the area sensor 23. It functions as a possible imaging optical system.
  • the illumination light Lf emitted from the illumination light source 21 is reflected by the information code C and the reading target R to which the information code C is attached, and the reflected light Lr is reflected by the imaging lens 25. , And forms a code image on the light receiving surface 23a of the area sensor 23.
  • the light receiving optical system is provided with a holder 50 to which the sensor substrate 20a is fixed and a lens holding portion 60 to which the imaging lens 25 is held.
  • the direction along the optical axis L of the area sensor 23 and the imaging lens 25 is the X direction, parallel to the plane where the upper surface 54 of the holder 50 and the flange lower surface 63 of the lens holder 60 make surface contact.
  • the direction orthogonal to Y is taken as the Y direction
  • the direction orthogonal to both the X direction and the Y direction is taken as the Z direction.
  • the holder 50 is formed in a substantially box shape as shown in FIGS. 2A to 2C, and one end 51 of the holder 50 is opened so as to be able to fix the sensor substrate 20a.
  • the area sensor 23 mounted on the sensor substrate 20 a is accommodated in the holder 50 by fixing the sensor substrate 20 a to the sensor substrate 20 a.
  • the holder 50 is provided with a circular opening 52a centered on the optical axis L1 of the area sensor 23 at the other end 52 where the light receiving surface 23a of the area sensor 23 faces.
  • the opening 52a is formed to expose only the imaging lens 25 held by the lens holding unit 60 and the vicinity thereof when viewed from the direction of the optical axis L1 in order to enhance the light shielding property of the holder 50.
  • the upper surface of the holder 50 has a flat upper surface 54 provided between a pair of edge portions 53 extending in the X direction along the optical axis L1 of the area sensor 23.
  • a rectangular opening 55 is provided at the center thereof.
  • the opening 55 is in sliding contact with the lens holding portion 60 at the time of slide adjustment, which will be described later, at edge surfaces 56a and 56b opposed in the Y direction and along the optical axis L1 of the area sensor 23 and orthogonal to the upper surface 54.
  • the length in the Y direction is set to restrict movement of the lens holding portion 60 in a direction different from the direction along the optical axis L1.
  • the length in the X direction of the opening 55 is set in accordance with the length that allows the lens holding unit 60 to slide at the time of slide adjustment. Further, in the pair of edge portions 53, bonding grooves 53a used for bonding and fixing after slide adjustment are respectively formed.
  • the upper surface 54 may correspond to an example of the “guide surface” and the “first guide surface”, and the edge surfaces 56a and 56b may correspond to an example of the “guide surface” and the “second guide surface”.
  • the lens holding portion 60 includes a holding portion main body 61 for holding the imaging lens 25 and a flange portion 62 connected to the upper portion of the holding portion main body 61. There is.
  • the imaging lens 25 is held by the holding portion main body 61 in consideration of the position where one-sided blur occurs as described later.
  • the holder main body 61 can be in sliding contact with the edge surfaces 56a and 56b of the opening 55 by having both end surfaces 61a and 61b on the Y direction side in the vicinity of the flange 62 along the optical axis L2 of the imaging lens 25 It is formed to be orthogonal to the collar lower surface 63.
  • the end faces 61a and 61b may correspond to an example of the "reference plane" and the "second reference plane".
  • the collar portion 62 is substantially flat and has a length in the Y direction set so as to be in sliding contact with the edge portion 53 during slide adjustment, and the collar lower surface 63 which is a flat surface on the imaging lens 25 side It is formed along the optical axis L2 of the image lens 25.
  • the lower surface 63 of the flange 63 of the imaging lens 25 is aligned so that the optical axis L2 of the imaging lens 25 and the optical axis L1 of the area sensor 23 coincide with each other as the optical axis L when in sliding contact with the upper surface 54 of the holder 50.
  • the length in the Z direction up to the optical axis L2 is set.
  • the length of the flange portion 62 in the X direction is set such that the opening 55 is covered with the lower surface 63 at all times when sliding.
  • a pair of concave engaging portions 64 used at the slide adjustment and a pair of bonding grooves 65 used for adhesion and fixing after the slide adjustment are formed on the upper surface of the collar portion 62.
  • the bonding groove 65 is formed to be longer in the X direction than the bonding groove 53a so as to communicate with the bonding groove 53a at any slide adjustment position.
  • the collar lower surface 63 may correspond to an example of the “reference surface” and the “first reference surface”.
  • the lens holding portion 60 when the lens holding portion 60 is assembled to the holder 50, the lower surface 63 and the upper surface 54 are in surface contact with each other and the end surfaces 61a and 61b and the edge surface 56a,
  • the holding portion main body 61 which is closer to the imaging lens 25 than the collar portion 62 is accommodated in the holder 50 through the opening 55 in a state where the surface 56b is in surface contact with each other.
  • the lens holding unit 60 is moved in the X direction with respect to the holder 50 by using both engaging portions 64 so that the relative position between the area sensor 23 and the imaging lens 25 becomes an optimal focal position.
  • the lens holding portion 60 After being adjusted along the slide, the lens holding portion 60 is assembled to the holder 50 in a non-slidable manner by applying a UV adhesive from the bonding groove 65 to the bonding groove 53a.
  • the microcomputer system includes an amplification circuit 31, an A / D conversion circuit 33, a memory 35, an address generation circuit 36, a synchronization signal generation circuit 38, a control unit 40, an operation unit 42, a liquid crystal display 43, a buzzer 44, a vibrator 45, a light emission unit 46, the communication interface 48 and the like.
  • this microcomputer system is mainly composed of the control unit 40 and the memory 35 which can function as a microcomputer (information processing apparatus), and the image signal of the information code imaged by the above-described optical system is It can be signal-processed in the form of wear and software.
  • the control unit 40 also controls the entire system of the optical information reading device 10.
  • the image signal (analog signal) output from the area sensor 23 of the optical system is amplified by a predetermined amplification factor by being input to the amplifier circuit 31, and then is input to the A / D conversion circuit 33.
  • a signal is converted to a digital signal.
  • the digitized image signal that is, image data (image information) is generated and input to the memory 35, it is accumulated in a predetermined code image information storage area.
  • the synchronization signal generation circuit 38 is configured to be able to generate synchronization signals for the area sensor 23 and the address generation circuit 36, and the address generation circuit 36 is based on the synchronization signal supplied from the synchronization signal generation circuit 38.
  • the storage address of image data stored in the memory 35 can be generated.
  • the memory 35 is a semiconductor memory device, and corresponds to, for example, a RAM (DRAM, SRAM, etc.) or a ROM (EPROM, EEPROM, etc.).
  • a working area and a reading condition table used by the control unit 40 at each processing such as arithmetic operation and logical operation can be secured.
  • a reading program capable of executing reading processing for optically reading an information code and a system program capable of controlling hardware such as the illumination light source 21 and the area sensor 23 are stored in the ROM in advance. .
  • the control unit 40 is a microcomputer capable of controlling the entire optical information reading apparatus 10 and comprises a CPU, a system bus, an input / output interface, etc., and can constitute an information processing apparatus together with the memory 35 and has an information processing function. .
  • the control unit 40 functions to perform a decoding process (decoding) on a code image of an information code which is captured by the area sensor 23 and stored in the memory 35.
  • the control unit 40 is configured to be connectable to various input / output devices (peripheral devices) via the built-in input / output interface, and in the case of the present embodiment, the operation unit 42, the liquid crystal display 43, the buzzer 44, a vibrator 45, a light emitting unit 46, a communication interface 48 and the like are connected.
  • the operation unit 42 is configured by a plurality of keys and configured to give an operation signal to the control unit 40 in response to the user's key operation, and the control unit 40 receives the operation signal from the operation unit 42. When it is configured to perform an operation according to the operation signal.
  • the liquid crystal display 43 is configured by a known liquid crystal display panel, and the display content is controlled by the control unit 40.
  • the buzzer 44 is configured by a known buzzer, and is configured to generate a predetermined sound according to an operation signal from the control unit 40.
  • the vibrator 45 is configured by a known vibrator mounted on a portable device, and is configured to generate a vibration in accordance with a drive signal from the control unit 40.
  • the light emitting unit 46 is, for example, an LED, and is configured to light up in response to a signal from the control unit 40.
  • the communication interface 48 is configured as an interface for performing data communication with the outside (for example, a host device), and is configured to perform communication processing in cooperation with the control unit 40.
  • the imaging lens there may be a case where one-sided blur in which the image forming performance is deteriorated occurs in a part of the periphery of the field of view due to manufacturing variations and the like. Therefore, in the conventional configuration in which the relative position between the area sensor 23 and the imaging lens 25 is adjusted according to the screwing amount of the lens barrel B holding the imaging lens 25 to the holder H, the imaging field P shown in FIG. Thus, at the time of adjustment, the one blurred portion S also rotates about the optical axis L (see the arrow in FIG. 6).
  • the measured resolution may be evaluated low.
  • the imaging lens 25 is slid relative to the area sensor 23 along the optical axis L to adjust the relative position. That is, the lens holding portion 60 is moved in the optical axis direction relative to the holder 50 in a state where it is in sliding contact with the upper surface 54 at the flange lower surface 63 and with the end surfaces 56a and 56b of the opening 55 at both end surfaces 61a and 61b By being guided to slide in the X direction), the relative position between the imaging lens 25 and the area sensor 23 can be adjusted without rotating the imaging lens 25.
  • the lens holding portion 60 is gradually slid relative to the holder 50 in a state in which the predetermined jig is engaged with both the engaging portions 64 formed in the collar portion 62, and the resolution is sequentially measured. Since the influence of one blur is suppressed with respect to the change of the resolution thus measured, the slide position (relative position) at which the resolution is evaluated to be the highest is regarded as the optimum focus position, and thus the adjusted position.
  • a UV adhesive is applied and fixed by bonding or the like from the bonding groove 65 of the lens holding portion 60 to the bonding groove 53 a of the holder 50. Thereby, the lens holding unit 60 is assembled so as not to slide relative to the holder 50 at the optimum focal position.
  • the one blur portion S is on the long side of the light receiving surface 23a.
  • the imaging lens 25 is held by the lens holder 60 so as to be located outside the light receiving surface 23a.
  • the lens holding unit 60 assembled to the holder 50 while holding the imaging lens 25 is along the optical axis L1 of the imaging lens 25.
  • a flange lower surface 63 and end surfaces 61a and 61b are provided as reference surfaces.
  • the lower surface 63 and the end surfaces 61a and 61b are in surface contact with the holder 50 when the lens holding unit 60 is assembled so that the light through the imaging lens 25 forms an image on the area sensor 23, and the optical axis L
  • the upper surface 54 and the edge surfaces 56a and 56b of the opening 55 are formed as guide surfaces in sliding contact with the lower surface 63 and the end surfaces 61a and 61b when the lens holding portion 60 is moved along.
  • the lens holding unit 60 is moved along the optical axis L with respect to the holder 50. That is, even if the imaging lens 25 has one blur, the one defocusing portion S does not rotate when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position. The influence of one-sided blur can be suppressed with respect to the change of the resolution measured.
  • the area sensor 23 has a rectangular light receiving surface 23 a, and the position where one blur occurs is grasped for each imaging lens 25. Then, the lens holding unit 60 holds the imaging lens 25 so that the one-sided blurred portion S is positioned outside the light receiving surface 23a on the long side of the light receiving surface 23a. Thereby, unlike the case where the imaging lens is held so that the one blurred portion S is positioned on the short side of the light receiving surface, the one blurred portion S can be easily positioned outside the imaging field of view by the area sensor 23. It is possible to improve the resolution by suppressing the influence of
  • the one-sided blurred portion S does not rotate by adopting the lens holding portion 60 and the holder 50 described above. Can be suppressed inside of the light receiving surface 23a, the influence of one-sided blur can be suppressed with respect to the change of the resolving power to be measured.
  • the reference surface on the lens holding portion 60 side includes a flange lower surface 63 functioning as a planar first reference surface, and end surfaces 61a and 61b functioning as a planar second reference surface orthogonal to the first reference surface.
  • the guiding surface on the side of the holder 50 is a planar second guiding surface capable of sliding contact with the upper surface 54 functioning as a planar first guiding surface capable of sliding contact with the first reference surface, and a second guiding surface capable of sliding contact with the second reference surface. And the edge surfaces 56a and 56b of the opening 55.
  • the first reference surface and the second reference surface on the lens holding portion 60 side are provided so as to intersect at 90 ° without being orthogonal to each other, and the holder 50 with respect to the first reference surface and the second reference surface in this intersecting state. Even if the first guide surface and the second guide surface on the side are provided slidably, the structure for moving the lens holding portion 60 along the optical axis L relative to the holder 50 can be simply realized. .
  • the flange lower surface 63 on the imaging lens 25 side functions as a first reference surface
  • the holder 50 forms an image than the flange portion 62 of the lens holding unit 60 at the time of assembly.
  • the holding portion main body 61 on the side of the lens 25 is formed to be accommodated through the opening 55, and the upper surface 54 in which the opening 55 is formed functions as a first guiding surface.
  • the flange portion 62 is formed to cover the opening 55 at the flange lower surface 63 at the time of sliding contact.
  • the collar portion 62 functions as a light shielding portion that prevents the light from entering through the opening 55, so that the light shielding property of the holder 50 can be improved.
  • the lens holding portion 60 is provided with a pair of concave engaging portions 64 used when moving the holder 50 along the optical axis L, the lens holding along the optical axis L
  • the relative movement of the unit 60 can be performed with high accuracy, and the adjustment to the optimal focus position can be reliably performed.
  • the engagement portion 64 is not limited to being formed in a concave shape, and may be formed in a convex shape, for example, as long as it can be engaged with a jig for slide adjustment.
  • FIG. 7 is mainly different from the first embodiment in that a holder 150 and a lens holding portion 160 are employed instead of the holder 50 and the lens holding portion 60 described above.
  • the lens holding portion 160 holding the imaging lens 25 is an upper portion of the outer peripheral surface (outer surface) 161 which is circular in cross section when viewed from the surface through which the optical axis L passes.
  • the projection 162 is formed to extend in the optical axis direction.
  • a flange portion 163 used for slide adjustment is provided on the side of the reading opening 13 of the lens holding portion 160.
  • the holder 150 to which the area sensor 23 is fixed has the opening 55 removed from the holder 50 described above, and an opening 152 is formed in the end portion 151 in sliding contact with the outer peripheral surface 161 of the lens holding portion 160.
  • a concave portion 153 which is in sliding contact with at least a part of the upper surface and the side surface of the convex portion 162 of the lens holding portion 160 is formed in the upper portion of the lens holder 160.
  • the first reference surface and the second reference surface are formed by using the outer peripheral surface 161 of the lens holding portion 160 and the convex portion 162 provided on the outer peripheral surface 161, and
  • the two guiding surfaces are formed by utilizing the edge surface of the opening 152 provided in the holder 150 and the recess 153 provided in the opening 152.
  • the lens holding is performed so that the outer peripheral surface 161 and the convex portion 162 come in sliding contact with the opening 152 and the concave portion 153, respectively.
  • the portion 160 can be moved relative to the holder 150 along the optical axis L. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
  • the lens holding portion 160 is formed to be in sliding contact with the opening 152 of the holder 150 only at the lower portion of the outer peripheral surface 161, and the upper surface and the side surface of the convex portion 162 function as a first reference surface and a second reference surface. It may be configured.
  • FIG. The third embodiment is mainly different from the first embodiment in that a holder 250 and a lens holding portion 260 are employed in place of the holder 50 and the lens holding portion 60 described above.
  • the lens holding portion 260 holding the imaging lens 25 has an outer peripheral surface (outer surface) having a circular cross section when viewed from the surface through which the optical axis L (L2) passes.
  • a recess 262 extending in the optical axis direction is formed on the upper portion of the H.261.
  • a flange portion 263 used at the time of slide adjustment is provided on the side of the reading port 13 of the lens holding portion 160.
  • the holder 250 to which the area sensor 23 is fixed has the opening 55 etc. eliminated from the holder 50 described above, and an opening 252 slidingly contacting the outer peripheral surface 261 of the lens holding portion 260 is formed at the end 251
  • a convex portion 253 slidably contacting at least a part of the bottom surface and the side surface of the concave portion 262 of the lens holding portion 260 is formed on the upper portion 252.
  • the first reference surface and the second reference surface are formed by using the outer peripheral surface 261 of the lens holding portion 260 and the recess 262 provided in the outer peripheral surface 261.
  • the guiding surface is formed by utilizing the edge surface of the opening 252 provided in the holder 250 and the convex portion 253 provided in the opening 252.
  • the lens holding is performed so that the outer peripheral surface 261 and the concave portion 262 come into sliding contact with the opening 252 and the convex portion 253, respectively.
  • the portion 260 can be moved relative to the holder 250 along the optical axis L. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
  • the lens holding portion 260 is formed to be in sliding contact with the opening 252 of the holder 250 only at the lower portion of the outer peripheral surface 261, and the bottom and side surfaces of the recess 262 function as a first reference surface and a second reference surface. It may be done.
  • FIG. 11 and 12 an optical information reading apparatus according to the fourth embodiment will be described with reference to FIGS. 11 and 12.
  • FIG. The fourth embodiment is mainly different from the first embodiment in that a holder 350 and a lens holding portion 360 are employed in place of the holder 50 and the lens holding portion 60 described above.
  • the lens holding portion 360 holding the imaging lens 25 has an upper surface 361 so as to have a square cross section when viewed from the plane through which the optical axis L (L2) passes.
  • the lower surface 362 and both side surfaces 363 and 364 are formed.
  • the holder 350 to which the area sensor 23 is fixed eliminates the opening 55 etc. with respect to the holder 50 described above, and the end 351 is in sliding contact with the upper surface 361, the lower surface 362 and both side surfaces 363 and 364 of the lens holding portion 360.
  • a square shaped opening 352 is formed.
  • the first reference surface and the second reference surface are formed using the upper surface 361, the lower surface 362, and both side surfaces 363, 364 of the lens holding portion 360, and the first guide surface and the second guide surface Is formed using the edge surface of the opening 352 provided in the holder 350.
  • the holder 360 can be moved relative to the holder 350 along the optical axis L. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
  • the upper surface 361, the lower surface 362, and both side surfaces 363 and 364 of the lens holding portion 360 are not limited to being formed in a square in cross section when viewed from the plane through which the optical axis L passes. It may be formed to have a polygonal shape in cross section including the shape having a cross section and a shape having a pentagonal cross section.
  • the fifth embodiment is mainly different from the first embodiment in that a holder 450 and a lens holding portion 460 are adopted instead of the holder 50 and the lens holding portion 60 described above.
  • the lens holding portion 460 holding the imaging lens 25 has a circular arc shape in cross section (a cross sectional arc shape) when viewed from the plane through which the optical axis L (L2) passes.
  • the flat surface 462 is provided on the upper side of the outer peripheral surface 461.
  • a flange portion 463 used for slide adjustment is provided on the reading port 13 side of the lens holding portion 460.
  • the holder 450 to which the area sensor 23 is fixed eliminates the opening 55 and the like with respect to the holder 50 described above, and the end 451 has an edge 452a and an edge with respect to the outer peripheral surface 461 and the plane 462 of the lens holding portion 460.
  • the opening 452 is formed to be in sliding contact with the surface 452 b.
  • the first reference surface and the second reference surface are formed using the outer peripheral surface 461 and the flat surface 462 of the lens holding portion 460, and the first guide surface and the second guide surface It forms using edge face 452a and edge face 452b of opening 452 provided.
  • the lens holding portion 460 can be moved along the optical axis L with respect to the holder 450. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
  • the lens holding unit 60 in the process of assembling the lens holding unit 60 and the holder 50 constituting the optical information reading device 10, the lens holding unit 60 is a holder in order to reliably carry out the adjustment operation to the optimum focal position.
  • the second embodiment is mainly different from the first embodiment in that an arm, an X stage, and the like are used to slide gradually with respect to 50 and measure resolution sequentially and then fix them.
  • the mounting table 501 on which the holder 50 on which the lens holding unit 60 before bonding and fixing is assembled is mounted.
  • an arm 510 and an X stage 520 for moving (sliding) the lens holding unit 60 mounted on the mounting table 501 with respect to the holder 50, and a control unit 530 for driving and controlling the X stage 520. 500 will be adopted.
  • the resolving power of the area sensor 23 is sequentially measured while moving the arm 510 in the direction along the optical axis L1, and the lens holding unit 60 is fixed to the holder 50 at a peak position where the measured resolving power is regarded as a peak. Perform adjustment work to adjust the focus position.
  • the mounting table 501 is configured such that an image signal from the area sensor 23 of the holder 50 can be output to the control unit 530 by mounting the holder 50 at a predetermined position.
  • the arm 510 is provided with a pair of engagement protrusions 513 engaged with the both engagement portions 64 of the lens holding portion 60 on the lower surface of the one end side 511, and the other end side 512 is detachable with respect to the X stage 520. It is configured to be
  • the engagement protrusion 513 is formed so as to eliminate a gap between the engaged engagement portion 64 at least in the direction (X direction) along the optical axis L1.
  • One end side 511 of the arm 510 is formed so as to expose the two bonding grooves 65 in a state in which the two engaging protrusions 513 are respectively engaged with the corresponding engaging portions 64.
  • the X stage 520 is a device for moving the arm 510 assembled on the other end side 512 in the direction along the optical axis L1, and the control unit 530 controls the movement direction and the movement amount thereof. It is done.
  • the control unit 530 performs the focus position adjustment process to set the area sensor 23 fixed to the holder 50 and the imaging lens 25 held by the lens holding unit 60 according to the measured resolving power of the area sensor 23. It is configured to drive and control the X stage 520 so that the relative position becomes an optimal focus position.
  • the control unit 530 may be configured as, for example, a control board including a CPU, a memory, and the like, or may be configured using an application program installed in a predetermined terminal.
  • the lower surface 63 and the end surfaces 61a and 61b are in surface contact with the upper surface 54 and the edge surfaces 56a and 56b, respectively, with respect to the holder 50 to which the area sensor 23 is fixed.
  • make a temporary assembly Then, the holder 50 temporarily assembled in this manner is mounted at a predetermined position of the mounting table 501. As a result, the image signal from the area sensor 23 is output to the control unit 530.
  • the arm 510 assembled to the X-stage 520 is assembled to the lens holding portion 60 so that the both engagement protrusions 513 are engaged with the engagement portion 64 respectively. Further, as shown in FIG. 15 and FIG. 16, a chart M as illustrated in FIG. 17A or 17B is disposed at a focal position within the imaging field of the area sensor 23 and desired to be adjusted.
  • the focus position adjustment process by the control unit 530 is started. Specifically, as illustrated in FIG. 18A, every time the X-stage 520 is driven to move the arm 510 in one direction along the optical axis according to the amount of movement set in advance, the chart M The contrast value obtained based on the output from the area sensor 23 at the time of imaging the image sensor is measured as the resolution.
  • the moving amount is a predetermined value based on a predetermined value N1 set to be lower than an expected peak value as illustrated in FIG. 18A in order to shorten the measurement time.
  • the moving amount X2 when the contrast value of N1 or more is measured is smaller than the moving amount X1 when the contrast value less than the predetermined value N1 is measured.
  • the X stage The movement of the arm 510 by 520 is stopped. Then, as illustrated in FIG. 18B, the arm 510 is moved in the other direction along the optical axis L1 which is the opposite direction to the one direction, and the contrast value is sequentially measured.
  • the moving amount X3 when moving sequentially in the other direction is set to be smaller than the moving amount X2. For example, assuming that the movement amount X3 for moving in the other direction is one step, the movement amount X2 can be five steps and the movement amount X1 can be ten steps.
  • the maximum contrast value measured previously and the position of the lens holding portion 60 at which this contrast value is measured are set as the peak value Pa and the peak position Px. Thereafter, when the contrast value measured while being moved in the other direction becomes equal to or less than the threshold value N3 set based on the peak value Pa, the movement of the arm 510 by the X stage 520 is stopped.
  • the arm 510 is moved again toward the peak position Px. Is moved in the other direction (see the arrow F2 in FIG. 18B), and the movement of the arm 510 by the X stage 520 is stopped at the peak position Px.
  • the other direction along the optical axis L1 may correspond to an example of “first direction”
  • one direction along the optical axis L1 may correspond to an example of “second direction”.
  • a UV adhesive is applied from the bonding groove 65 to the bonding groove 53a using the UV adhesive dispenser 540 as illustrated in FIG. Do.
  • the lens holding unit 60 is fixed to the holder 50 in a state where the arm 510 is assembled.
  • the arm 510 may be removed from the X stage 520.
  • the light receiving optical system in which the lens holding unit 60 is fixed to the holder 50 at the peak position Px is obtained by removing the arm 510 from the lens holding unit 60. Complete.
  • the lens holding portion 60 holding the imaging lens 25 is the lower surface 63 and the end surface 61a, with respect to the holder 50 to which the area sensor 23 is fixed.
  • the arm 510 movable along the optical axis L1 is assembled to the lens holding portion 60, and the lower surface 63 and the end surfaces 61a and 61b are the upper surface 54.
  • the resolution (contrast value) measured by the area sensor 23 is sequentially measured while moving the arm 510 in the direction along the optical axis L1 so as to make sliding contact with the edge surfaces 56a and 56b, and the peak position Px at which the measured resolution is regarded as a peak And the lens holding unit 60 in a state where the arm 510 is assembled is adhesively fixed to the holder 50, and then the arm 510 is held by the lens Removed from the 60.
  • the lens holding unit 60 is fixed to the holder 50 at the peak position Px, the arm 510 is assembled to the lens holding unit 60, so the lens holding unit 60 does not easily shift from the peak position Px, and the resolution is measured. By doing this, it is possible to reliably carry out the adjustment to the optimal focus position determined.
  • the peak position Px is obtained while moving the arm 510 in the other direction (first direction) along the optical axis L1, thereby exceeding the peak position Px.
  • the arm 510 is directed to the peak position Px in the other direction (first direction) 18 (B) to fix the lens holding portion 60 to the holder 50 at the peak position Px.
  • the lens holding portion When switching the movement direction of the arm from the first direction to the second direction, even if the X stage 520 is driven due to the play of the X stage 520 that functions as an actuator for moving the arm 510, the lens holding portion In such a case, if the lens holding unit 60 is moved in the other direction toward the peak position Px found while moving in the first direction, the peak position may be detected. It may be fixed at a position deviated from Px. Therefore, when the peak position Px is obtained while moving in the first direction, the arm 510 is moved in the second direction along the optical axis L1 so as to exceed the peak position Px, and then the peak position Px is obtained.
  • the moving amount when the resolving power of the predetermined value N1 or more is measured is measured as the moving amount X2, X3 and the resolving power less than the predetermined value N1. Make it smaller than the amount of movement X1. As a result, the measurement time for the measurement to the vicinity of the peak position Px is shortened, and the measurement accuracy for the measurement in the vicinity of the peak position Px is enhanced. Therefore, it is possible to achieve both shortening of the measurement time and improvement of the measurement accuracy.
  • the present invention is not limited to the above embodiments and modifications, and may be embodied, for example, as follows.
  • the lens holding portions 160, 260, 360, and 460 in the second to fifth embodiments in order to reliably perform adjustment to the optimum focal position, the lens holding portions 160, 260, 360, and 460 As such, the engaging portion used at the time of slide adjustment may be formed.
  • the present invention is not limited to being applied to an optical information reader that optically reads an information code, and optically reads character information and the like by using a well-known symbol recognition processing function (OCR).
  • OCR symbol recognition processing function
  • the present invention may be applied to an optical information reading apparatus, and is applied to an information reading apparatus additionally having a function other than the function of optically reading an information code or the like, for example, a wireless communication function of wirelessly communicating with a wireless communication medium. It may be done.
  • the optical information reader 610 shown in FIGS. 20 to 23 is configured as a code reader that optically reads one or more information codes (one-dimensional code, two-dimensional code, etc.), and is a so-called gun type.
  • a circuit portion 20 made of various electric parts and the like is accommodated inside a case 611 made of synthetic resin such as ABS resin.
  • the optical information reader 610 includes a main body 612 having a reading port 613 for passing illumination light and its reflected light at its end, and a reading port 613 for the main body 612. And a grip portion 615 connected to a portion different from the portion where the portion is formed and gripped by the user.
  • the reading port 613 is formed to open in a substantially rectangular shape so that the length in the left-right direction is shorter than the length in the vertical direction.
  • An extension portion 614 is provided at the lower part of the reading port 613 in the main body portion 612, and even if the extension end portion 614a makes the extension end portion 614a contact the reading object to which the information code is attached, the information It is formed to be substantially U-shaped with its upper portion opened so that the code and marker light described later can be viewed from above.
  • the grip portion 615 extends downward from the lower wall portion of the main body portion 12, the trigger switch 642 which can be pressed and operated is disposed near the upper end portion of the grip portion 615, and the interface near the lower end portion of the grip portion 615 Cable (not shown) is assembled.
  • the circuit unit 620 housed in the case 611 mainly includes an optical system such as the first light source 621, the second light source 622, the area sensor 623, the imaging lens 625, the memory 635, and the control unit. And a microcomputer system (hereinafter referred to as "microcomputer").
  • the optical system is divided into a projection optical system and a light receiving optical system.
  • the projection optical system is configured to include a first light source 621 and a second light source 622 as a pair of light sources.
  • the first light source 621 is configured to include, for example, an LED 621a for emitting visible light Lf1 having a wavelength of 380 nm to 750 nm and an illumination lens provided on the emission side of the LED 621a.
  • the second light source 622 is configured to include an LED 622a that emits invisible light Lf2 that can not be viewed like infrared light having a wavelength of 750 nm or more, and an illumination lens provided on the emission side of the LED 622a.
  • the light receiving optical system is configured of an area sensor 623, an imaging lens 25, and the like.
  • the area sensor 623 is configured to be capable of imaging the information code C as a light receiving sensor having a rectangular light receiving surface 623a in which light receiving elements, which are solid-state imaging devices such as C-MOS and CCD, are two-dimensionally arrayed.
  • an electric signal corresponding to the intensity of the reflected light Lr is output for each cell (pattern) of the received information code.
  • the area sensor 623 is mounted on the sensor substrate 651 so as to be capable of receiving incident light incident through the imaging lens 625.
  • the imaging lens 625 is configured to have one or more lenses, condenses incident light incident from the outside through the reading port 613, and forms an image on the light receiving surface 623a of the area sensor 623. It functions as a possible imaging optical system.
  • the reflected light Lr from the information code C and the predetermined display surface R to which the information code C is attached is collected by the imaging lens 625, and the code image is formed on the light receiving surface 623a of the area sensor 623. I am doing it.
  • the detailed arrangement configuration of the optical system configured in this way will be described later.
  • the microcomputer system includes an amplification circuit 631, an A / D conversion circuit 633, a memory 635, an address generation circuit 636, a synchronization signal generation circuit 638, a control unit 640, a trigger switch 642, a light emission unit 643, a buzzer 644, a vibrator 645, and a communication interface 648. And so on.
  • the image signal (analog signal) output from the area sensor 623 of the optical system is amplified by a predetermined gain by being input to the amplifier circuit 631 and then input to the A / D conversion circuit 633 to be converted from an analog signal to a digital signal Converted to Then, the digitized image signal, that is, image data (image information) is input to a memory 635 configured by a known storage medium such as a ROM, a RAM, etc., and stored in a predetermined storage area.
  • Synchronization signal generation circuit 638 is configured to be able to generate synchronization signals for area sensor 623 and address generation circuit 636.
  • Address generation circuit 636 is based on the synchronization signal supplied from synchronization signal generation circuit 638.
  • the storage address of the image data stored in the memory 635 can be generated.
  • the control unit 640 is a microcomputer capable of controlling the entire optical information reading device 610 and comprises a CPU, a system bus, an input / output interface, etc., and can constitute an information processing apparatus with the memory 635 and has an information processing function. .
  • the control unit 640 functions to decode the code image of the information code captured by the area sensor 623 and stored in the memory 635. Further, the control unit 640 is configured to be connectable to various input / output devices via the built-in input / output interface, and in the case of the present embodiment, the trigger switch 642, the light emitting unit 643, the buzzer 644, the vibrator 645, A communication interface 648 or the like is connected.
  • monitoring and management of the trigger switch 642 lighting and non-lighting of the light emitting unit 643, turning on and off of the buzzer 644 capable of generating a beep sound and an alarm sound, drive control of the vibrator 45, control of the communication interface 648, etc. It is possible.
  • the lateral direction of the light receiving surface 623a is taken as the X direction, the longitudinal direction of the light receiving surface 623a as the Y direction, and a direction orthogonal to both the X direction and the Y direction (the light receiving optical axis direction) as the Z direction.
  • the first light source 621 and the second light source 622, the area sensor 623, and the imaging lens 25 are disposed in the positional relationship shown in FIG. 24 and FIG.
  • the first light source 621 and the second light source 622 are arranged in a line along the short side direction (X direction) of the light receiving surface 623a, and The imaging lens 25 is disposed at equal intervals from the two light sources 622 so that the light receiving optical axis L of the area sensor 623 is positioned between the first light source 621 and the second light source 622. Ru. Therefore, the light receiving optical axis L, the light projecting optical axis L1 of the first light source 621 and the light projecting optical axis L2 of the second light source 622 coincide with each other in the lateral direction of the light receiving surface 623a. That is, the first light source 621 and the second light source 622 are arranged such that the distance from the LED 621a to the light receiving optical axis L is equal to the distance from the LED 622a to the light receiving optical axis L.
  • the longitudinal direction (Y direction) of the light receiving surface 623a It is accommodated in the case 611 so as to be substantially parallel.
  • the imaging field of view AR of the area sensor 623 having a rectangular shape in accordance with the shape of the light receiving surface 623a becomes the longitudinal direction in the left-right direction as the reading port 613, and the irradiation range of the visible light Lf1 and the irradiation of the invisible light Lf2 In the range, the center position is substantially matched in the left and right direction, and it becomes difficult to shift, and the position is shifted in the up and down direction.
  • the reading port 613 is an information code so that the longitudinal direction of the information code coincides with the longitudinal direction of the imaging field of view AR, that is, the longitudinal direction of the reading port 613 It will be in the state of turning. Therefore, unlike the present embodiment, when both irradiation ranges are shifted in the longitudinal direction of the imaging field of view AR, for example, the invisible light Lf2 is irradiated on one side in the longitudinal direction of the bar code while on the other side in the longitudinal direction Reading may fail due to non-irradiation.
  • both irradiation ranges are the imaging field AR It is possible to suppress the above-mentioned reading failure and the like which occur due to the deviation in the longitudinal direction of the above.
  • the first light source 621 and the second light source 622 are disposed such that the irradiation range of the first light source 621 is located below the irradiation range of the second light source 622 when viewed from the user. . That is, the holder 50 is accommodated in the case 11 such that the first light source 621 is positioned lower than the second light source 622.
  • the reading port 613 when the reading port 613 is directed to the information code C displayed on a predetermined display surface R such as a label, the user performs a reading operation while looking at the information code C via the reading port 613. For this reason, for example, when reading the information code C of a predetermined display surface R of a hand-held label etc. as shown in FIG. 26A, or a predetermined display surface of a desk top label etc. as shown in FIG. As in the case of reading the information code C of R, the predetermined display surface R tends to be inclined relative to the light receiving optical axis L so that the upper side is away from the reading port 613.
  • the folded field of view AR1 through the predetermined display surface R with respect to the imaging field of view AR is on the upper side with respect to the light receiving optical axis L, as shown in FIG.
  • the first light source 21 for emitting the visible light Lf1 that is stronger than the light Lf2 is positioned on the upper side with respect to the light receiving optical axis L, the first light source 621 can easily enter the folded field AR1. That is, since the visible light Lf1 reflected by the predetermined display surface R is easily reflected, as shown in FIG. 28B, when the visible light Lf1 is reflected on the imaged information code C, the reading performance is May be reduced.
  • the irradiation range by the first light source 621 is positioned below the irradiation range by the second light source 622 when viewed from the user.
  • the first light source 621 and the second light source 622 are disposed (see FIG. 25).
  • FIG. 27A it becomes difficult for the first light source 621 to enter the folded field of view AR1 through the predetermined display surface R, and as shown in FIG.
  • the visible light Lf1 does not appear on the display, and a decrease in the reading performance caused by the reflection of the visible light Lf1 having a high light intensity can be suppressed.
  • the area sensor 623 that receives the reflected light from the information code C by the rectangular light receiving surface 623a, and the imaging field AR by this area sensor 623
  • the first light source 621 for emitting visible light Lf1 as illumination light and the second light source 622 for irradiating invisible light Lf2 toward the light source are provided.
  • the first light source 621 and the second light source 622 have a short light receiving surface 623a. It is arranged in a line along the hand direction (X direction).
  • first light source 621 and the second light source 622 are arranged such that the light receiving optical axis L of the area sensor 623 is located between the first light source 621 and the second light source 622.
  • the center of the imaging field of view AR and the center of the irradiation range of the visible light Lf1 approach the center of the irradiation range of the invisible light Lf2 in the short direction of the imaging field of view AR. Deviation from the range can be further reduced, and reading performance can be improved.
  • the first light source 621 and the second light source 622 are arranged such that the irradiation range of the first light source 621 is located lower than the irradiation range of the second light source 622 when viewed from the user.
  • the first light source 21 it becomes difficult for the first light source 21 to enter the folded field of view AR1 through the predetermined display surface R, and to suppress the decrease in the reading performance caused by the reflection of the visible light Lf1 having a high light intensity. it can.
  • FIG. The eighth embodiment is mainly different from the seventh embodiment in that the first light source 621 and the second light source 622 are mounted on the same substrate.
  • the first light sources 621 and the second light sources 622 are in the lateral direction of the light receiving surface 623a (X (A direction) along the longitudinal direction of the light receiving surface 623a with respect to the imaging lens 625 in the longitudinal direction (Y direction), and the distance from the LED 621a to the light receiving optical axis L and the light receiving optical axis from the LED 622a It is arranged so that the distance to L is equal.
  • the first light source 621 and the second light source 622 are disposed close to each other as described above, illumination in which the illumination lens of the first light source 621 and the illumination lens of the second light source 622 are integrally formed.
  • a lens 627 is employed. In FIGS. 29 and 30, the schematic position of the illumination lens 627 is illustrated by a broken line.
  • the first light source 621 and the second light source 622 are disposed so as to be offset in the longitudinal direction of the light receiving surface 623a with respect to the imaging lens 625, whereby the first light source 621 and the second light source 622 are the first as compared with the seventh embodiment. Even if the light source 621 and the second light source 622 are disposed close to each other in the lateral direction of the light receiving surface 623a, they do not interfere with the imaging lens 625. Accordingly, the miniaturization of the optical information reading device 610 can be achieved along with the space saving of the holder 650 by arranging the first light source 621 and the second light source 622 to be close to each other.
  • first light source 621 and the second light source 622 are mounted on the same illumination substrate 654, not only the positional deviation between the first light source 621 and the second light source 622 can be suppressed, but also the first light source 621 and the second light source 622
  • the two light sources 622 can be easily disposed compactly, and the optical information reader 610 can be miniaturized.
  • the illumination lens used for the first light source 621 and the illumination lens used for the second light source 622 are integrally formed as the illumination lens 627, not only the number of parts for the illumination lens can be reduced, It becomes easy to arrange the second light source 622 in a compact manner, and the optical information reader 610 can be miniaturized.
  • the configuration in which the first light source 621 and the second light source 622 are mounted on the same substrate, and the configuration in which the illumination lens used for the first light source 621 and the second light source 622 are integrally molded are also applicable to other embodiments. can do.
  • the present invention is not limited to the above embodiments and modifications, and may be embodied, for example, as follows.
  • the first light source 621 is not limited to be positioned lower than the second light source 622, but, for example, a folded field of view via a predetermined display surface R
  • the first light source 621 may be disposed above the second light source 622 in a reading work environment where the AR 1 tends to be lower than the light receiving optical axis L.
  • the distance from the LED 621a to the light receiving optical axis L and the LED 622a is not limited to be equal to the distance to the light receiving optical axis L, even if the distance from the LED 622a to the light receiving optical axis L is longer than the distance Conversely, the distance from the LED 622a to the light receiving optical axis L may be longer than the distance from the LED 621a to the light receiving optical axis L.
  • the present invention is not limited to application to an optical information reader having a gun-type appearance, but optical information readers having various appearances, for example, optical information having a substantially box-like appearance It may be applied to a reader. Further, the present invention is not limited to application to an optical information reader for optically reading an information code, and an optical for optically reading character information and the like by utilizing a well-known symbol recognition processing function (OCR). It may be applied to an objective information reader, or it may be applied to an information reader that has other functions in addition to the function of optically reading an information code etc., for example, a wireless communication function to wirelessly communicate with a wireless communication medium. May be
  • DESCRIPTION OF SYMBOLS 10 Optical information reader 23 ... Area sensor 23a ... Light receiving surface 25 ... Imaging lens 50, 150, 250, 350, 450 ... Holder 53 ... Edge 54 ... Upper surface (guide surface, 1st guide surface) 55 ... opening 56a, 56b ... edge surface (guide surface, second guide surface) 60, 160, 260, 360, 460 ... lens holding portion 61 ... holding portion main body 61 a, 61 b ... end face (reference surface, second reference surface) 62 ... collar portion 63 ... lower surface of collar (reference surface, first reference surface) DESCRIPTION OF SYMBOLS 500 ... Manufacturing apparatus 510 ... Arm 520 ... X stage 530 ...

