WO2019022114A1 - Optical scanning observation device, optical scanning observation system and polarization direction adjustment method for optical scanning observation device - Google Patents

Optical scanning observation device, optical scanning observation system and polarization direction adjustment method for optical scanning observation device Download PDF

Info

Publication number
WO2019022114A1
WO2019022114A1 PCT/JP2018/027833 JP2018027833W WO2019022114A1 WO 2019022114 A1 WO2019022114 A1 WO 2019022114A1 JP 2018027833 W JP2018027833 W JP 2018027833W WO 2019022114 A1 WO2019022114 A1 WO 2019022114A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization
laser
unit
polarization direction
Prior art date
Application number
PCT/JP2018/027833
Other languages
French (fr)
Japanese (ja)
Inventor
健寛 三木
森 健
雙木 満
矢島 浩義
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019022114A1 publication Critical patent/WO2019022114A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a light scanning observation apparatus, a light scanning observation system, and a polarization direction adjustment method of the light scanning observation apparatus.
  • a laser scanning endoscope which forms an image by scanning laser light on a subject and detecting light from the subject (see, for example, Patent Document 1).
  • the light from the subject includes surface reflected light, surface scattered light, and fluorescence.
  • Surface reflected light is laser light specularly reflected on the surface of the subject.
  • the surface scattered light is scattered light generated by scattering of laser light in the surface layer of the subject.
  • the fluorescence is fluorescence generated by excitation of a self-fluorescent substance or a fluorescent dye present in a subject by laser light.
  • the surface reflected light component contained in the light to be detected is reduced, but in the case of an object having a glossy surface such as a metal body, the surface reflected light component is increased. .
  • the incident path of light from the subject to the light receiver of the endoscope includes a first path in which light is directly incident on the light receiver from the subject, and a second path in which light from the subject is incident on the light receiver via the reflection surface. And exist.
  • linearly polarized light is obliquely incident on the reflecting surface, the reflectance of linearly polarized light differs depending on the incident angle and the polarization direction.
  • surface scattered light from a subject surface reflected light and fluorescence
  • surface reflected light is linearly polarized light having a polarization direction corresponding to the polarization direction of laser light. Therefore, the surface reflected light passing through the second path has a change in brightness depending on its polarization direction, which affects the brightness and tint of the formed image.
  • Patent Document 1 there is a problem that the polarization direction of the laser light is not considered about the influence given to the image.
  • the balance of brightness among the surface reflected lights of R, G, and B changes between the subject and the light receiver.
  • the color of the subject inside is different from the actual color of the subject.
  • the influence of the polarization direction of the laser light on the image is particularly observed in the observation of an object having a glossy surface such as a metal body, or in the environment where a reflector such as metal or glass is present around the object. It becomes remarkable.
  • the observation target is often a scatterer, and the laser beam is observed along a certain direction.
  • the subject is irradiated. Therefore, the polarization direction of the laser light does not become an issue in the quality of the image.
  • the polarization state of the laser light is eliminated at the diffusion stage, so the reflection angle becomes a problem. It will never be.
  • an observation object may include a reflector, and irradiation of a laser beam to the observation object is also possible.
  • the polarization direction of the laser light affects the image as the angle changes, Patent Document 1 does not consider such an influence.
  • the present invention has been made in view of the above-described circumstances, and an optical scanning observation apparatus, an optical scanning observation system, and an optical scanning observation apparatus capable of controlling the influence of the polarization direction of laser light on an image. It is an object of the present invention to provide a method of adjusting the polarization direction of
  • a light source unit for outputting a laser beam
  • a polarization adjusting unit for adjusting the polarization direction of the laser beam output from the light source unit, and a polarization direction adjusted by the polarization adjusting unit.
  • An optical fiber for guiding the laser light and emitting the laser light toward the observation target, a scanning unit for scanning the laser light emitted from the optical fiber, and the irradiation of the laser light
  • a light detection unit that detects the signal light to be generated.
  • a light source section comprising two laser light sources, wherein the two laser light sources output two laser beams of the same color having polarization directions orthogonal to each other, and an output from the light source section
  • a combining unit for combining the two laser beams, and an optical fiber for guiding the two laser beams combined by the combining unit and emitting the two laser beams toward an observation target
  • An optical scanning observation comprising: a scanning unit that scans the two laser beams emitted from the optical fiber; and a light detection unit that detects signal light generated in the observation target by the irradiation of the two laser beams. It is an apparatus.
  • a light source unit for outputting a laser beam
  • an optical fiber for guiding the laser beam output from the light source unit and emitting the laser beam toward an observation target
  • the laser A depolarizing unit for depolarizing light
  • a scanning unit for scanning the laser beam which is depolarized by the depolarizing unit and emitted from the optical fiber, and a signal generated in the observation target by the irradiation of the laser beam
  • an optical scanning observation apparatus and an apparatus for adjusting the polarization direction used for adjusting the polarization direction of the laser beam emitted from the optical scanning observation apparatus.
  • a polarization selecting unit for selecting a polarization component in a predetermined direction among the laser beams emitted from the light scanning observation apparatus, and the polarization selecting unit selecting the polarization direction adjusting device.
  • a light amount detection unit configured to detect the light amount of the polarization component in the predetermined direction.
  • a fifth aspect of the present invention is a polarization direction adjustment method for adjusting the polarization direction of laser light emitted from a light scanning observation apparatus, which emits laser light, and the polarization direction of the emitted laser light is It is a polarization direction adjustment method which detects and adjusts the polarization direction of the laser beam emitted from the light scanning observation apparatus in a predetermined direction.
  • a light scanning observation apparatus 1 according to a first embodiment of the present invention and a light scanning observation system 100 including the light scanning observation apparatus 1 will be described with reference to FIGS. 1 to 3.
  • the light scanning observation system 100 according to the present embodiment two-dimensionally scans laser light on an object (observation object) and generates an image based on signal light from the object.
  • a scanning observation apparatus 1 and a polarization direction adjustment device 30 used to adjust the polarization direction of laser light emitted from the light scanning observation apparatus 1 are provided.
  • the light scanning observation apparatus 1 is an endoscope apparatus including a long scope 2 inserted into a body and a control device main body 3 connected to a proximal end of the scope 2.
  • a display 4 for displaying an image generated in the control device main body 3 is connected to the control device main body 3.
  • the light scanning observation apparatus 1 includes a light source unit 5 that outputs a plurality of laser beams having different colors, a coupler 6 that coaxially combines a plurality of laser beams output from the light source unit 5, and a laser beam.
  • An illumination fiber optical fiber
  • An illumination fiber for guiding the laser beam whose polarization direction has been adjusted by the polarization adjustment units 7R, 7G, 7B for adjusting the polarization direction of the light and the polarization adjustment units 7R, 7G, 7B 8
  • a scanning unit 9 for scanning a laser beam emitted from the illumination fiber 8
  • a light detection unit 10 for detecting a signal beam generated on the subject by the irradiation of the laser beam, an intensity of the signal beam and an irradiation position of the laser beam
  • a controller 12 for controlling the entire optical scanning observation apparatus 1.
  • the light source unit 5 is provided in the control device main body 3.
  • the light source unit 5 controls three laser light sources 13R, 13G and 13B for emitting red (R), green (G) and blue (B) laser beams, and a light emission control unit for controlling the laser light sources 13R, 13G and 13B. And fourteen.
  • the laser light sources 13R, 13G, and 13B are, for example, a DPSS laser (semiconductor-pumped solid-state laser) or a laser diode, and respectively emit laser light which is linearly polarized light.
  • the light emission control unit 14 causes the laser light sources 13R, 13G, and 13B to emit light in a pulse shape in accordance with the control signal from the control unit 12.
  • the polarization adjustment units 7R, 7G, 7B are disposed on the optical path between the laser light sources 13R, 13G, 13B and the coupler 6.
  • the polarization adjustment units 7R, 7G, and 7B change the polarization direction of the laser light according to the control signal from the control unit 12.
  • the polarization adjusting units 7R, 7G, 7B are, for example, a paddle type or in-line type polarization controller.
  • the paddle type or in-line type polarization controller polarization direction of the laser light guided in the optical fiber 17 by applying stress from the outside to the optical fiber 17 connecting the laser light sources 13R, 13G, 13B and the coupler 6 Change.
  • the polarization adjusting units 7R, 7G, 7B may be spatial type polarization controllers using one or more polarizing elements such as a polarizer, a half wave plate, or a quarter wave plate. .
  • the illumination fiber 8 is a single mode optical fiber.
  • the illumination fiber 8 is disposed along the longitudinal direction in the scope 2, and the proximal end of the illumination fiber 8 is connected to the coupler 6.
  • the illumination fiber 8 guides the laser light supplied from the coupler 6 and emits it from the tip toward the object facing the tip surface of the scope 2.
  • the scanning unit 9 includes an actuator 15 provided in the illumination fiber 8, and an actuator driver 16 provided in the control device main body 3 and driving the actuator 15 in accordance with a drive signal from the control unit 12.
  • the actuator 15 is, for example, a piezoelectric actuator including a piezoelectric element, and is attached to the illumination fiber 8 at a position distant from the tip of the illumination fiber 8 to the proximal side.
  • the actuator 15 vibrates the tip of the illumination fiber 8 in a direction intersecting the longitudinal direction of the illumination fiber 8 by applying an alternating voltage from the actuator driver 16. Thereby, the laser beam emitted from the tip of the illumination fiber 8 is scanned in the direction crossing the optical axis of the laser beam.
  • the actuator 15 may be an electromagnetic actuator including a cylindrical permanent magnet having magnetic poles at both ends and fixed to the side surface of the illumination fiber 8 and an electromagnet for applying a magnetic field to the magnetic poles of the permanent magnet.
  • the light detection unit 10 detects signal light via the light receiving fiber 18 disposed in the scope 2 along the longitudinal direction, and transmits information of the detected signal light intensity to the image generation unit 11.
  • a light detection unit 10 for example, a photodetector that outputs an electric signal corresponding to the intensity of the signal light by photoelectrically converting the signal light, and an AD that digitally converts the electric signal output from the light detector. And a converter.
  • the light receiving fiber 18 is a multimode optical fiber.
  • the signal light returned from the subject to the tip of the scope 2 is received by the light receiving fiber 18 and guided to the light detection unit 10 by the light receiving fiber 18.
  • the light detection unit 10 may be configured to receive the signal light from the plurality of light receiving fibers 18 aligned in the circumferential direction of the scope 2.
  • the image generation unit 11 generates an image by associating the intensity value of the signal light received from the light detection unit 10 with the irradiation position (described later) of the laser light received from the control unit 12.
  • the generated image is transmitted from the image generation unit 11 to the display 4 and displayed on the display 4.
  • the image generation unit 11 may transmit the image to the display 4 after performing arbitrary image processing (for example, scan conversion, interpolation processing, enhancement processing, ⁇ processing, and the like) on the image.
  • the control unit 12 transmits a control signal to the light emission control unit 14.
  • the light emission control unit 14 controls the light emission timing of the laser light sources 13R, 13G, and 13B according to the control signal. Further, the control unit 12 transmits a drive signal to the actuator driver 16.
  • the actuator driver 16 controls the vibration of the tip of the illumination fiber 8 by the actuator 15, that is, the scanning of the laser light, according to the drive signal.
  • the control unit 12 calculates the irradiation position of the laser beam from the drive signal, and transmits information of the calculated irradiation position to the image generation unit 11.
  • the image generation unit 11 and the control unit 12 are, for example, a processor such as a CPU (central processing unit) and a storage device for storing a program for causing the processor to execute the processing of the image generation unit 11 and the control unit 12 described above. And may be realized by a computer comprising
  • the polarization direction adjustment device 30 is a separate device from the scope 2 and the control device body 3.
  • the polarization direction adjusting device 30 is connected to the control device body 3 by wire or wireless in use, and is disposed to face the tip of the scope 2.
  • the polarization direction adjusting device 30 includes a polarization plate 31 (polarization selection portion) on which the laser light emitted from the tip of the scope 2 is incident, and a light amount detection portion 32 for detecting the light amount of the laser light transmitted through the polarization plate 31. Have.
  • the polarizing plate 31 has a single polarization axis, and selectively transmits only the polarization component in the direction parallel to the polarization axis.
  • the light amount detection unit 32 includes a light detector and an AD converter. Information on the light amount detected by the light amount detection unit 32 is transmitted to the control unit 12 in the control device main body 3 by wire or wirelessly.
  • the polarization direction adjustment operation is performed, for example, before shipment of the light scanning observation apparatus 1 or before observation by the light scanning observation apparatus 1.
  • the polarization direction adjusting device 30 is disposed so that the polarizing plate 31 faces the tip of the scope 2, and then the polarization direction adjusting operation by the control unit 12 shown in FIG. 2 is started.
  • the control unit 12 causes only the R laser light source 13R to start emitting light (step S1).
  • the R laser light output from the laser light source 13R passes through the polarization adjusting unit 7R, the coupler 6, and the illumination fiber 8, is emitted from the tip of the scope 2 toward the polarizing plate 31, and passes through the polarizing plate 31.
  • the light amount is detected by the light amount detection unit 32.
  • the detected light amount of the R laser light detected by the light amount detection unit 32 is transmitted from the light amount detection unit 32 to the control unit 12.
  • the transmitted light amount of the laser beam transmitted through the polarizing plate 31 and the detected light amount by the light amount detection unit 32 change in accordance with the polarization direction of the laser light. That is, when the polarization direction of the laser light is parallel to the polarization axis of the polarizing plate 31, the transmitted light amount and the detected light amount become maximum, and when the polarization direction of the laser light is orthogonal to the polarization axis of the polarizing plate 31, the transmitted light amount and detection The light amount is minimized. Therefore, the control unit 12 can detect the polarization direction of the R laser light with respect to the polarization axis of the polarizing plate 31 based on the detected light amount from the light amount detection unit 32.
  • the control unit 12 causes the polarization adjustment unit 7R to change the polarization direction of the laser light until the detected light amount of the laser light detected by the light amount detection unit 32 becomes maximum.
  • the control unit 12 detects the polarization direction of the R laser light when the detected light amount becomes maximum, that is, when it becomes parallel to the polarization axis of the polarizing plate 31 (step S2).
  • the control unit 12 fixes the polarization adjusting unit 7R in the polarization direction at which the detected light amount is maximum (step S3), and turns off the R laser light source 13R (step S4).
  • the polarization direction of the R laser light is adjusted to be parallel to the polarization axis of the polarizing plate 31.
  • control unit 12 causes only the G laser light source 13G to start emitting light (step S5), and similarly to steps S2, S3 and S4, the polarization direction of the G laser light when the detected light quantity is maximum Is detected (step S6), the polarization adjusting unit 7G is fixed in the polarization direction when the detected light quantity is maximum (step S7), and the G laser light source 13G is turned off (step S8). Thereby, the polarization direction of the G laser light is adjusted to be parallel to the polarization axis of the polarizing plate 31.
  • control unit 12 causes only the laser light source 13B of B to start light emission (step S9), and in the same manner as steps S2, S3 and S4, the polarization direction of the laser light of B when the detected light quantity becomes maximum.
  • the polarization adjusting unit 7B is fixed in the polarization direction when the detected light quantity is maximum (step S11), and the laser light source 13B of B is turned off (step S12).
  • the polarization direction of the B laser light is adjusted to be parallel to the polarization axis of the polarizing plate 31.
  • the polarization directions of the R, G, and B laser beams emitted from the tip of the scope 2 become mutually the same.
  • the polarization direction adjusting device 30 is removed from the scope 2 and the control device body 3. Thereafter, image acquisition by the light scanning observation apparatus 1 is started.
  • the control unit 12 starts transmitting a drive signal for vibrating the tip of the illumination fiber 8 to the actuator driver 16.
  • the control unit 12 starts transmitting a control signal for causing the R, G, and B laser light sources 13R, 13G, and 13B to emit light in order to the light emission control unit 14.
  • the R, G, and B laser beams are sequentially emitted while being scanned from the tip of the vibrating illumination fiber 8, and the R, G, and B laser beams are sequentially applied to the subject. Therefore, in the subject, R, G, and B signal lights are generated in order.
  • the R, G, and B signal lights are received by the light receiving fiber 18 at the tip end surface of the scope 2 and guided to the light detection unit 10. Then, in the light detection unit 10, the intensity value of the signal light which is the value of each pixel of the image is obtained. The intensity value is associated with the irradiation position of the laser light in the image generation unit 11, whereby a color image of the subject is generated. The generated image is displayed on the display 4.
  • signal light from the subject includes surface reflected light, surface scattered light, and fluorescence.
  • the surface reflected light is light specularly reflected on the surface of the object, and is linearly polarized light having a polarization direction according to the polarization direction of the laser light.
  • Surface scattered light is light scattered in the surface layer of an object, and is randomly polarized light including polarized light in various directions.
  • the fluorescence is light generated by a self-fluorescent substance or a fluorescent dye excited by laser light, and is randomly polarized light.
  • FIG. 3 shows the relationship between the polarization direction of linearly polarized light and the reflectance. As shown in FIG. 3, the reflectance when obliquely incident on the reflecting surface is different between p-polarized light and s-polarized light.
  • the intensities of the R, G, and B signal lights detected by the light detection unit 10 under the influence of the reflection on the reflection surface As a result, the tint of the generated image is different from the actual tint of the subject.
  • the polarization directions of the R, G, and B laser beams emitted to the subject from the tip of the scope 2 are the same. Therefore, even if the surface reflected light generated in the subject passes through the reflection on the reflecting surface, the surface reflected lights of R, G and B are reflected at the same reflectance each other, so the signal light of R, G and B is There is no change in the balance of strength between them. Therefore, the tint generated from the intensity values of the R, G, and B signal lights is the same as the tint of the subject.
  • the polarization direction of the laser light by the polarization adjustment units 7R, 7G, and 7B, it is possible to control the influence of the polarization direction of the laser light on the image.
  • the influence of the polarization direction of the R, G, and B laser light on the tint of the image can be controlled.
  • the color tone of the subject can be accurately reproduced in the image.
  • the polarization direction of the laser light is controlled to the polarization direction at which the detected light amount detected by the light amount detection unit 32 is maximum.
  • control may be performed in the polarization direction when the amount of light detected by the light amount detection unit 32 is minimized.
  • the polarization directions of the R, G, and B laser beams are adjusted in the direction orthogonal to the polarization axis of the polarizing plate 31.
  • control unit 12 automatically adjusts the polarization directions of the R, G, and B laser beams by controlling the polarization adjustment units 7R, 7G, and 7B, but instead, the user can
  • the polarization direction may be manually adjusted by performing steps S1 to S12 while manually operating the polarization adjusting units 7R, 7G, and 7B.
  • the polarization directions of all the R, G and B laser beams are made to coincide with each other, but instead, the polarization directions of the R, G and B laser beams are different from each other It may be adjusted to By doing this, the intensities of the R, G, and B signal lights detected by the light detection unit 10 differ from each other according to the incident angle of the laser light on the surface of the subject. Therefore, in observation of a subject having a concavo-convex structure, it is possible to acquire an image in which the structure of the subject is emphasized by the difference in color. For example, as shown in FIG. 3, the difference in reflectance between p-polarized light and s-polarized light is large when the incident angle is in the range of 45 ° to 90 °. Therefore, by adjusting the tilt angle of the scope 2 with respect to the subject, structures within the range of 45 ° to 90 ° can be confirmed in the image.
  • the three polarization adjusting units 7R, 7G, and 7B are provided corresponding to all the laser light sources 13R, 13G, and 13B, but instead, any one polarization adjusting unit 7R, 7G or 7B may be omitted. By doing this, the number of parts can be reduced. In this case, the polarization directions of the two laser beams in which the corresponding polarization adjusting units exist are adjusted in the same direction as the polarization directions of the laser beams in which the corresponding polarization adjusting units do not exist.
  • the polarization plate 31 with respect to the polarization direction of the R laser light in the direction in which the detection light amount of the R laser light by the light amount detection unit 32 is maximum.
  • the polarization axis of is adjusted and fixed.
  • the polarization adjustment units 7G and 7B adjust the polarization directions of the G and B laser beams in the polarization direction in which the amount of light detected by the light amount detection unit 32 is maximum.
  • the laser light sources 13R, 13G, and 13B respectively output continuous laser beams of R, G, and B
  • the coupler 6 combines the laser beams of R, G, and B to generate white laser beams. It may be configured to supply the illumination fiber 8.
  • a color separation element (not shown) for separating the signal light received by the light receiving fiber 18 into R, G and B wavelength components, and R, G and B wavelength components separated by the color separation element And three light detection units 10 that respectively detect.
  • the light scanning observation apparatus 101 is an endoscope apparatus provided with a scope 2 and a control device main body 3 as shown in FIG.
  • the light scanning observation apparatus 101 includes a laser whose light is depolarized by the light source unit 5, the coupler 6, depolarization units 20R, 20G, and 20B for depolarization of laser light, and depolarization units 20R, 20G, and 20B.
  • An illumination fiber 8 for guiding light to emit light toward a subject A, a scanning unit 9, a light detection unit 10, an image generation unit 11, and a control unit 12 are provided.
  • the depolarization units 20R, 20G, and 20B are disposed on the optical path between the laser light sources 13R, 13G, and 13B and the coupler 6.
  • the depolarization units 20R, 20G, and 20B convert the laser beams incident from the corresponding laser light sources 13R, 13G, and 13B into randomly polarized light and output the light.
  • the depolarizers 20R, 20G, and 20B for example, depolarizers made of quartz and which disturb the polarization state of the laser beam are used.
  • the laser light depolarized by the depolarization units 20R, 20G, and 20B passes through the coupler 6 and the illumination fiber 8, and is emitted from the tip of the scope 2 toward the subject A.
  • the R, G, and B laser beams emitted from the tip of the scope 2 are randomly polarized light. Therefore, the reduction rates of the light quantity of the surface reflected light of R, G and B when reflected by the reflecting surface are equal to each other, and there is no change in the balance of the intensities among the R, G and B signal lights. . Therefore, the tint generated from the detection values of the R, G, and B signal lights is the same as the actual tint of the subject A. Thereby, for example, even in an environment where a reflector such as metal or glass is present around the scope 2 or the subject A, the influence of the polarization direction of the R, G, and B laser light on the tint of the image is controlled. And the color of the subject can be accurately reproduced in the image.
  • the depolarization units 20R, 20G, and 20B are provided one by one in the optical path between the laser light sources 13R, 13G, and 13B and the coupler 6, but instead of this, A single depolarization unit may be provided on the optical path of the laser light from the coupler 6 to the tip of the scope 2. By doing this, the polarization of the R, G and B laser beams output from the coupler 6 can be canceled by the common depolarization unit.
  • the light scanning observation apparatus 102 is an endoscope apparatus provided with a scope 2 and a control device main body 3 as shown in FIG.
  • the light scanning observation device 102 is added to the light source unit 5, the coupler 6, the polarization adjusting units 7 R, 7 G, 7 B, the illumination fiber 8, the scanning unit 9, the light detecting unit 10, the image generating unit 11, and the control unit 12. , And a rotary polarizing plate (polarization switching unit) 21.
  • the polarization directions of the R, G, and B laser beams entering the coupler 6 are adjusted in the same direction by the polarization direction adjusting operation using the polarization direction adjusting device 30 described in the first embodiment. It is adjusted by the parts 7R, 7G, 7B.
  • the polarization direction of the R, G, B laser beams adjusted by the polarization adjusting units 7R, 7G, 7B is defined as 45 °.
  • the rotary polarizing plate 21 is connected to the coupler 6 via the optical fiber 19, and the laser light output from the coupler 6 is incident along the incident optical axis.
  • the rotary polarizing plate 21 is provided rotatably around the incident light axis, and the rotation angle is controlled by the control unit 12. Similar to the polarizing plate 31, the rotating polarizing plate 21 has a single polarization axis, and selectively transmits only the polarization component in the direction parallel to the polarization axis. Therefore, as the rotation angle of the rotary polarizing plate 21 about the incident optical axis changes, the polarization direction of the laser light transmitted through the rotary polarizing plate 21 changes.
  • the control unit 12 switches the rotation angle of the rotation polarization plate 21 between 0 ° and 90 ° to make the polarization direction of the laser light emitted from the rotation polarization plate 21 0 ° (first direction) and 90 °. Switch between ° (second direction).
  • the arrangement of the rotary polarizing plate 21 shown in FIG. 5 is an example, and the rotary polarizing plate 21 can be arranged at any position on the optical path of the laser light between the coupler 6 and the tip of the scope 2.
  • the control unit 12 sets the rotational polarization plate 21 to 0 °, and operates the light source unit 5, the scanning unit 9, and the light detection unit 10 to generate an image (first image) when the polarization direction is 0 °.
  • the image generation unit 11 generates the image.
  • the generated image is recorded in a memory (not shown).
  • the control unit 12 sets the rotational polarization plate 21 to 90 °, and operates the light source unit 5, the scanning unit 9, and the light detection unit 10 to obtain an image (second second) when the polarization direction is 90 °.
  • the image generation unit 11 generates an image).
  • the generated image is recorded in the memory.
  • the image generation unit 11 reads an image when the polarization direction is 0 ° and an image when the polarization direction is 90 ° from the memory, and combines these two images to generate a composite image. For example, the image generation unit 11 calculates the average value of the values of two pixels at the same position, generates a composite image with the calculated average value as the value of the pixel at that position, and transmits the composite image to the display 4 Do. Even if the image generation unit 11 transmits or displays the image when the polarization direction is 0 ° and the image when the polarization direction is 90 ° to the display 4 instead of or in addition to the composite image. Good.
  • the reflectance of the linearly polarized light at the reflective surface changes depending on the incident angle to the reflective surface.
  • the R, G, B laser beams having the same polarization direction it is possible to prevent the change in the color of the signal light due to the reflection on the reflection surface, but the difference in the incident angle to the reflection surface It is not possible to prevent the brightness variation in the image caused by
  • two images are generated when the observation target B is irradiated with laser beams whose polarization directions are different from each other. Based on these two images, it is possible to grasp the influence of the polarization direction, in particular, the variation in brightness depending on the polarization direction. Then, by averaging two images acquired using laser beams whose polarization directions are mutually orthogonal, a composite image in which the color tone of the subject is accurately reproduced and in which the variation in brightness is reduced There is an advantage that you can get
  • the image generation unit 11 selects the larger value of the values of the two pixels at the same position.
  • a composite image may be generated. Also in this case, it is possible to generate a composite image in which the variation in brightness depending on the polarization direction of the laser light is reduced.
  • the rotary polarizing plate 21 is used as a means for switching the polarization direction of the laser light.
  • a half-wave plate polarization switching unit
  • the direction of the laser beam can be rotated by 90 ° by inserting and removing a half wavelength on the optical path of the R, G, and B laser beams.
  • the rotation of the polarization direction of the laser beam by the rotary polarizer 21 involves the attenuation of the laser beam, but the half-wave plate can rotate the polarization direction without attenuating the laser beam.
  • switching of the polarization direction of the laser light by the rotary polarizing plate 21 is performed in units of one frame, but instead of this, switching may be performed in scan units of scanning trajectories, pixel units, or pulses. Good.
  • the optical fiber used on the output side of the scope 2 from the laser light sources 13R, 13G, and 13B may be a polarization maintaining fiber whose polarization direction is maintained.
  • the use of a polarization maintaining fiber has the advantage that the polarization state does not change regardless of the routing of the optical fiber.
  • a polarization filter may be disposed at the tip of the scope 2 and the polarization state of the laser light of each color may be aligned with the direction of the polarization filter. By disposing the polarizing filter at the tip of the scope 2, it is possible to align the polarization direction of the laser light emitted from the tip of the scope 2 with the polarization direction of the signal light received at the tip of the scope 2.
  • even if the polarization states of the R, G, and B laser beams are somewhat different depending on the routing of the optical fiber, there is an advantage that the polarization direction can be surely aligned at the output end of the scope 2.
  • the light scanning observation apparatus 103 is an endoscope apparatus provided with a scope 2 and a control device main body 3 as shown in FIG.
  • the light source unit 5 the coupler 6, the polarization adjustment units 7R, 7G and 7B, the illumination fiber 8, the scanning unit 9, the light detection unit 10, the image generation unit 11, and the control unit 12, the light scanning observation device 103 , And a quarter wave plate ( ⁇ / 4 plate) 22.
  • the polarization directions of the R, G, and B laser beams entering the coupler 6 are adjusted in the same direction by the polarization direction adjustment operation using the polarization direction adjusting device described in the first embodiment. It is adjusted by 7R, 7G, 7B.
  • the illumination fiber 8 is preferably a polarization maintaining fiber.
  • the polarization maintaining fiber has the property of maintaining the polarization state of the incident linearly polarized light.
  • the R, G, and B laser beams entering the ⁇ / 4 plate 22 from the illumination fiber 8 are linearly polarized light having the same polarization direction.
  • the polarization state of linearly polarized light incident on the optical fiber gradually changes during the light guiding of the optical fiber due to the bending of the optical fiber and the like. Therefore, when a normal optical fiber is used as the illumination fiber 8, it is preferable that the illumination fiber 8 be fixed from the coupler 6 to the vicinity of the tip of the scope 2 so that the stress state does not change from the time of polarization direction adjustment.
  • the polarization maintaining fiber it is possible to make the R, G and B laser beams entering the ⁇ / 4 plate 22 from the illumination fiber 8 into linearly polarized light having the same polarization direction. it can.
  • the ⁇ / 4 plate 22 is disposed between the tip of the illumination fiber 8 and the subject A.
  • the ⁇ / 4 plate 22 is disposed on the distal end surface of the scope 2.
  • the optical axis of the ⁇ / 4 plate 22 is inclined 45 ° with respect to the polarization direction of the R, G, B laser beams emitted from the tip of the illumination fiber 8.
  • the R, G, and B laser beams incident on the ⁇ / 4 plate 22 are converted to clockwise or counterclockwise circularly polarized light by the ⁇ / 4 plate 22, and R, G, B of circularly polarized light from the ⁇ / 4 plate 22. Laser light is emitted.
  • the R, G, and B laser beams emitted from the tip of the scope 2 are each circularly polarized. Therefore, the surface reflectances of the R, G, and B laser beams when reflected by the reflection surface are equal to each other, and there is no change in the balance of intensities among the R, G, and B signal beams. Furthermore, since the frequency of circularly polarized light is sufficiently large compared to the frame rate of the light scanning observation apparatus 103, the surface reflectance of circularly polarized laser light is equivalent to the reflective surface in any direction, There is no change in the intensity balance of the R, G and B signal lights for each reflecting surface. Therefore, there is an advantage that it is possible to obtain an image in which the color tone of the subject is accurately reproduced and in which the variation in brightness due to the difference in the direction of the reflecting surface is prevented.
  • the polarization directions of the R, G, and B laser beams are adjusted in the same direction by the polarization method adjustment operation described in the first embodiment.
  • the optical axis of the ⁇ / 4 plate 22 is inclined 45 degrees with respect to the polarization direction of the R, G, and B laser beams, and the direction of the ⁇ / 4 plate 22 is fixed.
  • a polarization direction adjustment device 30 further provided with a ⁇ / 4 plate (not shown) having an optical axis inclined 45 degrees with respect to the polarization axis of the polarization plate 31 is used.
  • the ⁇ / 4 plate is disposed between the tip of the scope 2 and the polarizing plate 31.
  • the polarization direction of the laser light can be adjusted.
  • the polarization direction of the laser light may be adjusted such that the angle of the polarizing plate 31 is further inclined by 90 ° and the amount of light detected becomes minimum.
  • the laser beam which is linearly polarized light is converted to circularly polarized light by the ⁇ / 4 plate 22.
  • the laser beam may be converted to elliptically polarized light by the wavelength plate.
  • the laser beam may be converted into elliptically polarized light by the ⁇ / 4 plate 22.
  • the polarization adjusting units 7R, 7G and 7B are provided, but instead, the polarization of the laser light is adjusted by adjusting the positions of the laser light sources 13R, 13G and 13B. You may control the direction. For example, the polarization direction of the laser light emitted from the tip of the scope 2 may be controlled in a desired direction by adjusting the rotation angles of the laser light sources 13R, 13G, 13B around the output optical axis of the laser light. Such positional adjustment of the laser light sources 13R, 13G, 13B is performed, for example, at the time of assembly of the apparatus.
  • the light scanning observation device 104 is an endoscope device provided with a scope 2 and a control device main body 3 as shown in FIG.
  • the light scanning observation device 104 includes a light source unit 51, a coupler 6, polarization adjustment units 7R, 7G, 7B, an illumination fiber 8, a scanning unit 9, a light detection unit 10, an image generation unit 11, a control unit 12, and multiplexing.
  • the units 23R, 23G, and 23B are provided.
  • the light source unit 51 includes separators 24R, 24G, and 24B in addition to the laser light sources 13R, 13G, and 13B and the light emission control unit 14.
  • the splitters 24R, 24G, and 24B are disposed between the laser light sources 13R, 13G, and 13B and the coupler 6, respectively, and separate the R, G, and B laser beams into two laser beams.
  • each of the separators 24R, 24G, 24B separates the laser light into two laser lights of equal light amount.
  • Each of the splitters 24R, 24G, and 24B is, for example, an optical fiber coupler that connects one optical fiber connected to each of the laser light sources 13R, 13G, and 13B and two optical fibers connected to the coupler 6. It is.
  • the splitters 24R, 24G, 24B may be composed of one or more optical elements such as beam splitters or half mirrors.
  • the polarization adjusting units 7R, 7G, 7B are respectively disposed on the optical paths of the two laser beams separated by the separators 24R, 24G, 24B. Therefore, in the present embodiment, six polarization adjusting units 7R, 7G, 7B are provided.
  • the two polarization adjusting units 7R adjust the polarization directions of the two R laser beams separated by the separator 24R in directions orthogonal to each other.
  • the two polarization adjusting units 7G adjust the polarization directions of the two G laser beams separated by the separator 24G in directions orthogonal to each other.
  • the two polarization adjusting units 7B adjust the polarization directions of the two B laser beams separated by the separator 24B in directions orthogonal to each other.
  • “orthogonal” means that the complex inner product of the Jones vectors of each of the two laser light polarization states is zero.
  • the couplers 23R, 23G, and 23B are disposed between the polarization adjusters 7R, 7G, and 7B and the coupler 6, respectively.
  • the combining unit 23R combines the two R laser beams whose polarization directions are adjusted by the two polarization adjusting units 7R.
  • the coupler 23G couples the two G laser beams whose polarization directions are adjusted by the two polarization adjusters 7G.
  • the combining unit 23B combines the two B laser beams whose polarization directions are adjusted by the two polarization adjusting units 7B.
  • each of the R, G, and B laser beams emitted from the scope 2 is a combined light of two polarized lights whose light amounts are equal and whose polarization directions are orthogonal to each other. Therefore, the surface reflectances of the R, G, and B laser beams when reflected by the reflection surface are equal to each other, and there is no change in the balance of intensities among the R, G, and B signal beams. Furthermore, since two polarizations orthogonal to each other are multiplexed, reflected light with a constant intensity is received regardless of the orientation of the reflection surface. Therefore, there is an advantage that it is possible to obtain an image in which the color tone of the subject is accurately reproduced and in which the variation in brightness due to the difference in the direction of the reflecting surface is prevented.
  • the routing of the illumination fiber 8 is changed because each of the R, G, and B laser beams output from the coupler 6 is a combined light of two polarized lights orthogonal to each other. Also, the intensity balance between the R, G, and B signal lights due to reflection and the intensity balance of the signal light for each direction of the reflection surface do not change. This is because the orthogonal state of the two polarizations does not break even if the routing of the illumination fiber 8 changes.
  • the change of the polarization state due to the routing of the illumination fiber 8 is due to the birefringence caused by the stress applied to the illumination fiber 8 and the optical rotation due to the twist.
  • the Jones matrix T of an optical fiber to which indeterminate stress and twist are applied is expressed by the following equation.
  • the two polarizations are orthogonal as in this embodiment, the complex inner product of the Jones vectors of the two polarizations is zero, and the orthogonality is maintained even if the routing changes.
  • the polarization direction of the laser light is adjusted using the polarization direction adjusting device 30.
  • the polarization adjusting unit 7R of the other R laser beam is operated in a state in which one R laser beam is blocked, and the other R laser
  • the polarization direction of the light is adjusted in the direction in which the amount of light detected by the polarization adjustment device 30 is minimum or maximum.
  • the blocking of the laser light is performed, for example, by removing the connector of the optical fiber that guides the laser light.
  • the polarizing plate 31 of the polarization direction adjusting device 30 is rotated by 90 °.
  • the polarization adjusting unit 7R of one R laser beam is operated in a state of blocking the other adjusted R laser beam, and the polarization direction of the one R laser beam is detected by the polarization adjusting device 30. Adjust in the direction of minimum or maximum light intensity. Thereby, the polarization directions of the two R laser beams are adjusted in directions orthogonal to each other. The polarization directions of the two laser beams G and B are also adjusted in the same procedure as the laser beam R.
  • the polarization directions of the R, G, and B laser beams may be the same or may not be the same.
  • the polarization directions of the two laser beams separated by the respective separators 24R, 24G, and 24B are clear, the polarization directions of the two laser beams can be adjusted by adjusting only the polarization direction of one of the two laser beams. May be orthogonal to each other.
  • Two polarizations that are orthogonal to each other ideally do not interfere with each other in the optical fiber.
  • a coherent component may occur to the two polarizations.
  • the intensities of the two laser beams after multiplexing are different from the simple sum of the intensities of the two laser beams generated by the separators 24R, 24G or 24B.
  • the two separated laser beams may be made incoherent by making the optical path length of one of the two separated laser beams longer than the coherent length of the laser beam. .
  • the light source unit 51 in order to output two laser beams of the same color, the light source unit 51 is provided with the separating units 24R, 24G, and 24B, but instead, as shown in FIG. Two laser light sources 13R, 13G, and 13B of respective colors may be provided.
  • the polarization directions of the two laser beams of each color are adjusted by the polarization adjustment units 7R, 7G, and 7B.
  • the light scanning observation apparatus 105 may not include the polarization adjusting units 7R, 7G, and 7B, and may output laser light having polarization directions orthogonal to each other from two laser light sources 13R, 13G, and 13B of the same color.
  • the polarization direction adjustment method of such an optical scanning observation apparatus the polarization direction of the laser light is adjusted by the rotation angle around the output optical axis of the laser light sources 13R, 13G, 13B. That is, by rotating at least one of the two laser light sources 13R about the output optical axis, the polarization directions of the two R laser beams output from the two laser light sources 13R are adjusted in directions orthogonal to each other. , Fix the two laser light sources 13R.
  • the polarization directions of the two G laser beams are adjusted in directions orthogonal to each other, and the two laser light sources 13G are fixed.
  • the polarization directions of the two B laser beams are adjusted in directions orthogonal to each other, and the two laser light sources 13B are fixed. Adjustment of the polarization direction is performed, for example, at the time of assembly of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