Abstract

An optical information reading device (10) is provided with an image-forming lens (25), and a lens-holding part (60) assembled to a holder (50) in a state in which the image-forming lens (25) is held in place. A flange undersurface (63) and end surfaces (61a, 61b) are provided to the lens-holding part (60) as reference planes along the optical axis (L1) of the image-forming lens (25). In the holder (50), the flange undersurface (63) and the and surfaces (61a, 61b) come in contact face-to-face when the lens-holding part (60) is assembled such that the light that has passed through the image-forming lens (25) forms an image on an area sensor (23), and an upper surface (54) and edge surfaces (56a, 56b) of an opening (55) are formed as guide surfaces with which the flange undersurface (63) and the end surfaces (61a, 61b) make sliding contact when the lens-holding part (60) is moved so as to follow the optical axis (L). This suppresses the influence of a one-sided blur with regard to a change of resolution measured when an optimal focus position is found by changing the relative positions of the area sensor and the image-forming lens.

Description

光学的情報読取装置及び光学的情報読取装置の製造方法OPTICAL INFORMATION READER AND METHOD FOR MANUFACTURING OPTICAL INFORMATION READER
 本発明は、光学的情報読取装置及び光学的情報読取装置の製造方法に関するものである。 The present invention relates to an optical information reader and a method of manufacturing the optical information reader.
 近年、QRコード(登録商標)などの二次元コードの普及に応じて、小売店、コンビニエンスストア等でも、クーポンなどに付された二次元コードを非接触で、例えば、光学的に読み取るシステムのニーズが高まってきている。
このため、今後、撮像素子が二次元状に配置されたエリアセンサを用いることでバーコードだけでなく二次元コードを読み取り可能な読取装置の導入が増加すると予想される。その一方で、依然としてバーコードを読み取るニーズもあり、二次元コードを読み取り可能な読取装置であってもバーコードを読み取ることが求められる。さらに、公知の記号認識処理機能(OCR)を利用することで、撮像したパスポートの旅券情報等を認識して読み取るニーズも高まってきている。
In recent years, in response to the spread of two-dimensional codes such as QR code (registered trademark), needs of a system for optically reading two-dimensional codes attached to coupons and the like in a non-contact manner even at retail stores and convenience stores etc. Is rising.
For this reason, it is expected that the introduction of a reader capable of reading not only bar codes but also two-dimensional codes will increase from now on by using an area sensor in which imaging elements are arranged two-dimensionally. On the other hand, there is still a need to read barcodes, and even a reader capable of reading a two-dimensional code is required to read barcodes. Furthermore, there is a growing need to recognize and read passport information and the like of captured passports by using a known symbol recognition processing function (OCR).
 このため、エリアセンサを有する光学的情報読取装置では、情報コード等を安定した距離で撮像して読み取るために、エリアセンサとこのエリアセンサに情報コード等からの反射光を結像させるための結像レンズとの相対位置を所定の焦点位置(ベストフォーカス)に調整・維持する部材として、鏡筒が採用されていた。この鏡筒は、外周面にねじ部が形成されており、内部に結像レンズが組み付けられた状態で、ねじ部にてエリアセンサが組み付けられたホルダにねじ込まれる。そして、この鏡筒のねじ込み量が調整されることで、エリアセンサと結像レンズとの相対位置が調整されていた。このようなねじ込み量を調整することでエリアセンサと結像レンズとの相対位置を調整する光学的情報読取装置としては、例えば、下記特許文献1に開示される光学的情報読取装置が知られている。 For this reason, in an optical information reading apparatus having an area sensor, in order to image and read an information code or the like at a stable distance, an area sensor and a result for forming reflected light from the information code on this area sensor A lens barrel has been adopted as a member for adjusting and maintaining the relative position to the image lens at a predetermined focal position (best focus). In the lens barrel, a screw portion is formed on the outer peripheral surface, and in a state in which the imaging lens is assembled inside, the screw portion is screwed into the holder on which the area sensor is assembled. The relative position between the area sensor and the imaging lens has been adjusted by adjusting the screwing amount of the lens barrel. As an optical information reader which adjusts the relative position of an area sensor and an imaging lens by adjusting such screwing amount, the optical information reader disclosed by the following patent documents 1 is known, for example. There is.
 また、近年、上述したニーズの高まりに加え、公共の宿泊施設、ロッカー、鉄道、医療関連では、情報コードを暗号化用として使用したり真贋判定用として使用する等、情報コードをセキュリティ対策用として導入するケースが増えてきている。このような用途では、従来の照明光として利用する可視光に加えて、赤外光等の不可視光を利用することで、セキュリティ性向上を図っている読取装置もある。また、通常は可視光を照明光として使用し、照明光を多くの人が視認しやすい公共の場等では、眩しいと感じさせなくするために赤外光等の不可視光に切り替えて使用されることも多い。 Furthermore, in addition to the above-mentioned increase in needs, in public accommodation facilities, lockers, railways, and medical related fields, information codes are used for encryption, such as using an information code for encryption and for determining authenticity, and for information security measures. Cases are being introduced. In such applications, there is also a reader that improves security by using invisible light such as infrared light in addition to visible light used as conventional illumination light. Also, in general, visible light is used as illumination light, and it is used by switching to invisible light such as infrared light to prevent the illumination light from being perceived as dazzling in public places where many people can easily view the illumination light There are also many things.
 このように、2種類の照明光を用いる光学的情報読取装置に関する技術として、例えば、下記特許文献2に開示される読取装置が知られている。この読取装置は、2つの異なる光源から近赤外光及び赤外光が同時に照射されることにより発生するアップコンバージョンを利用することで、二次元透明バーコードからの反射光を受光した際に高出力かつ高S/N比を有する信号を読み取ることが可能となり、情報識別能力を向上させている。 Thus, as a technique related to an optical information reader using two types of illumination light, for example, a reader disclosed in Patent Document 2 below is known. This reader uses up-conversion generated by simultaneous irradiation of near-infrared light and infrared light from two different light sources, and is highly effective when it receives light reflected from a two-dimensional transparent barcode. It is possible to read a signal having an output and a high S / N ratio, and improve the information identification capability.
特開2014-026371号公報JP 2014-026371 特開2010-039958号公報JP, 2010-039958, A
 光学的情報読取装置に採用される安価な結像レンズには、製造時のばらつき等に起因して視野周辺の一部に結像に関して性能低下している部分(以下、単に片ボケともいう)が生じる場合がある。このような片ボケが生じていない結像レンズでは、エリアセンサと結像レンズとの相対位置に応じて解像力が変化し、その相対位置が最適な焦点位置となる場合に測定される解像力が最も高く評価される。 In an inexpensive imaging lens employed in an optical information reading device, a portion where the image forming performance is degraded in part of the periphery of the field of view due to manufacturing variations etc. (hereinafter, also simply referred to as one-sided blurring) May occur. In an imaging lens in which such a one-sided blur does not occur, the resolving power changes according to the relative position of the area sensor and the imaging lens, and the resolving power measured when the relative position is an optimal focus position is the most It is highly appreciated.
 しかしながら、片ボケが生じている結像レンズでは、エリアセンサと結像レンズとの相対位置を上述のようなねじ込み量に応じて調整する構成において、ねじ込み量を変えるごとに測定される解像力に基づいて最適な焦点位置を求める際、片ボケ部分も光軸中心に回転することとなる。このように片ボケ部分が回転移動すると、片ボケ部分の位置に応じて解像力が変化してしまうため、エリアセンサと結像レンズとの相対位置が最適な焦点位置だったとしても測定される解像力が低く評価される場合がある。このような場合には、最適な焦点位置に調整できなくなるという第1の問題がある。 However, in an imaging lens in which one-sided blurring occurs, in the configuration in which the relative position between the area sensor and the imaging lens is adjusted according to the screwing amount as described above, based on the resolution measured every changing the screwing amount. In order to determine the optimum focal position, one blurred portion also rotates around the optical axis. Since the resolution changes according to the position of the one blurred portion when the one blurred portion rotates as described above, the measured resolution is measured even if the relative position between the area sensor and the imaging lens is the optimum focal position. May be rated low. In such a case, there is a first problem that it is not possible to adjust to the optimal focus position.
 一方、可視光を照射する光源と赤外光等の不可視光を照射する光源との双方が搭載される読取装置では、受光センサとそれぞれの光源との配置の制約等のため、通常、撮像視野(結像視野)に対する可視光の照射範囲と不可視光の照射範囲とが異なる。このため、可視光が照射される状態から不可視光が照射される状態に切り替わった場合、不可視光の照射範囲を視認できないことから可視光が照射されていた照射範囲を読み取り可能な範囲として読み取り作業を行うと、その情報コードに不可視光が適切に照射されないために、不可視光を照射した状態での読み取りが失敗してしまうという第2の問題がある。この第2の問題は、可視光と不可視光とを同時に情報コードに照射してその情報コードを読み取る場合でも同様に生じる場合がある。特に、近距離に位置する情報コードを読み取る場合では、可視光の照射範囲と不可視光の照射範囲との位置ずれが大きくなり、上記問題が顕著となる。 On the other hand, in a reading apparatus in which both a light source for emitting visible light and a light source for emitting invisible light such as infrared light are mounted, an imaging field of view is usually selected due to restrictions on the arrangement of the light receiving sensor and each light source. The irradiation range of visible light and the irradiation range of invisible light with respect to (imaging field) are different. Therefore, when the visible light irradiation state is switched to the invisible light irradiation state, the irradiation range of the invisible light can not be visually recognized. Therefore, the irradiation range which has been irradiated with the visible light can be read as a readable range. There is a second problem that reading with the invisible light fails because the information code is not properly irradiated with the invisible light. The second problem may also occur in the case where the visible light and the invisible light are simultaneously irradiated to the information code and the information code is read. In particular, in the case of reading the information code located at a short distance, the positional deviation between the irradiation range of visible light and the irradiation range of invisible light becomes large, and the above problem becomes remarkable.
 本発明は、上述した第1の課題を解決するためになされたものであり、その目的とするところは、エリアセンサと結像レンズとの相対位置を変化させて最適な焦点位置を求める際に測定される解像力の変化に関して片ボケの影響を抑制し得る構成を提供することにある(第1の目的)。 The present invention has been made to solve the first problem described above, and the object of the present invention is to change the relative position between the area sensor and the imaging lens to obtain an optimal focus position. It is an object of the present invention to provide a configuration capable of suppressing the influence of one blur with respect to a change in resolution to be measured (first object).
 本発明は、上述した第2の課題を解決するためになされたものであり、その目的とするところは、可視光を照射する光源と不可視光を照射する光源との双方を搭載する場合でも両照射範囲のずれに起因する読取性能の低下を抑制可能な構成を提供することにある(第2の目的)。 The present invention has been made to solve the second problem described above, and the object of the present invention is to mount both a light source for emitting visible light and a light source for emitting invisible light. It is an object of the present invention to provide a configuration capable of suppressing a decrease in reading performance due to a shift in irradiation range (second object).
 上記第1の目的を達成するため、第1の例示的な実施例によれば、
 情報コード(C)からの反射光を結像レンズ(25)を介して受光するエリアセンサ(23)を備え、前記エリアセンサから出力される信号に基づいて前記情報コードを光学的に読み取る光学的情報読取装置(10)であって、
 前記エリアセンサが固定されるホルダ(50,150,250,350,450)と、
 前記結像レンズを保持した状態で前記ホルダに組み付けられて、前記結像レンズの光軸(L2)に沿う基準面が設けられるレンズ保持部(60,160,260,360,460)と、を備え、
 前記ホルダには、前記結像レンズを介した光が前記エリアセンサに結像するように前記レンズ保持部を組み付けたときに前記基準面が面接触し、前記光軸に沿うように前記レンズ保持部を移動させたときに前記基準面が摺接する案内面が形成されることを特徴とする。
According to a first exemplary embodiment, in order to achieve the first object,
An area sensor (23) for receiving light reflected from the information code (C) through an imaging lens (25), and optically reading the information code optically based on a signal output from the area sensor An information reader (10),
A holder (50, 150, 250, 350, 450) to which the area sensor is fixed;
A lens holding portion (60, 160, 260, 360, 460) which is assembled to the holder while holding the imaging lens and is provided with a reference plane along the optical axis (L2) of the imaging lens; Equipped
The reference surface is in surface contact with the holder when the lens holding unit is assembled such that light through the imaging lens forms an image on the area sensor, and the lens holding is performed along the optical axis. A guide surface is formed to be in sliding contact with the reference surface when the unit is moved.
 この第1の態様によれば、結像レンズを保持した状態でエリアセンサが固定されるホルダに組み付けられるレンズ保持部には、結像レンズの光軸に沿う基準面が設けられる。そして、ホルダには、結像レンズを介した光がエリアセンサに結像するようにレンズ保持部を組み付けたときに基準面が面接触し、光軸に沿うようにレンズ保持部を移動させたときに基準面が摺接する案内面が形成される。 According to the first aspect, the lens holding unit assembled to the holder to which the area sensor is fixed while holding the imaging lens is provided with the reference surface along the optical axis of the imaging lens. Then, when the lens holding unit is assembled to the holder so that the light through the imaging lens forms an image on the area sensor, the reference surface is in surface contact, and the lens holding unit is moved along the optical axis A guide surface is formed when the reference surface slides.
 これにより、エリアセンサと結像レンズとの相対位置を調整する場合には、基準面が案内面に対して摺接するようにレンズ保持部をホルダに対して光軸に沿うように移動させる。すなわち、片ボケが生じている結像レンズであっても、エリアセンサと結像レンズとの相対位置を変化させて最適な焦点位置を求める際に片ボケ部分が回転移動しないため、測定される解像力の変化に関して片ボケの影響を抑制することができる。 Thus, when adjusting the relative position between the area sensor and the imaging lens, the lens holding unit is moved along the optical axis with respect to the holder such that the reference surface is in sliding contact with the guide surface. That is, even when the imaging lens has one blur, measurement is performed because the one-blur portion does not rotate when the relative position between the area sensor and the imaging lens is changed to obtain the optimum focal position. The influence of one blur can be suppressed with respect to the change in resolution.
 上述した第1の態様において、一例によれば、エリアセンサは、長方形状の受光面を有し、片ボケが生じる位置が結像レンズごとに把握されている。そして、レンズ保持部は、片ボケが生じる視野の部分が受光面の長辺側で当該受光面の外に位置するように結像レンズを保持する。これにより、片ボケが生じる視野の部分が受光面の短辺側に位置するように結像レンズが保持される場合と異なり、片ボケが生じる視野の部分をエリアセンサによる撮像視野外に位置させやすくでき、片ボケの影響を抑制して解像力を向上させることができる。 In the first aspect described above, according to an example, the area sensor has a rectangular light receiving surface, and the position where one-sided blurring occurs is grasped for each imaging lens. The lens holding unit holds the imaging lens such that the part of the field of view in which the one-sided blur occurs is positioned outside the light receiving surface on the long side of the light receiving surface. Thereby, unlike the case where the imaging lens is held so that the part of the field of view where the one-sided blurring occurs is located on the short side of the light receiving surface, the part of the field where the one-sided blurring occurs is positioned outside the imaging field of view by the area sensor Therefore, the resolution can be improved by suppressing the influence of one-sided blur.
 また別の例によれば、基準面は、平面状の第1基準面と、当該第1基準面に交差する平面状の第2基準面とからなり、案内面は、第1基準面が摺接可能な平面状の第1案内面と、第2基準面が摺接可能な平面状の第2案内面とからなる。このように、基準面及び案内面をそれぞれ2つの平面により構成することで、レンズ保持部をホルダに対して光軸に沿うように移動させる構成を簡素に実現することができる。 According to another example, the reference surface is composed of a planar first reference surface and a planar second reference surface intersecting the first reference surface, and the guide surface is a sliding surface of the first reference surface. It comprises a planar first guiding surface which can be brought into contact and a planar second guiding surface which can be brought into sliding contact with the second reference surface. As described above, by configuring the reference surface and the guide surface with two flat surfaces, the configuration in which the lens holding unit is moved along the optical axis with respect to the holder can be simply realized.
 さらに別の例によれば、レンズ保持部のつば部は、結像レンズ側となる平面の少なくとも一部が第1基準面として機能し、ホルダは、組み付け時にレンズ保持部のうちつば部よりも結像レンズ側となる部分が開口を介して収容されるように形成され、この開口が設けられる平面の少なくとも一部が第1案内面として機能する。これにより、ホルダへのレンズ保持部の組み付けを容易に実施できるだけでなく、この組み付け時に第1基準面と第1案内面とを容易に面接触させやすくすることができる。 According to still another example, at least a part of the flat surface on the imaging lens side of the lens holding unit functions as the first reference surface, and the holder is more than the collar unit of the lens holding unit during assembly. A portion on the imaging lens side is formed to be accommodated through the opening, and at least a part of a plane on which the opening is provided functions as a first guiding surface. Thus, not only the assembly of the lens holding portion to the holder can be easily performed, but also the first reference surface and the first guide surface can be easily brought into surface contact at the time of the assembly.
 さらに、好適には、つば部は、摺接時に結像レンズ側となる平面にて開口を覆うように形成される。これにより、つば部が開口を介した光の入射を防止する遮光部として機能するため、ホルダの遮光性を向上させることができる。 Furthermore, preferably, the flange portion is formed to cover the opening in a plane that is on the imaging lens side at the time of sliding contact. Thus, the light shielding property of the holder can be improved because the collar portion functions as a light shielding portion that prevents the light from entering through the opening.
 また、第2の態様によれば、
 上述の光学的情報読取装置(10)を製造する光学的情報読取装置の製造方法であって、
 前記結像レンズが保持された前記レンズ保持部を、前記エリアセンサが固定された前記ホルダに対して前記基準面が前記案内面に面接触するように組み付ける工程と、
 前記光軸に沿って移動可能なアーム(510)を前記レンズ保持部に組み付ける工程と、
 前記基準面が前記案内面に摺接するように前記アームを前記光軸に沿う方向に移動させながら前記エリアセンサによる解像力を順次測定する工程と、
 測定された解像力がピークとみなされるピーク位置で前記アームが組み付けられた状態の前記レンズ保持部を前記ホルダに固定する工程と、
 前記アームを前記レンズ保持部から取り外す工程と、
 を備えることを特徴とする。
Also, according to the second aspect,
A method of manufacturing an optical information reader for manufacturing the above-mentioned optical information reader (10), comprising:
Assembling the lens holding portion holding the imaging lens such that the reference surface is in surface contact with the guide surface with respect to the holder to which the area sensor is fixed;
Assembling an arm (510) movable along the optical axis to the lens holder;
Measuring the resolution of the area sensor sequentially while moving the arm in a direction along the optical axis such that the reference surface is in sliding contact with the guide surface;
Securing the lens holder in a state in which the arm is assembled at a peak position where the measured resolution is regarded as a peak, to the holder;
Removing the arm from the lens holder;
And the like.
 この第2の態様では、結像レンズが保持されたレンズ保持部を、エリアセンサが固定されたホルダに対して基準面が案内面に面接触するように組み付けた後、光軸に沿って移動可能なアームをレンズ保持部に組み付け、基準面が案内面に摺接するようにアームを光軸に沿う方向に移動させながらエリアセンサによる解像力を順次測定し、測定された解像力がピークとみなされるピーク位置でアームが組み付けられた状態のレンズ保持部をホルダに固定した後、アームをレンズ保持部から取り外す。 In this second aspect, the lens holding portion holding the imaging lens is assembled along the optical axis after the reference surface is in surface contact with the guide surface with respect to the holder to which the area sensor is fixed. A possible arm is attached to the lens holder, and the resolution of the area sensor is sequentially measured while moving the arm in the direction along the optical axis so that the reference surface is in sliding contact with the guide surface, and the measured resolution is regarded as a peak After fixing the lens holder in a state where the arm is assembled at the position to the holder, the arm is removed from the lens holder.
 これにより、ピーク位置でレンズ保持部をホルダに固定する際、レンズ保持部にはアームが組み付けられているので、レンズ保持部がピーク位置からずれ難くなり、解像力を測定することで求められた最適な焦点位置への調整を確実に実施することができる。 As a result, when the lens holding portion is fixed to the holder at the peak position, the arm is assembled to the lens holding portion, so that the lens holding portion does not easily shift from the peak position, and the optimum determined by measuring the resolution. It is possible to reliably perform adjustment to various focal positions.
 加えて、第2の態様に置いて、例えば、レンズ保持部をホルダに固定する工程では、アームを光軸に沿う第1の方向に移動させながらピーク位置が求められることで、当該ピーク位置を超えるようにアームを光軸に沿う第2の方向に移動させた後、ピーク位置に向けてアームを上記第1の方向に移動させて、当該ピーク位置でレンズ保持部をホルダに固定する。 In addition, in the second aspect, for example, in the step of fixing the lens holding portion to the holder, the peak position is determined by moving the arm in the first direction along the optical axis. After moving the arm in the second direction along the optical axis so as to exceed the position, the arm is moved in the first direction toward the peak position to fix the lens holding portion to the holder at the peak position.
 アームの移動方向を第1の方向から第2の方向に切り替える際、アームを移動させるためのアクチュエータのあそび等に起因して、アクチュエータが駆動してもレンズ保持部が移動していない場合があり、このような場合には、第1の方向に移動させながら見つけたピーク位置に向けてレンズ保持部を他方向に移動させるように調整すると、ピーク位置からずれた位置に固定される可能性がある。そこで、第1の方向に移動させながらピーク位置が求められた場合には、当該ピーク位置を超えるようにアームを光軸に沿う第2の方向に移動させた後、ピーク位置に向けてアームを上記第1の方向に移動させて、当該ピーク位置でレンズ保持部をホルダに固定することで、上述のようなピーク位置からのずれの発生を防止でき、最適な焦点位置への調整をより確実に実施することができる。 When switching the movement direction of the arm from the first direction to the second direction, the lens holder may not move even though the actuator is driven due to the play of the actuator for moving the arm, etc. In such a case, if the lens holder is adjusted to move in the other direction toward the peak position found while moving in the first direction, the lens may be fixed at a position deviated from the peak position. is there. Therefore, when the peak position is determined while moving in the first direction, the arm is moved in the second direction along the optical axis so as to exceed the peak position, and then the arm is moved toward the peak position. By moving the lens holder in the first direction and fixing the lens holding portion to the holder at the peak position, the occurrence of the deviation from the peak position as described above can be prevented, and the adjustment to the optimal focus position is made more reliable. Can be implemented.
 また例えば、解像力を順次測定する工程では、所定値以上の解像力が測定される際のアームによる移動量を、前記所定値未満の解像力が測定される際のアームによる移動量よりも小さくする。これにより、ピーク位置付近までの測定に関して測定時間が短縮し、ピーク位置近傍での測定に関して測定精度が高められるので、測定時間の短縮と測定精度の向上との両立を図ることができる。 For example, in the step of sequentially measuring the resolving power, the moving amount by the arm when measuring the resolving power equal to or more than a predetermined value is set smaller than the moving amount by the arm when the resolving power less than the predetermined value is measured. As a result, the measurement time for the measurement to the vicinity of the peak position is shortened, and the measurement accuracy for the measurement near the peak position is enhanced. Therefore, it is possible to achieve both the shortening of the measurement time and the improvement of the measurement accuracy.
 上記第2の目的を達成するため、第3の態様に係る構成によれば、
 情報コード(C)からの反射光を長方形状の受光面(23a)にて受光するエリアセンサ(23)を備え、前記エリアセンサから出力される信号に基づいて前記情報コードを光学的に読み取る光学的情報読取装置(10)であって、
 前記エリアセンサによる撮像視野(AR)に向けて照明光として可視光(Lf1)を照射する第1光源(21)と不可視光(Lf2)を照射する第2光源(22)とを備え、
 前記第1光源及び前記第2光源は、前記受光面の短手方向に沿い一列に配置されることを特徴とする。
According to the configuration according to the third aspect, in order to achieve the second object,
An area sensor (23) for receiving reflected light from an information code (C) at a rectangular light receiving surface (23a), and an optical for optically reading the information code based on a signal output from the area sensor Information reader (10),
The first light source (21) emits visible light (Lf1) as illumination light toward the imaging field of view (AR) by the area sensor, and the second light source (22) emits invisible light (Lf2).
The first light source and the second light source may be arranged in a line along a short direction of the light receiving surface.
 この第3の態様では、情報コードからの反射光を長方形状の受光面にて受光するエリアセンサと、このエリアセンサによる撮像視野に向けて照明光として可視光を照射する第1光源と不可視光を照射する第2光源とが設けられており、第1光源及び第2光源は、受光面の短手方向に沿い一列に配置される。 In the third aspect, an area sensor that receives reflected light from an information code on a rectangular light receiving surface, a first light source that emits visible light as illumination light toward an imaging field of view with the area sensor, and invisible light And a second light source for emitting light, and the first light source and the second light source are arranged in a line along the short direction of the light receiving surface.
 これにより、受光面の形状に応じて長方形状となる撮像視野に対して、可視光の照射範囲と不可視光の照射範囲とが撮像視野の長手方向に関してずれ難くなる。通常、バーコードのように一方向に長い情報コードを読み取る際、その情報コードの長手方向が撮像視野の長手方向、すなわち読取口の長手方向に一致するように読取口を情報コードに向けた状態になる。この状態では、情報コードに対して可視光の照射範囲と不可視光の照射範囲とが撮像視野の長手方向ではずれないので、両照射範囲が撮像視野の長手方向にてずれているために生じる読み取り失敗、例えば、不可視光が情報コードの長手方向一側に照射されている一方で長手方向他側に照射されていないために生じる読み取り失敗等を抑制することができる。したがって、可視光を照射する第1光源と不可視光を照射する第2光源との双方を搭載する場合でも両照射範囲のずれに起因する読取性能の低下を抑制することができる。 As a result, the irradiation range of visible light and the irradiation range of invisible light do not easily shift in the longitudinal direction of the imaging field with respect to the imaging field having a rectangular shape according to the shape of the light receiving surface. Normally, when reading a long information code in one direction like a bar code, the reading port is directed to the information code so that the longitudinal direction of the information code coincides with the longitudinal direction of the imaging field, that is, the longitudinal direction of the reading port become. In this state, since the irradiation range of visible light and the irradiation range of invisible light do not shift with respect to the information code in the longitudinal direction of the imaging field of view, reading occurs because both the irradiation ranges are offset in the longitudinal direction of the imaging field of view It is possible to suppress a failure, for example, a reading failure or the like which occurs because invisible light is irradiated to one longitudinal side of the information code but not to the other longitudinal side. Therefore, even when both of the first light source for emitting visible light and the second light source for emitting invisible light are mounted, it is possible to suppress the decrease in the reading performance due to the deviation of both irradiation ranges.
 加えて、第3の態様において、その一例によれば、第1光源及び第2光源は、第1光源と第2光源との間にエリアセンサの受光光軸が位置するように配置される。これにより、撮像視野の中心と可視光の照射範囲の中心と不可視光の照射範囲の中心とが、撮像視野の短手方向において一致するように近づくので、撮像視野と両照射範囲とのずれをさらに小さくでき、読取性能を向上させることができる。 In addition, in the third aspect, according to the example, the first light source and the second light source are arranged such that the light receiving optical axis of the area sensor is located between the first light source and the second light source. As a result, the center of the imaging field of view, the center of the irradiation range of visible light, and the center of the irradiation range of invisible light approach in the short direction of the imaging field of view so as to coincide with each other. The size can be further reduced, and the reading performance can be improved.
 また別の例では、第1光源及び第2光源は、結像レンズに対して受光面の長手方向にずれるように配置される。これにより、第1光源と第2光源とを受光面の短手方向にて近づけるように配置しても結像レンズに干渉することもないので、第1光源と第2光源とを近づけるように配置したことによる装置の小型化を図ることができる。 In another example, the first light source and the second light source are arranged to be offset in the longitudinal direction of the light receiving surface with respect to the imaging lens. As a result, even if the first light source and the second light source are disposed close to each other in the short direction of the light receiving surface, they do not interfere with the imaging lens, so that the first light source and the second light source are brought close to each other. The size of the device can be reduced by the arrangement.
 さらに別の例では、第1光源及び第2光源は、同一の基板上に実装されるため、第1光源と第2光源との位置ずれを抑制できるだけでなく、第1光源と第2光源とをコンパクトに配置しやすくなり、装置の小型化を図ることができる。 In still another example, since the first light source and the second light source are mounted on the same substrate, not only the positional deviation between the first light source and the second light source can be suppressed, but also the first light source and the second light source Can be compactly arranged, and the device can be miniaturized.
 さらに別の例では、第1光源に用いられる照明レンズと第2光源に用いられる照明レンズとが一体に成形されるため、照明レンズに関して部品点数を削減できるだけでなく、第1光源と第2光源とをコンパクトに配置しやすくなり、装置の小型化を図ることができる。 In yet another example, since the illumination lens used for the first light source and the illumination lens used for the second light source are integrally formed, not only the number of parts can be reduced for the illumination lens, but also the first light source and the second light source Can be easily arranged in a compact manner, and the device can be miniaturized.
 さらに別の例では、ユーザから見て第1光源による照射範囲が第2光源による照射範囲よりも下側に位置するように、第1光源及び第2光源が配置される。
 通常、所定の表示面に表示された情報コードに読取口を向ける場合、ユーザは、読取口を介して情報コードを見ながら読み取り作業を行うため、所定の表示面は、受光光軸に対してその上側が読取口から離れるように相対的に傾斜した状態になりやすい。この状態では、所定の表示面を介した折り返し視野が受光光軸に対して上側となるため、その用途上、光強度が不可視光よりも強くなる可視光を照射する第1光源が受光光軸に対して上側に位置していると、上記折り返し視野に第1光源が入りやすくなる。すなわち、上記所定の表示面にて反射した可視光が映り込みやすくなるため、撮像した情報コード上に可視光が映り込んでいると読取性能が低下してしまう可能性がある。
In still another example, the first light source and the second light source are disposed such that the irradiation range of the first light source is located below the irradiation range of the second light source as viewed from the user.
Usually, when the reading port is directed to the information code displayed on a predetermined display surface, the user performs the reading operation while looking at the information code through the reading port. The upper side tends to be relatively inclined to be separated from the reading port. In this state, since the folded field of view through the predetermined display surface is on the upper side with respect to the light receiving optical axis, the first light source for emitting visible light whose light intensity is stronger than invisible light is the light receiving optical axis. If the light source is positioned on the upper side, the first light source can easily enter the folded field of view. That is, since the visible light reflected on the predetermined display surface is easily reflected, if the visible light is reflected on the captured information code, the reading performance may be degraded.
 そこで、ユーザから見て第1光源による照射範囲が第2光源による照射範囲よりも下側に位置するように、第1光源及び第2光源を配置することで、上記所定の表示面を介した折り返し視野に第1光源が入り難くなり、光強度が強い可視光の映り込みに起因する読取性能の低下を抑制することができる。
 なお、上記各括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
Therefore, by disposing the first light source and the second light source such that the irradiation range by the first light source is located lower than the irradiation range by the second light source when viewed from the user, the predetermined display surface is intervened. It becomes difficult for the first light source to enter the folded field of view, and it is possible to suppress the decrease in the reading performance due to the reflection of visible light with high light intensity.
In addition, the code | symbol in each said bracket shows correspondence with the specific means as described in embodiment mentioned later.
 添付図面において:
第1実施形態に係る光学的情報読取装置の構成を概略的に示すブロック図である。 第1実施形態においてホルダの構成を示す図であり、図2(A)は、正面図を示し、図2(B)は、平面図を示し、図2(C)は、側面図を示す。 第1実施形態においてレンズ保持部の構成を示す図であり、図3(A)は、正面図を示し、図3(B)は、平面図を示し、図3(C)は、側面図を示す。 第1実施形態においてレンズ保持部をホルダに組み付けた状態を示す図であり、図4(A)は、正面図を示し、図4(B)は、平面図を示し、図4(C)は、一部を断面にて図示する側面図を示す。 本発明における結像レンズをエリアセンサに対して相対移動させる際の撮像視野に対する片ボケ部分の位置を説明する説明図である。 従来技術における結像レンズをエリアセンサに対して相対移動させる際の撮像視野に対する片ボケ部分の位置を説明する説明図である。 第2実施形態においてホルダの構成を示す図であり、図7(A)は、正面図を示し、図7(B)は、平面図を示し、図7(C)は、側面図を示す。 第2実施形態においてレンズ保持部をホルダに組み付けた状態を示す図であり、図8(A)は、正面図を示し、図8(B)は、平面図を示し、図8(C)は、側面図を示す。 第3実施形態においてホルダの構成を示す図であり、図9(A)は、正面図を示し、図9(B)は、平面図を示し、図9(C)は、側面図を示す。 第3実施形態においてレンズ保持部をホルダに組み付けた状態を示す図であり、図10(A)は、正面図を示し、図10(B)は、平面図を示し、図10(C)は、側面図を示す。 第4実施形態においてホルダの構成を示す図であり、図11(A)は、正面図を示し、図11(B)は、平面図を示し、図11(C)は、側面図を示す。 第4実施形態においてレンズ保持部をホルダに組み付けた状態を示す図であり、図12(A)は、正面図を示し、図12(B)は、平面図を示し、図12(C)は、側面図を示す。 第5実施形態においてホルダの構成を示す図であり、図13(A)は、正面図を示し、図13(B)は、平面図を示し、図13(C)は、側面図を示す。 第5実施形態においてレンズ保持部をホルダに組み付けた状態を示す図であり、図14(A)は、正面図を示し、図14(B)は、平面図を示し、図14(C)は、側面図を示す。 第6実施形態に係る光学的情報読取装置の製造方法に利用する製造装置を概略的に示す平面図である。 第6実施形態に係る光学的情報読取装置の製造方法に利用する製造装置を概略的に示す側面図である。 図17(A)は、コントラスト値を測定するチャートの一例を示す説明図であり、図17(B)は、コントラスト値を測定するチャートの他の例を示す説明図である。 図18(A)は、一方向にアームを移動させたときのコントラスト値の測定結果を示す説明図であり、図18(B)は、他方向にアームを移動させたときのコントラスト値の測定結果を示す説明図である。 ピーク位置に移動したレンズ保持部とホルダとに対して接着用溝にUV接着剤を塗布する状態を説明する説明図である。 本発明の第7実施形態に係る光学的情報読取装置を概略的に示す斜視図である。 図20の光学的情報読取装置の右側面図である。 図20の光学的情報読取装置の正面図である。 図20の光学的情報読取装置の電気的構成を概略的に示すブロック図である。 第7実施形態において受光光軸に対して直交する方向であって第1光源側から見た第1光源とエリアセンサとの位置関係を説明する説明図である。 第7実施形態において読取口側から見た両光源とエリアセンサとの位置関係を説明する説明図である。 読み取り作業時における所定の表示面の情報コードと光学的情報読取装置との角度を説明する説明図であり、図26(A)は、手持ちのラベル等における所定の表示面の情報コードを読み取る場合を示し、図26(B)は、机上のラベル等における所定の表示面の情報コードCを読み取る場合を示す。 所定の表示面を介した折り返し視野と受光光軸との関係を説明する説明図であり、図27(A)は、第1光源が受光光軸に対して下側に位置している状態を示し、図27(B)は、第1光源が受光光軸に対して上側に位置している状態を示す。 図28(A)は、図27(A)の状態にて情報コードを撮像した撮像状態を説明する説明図であり、図28(B)は、図27(B)の状態にて情報コードを撮像した撮像状態を説明する説明図である。 第8実施形態において受光光軸に対して直交する方向であって第1光源側から見た第1光源とエリアセンサとの位置関係を説明する説明図である。 第8実施形態において読取口側から見た両光源とエリアセンサとの位置関係を説明する説明図である。
In the attached drawings:
It is a block diagram showing roughly the composition of the optical information reading device concerning a 1st embodiment. It is a figure which shows the structure of a holder in 1st Embodiment, FIG. 2 (A) shows a front view, FIG. 2 (B) shows a top view, FIG.2 (C) shows a side view. FIG. 3A is a front view, FIG. 3B is a plan view, and FIG. 3C is a side view. Show. FIG. 4A is a front view, FIG. 4B is a plan view, and FIG. 4C is a view showing a state in which the lens holding portion is assembled to the holder in the first embodiment. Fig. 3 shows a side view, partially in section, of the drawing. It is an explanatory view explaining the position of the one blur part to the image pick-up field at the time of making the imaging lens in the present invention move relative to an area sensor. It is an explanatory view explaining the position of the one blur part to the image pick-up field at the time of making the imaging lens in a prior art move relative to an area sensor. 7A is a front view, FIG. 7B is a plan view, and FIG. 7C is a side view. FIG. 8A is a front view, FIG. 8B is a plan view, and FIG. 8C is a view showing a state in which the lens holding portion is assembled to the holder in the second embodiment. , Shows a side view. FIG. 9A is a front view, FIG. 9B is a plan view, and FIG. 9C is a side view. It is a figure which shows the state which assembled | attached the lens holding part to the holder in 3rd Embodiment, FIG. 10 (A) shows a front view, FIG. 10 (B) shows a top view, FIG. 10 (C) is. , Shows a side view. 11A is a front view, FIG. 11B is a plan view, and FIG. 11C is a side view. FIG. 12 (A) shows a front view, FIG. 12 (B) shows a plan view, and FIG. 12 (C) shows a state in which the lens holding portion is assembled to the holder in the fourth embodiment. , Shows a side view. FIG. 13 (A) shows a front view, FIG. 13 (B) shows a plan view, and FIG. 13 (C) shows a side view. FIG. 14A is a front view, FIG. 14B is a plan view, and FIG. 14C is a view showing a state in which the lens holding portion is assembled to the holder in the fifth embodiment. , Shows a side view. It is a top view which shows roughly the manufacturing apparatus utilized for the manufacturing method of the optical information reader concerning 6th Embodiment. It is a side view showing roughly a manufacture device used for a manufacturing method of an optical information reader concerning a 6th embodiment. FIG. 17A is an explanatory view showing an example of a chart for measuring the contrast value, and FIG. 17B is an explanatory view showing another example of the chart for measuring the contrast value. FIG. 18A is an explanatory view showing the measurement results of the contrast value when the arm is moved in one direction, and FIG. 18B is the measurement of the contrast value when the arm is moved in the other direction. It is explanatory drawing which shows a result. It is explanatory drawing explaining the state which apply | coats a UV adhesive to the groove | channel for adhesion | attachment with respect to the lens holding part which moved to the peak position, and a holder. It is a perspective view which shows roughly the optical information reader based on 7th Embodiment of this invention. It is a right view of the optical information reader of FIG. It is a front view of the optical information reader of FIG. FIG. 21 is a block diagram schematically showing an electrical configuration of the optical information reader of FIG. 20. It is explanatory drawing explaining the positional relationship of the 1st light source and area sensor which are a direction orthogonal to the light reception optical axis in 7th Embodiment, and was seen from the 1st light source side. It is explanatory drawing explaining the positional relationship of both the light source and the area sensor which were seen from the reading opening side in 7th Embodiment. It is an explanatory view explaining an angle of an information code of a predetermined display surface at the time of reading work and an optical information reader, and Drawing 26 (A) reads an information code of a predetermined display surface in a hand-held label etc. FIG. 26B shows the case where the information code C on a predetermined display surface of a label or the like on a desk is read. FIG. 27A is an explanatory view for explaining a relationship between a folded visual field through a predetermined display surface and a light receiving optical axis, and FIG. 27A shows a state in which the first light source is positioned below the light receiving optical axis. FIG. 27B shows a state in which the first light source is located above the light receiving optical axis. FIG. 28A is an explanatory view for explaining an imaging state in which the information code is imaged in the state of FIG. 27A, and FIG. 28B shows the information code in the state of FIG. It is an explanatory view explaining an image pick-up state which picturized. It is explanatory drawing explaining the positional relationship of the 1st light source and area sensor which are a direction orthogonal to the light reception optical axis in 8th Embodiment, and was seen from the 1st light source side. It is explanatory drawing explaining the positional relationship of both the light source and the area sensor which were seen from the reading opening side in 8th Embodiment.
 以下、添付図面を参照して、上述した課題を解決するための構成を有する光学的情報読取装置及びその製造方法を実施した様々な態様の実施形態を説明する。
[第1実施形態]
 以下、本発明の第1実施形態に係る光学的情報読取装置について、図面を参照して説明する。
 本実施形態に係る光学的情報読取装置10は、一次元コードや二次元コード等の情報コードCを光学的に読み取る情報コードリーダとして構成されている。ここで、一次元コードとしては、例えば、JANコード、EAN、UPC、ITFコード、CODE39、CODE128、NW-7等からなるいわゆるバーコードが想定される。また、二次元コードとしては、例えば、QRコード、データマトリックスコード、マキシコード、Aztecコード等の方形状の情報コードが想定される。
Hereinafter, with reference to the accompanying drawings, embodiments of various aspects in which an optical information reader having a configuration for solving the above-mentioned problems and a method for manufacturing the same will be described.
First Embodiment
An optical information reader according to a first embodiment of the present invention will be described below with reference to the drawings.
The optical information reader 10 according to the present embodiment is configured as an information code reader that optically reads an information code C such as a one-dimensional code or a two-dimensional code. Here, as the one-dimensional code, for example, a so-called bar code consisting of JAN code, EAN, UPC, ITF code, CODE 39, CODE 128, NW-7 and the like is assumed. Further, as the two-dimensional code, for example, a square information code such as a QR code, a data matrix code, a maxi code, or an Aztec code is assumed.
 この光学的情報読取装置10は、ケースCSの内部に回路部20が収容されてなるものであり、回路部20は、主に、照明光源21、マーカ光照射部22、エリアセンサ23等の光学系と、メモリ35、制御部40等のマイクロコンピュータ(以下「マイコン」という)系とを備えている。 The optical information reader 10 is configured such that the circuit unit 20 is housed inside the case CS, and the circuit unit 20 is mainly an optical source such as the illumination light source 21, the marker light irradiation unit 22, the area sensor 23, etc. A system and a microcomputer (hereinafter referred to as a "microcomputer") system such as a memory 35 and a control unit 40 are provided.
 光学系は、投光光学系と、受光光学系とに分かれている。投光光学系は、照明光源21とマーカ光照射部22とから構成されている。照明光源21は、照明光Lfを発光可能な照明光源として機能するもので、例えば、LEDとこのLEDの出射側に設けられるレンズとから構成されている。 The optical system is divided into a projection optical system and a light receiving optical system. The light projecting optical system comprises an illumination light source 21 and a marker light irradiator 22. The illumination light source 21 functions as an illumination light source capable of emitting the illumination light Lf, and includes, for example, an LED and a lens provided on the emission side of the LED.
 マーカ光照射部22は、エリアセンサ23による撮像範囲の中心を示すマーカ光Lmを照射可能なマーカ光源として機能するもので、例えば、LEDとこのLEDの出射側に設けられるレンズとから構成されている。なお、図1では、情報コードCが付された読取対象Rに向けて照明光Lfおよびマーカ光Lmを照射する例を概念的に示している。 The marker light irradiation unit 22 functions as a marker light source capable of irradiating the marker light Lm indicating the center of the imaging range by the area sensor 23. For example, the marker light irradiation unit 22 includes an LED and a lens provided on the emission side of the LED There is. Note that FIG. 1 conceptually illustrates an example in which the illumination light Lf and the marker light Lm are irradiated toward the reading target R to which the information code C is attached.
 受光光学系は、エリアセンサ23、結像レンズ25などによって構成されている。エリアセンサ23は、例えば、C-MOSやCCD等の固体撮像素子である受光素子を二次元に配列した長方形状の受光面23aを有する受光センサとして情報コードCを撮像可能に構成されるものであり、受光した情報コードの各セル(パターン)ごとに反射光Lrの強度に応じた電気信号を出力するように構成されている。このエリアセンサ23は、結像レンズ25を介して入射する入射光を受光可能にセンサ基板20aに実装されている。 The light receiving optical system is configured of an area sensor 23, an imaging lens 25, and the like. The area sensor 23 is configured to be capable of imaging the information code C as a light receiving sensor having a rectangular light receiving surface 23a in which light receiving elements, which are solid-state imaging devices such as C-MOS and CCD, are two-dimensionally arrayed. In the present embodiment, an electric signal corresponding to the intensity of the reflected light Lr is output for each cell (pattern) of the received information code. The area sensor 23 is mounted on the sensor substrate 20 a so as to be capable of receiving incident light incident through the imaging lens 25.
 結像レンズ25は、1又は2以上のレンズを有するように構成されており、外部から読取口13を介して入射する入射光を集光してエリアセンサ23の受光面23aに像を結像可能な結像光学系として機能するものである。本実施形態では、照明光源21から照射された照明光Lfが情報コードCやこの情報コードCが付された読取対象Rにて反射するようになっており、この反射光Lrを結像レンズ25で集光し、エリアセンサ23の受光面23aにコード画像を結像させている。 The imaging lens 25 is configured to have one or more lenses, condenses incident light incident from the outside through the reading port 13, and forms an image on the light receiving surface 23 a of the area sensor 23. It functions as a possible imaging optical system. In the present embodiment, the illumination light Lf emitted from the illumination light source 21 is reflected by the information code C and the reading target R to which the information code C is attached, and the reflected light Lr is reflected by the imaging lens 25. , And forms a code image on the light receiving surface 23a of the area sensor 23.