An optical scanning observation device (1) is provided with: a light source unit (5) that outputs laser light; polarization adjustment units (7R, 7G, 7B) that adjust the polarization direction of the laser light outputted from the light source unit (5); an optical fiber (8) that guides the laser light the polarization direction of which is adjusted by the polarization adjustment units (7R, 7G, 7B), and emits the laser light toward an observation object; a scanning unit (9) that performs scanning with the laser light emitted from the optical fiber (8); and a light detection unit (10) that detects signal light generated in the observation object by irradiation with the laser light.

Description

光走査型観察装置、光走査型観察システムおよび光走査型観察装置の偏光方向調整方法Optical scanning observation apparatus, optical scanning observation system, and polarization direction adjustment method of optical scanning observation apparatus
 本発明は、光走査型観察装置、光走査型観察システムおよび光走査型観察装置の偏光方向調整方法に関するものである。 The present invention relates to a light scanning observation apparatus, a light scanning observation system, and a polarization direction adjustment method of the light scanning observation apparatus.
 従来、被写体上でレーザ光を走査し被写体からの光を検出することで画像を形成するレーザ走査型の内視鏡が知られている(例えば、特許文献1参照。)。被写体からの光には、表面反射光、表面散乱光、および蛍光が含まれる。表面反射光は、被写体の表面で鏡面反射されたレーザ光である。表面散乱光は、被写体の表層においてレーザ光が散乱を受けることで生じた散乱光である。蛍光は、被写体に存在する自家蛍光物質または蛍光色素がレーザ光によって励起されることで生じた蛍光である。生体組織のように表面に凹凸を有する被写体の場合、検出される光に含まれる表面反射光成分は少なくなるが、金属体のような光沢面を有する被写体の場合、表面反射光成分が多くなる。 2. Description of the Related Art Conventionally, there is known a laser scanning endoscope which forms an image by scanning laser light on a subject and detecting light from the subject (see, for example, Patent Document 1). The light from the subject includes surface reflected light, surface scattered light, and fluorescence. Surface reflected light is laser light specularly reflected on the surface of the subject. The surface scattered light is scattered light generated by scattering of laser light in the surface layer of the subject. The fluorescence is fluorescence generated by excitation of a self-fluorescent substance or a fluorescent dye present in a subject by laser light. In the case of an object having irregularities on the surface like a living tissue, the surface reflected light component contained in the light to be detected is reduced, but in the case of an object having a glossy surface such as a metal body, the surface reflected light component is increased. .
特開2011-4929号公報JP, 2011-4929, A
 被写体から内視鏡の受光器への光の入射経路には、被写体から受光器へ光が直接入射する第1の経路と、被写体から反射面を経由して受光器に入射する第2の経路とが存在する。直線偏光が反射面に斜入射したときに、直線偏光の反射率は入射角度および偏光方向に応じて異なる。被写体からの表面散乱光、表面反射光および蛍光の内、表面反射光は、レーザ光の偏光方向に応じた偏光方向を有する直線偏光である。したがって、第2の経路を通った表面反射光には、その偏光方向に依存して明るさに変化が生じることで、形成される画像の明るさや色味に影響を及ぼす。しかしながら、特許文献1では、レーザ光の偏光方向が画像に与える影響について考慮されていないという問題がある。 The incident path of light from the subject to the light receiver of the endoscope includes a first path in which light is directly incident on the light receiver from the subject, and a second path in which light from the subject is incident on the light receiver via the reflection surface. And exist. When linearly polarized light is obliquely incident on the reflecting surface, the reflectance of linearly polarized light differs depending on the incident angle and the polarization direction. Among surface scattered light from a subject, surface reflected light and fluorescence, surface reflected light is linearly polarized light having a polarization direction corresponding to the polarization direction of laser light. Therefore, the surface reflected light passing through the second path has a change in brightness depending on its polarization direction, which affects the brightness and tint of the formed image. However, in Patent Document 1, there is a problem that the polarization direction of the laser light is not considered about the influence given to the image.
 例えば、R、G、Bの3つのレーザ光を被写体に照射したときに、R、G、Bの表面反射光間の明るさのバランスが被写体から受光器までの間で変化することで、画像内の被写体の色味が被写体の実際の色味とは異なる。このようなレーザ光の偏光方向が画像に及ぼす影響は、特に、金属体のような光沢面を有する被写体の観察や、金属やガラス等の反射体が被写体の周囲に存在する環境での観察において顕著となる。 For example, when three laser beams of R, G, and B are irradiated to a subject, the balance of brightness among the surface reflected lights of R, G, and B changes between the subject and the light receiver. The color of the subject inside is different from the actual color of the subject. The influence of the polarization direction of the laser light on the image is particularly observed in the observation of an object having a glossy surface such as a metal body, or in the environment where a reflector such as metal or glass is present around the object. It becomes remarkable.
 被写体上でレーザ光を走査する観察装置としてレーザ走査型顕微鏡も存在するが、レーザ走査型顕微鏡の場合、観察対象は散乱体であることが多く、また、レーザ光は一定の方向に沿って観察対象に照射される。そのため、画像の品質においてレーザ光の偏光方向が課題になることはない。また、レーザ光を走査せずレーザ光を蛍光体によって拡散させてから被写体に照射する内視鏡装置の場合は、拡散の段階でレーザ光の偏光状態が解消されるため、反射角度が課題になることはない。これに対し、白色光画像のように表面反射光に基づく画像を取得するレーザ走査型内視鏡装置の場合、観察対象が反射体を含むこともあり、また、観察対象へのレーザ光の照射角度の変化に伴ってレーザ光の偏光方向が画像に影響を及ぼすが、特許文献1ではこのような影響について考慮されていない。 Although there is a laser scanning microscope as an observation device for scanning a laser beam on a subject, in the case of a laser scanning microscope, the observation target is often a scatterer, and the laser beam is observed along a certain direction. The subject is irradiated. Therefore, the polarization direction of the laser light does not become an issue in the quality of the image. Moreover, in the case of an endoscope apparatus that irradiates the subject after the laser light is diffused by the phosphor without scanning the laser light, the polarization state of the laser light is eliminated at the diffusion stage, so the reflection angle becomes a problem. It will never be. On the other hand, in the case of a laser scanning endoscope apparatus which acquires an image based on surface reflected light like a white light image, an observation object may include a reflector, and irradiation of a laser beam to the observation object is also possible. Although the polarization direction of the laser light affects the image as the angle changes, Patent Document 1 does not consider such an influence.
 本発明は、上述した事情に鑑みてなされたものであって、レーザ光の偏光方向が画像に及ぼす影響を制御することができる光走査型観察装置、光走査型観察システムおよび光走査型観察装置の偏光方向調整方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an optical scanning observation apparatus, an optical scanning observation system, and an optical scanning observation apparatus capable of controlling the influence of the polarization direction of laser light on an image. It is an object of the present invention to provide a method of adjusting the polarization direction of
 本発明の第1の態様は、レーザ光を出力する光源部と、該光源部から出力された前記レーザ光の偏光方向を調整する偏光調整部と、該偏光調整部によって偏光方向が調整された前記レーザ光を導光し、該レーザ光を観察対象に向けて射出する光ファイバと、該光ファイバから射出される前記レーザ光を走査する走査部と、前記レーザ光の照射によって前記観察対象において発生する信号光を検出する光検出部とを備える光走査型観察装置である。 According to a first aspect of the present invention, there is provided a light source unit for outputting a laser beam, a polarization adjusting unit for adjusting the polarization direction of the laser beam output from the light source unit, and a polarization direction adjusted by the polarization adjusting unit. An optical fiber for guiding the laser light and emitting the laser light toward the observation target, a scanning unit for scanning the laser light emitted from the optical fiber, and the irradiation of the laser light And a light detection unit that detects the signal light to be generated.
 本発明の第2の態様は、2つのレーザ光源を備え、前記2つのレーザ光源が、相互に直交する偏光方向を有する同一色の2つのレーザ光を出力する光源部と、該光源部から出力された前記2つのレーザ光を合波する合波部と、該合波部によって合波された前記2つのレーザ光を導光し、該2つのレーザ光を観察対象に向けて射出する光ファイバと、該光ファイバから射出される前記2つのレーザ光を走査する走査部と、前記2つのレーザ光の照射によって前記観察対象において発生する信号光を検出する光検出部とを備える光走査型観察装置である。 According to a second aspect of the present invention, there is provided a light source section comprising two laser light sources, wherein the two laser light sources output two laser beams of the same color having polarization directions orthogonal to each other, and an output from the light source section A combining unit for combining the two laser beams, and an optical fiber for guiding the two laser beams combined by the combining unit and emitting the two laser beams toward an observation target An optical scanning observation comprising: a scanning unit that scans the two laser beams emitted from the optical fiber; and a light detection unit that detects signal light generated in the observation target by the irradiation of the two laser beams. It is an apparatus.
 本発明の第3の態様は、レーザ光を出力する光源部と、該光源部から出力された前記レーザ光を導光し、該レーザ光を観察対象に向けて射出する光ファイバと、前記レーザ光の偏光を解消する偏光解消部と、該偏光解消部によって偏光が解消され前記光ファイバから射出される前記レーザ光を走査する走査部と、前記レーザ光の照射によって前記観察対象において発生する信号光を検出する光検出部とを備える光走査型観察装置である。 According to a third aspect of the present invention, there is provided a light source unit for outputting a laser beam, an optical fiber for guiding the laser beam output from the light source unit and emitting the laser beam toward an observation target, and the laser A depolarizing unit for depolarizing light, a scanning unit for scanning the laser beam which is depolarized by the depolarizing unit and emitted from the optical fiber, and a signal generated in the observation target by the irradiation of the laser beam It is an optical scanning observation apparatus provided with the light detection part which detects light.
 本発明の第4の態様は、上記第1の態様に係る光走査型観察装置と、該光走査型観察装置から射出される前記レーザ光の偏光方向の調整に使用される偏光方向調整用装置とを備え、該偏光方向調整用装置が、前記光走査型観察装置から射出された前記レーザ光の内、所定の方向の偏光成分を選択する偏光選択部と、該偏光選択部によって選択された前記所定の方向の偏光成分の光量を検出する光量検出部とを備える光走査型観察システムである。 According to a fourth aspect of the present invention, there is provided an optical scanning observation apparatus according to the first aspect, and an apparatus for adjusting the polarization direction used for adjusting the polarization direction of the laser beam emitted from the optical scanning observation apparatus. And a polarization selecting unit for selecting a polarization component in a predetermined direction among the laser beams emitted from the light scanning observation apparatus, and the polarization selecting unit selecting the polarization direction adjusting device. And a light amount detection unit configured to detect the light amount of the polarization component in the predetermined direction.
 本発明の第5の態様は、光走査型観察装置から射出されるレーザ光の偏光方向を調整する偏光方向調整方法であって、レーザ光を射出し、射出された前記レーザ光の偏光方向を検出し、前記光走査型観察装置から射出されるレーザ光の偏光方向を所定の方向に調整する偏光方向調整方法である。 A fifth aspect of the present invention is a polarization direction adjustment method for adjusting the polarization direction of laser light emitted from a light scanning observation apparatus, which emits laser light, and the polarization direction of the emitted laser light is It is a polarization direction adjustment method which detects and adjusts the polarization direction of the laser beam emitted from the light scanning observation apparatus in a predetermined direction.
 本発明によれば、レーザ光の偏光方向が画像に与える影響を制御することができるという効果を奏する。 According to the present invention, it is possible to control the influence of the polarization direction of laser light on an image.
本発明の第1の実施形態に係る光走査型観察装置および光走査型観察システムの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the light scanning observation apparatus which concerns on the 1st Embodiment of this invention, and a light scanning observation system. 図1の光走査型観察システムによる偏光方向調整方法を説明するフローチャートである。It is a flowchart explaining the polarization direction adjustment method by the light scanning observation system of FIG. レーザ光の偏光方向と反射率との関係を説明するグラフである。It is a graph explaining the relationship between the polarization direction of a laser beam, and a reflectance. 本発明の第2の実施形態に係る光走査型観察装置の全体構成図である。It is a whole block diagram of the light scanning observation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光走査型観察装置の全体構成図である。It is a whole block diagram of the light scanning observation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る光走査型観察装置の全体構成図である。It is a whole block diagram of the light scanning observation apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る光走査型観察装置の全体構成図である。It is a whole block diagram of the light scanning observation apparatus which concerns on the 5th Embodiment of this invention. 図7の光走査型観察装置の変形例の全体構成図である。It is a whole block diagram of the modification of the light scanning observation apparatus of FIG.
(第1の実施形態)
 本発明の第1の実施形態に係る光走査型観察装置1およびこれを備える光走査型観察システム100について図1から図3を参照して説明する。
 本実施形態に係る光走査型観察システム100は、図1に示されるように、被写体(観察対象)上でレーザ光を2次元的に走査するとともに被写体からの信号光に基づく画像を生成する光走査型観察装置1と、光走査型観察装置1から射出されるレーザ光の偏光方向の調整に使用される偏光方向調整用装置30とを備えている。
First Embodiment
A light scanning observation apparatus 1 according to a first embodiment of the present invention and a light scanning observation system 100 including the light scanning observation apparatus 1 will be described with reference to FIGS. 1 to 3.
As shown in FIG. 1, the light scanning observation system 100 according to the present embodiment two-dimensionally scans laser light on an object (observation object) and generates an image based on signal light from the object. A scanning observation apparatus 1 and a polarization direction adjustment device 30 used to adjust the polarization direction of laser light emitted from the light scanning observation apparatus 1 are provided.
 光走査型観察装置1は、体内に挿入される長尺のスコープ2と、スコープ2の基端に接続された制御装置本体3とを備える内視鏡装置である。制御装置本体3には、制御装置本体3内で生成された画像を表示するディスプレイ4が接続されている。 The light scanning observation apparatus 1 is an endoscope apparatus including a long scope 2 inserted into a body and a control device main body 3 connected to a proximal end of the scope 2. A display 4 for displaying an image generated in the control device main body 3 is connected to the control device main body 3.
 また、光走査型観察装置1は、色が相互に異なる複数のレーザ光を出力する光源部5と、光源部5から出力された複数のレーザ光を同軸に合成する結合器6と、レーザ光の偏光方向を調整する偏光調整部7R,7G,7Bと、偏光調整部7R,7G,7Bによって偏光方向が調整されたレーザ光を導光して被写体に向けて射出する照明ファイバ(光ファイバ)8と、照明ファイバ8から射出されるレーザ光を走査する走査部9と、レーザ光の照射によって被写体において発生した信号光を検出する光検出部10と、信号光の強度およびレーザ光の照射位置に基づいて被写体の画像を生成する画像生成部11と、光走査型観察装置1全体を制御する制御部12とを備えている。 In addition, the light scanning observation apparatus 1 includes a light source unit 5 that outputs a plurality of laser beams having different colors, a coupler 6 that coaxially combines a plurality of laser beams output from the light source unit 5, and a laser beam. An illumination fiber (optical fiber) for guiding the laser beam whose polarization direction has been adjusted by the polarization adjustment units 7R, 7G, 7B for adjusting the polarization direction of the light and the polarization adjustment units 7R, 7G, 7B 8, a scanning unit 9 for scanning a laser beam emitted from the illumination fiber 8, a light detection unit 10 for detecting a signal beam generated on the subject by the irradiation of the laser beam, an intensity of the signal beam and an irradiation position of the laser beam And a controller 12 for controlling the entire optical scanning observation apparatus 1.
 光源部5は、制御装置本体3内に設けられている。光源部5は、赤(R)、緑(G)、青(B)のレーザ光をそれぞれ発する3個のレーザ光源13R,13G,13Bと、レーザ光源13R,13G,13Bを制御する発光制御部14とを備えている。
 レーザ光源13R,13G,13Bは、例えば、DPSSレーザ(半導体励起固体レーザ)またはレーザダイオードであり、直線偏光であるレーザ光をそれぞれ発する。
 発光制御部14は、制御部12からの制御信号に従ってレーザ光源13R,13G,13Bをパルス状に発光させる。
The light source unit 5 is provided in the control device main body 3. The light source unit 5 controls three laser light sources 13R, 13G and 13B for emitting red (R), green (G) and blue (B) laser beams, and a light emission control unit for controlling the laser light sources 13R, 13G and 13B. And fourteen.
The laser light sources 13R, 13G, and 13B are, for example, a DPSS laser (semiconductor-pumped solid-state laser) or a laser diode, and respectively emit laser light which is linearly polarized light.
The light emission control unit 14 causes the laser light sources 13R, 13G, and 13B to emit light in a pulse shape in accordance with the control signal from the control unit 12.
 偏光調整部7R,7G,7Bは、各レーザ光源13R,13G,13Bと結合器6との間の光路上に配置されている。偏光調整部7R,7G,7Bは、制御部12からの制御信号に従ってレーザ光の偏光方向を変化させる。偏光調整部7R,7G,7Bは、例えば、パドル型またはインライン型偏光制御器である。パドル型またはインライン型偏光制御器は、各レーザ光源13R,13G,13Bと結合器6とを接続する光ファイバ17に外側から応力を与えることによって光ファイバ17内を導光するレーザ光の偏光方向を変化させる。あるいは、偏光調整部7R,7G,7Bは、偏光子、2分の1波長板、4分の1波長板のような1つ以上の偏光素子を用いた空間型偏光制御器であってもよい。 The polarization adjustment units 7R, 7G, 7B are disposed on the optical path between the laser light sources 13R, 13G, 13B and the coupler 6. The polarization adjustment units 7R, 7G, and 7B change the polarization direction of the laser light according to the control signal from the control unit 12. The polarization adjusting units 7R, 7G, 7B are, for example, a paddle type or in-line type polarization controller. The paddle type or in-line type polarization controller polarization direction of the laser light guided in the optical fiber 17 by applying stress from the outside to the optical fiber 17 connecting the laser light sources 13R, 13G, 13B and the coupler 6 Change. Alternatively, the polarization adjusting units 7R, 7G, 7B may be spatial type polarization controllers using one or more polarizing elements such as a polarizer, a half wave plate, or a quarter wave plate. .
 照明ファイバ8は、シングルモード光ファイバである。照明ファイバ8は、スコープ2内に長手方向に沿って配置され、照明ファイバ8の基端は、結合器6に接続されている。照明ファイバ8は、結合器6から供給されるレーザ光を導光し、スコープ2の先端面と対向する被写体に向けて先端から射出する。 The illumination fiber 8 is a single mode optical fiber. The illumination fiber 8 is disposed along the longitudinal direction in the scope 2, and the proximal end of the illumination fiber 8 is connected to the coupler 6. The illumination fiber 8 guides the laser light supplied from the coupler 6 and emits it from the tip toward the object facing the tip surface of the scope 2.
 走査部9は、照明ファイバ8に設けられたアクチュエータ15と、制御装置本体3内に設けられ制御部12からの駆動信号に従ってアクチュエータ15を駆動するアクチュエータドライバ16とを備えている。
 アクチュエータ15は、例えば、圧電素子を備える圧電アクチュエータであり、照明ファイバ8の先端から基端側に離れた位置において照明ファイバ8に取り付けられている。アクチュエータ15は、アクチュエータドライバ16から交番電圧が印加されることによって、照明ファイバ8の先端を該照明ファイバ8の長手方向に交差する方向に振動させる。これにより、照明ファイバ8の先端から射出されるレーザ光が該レーザ光の光軸に交差する方向に走査される。アクチュエータ15として、両端に磁極を有するとともに照明ファイバ8の側面に固定された筒状の永久磁石と、永久磁石の磁極に磁場を作用させる電磁石とを備える電磁式のアクチュエータを用いてもよい。
The scanning unit 9 includes an actuator 15 provided in the illumination fiber 8, and an actuator driver 16 provided in the control device main body 3 and driving the actuator 15 in accordance with a drive signal from the control unit 12.
The actuator 15 is, for example, a piezoelectric actuator including a piezoelectric element, and is attached to the illumination fiber 8 at a position distant from the tip of the illumination fiber 8 to the proximal side. The actuator 15 vibrates the tip of the illumination fiber 8 in a direction intersecting the longitudinal direction of the illumination fiber 8 by applying an alternating voltage from the actuator driver 16. Thereby, the laser beam emitted from the tip of the illumination fiber 8 is scanned in the direction crossing the optical axis of the laser beam. The actuator 15 may be an electromagnetic actuator including a cylindrical permanent magnet having magnetic poles at both ends and fixed to the side surface of the illumination fiber 8 and an electromagnet for applying a magnetic field to the magnetic poles of the permanent magnet.
 光検出部10は、スコープ2内に長手方向に沿って配置された受光ファイバ18を経由して信号光を検出し、検出された信号光の強度の情報を画像生成部11に送信する。このような光検出部10は、例えば、信号光を光電変換することによって信号光の強度に相当する電気信号を出力する光検出器と、光検出器から出力された電気信号をデジタル変換するAD変換器とを備える。 The light detection unit 10 detects signal light via the light receiving fiber 18 disposed in the scope 2 along the longitudinal direction, and transmits information of the detected signal light intensity to the image generation unit 11. Such a light detection unit 10, for example, a photodetector that outputs an electric signal corresponding to the intensity of the signal light by photoelectrically converting the signal light, and an AD that digitally converts the electric signal output from the light detector. And a converter.
 受光ファイバ18は、マルチモード光ファイバである。被写体からスコープ2の先端に戻った信号光は、受光ファイバ18によって受光され、受光ファイバ18によって光検出部10まで導光される。信号光の受光量を増大するために、光検出部10は、スコープ2の周方向に並ぶ複数の受光ファイバ18から信号光を受光するように構成されていてもよい。 The light receiving fiber 18 is a multimode optical fiber. The signal light returned from the subject to the tip of the scope 2 is received by the light receiving fiber 18 and guided to the light detection unit 10 by the light receiving fiber 18. In order to increase the light reception amount of the signal light, the light detection unit 10 may be configured to receive the signal light from the plurality of light receiving fibers 18 aligned in the circumferential direction of the scope 2.
 画像生成部11は、光検出部10から受信した信号光の強度値を、制御部12から受信したレーザ光の照射位置(後述)と対応付けることによって、画像を生成する。生成された画像は、画像生成部11からディスプレイ4に送信され、ディスプレイ4に表示される。画像生成部11は、任意の画像処理(例えば、走査変換、補間処理、強調処理、γ処理等)を画像に施した後に、画像をディスプレイ4に送信してもよい。 The image generation unit 11 generates an image by associating the intensity value of the signal light received from the light detection unit 10 with the irradiation position (described later) of the laser light received from the control unit 12. The generated image is transmitted from the image generation unit 11 to the display 4 and displayed on the display 4. The image generation unit 11 may transmit the image to the display 4 after performing arbitrary image processing (for example, scan conversion, interpolation processing, enhancement processing, γ processing, and the like) on the image.
 制御部12は、発光制御部14に制御信号を送信する。発光制御部14は、制御信号に従って、レーザ光源13R,13G,13Bの発光のタイミングを制御する。また、制御部12は、アクチュエータドライバ16に駆動信号を送信する。アクチュエータドライバ16は、駆動信号に従って、アクチュエータ15による照明ファイバ8の先端の振動、すなわち、レーザ光の走査を制御する。制御部12は、駆動信号からレーザ光の照射位置を演算し、算出された照射位置の情報を画像生成部11に送信する。 The control unit 12 transmits a control signal to the light emission control unit 14. The light emission control unit 14 controls the light emission timing of the laser light sources 13R, 13G, and 13B according to the control signal. Further, the control unit 12 transmits a drive signal to the actuator driver 16. The actuator driver 16 controls the vibration of the tip of the illumination fiber 8 by the actuator 15, that is, the scanning of the laser light, according to the drive signal. The control unit 12 calculates the irradiation position of the laser beam from the drive signal, and transmits information of the calculated irradiation position to the image generation unit 11.
 画像生成部11および制御部12は、例えば、CPU(中央演算処理装置)のようなプロセッサと、上述した画像生成部11および制御部12の処理をプロセッサに実行させるためのプログラムを格納する記憶装置とを備えるコンピュータによって実現されてもよい。 The image generation unit 11 and the control unit 12 are, for example, a processor such as a CPU (central processing unit) and a storage device for storing a program for causing the processor to execute the processing of the image generation unit 11 and the control unit 12 described above. And may be realized by a computer comprising
 偏光方向調整用装置30は、スコープ2および制御装置本体3とは別体の装置である。偏光方向調整用装置30は、使用時に制御装置本体3と有線または無線によって接続され、スコープ2の先端と対向して配置される。偏光方向調整用装置30は、スコープ2の先端から射出されるレーザ光が入射する偏光板31(偏光選択部)と、偏光板31を透過したレーザ光の光量を検出する光量検出部32とを備えている。 The polarization direction adjustment device 30 is a separate device from the scope 2 and the control device body 3. The polarization direction adjusting device 30 is connected to the control device body 3 by wire or wireless in use, and is disposed to face the tip of the scope 2. The polarization direction adjusting device 30 includes a polarization plate 31 (polarization selection portion) on which the laser light emitted from the tip of the scope 2 is incident, and a light amount detection portion 32 for detecting the light amount of the laser light transmitted through the polarization plate 31. Have.
 偏光板31は、単一の偏光軸を有し、偏光軸に平行な方向の偏光成分のみを選択的に透過させる。
 光量検出部32は、例えば、光検出部10と同様に、光検出器とAD変換器とを備える。光量検出部32によって検出された光量の情報は、有線または無線によって制御装置本体3内の制御部12に送信される。
The polarizing plate 31 has a single polarization axis, and selectively transmits only the polarization component in the direction parallel to the polarization axis.
For example, similarly to the light detection unit 10, the light amount detection unit 32 includes a light detector and an AD converter. Information on the light amount detected by the light amount detection unit 32 is transmitted to the control unit 12 in the control device main body 3 by wire or wirelessly.
 次に、偏光方向調整用装置30を使用した制御部12による偏光方向調整動作(偏光方向調整方法)について、図2を参照して説明する。偏光方向調整動作は、例えば、光走査型観察装置1の出荷前または光走査型観察装置1による観察前に実行される。
 まず、スコープ2の先端に偏光板31が対向するように偏光方向調整用装置30を配置し、その後、図2に示される、制御部12による偏光方向調整動作を開始する。
Next, the polarization direction adjustment operation (polarization direction adjustment method) by the control unit 12 using the polarization direction adjustment device 30 will be described with reference to FIG. The polarization direction adjustment operation is performed, for example, before shipment of the light scanning observation apparatus 1 or before observation by the light scanning observation apparatus 1.
First, the polarization direction adjusting device 30 is disposed so that the polarizing plate 31 faces the tip of the scope 2, and then the polarization direction adjusting operation by the control unit 12 shown in FIG. 2 is started.
 制御部12は、Rのレーザ光源13Rのみ発光を開始させる(ステップS1)。レーザ光源13Rから出力されたRのレーザ光は、偏光調整部7R、結合器6、および照明ファイバ8を通り、スコープ2の先端から偏光板31に向かって射出され、偏光板31を透過し、光量検出部32によって検出される。光量検出部32によって検出されたRのレーザ光の検出光量が、光量検出部32から制御部12に送信される。 The control unit 12 causes only the R laser light source 13R to start emitting light (step S1). The R laser light output from the laser light source 13R passes through the polarization adjusting unit 7R, the coupler 6, and the illumination fiber 8, is emitted from the tip of the scope 2 toward the polarizing plate 31, and passes through the polarizing plate 31. The light amount is detected by the light amount detection unit 32. The detected light amount of the R laser light detected by the light amount detection unit 32 is transmitted from the light amount detection unit 32 to the control unit 12.
 ここで、偏光板31を透過するレーザ光の透過光量および光量検出部32による検出光量はレーザ光の偏光方向に応じて変化する。すなわち、レーザ光の偏光方向が偏光板31の偏光軸に平行であるときに透過光量および検出光量が最大となり、レーザ光の偏光方向が偏光板31の偏光軸に直交するときに透過光量および検出光量が最小となる。したがって、制御部12は、光量検出部32からの検出光量に基づいて、偏光板31の偏光軸に対するRのレーザ光の偏光方向を検出することができる。 Here, the transmitted light amount of the laser beam transmitted through the polarizing plate 31 and the detected light amount by the light amount detection unit 32 change in accordance with the polarization direction of the laser light. That is, when the polarization direction of the laser light is parallel to the polarization axis of the polarizing plate 31, the transmitted light amount and the detected light amount become maximum, and when the polarization direction of the laser light is orthogonal to the polarization axis of the polarizing plate 31, the transmitted light amount and detection The light amount is minimized. Therefore, the control unit 12 can detect the polarization direction of the R laser light with respect to the polarization axis of the polarizing plate 31 based on the detected light amount from the light amount detection unit 32.
 制御部12は、光量検出部32によって検出されるレーザ光の検出光量が最大となるまで偏光調整部7Rによってレーザ光の偏光方向を変化させる。制御部12は、検出光量が最大となったとき、すなわち偏光板31の偏光軸に平行となるときのRのレーザ光の偏光方向を検出する(ステップS2)。次に、制御部12は、検出光量が最大となるときの偏光方向に偏光調整部7Rを固定し(ステップS3)、Rのレーザ光源13Rを消灯する(ステップS4)。これにより、Rのレーザ光の偏光方向が偏光板31の偏光軸に平行に調整される。 The control unit 12 causes the polarization adjustment unit 7R to change the polarization direction of the laser light until the detected light amount of the laser light detected by the light amount detection unit 32 becomes maximum. The control unit 12 detects the polarization direction of the R laser light when the detected light amount becomes maximum, that is, when it becomes parallel to the polarization axis of the polarizing plate 31 (step S2). Next, the control unit 12 fixes the polarization adjusting unit 7R in the polarization direction at which the detected light amount is maximum (step S3), and turns off the R laser light source 13R (step S4). Thus, the polarization direction of the R laser light is adjusted to be parallel to the polarization axis of the polarizing plate 31.
 次に、制御部12は、Gのレーザ光源13Gのみ発光を開始させ(ステップS5)、ステップS2,S3,S4と同様にして、検出光量が最大となるのきのGのレーザ光の偏光方向を検出し(ステップS6)、検出光量が最大となるときの偏光方向に偏光調整部7Gを固定し(ステップS7)、Gのレーザ光源13Gを消灯する(ステップS8)。これにより、Gのレーザ光の偏光方向が偏光板31の偏光軸に平行に調整される。 Next, the control unit 12 causes only the G laser light source 13G to start emitting light (step S5), and similarly to steps S2, S3 and S4, the polarization direction of the G laser light when the detected light quantity is maximum Is detected (step S6), the polarization adjusting unit 7G is fixed in the polarization direction when the detected light quantity is maximum (step S7), and the G laser light source 13G is turned off (step S8). Thereby, the polarization direction of the G laser light is adjusted to be parallel to the polarization axis of the polarizing plate 31.
 次に、制御部12は、Bのレーザ光源13Bのみ発光を開始させ(ステップS9)、ステップS2,S3,S4と同様にして、検出光量が最大となるのきのBのレーザ光の偏光方向を検出し(ステップS10)、検出光量が最大となるときの偏光方向に偏光調整部7Bを固定し(ステップS11)、Bのレーザ光源13Bを消灯する(ステップS12)。これにより、Bのレーザ光の偏光方向が偏光板31の偏光軸に平行に調整される。 Next, the control unit 12 causes only the laser light source 13B of B to start light emission (step S9), and in the same manner as steps S2, S3 and S4, the polarization direction of the laser light of B when the detected light quantity becomes maximum. Is detected (step S10), the polarization adjusting unit 7B is fixed in the polarization direction when the detected light quantity is maximum (step S11), and the laser light source 13B of B is turned off (step S12). Thereby, the polarization direction of the B laser light is adjusted to be parallel to the polarization axis of the polarizing plate 31.
 以上のステップS1~S12の調整によって、スコープ2の先端から射出されるR、G、Bのレーザ光の偏光方向は、相互に同一となる。
 偏光方向調整動作の終了後、偏光方向調整用装置30はスコープ2および制御装置本体3から取り外される。その後、光走査型観察装置1による画像取得が開始される。
By adjusting the above steps S1 to S12, the polarization directions of the R, G, and B laser beams emitted from the tip of the scope 2 become mutually the same.
After completion of the polarization direction adjusting operation, the polarization direction adjusting device 30 is removed from the scope 2 and the control device body 3. Thereafter, image acquisition by the light scanning observation apparatus 1 is started.
 次に、光走査型観察装置1の作用について説明する。
 制御部12は、照明ファイバ8の先端を振動させるための駆動信号をアクチュエータドライバ16に送信することを開始する。また、制御部12は、R、G、Bのレーザ光源13R,13G,13Bを順番に発光させるための制御信号をに発光制御部14に送信することを開始する。これにより、振動する照明ファイバ8の先端からR、G、Bのレーザ光が走査されながら順番に射出され、R、G、Bのレーザ光が順番に被写体に照射される。したがって、被写体では、R、G、Bの信号光が順番に発生する。
Next, the operation of the light scanning observation apparatus 1 will be described.
The control unit 12 starts transmitting a drive signal for vibrating the tip of the illumination fiber 8 to the actuator driver 16. In addition, the control unit 12 starts transmitting a control signal for causing the R, G, and B laser light sources 13R, 13G, and 13B to emit light in order to the light emission control unit 14. As a result, the R, G, and B laser beams are sequentially emitted while being scanned from the tip of the vibrating illumination fiber 8, and the R, G, and B laser beams are sequentially applied to the subject. Therefore, in the subject, R, G, and B signal lights are generated in order.
 R、G、Bの信号光は、スコープ2の先端面において受光ファイバ18によって受光されて光検出部10へ導光される。そして、光検出部10において、画像の各画素の値となる信号光の強度値が得られる。強度値は、画像生成部11においてレーザ光の照射位置と対応付けられることによって、被写体のカラーの画像が生成される。生成された画像は、ディスプレイ4に表示される。 The R, G, and B signal lights are received by the light receiving fiber 18 at the tip end surface of the scope 2 and guided to the light detection unit 10. Then, in the light detection unit 10, the intensity value of the signal light which is the value of each pixel of the image is obtained. The intensity value is associated with the irradiation position of the laser light in the image generation unit 11, whereby a color image of the subject is generated. The generated image is displayed on the display 4.
 この場合に、被写体からの信号光には、表面反射光、表面散乱光、および蛍光が含まれる。表面反射光は、被写体の表面において鏡面反射された光であり、レーザ光の偏光方向に応じた偏光方向を有する直線偏光である。表面散乱光は、被写体の表層において散乱を受けた光であり、様々な方向の偏光を含むランダム偏光である。蛍光は、レーザ光によって励起された自家蛍光物質や蛍光色素が発生する光であり、ランダム偏光である。 In this case, signal light from the subject includes surface reflected light, surface scattered light, and fluorescence. The surface reflected light is light specularly reflected on the surface of the object, and is linearly polarized light having a polarization direction according to the polarization direction of the laser light. Surface scattered light is light scattered in the surface layer of an object, and is randomly polarized light including polarized light in various directions. The fluorescence is light generated by a self-fluorescent substance or a fluorescent dye excited by laser light, and is randomly polarized light.
 例えば、スコープ2が金属管内に配置されている場合等、スコープ2の先端および被写体の周囲に反射面が存在する環境において、被写体からの表面反射光が、受光ファイバ18によって受光される前に、反射面による反射を経ることがあり得る。反射面による表面反射光の反射率は、偏光方向によって異なる。図3は、直線偏光の偏光方向と反射率との関係を表している。図3に示されるように、反射面に斜めに入射したときの反射率は、p偏光とs偏光とで異なる。これは、例えば、赤色のp偏光と緑色のs偏光が同時に反射面に入射角度70°で入射したときに、反射面からの反射光は緑色になる、すなわち、反射面による反射の前後で光の色が変化することを意味する。 For example, in an environment where reflecting surfaces exist around the tip of the scope 2 and the subject, such as when the scope 2 is disposed in a metal tube, surface reflected light from the subject is received by the light receiving fiber 18, It is possible to undergo reflection by the reflecting surface. The reflectance of surface reflected light by the reflective surface differs depending on the polarization direction. FIG. 3 shows the relationship between the polarization direction of linearly polarized light and the reflectance. As shown in FIG. 3, the reflectance when obliquely incident on the reflecting surface is different between p-polarized light and s-polarized light. This is because, for example, when red p-polarized light and green s-polarized light simultaneously enter the reflection surface at an incident angle of 70 °, the reflected light from the reflection surface becomes green, that is, light before and after reflection by the reflection surface Means that the color of
 したがって、仮に、R、G、Bのレーザ光の偏光方向が相互に異なっている場合、反射面での反射の影響で、光検出部10によって検出されるR、G、Bの信号光の強度のバランスが変化し、その結果、生成される画像の色味が、被写体の実際の色味とは異なる。 Therefore, if the polarization directions of the R, G, and B laser beams are different from each other, the intensities of the R, G, and B signal lights detected by the light detection unit 10 under the influence of the reflection on the reflection surface. As a result, the tint of the generated image is different from the actual tint of the subject.
 本実施形態によれば、スコープ2の先端から被写体に照射されるR、G、Bのレーザ光の偏光方向は相互に同一である。したがって、被写体において発生した表面反射光が反射面での反射を経たとしても、R、G、Bの表面反射光は相互に同一の反射率で反射されるため、R、G、Bの信号光間の強度のバランスに変化が生じることはない。したがって、R、G、Bの信号光の強度値から生成される色味は、被写体の色味と同一となる。このように、偏光調整部7R,7G,7Bによってレーザ光の偏光方向を調整することにより、レーザ光の偏光方向が画像に及ぼす影響を制御することができる。例えば、スコープ2の周囲や被写体に金属やガラスのような反射体が存在する環境においても、R、G、Bのレーザ光の偏光方向が画像の色味に与える影響を制御することができ、画像内において被写体の色味を正確に再現することができるという利点がある。 According to this embodiment, the polarization directions of the R, G, and B laser beams emitted to the subject from the tip of the scope 2 are the same. Therefore, even if the surface reflected light generated in the subject passes through the reflection on the reflecting surface, the surface reflected lights of R, G and B are reflected at the same reflectance each other, so the signal light of R, G and B is There is no change in the balance of strength between them. Therefore, the tint generated from the intensity values of the R, G, and B signal lights is the same as the tint of the subject. As described above, by adjusting the polarization direction of the laser light by the polarization adjustment units 7R, 7G, and 7B, it is possible to control the influence of the polarization direction of the laser light on the image. For example, even in an environment where a reflector such as metal or glass is present around the scope 2 or in a subject, the influence of the polarization direction of the R, G, and B laser light on the tint of the image can be controlled. There is an advantage that the color tone of the subject can be accurately reproduced in the image.
 本実施形態においては、ステップS2,S6,S10において、レーザ光の偏光方向を、光量検出部32によって検出される検出光量が最大となるときの偏光方向に制御することとしたが、これに代えて、光量検出部32によって検出される検出光量が最小となるときの偏光方向に制御してもよい。この場合、R、G、Bのレーザ光の偏光方向は、偏光板31の偏光軸に直交する方向に調整される。 In the present embodiment, in steps S2, S6 and S10, the polarization direction of the laser light is controlled to the polarization direction at which the detected light amount detected by the light amount detection unit 32 is maximum. Alternatively, control may be performed in the polarization direction when the amount of light detected by the light amount detection unit 32 is minimized. In this case, the polarization directions of the R, G, and B laser beams are adjusted in the direction orthogonal to the polarization axis of the polarizing plate 31.
 本実施形態においては、制御部12が偏光調整部7R,7G,7Bを制御することによってR、G、Bのレーザ光の偏光方向を自動調整することとしたが、これに代えて、ユーザが偏光調整部7R,7G,7Bを手動操作しながらステップS1~S12を行うことによって偏光方向を手動調整してもよい。 In the present embodiment, the control unit 12 automatically adjusts the polarization directions of the R, G, and B laser beams by controlling the polarization adjustment units 7R, 7G, and 7B, but instead, the user can The polarization direction may be manually adjusted by performing steps S1 to S12 while manually operating the polarization adjusting units 7R, 7G, and 7B.
 本実施形態においては、R、G、Bの全てのレーザ光の偏光方向を相互に一致させることとしたが、これに代えて、R、G、Bのレーザ光の偏光方向を相互に異なる方向に調整してもよい。このようにすることで、被写体の表面へのレーザ光の入射角度に応じて、光検出部10によって検出されるR、G、Bの信号光の強度が相互に異なる。したがって、凹凸構造を有する被写体の観察において、被写体の構造が色の差異によって強調された画像を取得することができる。
 例えば、図3に示されるように、入射角度が45°~90°の範囲において、p偏光とs偏光との反射率の差が大きくなる。したがって、被写体に対するスコープ2の傾斜角度を調整することによって、45°~90°の範囲内の構造を画像において確認することができる。
In the present embodiment, the polarization directions of all the R, G and B laser beams are made to coincide with each other, but instead, the polarization directions of the R, G and B laser beams are different from each other It may be adjusted to By doing this, the intensities of the R, G, and B signal lights detected by the light detection unit 10 differ from each other according to the incident angle of the laser light on the surface of the subject. Therefore, in observation of a subject having a concavo-convex structure, it is possible to acquire an image in which the structure of the subject is emphasized by the difference in color.
For example, as shown in FIG. 3, the difference in reflectance between p-polarized light and s-polarized light is large when the incident angle is in the range of 45 ° to 90 °. Therefore, by adjusting the tilt angle of the scope 2 with respect to the subject, structures within the range of 45 ° to 90 ° can be confirmed in the image.
 本実施形態においては、全てのレーザ光源13R,13G,13Bに対応して3つの偏光調整部7R,7G,7Bを備えることとしたが、これに代えて、いずれか1つの偏光調整部7R、7Gまたは7Bを省略してもよい。このようにすることで、部品点数を少なくすることができる。
 この場合、対応する偏光調整部が存在する2つのレーザ光の偏光方向が、対応する偏光調整部が存在しないレーザ光の偏光方向と同一の方向に調整される。例えば、Rのレーザ光源13Rに対応する偏光調整部7Rを省略する場合、光量検出部32によるRのレーザ光の検出光量が最大となる方向にRのレーザ光の偏光方向に対して偏光板31の偏光軸が調整されて固定される。次に、偏光調整部7G,7Bによって、光量検出部32による検出光量が最大となる偏光方向にGおよびBのレーザ光の偏光方向が調整される。
In the present embodiment, the three polarization adjusting units 7R, 7G, and 7B are provided corresponding to all the laser light sources 13R, 13G, and 13B, but instead, any one polarization adjusting unit 7R, 7G or 7B may be omitted. By doing this, the number of parts can be reduced.