 また、受光光学系には、図2~図4に示すように、センサ基板20aが固定されるホルダ50と結像レンズ25が保持されるレンズ保持部60とが設けられている。なお、エリアセンサ23及び結像レンズ25の光軸Lに沿う方向をX方向、後述するホルダ50の上面54とレンズ保持部60のつば下面63とが面接触する平面に平行であってX方向に直交する方向をY方向、X方向及びY方向の双方に直交する方向をZ方向として、以下説明する。 Further, as shown in FIG. 2 to FIG. 4, the light receiving optical system is provided with a holder 50 to which the sensor substrate 20a is fixed and a lens holding portion 60 to which the imaging lens 25 is held. Note that the direction along the optical axis L of the area sensor 23 and the imaging lens 25 is the X direction, parallel to the plane where the upper surface 54 of the holder 50 and the flange lower surface 63 of the lens holder 60 make surface contact. In the following description, the direction orthogonal to Y is taken as the Y direction, and the direction orthogonal to both the X direction and the Y direction is taken as the Z direction.
 ホルダ50は、図2(A)~(C)に示すように、略箱状に形成されており、一方の端部51がセンサ基板20aを固定可能に開口しており、この開口を覆うようにセンサ基板20aが固定されることで、センサ基板20aに実装されるエリアセンサ23がホルダ50内に収容される。また、ホルダ50には、エリアセンサ23の受光面23aが対向する他方の端部52に、エリアセンサ23の光軸L1を中心とする円状の開口52aが設けられている。この開口52aは、ホルダ50の遮光性を高めるため、光軸L1方向からみてレンズ保持部60により保持される結像レンズ25とその近傍のみを露出させるように形成されている。 The holder 50 is formed in a substantially box shape as shown in FIGS. 2A to 2C, and one end 51 of the holder 50 is opened so as to be able to fix the sensor substrate 20a. The area sensor 23 mounted on the sensor substrate 20 a is accommodated in the holder 50 by fixing the sensor substrate 20 a to the sensor substrate 20 a. The holder 50 is provided with a circular opening 52a centered on the optical axis L1 of the area sensor 23 at the other end 52 where the light receiving surface 23a of the area sensor 23 faces. The opening 52a is formed to expose only the imaging lens 25 held by the lens holding unit 60 and the vicinity thereof when viewed from the direction of the optical axis L1 in order to enhance the light shielding property of the holder 50.
 また、ホルダ50の上部は、図2(A)~(C)に示すように、X方向に伸びる一対の縁部53の間に設けられる平面状の上面54がエリアセンサ23の光軸L1に沿うように形成され、その中央に矩形状の開口55が設けられている。この開口55は、エリアセンサ23の光軸L1に沿うようにY方向にて対向し上面54に対して直交する縁面56a,56bにて後述するスライド調整時のレンズ保持部60に摺接してレンズ保持部60の上記光軸L1に沿う方向と異なる方向への移動を規制するように、そのY方向の長さが設定されている。また、開口55は、スライド調整時のレンズ保持部60のスライドを許容する長さに応じて、そのX方向の長さが設定されている。また、一対の縁部53には、スライド調整後の接着固定に利用される接着用溝53aがそれぞれ形成されている。なお、上面54は、「案内面」及び「第1案内面」の一例に相当し、縁面56a,56bは、「案内面」及び「第2案内面」の一例に相当し得る。 Further, as shown in FIGS. 2A to 2C, the upper surface of the holder 50 has a flat upper surface 54 provided between a pair of edge portions 53 extending in the X direction along the optical axis L1 of the area sensor 23. A rectangular opening 55 is provided at the center thereof. The opening 55 is in sliding contact with the lens holding portion 60 at the time of slide adjustment, which will be described later, at edge surfaces 56a and 56b opposed in the Y direction and along the optical axis L1 of the area sensor 23 and orthogonal to the upper surface 54. The length in the Y direction is set to restrict movement of the lens holding portion 60 in a direction different from the direction along the optical axis L1. Further, the length in the X direction of the opening 55 is set in accordance with the length that allows the lens holding unit 60 to slide at the time of slide adjustment. Further, in the pair of edge portions 53, bonding grooves 53a used for bonding and fixing after slide adjustment are respectively formed. The upper surface 54 may correspond to an example of the “guide surface” and the “first guide surface”, and the edge surfaces 56a and 56b may correspond to an example of the “guide surface” and the “second guide surface”.
 レンズ保持部60は、図3(A)~(C)に示すように、結像レンズ25を保持する保持部本体61とこの保持部本体61の上部に連結されるつば部62とを備えている。結像レンズ25は、後述するように片ボケが生じる位置を考慮して保持部本体61に保持されている。保持部本体61は、つば部62近傍でのY方向側の両端面61a,61bが結像レンズ25の光軸L2に沿うことで開口55の縁面56a,56bに摺接可能であってそれぞれつば下面63に直交するように形成されている。なお、端面61a,61bは、「基準面」及び「第2基準面」の一例に相当し得る。 As shown in FIGS. 3A to 3C, the lens holding portion 60 includes a holding portion main body 61 for holding the imaging lens 25 and a flange portion 62 connected to the upper portion of the holding portion main body 61. There is. The imaging lens 25 is held by the holding portion main body 61 in consideration of the position where one-sided blur occurs as described later. The holder main body 61 can be in sliding contact with the edge surfaces 56a and 56b of the opening 55 by having both end surfaces 61a and 61b on the Y direction side in the vicinity of the flange 62 along the optical axis L2 of the imaging lens 25 It is formed to be orthogonal to the collar lower surface 63. The end faces 61a and 61b may correspond to an example of the "reference plane" and the "second reference plane".
 つば部62は、略平板状であって、スライド調整時に縁部53に摺接するようにY方向の長さが設定されており、その結像レンズ25側となる平面となるつば下面63が結像レンズ25の光軸L2に沿うように形成されている。つば下面63は、ホルダ50の上面54との面接触した摺接時に結像レンズ25の光軸L2とエリアセンサ23の光軸L1とが光軸Lとして一致するように、結像レンズ25の光軸L2までのZ方向の長さが設定されている。また、つば部62は、摺接時に常時つば下面63にて開口55を覆うように、そのX方向の長さが設定されている。また、つば部62の上面には、スライド調整時に利用される一対の凹状の係合部64と、スライド調整後の接着固定に利用される一対の接着用溝65が形成されている。接着用溝65は、どのようなスライド調整位置でも接着用溝53aと連通するように、接着用溝53aよりもX方向に長くなるように形成されている。なお、つば下面63は、「基準面」及び「第1基準面」の一例に相当し得る。 The collar portion 62 is substantially flat and has a length in the Y direction set so as to be in sliding contact with the edge portion 53 during slide adjustment, and the collar lower surface 63 which is a flat surface on the imaging lens 25 side It is formed along the optical axis L2 of the image lens 25. The lower surface 63 of the flange 63 of the imaging lens 25 is aligned so that the optical axis L2 of the imaging lens 25 and the optical axis L1 of the area sensor 23 coincide with each other as the optical axis L when in sliding contact with the upper surface 54 of the holder 50. The length in the Z direction up to the optical axis L2 is set. Further, the length of the flange portion 62 in the X direction is set such that the opening 55 is covered with the lower surface 63 at all times when sliding. Further, on the upper surface of the collar portion 62, a pair of concave engaging portions 64 used at the slide adjustment and a pair of bonding grooves 65 used for adhesion and fixing after the slide adjustment are formed. The bonding groove 65 is formed to be longer in the X direction than the bonding groove 53a so as to communicate with the bonding groove 53a at any slide adjustment position. In addition, the collar lower surface 63 may correspond to an example of the “reference surface” and the “first reference surface”.
 そして、レンズ保持部60は、図4(A)~(C)に示すように、ホルダ50への組み付け時に、つば下面63と上面54とが面接触するとともに端面61a,61bと縁面56a,56bとがそれぞれ面接触した状態で、つば部62よりも結像レンズ25側となる保持部本体61が開口55を介してホルダ50内に収容される。そして、後述するようにエリアセンサ23と結像レンズ25との相対位置が最適な焦点位置となるように、両係合部64を利用してレンズ保持部60がホルダ50に対してX方向に沿いスライド調整された後、接着用溝65から接着用溝53aにかけてUV接着剤を塗布等することでスライド不能にレンズ保持部60がホルダ50に組み付けられる。 As shown in FIGS. 4A to 4C, when the lens holding portion 60 is assembled to the holder 50, the lower surface 63 and the upper surface 54 are in surface contact with each other and the end surfaces 61a and 61b and the edge surface 56a, The holding portion main body 61 which is closer to the imaging lens 25 than the collar portion 62 is accommodated in the holder 50 through the opening 55 in a state where the surface 56b is in surface contact with each other. Then, as described later, the lens holding unit 60 is moved in the X direction with respect to the holder 50 by using both engaging portions 64 so that the relative position between the area sensor 23 and the imaging lens 25 becomes an optimal focal position. After being adjusted along the slide, the lens holding portion 60 is assembled to the holder 50 in a non-slidable manner by applying a UV adhesive from the bonding groove 65 to the bonding groove 53a.
 マイコン系は、増幅回路31、A/D変換回路33、メモリ35、アドレス発生回路36、同期信号発生回路38、制御部40、操作部42、液晶表示器43、ブザー44、バイブレータ45、発光部46、通信インタフェース48等から構成されている。このマイコン系は、その名の通り、マイコン(情報処理装置)として機能し得る制御部40およびメモリ35を中心に構成されるもので、上述した光学系によって撮像された情報コードの画像信号をハードウェア的およびソフトウェア的に信号処理し得るものである。また制御部40は、当該光学的情報読取装置10の全体システムに関する制御も行っている。 The microcomputer system includes an amplification circuit 31, an A / D conversion circuit 33, a memory 35, an address generation circuit 36, a synchronization signal generation circuit 38, a control unit 40, an operation unit 42, a liquid crystal display 43, a buzzer 44, a vibrator 45, a light emission unit 46, the communication interface 48 and the like. As its name suggests, this microcomputer system is mainly composed of the control unit 40 and the memory 35 which can function as a microcomputer (information processing apparatus), and the image signal of the information code imaged by the above-described optical system is It can be signal-processed in the form of wear and software. The control unit 40 also controls the entire system of the optical information reading device 10.
 光学系のエリアセンサ23から出力される画像信号(アナログ信号)は、増幅回路31に入力されることで所定の増幅率で増幅された後、A/D変換回路33に入力されると、アナログ信号からディジタル信号に変換される。そして、ディジタル化された画像信号、つまり画像データ(画像情報)は、生成されてメモリ35に入力されると、所定のコード画像情報格納領域に蓄積される。なお、同期信号発生回路38は、エリアセンサ23およびアドレス発生回路36に対する同期信号を発生可能に構成されており、またアドレス発生回路36は、この同期信号発生回路38から供給される同期信号に基づいて、メモリ35に格納される画像データの格納アドレスを発生可能に構成されている。 The image signal (analog signal) output from the area sensor 23 of the optical system is amplified by a predetermined amplification factor by being input to the amplifier circuit 31, and then is input to the A / D conversion circuit 33. A signal is converted to a digital signal. When the digitized image signal, that is, image data (image information) is generated and input to the memory 35, it is accumulated in a predetermined code image information storage area. The synchronization signal generation circuit 38 is configured to be able to generate synchronization signals for the area sensor 23 and the address generation circuit 36, and the address generation circuit 36 is based on the synchronization signal supplied from the synchronization signal generation circuit 38. The storage address of image data stored in the memory 35 can be generated.
 メモリ35は、半導体メモリ装置で、例えばRAM(DRAM、SRAM等)やROM(EPROM、EEPROM等)がこれに相当する。このメモリ35のうちのRAMには、上述したコード画像情報格納領域のほかに、制御部40が算術演算や論理演算等の各処理時に利用する作業領域や読取条件テーブルも確保可能に構成されている。またROMには、情報コードを光学的に読み取るための読取処理を実行可能な読取用プログラムや、照明光源21、エリアセンサ23等の各ハードウェアを制御可能なシステムプログラム等が予め格納されている。 The memory 35 is a semiconductor memory device, and corresponds to, for example, a RAM (DRAM, SRAM, etc.) or a ROM (EPROM, EEPROM, etc.). In the RAM of the memory 35, in addition to the above-described code image information storage area, a working area and a reading condition table used by the control unit 40 at each processing such as arithmetic operation and logical operation can be secured. There is. In addition, a reading program capable of executing reading processing for optically reading an information code, and a system program capable of controlling hardware such as the illumination light source 21 and the area sensor 23 are stored in the ROM in advance. .
 制御部40は、光学的情報読取装置10全体を制御可能なマイコンで、CPU、システムバス、入出力インタフェース等からなるもので、メモリ35とともに情報処理装置を構成し得るもので情報処理機能を有する。この制御部40は、エリアセンサ23によって撮像されてメモリ35に記憶される情報コードのコード画像について解読処理(デコード)を行うように機能する。また、制御部40は、内蔵された入出力インタフェースを介して種々の入出力装置(周辺装置)と接続可能に構成されており、本実施形態の場合、操作部42、液晶表示器43、ブザー44、バイブレータ45、発光部46、通信インタフェース48等が接続されている。 The control unit 40 is a microcomputer capable of controlling the entire optical information reading apparatus 10 and comprises a CPU, a system bus, an input / output interface, etc., and can constitute an information processing apparatus together with the memory 35 and has an information processing function. . The control unit 40 functions to perform a decoding process (decoding) on a code image of an information code which is captured by the area sensor 23 and stored in the memory 35. Further, the control unit 40 is configured to be connectable to various input / output devices (peripheral devices) via the built-in input / output interface, and in the case of the present embodiment, the operation unit 42, the liquid crystal display 43, the buzzer 44, a vibrator 45, a light emitting unit 46, a communication interface 48 and the like are connected.
 操作部42は、複数のキーによって構成され、使用者のキー操作に応じて制御部40に対して操作信号を与える構成をなしており、制御部40は、操作部42から操作信号を受けたとき、その操作信号に応じた動作を行うように構成されている。液晶表示器43は、公知の液晶表示パネルによって構成されており、制御部40によって表示内容が制御されるようになっている。ブザー44は、公知のブザーによって構成されており、制御部40からの動作信号に応じて所定の音を発生させるように構成されている。バイブレータ45は、携帯機器に搭載される公知のバイブレータによって構成されており、制御部40からの駆動信号に応じて振動を発生させるように構成されている。発光部46は、例えばLEDであって、制御部40からの信号に応じて点灯するように構成されている。通信インタフェース48は、外部(例えばホスト装置)との間でのデータ通信を行うためのインタフェースとして構成されており、制御部40と協働して通信処理を行う構成をなしている。 The operation unit 42 is configured by a plurality of keys and configured to give an operation signal to the control unit 40 in response to the user's key operation, and the control unit 40 receives the operation signal from the operation unit 42. When it is configured to perform an operation according to the operation signal. The liquid crystal display 43 is configured by a known liquid crystal display panel, and the display content is controlled by the control unit 40. The buzzer 44 is configured by a known buzzer, and is configured to generate a predetermined sound according to an operation signal from the control unit 40. The vibrator 45 is configured by a known vibrator mounted on a portable device, and is configured to generate a vibration in accordance with a drive signal from the control unit 40. The light emitting unit 46 is, for example, an LED, and is configured to light up in response to a signal from the control unit 40. The communication interface 48 is configured as an interface for performing data communication with the outside (for example, a host device), and is configured to perform communication processing in cooperation with the control unit 40.
 次に、ホルダ50及びレンズ保持部60の詳細構成について説明する。
 上述したように、結像レンズには、製造時のばらつき等に起因して視野周辺の一部に結像に関して性能低下している片ボケが生じる場合がある。このため、結像レンズ25を保持する鏡筒BのホルダHに対するねじ込み量に応じてエリアセンサ23と結像レンズ25との相対位置を調整する従来構成では、図6に例示する撮像視野Pのように、調整時に片ボケ部分Sも光軸Lを中心に回転する(図6の矢印参照)。このように片ボケ部分Sが回転移動すると、片ボケ部分Sの位置に応じて解像力が変化してしまうため、エリアセンサ23と結像レンズ25との相対位置が最適な焦点位置だったとしても測定される解像力が低く評価される場合がある。
Next, detailed configurations of the holder 50 and the lens holding unit 60 will be described.
As described above, in the imaging lens, there may be a case where one-sided blur in which the image forming performance is deteriorated occurs in a part of the periphery of the field of view due to manufacturing variations and the like. Therefore, in the conventional configuration in which the relative position between the area sensor 23 and the imaging lens 25 is adjusted according to the screwing amount of the lens barrel B holding the imaging lens 25 to the holder H, the imaging field P shown in FIG. Thus, at the time of adjustment, the one blurred portion S also rotates about the optical axis L (see the arrow in FIG. 6). Since the resolving power changes according to the position of the one blurred portion S when the one blurred portion S rotationally moves in this way, even if the relative position between the area sensor 23 and the imaging lens 25 is the optimum focal position. The measured resolution may be evaluated low.
 そこで、本実施形態では、上述したホルダ50及びレンズ保持部60を採用することで、結像レンズ25をエリアセンサ23に対して光軸Lに沿うようにスライドさせて相対位置を調整する。すなわち、つば下面63にて上面54に摺接するとともに両端面61a,61bにて開口55の縁面56a,56bにそれぞれ摺接した状態で、レンズ保持部60がホルダ50に対して光軸方向(X方向)にスライドするように案内されることで、結像レンズ25を回転移動させることなく結像レンズ25とエリアセンサ23との相対位置が調整可能となる。 Therefore, in the present embodiment, by employing the holder 50 and the lens holding unit 60 described above, the imaging lens 25 is slid relative to the area sensor 23 along the optical axis L to adjust the relative position. That is, the lens holding portion 60 is moved in the optical axis direction relative to the holder 50 in a state where it is in sliding contact with the upper surface 54 at the flange lower surface 63 and with the end surfaces 56a and 56b of the opening 55 at both end surfaces 61a and 61b By being guided to slide in the X direction), the relative position between the imaging lens 25 and the area sensor 23 can be adjusted without rotating the imaging lens 25.
 そして、所定の治具をつば部62に形成される両係合部64に係合させた状態でレンズ保持部60をホルダ50に対して徐々にスライドさせて順次解像力を測定する。このように測定される解像力の変化に関して片ボケの影響が抑制されるため、解像力が最も高く評価されるスライド位置(相対位置)が最適な焦点位置であるとして、そのように調整された位置にレンズ保持部60の接着用溝65からホルダ50の接着用溝53aにかけてUV接着剤を塗布等して接着固定する。これにより、レンズ保持部60が最適な焦点位置にてホルダ50に対してスライド不能に組み付けられる。 Then, the lens holding portion 60 is gradually slid relative to the holder 50 in a state in which the predetermined jig is engaged with both the engaging portions 64 formed in the collar portion 62, and the resolution is sequentially measured. Since the influence of one blur is suppressed with respect to the change of the resolution thus measured, the slide position (relative position) at which the resolution is evaluated to be the highest is regarded as the optimum focus position, and thus the adjusted position. A UV adhesive is applied and fixed by bonding or the like from the bonding groove 65 of the lens holding portion 60 to the bonding groove 53 a of the holder 50. Thereby, the lens holding unit 60 is assembled so as not to slide relative to the holder 50 at the optimum focal position.
 特に、本実施形態では、結像レンズ25ごとに片ボケが生じる位置を把握することで、図5に例示する撮像視野Pからわかるように、片ボケ部分Sが受光面23aの長辺側で当該受光面23aの外に位置するように結像レンズ25をレンズ保持部60により保持する。これにより、レンズ保持部60をホルダ50に対してスライドさせて解像力を測定する場合でも、片ボケ部分Sが撮像されることを抑制することができる。 In particular, in the present embodiment, as can be seen from the imaging field of view P illustrated in FIG. 5 by grasping the position where one blur occurs for each imaging lens 25, the one blur portion S is on the long side of the light receiving surface 23a. The imaging lens 25 is held by the lens holder 60 so as to be located outside the light receiving surface 23a. As a result, even when the lens holding unit 60 is slid relative to the holder 50 to measure the resolving power, it is possible to suppress imaging of the one-sided blurred portion S.
 以上説明したように、本実施形態に係る光学的情報読取装置10では、結像レンズ25を保持した状態でホルダ50に組み付けられるレンズ保持部60には、結像レンズ25の光軸L1に沿う基準面としてつば下面63及び端面61a,61bが設けられる。そして、ホルダ50には、結像レンズ25を介した光がエリアセンサ23に結像するようにレンズ保持部60を組み付けたときにつば下面63及び端面61a,61bが面接触し、光軸Lに沿うようにレンズ保持部60を移動させたときにつば下面63及び端面61a,61bが摺接する案内面として上面54及び開口55の縁面56a,56bが形成される。 As described above, in the optical information reading apparatus 10 according to the present embodiment, the lens holding unit 60 assembled to the holder 50 while holding the imaging lens 25 is along the optical axis L1 of the imaging lens 25. A flange lower surface 63 and end surfaces 61a and 61b are provided as reference surfaces. The lower surface 63 and the end surfaces 61a and 61b are in surface contact with the holder 50 when the lens holding unit 60 is assembled so that the light through the imaging lens 25 forms an image on the area sensor 23, and the optical axis L The upper surface 54 and the edge surfaces 56a and 56b of the opening 55 are formed as guide surfaces in sliding contact with the lower surface 63 and the end surfaces 61a and 61b when the lens holding portion 60 is moved along.
 これにより、エリアセンサ23と結像レンズ25との相対位置を調整する場合には、つば下面63及び端面61a,61bがそれぞれ上面54及び開口55の縁面56a,56bに対して摺接するようにレンズ保持部60をホルダ50に対して光軸Lに沿うように移動させる。すなわち、片ボケが生じている結像レンズ25であっても、エリアセンサ23と結像レンズ25との相対位置を変化させて最適な焦点位置を求める際に片ボケ部分Sが回転移動しないため、測定される解像力の変化に関して片ボケの影響を抑制することができる。 Thereby, when adjusting the relative position of the area sensor 23 and the imaging lens 25, the lower surface 63 of the flange and the end surfaces 61a and 61b are in sliding contact with the upper surface 54 and the edge surfaces 56a and 56b of the opening 55, respectively. The lens holding unit 60 is moved along the optical axis L with respect to the holder 50. That is, even if the imaging lens 25 has one blur, the one defocusing portion S does not rotate when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position. The influence of one-sided blur can be suppressed with respect to the change of the resolution measured.
 さらに、エリアセンサ23は、長方形状の受光面23aを有し、片ボケが生じる位置が結像レンズ25ごとに把握されている。そして、レンズ保持部60は、片ボケ部分Sが受光面23aの長辺側で当該受光面23aの外に位置するように結像レンズ25を保持する。これにより、片ボケ部分Sが受光面の短辺側に位置するように結像レンズが保持される場合と異なり、片ボケ部分Sをエリアセンサ23による撮像視野外に位置させやすくでき、片ボケの影響を抑制して解像力を向上させることができる。 Furthermore, the area sensor 23 has a rectangular light receiving surface 23 a, and the position where one blur occurs is grasped for each imaging lens 25. Then, the lens holding unit 60 holds the imaging lens 25 so that the one-sided blurred portion S is positioned outside the light receiving surface 23a on the long side of the light receiving surface 23a. Thereby, unlike the case where the imaging lens is held so that the one blurred portion S is positioned on the short side of the light receiving surface, the one blurred portion S can be easily positioned outside the imaging field of view by the area sensor 23. It is possible to improve the resolution by suppressing the influence of
 なお、片ボケが生じる位置が結像レンズ25ごとに把握していなくても、上述したレンズ保持部60及びホルダ50を採用することで片ボケ部分Sが回転移動しないため、仮に片ボケ部分Sが受光面23aの内側に位置したとしても、測定される解像力の変化に関して片ボケの影響を抑制することができる。 In addition, even if the position where the one-sided blurring occurs is not grasped for each imaging lens 25, the one-sided blurred portion S does not rotate by adopting the lens holding portion 60 and the holder 50 described above. Can be suppressed inside of the light receiving surface 23a, the influence of one-sided blur can be suppressed with respect to the change of the resolving power to be measured.
 特に、レンズ保持部60側の基準面は、平面状の第1基準面として機能するつば下面63と、当該第1基準面に直交する平面状の第2基準面として機能する端面61a,61bとからなり、ホルダ50側の案内面は、第1基準面が摺接可能な平面状の第1案内面として機能する上面54と、第2基準面が摺接可能な平面状の第2案内面として機能する開口55の縁面56a,56bとからなる。このように、基準面及び案内面をそれぞれ2種類の平面により構成することで、レンズ保持部60をホルダ50に対して光軸Lに沿うように移動させる構成を簡素に実現することができる。 In particular, the reference surface on the lens holding portion 60 side includes a flange lower surface 63 functioning as a planar first reference surface, and end surfaces 61a and 61b functioning as a planar second reference surface orthogonal to the first reference surface. The guiding surface on the side of the holder 50 is a planar second guiding surface capable of sliding contact with the upper surface 54 functioning as a planar first guiding surface capable of sliding contact with the first reference surface, and a second guiding surface capable of sliding contact with the second reference surface. And the edge surfaces 56a and 56b of the opening 55. As described above, by configuring the reference surface and the guide surface by two types of flat surfaces, the configuration in which the lens holding unit 60 is moved along the optical axis L with respect to the holder 50 can be simply realized.
 なお、レンズ保持部60側の第1基準面及び第2基準面が90°で直交することなく交差するように設けられ、この交差状態の第1基準面及び第2基準面に対してホルダ50側の第1案内面及び第2案内面がそれぞれ摺接可能に設けられても、レンズ保持部60をホルダ50に対して光軸Lに沿うように移動させる構成を簡素に実現することができる。 The first reference surface and the second reference surface on the lens holding portion 60 side are provided so as to intersect at 90 ° without being orthogonal to each other, and the holder 50 with respect to the first reference surface and the second reference surface in this intersecting state. Even if the first guide surface and the second guide surface on the side are provided slidably, the structure for moving the lens holding portion 60 along the optical axis L relative to the holder 50 can be simply realized. .
 また、レンズ保持部60のつば部62は、結像レンズ25側となるつば下面63が第1基準面として機能し、ホルダ50は、組み付け時にレンズ保持部60のうちつば部62よりも結像レンズ25側となる保持部本体61が開口55を介して収容されるように形成され、この開口55が形成される上面54が第1案内面として機能する。これにより、ホルダ50へのレンズ保持部60の組み付けを容易に実施できるだけでなく、この組み付け時に第1基準面と第1案内面とを容易に面接触させやすくすることができる。 Further, in the flange portion 62 of the lens holding unit 60, the flange lower surface 63 on the imaging lens 25 side functions as a first reference surface, and the holder 50 forms an image than the flange portion 62 of the lens holding unit 60 at the time of assembly. The holding portion main body 61 on the side of the lens 25 is formed to be accommodated through the opening 55, and the upper surface 54 in which the opening 55 is formed functions as a first guiding surface. Thus, not only the assembly of the lens holding portion 60 to the holder 50 can be easily performed, but also the first reference surface and the first guide surface can be easily brought into surface contact at the time of the assembly.
 さらに、つば部62は、摺接時につば下面63にて開口55を覆うように形成される。これにより、つば部62が開口55を介した光の入射を防止する遮光部として機能するため、ホルダ50の遮光性を向上させることができる。 Further, the flange portion 62 is formed to cover the opening 55 at the flange lower surface 63 at the time of sliding contact. As a result, the collar portion 62 functions as a light shielding portion that prevents the light from entering through the opening 55, so that the light shielding property of the holder 50 can be improved.
 また、レンズ保持部60には、ホルダ50に対して光軸Lに沿うように移動させるときに利用される一対の凹状の係合部64が設けられるため、光軸Lに沿うようなレンズ保持部60の相対移動を精度良く行うことができ、最適な焦点位置への調整を確実に実施することができる。なお、係合部64は、凹状に形成されることに限らず、スライド調整用の治具に係合可能な形状であれば、例えば、凸状に形成されてもよい。 In addition, since the lens holding portion 60 is provided with a pair of concave engaging portions 64 used when moving the holder 50 along the optical axis L, the lens holding along the optical axis L The relative movement of the unit 60 can be performed with high accuracy, and the adjustment to the optimal focus position can be reliably performed. The engagement portion 64 is not limited to being formed in a concave shape, and may be formed in a convex shape, for example, as long as it can be engaged with a jig for slide adjustment.
[第2実施形態]
 次に、本第2実施形態に係る光学的情報読取装置について、図7及び図8を参照して説明する。
 本第2実施形態では、上述したホルダ50及びレンズ保持部60に代えて、ホルダ150及びレンズ保持部160を採用する点が、上記第1実施形態と主に異なる。
Second Embodiment
Next, an optical information reader according to the second embodiment will be described with reference to FIGS. 7 and 8. FIG.
The second embodiment is mainly different from the first embodiment in that a holder 150 and a lens holding portion 160 are employed instead of the holder 50 and the lens holding portion 60 described above.
 具体的には、図7及び図8に示すように、結像レンズ25を保持するレンズ保持部160は、光軸Lが通る面から見て断面円状となる外周面(外面)161の上部に光軸方向に伸びる凸部162が設けられるように形成されている。また、レンズ保持部160の読取口13側には、スライド調整時に利用されるフランジ部163が設けられている。 Specifically, as shown in FIG. 7 and FIG. 8, the lens holding portion 160 holding the imaging lens 25 is an upper portion of the outer peripheral surface (outer surface) 161 which is circular in cross section when viewed from the surface through which the optical axis L passes. The projection 162 is formed to extend in the optical axis direction. Further, on the side of the reading opening 13 of the lens holding portion 160, a flange portion 163 used for slide adjustment is provided.
 また、エリアセンサ23が固定されるホルダ150は、上述したホルダ50に対して、開口55を無くし、端部151にレンズ保持部160の外周面161に摺接する開口152が形成され、この開口152の上部にレンズ保持部160の凸部162の上面及び側面の少なくとも一部に摺接する凹部153が形成されている。 Further, the holder 150 to which the area sensor 23 is fixed has the opening 55 removed from the holder 50 described above, and an opening 152 is formed in the end portion 151 in sliding contact with the outer peripheral surface 161 of the lens holding portion 160. A concave portion 153 which is in sliding contact with at least a part of the upper surface and the side surface of the convex portion 162 of the lens holding portion 160 is formed in the upper portion of the lens holder 160.
 すなわち、本実施形態では、第1基準面及び第2基準面は、レンズ保持部160の外周面161とこの外周面161に設けられる凸部162を利用して形成され、第1案内面及び第2案内面は、ホルダ150に設けられる開口152の縁面とこの開口152に設けられる凹部153を利用して形成される。 That is, in the present embodiment, the first reference surface and the second reference surface are formed by using the outer peripheral surface 161 of the lens holding portion 160 and the convex portion 162 provided on the outer peripheral surface 161, and The two guiding surfaces are formed by utilizing the edge surface of the opening 152 provided in the holder 150 and the recess 153 provided in the opening 152.
 このように構成されても、エリアセンサ23と結像レンズ25との相対位置を調整する場合には、外周面161及び凸部162がそれぞれ開口152及び凹部153に対して摺接するようにレンズ保持部160をホルダ150に対して光軸Lに沿うように移動させることができる。このため、エリアセンサ23と結像レンズ25との相対位置を変化させて最適な焦点位置を求める際に片ボケ部分Sが回転移動しないため、測定される解像力の変化に関して片ボケの影響を抑制することができる。 Even with this configuration, when adjusting the relative position of the area sensor 23 and the imaging lens 25, the lens holding is performed so that the outer peripheral surface 161 and the convex portion 162 come in sliding contact with the opening 152 and the concave portion 153, respectively. The portion 160 can be moved relative to the holder 150 along the optical axis L. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
 なお、レンズ保持部160は、外周面161の下部のみでホルダ150の開口152に摺接するように形成され、凸部162の上面及び側面が第1基準面及び第2基準面として機能するように構成されてもよい。 The lens holding portion 160 is formed to be in sliding contact with the opening 152 of the holder 150 only at the lower portion of the outer peripheral surface 161, and the upper surface and the side surface of the convex portion 162 function as a first reference surface and a second reference surface. It may be configured.
[第3実施形態]
 次に、本第3実施形態に係る光学的情報読取装置について、図9及び図10を参照して説明する。
 本第3実施形態では、上述したホルダ50及びレンズ保持部60に代えて、ホルダ250及びレンズ保持部260を採用する点が、上記第1実施形態と主に異なる。
Third Embodiment
Next, an optical information reader according to the third embodiment will be described with reference to FIGS. 9 and 10. FIG.
The third embodiment is mainly different from the first embodiment in that a holder 250 and a lens holding portion 260 are employed in place of the holder 50 and the lens holding portion 60 described above.
 具体的には、図9及び図10に示すように、結像レンズ25を保持するレンズ保持部260は、光軸L(L2)が通る面から見て断面円状となる外周面(外面)261の上部に光軸方向に伸びる凹部262が設けられるように形成されている。また、レンズ保持部160の読取口13側には、スライド調整時に利用されるフランジ部263が設けられている。 Specifically, as shown in FIGS. 9 and 10, the lens holding portion 260 holding the imaging lens 25 has an outer peripheral surface (outer surface) having a circular cross section when viewed from the surface through which the optical axis L (L2) passes. A recess 262 extending in the optical axis direction is formed on the upper portion of the H.261. Further, on the side of the reading port 13 of the lens holding portion 160, a flange portion 263 used at the time of slide adjustment is provided.
 また、エリアセンサ23が固定されるホルダ250は、上述したホルダ50に対して、開口55等を無くし、端部251にレンズ保持部260の外周面261に摺接する開口252が形成され、この開口252の上部にレンズ保持部260の凹部262の底面及び側面の少なくとも一部に摺接する凸部253が形成されている。 Further, the holder 250 to which the area sensor 23 is fixed has the opening 55 etc. eliminated from the holder 50 described above, and an opening 252 slidingly contacting the outer peripheral surface 261 of the lens holding portion 260 is formed at the end 251 A convex portion 253 slidably contacting at least a part of the bottom surface and the side surface of the concave portion 262 of the lens holding portion 260 is formed on the upper portion 252.
 すなわち、本実施形態では、第1基準面及び第2基準面は、レンズ保持部260の外周面261とこの外周面261に設けられる凹部262を利用して形成され、第1案内面及び第2案内面は、ホルダ250に設けられる開口252の縁面とこの開口252に設けられる凸部253を利用して形成される。 That is, in the present embodiment, the first reference surface and the second reference surface are formed by using the outer peripheral surface 261 of the lens holding portion 260 and the recess 262 provided in the outer peripheral surface 261. The guiding surface is formed by utilizing the edge surface of the opening 252 provided in the holder 250 and the convex portion 253 provided in the opening 252.
 このように構成されても、エリアセンサ23と結像レンズ25との相対位置を調整する場合には、外周面261及び凹部262がそれぞれ開口252及び凸部253に対して摺接するようにレンズ保持部260をホルダ250に対して光軸Lに沿うように移動させることができる。このため、エリアセンサ23と結像レンズ25との相対位置を変化させて最適な焦点位置を求める際に片ボケ部分Sが回転移動しないため、測定される解像力の変化に関して片ボケの影響を抑制することができる。 Even with this configuration, when adjusting the relative position of the area sensor 23 and the imaging lens 25, the lens holding is performed so that the outer peripheral surface 261 and the concave portion 262 come into sliding contact with the opening 252 and the convex portion 253, respectively. The portion 260 can be moved relative to the holder 250 along the optical axis L. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
 なお、レンズ保持部260は、外周面261の下部のみでホルダ250の開口252に摺接するように形成され、凹部262の底面及び側面が第1基準面及び第2基準面として機能するように構成されてもよい。 The lens holding portion 260 is formed to be in sliding contact with the opening 252 of the holder 250 only at the lower portion of the outer peripheral surface 261, and the bottom and side surfaces of the recess 262 function as a first reference surface and a second reference surface. It may be done.
[第4実施形態]
 次に、本第4実施形態に係る光学的情報読取装置について、図11及び図12を参照して説明する。
 本第4実施形態では、上述したホルダ50及びレンズ保持部60に代えて、ホルダ350及びレンズ保持部360を採用する点が、上記第1実施形態と主に異なる。
Fourth Embodiment
Next, an optical information reading apparatus according to the fourth embodiment will be described with reference to FIGS. 11 and 12. FIG.
The fourth embodiment is mainly different from the first embodiment in that a holder 350 and a lens holding portion 360 are employed in place of the holder 50 and the lens holding portion 60 described above.
 具体的には、図11及び図12に示すように、結像レンズ25を保持するレンズ保持部360は、光軸L(L2)が通る面から見て断面正方形状となるようにその上面361、下面362及び両側面363,364が形成されている。 Specifically, as shown in FIGS. 11 and 12, the lens holding portion 360 holding the imaging lens 25 has an upper surface 361 so as to have a square cross section when viewed from the plane through which the optical axis L (L2) passes. The lower surface 362 and both side surfaces 363 and 364 are formed.
 また、エリアセンサ23が固定されるホルダ350は、上述したホルダ50に対して、開口55等を無くし、端部351にレンズ保持部360の上面361、下面362及び両側面363,364に摺接する正方形状の開口352が形成されている。 Further, the holder 350 to which the area sensor 23 is fixed eliminates the opening 55 etc. with respect to the holder 50 described above, and the end 351 is in sliding contact with the upper surface 361, the lower surface 362 and both side surfaces 363 and 364 of the lens holding portion 360. A square shaped opening 352 is formed.
 すなわち、本実施形態では、第1基準面及び第2基準面は、レンズ保持部360の上面361、下面362及び両側面363,364を利用して形成され、第1案内面及び第2案内面は、ホルダ350に設けられる開口352の縁面を利用して形成される。 That is, in the present embodiment, the first reference surface and the second reference surface are formed using the upper surface 361, the lower surface 362, and both side surfaces 363, 364 of the lens holding portion 360, and the first guide surface and the second guide surface Is formed using the edge surface of the opening 352 provided in the holder 350.
 このように構成されても、エリアセンサ23と結像レンズ25との相対位置を調整する場合には、上面361、下面362及び両側面363,364がそれぞれ開口352に対して摺接するようにレンズ保持部360をホルダ350に対して光軸Lに沿うように移動させることができる。このため、エリアセンサ23と結像レンズ25との相対位置を変化させて最適な焦点位置を求める際に片ボケ部分Sが回転移動しないため、測定される解像力の変化に関して片ボケの影響を抑制することができる。 Even with this configuration, when adjusting the relative position of the area sensor 23 and the imaging lens 25, the upper surface 361, the lower surface 362, and both side surfaces 363 and 364 are in sliding contact with the opening 352. The holder 360 can be moved relative to the holder 350 along the optical axis L. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
 なお、レンズ保持部360の上面361、下面362及び両側面363,364は、光軸Lが通る面から見て断面正方形状となるように形成されることに限らず、例えば、断面長方形状となる形状や断面五角形状となる形状等も含めて断面多角形状となるように形成されてもよい。 The upper surface 361, the lower surface 362, and both side surfaces 363 and 364 of the lens holding portion 360 are not limited to being formed in a square in cross section when viewed from the plane through which the optical axis L passes. It may be formed to have a polygonal shape in cross section including the shape having a cross section and a shape having a pentagonal cross section.
[第5実施形態]
 次に、本第5実施形態に係る光学的情報読取装置について、図13及び図14を参照して説明する。
 本第5実施形態では、上述したホルダ50及びレンズ保持部60に代えて、ホルダ450及びレンズ保持部460を採用する点が、上記第1実施形態と主に異なる。
Fifth Embodiment
Next, an optical information reading apparatus according to the fifth embodiment will be described with reference to FIGS. 13 and 14.
The fifth embodiment is mainly different from the first embodiment in that a holder 450 and a lens holding portion 460 are adopted instead of the holder 50 and the lens holding portion 60 described above.
 具体的には、図13及び図14に示すように、結像レンズ25を保持するレンズ保持部460は、光軸L(L2)が通る面から見て断面円弧状(断面弓形状)となるようにその外周面461の上部側に平面462が設けられて形成されている。また、レンズ保持部460の読取口13側には、スライド調整時に利用されるフランジ部463が設けられている。 Specifically, as shown in FIG. 13 and FIG. 14, the lens holding portion 460 holding the imaging lens 25 has a circular arc shape in cross section (a cross sectional arc shape) when viewed from the plane through which the optical axis L (L2) passes. As described above, the flat surface 462 is provided on the upper side of the outer peripheral surface 461. Further, on the reading port 13 side of the lens holding portion 460, a flange portion 463 used for slide adjustment is provided.
 また、エリアセンサ23が固定されるホルダ450は、上述したホルダ50に対して、開口55等を無くし、端部451にレンズ保持部460の外周面461及び平面462に対して縁面452a及び縁面452bにて摺接するように開口452が形成されている。 Further, the holder 450 to which the area sensor 23 is fixed eliminates the opening 55 and the like with respect to the holder 50 described above, and the end 451 has an edge 452a and an edge with respect to the outer peripheral surface 461 and the plane 462 of the lens holding portion 460. The opening 452 is formed to be in sliding contact with the surface 452 b.
 すなわち、本実施形態では、第1基準面及び第2基準面は、レンズ保持部460の外周面461及び平面462を利用して形成され、第1案内面及び第2案内面は、ホルダ450に設けられる開口452の縁面452a及び縁面452bを利用して形成される。 That is, in the present embodiment, the first reference surface and the second reference surface are formed using the outer peripheral surface 461 and the flat surface 462 of the lens holding portion 460, and the first guide surface and the second guide surface It forms using edge face 452a and edge face 452b of opening 452 provided.
 このように構成されても、エリアセンサ23と結像レンズ25との相対位置を調整する場合には、外周面461及び平面462がそれぞれ開口452の縁面452a及び452bに対して摺接するようにレンズ保持部460をホルダ450に対して光軸Lに沿うように移動させることができる。このため、エリアセンサ23と結像レンズ25との相対位置を変化させて最適な焦点位置を求める際に片ボケ部分Sが回転移動しないため、測定される解像力の変化に関して片ボケの影響を抑制することができる。 Even with this configuration, when adjusting the relative position of the area sensor 23 and the imaging lens 25, the outer peripheral surface 461 and the flat surface 462 are in sliding contact with the edge surfaces 452a and 452b of the opening 452, respectively. The lens holding portion 460 can be moved along the optical axis L with respect to the holder 450. Therefore, when the relative position between the area sensor 23 and the imaging lens 25 is changed to obtain the optimum focal position, the one-blur portion S does not rotate, so the influence of one-blur on the change of the measured resolution is suppressed. can do.
[第6実施形態]
 次に、本第6実施形態に係る光学的情報読取装置の製造方法について、図面を参照して説明する。
 本第6実施形態では、光学的情報読取装置10を構成するレンズ保持部60とホルダ50との組み付け工程において、最適な焦点位置への調整作業を確実に実施するため、レンズ保持部60をホルダ50に対して徐々にスライドさせて順次解像力を測定した後に固定するためのアーム及びXステージ等を採用する点が、上記第1実施形態と主に異なる。
Sixth Embodiment
Next, a method of manufacturing an optical information reader according to the sixth embodiment will be described with reference to the drawings.
In the sixth embodiment, in the process of assembling the lens holding unit 60 and the holder 50 constituting the optical information reading device 10, the lens holding unit 60 is a holder in order to reliably carry out the adjustment operation to the optimum focal position. The second embodiment is mainly different from the first embodiment in that an arm, an X stage, and the like are used to slide gradually with respect to 50 and measure resolution sequentially and then fix them.
 図15及び図16に示すように、本実施形態における光学的情報読取装置10の製造方法では、主に、接着固定前のレンズ保持部60が組み付けられたホルダ50が載置される載置台501と、載置台501に載置されたレンズ保持部60をホルダ50に対して移動(スライド)させるためのアーム510及びXステージ520と、Xステージ520を駆動制御する制御部530とを備える製造装置500が採用される。そして、アーム510を光軸L1に沿う方向に移動させながらエリアセンサ23による解像力を順次測定し、測定された解像力がピークとみなされるピーク位置でレンズ保持部60をホルダ50に固定するように、焦点位置を調整する調整作業を行う。 As shown in FIGS. 15 and 16, in the method of manufacturing the optical information reading device 10 according to the present embodiment, the mounting table 501 on which the holder 50 on which the lens holding unit 60 before bonding and fixing is assembled is mounted. And an arm 510 and an X stage 520 for moving (sliding) the lens holding unit 60 mounted on the mounting table 501 with respect to the holder 50, and a control unit 530 for driving and controlling the X stage 520. 500 will be adopted. Then, the resolving power of the area sensor 23 is sequentially measured while moving the arm 510 in the direction along the optical axis L1, and the lens holding unit 60 is fixed to the holder 50 at a peak position where the measured resolving power is regarded as a peak. Perform adjustment work to adjust the focus position.
 載置台501は、所定の位置にホルダ50が載置されることで、このホルダ50のエリアセンサ23からの画像信号が制御部530に出力可能となるように構成されている。 The mounting table 501 is configured such that an image signal from the area sensor 23 of the holder 50 can be output to the control unit 530 by mounting the holder 50 at a predetermined position.
 アーム510は、レンズ保持部60の両係合部64のそれぞれに係合する一対の係合突起513が一端側511の下面に設けられ、他端側512がXステージ520に対して着脱可能となるように構成されている。係合突起513は、少なくとも光軸L1に沿う方向(X方向)において、係合した係合部64との間であそびをなくすように形成されている。アーム510の一端側511は、両係合突起513がそれぞれ対応する係合部64に係合している状態にて、両接着用溝65を露出させるように形成されている。 The arm 510 is provided with a pair of engagement protrusions 513 engaged with the both engagement portions 64 of the lens holding portion 60 on the lower surface of the one end side 511, and the other end side 512 is detachable with respect to the X stage 520. It is configured to be The engagement protrusion 513 is formed so as to eliminate a gap between the engaged engagement portion 64 at least in the direction (X direction) along the optical axis L1. One end side 511 of the arm 510 is formed so as to expose the two bonding grooves 65 in a state in which the two engaging protrusions 513 are respectively engaged with the corresponding engaging portions 64.
 Xステージ520は、他端側512が組み付けられたアーム510を光軸L1に沿う方向に移動させるための装置であって、その移動方向や移動量が制御部530によって駆動制御されるように構成されている。 The X stage 520 is a device for moving the arm 510 assembled on the other end side 512 in the direction along the optical axis L1, and the control unit 530 controls the movement direction and the movement amount thereof. It is done.
 制御部530は、焦点位置調整処理を行うことで、測定されたエリアセンサ23の解像力に応じて、ホルダ50に固定されるエリアセンサ23とレンズ保持部60に保持される結像レンズ25との相対位置が最適な焦点位置となるようにXステージ520を駆動制御するように構成されている。この制御部530は、例えば、CPUやメモリ等を備える制御基板として構成されてもよいし、所定の端末にインストールされたアプリケーションプログラムを用いて構成されてもよい。 The control unit 530 performs the focus position adjustment process to set the area sensor 23 fixed to the holder 50 and the imaging lens 25 held by the lens holding unit 60 according to the measured resolving power of the area sensor 23. It is configured to drive and control the X stage 520 so that the relative position becomes an optimal focus position. The control unit 530 may be configured as, for example, a control board including a CPU, a memory, and the like, or may be configured using an application program installed in a predetermined terminal.
 次に、仮組したレンズ保持部60とホルダ50とを、エリアセンサ23と結像レンズ25との相対位置が最適な焦点位置となるように接着固定する際になされる製造工程について具体的に説明する。 Next, the manufacturing process performed when bonding and fixing the temporarily assembled lens holding portion 60 and the holder 50 so that the relative position between the area sensor 23 and the imaging lens 25 becomes an optimal focus position will be specifically described. explain.