In this case, the polarization directions of the two laser beams in which the corresponding polarization adjusting units exist are adjusted in the same direction as the polarization directions of the laser beams in which the corresponding polarization adjusting units do not exist. For example, in the case where the polarization adjusting unit 7R corresponding to the R laser light source 13R is omitted, the polarization plate 31 with respect to the polarization direction of the R laser light in the direction in which the detection light amount of the R laser light by the light amount detection unit 32 is maximum. The polarization axis of is adjusted and fixed. Next, the polarization adjustment units 7G and 7B adjust the polarization directions of the G and B laser beams in the polarization direction in which the amount of light detected by the light amount detection unit 32 is maximum.
 本実施形態においては、レーザ光源13R,13G,13BがR、G、Bの連続するレーザ光をそれぞれ出力し、結合器6がR、G、Bのレーザ光を合成して白色のレーザ光を照明ファイバ8に供給するように構成されていてもよい。この場合には、受光ファイバ18によって受光された信号光をR、G、Bの波長成分に分解する色分解素子(図示略)と、色分解素子によって分解されたR、G、Bの波長成分をそれぞれ検出する3個の光検出部10とが設けられる。 In the present embodiment, the laser light sources 13R, 13G, and 13B respectively output continuous laser beams of R, G, and B, and the coupler 6 combines the laser beams of R, G, and B to generate white laser beams. It may be configured to supply the illumination fiber 8. In this case, a color separation element (not shown) for separating the signal light received by the light receiving fiber 18 into R, G and B wavelength components, and R, G and B wavelength components separated by the color separation element And three light detection units 10 that respectively detect.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る光走査型観察装置について図4を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る光走査型観察装置101は、図4に示されるように、スコープ2と、制御装置本体3とを備える内視鏡装置である。光走査型観察装置101は、光源部5と、結合器6と、レーザ光の偏光を解消する偏光解消部20R,20G,20Bと、偏光解消部20R,20G,20Bによって偏光が解消されたレーザ光を導光して被写体Aに向けて射出する照明ファイバ8と、走査部9と、光検出部10と、画像生成部11と、制御部12とを備えている。
Second Embodiment
Next, an optical scanning observation apparatus according to a second embodiment of the present invention will be described with reference to FIG.
In the present embodiment, a configuration different from the first embodiment will be described, and the configuration common to the first embodiment is assigned the same reference numeral and the description will be omitted.
The light scanning observation apparatus 101 according to the present embodiment is an endoscope apparatus provided with a scope 2 and a control device main body 3 as shown in FIG. The light scanning observation apparatus 101 includes a laser whose light is depolarized by the light source unit 5, the coupler 6, depolarization units 20R, 20G, and 20B for depolarization of laser light, and depolarization units 20R, 20G, and 20B. An illumination fiber 8 for guiding light to emit light toward a subject A, a scanning unit 9, a light detection unit 10, an image generation unit 11, and a control unit 12 are provided.
 偏光解消部20R,20G,20Bは、各レーザ光源13R,13G,13Bと結合器6との間の光路上に配置されている。偏光解消部20R,20G,20Bは、対応するレーザ光源13R,13G,13Bから入射したレーザ光をランダム偏光に変換して出力する。偏光解消部20R,20G,20Bとしては、例えば、水晶からなりレーザ光の偏光状態を撹乱する偏光解消板が使用される。偏光解消部20R,20G,20Bによって偏光が解消されたレーザ光は、結合器6および照明ファイバ8を通り、スコープ2の先端から被写体Aに向かって射出される。 The depolarization units 20R, 20G, and 20B are disposed on the optical path between the laser light sources 13R, 13G, and 13B and the coupler 6. The depolarization units 20R, 20G, and 20B convert the laser beams incident from the corresponding laser light sources 13R, 13G, and 13B into randomly polarized light and output the light. As the depolarizers 20R, 20G, and 20B, for example, depolarizers made of quartz and which disturb the polarization state of the laser beam are used. The laser light depolarized by the depolarization units 20R, 20G, and 20B passes through the coupler 6 and the illumination fiber 8, and is emitted from the tip of the scope 2 toward the subject A.
 このように、本実施形態によれば、スコープ2の先端から射出されるR、G、Bのレーザ光はランダム偏光である。したがって、反射面によって反射されたときのR、G、Bの表面反射光の光量の低下率は互いに同等であり、R、G、Bの信号光間の強度のバランスに変化が生じることはない。したがって、R、G、Bの信号光の検出値から生成される色味は、被写体Aの実際の色味と同一となる。これにより、例えば、スコープ2の周囲や被写体Aに金属やガラスのような反射体が存在する環境においても、R、G、Bのレーザ光の偏光方向が画像の色味に与える影響を制御することができ、画像内において被写体の色味を正確に再現することができるとい利点がある。 As described above, according to the present embodiment, the R, G, and B laser beams emitted from the tip of the scope 2 are randomly polarized light. Therefore, the reduction rates of the light quantity of the surface reflected light of R, G and B when reflected by the reflecting surface are equal to each other, and there is no change in the balance of the intensities among the R, G and B signal lights. . Therefore, the tint generated from the detection values of the R, G, and B signal lights is the same as the actual tint of the subject A. Thereby, for example, even in an environment where a reflector such as metal or glass is present around the scope 2 or the subject A, the influence of the polarization direction of the R, G, and B laser light on the tint of the image is controlled. And the color of the subject can be accurately reproduced in the image.
 本実施形態においては、各レーザ光源13R,13G,13Bと結合器6との間の光路に1つずつ偏光解消部20R,20G,20Bが設けられていることとしたが、これに代えて、結合器6からスコープ2の先端までのレーザ光の光路上に単一の偏光解消部が設けられていてもよい。
 このようにすることで、結合器6から出力されるR、G、Bのレーザ光の偏光を共通の偏光解消部によって解消することができる。
In the present embodiment, the depolarization units 20R, 20G, and 20B are provided one by one in the optical path between the laser light sources 13R, 13G, and 13B and the coupler 6, but instead of this, A single depolarization unit may be provided on the optical path of the laser light from the coupler 6 to the tip of the scope 2.
By doing this, the polarization of the R, G and B laser beams output from the coupler 6 can be canceled by the common depolarization unit.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る光走査型観察装置について図5を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る光走査型観察装置102は、図5に示されるように、スコープ2と、制御装置本体3とを備える内視鏡装置である。光走査型観察装置102は、光源部5、結合器6、偏光調整部7R,7G,7B、照明ファイバ8、走査部9、光検出部10、画像生成部11、および制御部12に加えて、回転偏光板(偏光切替部)21を備えている。
Third Embodiment
Next, an optical scanning observation apparatus according to a third embodiment of the present invention will be described with reference to FIG.
In the present embodiment, a configuration different from the first embodiment will be described, and the configuration common to the first embodiment is assigned the same reference numeral and the description will be omitted.
The light scanning observation apparatus 102 according to the present embodiment is an endoscope apparatus provided with a scope 2 and a control device main body 3 as shown in FIG. The light scanning observation device 102 is added to the light source unit 5, the coupler 6, the polarization adjusting units 7 R, 7 G, 7 B, the illumination fiber 8, the scanning unit 9, the light detecting unit 10, the image generating unit 11, and the control unit 12. , And a rotary polarizing plate (polarization switching unit) 21.
 結合器6に入射するR、G、Bのレーザ光の偏光方向は、第1の実施形態において説明した偏光方向調整用装置30を使用した偏光方向調整動作によって、相互に同一の方向に偏光調整部7R,7G,7Bによって調整されている。偏光調整部7R,7G,7Bによって調整されたR、G、Bのレーザ光の偏光方向を45°と定義する。 The polarization directions of the R, G, and B laser beams entering the coupler 6 are adjusted in the same direction by the polarization direction adjusting operation using the polarization direction adjusting device 30 described in the first embodiment. It is adjusted by the parts 7R, 7G, 7B. The polarization direction of the R, G, B laser beams adjusted by the polarization adjusting units 7R, 7G, 7B is defined as 45 °.
 回転偏光板21は、光ファイバ19を経由して結合器6と接続され、結合器6から出力されたレーザ光が入射光軸に沿って入射される。回転偏光板21は、入射光軸回りに回転可能に設けられ、制御部12によって回転角度が制御される。回転偏光板21は、偏光板31と同様に、単一の偏光軸を有し、偏光軸に平行な方向の偏光成分のみを選択的に透過させる。したがって、回転偏光板21の入射光軸回りの回転角度が変化することによって、回転偏光板21を透過するレーザ光の偏光方向が変化する。制御部12は、回転偏光板21の回転角度を0°と90°との間で切り替えることによって、回転偏光板21から射出されるレーザ光の偏光方向を0°(第1の方向)と90°(第2の方向)との間で切り替える。
 図5に示される回転偏光板21の配置は一例であり、回転偏光板21は、結合器6とスコープ2の先端との間のレーザ光の光路上の任意の位置に配置することができる。
The rotary polarizing plate 21 is connected to the coupler 6 via the optical fiber 19, and the laser light output from the coupler 6 is incident along the incident optical axis. The rotary polarizing plate 21 is provided rotatably around the incident light axis, and the rotation angle is controlled by the control unit 12. Similar to the polarizing plate 31, the rotating polarizing plate 21 has a single polarization axis, and selectively transmits only the polarization component in the direction parallel to the polarization axis. Therefore, as the rotation angle of the rotary polarizing plate 21 about the incident optical axis changes, the polarization direction of the laser light transmitted through the rotary polarizing plate 21 changes. The control unit 12 switches the rotation angle of the rotation polarization plate 21 between 0 ° and 90 ° to make the polarization direction of the laser light emitted from the rotation polarization plate 21 0 ° (first direction) and 90 °. Switch between ° (second direction).
The arrangement of the rotary polarizing plate 21 shown in FIG. 5 is an example, and the rotary polarizing plate 21 can be arranged at any position on the optical path of the laser light between the coupler 6 and the tip of the scope 2.
 次に、光走査型観察装置102の作用について説明する。
 制御部12は、回転偏光板21を0°に設定し、光源部5、走査部9および光検出部10を作動させることによって、偏光方向が0°のときの画像(第1の画像)を画像生成部11に生成させる。生成された画像は、図示しないメモリに記録される。次に、制御部12は、回転偏光板21を90°に設定し、光源部5、走査部9および光検出部10を作動させることによって、偏光方向が90°のときの画像(第2の画像)を画像生成部11に生成させる。生成された画像は、メモリに記録される。
Next, the operation of the light scanning observation apparatus 102 will be described.
The control unit 12 sets the rotational polarization plate 21 to 0 °, and operates the light source unit 5, the scanning unit 9, and the light detection unit 10 to generate an image (first image) when the polarization direction is 0 °. The image generation unit 11 generates the image. The generated image is recorded in a memory (not shown). Next, the control unit 12 sets the rotational polarization plate 21 to 90 °, and operates the light source unit 5, the scanning unit 9, and the light detection unit 10 to obtain an image (second second) when the polarization direction is 90 °. The image generation unit 11 generates an image). The generated image is recorded in the memory.
 次に、画像生成部11は、メモリから、偏光方向が0°のときの画像と偏光方向が90°のときの画像とを読み出し、これら2枚の画像を合成して合成画像を生成する。例えば、画像生成部11は、同一位置の2つの画素の値の平均値を算出し、算出された平均値をその位置の画素の値とした合成画像を生成し、合成画像をディスプレイ4に送信する。画像生成部11は、合成画像に代えて、またはこれに加えて、偏光方向が0°のときの画像と偏光方向が90°のときの画像とをそれぞれディスプレイ4に送信して表示させてもよい。 Next, the image generation unit 11 reads an image when the polarization direction is 0 ° and an image when the polarization direction is 90 ° from the memory, and combines these two images to generate a composite image. For example, the image generation unit 11 calculates the average value of the values of two pixels at the same position, generates a composite image with the calculated average value as the value of the pixel at that position, and transmits the composite image to the display 4 Do. Even if the image generation unit 11 transmits or displays the image when the polarization direction is 0 ° and the image when the polarization direction is 90 ° to the display 4 instead of or in addition to the composite image. Good.
 上述したように、直線偏光の反射面での反射率は、反射面への入射角度にも依存して変化する。同一の偏光方向を有するR、G、Bのレーザ光を用いることによって、反射面での反射に因る信号光の色味の変化を防止することはできるが、反射面への入射角度の差異によって生じる画像内の明るさのばらつきを防止することはできない。
 本実施形態によれば、偏光方向が相互に異なるレーザ光を観察対象Bに照射したときの2つの画像が生成される。このような2つの画像に基づいて、偏光方向の影響、特に偏光方向に依存する明るさのばらつきを把握することができる。そして、偏光方向が相互に直交するレーザ光を用いて取得された2枚の画像を平均化することによって、被写体の色味が正確に再現され、かつ、明るさのばらつきが低減された合成画像を得ることができるという利点がある。
As described above, the reflectance of the linearly polarized light at the reflective surface changes depending on the incident angle to the reflective surface. By using the R, G, B laser beams having the same polarization direction, it is possible to prevent the change in the color of the signal light due to the reflection on the reflection surface, but the difference in the incident angle to the reflection surface It is not possible to prevent the brightness variation in the image caused by
According to the present embodiment, two images are generated when the observation target B is irradiated with laser beams whose polarization directions are different from each other. Based on these two images, it is possible to grasp the influence of the polarization direction, in particular, the variation in brightness depending on the polarization direction. Then, by averaging two images acquired using laser beams whose polarization directions are mutually orthogonal, a composite image in which the color tone of the subject is accurately reproduced and in which the variation in brightness is reduced There is an advantage that you can get
 本実施形態においては、画像生成部11が、0°と90°の2枚の画像を平均することに代えて、同一位置の2つの画素の値のうち、大きい方の値を選択することによって合成画像を生成してもよい。
 このようにしても、レーザ光の偏光方向に依存する明るさのばらつきが低減された合成画像を生成することができる。
In the present embodiment, instead of averaging the two images of 0 ° and 90 °, the image generation unit 11 selects the larger value of the values of the two pixels at the same position. A composite image may be generated.
Also in this case, it is possible to generate a composite image in which the variation in brightness depending on the polarization direction of the laser light is reduced.
 本実施形態においては、レーザ光の偏光方向を切り替える手段として回転偏光板21を使用することとしたが、これに代えて、2分の1波長板(偏光切替部)を使用してもよい。
 この場合、2分の1波長をR、G、Bのレーザ光の光路上に挿脱することによって、レーザ光の方向を90°回転させることができる。
 回転偏光板21によるレーザ光の偏光方向の回転はレーザ光の減光を伴うが、2分の1波長板は、レーザ光を減光させることなく偏光方向を回転させることができる。
In the present embodiment, the rotary polarizing plate 21 is used as a means for switching the polarization direction of the laser light. However, instead of this, a half-wave plate (polarization switching unit) may be used.
In this case, the direction of the laser beam can be rotated by 90 ° by inserting and removing a half wavelength on the optical path of the R, G, and B laser beams.
The rotation of the polarization direction of the laser beam by the rotary polarizer 21 involves the attenuation of the laser beam, but the half-wave plate can rotate the polarization direction without attenuating the laser beam.
 本実施形態においては、回転偏光板21によるレーザ光の偏光方向の切り替えを1フレーム単位で行うこととしたが、これに代えて、走査軌跡の周回単位、画素単位、またはパルス単位で切り替えてもよい。 In the present embodiment, switching of the polarization direction of the laser light by the rotary polarizing plate 21 is performed in units of one frame, but instead of this, switching may be performed in scan units of scanning trajectories, pixel units, or pulses. Good.
 レーザ光源13R,13G,13Bからスコープ2の出射側において使用される光ファイバは、偏光方向が維持される偏光保持ファイバであってもよい。偏光保持ファイバを使用することによって、光ファイバの引き回しに関わらず偏光状態が変化しないという利点がある。
 また、スコープ2の先端に偏光フィルタを配置し、各色のレーザ光の偏光状態を偏光フィルタの方向と揃えてもよい。スコープ2の先端に偏光フィルタを配置することによって、スコープ2の先端から射出されるレーザ光の偏光方向とスコープ2の先端において受光される信号光の偏光方向とを揃えることが可能となる。また、光ファイバの引き回しに依存してR、G、Bのレーザ光間で偏光状態が多少異なっていたとしても、スコープ2の出射端において偏光方向を確実に揃えることができるという利点がある。
The optical fiber used on the output side of the scope 2 from the laser light sources 13R, 13G, and 13B may be a polarization maintaining fiber whose polarization direction is maintained. The use of a polarization maintaining fiber has the advantage that the polarization state does not change regardless of the routing of the optical fiber.
In addition, a polarization filter may be disposed at the tip of the scope 2 and the polarization state of the laser light of each color may be aligned with the direction of the polarization filter. By disposing the polarizing filter at the tip of the scope 2, it is possible to align the polarization direction of the laser light emitted from the tip of the scope 2 with the polarization direction of the signal light received at the tip of the scope 2. In addition, even if the polarization states of the R, G, and B laser beams are somewhat different depending on the routing of the optical fiber, there is an advantage that the polarization direction can be surely aligned at the output end of the scope 2.
(第4の実施形態)
 次に、本発明の第4の実施形態に係る光走査型観察装置について図6を参照して説明する。
 本実施形態においては、第1から第3の実施形態と異なる構成について説明し、第1から第3の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る光走査型観察装置103は、図6に示されるように、スコープ2と、制御装置本体3とを備える内視鏡装置である。光走査型観察装置103は、光源部5、結合器6、偏光調整部7R,7G,7B、照明ファイバ8、走査部9、光検出部10、画像生成部11、および制御部12に加えて、4分の1波長板(λ/4板)22を備えている。
Fourth Embodiment
Next, an optical scanning observation apparatus according to a fourth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, configurations different from the first to third embodiments will be described, and configurations common to the first to third embodiments will be assigned the same reference numerals and descriptions thereof will be omitted.
The light scanning observation apparatus 103 according to the present embodiment is an endoscope apparatus provided with a scope 2 and a control device main body 3 as shown in FIG. In addition to the light source unit 5, the coupler 6, the polarization adjustment units 7R, 7G and 7B, the illumination fiber 8, the scanning unit 9, the light detection unit 10, the image generation unit 11, and the control unit 12, the light scanning observation device 103 , And a quarter wave plate (λ / 4 plate) 22.
 結合器6に入射するR、G、Bのレーザ光の偏光方向は、第1の実施形態において説明した偏光方向調整用装置を使用した偏光方向調整動作によって、相互に同一の方向に偏光調整部7R,7G,7Bによって調整されている。
 照明ファイバ8は、偏光保持ファイバであることが好ましい。偏光保持ファイバは、入射する直線偏光の偏光状態を保持する特性を有する。照明ファイバ8として偏光保持ファイバを使用した場合、照明ファイバ8からλ/4板22に入射するR、G、Bのレーザ光は、相互に同一の偏向方向を有する直線偏光となる。
The polarization directions of the R, G, and B laser beams entering the coupler 6 are adjusted in the same direction by the polarization direction adjustment operation using the polarization direction adjusting device described in the first embodiment. It is adjusted by 7R, 7G, 7B.
The illumination fiber 8 is preferably a polarization maintaining fiber. The polarization maintaining fiber has the property of maintaining the polarization state of the incident linearly polarized light. When a polarization maintaining fiber is used as the illumination fiber 8, the R, G, and B laser beams entering the λ / 4 plate 22 from the illumination fiber 8 are linearly polarized light having the same polarization direction.
 偏光保持ファイバではない通常の光ファイバの場合、光ファイバに入射した直線偏光の偏光状態は、光ファイバの湾曲等に因り、光ファイバを導光する間に次第に変化する。したがって、照明ファイバ8として通常の光ファイバを用いる場合、照明ファイバ8は、結合器6からスコープ2の先端近傍まで、偏光方向調整時から、応力状態が変わらないよう固定されることが好ましい。これにより、偏光保持ファイバを用いた場合と同様に、照明ファイバ8からλ/4板22に入射するR、G、Bのレーザ光を、相互に同一の偏向方向を有する直線偏光にすることができる。 In the case of a normal optical fiber which is not a polarization maintaining fiber, the polarization state of linearly polarized light incident on the optical fiber gradually changes during the light guiding of the optical fiber due to the bending of the optical fiber and the like. Therefore, when a normal optical fiber is used as the illumination fiber 8, it is preferable that the illumination fiber 8 be fixed from the coupler 6 to the vicinity of the tip of the scope 2 so that the stress state does not change from the time of polarization direction adjustment. By this, as in the case of using the polarization maintaining fiber, it is possible to make the R, G and B laser beams entering the λ / 4 plate 22 from the illumination fiber 8 into linearly polarized light having the same polarization direction. it can.
 λ/4板22は、照明ファイバ8の先端と被写体Aとの間に配置されている。例えば、λ/4板22は、スコープ2の先端面に配置されている。λ/4板22の光学軸は、照明ファイバ8の先端から射出されるR、G、Bのレーザ光の偏光方向に対して45°傾いている。λ/4板22に入射したR、G、Bのレーザ光は、λ/4板22によって右回りまたは左回りの円偏光に変換され、λ/4板22から円偏光のR、G、Bのレーザ光が射出される。 The λ / 4 plate 22 is disposed between the tip of the illumination fiber 8 and the subject A. For example, the λ / 4 plate 22 is disposed on the distal end surface of the scope 2. The optical axis of the λ / 4 plate 22 is inclined 45 ° with respect to the polarization direction of the R, G, B laser beams emitted from the tip of the illumination fiber 8. The R, G, and B laser beams incident on the λ / 4 plate 22 are converted to clockwise or counterclockwise circularly polarized light by the λ / 4 plate 22, and R, G, B of circularly polarized light from the λ / 4 plate 22. Laser light is emitted.
 このように、本実施形態によれば、スコープ2の先端から射出されるR、G、Bのレーザ光はそれぞれ円偏光である。したがって、反射面によって反射されたときのR、G、Bのレーザ光の表面反射率は互いに同等であり、R、G、Bの信号光間の強度のバランスに変化が生じることはない。さらに、円偏光の振動数は光走査型観察装置103のフレームレートに比べて十分に大きいため、どのような向きの反射面に対しても円偏光のレーザ光の表面反射率は同等であり、反射面毎のR、G、Bの信号光の強度バランスに変化が生じることはない。したがって、被写体の色味が正確に再現され、かつ、反射面の向きの差異に起因する明るさのばらつきが防止された画像を得ることができるという利点がある。 Thus, according to the present embodiment, the R, G, and B laser beams emitted from the tip of the scope 2 are each circularly polarized. Therefore, the surface reflectances of the R, G, and B laser beams when reflected by the reflection surface are equal to each other, and there is no change in the balance of intensities among the R, G, and B signal beams. Furthermore, since the frequency of circularly polarized light is sufficiently large compared to the frame rate of the light scanning observation apparatus 103, the surface reflectance of circularly polarized laser light is equivalent to the reflective surface in any direction, There is no change in the intensity balance of the R, G and B signal lights for each reflecting surface. Therefore, there is an advantage that it is possible to obtain an image in which the color tone of the subject is accurately reproduced and in which the variation in brightness due to the difference in the direction of the reflecting surface is prevented.
 本実施形態におけるレーザ光の偏光方向の調整方法の具体例を以下に示す。
 調整方法の一例において、第1の実施形態において説明した偏光方法調整動作によって、R、G、Bのレーザ光の偏光方向を相互に同一の方向に調整する。次に、λ/4板22の光学軸をR、G、Bのレーザ光の偏光方向に対して45度傾け、λ/4板22の向きを固定する。
The specific example of the adjustment method of the polarization direction of the laser beam in this embodiment is shown below.
In an example of the adjustment method, the polarization directions of the R, G, and B laser beams are adjusted in the same direction by the polarization method adjustment operation described in the first embodiment. Next, the optical axis of the λ / 4 plate 22 is inclined 45 degrees with respect to the polarization direction of the R, G, and B laser beams, and the direction of the λ / 4 plate 22 is fixed.
 調整方法の他の例において、偏光板31の偏光軸に対して45度傾いた光学軸を有するλ/4板(図示略)がさらに設けられた偏光方向調整用装置30が使用される。このλ/4板は、スコープ2の先端と偏光板31との間に配置される。本調整方法において、スコープ2から射出されるレーザ光が円偏光であるときに、光量検出部32によって検出される光量が最大になるため、第1の実施形態において説明した動作と同一の手順でレーザ光の偏光方向を調整することができる。偏光板31の角度をさらに90°傾け、検出される光量が最小となる方向にレーザ光の偏光方向を調整してもよい。 In another example of the adjustment method, a polarization direction adjustment device 30 further provided with a λ / 4 plate (not shown) having an optical axis inclined 45 degrees with respect to the polarization axis of the polarization plate 31 is used. The λ / 4 plate is disposed between the tip of the scope 2 and the polarizing plate 31. In the present adjustment method, when the laser light emitted from the scope 2 is circularly polarized light, the light amount detected by the light amount detection unit 32 is maximized, so the procedure is the same as the operation described in the first embodiment. The polarization direction of the laser light can be adjusted. The polarization direction of the laser light may be adjusted such that the angle of the polarizing plate 31 is further inclined by 90 ° and the amount of light detected becomes minimum.
 本実施形態においては、λ/4板22によって直線偏光であるレーザ光を円偏光に変換することとしたが、これに代えて、波長板によってレーザ光を楕円偏光に変換してもよい。例えば、λ/4板22によってレーザ光を楕円偏光に変換してもよい。 In the present embodiment, the laser beam which is linearly polarized light is converted to circularly polarized light by the λ / 4 plate 22. Alternatively, the laser beam may be converted to elliptically polarized light by the wavelength plate. For example, the laser beam may be converted into elliptically polarized light by the λ / 4 plate 22.
 第1、第3および第4の実施形態においては、偏光調整部7R,7G,7Bを備えることとしたが、これに代えて、レーザ光源13R,13G,13Bの位置の調整によってレーザ光の偏光方向を制御してもよい。
 例えば、レーザ光の出力光軸回りのレーザ光源13R,13G,13Bの回転角度を調整することによって、スコープ2の先端から射出されるレーザ光の偏光方向を所望の方向に制御してもよい。このようなレーザ光源13R,13G,13Bの位置調整は、例えば、装置の組み立て時に行われる。
In the first, third and fourth embodiments, the polarization adjusting units 7R, 7G and 7B are provided, but instead, the polarization of the laser light is adjusted by adjusting the positions of the laser light sources 13R, 13G and 13B. You may control the direction.
For example, the polarization direction of the laser light emitted from the tip of the scope 2 may be controlled in a desired direction by adjusting the rotation angles of the laser light sources 13R, 13G, 13B around the output optical axis of the laser light. Such positional adjustment of the laser light sources 13R, 13G, 13B is performed, for example, at the time of assembly of the apparatus.
(第5の実施形態)
 次に、本発明の第5の実施形態に係る光走査型観察装置ついて図7および図8を参照して説明する。
 本実施形態においては、第1から第4の実施形態と異なる構成について説明し、第1から第4の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る光走査型観察装置104は、図7に示されるように、スコープ2と、制御装置本体3とを備える内視鏡装置である。光走査型観察装置104は、光源部51、結合器6、偏光調整部7R,7G,7B、照明ファイバ8、走査部9、光検出部10、画像生成部11、制御部12、および合波部23R,23G,23Bを備えている。
Fifth Embodiment
Next, an optical scanning observation apparatus according to a fifth embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG.
In the present embodiment, configurations different from the first to fourth embodiments will be described, and configurations common to the first to fourth embodiments will be assigned the same reference numerals and descriptions thereof will be omitted.
The light scanning observation device 104 according to the present embodiment is an endoscope device provided with a scope 2 and a control device main body 3 as shown in FIG. The light scanning observation device 104 includes a light source unit 51, a coupler 6, polarization adjustment units 7R, 7G, 7B, an illumination fiber 8, a scanning unit 9, a light detection unit 10, an image generation unit 11, a control unit 12, and multiplexing. The units 23R, 23G, and 23B are provided.
 光源部51は、レーザ光源13R,13G,13Bおよび発光制御部14に加えて、分離器24R,24G,24Bを備えている。
 分離器24R,24G,24Bは、レーザ光源13R,13G,13Bと結合器6との間にそれぞれ配置され、R、G、Bのレーザ光を2つのレーザ光にそれぞれ分離する。好ましくは、各分離器24R,24G,24Bは、レーザ光を、光量が等しい2つのレーザ光に分離する。各分離器24R,24G,24Bは、例えば、各レーザ光源13R,13G,13Bに接続された1本の光ファイバと、結合器6に接続された2本の光ファイバとを接続する光ファイバカプラである。分離器24R,24G,24Bは、ビームスプリッタまたはハーフミラー等の1つ以上の光学素子から構成されていてもよい。
The light source unit 51 includes separators 24R, 24G, and 24B in addition to the laser light sources 13R, 13G, and 13B and the light emission control unit 14.
The splitters 24R, 24G, and 24B are disposed between the laser light sources 13R, 13G, and 13B and the coupler 6, respectively, and separate the R, G, and B laser beams into two laser beams. Preferably, each of the separators 24R, 24G, 24B separates the laser light into two laser lights of equal light amount. Each of the splitters 24R, 24G, and 24B is, for example, an optical fiber coupler that connects one optical fiber connected to each of the laser light sources 13R, 13G, and 13B and two optical fibers connected to the coupler 6. It is. The splitters 24R, 24G, 24B may be composed of one or more optical elements such as beam splitters or half mirrors.
 偏光調整部7R,7G,7Bは、分離器24R,24G,24Bによって分離された2つのレーザ光の各々の光路上にそれぞれ配置されている。したがって、本実施形態において、6個の偏光調整部7R,7G,7Bが設けられている。2つの偏光調整部7Rは、分離器24Rによって分離された2つのRのレーザ光の偏光方向を相互に直交する方向に調整する。2つの偏光調整部7Gは、分離器24Gによって分離された2つのGのレーザ光の偏光方向を相互に直交する方向に調整する。2つの偏光調整部7Bは、分離器24Bによって分離された2つのBのレーザ光の偏光方向を相互に直交する方向に調整する。ここでの「直交」とは、2つのレーザ光の偏光状態それぞれのジョーンズベクトルの複素内積が0になるという意味である。 The polarization adjusting units 7R, 7G, 7B are respectively disposed on the optical paths of the two laser beams separated by the separators 24R, 24G, 24B. Therefore, in the present embodiment, six polarization adjusting units 7R, 7G, 7B are provided. The two polarization adjusting units 7R adjust the polarization directions of the two R laser beams separated by the separator 24R in directions orthogonal to each other. The two polarization adjusting units 7G adjust the polarization directions of the two G laser beams separated by the separator 24G in directions orthogonal to each other. The two polarization adjusting units 7B adjust the polarization directions of the two B laser beams separated by the separator 24B in directions orthogonal to each other. Here, “orthogonal” means that the complex inner product of the Jones vectors of each of the two laser light polarization states is zero.
 合波部23R,23G,23Bは、偏光調整部7R,7G,7Bと結合器6との間に配置されている。合波部23Rは、2つの偏光調整部7Rによって偏光方向が調整された2つのRのレーザ光を合波する。合波部23Gは、2つの偏光調整部7Gによって偏光方向が調整された2つのGのレーザ光を合波する。合波部23Bは、2つの偏光調整部7Bによって偏光方向が調整された2つのBのレーザ光を合波する。 The couplers 23R, 23G, and 23B are disposed between the polarization adjusters 7R, 7G, and 7B and the coupler 6, respectively. The combining unit 23R combines the two R laser beams whose polarization directions are adjusted by the two polarization adjusting units 7R. The coupler 23G couples the two G laser beams whose polarization directions are adjusted by the two polarization adjusters 7G. The combining unit 23B combines the two B laser beams whose polarization directions are adjusted by the two polarization adjusting units 7B.
 合波部23R,23G,23Bによって合波されたR、G、Bのレーザ光は、結合器6を経由して照明ファイバ8に入射する。したがって、照明ファイバ8の先端から射出されるR、G、Bのレーザ光の各々は、光量が相互に等しく、かつ、偏光方向が相互に直交する2つの偏光が合波された状態の光である。照明ファイバ8内を導光中に各レーザ光の偏光状態が変化することを防止するために、照明ファイバ8は、スコープ2および制御装置本体3に対して固定されていることが好ましい。 The R, G, and B laser beams multiplexed by the couplers 23R, 23G, and 23B enter the illumination fiber 8 via the coupler 6. Therefore, each of the R, G, and B laser beams emitted from the tip of the illumination fiber 8 is light in a state in which the amounts of light are equal to each other, and two polarized lights whose polarization directions are orthogonal to each other are combined. is there. It is preferable that the illumination fiber 8 be fixed to the scope 2 and the control device body 3 in order to prevent the polarization state of each laser beam from changing while guiding light in the illumination fiber 8.
 このように、本実施形態によれば、スコープ2から射出されるR、G、Bのレーザ光の各々は、光量が同等でありかつ偏光方向が直交する2つの偏光の合波光である。したがって、反射面によって反射されたときのR、G、Bのレーザ光の表面反射率は互いに同等であり、R、G、Bの信号光間の強度のバランスに変化が生じることはない。さらに、相互に直交する2つの偏光が合波されているので、反射面の向きに関わらず一定強度の反射光が受光される。したがって、被写体の色味が正確に再現され、かつ、反射面の向きの差異に起因する明るさのばらつきが防止された画像を得ることができるという利点がある。 As described above, according to the present embodiment, each of the R, G, and B laser beams emitted from the scope 2 is a combined light of two polarized lights whose light amounts are equal and whose polarization directions are orthogonal to each other. Therefore, the surface reflectances of the R, G, and B laser beams when reflected by the reflection surface are equal to each other, and there is no change in the balance of intensities among the R, G, and B signal beams. Furthermore, since two polarizations orthogonal to each other are multiplexed, reflected light with a constant intensity is received regardless of the orientation of the reflection surface. Therefore, there is an advantage that it is possible to obtain an image in which the color tone of the subject is accurately reproduced and in which the variation in brightness due to the difference in the direction of the reflecting surface is prevented.
 また、本実施形態によれば、結合器6から出力されるR、G、Bのレーザ光の各々が相互に直交する2つの偏光の合波光であることによって、照明ファイバ8の引き回しが変化したとしても、反射によるR、G、Bの信号光間の強度のバランスおよび反射面の向き毎の信号光の強度バランスが変化することがないという利点がある。
 これは、照明ファイバ8の引き回しが変化したとしても、2つの偏光の直交状態が崩れないためである。照明ファイバ8の引き回しによる偏光状態の変化は、照明ファイバ8に加わる応力に起因する複屈折およびねじりに起因する旋光が原因である。不確定な応力およびねじりが加わる光ファイバのジョーンズマトリクスTは、下式で表される。
Further, according to the present embodiment, the routing of the illumination fiber 8 is changed because each of the R, G, and B laser beams output from the coupler 6 is a combined light of two polarized lights orthogonal to each other. Also, the intensity balance between the R, G, and B signal lights due to reflection and the intensity balance of the signal light for each direction of the reflection surface do not change.
This is because the orthogonal state of the two polarizations does not break even if the routing of the illumination fiber 8 changes. The change of the polarization state due to the routing of the illumination fiber 8 is due to the birefringence caused by the stress applied to the illumination fiber 8 and the optical rotation due to the twist. The Jones matrix T of an optical fiber to which indeterminate stress and twist are applied is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記のTは、TT=TT=Iを満たすので、ユニタリである。このことは、照明ファイバ8に入射した2つの偏光のジョーンズベクトルの複素内積は引き回しが変化しても保存されることを意味する。本実施様態のように2つの偏光が直交する場合、2つの偏光のジョーンズベクトルの複素内積はゼロであり、引き回しが変化しても直交が保たれる。 The above T is unitary because it satisfies T * T = TT * = I. This means that the complex inner product of the Jones vectors of the two polarizations incident on the illumination fiber 8 is preserved even if the routing changes. When the two polarizations are orthogonal as in this embodiment, the complex inner product of the Jones vectors of the two polarizations is zero, and the orthogonality is maintained even if the routing changes.
 本実施形態において、レーザ光の偏光方向は偏光方向調整用装置30を用いて調整される。
 具体的には、Rのレーザ光の偏光方向を調整するためには、一方のRのレーザ光を遮断した状態で他方のRのレーザ光の偏光調整部7Rを操作し、他方のRのレーザ光の偏光方向を、偏光調整用装置30による検出光量が最小または最大になる方向に調整する。レーザ光の遮断は、例えば、レーザ光を導光する光ファイバのコネクタを外すことによって行われる。次に、偏光方向調整用装置30の偏光板31を90°回転させる。次に、調整された他方のRのレーザ光を遮断した状態で一方のRのレーザ光の偏光調整部7Rを操作し、一方のRのレーザ光の偏光方向を、偏光調整用装置30による検出光量が最小または最大になる方向に調整する。これにより、2つのRのレーザ光の偏光方向が相互に直交する方向に調整される。
 GおよびBの2つのレーザ光の偏光方向も、Rのレーザ光と同じ手順で調整される。
In the present embodiment, the polarization direction of the laser light is adjusted using the polarization direction adjusting device 30.
Specifically, in order to adjust the polarization direction of the R laser beam, the polarization adjusting unit 7R of the other R laser beam is operated in a state in which one R laser beam is blocked, and the other R laser The polarization direction of the light is adjusted in the direction in which the amount of light detected by the polarization adjustment device 30 is minimum or maximum. The blocking of the laser light is performed, for example, by removing the connector of the optical fiber that guides the laser light. Next, the polarizing plate 31 of the polarization direction adjusting device 30 is rotated by 90 °. Next, the polarization adjusting unit 7R of one R laser beam is operated in a state of blocking the other adjusted R laser beam, and the polarization direction of the one R laser beam is detected by the polarization adjusting device 30. Adjust in the direction of minimum or maximum light intensity. Thereby, the polarization directions of the two R laser beams are adjusted in directions orthogonal to each other.
The polarization directions of the two laser beams G and B are also adjusted in the same procedure as the laser beam R.
 このとき、R、G、Bのレーザ光の偏光方向は、同一であってもよいが、同一でなくてもよい。また、各分離器24R,24G,24Bによって分離された2つのレーザ光の偏光方向が明らかである場合、2つのレーザ光のうち一方の偏光方向のみを調整することによって2つのレーザ光の偏光方向を相互に直交させてもよい。 At this time, the polarization directions of the R, G, and B laser beams may be the same or may not be the same. In addition, when the polarization directions of the two laser beams separated by the respective separators 24R, 24G, and 24B are clear, the polarization directions of the two laser beams can be adjusted by adjusting only the polarization direction of one of the two laser beams. May be orthogonal to each other.
 相互に直交する2つの偏光は、理想的には光ファイバ内で相互に干渉しない。しかし、光ファイバのコアが理想的な円形ではなかったり、光ファイバの引き回し時に負荷される応力に起因する複屈折が生じたりすることにより、2つの偏光に可干渉な成分が生じることがある。分離された2つのレーザ光間の干渉が生じた場合、合波後の2つのレーザ光の強度が、分離器24R、24Gまたは24Bによって生成された2つのレーザ光の強度の単純和とは異なることがある。このような現象が問題となる場合には、分離された2つのレーザ光の一方の光路長をレーザ光のコヒーレント長以上とすることによって、分離された2つのレーザ光をインコヒーレントにしてもよい。 Two polarizations that are orthogonal to each other ideally do not interfere with each other in the optical fiber. However, if the core of the optical fiber is not ideally circular, or birefringence occurs due to the stress applied at the time of drawing the optical fiber, a coherent component may occur to the two polarizations. If interference occurs between two separated laser beams, the intensities of the two laser beams after multiplexing are different from the simple sum of the intensities of the two laser beams generated by the separators 24R, 24G or 24B. Sometimes. If such a phenomenon is a problem, the two separated laser beams may be made incoherent by making the optical path length of one of the two separated laser beams longer than the coherent length of the laser beam. .
 本実施形態においては、同一色の2つのレーザ光を出力するために、光源部51が分離部24R,24G,24Bを備えることとしたが、これに代えて、図8に示されるように、各色のレーザ光源13R,13G,13Bを2つずつ備えていてもよい。図8の光走査型観察装置105において、各色の2つのレーザ光の偏光方向は偏光調整部7R,7G,7Bによって調整される。 In the present embodiment, in order to output two laser beams of the same color, the light source unit 51 is provided with the separating units 24R, 24G, and 24B, but instead, as shown in FIG. Two laser light sources 13R, 13G, and 13B of respective colors may be provided. In the light scanning observation apparatus 105 of FIG. 8, the polarization directions of the two laser beams of each color are adjusted by the polarization adjustment units 7R, 7G, and 7B.
 光走査型観察装置105は、偏光調整部7R,7G,7Bを備えず、同一色の2つのレーザ光源13R,13G,13Bから相互に直交する偏光方向を有するレーザ光を出力してもよい。
 このような光走査型観察装置の偏光方向調整方法において、レーザ光源13R,13G,13Bの出力光軸回りの回転角度によってレーザ光の偏光方向を調整する。すなわち、2つのレーザ光源13Rの少なくとの一方を出力光軸回りに回転させることによって、2つのレーザ光源13Rから出力される2つのRのレーザ光の偏光方向を相互に直交する方向に調整し、2つのレーザ光源13Rを固定する。同様にして、2つのGのレーザ光の偏光方向を相互に直交する方向に調整し、2つのレーザ光源13Gを固定する。また、2つのBのレーザ光の偏光方向を相互に直交する方向に調整し、2つのレーザ光源13Bを固定する。偏光方向の調整は、例えば、装置の組み立て時に行われる。
The light scanning observation apparatus 105 may not include the polarization adjusting units 7R, 7G, and 7B, and may output laser light having polarization directions orthogonal to each other from two laser light sources 13R, 13G, and 13B of the same color.
In the polarization direction adjustment method of such an optical scanning observation apparatus, the polarization direction of the laser light is adjusted by the rotation angle around the output optical axis of the laser light sources 13R, 13G, 13B. That is, by rotating at least one of the two laser light sources 13R about the output optical axis, the polarization directions of the two R laser beams output from the two laser light sources 13R are adjusted in directions orthogonal to each other. , Fix the two laser light sources 13R. Similarly, the polarization directions of the two G laser beams are adjusted in directions orthogonal to each other, and the two laser light sources 13G are fixed. Further, the polarization directions of the two B laser beams are adjusted in directions orthogonal to each other, and the two laser light sources 13B are fixed. Adjustment of the polarization direction is performed, for example, at the time of assembly of the device.
100 光走査型観察システム
1,101,102,103,104,105 光走査型観察装置
2 スコープ
3 制御装置本体
4 ディスプレイ
5,51 光源部
6 結合器
7R,7G,7B 偏光調整部
8 照明ファイバ
9 走査部
10 光検出部
11 画像生成部
12 制御部
13R,13G,13B レーザ光源
14 発光制御部
15 アクチュエータ
16 アクチュエータドライバ
17 光ファイバ
18 受光ファイバ
20R,20G,20B 偏光解消部
21 回転偏光板(偏光切替部)
22 4分の1波長板(波長板)
23R,23G,23B 合波部
24R,24G,24B 分離器
30 偏光方向調整用装置
31 偏光板(偏光選択部)
32 光量検出部
100 light scanning type observation system 1, 101, 102, 103, 104, 105 light scanning type observation device 2 scope 3 control device main body 4 display 5, 51 light source unit 6 coupler 7R, 7G, 7B polarization adjustment unit 8 illumination fiber 9 Scanning unit 10 Photodetection unit 11 Image generation unit 12 Control unit 13R, 13G, 13B Laser light source 14 Light emission control unit 15 Actuator 16 Actuator driver 17 Optical fiber 18 Light reception fiber 20R, 20G, 20B Depolarization unit 21 Rotational polarization plate (polarization switching Department)
22 Quarter Wave Plate (Wave Plate)
23R, 23G, 23B Combiner 24R, 24G, 24B Separator 30 Device for adjusting polarization direction 31 Polarizer (polarization selector)
32 Light quantity detector