 まず、結像レンズ25が保持されたレンズ保持部60を、エリアセンサ23が固定されたホルダ50に対して、下面63及び端面61a,61bが上面54及び縁面56a,56bにそれぞれ面接触するようにして仮組する。そして、このように仮組したホルダ50を載置台501の所定の位置に載置する。これにより、エリアセンサ23からの画像信号が制御部530に対して出力される状態となる。 First, the lower surface 63 and the end surfaces 61a and 61b are in surface contact with the upper surface 54 and the edge surfaces 56a and 56b, respectively, with respect to the holder 50 to which the area sensor 23 is fixed. Make a temporary assembly. Then, the holder 50 temporarily assembled in this manner is mounted at a predetermined position of the mounting table 501. As a result, the image signal from the area sensor 23 is output to the control unit 530.
 次に、両係合突起513をそれぞれ係合部64に係合するようにして、Xステージ520に組み付けられたアーム510を、レンズ保持部60に組み付ける。また、図15及び図16に示すように、エリアセンサ23の撮像視野内であって調整したい焦点位置に、図17(A)又は図17(B)に例示するようなチャートMを配置する。 Next, the arm 510 assembled to the X-stage 520 is assembled to the lens holding portion 60 so that the both engagement protrusions 513 are engaged with the engagement portion 64 respectively. Further, as shown in FIG. 15 and FIG. 16, a chart M as illustrated in FIG. 17A or 17B is disposed at a focal position within the imaging field of the area sensor 23 and desired to be adjusted.
 この状態にて、制御部530による焦点位置調整処理を開始する。具体的には、図18(A)に例示するように、Xステージ520を駆動制御してアーム510を光軸に沿う一方向に予め設定される移動量に応じて移動させるごとに、チャートMを撮像した際のエリアセンサ23からの出力に基づいて求められるコントラスト値を解像力として測定する。ここで、上記移動量は、測定時間の短縮を図るため、図18(A)に例示するように、想定されるピーク値よりも低くなるように設定される所定値N1を基準に、所定値N1以上のコントラスト値が測定される際の移動量X2を、所定値N1未満のコントラスト値が測定される際の移動量X1よりも小さくしている。 In this state, the focus position adjustment process by the control unit 530 is started. Specifically, as illustrated in FIG. 18A, every time the X-stage 520 is driven to move the arm 510 in one direction along the optical axis according to the amount of movement set in advance, the chart M The contrast value obtained based on the output from the area sensor 23 at the time of imaging the image sensor is measured as the resolution. Here, the moving amount is a predetermined value based on a predetermined value N1 set to be lower than an expected peak value as illustrated in FIG. 18A in order to shorten the measurement time. The moving amount X2 when the contrast value of N1 or more is measured is smaller than the moving amount X1 when the contrast value less than the predetermined value N1 is measured.
 そして、アーム510を上記一方向に移動させながら測定されるコントラスト値が、ピークを越えて下がり始めて、以前に測定された最大のコントラスト値Poを基準に設定される閾値N2以下になると、Xステージ520によるアーム510の移動を停止させる。そして、図18(B)に例示するように、アーム510を上記一方向に対して逆方向となる光軸L1に沿う他方向に移動させて、コントラスト値を順次測定する。なお、本実施形態では、他方向に順次移動させる際の移動量X3を、上記移動量X2よりもさらに小さくなるように設定している。例えば、他方向に移動させる際の移動量X3を1ステップとすると、上記移動量X2を5ステップ、上記移動量X1を10ステップとすることができる。 Then, when the contrast value measured while moving the arm 510 in one direction starts falling below the peak and becomes equal to or less than the threshold value N2 set based on the maximum contrast value Po measured previously, the X stage The movement of the arm 510 by 520 is stopped. Then, as illustrated in FIG. 18B, the arm 510 is moved in the other direction along the optical axis L1 which is the opposite direction to the one direction, and the contrast value is sequentially measured. In the present embodiment, the moving amount X3 when moving sequentially in the other direction is set to be smaller than the moving amount X2. For example, assuming that the movement amount X3 for moving in the other direction is one step, the movement amount X2 can be five steps and the movement amount X1 can be ten steps.
 そして、アーム510を上記他方向に移動させながら測定されるコントラスト値が、ピークを越えて下がり始めると、以前に測定された最大のコントラスト値とこのコントラスト値を測定したレンズ保持部60の位置とがピーク値Pa及びピーク位置Pxとして設定される。その後、上記他方向に移動させながら測定されるコントラスト値が、ピーク値Paを基準に設定される閾値N3以下になると、Xステージ520によるアーム510の移動を停止させる。 Then, when the contrast value measured while moving the arm 510 in the other direction starts to fall beyond the peak, the maximum contrast value measured previously and the position of the lens holding portion 60 at which this contrast value is measured Are set as the peak value Pa and the peak position Px. Thereafter, when the contrast value measured while being moved in the other direction becomes equal to or less than the threshold value N3 set based on the peak value Pa, the movement of the arm 510 by the X stage 520 is stopped.
 そして、レンズ保持部60がピーク位置Pxを超えるようにアーム510を光軸L1に沿う一方向に移動させた後(図18(B)の矢印F1参照)、ピーク位置Pxに向けて再度アーム510を他方向に移動させて(図18(B)の矢印F2参照)、当該ピーク位置PxでXステージ520によるアーム510の移動を停止させる。なお、光軸L1に沿う他方向は、「第1の方向」の一例に相当し、光軸L1に沿う一方向は、「第2の方向」の一例に相当し得る。 Then, after moving the arm 510 in one direction along the optical axis L1 so that the lens holding unit 60 exceeds the peak position Px (see arrow F1 in FIG. 18B), the arm 510 is moved again toward the peak position Px. Is moved in the other direction (see the arrow F2 in FIG. 18B), and the movement of the arm 510 by the X stage 520 is stopped at the peak position Px. Note that the other direction along the optical axis L1 may correspond to an example of “first direction”, and one direction along the optical axis L1 may correspond to an example of “second direction”.
 このようにしてピーク位置Pxにレンズ保持部60を移動させると、図19に例示するように、UV接着剤用のディスペンサ540を用いて接着用溝65から接着用溝53aにかけてUV接着剤を塗布する。この状態でUVライト等を用いてUV接着剤を固着させることで、アーム510が組み付けられた状態にてレンズ保持部60がホルダ50に固定される。この固着時には、アーム510は、Xステージ520から取り外されてもよい。 When the lens holding portion 60 is moved to the peak position Px in this manner, a UV adhesive is applied from the bonding groove 65 to the bonding groove 53a using the UV adhesive dispenser 540 as illustrated in FIG. Do. In this state, by using a UV light or the like to fix the UV adhesive, the lens holding unit 60 is fixed to the holder 50 in a state where the arm 510 is assembled. At the time of this fixing, the arm 510 may be removed from the X stage 520.
 このようにレンズ保持部60がホルダ50に固定された後、アーム510をレンズ保持部60から取り外すことで、レンズ保持部60がホルダ50に対してピーク位置Pxにて固定された受光光学系が完成する。 After the lens holding unit 60 is fixed to the holder 50 in this manner, the light receiving optical system in which the lens holding unit 60 is fixed to the holder 50 at the peak position Px is obtained by removing the arm 510 from the lens holding unit 60. Complete.
 以上、本実施形態に係る光学的情報読取装置10の製造方法では、結像レンズ25が保持されたレンズ保持部60を、エリアセンサ23が固定されたホルダ50に対して下面63及び端面61a,61bが上面54及び縁面56a,56bにそれぞれ面接触するように組み付けた後、光軸L1に沿って移動可能なアーム510をレンズ保持部60に組み付け、下面63及び端面61a,61bが上面54及び縁面56a,56bに摺接するようにアーム510を光軸L1に沿う方向に移動させながらエリアセンサ23による解像力(コントラスト値)を順次測定し、測定された解像力がピークとみなされるピーク位置Pxでアーム510が組み付けられた状態のレンズ保持部60をホルダ50に接着固定した後、アーム510をレンズ保持部60から取り外す。 As described above, in the method of manufacturing the optical information reading device 10 according to the present embodiment, the lens holding portion 60 holding the imaging lens 25 is the lower surface 63 and the end surface 61a, with respect to the holder 50 to which the area sensor 23 is fixed. After assembling so as to make surface contact with the upper surface 54 and the edge surfaces 56a and 56b, the arm 510 movable along the optical axis L1 is assembled to the lens holding portion 60, and the lower surface 63 and the end surfaces 61a and 61b are the upper surface 54. And the resolution (contrast value) measured by the area sensor 23 is sequentially measured while moving the arm 510 in the direction along the optical axis L1 so as to make sliding contact with the edge surfaces 56a and 56b, and the peak position Px at which the measured resolution is regarded as a peak And the lens holding unit 60 in a state where the arm 510 is assembled is adhesively fixed to the holder 50, and then the arm 510 is held by the lens Removed from the 60.
 これにより、ピーク位置Pxでレンズ保持部60をホルダ50に固定する際、レンズ保持部60にはアーム510が組み付けられているので、レンズ保持部60がピーク位置Pxからずれ難くなり、解像力を測定することで求められた最適な焦点位置への調整を確実に実施することができる。 As a result, when the lens holding unit 60 is fixed to the holder 50 at the peak position Px, the arm 510 is assembled to the lens holding unit 60, so the lens holding unit 60 does not easily shift from the peak position Px, and the resolution is measured. By doing this, it is possible to reliably carry out the adjustment to the optimal focus position determined.
 特に、レンズ保持部60をホルダ50に固定する工程では、アーム510を光軸L1に沿う他方向(第1の方向)に移動させながらピーク位置Pxが求められることで、当該ピーク位置Pxを超えるようにアームを光軸L1に沿う一方向(第2の方向:図18(B)の矢印F1参照)に移動させた後、ピーク位置Pxに向けてアーム510を上記他方向(第1の方向:図18(B)の矢印F2参照)に移動させて、当該ピーク位置Pxでレンズ保持部60をホルダ50に固定する。 In particular, in the step of fixing the lens holding unit 60 to the holder 50, the peak position Px is obtained while moving the arm 510 in the other direction (first direction) along the optical axis L1, thereby exceeding the peak position Px. Thus, after moving the arm in one direction along the optical axis L1 (second direction: see arrow F1 in FIG. 18B), the arm 510 is directed to the peak position Px in the other direction (first direction) 18 (B) to fix the lens holding portion 60 to the holder 50 at the peak position Px.
 アームの移動方向を第1の方向から第2の方向に切り替える際、アーム510を移動させるためアクチュエータとして機能するXステージ520のあそび等に起因して、Xステージ520が駆動してもレンズ保持部60が移動していない場合があり、このような場合には、第1の方向に移動させながら見つけたピーク位置Pxに向けてレンズ保持部60を他方向に移動させるように調整すると、ピーク位置Pxからずれた位置に固定される可能性がある。そこで、第1の方向に移動させながらピーク位置Pxが求められた場合には、当該ピーク位置Pxを超えるようにアーム510を光軸L1に沿う第2の方向に移動させた後、ピーク位置Pxに向けてアーム510を上記第1の方向に移動させて、当該ピーク位置Pxでレンズ保持部60をホルダ50に固定することで、上述のようなピーク位置Pxからのずれの発生を防止でき、最適な焦点位置への調整をより確実に実施することができる。 When switching the movement direction of the arm from the first direction to the second direction, even if the X stage 520 is driven due to the play of the X stage 520 that functions as an actuator for moving the arm 510, the lens holding portion In such a case, if the lens holding unit 60 is moved in the other direction toward the peak position Px found while moving in the first direction, the peak position may be detected. It may be fixed at a position deviated from Px. Therefore, when the peak position Px is obtained while moving in the first direction, the arm 510 is moved in the second direction along the optical axis L1 so as to exceed the peak position Px, and then the peak position Px is obtained. By moving the arm 510 in the first direction and fixing the lens holding unit 60 to the holder 50 at the peak position Px, it is possible to prevent the occurrence of the deviation from the peak position Px as described above. Adjustment to the optimal focus position can be performed more reliably.
 さらに、解像力(コントラスト値)を順次測定する工程では、所定値N1以上の解像力が測定される際の移動量を、上記移動量X2,X3のように、所定値N1未満の解像力が測定される際の移動量X1よりも小さくする。これにより、ピーク位置Px付近までの測定に関して測定時間が短縮し、ピーク位置Px近傍での測定に関して測定精度が高められるので、測定時間の短縮と測定精度の向上との両立を図ることができる。 Furthermore, in the step of sequentially measuring the resolving power (contrast value), the moving amount when the resolving power of the predetermined value N1 or more is measured is measured as the moving amount X2, X3 and the resolving power less than the predetermined value N1. Make it smaller than the amount of movement X1. As a result, the measurement time for the measurement to the vicinity of the peak position Px is shortened, and the measurement accuracy for the measurement in the vicinity of the peak position Px is enhanced. Therefore, it is possible to achieve both shortening of the measurement time and improvement of the measurement accuracy.
 なお、上述したアーム510等を利用した受光光学系の製造方法は、他の実施形態にも適用することができる。 In addition, the manufacturing method of the light reception optical system using arm 510 grade | etc., Mentioned above is applicable also to another embodiment.
 なお、本発明は上記各実施形態及び変形例に限定されるものではなく、例えば、以下のように具体化してもよい。 The present invention is not limited to the above embodiments and modifications, and may be embodied, for example, as follows.
(1)上記第2~5実施形態におけるレンズ保持部160,260,360,460には、最適な焦点位置への調整を確実に実施するため、レンズ保持部60の一対の係合部64のように、スライド調整時に利用される係合部が形成されてもよい。 (1) In the lens holding portions 160, 260, 360, and 460 in the second to fifth embodiments, in order to reliably perform adjustment to the optimum focal position, the lens holding portions 160, 260, 360, and 460 As such, the engaging portion used at the time of slide adjustment may be formed.
(2)本発明は、情報コードを光学的に読み取る光学的情報読取装置に適用されることに限らず、公知の記号認識処理機能(OCR)を利用することで文字情報等を光学的に読み取る光学的情報読取装置に適用されてもよいし、情報コード等を光学的に読み取る機能に加えて他の機能、例えば、無線通信媒体と無線通信する無線通信機能等を兼備する情報読取装置に適用されてもよい。 (2) The present invention is not limited to being applied to an optical information reader that optically reads an information code, and optically reads character information and the like by using a well-known symbol recognition processing function (OCR). The present invention may be applied to an optical information reading apparatus, and is applied to an information reading apparatus additionally having a function other than the function of optically reading an information code or the like, for example, a wireless communication function of wirelessly communicating with a wireless communication medium. It may be done.
[第7実施形態]
 以下、本発明の第7実施形態に係る光学的情報読取装置について、図面を参照して説明する。
 図20~図23に示す光学的情報読取装置610は、1又は2以上の情報コード(一次元コードや二次元コード等)を光学的に読み取るコードリーダとして構成されるものであり、いわゆるガンタイプとしての外観をなし、ABS樹脂等の合成樹脂からなるケース611の内部に各種電気部品等からなる回路部20が収容されている。
Seventh Embodiment
Hereinafter, an optical information reader according to a seventh embodiment of the present invention will be described with reference to the drawings.
The optical information reader 610 shown in FIGS. 20 to 23 is configured as a code reader that optically reads one or more information codes (one-dimensional code, two-dimensional code, etc.), and is a so-called gun type. A circuit portion 20 made of various electric parts and the like is accommodated inside a case 611 made of synthetic resin such as ABS resin.
 光学的情報読取装置610は、図20~図22に示すように、端部に照明光及びその反射光を通過させる読取口613が形成されてなる本体部612と、本体部612における読取口613が形成される部位とは異なる部位に連結されて使用者によって把持される把持部615と、を備えている。読取口613は、図22に示すように、左右方向の長さが上下方向の長さよりも短くなるように略長方形状に開口するように形成されている。本体部612における読取口613の下部には延出部614が設けられており、この延出部614は、その延出端部614aを情報コードが付された読取対象に接触させてもその情報コードや後述するマーカ光を上方から視認できるように、上部が開口した略U字状となるように形成されている。把持部615は、本体部12の下側の壁部から下方に延びており、把持部615の上端部付近に押圧操作可能なトリガースイッチ642が配置され、把持部615の下端部付近にはインタフェース用のケーブル(図示略)が組み付けられる構造となっている。 The optical information reader 610, as shown in FIGS. 20 to 22, includes a main body 612 having a reading port 613 for passing illumination light and its reflected light at its end, and a reading port 613 for the main body 612. And a grip portion 615 connected to a portion different from the portion where the portion is formed and gripped by the user. As shown in FIG. 22, the reading port 613 is formed to open in a substantially rectangular shape so that the length in the left-right direction is shorter than the length in the vertical direction. An extension portion 614 is provided at the lower part of the reading port 613 in the main body portion 612, and even if the extension end portion 614a makes the extension end portion 614a contact the reading object to which the information code is attached, the information It is formed to be substantially U-shaped with its upper portion opened so that the code and marker light described later can be viewed from above. The grip portion 615 extends downward from the lower wall portion of the main body portion 12, the trigger switch 642 which can be pressed and operated is disposed near the upper end portion of the grip portion 615, and the interface near the lower end portion of the grip portion 615 Cable (not shown) is assembled.
 次に、光学的情報読取装置10の電気的構成について、図23を参照して説明する。この電気的構成の各要素は、前述した図2に示す電気的構成における各要素とほぼ同様の機能を発揮するが、異なる参照符号を用いるため、念のため、再度、説明することにする。
 図23に示すように、ケース611に収容される回路部620は、主に、第1光源621、第2光源622、エリアセンサ623、結像レンズ625等の光学系と、メモリ635、制御部640等のマイクロコンピュータ(以下「マイコン」という)系とを備えている。
Next, the electrical configuration of the optical information reader 10 will be described with reference to FIG. Although each element of this electrical configuration exhibits almost the same function as each component in the electrical configuration shown in FIG. 2 described above, it will be described again just in case, because different reference numerals are used.
As shown in FIG. 23, the circuit unit 620 housed in the case 611 mainly includes an optical system such as the first light source 621, the second light source 622, the area sensor 623, the imaging lens 625, the memory 635, and the control unit. And a microcomputer system (hereinafter referred to as "microcomputer").
 光学系は、投光光学系と、受光光学系とに分かれている。投光光学系は、一対の光源として第1光源621及び第2光源622を備えるように構成されている。第1光源621は、例えば波長380nm~750nmの可視光Lf1を照射するLED621aとこのLED621aの出射側に設けられる照明レンズとを備えるように構成されている。また、第2光源622は、波長750nm以上の赤外光等のように視認不能な不可視光Lf2を照射するLED622aとこのLED622aの出射側に設けられる照明レンズとを備えるように構成されている。 The optical system is divided into a projection optical system and a light receiving optical system. The projection optical system is configured to include a first light source 621 and a second light source 622 as a pair of light sources. The first light source 621 is configured to include, for example, an LED 621a for emitting visible light Lf1 having a wavelength of 380 nm to 750 nm and an illumination lens provided on the emission side of the LED 621a. In addition, the second light source 622 is configured to include an LED 622a that emits invisible light Lf2 that can not be viewed like infrared light having a wavelength of 750 nm or more, and an illumination lens provided on the emission side of the LED 622a.
 受光光学系は、エリアセンサ623、結像レンズ25などによって構成されている。エリアセンサ623は、例えば、C-MOSやCCD等の固体撮像素子である受光素子を二次元に配列した長方形状の受光面623aを有する受光センサとして情報コードCを撮像可能に構成されるものであり、受光した情報コードの各セル(パターン)ごとに反射光Lrの強度に応じた電気信号を出力するように構成されている。このエリアセンサ623は、結像レンズ625を介して入射する入射光を受光可能にセンサ基板651に実装されている。 The light receiving optical system is configured of an area sensor 623, an imaging lens 25, and the like. The area sensor 623 is configured to be capable of imaging the information code C as a light receiving sensor having a rectangular light receiving surface 623a in which light receiving elements, which are solid-state imaging devices such as C-MOS and CCD, are two-dimensionally arrayed. In the present embodiment, an electric signal corresponding to the intensity of the reflected light Lr is output for each cell (pattern) of the received information code. The area sensor 623 is mounted on the sensor substrate 651 so as to be capable of receiving incident light incident through the imaging lens 625.
 結像レンズ625は、1又は2以上のレンズを有するように構成されており、外部から読取口613を介して入射する入射光を集光してエリアセンサ623の受光面623aに像を結像可能な結像光学系として機能するものである。本実施形態では、情報コードCやこの情報コードCが付された所定の表示面Rからの反射光Lrを結像レンズ625で集光し、エリアセンサ623の受光面623aにコード画像を結像させている。このように構成される光学系の詳細な配置構成については後述する。 The imaging lens 625 is configured to have one or more lenses, condenses incident light incident from the outside through the reading port 613, and forms an image on the light receiving surface 623a of the area sensor 623. It functions as a possible imaging optical system. In the present embodiment, the reflected light Lr from the information code C and the predetermined display surface R to which the information code C is attached is collected by the imaging lens 625, and the code image is formed on the light receiving surface 623a of the area sensor 623. I am doing it. The detailed arrangement configuration of the optical system configured in this way will be described later.
 マイコン系は、増幅回路631、A/D変換回路633、メモリ635、アドレス発生回路636、同期信号発生回路638、制御部640、トリガースイッチ642、発光部643、ブザー644、バイブレータ645、通信インタフェース648等から構成されている。 The microcomputer system includes an amplification circuit 631, an A / D conversion circuit 633, a memory 635, an address generation circuit 636, a synchronization signal generation circuit 638, a control unit 640, a trigger switch 642, a light emission unit 643, a buzzer 644, a vibrator 645, and a communication interface 648. And so on.
 光学系のエリアセンサ623から出力される画像信号(アナログ信号)は、増幅回路631に入力されることで所定ゲインで増幅され、その後、A/D変換回路633に入力されてアナログ信号からディジタル信号に変換される。そして、ディジタル化された画像信号、つまり画像データ(画像情報)は、ROM、RAMなどの公知の記憶媒体によって構成されたメモリ635に入力され、所定の格納領域に蓄積される。なお、同期信号発生回路638は、エリアセンサ623およびアドレス発生回路636に対する同期信号を発生可能に構成されており、またアドレス発生回路636は、この同期信号発生回路638から供給される同期信号に基づいて、メモリ635に格納される画像データの格納アドレスを発生可能に構成されている。 The image signal (analog signal) output from the area sensor 623 of the optical system is amplified by a predetermined gain by being input to the amplifier circuit 631 and then input to the A / D conversion circuit 633 to be converted from an analog signal to a digital signal Converted to Then, the digitized image signal, that is, image data (image information) is input to a memory 635 configured by a known storage medium such as a ROM, a RAM, etc., and stored in a predetermined storage area. Synchronization signal generation circuit 638 is configured to be able to generate synchronization signals for area sensor 623 and address generation circuit 636. Address generation circuit 636 is based on the synchronization signal supplied from synchronization signal generation circuit 638. In addition, the storage address of the image data stored in the memory 635 can be generated.
 制御部640は、光学的情報読取装置610全体を制御可能なマイコンで、CPU、システムバス、入出力インタフェース等からなるもので、メモリ635とともに情報処理装置を構成し得るもので情報処理機能を有する。この制御部640は、エリアセンサ623によって撮像されてメモリ635に記憶される情報コードのコード画像について解読処理(デコード)を行うように機能する。また、制御部640は、内蔵された入出力インタフェースを介して種々の入出力装置と接続可能に構成されており、本実施形態の場合、トリガースイッチ642、発光部643、ブザー644、バイブレータ645、通信インタフェース648等が接続されている。これにより、例えば、トリガースイッチ642の監視や管理、発光部643の点灯、非点灯、ビープ音やアラーム音を発生可能なブザー644の鳴動のオンオフ、バイブレータ45の駆動制御、通信インタフェース648の制御等を可能にしている。 The control unit 640 is a microcomputer capable of controlling the entire optical information reading device 610 and comprises a CPU, a system bus, an input / output interface, etc., and can constitute an information processing apparatus with the memory 635 and has an information processing function. . The control unit 640 functions to decode the code image of the information code captured by the area sensor 623 and stored in the memory 635. Further, the control unit 640 is configured to be connectable to various input / output devices via the built-in input / output interface, and in the case of the present embodiment, the trigger switch 642, the light emitting unit 643, the buzzer 644, the vibrator 645, A communication interface 648 or the like is connected. Thus, for example, monitoring and management of the trigger switch 642, lighting and non-lighting of the light emitting unit 643, turning on and off of the buzzer 644 capable of generating a beep sound and an alarm sound, drive control of the vibrator 45, control of the communication interface 648, etc. It is possible.
 次に、上述のように設けられる光学系の詳細配置構成等について、図24~図28を参照して詳述する。なお、受光面623aの短手方向をX方向、受光面623aの長手方向をY方向、X方向及びY方向の双方に直交する方向(受光光軸方向)をZ方向として、以下説明する。 Next, the detailed arrangement configuration and the like of the optical system provided as described above will be described in detail with reference to FIG. 24 to FIG. In the following description, the lateral direction of the light receiving surface 623a is taken as the X direction, the longitudinal direction of the light receiving surface 623a as the Y direction, and a direction orthogonal to both the X direction and the Y direction (the light receiving optical axis direction) as the Z direction.
 本実施形態における光学系は、エリアセンサ623が実装されるセンサ基板651やLED621aが実装される第1照明基板652、LED622aが実装される第2照明基板653等がホルダ650の所定位置に固定されている。これにより、図24及び図25に示す位置関係にて、第1光源621及び第2光源622やエリアセンサ623及び結像レンズ25が配置される。 In the optical system in this embodiment, a sensor substrate 651 on which the area sensor 623 is mounted, a first illumination substrate 652 on which the LED 621 a is mounted, a second illumination substrate 653 on which the LED 622 a is mounted, etc. ing. As a result, the first light source 621 and the second light source 622, the area sensor 623, and the imaging lens 25 are disposed in the positional relationship shown in FIG. 24 and FIG.
 より具体的には、図25に示すように、第1光源621及び第2光源622は、受光面623aの短手方向(X方向)に沿うように一列であって、第1光源621と第2光源622とから等間隔となる位置に結像レンズ25が配置されることで、第1光源621と第2光源622との間にエリアセンサ623の受光光軸Lが位置するように配置される。このため、受光光軸Lと第1光源621の投光光軸L1と第2光源622の投光光軸L2とが受光面623aの短手方向において一致する。すなわち、LED621aから受光光軸Lまでの距離とLED622aから受光光軸Lまでの距離とが等しくなるように、第1光源621及び第2光源622が配置される。 More specifically, as shown in FIG. 25, the first light source 621 and the second light source 622 are arranged in a line along the short side direction (X direction) of the light receiving surface 623a, and The imaging lens 25 is disposed at equal intervals from the two light sources 622 so that the light receiving optical axis L of the area sensor 623 is positioned between the first light source 621 and the second light source 622. Ru. Therefore, the light receiving optical axis L, the light projecting optical axis L1 of the first light source 621 and the light projecting optical axis L2 of the second light source 622 coincide with each other in the lateral direction of the light receiving surface 623a. That is, the first light source 621 and the second light source 622 are arranged such that the distance from the LED 621a to the light receiving optical axis L is equal to the distance from the LED 622a to the light receiving optical axis L.
 上述のような位置関係にてセンサ基板651や第1照明基板652及び第2照明基板653等が固定されたホルダ650は、受光面623aの長手方向(Y方向)が読取口613の左右方向と略平行となるようにして、ケース611内に収容される。これにより、受光面623aの形状に応じて長方形状となるエリアセンサ623の撮像視野ARは、読取口613と同様に、左右方向が長手方向となり、可視光Lf1の照射範囲と不可視光Lf2の照射範囲とは、中心位置が左右方向にてほぼ一致してずれ難くなり、上下方向にずれる状態となる。 In the holder 650 to which the sensor substrate 651, the first illumination substrate 652, the second illumination substrate 653 and the like are fixed in the positional relationship as described above, the longitudinal direction (Y direction) of the light receiving surface 623a It is accommodated in the case 611 so as to be substantially parallel. Thus, the imaging field of view AR of the area sensor 623 having a rectangular shape in accordance with the shape of the light receiving surface 623a becomes the longitudinal direction in the left-right direction as the reading port 613, and the irradiation range of the visible light Lf1 and the irradiation of the invisible light Lf2 In the range, the center position is substantially matched in the left and right direction, and it becomes difficult to shift, and the position is shifted in the up and down direction.
 通常、バーコードのように一方向に長い情報コードを読み取る際、その情報コードの長手方向が撮像視野ARの長手方向、すなわち読取口613の長手方向に一致するように読取口613を情報コードに向けた状態になる。そのため、本実施形態と異なり、両照射範囲が撮像視野ARの長手方向にてずれていると、例えば、不可視光Lf2がバーコードの長手方向一側に照射されている一方で長手方向他側に照射されていないために読み取り失敗してしまう場合がある。 Usually, when reading a long information code in one direction like a bar code, the reading port 613 is an information code so that the longitudinal direction of the information code coincides with the longitudinal direction of the imaging field of view AR, that is, the longitudinal direction of the reading port 613 It will be in the state of turning. Therefore, unlike the present embodiment, when both irradiation ranges are shifted in the longitudinal direction of the imaging field of view AR, for example, the invisible light Lf2 is irradiated on one side in the longitudinal direction of the bar code while on the other side in the longitudinal direction Reading may fail due to non-irradiation.
 この問題に対して、本実施形態では、情報コードCに対して可視光Lf1の照射範囲と不可視光Lf2の照射範囲とが撮像視野ARの長手方向ではずれないので、両照射範囲が撮像視野ARの長手方向にてずれているために生じる上述のような読み取り失敗等を抑制することができる。 With respect to this problem, in the present embodiment, since the irradiation range of the visible light Lf1 and the irradiation range of the invisible light Lf2 do not shift in the longitudinal direction of the imaging field AR with respect to the information code C, both irradiation ranges are the imaging field AR It is possible to suppress the above-mentioned reading failure and the like which occur due to the deviation in the longitudinal direction of the above.
 特に、本実施形態では、ユーザから見て第1光源621による照射範囲が第2光源622による照射範囲よりも下側に位置するように、第1光源621及び第2光源622が配置されている。すなわち、第1光源621が第2光源622よりも下側に位置するようにしてホルダ50がケース11内に収容される。 In particular, in the present embodiment, the first light source 621 and the second light source 622 are disposed such that the irradiation range of the first light source 621 is located below the irradiation range of the second light source 622 when viewed from the user. . That is, the holder 50 is accommodated in the case 11 such that the first light source 621 is positioned lower than the second light source 622.
 ここで、上述のように第1光源621を第2光源622よりも下側に位置させる理由について、図26~図28を参照して説明する。
 通常、ラベル等の所定の表示面Rに表示された情報コードCに読取口613を向ける場合、ユーザは、読取口613を介して情報コードCを見ながら読み取り作業を行う。このため、例えば、図26(A)に示すように手持ちのラベル等における所定の表示面Rの情報コードCを読み取る場合や図26(B)に示すように机上のラベル等における所定の表示面Rの情報コードCを読み取る場合のように、所定の表示面Rは、受光光軸Lに対してその上側が読取口613から離れるように相対的に傾斜した状態になりやすい。
Here, the reason for positioning the first light source 621 below the second light source 622 as described above will be described with reference to FIGS. 26 to 28.
In general, when the reading port 613 is directed to the information code C displayed on a predetermined display surface R such as a label, the user performs a reading operation while looking at the information code C via the reading port 613. For this reason, for example, when reading the information code C of a predetermined display surface R of a hand-held label etc. as shown in FIG. 26A, or a predetermined display surface of a desk top label etc. as shown in FIG. As in the case of reading the information code C of R, the predetermined display surface R tends to be inclined relative to the light receiving optical axis L so that the upper side is away from the reading port 613.
 この状態では、撮像視野ARに関して所定の表示面Rを介した折り返し視野AR1が受光光軸Lに対して上側となるため、図27(B)に示すように、その用途上、光強度が不可視光Lf2よりも強くなる可視光Lf1を照射する第1光源21が受光光軸Lに対して上側に位置していると、折り返し視野AR1に第1光源621が入りやすくなる。すなわち、上記所定の表示面Rにて反射した可視光Lf1が映り込みやすくなるため、図28(B)に示すように、撮像した情報コードC上に可視光Lf1が映り込んでいると読取性能が低下してしまう可能性がある。 In this state, since the folded field of view AR1 through the predetermined display surface R with respect to the imaging field of view AR is on the upper side with respect to the light receiving optical axis L, as shown in FIG. When the first light source 21 for emitting the visible light Lf1 that is stronger than the light Lf2 is positioned on the upper side with respect to the light receiving optical axis L, the first light source 621 can easily enter the folded field AR1. That is, since the visible light Lf1 reflected by the predetermined display surface R is easily reflected, as shown in FIG. 28B, when the visible light Lf1 is reflected on the imaged information code C, the reading performance is May be reduced.
 そこで、第1光源621を受光光軸Lに対して下側に位置させるため、ユーザから見て第1光源621による照射範囲が第2光源622による照射範囲よりも下側に位置するように、第1光源621及び第2光源622を配置する(図25参照)。これにより、図27(A)に示すように、所定の表示面Rを介した折り返し視野AR1に第1光源621が入り難くなり、図28(A)に示すように、撮像した情報コードC上に可視光Lf1が映り込むこともなく、光強度が強い可視光Lf1の映り込みに起因する読取性能の低下を抑制することができる。 Therefore, in order to position the first light source 621 below the light receiving optical axis L, the irradiation range by the first light source 621 is positioned below the irradiation range by the second light source 622 when viewed from the user. The first light source 621 and the second light source 622 are disposed (see FIG. 25). As a result, as shown in FIG. 27A, it becomes difficult for the first light source 621 to enter the folded field of view AR1 through the predetermined display surface R, and as shown in FIG. The visible light Lf1 does not appear on the display, and a decrease in the reading performance caused by the reflection of the visible light Lf1 having a high light intensity can be suppressed.
 以上説明したように、本実施形態に係る光学的情報読取装置610では、情報コードCからの反射光を長方形状の受光面623aにて受光するエリアセンサ623と、このエリアセンサ623による撮像視野ARに向けて照明光として可視光Lf1を照射する第1光源621と不可視光Lf2を照射する第2光源622とが設けられており、第1光源621及び第2光源622は、受光面623aの短手方向(X方向)に沿い一列に配置される。 As described above, in the optical information reading device 610 according to the present embodiment, the area sensor 623 that receives the reflected light from the information code C by the rectangular light receiving surface 623a, and the imaging field AR by this area sensor 623 The first light source 621 for emitting visible light Lf1 as illumination light and the second light source 622 for irradiating invisible light Lf2 toward the light source are provided. The first light source 621 and the second light source 622 have a short light receiving surface 623a. It is arranged in a line along the hand direction (X direction).
 これにより、受光面623aの形状に応じて長方形状となる撮像視野ARに対して、可視光Lf1の照射範囲と不可視光Lf2の照射範囲とが撮像視野ARの長手方向に関してずれ難くなり、両照射範囲が撮像視野ARの長手方向にてずれているために生じる読み取り失敗を抑制することができる。したがって、可視光Lf1を照射する第1光源621と不可視光Lf2を照射する第2光源622との双方を搭載する場合でも両照射範囲のずれに起因する読取性能の低下を抑制することができる。 This makes it difficult for the irradiation range of the visible light Lf1 and the irradiation range of the invisible light Lf2 to shift in the longitudinal direction of the imaging field AR with respect to the imaging field AR having a rectangular shape according to the shape of the light receiving surface 623a, It is possible to suppress a reading failure that occurs because the range is shifted in the longitudinal direction of the imaging field of view AR. Therefore, even when both of the first light source 621 for emitting the visible light Lf1 and the second light source 622 for emitting the invisible light Lf2 are mounted, it is possible to suppress the decrease in the reading performance due to the deviation of both irradiation ranges.
 さらに、第1光源621及び第2光源622は、第1光源621と第2光源622との間にエリアセンサ623の受光光軸Lが位置するように配置される。これにより、撮像視野ARの中心と可視光Lf1の照射範囲の中心と不可視光Lf2の照射範囲の中心とが、撮像視野ARの短手方向において一致するように近づくので、撮像視野ARと両照射範囲とのずれをさらに小さくでき、読取性能を向上させることができる。 Furthermore, the first light source 621 and the second light source 622 are arranged such that the light receiving optical axis L of the area sensor 623 is located between the first light source 621 and the second light source 622. As a result, the center of the imaging field of view AR and the center of the irradiation range of the visible light Lf1 approach the center of the irradiation range of the invisible light Lf2 in the short direction of the imaging field of view AR. Deviation from the range can be further reduced, and reading performance can be improved.
 特に、ユーザから見て第1光源621による照射範囲が第2光源622による照射範囲よりも下側に位置するように、第1光源621及び第2光源622が配置される。これにより、上述のように所定の表示面Rを介した折り返し視野AR1に第1光源21が入り難くなり、光強度が強い可視光Lf1の映り込みに起因する読取性能の低下を抑制することができる。 In particular, the first light source 621 and the second light source 622 are arranged such that the irradiation range of the first light source 621 is located lower than the irradiation range of the second light source 622 when viewed from the user. As a result, as described above, it becomes difficult for the first light source 21 to enter the folded field of view AR1 through the predetermined display surface R, and to suppress the decrease in the reading performance caused by the reflection of the visible light Lf1 having a high light intensity. it can.
[第8実施形態]
 次に、本第8実施形態に係る光学的情報読取装置について、図29及び図30を参照して説明する。
 本第8実施形態では、第1光源621及び第2光源622を同一基板上に実装する点が、上記第7実施形態と主に異なる。
Eighth Embodiment
Next, an optical information reader according to the eighth embodiment will be described with reference to FIGS. 29 and 30. FIG.
The eighth embodiment is mainly different from the seventh embodiment in that the first light source 621 and the second light source 622 are mounted on the same substrate.
 具体的には、図29及び図30に示すように、照明基板654上にLED621a及びLED622aが実装されることで、第1光源621及び第2光源622は、受光面623aの短手方向(X方向)に沿うように一列であって、結像レンズ625に対して受光面623aの長手方向(Y方向)にずれて互いに近接し、LED621aから受光光軸Lまでの距離とLED622aから受光光軸Lまでの距離とが等しくなるように配置される。特に、本実施形態では、このように第1光源621及び第2光源622が近接して配置されるため、第1光源621の照明レンズと第2光源622の照明レンズとを一体に成形した照明レンズ627が採用されている。なお、図29及び図30では、照明レンズ627の概略的な位置を破線にて図示している。 Specifically, as shown in FIGS. 29 and 30, by mounting the LEDs 621a and the LEDs 622a on the illumination substrate 654, the first light sources 621 and the second light sources 622 are in the lateral direction of the light receiving surface 623a (X (A direction) along the longitudinal direction of the light receiving surface 623a with respect to the imaging lens 625 in the longitudinal direction (Y direction), and the distance from the LED 621a to the light receiving optical axis L and the light receiving optical axis from the LED 622a It is arranged so that the distance to L is equal. In particular, in the present embodiment, since the first light source 621 and the second light source 622 are disposed close to each other as described above, illumination in which the illumination lens of the first light source 621 and the illumination lens of the second light source 622 are integrally formed. A lens 627 is employed. In FIGS. 29 and 30, the schematic position of the illumination lens 627 is illustrated by a broken line.
 このように、第1光源621及び第2光源622は、結像レンズ625に対して受光面623aの長手方向にずれるように配置されることで、上記第7実施形態の場合よりも、第1光源621と第2光源622とを受光面623aの短手方向にて近づけるように配置しても結像レンズ625に干渉することもない。これにより、第1光源621と第2光源622とを近づけるように配置したことによるホルダ650の省スペース化にともない、光学的情報読取装置610の小型化を図ることができる。 As described above, the first light source 621 and the second light source 622 are disposed so as to be offset in the longitudinal direction of the light receiving surface 623a with respect to the imaging lens 625, whereby the first light source 621 and the second light source 622 are the first as compared with the seventh embodiment. Even if the light source 621 and the second light source 622 are disposed close to each other in the lateral direction of the light receiving surface 623a, they do not interfere with the imaging lens 625. Accordingly, the miniaturization of the optical information reading device 610 can be achieved along with the space saving of the holder 650 by arranging the first light source 621 and the second light source 622 to be close to each other.
 さらに、第1光源621及び第2光源622は、同一の照明基板654上に実装されるため、第1光源621と第2光源622との位置ずれを抑制できるだけでなく、第1光源621と第2光源622とをコンパクトに配置しやすくなり、光学的情報読取装置610の小型化を図ることができる。 Furthermore, since the first light source 621 and the second light source 622 are mounted on the same illumination substrate 654, not only the positional deviation between the first light source 621 and the second light source 622 can be suppressed, but also the first light source 621 and the second light source 622 The two light sources 622 can be easily disposed compactly, and the optical information reader 610 can be miniaturized.
 特に、第1光源621に用いられる照明レンズと第2光源622に用いられる照明レンズとが照明レンズ627として一体に成形されるため、照明レンズに関して部品点数を削減できるだけでなく、第1光源621と第2光源622とをコンパクトに配置しやすくなり、光学的情報読取装置610の小型化を図ることができる。 In particular, since the illumination lens used for the first light source 621 and the illumination lens used for the second light source 622 are integrally formed as the illumination lens 627, not only the number of parts for the illumination lens can be reduced, It becomes easy to arrange the second light source 622 in a compact manner, and the optical information reader 610 can be miniaturized.
 なお、第1光源621及び第2光源622を同一の基板上に実装する構成や第1光源621及び第2光源622に用いる照明レンズを一体成形する構成等は、他の実施形態等にも適用することができる。 The configuration in which the first light source 621 and the second light source 622 are mounted on the same substrate, and the configuration in which the illumination lens used for the first light source 621 and the second light source 622 are integrally molded are also applicable to other embodiments. can do.
 なお、本発明は上記各実施形態及び変形例に限定されるものではなく、例えば、以下のように具体化してもよい。 The present invention is not limited to the above embodiments and modifications, and may be embodied, for example, as follows.
(1)図25や図30に示すように、第1光源621を第2光源622よりも下側に位置させるように配置することに限らず、例えば、所定の表示面Rを介した折り返し視野AR1が受光光軸Lに対して下側となりやすい読み取り作業環境等では、第1光源621を第2光源622よりも上側に位置させるように配置してもよい。 (1) As shown in FIG. 25 and FIG. 30, the first light source 621 is not limited to be positioned lower than the second light source 622, but, for example, a folded field of view via a predetermined display surface R The first light source 621 may be disposed above the second light source 622 in a reading work environment where the AR 1 tends to be lower than the light receiving optical axis L.
(2)第1光源621及び第2光源622は、受光面623aの短手方向(X方向)に沿い一列に配置される際、上述したようにLED621aから受光光軸Lまでの距離とLED622aから受光光軸Lまでの距離とが等しくなるように配置されることに限らず、LED621aから受光光軸Lまでの距離がLED622aから受光光軸Lまでの距離よりも長くなるように配置されてもよいし、逆にLED622aから受光光軸Lまでの距離がLED621aから受光光軸Lまでの距離よりも長くなるように配置されてもよい。 (2) When the first light source 621 and the second light source 622 are arranged in a line along the short side direction (X direction) of the light receiving surface 623a, as described above, the distance from the LED 621a to the light receiving optical axis L and the LED 622a The distance from the LED 621a to the light receiving optical axis L is not limited to be equal to the distance to the light receiving optical axis L, even if the distance from the LED 622a to the light receiving optical axis L is longer than the distance Conversely, the distance from the LED 622a to the light receiving optical axis L may be longer than the distance from the LED 621a to the light receiving optical axis L.
(3)本発明は、ガンタイプの外観を有する光学的情報読取装置に適用されることに限らず、様々な外観を有する光学的情報読取装置、例えば、略箱状の外観を有する光学的情報読取装置に適用されてもよい。また、本発明は、情報コードを光学的に読み取る光学的情報読取装置に適用されることに限らず、公知の記号認識処理機能(OCR)を利用することで文字情報等を光学的に読み取る光学的情報読取装置に適用されてもよいし、情報コード等を光学的に読み取る機能に加えて他の機能、例えば、無線通信媒体と無線通信する無線通信機能等を兼備する情報読取装置に適用されてもよい。 (3) The present invention is not limited to application to an optical information reader having a gun-type appearance, but optical information readers having various appearances, for example, optical information having a substantially box-like appearance It may be applied to a reader. Further, the present invention is not limited to application to an optical information reader for optically reading an information code, and an optical for optically reading character information and the like by utilizing a well-known symbol recognition processing function (OCR). It may be applied to an objective information reader, or it may be applied to an information reader that has other functions in addition to the function of optically reading an information code etc., for example, a wireless communication function to wirelessly communicate with a wireless communication medium. May be
 10…光学的情報読取装置
 23…エリアセンサ
 23a…受光面
 25…結像レンズ
 50,150,250,350,450…ホルダ
 53…縁部
 54…上面(案内面,第1案内面)
 55…開口
 56a,56b…縁面(案内面,第2案内面)
 60,160,260,360,460…レンズ保持部
 61…保持部本体
 61a,61b…端面(基準面,第2基準面)
 62…つば部
 63…つば下面(基準面,第1基準面)
 500…製造装置
 510…アーム
 520…Xステージ
 530…制御部
 L,L1,L2…光軸
 S…片ボケ部分
 610…光学的情報読取装置
 621…第1光源
 622…第2光源
 623…エリアセンサ
 623a…受光面
 625…結像レンズ
 AR…撮像視野
 AR1…折り返し視野
 C…情報コード
 Lf1…可視光
 Lf2…不可視光
 R…所定の表示面
DESCRIPTION OF SYMBOLS 10 ... Optical information reader 23 ... Area sensor 23a ... Light receiving surface 25 ... Imaging lens 50, 150, 250, 350, 450 ... Holder 53 ... Edge 54 ... Upper surface (guide surface, 1st guide surface)
55 ... opening 56a, 56b ... edge surface (guide surface, second guide surface)
60, 160, 260, 360, 460 ... lens holding portion 61 ... holding portion main body 61 a, 61 b ... end face (reference surface, second reference surface)
62 ... collar portion 63 ... lower surface of collar (reference surface, first reference surface)
DESCRIPTION OF SYMBOLS 500 ... Manufacturing apparatus 510 ... Arm 520 ... X stage 530 ... Control part L, L1, L2 ... Optical axis S ... One half blur part 610 ... Optical information reader 621 ... 1st light source 622 ... 2nd light source 623 ... Area sensor 623a ... Light receiving surface 625 ... Imaging lens AR ... Imaging field of view AR1 ... Folded field C ... Information code Lf 1 ... Visible light Lf 2 ... Invisible light R ... Predetermined display surface