Claims (14)

  1.  レーザ光を出力する光源部と、
     該光源部から出力された前記レーザ光の偏光方向を調整する偏光調整部と、
     該偏光調整部によって偏光方向が調整された前記レーザ光を導光し、該レーザ光を観察対象に向けて射出する光ファイバと、
     該光ファイバから射出される前記レーザ光を走査する走査部と、
     前記レーザ光の照射によって前記観察対象において発生する信号光を検出する光検出部とを備える光走査型観察装置。
    A light source unit that outputs laser light;
    A polarization adjustment unit that adjusts the polarization direction of the laser beam output from the light source unit;
    An optical fiber for guiding the laser light whose polarization direction has been adjusted by the polarization adjustment unit and emitting the laser light toward an observation target;
    A scanning unit for scanning the laser beam emitted from the optical fiber;
    And a light detection unit configured to detect signal light generated in the observation target by the irradiation of the laser light.
  2.  前記偏光調整部と前記走査部との間に設けられ、前記レーザ光の偏光方向を第1の方向と第2の方向との間で切り替える偏光切替部と、
     前記光検出部によって検出された前記信号光に基づいて前記観察対象の画像を生成する画像生成部とを備え、
     該画像生成部が、前記レーザ光の偏光方向が前記第1の方向であるときに第1の画像を生成し、前記レーザ光の偏光方向が前記第2の方向であるときに第2の画像を生成する請求項1に記載の光走査型観察装置。
    A polarization switching unit provided between the polarization adjusting unit and the scanning unit and switching the polarization direction of the laser light between a first direction and a second direction;
    An image generation unit configured to generate an image of the observation target based on the signal light detected by the light detection unit;
    The image generation unit generates a first image when the polarization direction of the laser light is the first direction, and a second image when the polarization direction of the laser light is the second direction The optical scanning observation apparatus according to claim 1, which generates
  3.  前記画像生成部が、前記第1の画像と前記第2の画像とを合成して合成画像を生成する請求項2に記載の光走査型観察装置。 The optical scanning observation apparatus according to claim 2, wherein the image generation unit combines the first image and the second image to generate a combined image.
  4.  前記光ファイバが、偏光保持ファイバである請求項1から請求項3のいずれかに記載の光走査型観察装置。 The optical scanning observation apparatus according to any one of claims 1 to 3, wherein the optical fiber is a polarization maintaining fiber.
  5.  前記光ファイバと前記観察対象との間に波長板を備え、該波長板は、前記光ファイバから入射した前記レーザ光を円偏光または楕円偏光のレーザ光に変換する請求項1から請求項4のいずれかに記載の光走査型観察装置。 A wavelength plate is provided between the optical fiber and the observation target, and the wavelength plate converts the laser beam incident from the optical fiber into laser light of circular polarization or elliptical polarization. The light scanning observation apparatus according to any one of the above.
  6.  前記光源部が、同一色の2つのレーザ光を出力し、
     前記偏光調整部が、前記同一色の2つのレーザ光の偏光方向を相互に直交する方向に調整し、
     前記偏光調整部によって調整された前記同一色の2つのレーザ光を合波する合波部をさらに備える請求項1から請求項4のいずれかに記載の光走査型観察装置。
    The light source unit outputs two laser beams of the same color,
    The polarization adjusting unit adjusts polarization directions of the two laser beams of the same color in directions orthogonal to each other,
    The optical scanning observation apparatus according to any one of claims 1 to 4, further comprising: a combining unit configured to combine the two laser beams of the same color adjusted by the polarization adjusting unit.
  7.  前記光源部が、赤、緑および青のレーザ光をそれぞれ出力する3つのレーザ光源を備え、
     前記偏光調整部が、前記赤、緑および青のレーザ光のうち少なくとも1つの偏光方向を調整する請求項1から請求項6のいずれかに記載の光走査型観察装置。
    The light source unit includes three laser light sources that respectively output red, green and blue laser light,
    The optical scanning observation apparatus according to any one of claims 1 to 6, wherein the polarization adjusting unit adjusts the polarization direction of at least one of the red, green and blue laser beams.
  8.  前記光源部が、複数の前記レーザ光を出力し、
     前記偏光調整部が、前記複数のレーザ光の内、少なくとも2つの偏光方向を相互に同一の方向に調整する請求項1から請求項7のいずれかに記載の光走査型観察装置。
    The light source unit outputs a plurality of the laser beams,
    The optical scanning observation apparatus according to any one of claims 1 to 7, wherein the polarization adjusting unit adjusts at least two polarization directions of the plurality of laser beams in the same direction.
  9.  2つのレーザ光源を備え、前記2つのレーザ光源が、相互に直交する偏光方向を有する同一色の2つのレーザ光を出力する光源部と、
     該光源部から出力された前記2つのレーザ光を合波する合波部と、
     該合波部によって合波された前記2つのレーザ光を導光し、該2つのレーザ光を観察対象に向けて射出する光ファイバと、
     該光ファイバから射出される前記2つのレーザ光を走査する走査部と、
     前記2つのレーザ光の照射によって前記観察対象において発生する信号光を検出する光検出部とを備える光走査型観察装置。
    A light source unit comprising two laser light sources, wherein the two laser light sources output two laser lights of the same color having polarization directions orthogonal to each other;
    A combining unit that combines the two laser beams output from the light source unit;
    An optical fiber for guiding the two laser beams combined by the combining unit and emitting the two laser beams toward an observation target;
    A scanning unit that scans the two laser beams emitted from the optical fiber;
    And a light detection unit configured to detect signal light generated in the observation target by the irradiation of the two laser lights.
  10.  レーザ光を出力する光源部と、
     該光源部から出力された前記レーザ光を導光し、該レーザ光を観察対象に向けて射出する光ファイバと、
     前記レーザ光の偏光を解消する偏光解消部と、
     該偏光解消部によって偏光が解消され前記光ファイバから射出される前記レーザ光を走査する走査部と、
     前記レーザ光の照射によって前記観察対象において発生する信号光を検出する光検出部とを備える光走査型観察装置。
    A light source unit that outputs laser light;
    An optical fiber for guiding the laser light output from the light source unit and emitting the laser light toward an observation target;
    A depolarizer configured to depolarize the laser light;
    A scanning unit that scans the laser beam emitted from the optical fiber by depolarization by the depolarization unit;
    And a light detection unit configured to detect signal light generated in the observation target by the irradiation of the laser light.
  11.  請求項1から請求項8のいずれかに記載の光走査型観察装置と、
     該光走査型観察装置から射出される前記レーザ光の偏光方向の調整に使用される偏光方向調整用装置とを備え、
     該偏光方向調整用装置が、
     前記光走査型観察装置から射出された前記レーザ光の内、所定の方向の偏光成分を選択する偏光選択部と、
     該偏光選択部によって選択された前記所定の方向の偏光成分の光量を検出する光量検出部とを備える光走査型観察システム。
    An optical scanning observation apparatus according to any one of claims 1 to 8.
    A polarization direction adjusting device used to adjust the polarization direction of the laser beam emitted from the light scanning observation device;
    The device for adjusting the polarization direction is
    A polarization selection unit for selecting a polarization component in a predetermined direction among the laser beams emitted from the light scanning observation device;
    And a light amount detection unit for detecting a light amount of the polarization component in the predetermined direction selected by the polarization selection unit.
  12.  前記偏光調整部を制御する制御部を備え、
     該制御部は、前記偏光調整部を制御することによって、前記レーザ光の偏光方向を、前記光量検出部によって検出される光量が最大または最小になる方向に調整する請求項11に記載の光走査型観察システム。
    A control unit that controls the polarization adjusting unit;
    12. The light scanning according to claim 11, wherein the control unit adjusts the polarization direction of the laser beam to a direction in which the light amount detected by the light amount detection unit becomes maximum or minimum by controlling the polarization adjusting unit. Type observation system.
  13.  前記偏光選択部が、前記偏光調整部と前記光量検出部との間に配置される請求項11または請求項12に記載の光走査型観察システム。 The optical scanning observation system according to claim 11 or 12, wherein the polarization selection unit is disposed between the polarization adjustment unit and the light amount detection unit.
  14.  光走査型観察装置から射出されるレーザ光の偏光方向を調整する偏光方向調整方法であって、
     レーザ光を射出し、
     射出された前記レーザ光の偏光方向を検出し、
     前記光走査型観察装置から射出されるレーザ光の偏光方向を所定の方向に調整する偏光方向調整方法。
    A polarization direction adjusting method for adjusting the polarization direction of laser light emitted from a light scanning observation apparatus, comprising:
    Emit a laser beam,
    Detecting the polarization direction of the emitted laser beam;
    The polarization direction adjusting method for adjusting the polarization direction of the laser beam emitted from the light scanning observation apparatus to a predetermined direction.
PCT/JP2018/027833 2017-07-26 2018-07-25 Optical scanning observation device, optical scanning observation system and polarization direction adjustment method for optical scanning observation device WO2019022114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/027009 WO2019021382A1 (en) 2017-07-26 2017-07-26 Optical scanning observation device, optical scanning observation system, and method for adjusting polarization direction for optical scanning observation device
JPPCT/JP2017/027009 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019022114A1 true WO2019022114A1 (en) 2019-01-31