Claims (19)

  1.  情報コードからの反射光を結像レンズを介して受光するエリアセンサを備え、前記エリアセンサから出力される信号に基づいて前記情報コードを光学的に読み取る光学的情報読取装置であって、
     前記エリアセンサが固定されるホルダと、
     前記結像レンズを保持した状態で前記ホルダに組み付けられて、前記結像レンズの光軸に沿う基準面が設けられるレンズ保持部と、を備え、
     前記ホルダには、前記結像レンズを介した光が前記エリアセンサに結像するように前記レンズ保持部を組み付けたときに前記基準面が面接触し、前記光軸に沿うように前記レンズ保持部を移動させたときに前記基準面が摺接する案内面が形成されることを特徴とする光学的情報読取装置。
     
    An optical information reader comprising an area sensor that receives reflected light from an information code through an imaging lens, and optically reading the information code based on a signal output from the area sensor,
    A holder to which the area sensor is fixed;
    And a lens holding unit that is assembled to the holder while holding the imaging lens, and is provided with a reference surface along the optical axis of the imaging lens.
    The reference surface is in surface contact with the holder when the lens holding unit is assembled such that light through the imaging lens forms an image on the area sensor, and the lens holding is performed along the optical axis. An optical information reader characterized in that a guide surface in sliding contact with the reference surface is formed when the unit is moved.
  2.  前記エリアセンサは、長方形状の受光面を有し、
     前記結像レンズを介した視野の一部に結像に関して性能低下を招く片ボケが生じる位置が前記結像レンズごとに把握されており、
     前記レンズ保持部は、前記片ボケが生じる視野の部分が前記受光面の長辺側で当該受光面の外に位置するように前記結像レンズを保持することを特徴とする請求項1に記載の光学的情報読取装置。
     
    The area sensor has a rectangular light receiving surface,
    The position where one-sided blurring that causes performance degradation in image formation occurs in a part of the field of view via the image formation lens is grasped for each of the image formation lenses,
    The lens holding unit holds the imaging lens such that the part of the field of view in which the one-sided blur occurs is positioned outside the light receiving surface on the long side of the light receiving surface. Optical information reader.
  3.  前記基準面は、平面状の第1基準面と、当該第1基準面に交差する平面状の第2基準面とからなり、
     前記案内面は、前記第1基準面が摺接可能な平面状の第1案内面と、前記第2基準面が摺接可能な平面状の第2案内面とからなることを特徴とする請求項1又は2に記載の光学的情報読取装置。
     
    The reference plane comprises a planar first reference plane and a planar second reference plane intersecting the first reference plane,
    The guide surface includes a planar first guide surface capable of sliding contact with the first reference surface, and a planar second guide surface capable of sliding contact with the second reference surface. The optical information reader according to claim 1 or 2.
  4.  前記レンズ保持部は、つば部を有し、
     前記つば部は、結像レンズ側となる平面の少なくとも一部が前記第1基準面として機能し、
     前記ホルダは、前記組み付け時に前記レンズ保持部のうち前記つば部よりも結像レンズ側となる部分が開口を介して収容されるように形成され、前記開口が設けられる平面の少なくとも一部が前記第1案内面として機能することを特徴とする請求項3に記載の光学的情報読取装置。
     
    The lens holding portion has a collar portion,
    In the flange portion, at least a part of a plane on the imaging lens side functions as the first reference surface,
    The holder is formed such that a portion of the lens holding portion closer to the imaging lens than the flange portion is accommodated through the opening at the time of assembly, and at least a portion of a plane on which the opening is provided is the The optical information reader according to claim 3, wherein the optical information reader functions as a first guide surface.
  5.  前記つば部は、前記摺接時に前記結像レンズ側となる平面にて前記開口を覆うように形成されることを特徴とする請求項4に記載の光学的情報読取装置。
     
    5. The optical information reading device according to claim 4, wherein the flange portion is formed to cover the opening on a plane that is on the imaging lens side at the time of the sliding contact.
  6.  前記第1基準面及び前記第2基準面は、前記レンズ保持部の外面に設けられる凸部を利用して形成され、
     前記第1案内面及び前記第2案内面は、前記ホルダに設けられる凹部を利用して形成されることを特徴とする請求項3に記載の光学的情報読取装置。
     
    The first reference surface and the second reference surface are formed by using a convex portion provided on an outer surface of the lens holding portion.
    The optical information reader according to claim 3, wherein the first guide surface and the second guide surface are formed by using a recess provided in the holder.
  7.  前記第1基準面及び前記第2基準面は、前記レンズ保持部の外面に設けられる凹部を利用して形成され、
     前記第1案内面及び前記第2案内面は、前記ホルダに設けられる凸部を利用して形成されることを特徴とする請求項3に記載の光学的情報読取装置。
     
    The first reference surface and the second reference surface are formed by using a recess provided on the outer surface of the lens holding unit.
    The optical information reader according to claim 3, wherein the first guide surface and the second guide surface are formed using a convex portion provided on the holder.
  8.  前記レンズ保持部は、前記光軸が通る面から見て断面多角形状となる外周面の少なくとも一部が前記第1基準面及び前記第2基準面として機能するように形成されることを特徴とする請求項3に記載の光学的情報読取装置。 The lens holding portion is characterized in that at least a part of an outer peripheral surface having a polygonal shape in cross section when viewed from a surface through which the optical axis passes functions as the first reference surface and the second reference surface. The optical information reader according to claim 3.
  9.  前記レンズ保持部は、前記光軸が通る面から見て断面円弧状となる外周面の少なくとも一部が前記基準面として機能するように形成されることを特徴とする請求項1又は2に記載の光学的情報読取装置。
     
    The said lens holding | maintenance part is formed so that at least one part of the outer peripheral surface which becomes a cross-sectional circular arc shape seeing from the surface through which the said optical axis passes may function as the said reference surface. Optical information reader.
  10.  前記レンズ保持部には、前記ホルダに対して前記光軸に沿うように移動させるときに利用される係合部が設けられることを特徴とする請求項1~9のいずれか一項に記載の光学的情報読取装置。
     
    The said lens holding | maintenance part is provided with the engaging part utilized when moving it so that the said holder may be followed along the said optical axis, The said claim | item 1-9 characterized by the above-mentioned. Optical information reader.
  11.  請求項1~10のいずれか一項に記載の光学的情報読取装置を製造する光学的情報読取装置の製造方法であって、
     前記結像レンズが保持された前記レンズ保持部を、前記エリアセンサが固定された前記ホルダに対して前記基準面が前記案内面に面接触するように組み付ける工程と、
     前記光軸に沿って移動可能なアームを前記レンズ保持部に組み付ける工程と、
     前記基準面が前記案内面に摺接するように前記アームを前記光軸に沿う方向に移動させながら前記エリアセンサによる解像力を順次測定する工程と、
     測定された解像力がピークとみなされるピーク位置で前記アームが組み付けられた状態の前記レンズ保持部を前記ホルダに固定する工程と、
     前記アームを前記レンズ保持部から取り外す工程と、
     を備えることを特徴とする光学的情報読取装置の製造方法。
     
    A method of manufacturing an optical information reading device for manufacturing an optical information reading device according to any one of claims 1 to 10, comprising:
    Assembling the lens holding portion holding the imaging lens such that the reference surface is in surface contact with the guide surface with respect to the holder to which the area sensor is fixed;
    Assembling an arm movable along the optical axis to the lens holder;
    Measuring the resolution of the area sensor sequentially while moving the arm in a direction along the optical axis such that the reference surface is in sliding contact with the guide surface;
    Securing the lens holder in a state in which the arm is assembled at a peak position where the measured resolution is regarded as a peak, to the holder;
    Removing the arm from the lens holder;
    A method of manufacturing an optical information reader, comprising:
  12.  前記レンズ保持部を前記ホルダに固定する工程では、前記アームを前記光軸に沿う第1の方向に移動させながら前記ピーク位置が求められることで、当該ピーク位置を超えるように前記アームを前記光軸に沿い前記第1の方向に対して逆方向となる第2の方向に移動させた後、前記ピーク位置に向けて再度前記アームを前記第1の方向に移動させて、当該ピーク位置で前記レンズ保持部を前記ホルダに固定することを特徴とする請求項11に記載の光学的情報読取装置の製造方法。
     
    In the step of fixing the lens holding portion to the holder, the peak position is obtained while moving the arm in a first direction along the optical axis, so that the light of the arm is moved beyond the peak position. After moving along the axis in a second direction opposite to the first direction, the arm is again moved in the first direction toward the peak position, and at the peak position, the arm is moved. The method for manufacturing an optical information reader according to claim 11, wherein a lens holding portion is fixed to the holder.
  13.  前記解像力を順次測定する工程では、所定値以上の解像力が測定される際の前記アームによる移動量を、前記所定値未満の解像力が測定される際の前記アームによる移動量よりも小さくすることを特徴とする請求項11又は12に記載の光学的情報読取装置の製造方法。
     
    In the step of sequentially measuring the resolving power, the moving amount by the arm when the resolving power of a predetermined value or more is measured is smaller than the moving amount by the arm when the resolving power less than the predetermined value is measured. A method of manufacturing an optical information reader according to claim 11 or 12, characterized in that:
  14.  情報コードからの反射光を長方形状の受光面にて受光するエリアセンサを備え、前記エリアセンサから出力される信号に基づいて前記情報コードを光学的に読み取る光学的情報読取装置であって、
     前記エリアセンサによる撮像視野に向けて照明光として可視光を照射する第1光源と不可視光を照射する第2光源とを備え、
     前記第1光源及び前記第2光源は、前記受光面の短手方向に沿い一列に配置されることを特徴とする光学的情報読取装置。
     
    An optical information reader comprising: an area sensor that receives light reflected from an information code by a rectangular light receiving surface, and optically reading the information code based on a signal output from the area sensor,
    A first light source that emits visible light as illumination light toward a field of view captured by the area sensor; and a second light source that emits invisible light.
    The optical information reader according to claim 1, wherein the first light source and the second light source are arranged in a line along a short direction of the light receiving surface.
  15.  前記第1光源及び前記第2光源は、前記第1光源と前記第2光源との間に前記エリアセンサの受光光軸が位置するように配置されることを特徴とする請求項14に記載の光学的情報読取装置。
     
    15. The apparatus according to claim 14, wherein the first light source and the second light source are disposed such that the light receiving optical axis of the area sensor is positioned between the first light source and the second light source. Optical information reader.
  16.  前記情報コードからの反射光を集光して前記受光面に結像させる結像レンズを備え、
     前記第1光源及び前記第2光源は、前記結像レンズに対して前記受光面の長手方向にずれるように配置されることを特徴とする請求項14に記載の光学的情報読取装置。
     
    And an imaging lens configured to condense reflected light from the information code and form an image on the light receiving surface.
    The optical information reader according to claim 14, wherein the first light source and the second light source are arranged to be displaced in the longitudinal direction of the light receiving surface with respect to the imaging lens.
  17.  前記第1光源及び前記第2光源は、同一の基板上に実装されることを特徴とする請求項14~16のいずれか一項に記載の光学的情報読取装置。
     
    The optical information reader according to any one of claims 14 to 16, wherein the first light source and the second light source are mounted on the same substrate.
  18.  前記第1光源に用いられる照明レンズと前記第2光源に用いられる照明レンズとが一体に成形されていることを特徴とする請求項14~17のいずれか一項に記載の光学的情報読取装置。
     
    The optical information reader according to any one of claims 14 to 17, wherein an illumination lens used for the first light source and an illumination lens used for the second light source are integrally formed. .
  19.  ユーザから見て前記第1光源による照射範囲が前記第2光源による照射範囲よりも下側に位置するように、前記第1光源及び前記第2光源が配置されていることを特徴とする請求項14~18のいずれか一項に記載の光学的情報読取装置。
     
    The first light source and the second light source are disposed such that the irradiation range by the first light source is located lower than the irradiation range by the second light source when viewed from the user. The optical information reader according to any one of 14 to 18.
PCT/JP2018/027939 2017-07-28 2018-07-25 Optical information reading device and method for manufacturing optical information reading device WO2019022153A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880048904.8A CN110998591B (en) 2017-07-28 2018-07-25 Optical information reading device and method for manufacturing optical information reading device
US16/634,840 US11531185B2 (en) 2017-07-28 2018-07-25 Optical information reader and method of manufacturing the optical information reader

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017146512 2017-07-28
JP2017-146512 2017-07-28
JP2017-163043 2017-08-28
JP2017163043A JP6888479B2 (en) 2017-08-28 2017-08-28 Optical information reader
JP2018-019580 2018-02-06
JP2018019580A JP6904277B2 (en) 2017-07-28 2018-02-06 Manufacturing method of optical information reader and optical information reader

Publications (1)

Publication Number Publication Date
WO2019022153A1 true WO2019022153A1 (en) 2019-01-31

Family

ID=65041271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027939 WO2019022153A1 (en) 2017-07-28 2018-07-25 Optical information reading device and method for manufacturing optical information reading device

Country Status (1)

Country Link
WO (1) WO2019022153A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282458A (en) * 2007-05-08 2008-11-20 Sony Corp Optical pickup apparatus and disk drive device
JP2009042820A (en) * 2007-08-06 2009-02-26 Denso Wave Inc Optical information reading apparatus
JP2010097315A (en) * 2008-10-15 2010-04-30 Denso Wave Inc Optical information reading apparatus
JP3166849U (en) * 2011-01-13 2011-03-24 茂森科技股▲ふん▼有限公司 Surface emitting laser barcode scanner
JP2011123791A (en) * 2009-12-14 2011-06-23 Denso Wave Inc Optical information reader
JP2014026371A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Optical information reader

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282458A (en) * 2007-05-08 2008-11-20 Sony Corp Optical pickup apparatus and disk drive device
JP2009042820A (en) * 2007-08-06 2009-02-26 Denso Wave Inc Optical information reading apparatus
JP2010097315A (en) * 2008-10-15 2010-04-30 Denso Wave Inc Optical information reading apparatus
JP2011123791A (en) * 2009-12-14 2011-06-23 Denso Wave Inc Optical information reader
JP3166849U (en) * 2011-01-13 2011-03-24 茂森科技股▲ふん▼有限公司 Surface emitting laser barcode scanner
JP2014026371A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Optical information reader

Similar Documents

Publication Publication Date Title
US7222793B2 (en) Arrangement and method of imaging one-dimensional and two-dimensional optical codes at a plurality of focal planes
EP2216734B1 (en) Targeting system for a portable image reader
US5786586A (en) Hand-held optical reader having a detachable lens-guide assembly
US7823789B2 (en) Low profile illumination for direct part mark readers
US7025273B2 (en) Miniature auto focus voice coil actuator system
EP2577558B1 (en) Arrangement for and method of generating uniform distributed illumination pattern for imaging reader
US6045047A (en) Two-dimensional part reader having a focussing guide
US8534556B2 (en) Arrangement for and method of reducing vertical parallax between an aiming pattern and an imaging field of view in a linear imaging reader
US8618468B2 (en) Imaging module with folded illuminating and imaging paths
EP1573643B1 (en) Miniature auto focus piezo actuator system
CN110998591B (en) Optical information reading device and method for manufacturing optical information reading device
WO2019022153A1 (en) Optical information reading device and method for manufacturing optical information reading device
US10769394B2 (en) Devices systems and methods for alignment of lens assemblies within a chassis
CN107016308B (en) Optical information reading apparatus
JP6904277B2 (en) Manufacturing method of optical information reader and optical information reader
JP6888479B2 (en) Optical information reader
JP4878474B2 (en) Reader
JP2010079022A (en) Optical scanning module
JP6455373B2 (en) Optical information reader
JP2002290681A (en) Image scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839095

Country of ref document: EP

Kind code of ref document: A1