Family

ID=65039527

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/027009 WO2019021382A1 (en) 2017-07-26 2017-07-26 Optical scanning observation device, optical scanning observation system, and method for adjusting polarization direction for optical scanning observation device
PCT/JP2018/027833 WO2019022114A1 (en) 2017-07-26 2018-07-25 Optical scanning observation device, optical scanning observation system and polarization direction adjustment method for optical scanning observation device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027009 WO2019021382A1 (en) 2017-07-26 2017-07-26 Optical scanning observation device, optical scanning observation system, and method for adjusting polarization direction for optical scanning observation device

Country Status (1)

Country Link
WO (2) WO2019021382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532366A (en) * 2019-05-15 2022-07-14 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309311A (en) * 1989-05-25 1990-12-25 Bikoudou:Kk Reflection eliminating device for endoscope
JPH08240778A (en) * 1995-03-06 1996-09-17 Terumo Corp Stereoscopic endoscope
JP2001224015A (en) * 2000-02-07 2001-08-17 Olympus Optical Co Ltd Endoscope system and light source device
JP2002301018A (en) * 2002-02-05 2002-10-15 Olympus Optical Co Ltd Optical scanning probe device
JP2007108448A (en) * 2005-10-13 2007-04-26 Olympus Corp Microscope and microscopic observation method
JP2007263897A (en) * 2006-03-29 2007-10-11 Nikon Corp Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate
JP2008021767A (en) * 2006-07-12 2008-01-31 Nikon Corp Illuminating optical device, exposure device and manufacturing method for devices
JP2012526590A (en) * 2009-05-15 2012-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical probe with feedback correction
JP2015130910A (en) * 2014-01-09 2015-07-23 オリンパス株式会社 Scan type observation device
JP2016063928A (en) * 2014-09-24 2016-04-28 パナソニックIpマネジメント株式会社 Polarization imaging device, polarization image processing and color polarization composite mosaic filter
JP2016165478A (en) * 2004-11-02 2016-09-15 ザ ジェネラル ホスピタル コーポレイション Optical fiber rotation device for image formation of sample, optical system and method
WO2016208495A1 (en) * 2015-06-24 2016-12-29 オリンパス株式会社 Scanning-type endoscope system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309311A (en) * 1989-05-25 1990-12-25 Bikoudou:Kk Reflection eliminating device for endoscope
JPH08240778A (en) * 1995-03-06 1996-09-17 Terumo Corp Stereoscopic endoscope
JP2001224015A (en) * 2000-02-07 2001-08-17 Olympus Optical Co Ltd Endoscope system and light source device
JP2002301018A (en) * 2002-02-05 2002-10-15 Olympus Optical Co Ltd Optical scanning probe device
JP2016165478A (en) * 2004-11-02 2016-09-15 ザ ジェネラル ホスピタル コーポレイション Optical fiber rotation device for image formation of sample, optical system and method
JP2007108448A (en) * 2005-10-13 2007-04-26 Olympus Corp Microscope and microscopic observation method
JP2007263897A (en) * 2006-03-29 2007-10-11 Nikon Corp Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate
JP2008021767A (en) * 2006-07-12 2008-01-31 Nikon Corp Illuminating optical device, exposure device and manufacturing method for devices
JP2012526590A (en) * 2009-05-15 2012-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Optical probe with feedback correction
JP2015130910A (en) * 2014-01-09 2015-07-23 オリンパス株式会社 Scan type observation device
JP2016063928A (en) * 2014-09-24 2016-04-28 パナソニックIpマネジメント株式会社 Polarization imaging device, polarization image processing and color polarization composite mosaic filter
WO2016208495A1 (en) * 2015-06-24 2016-12-29 オリンパス株式会社 Scanning-type endoscope system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022532366A (en) * 2019-05-15 2022-07-14 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト device
JP7432618B2 (en) 2019-05-15 2024-02-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト device
JP7473720B2 (en) 2019-05-15 2024-04-23 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト device

Also Published As

Publication number Publication date
WO2019021382A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US20210204803A1 (en) Image capture unit in a surgical instrument
US10809519B2 (en) Increased resolution and dynamic range image capture unit in a surgical instrument and method
US9782056B2 (en) Image capture unit and method with an extended depth of field
US8684914B2 (en) Image capture unit and an imaging pipeline with enhanced color performance in a surgical instrument and method
US8764633B2 (en) Feature differentiation image capture unit and method in a surgical instrument
WO2016043107A1 (en) Endoscope system
WO2015098114A1 (en) Optical-scanning-type observation device
JP2013248319A (en) Fluorescent endoscope apparatus
JP2004029205A (en) Laser scanning microscope
TW201214014A (en) Projector
JP5571272B2 (en) Scanning endoscope device
WO2019022114A1 (en) Optical scanning observation device, optical scanning observation system and polarization direction adjustment method for optical scanning observation device
US10568495B2 (en) Scanning endoscope system
WO2012002542A1 (en) Optical members and microscope
JP2010142570A (en) Optical system of endoscope
US20170311779A1 (en) Optical scanning endoscope apparatus
JP2007127740A (en) Scan type laser microscope apparatus and microscope illumination apparatus
JP2002209839A (en) Processor of electronic endoscope apparatus using light emitting diode as light source and light source device for endoscope
WO2016098139A1 (en) Laser scanning observation device
JP2010158414A (en) Processor and apparatus of optical scanning type endoscope
JP4476060B2 (en) Light source device
WO2017109815A1 (en) Optical-scanning-type observation device and irradiation parameter adjustment method for pulsed laser light
JP2009254464A (en) Optical scanning endoscope, optical scanning endoscope processor, and optical scanning endoscope apparatus
JP2005152130A (en) Endoscope imaging system
WO2017047142A1 (en) Endoscopic device and endoscopic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP