WO2019022067A1 - Cell culture device - Google Patents

Cell culture device Download PDF

Info

Publication number
WO2019022067A1
WO2019022067A1 PCT/JP2018/027669 JP2018027669W WO2019022067A1 WO 2019022067 A1 WO2019022067 A1 WO 2019022067A1 JP 2018027669 W JP2018027669 W JP 2018027669W WO 2019022067 A1 WO2019022067 A1 WO 2019022067A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cell
culture tank
cell mass
culture solution
Prior art date
Application number
PCT/JP2018/027669
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 ▲濱▼口
玄 佐藤
慎一 坂井
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2019532632A priority Critical patent/JPWO2019022067A1/en
Publication of WO2019022067A1 publication Critical patent/WO2019022067A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present disclosure relates to cell culture devices.
  • Patent Document 1 An apparatus for observing the culture state of cells by processing an image obtained by imaging the cells in a culture vessel is known.
  • the incubator is photographed at each of the photographing positions recorded in the image position list, and the acquired image is processed to acquire the size, area, circumference, and the like of the colony.
  • Cell culture devices have been described.
  • the cell culture device described in Patent Document 1 is provided with a drive device for moving a camera or incubator for photographing at each photographing position of the incubator.
  • a drive device for moving a camera or incubator for photographing at each photographing position of the incubator.
  • it is necessary to secure a space for installing a driving device and a space for moving a camera or an incubator. For this reason, there is a possibility that a cell culture apparatus may be enlarged.
  • the present disclosure describes a cell culture device that can observe the culture state of cells without upsizing the device.
  • a cell culture apparatus includes a culture vessel for culturing cells in a culture solution, and a supply apparatus for supplying a culture solution so that the culture solution forms an ascending flow in the culture vessel, An image processing apparatus for acquiring a captured image by imaging the lower part of the culture tank, an image processing apparatus for measuring the maximum mass diameter of cell masses in the culture tank based on the captured image, and supply of a culture solution by a supply apparatus And a control device to control.
  • the culture vessel has a shape which increases as the horizontal cross-sectional area of the culture vessel goes upward.
  • the control device controls the supply device such that the supply amount of the culture solution supplied to the culture tank repeats increase and decrease per unit time when the maximum mass diameter is larger than the predetermined threshold value.
  • the culture state of cells can be observed without increasing the size of the device.
  • FIG. 1 is a view showing a schematic configuration of a cell culture apparatus according to an embodiment.
  • FIG. 2 is a flow chart showing an example of a series of processing of the largest block diameter measurement mode.
  • FIG. 3 is a flow chart showing an example of a series of processing in the block size distribution measurement mode.
  • a cell culture apparatus is a culture vessel for culturing cells in a culture solution, and a culture solution such that the culture solution forms an ascending flow in the culture vessel.
  • An imaging device for acquiring a captured image by imaging the lower part of the culture tank, an image processing device for measuring the maximum mass diameter of the cell mass in the culture tank based on the captured image, and supply
  • a controller for controlling the supply of the culture solution by the device.
  • the culture vessel has a shape which increases as the horizontal cross-sectional area of the culture vessel goes upward.
  • the control device controls the supply device such that the supply amount of the culture solution supplied to the culture tank repeats increase and decrease per unit time when the maximum mass diameter is larger than the predetermined threshold value.
  • the culture solution is supplied such that the culture solution forms an ascending flow in the culture tank. Since the horizontal cross-sectional area of the culture vessel increases as it goes upward, the flow rate of the culture solution (the speed of upflow) decreases as it goes upward. For this reason, each cell mass in the culture tank is cultured while floating at a height at which the sedimentation rate of the cell mass and the flow rate of the culture solution are in balance. That is, the cell mass is distributed such that the size of the cell mass increases as it goes downward in the culture vessel, and the size of the cell mass decreases as it goes upward in the culture bath. Therefore, the largest size of the cell mass in the culture tank can be obtained by analyzing the captured image obtained by imaging the lower part of the culture tank.
  • the cell mass in the culture tank starts to sediment by reducing or zeroing the amount of culture solution supplied to the culture tank per unit time. For this reason, since the cell mass in the culture tank moves toward the lower part of the culture tank, more cell clusters are imaged by repeatedly imaging the lower part of the culture tank after the cell mass starts to precipitate. obtain. Therefore, the size of each cell mass can be obtained by analyzing the captured image obtained by imaging the lower part of the culture vessel. As described above, by analyzing a captured image obtained by imaging the lower part of the culture tank, the size of the cell mass can be measured without imaging the entire culture tank. Therefore, since it is not necessary to move an imaging device or a culture tank, it becomes possible to observe the culture condition of a cell, without enlarging a device.
  • the cell mass is distributed such that the size of the cell mass increases toward the lower side of the culture vessel and the size of the cell mass decreases toward the upper side of the culture vessel. Therefore, the largest mass diameter of the cell mass in the culture tank can be obtained by analyzing the captured image obtained by imaging the lower part of the culture tank.
  • the flow rate of the upflow in the culture vessel decreases and the cell mass settles. Thereafter, when the supply amount of the culture solution per unit time starts to increase, the flow rate of the upflow in the culture vessel increases. At this time, the cell mass is subjected to greater shear stress because the upward flow velocity increases as it goes downward in the culture vessel. As a result, the cell mass is disrupted, and the whole cell mass diameter can be maintained at or below the threshold.
  • the control device may control the supply device such that the amount of culture solution supplied to the culture tank per unit time decreases.
  • the image processing apparatus may measure the size distribution of the cell mass in the culture tank based on the captured image. In this case, the amount of culture solution supplied to the culture tank decreases per unit time, whereby the cell mass in the culture tank starts to precipitate. For this reason, since the cell mass in the culture tank moves toward the lower part of the culture tank, more cell clusters are imaged by repeatedly imaging the lower part of the culture tank after the cell mass starts to precipitate. obtain. Therefore, by analyzing the captured image obtained by imaging the lower part of the culture tank, the distribution of the size of the cell mass in the culture tank can be obtained.
  • FIG. 1 is a view showing a schematic configuration of a cell culture apparatus according to an embodiment.
  • the cell culture apparatus 1 shown in FIG. 1 is an apparatus for culturing cells to be cultured using a liquid medium (culture solution).
  • the cell culture device 1 includes a culture tank 2, a pump 3, a camera 4, an image processing device 5, and a control device 6.
  • the culture tank 2 is a container for culturing cells in a culture solution.
  • the culture vessel 2 has a shape in which the cross-sectional area in the horizontal direction (horizontal cross-sectional area) increases upward.
  • the shape of the culture vessel 2 is an inverted truncated cone shape, but is not limited to the inverted truncated cone shape.
  • the shape of the culture vessel 2 may be an inverted cone, an inverted polygonal pyramid, or an inverted polygonal pyramid.
  • the culture solution is filled in the culture vessel 2.
  • the cell or the carrier to which the cell is attached floats in a predetermined height range.
  • the volume of the culture vessel 2 is not particularly limited, but may be, for example, about 10 mL to 10,000 mL.
  • the volume of the culture tank 2 can be appropriately selected based on the amount of cells desired to be cultured in one culture tank 2, the size of a cell mass, and the like.
  • the capacity of the culture tank 2 may be selected according to the handling property of the culture tank 2 or the like. For example, when the capacity of the culture tank 2 is about 50 mL to 500 mL, the handleability of the culture tank 2 alone is improved.
  • a circulation line L1 is connected to the lower end of the culture tank 2.
  • a circulation line L2 is connected to the upper end of the culture vessel 2.
  • Circulation line L1 and circulation line L2 connect between culture vessel 2 and pump 3, respectively.
  • Each of the circulation line L1 and the circulation line L2 is, for example, a pipe.
  • the pump 3 functions as a supply device for supplying the culture solution to the culture tank 2 so that the culture solution forms an ascending flow in the culture tank 2.
  • the pump 3 circulates (perfuses) the culture fluid by supplying the culture fluid into the culture tank 2.
  • the culture solution is supplied to the culture vessel 2 via the circulation line L1, and the culture solution is discharged from the culture vessel 2 via the circulation line L2. That is, when the pump 3 operates, the culture fluid circulates in the order of the circulation line L1, the culture tank 2, the circulation line L2, and the pump 3.
  • the culture fluid flows from the lower part 2a of the culture tank 2 to the upper part.
  • the culture tank 2, the pump 3, the circulation line L1, and the circulation line L2 are accommodated in the incubator 10.
  • the incubator 10 is a constant temperature chamber for appropriately maintaining the culture solution at a temperature according to the culture environment.
  • a window 10 a is provided on the side wall of the incubator 10.
  • the window portion 10 a is a portion where the inside of the incubator 10 can be observed from the outside of the incubator 10.
  • a transparent glass or acrylic plate is used as the window 10a.
  • the camera 4 is an imaging device which acquires a captured image by imaging the culture tank 2.
  • the camera 4 images at least the lower portion 2 a of the culture tank 2.
  • the captured image may be a still image or a moving image.
  • the camera 4 transmits the captured image to the image processing device 5.
  • a single-color background paper may be placed behind the culture vessel 2 as viewed from the camera 4. Thereby, in the captured image, the visibility of the cell mass is improved.
  • the color of the background paper may be any color different from the color of the cells in the culture tank 2, and is, for example, green.
  • the color of the background paper may be other than green.
  • the image processing device 5 is a device that measures a cell mass in the culture tank 2 based on a captured image acquired by the camera 4.
  • the measurement items include the size (cell mass diameter) of the cell mass in the culture tank 2 and the distribution (average and dispersion) of the size.
  • the cell mass diameter is an index indicating the size of the cell mass, and is, for example, the maximum value of the distance between any two points in the shape of the cell mass.
  • the cell mass diameter indicates the diameter of the cell mass.
  • the cell mass is elliptical, the cell mass diameter indicates the length of the major axis of the cell mass.
  • the image processing device 5 may estimate the total number of cells in the culture tank 2 from the distribution of the sizes of cell masses in the culture tank 2. Details of measurement of cell mass will be described later.
  • the image processing device 5 transmits measurement data to the control device 6.
  • the control device 6 is a controller that performs various controls related to the cell culture device 1. For example, the controller 6 controls the supply of the culture solution by the pump 3. The control device 6 transmits an imaging command to the camera 4 and causes the camera 4 to capture an image. The control device 6 stores the measurement data received from the image processing device 5 in a storage device (not shown). Examples of storage devices include hard disks and semiconductor memories. The controller 6 may perform temperature control of the incubator 10 and control of dissolved oxygen.
  • the control device 6 includes a central processing unit (CPU), a random access memory (RAM) and a read only memory (ROM) as a main storage device, a communication module for communicating with other devices, and an auxiliary storage such as a hard disk. It is configured as a computer including hardware such as an apparatus. The operation of these components exerts the function of the control device 6 described later.
  • the image processing device 5 is also configured as a computer similar to the control device 6.
  • the cell culture apparatus 1 may be additionally provided with a drainage line for discharging the culture solution to the outside, an introduction line for supplying a new culture solution, and the like.
  • the horizontal cross-sectional area of the culture tank 2 becomes larger as it goes upward of the culture tank 2, so the flow rate of the culture solution (the speed of upflow) decreases as it goes upward of the culture tank 2.
  • Each cell is cultured while floating at a height at which the sedimentation rate of the cells and the flow rate of the culture medium are in balance.
  • a large number of cells are supported, fixed or attached to a carrier to form an aggregate (cell mass), and the three-dimensional culture of the cells proceeds to grow the cell mass.
  • the sedimentation speed of the cell mass increases.
  • the cell mass is further sedimented, and floats at a height at which the sedimentation speed of the cell mass and the flow rate of the culture solution are in balance. For this reason, the cell mass is distributed such that the cell mass diameter of the cell mass increases as going downward to the culture tank 2 and the cell mass diameter of the cell mass decreases as going upward to the culture tank 2 .
  • FIG. 2 is a flow chart showing an example of a series of processing of the largest block diameter measurement mode.
  • the largest block size measurement mode is a mode for measuring the largest cell block size among the cell block sizes of the cell blocks present in the culture tank 2.
  • the series of processes of the largest block diameter measurement mode shown in FIG. 2 is repeatedly performed, for example, once every 30 minutes.
  • the control device 6 transmits an imaging command to the camera 4 and transmits a maximum block size measurement command to the image processing device 5.
  • the pump 3 supplies the culture solution to the culture tank 2 at a constant supply amount per unit time as usual, the cell mass of the cell mass becomes larger as it goes downward of the culture tank 2, The cell mass is distributed such that the cell mass diameter of the cell mass decreases toward the upper side of the tank 2.
  • the camera 4 receives an imaging command from the control device 6, the camera 4 captures an image of the lower portion 2 a of the culture tank 2 and transmits the captured image to the image processing device 5.
  • the image processing device 5 acquires a captured image from the camera 4 (step S11).
  • the image processing device 5 generates a difference image using the captured image and the background image stored in advance (step S12). Specifically, the image processing device 5 generates a difference image by calculating the difference between the pixel value of each pixel included in the captured image and the pixel value of the pixel of the background image corresponding to the pixel.
  • the background image is an image obtained by imaging the lower portion 2a of the culture tank 2 in which the culture solution is circulated in a state where the cells are not cultured.
  • the background image is acquired, for example, by imaging the culture tank 2 before charging the cells at the time of initial culture.
  • the image processing device 5 performs filter processing on the difference image (step S13).
  • the image processing device 5 performs, for example, noise processing and edge processing as filter processing.
  • the image processing device 5 converts the differential image subjected to the filtering process into a binarized image (step S14). Specifically, the image processing device 5 compares the pixel value of each pixel of the differential image subjected to the filtering process with a predetermined binarization threshold, and the pixel value is larger than the binarization threshold.
  • the difference image is converted into a binarized image by setting it to 0 (black) and setting it to 1 (white) if the pixel value is equal to or less than the binarization threshold.
  • the image processing apparatus 5 labels the binarized image (step S15). By this labeling, the same label number is assigned to the continuous part in the binarized image, and the background area and the area of each cell mass are extracted. Then, the image processing device 5 calculates the cell mass diameter of each cell mass (step S16). The image processing device 5 calculates, for example, the length of the major axis when the cell mass is regarded as elliptical, as the cell mass diameter, using the elliptical fitting. In elliptical fitting, the major axis may be long. Therefore, the image processing device 5 may calculate the cell mass diameter using circle fitting or rectangular fitting.
  • the image processing device 5 calculates the maximum mass diameter (step S17). Specifically, the image processing device 5 extracts the largest cell mass diameter among the cell mass diameters of all cell masses included in the captured image (binarized image), and the extracted cell mass diameter The largest block size of the cell mass in 2. Then, the image processing device 5 outputs measurement data including the largest block diameter (step S18). For example, the image processing device 5 transmits measurement data including the maximum mass diameter to the control device 6. Then, the control device 6 stores the measurement data in the storage device. In this way, the series of processes in the largest block diameter measurement mode is completed.
  • the cell block diameter of the cell block increases toward the lower side of the culture tank 2 and as the cell block diameter increases toward the upper side of the culture tank 2
  • the cell mass is distributed such that the cell mass size of the cell mass is smaller. That is, the cell mass having the largest mass diameter is suspended in the lower portion 2 a of the culture tank 2. For this reason, the largest lump diameter is obtained by analyzing the captured image obtained by imaging the lower part 2a of the culture tank 2. As shown in FIG.
  • the image processing apparatus 5 may repeat the processing of step S11 to step S17, and set the median value among the plurality of maximum block sizes obtained by the calculation of the fixed number of times as the maximum block size.
  • the image processing apparatus 5 may calculate the maximum mass diameter using an image processing method other than the above.
  • FIG. 3 is a flow chart showing an example of a series of processing in the block size distribution measurement mode.
  • the block size distribution measurement mode is a mode for measuring the distribution of cell block sizes of cell blocks present in the culture tank 2.
  • the series of processes in the block size distribution measurement mode shown in FIG. 3 is repeatedly performed, for example, at a frequency of about once a day.
  • the control device 6 stops the operation of the pump 3 (step S21).
  • the controller 6 may control the pump 3 so that the amount of culture solution supplied to the culture tank 2 decreases per unit time.
  • the flow rate of the culture solution (upflow) in the culture tank 2 starts to decrease, so the cell mass in the culture tank 2 can not float in the culture solution, and sedimentation starts.
  • the control device 6 transmits an imaging command to the camera 4 and also transmits a chunk diameter distribution measurement command to the image processing device 5.
  • the processes of step S22 to step S27 are the same as the processes of step S11 to step S16, and thus the description thereof is omitted here.
  • the image processing device 5 determines whether or not all cell aggregates have been sedimented (step S28). For example, the image processing device 5 may determine whether or not all cell clusters have been sedimented based on whether or not a circular object is present in the captured image. Specifically, the image processing device 5 determines that not all cell clusters have been sedimented when a circular object is present in the captured image, and all cells are present when no circular object is present in the captured image. Determine that the mass has settled. In addition, the image processing device 5 may determine whether all the cell clusters have been sedimented or not based on the elapsed time from the start of the cell mass sedimentation.
  • the image processing device 5 determines that not all cell aggregates have been sedimented when a predetermined time has not elapsed since receiving the mass diameter distribution measurement command, and the mass diameter distribution measurement command It is determined that all cell clusters have sedimented when a predetermined time has elapsed since the reception of.
  • the predetermined time is a time required for settling of all cell masses, and is previously measured and set.
  • step S28 When it is determined in step S28 that the image processing apparatus 5 does not mean that all cell clusters have been sedimented (step S28; NO), the process of step S22 to step S28 is performed again.
  • the image processing device 5 calculates, for each of the plurality of captured images, the diameter of the cell mass of each cell mass included in the captured image. At this time, the image processing device 5 calculates one cell block diameter for the same cell block existing over two or more captured images by sequentially tracking each cell block. Tracking is performed, for example, by the Mean-shift method.
  • step S28 when it is determined in step S28 that the image processing apparatus 5 determines that all the cell masses have been sedimented (step S28; YES), the image processing apparatus 5 outputs measurement data including cell mass size (mass size distribution) of each cell mass (Ste S29).
  • the image processing device 5 transmits measurement data including the cell mass diameter (mass diameter distribution) of each cell mass to the control device 6.
  • the control device 6 stores the measurement data in the storage device.
  • the control device 6 resumes the operation of the pump (step S30). Specifically, the control device 6 controls the pump 3 to return the flow rate of the culture solution (upflow) in the culture tank 2 to the state before the execution of the mass distribution measurement mode. Then, the series of processing in the mass distribution measurement mode ends.
  • the flow rate of the pump 3 is decreased or made zero at the start of measurement, and thus the cell mass in the culture tank 2 starts to precipitate. Therefore, since all cell clusters in the culture tank 2 reach the lower part 2a of the culture tank 2, by imaging the lower part 2a of the culture tank 2 from the start of sedimentation to the end of sedimentation, All cell masses can be imaged. For this reason, by analyzing a plurality of captured images obtained by imaging the lower portion 2a of the culture tank 2, cell mass diameters (mass diameter distribution) of all cell masses can be obtained.
  • the culture solution is supplied such that the culture solution forms an ascending flow in the culture tank 2.
  • the flow rate of the culture solution decreases as it goes upward.
  • each cell in the culture tank 2 is cultured while floating at a height at which the settling speed of the cells and the flow rate of the culture solution are balanced. That is, the cell mass (cell mass diameter) becomes larger as it goes downward in the culture tank 2, and the cell mass size (cell mass diameter) becomes smaller as it goes upward in the culture tank The mass is distributed. Therefore, by analyzing the captured image obtained by imaging the lower portion 2a of the culture tank 2, the maximum size (maximum mass diameter) of the cell mass in the culture tank 2 can be obtained.
  • the cell mass in the culture tank 2 starts to be sedimented by reducing or zeroing the supply amount of the culture solution supplied to the culture tank 2 per unit time. For this reason, since the cell mass in the culture tank 2 moves toward the lower part 2a of the culture tank 2, more cells can be collected by repeatedly imaging the lower part 2a of the culture tank 2 after sedimentation starts. Cell clusters can be imaged. Therefore, by analyzing the captured image obtained by imaging the lower part 2a of the culture tank 2, the size of each cell mass can be obtained, and the mass diameter distribution can be obtained.
  • the size of the cell mass in the present embodiment, the maximum mass diameter
  • mass size distribution can be measured. Therefore, since it is not necessary to move the camera 4 or the culture tank 2, it becomes possible to observe the culture state of cells without upsizing the apparatus. Moreover, since it is not necessary to move the camera 4 or the culture tank 2, it is possible to reduce the number of components and to reduce the manufacturing cost and the maintenance cost.
  • the camera 4 does not need to image the whole culture tank 2, and should just image at least the lower part 2a of the culture tank 2. Therefore, a high-performance (high resolution and wide angle) camera may not be used as the camera 4.
  • the type of cells cultured by the cell culture apparatus 1 is not particularly limited.
  • stem cells and the like in animals are cultured.
  • a culture solution to be a culture medium in cell culture is appropriately selected according to the type of cells to be cultured.
  • the camera 4, the image processing device 5, and the control device 6 are disposed outside the incubator 10.
  • some or all of the camera 4, the image processing device 5, and the control device 6 are incubators. It may be arranged inside of ten.
  • the pump 3, the circulation line L 1, and part or all of the circulation line L 2 may be disposed outside the incubator 10.
  • the image processing device 5 and the control device 6 are configured by different computers, but the image processing device 5 and the control device 6 may be configured by one computer.
  • the cell mass diameter and the distribution of the cell mass diameter are measured, but the measurement items are not limited to these.
  • Cell mass shape, roundness, aspect ratio, circularity, and area may be measured.
  • the image processing device 5 may learn the image of the cell mass to be measured by a model such as a neural network and extract the cell mass region from the captured image.
  • the controller 6 may control the pump 3 based on the measurement data. For example, if a large cell mass is generated in the lower part 2a of the culture tank 2, the whole culture may be adversely affected. Therefore, the control device 6 may control the pump 3 by comparing the maximum mass diameter measured by the image processing device 5 with a predetermined threshold value. Specifically, the control device 6 controls the pump 3 to supply the culture solution to the culture tank 2 at a constant supply amount per unit time when the maximum mass diameter is equal to or less than the threshold value. On the other hand, when the maximum mass diameter is larger than the threshold, the control device 6 controls the pump 3 so that the supply amount of the culture solution supplied to the culture tank 2 per unit time repeats increase and decrease with time. .
  • the threshold is, for example, 500 ⁇ m.
  • the control device 6 controls the pump 3 so that the driving time for turning on the pump 3 and the stopping time for turning off the pump 3 are alternately repeated. Then, the control device 6 controls the pump 3 to supply the culture solution to the culture tank 2 at a constant supply amount per unit time when the maximum mass diameter becomes equal to or less than the threshold. Thereby, when the pump 3 is stopped, the amount of supply of the culture solution per unit time decreases, so that the flow rate of the culture solution in the culture tank 2 is reduced, and the cell mass is sedimented. Thereafter, when the pump 3 is driven, the supply amount of the culture solution per unit time starts to increase, and the flow rate of the culture solution in the culture tank 2 increases.
  • each cell mass is sedimented at a position lower than the height at which the cell mass is suspended during normal operation. Then, as the flow rate of the culture solution increases toward the lower side of the culture tank 2, each cell mass is subjected to a shear stress larger than that during normal operation. As a result, the cell mass is disrupted, and the whole cell mass diameter can be maintained at or below the threshold.
  • the controller 6 may control the pump 3 so that the supply amount of the culture solution supplied to the culture tank 2 is increased per unit time in order to apply a larger shear stress to the cell mass than during normal operation.
  • the pump 3 may be controlled so that the amount of culture solution supplied to the culture tank 2 per unit time changes sinusoidally.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This cell culture device comprises: a culture tank for culturing cells in a culture solution; a supply device for supplying the culture solution such that the culture solution forms an upward current in the culture tank; an imaging device for imaging a lower part of the culture tank to acquire a captured image; an image processing device for measuring the maximum mass diameter of a cell mass in the culture tank on the basis of the captured image; and a control device for controlling the supply of the culture solution by the supply device. The culture tank has a shape where the horizontal cross-sectional area of the culture tank increases going upward. The control device, in a case where the maximum mass diameter is greater than a predetermined threshold, controls the supply device such that the supply amount of the culture solution supplied to the culture tank per unit time is repeatedly increased and decreased.

Description

細胞培養装置Cell culture device
 本開示は、細胞培養装置に関する。 The present disclosure relates to cell culture devices.
 培養器内の細胞を撮像することによって得られた画像を処理することによって、細胞の培養状態を観察する装置が知られている。例えば、特許文献1には、画像位置リストに記録された撮影位置のそれぞれで培養器を撮影し、取得された画像を処理することで、コロニーの大きさ、面積、及び周囲長等を取得する細胞培養装置が記載されている。 An apparatus for observing the culture state of cells by processing an image obtained by imaging the cells in a culture vessel is known. For example, in Patent Document 1, the incubator is photographed at each of the photographing positions recorded in the image position list, and the acquired image is processed to acquire the size, area, circumference, and the like of the colony. Cell culture devices have been described.
特開2005-295818号公報JP 2005-295818 A
 特許文献1に記載の細胞培養装置では、培養器の各撮影位置で撮影するために、カメラ又は培養器を移動する駆動装置が設けられる。この細胞培養装置では、駆動装置を設置するためのスペース、及びカメラ又は培養器を移動するためのスペースを確保する必要がある。このため、細胞培養装置が大型化するおそれがある。 The cell culture device described in Patent Document 1 is provided with a drive device for moving a camera or incubator for photographing at each photographing position of the incubator. In this cell culture apparatus, it is necessary to secure a space for installing a driving device and a space for moving a camera or an incubator. For this reason, there is a possibility that a cell culture apparatus may be enlarged.
 本開示は、装置を大型化することなく、細胞の培養状態を観察可能な細胞培養装置を説明する。 The present disclosure describes a cell culture device that can observe the culture state of cells without upsizing the device.
 本開示の一側面に係る細胞培養装置は、培養液中で細胞の培養を行うための培養槽と、培養槽内で培養液が上昇流を形成するように培養液を供給する供給装置と、培養槽の下部を撮像することで撮像画像を取得する撮像装置と、撮像画像に基づいて、培養槽内の細胞塊の最大塊径を測定する画像処理装置と、供給装置による培養液の供給を制御する制御装置と、を備える。培養槽は、培養槽の水平断面積が上方に向かうにつれて増加する形状を有する。制御装置は、最大塊径が予め定められた閾値よりも大きい場合に、単位時間当たりに培養槽に供給される培養液の供給量が増減を繰り返すように供給装置を制御する。 A cell culture apparatus according to one aspect of the present disclosure includes a culture vessel for culturing cells in a culture solution, and a supply apparatus for supplying a culture solution so that the culture solution forms an ascending flow in the culture vessel, An image processing apparatus for acquiring a captured image by imaging the lower part of the culture tank, an image processing apparatus for measuring the maximum mass diameter of cell masses in the culture tank based on the captured image, and supply of a culture solution by a supply apparatus And a control device to control. The culture vessel has a shape which increases as the horizontal cross-sectional area of the culture vessel goes upward. The control device controls the supply device such that the supply amount of the culture solution supplied to the culture tank repeats increase and decrease per unit time when the maximum mass diameter is larger than the predetermined threshold value.
 本開示によれば、装置を大型化することなく、細胞の培養状態を観察することができる。 According to the present disclosure, the culture state of cells can be observed without increasing the size of the device.
図1は、一実施形態に係る細胞培養装置の概略構成を示す図である。FIG. 1 is a view showing a schematic configuration of a cell culture apparatus according to an embodiment. 図2は、最大塊径測定モードの一連の処理の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of a series of processing of the largest block diameter measurement mode. 図3は、塊径分布測定モードの一連の処理の一例を示すフローチャートである。FIG. 3 is a flow chart showing an example of a series of processing in the block size distribution measurement mode.
[1]実施形態の概要
 本開示の一側面に係る細胞培養装置は、培養液中で細胞の培養を行うための培養槽と、培養槽内で培養液が上昇流を形成するように培養液を供給する供給装置と、培養槽の下部を撮像することで撮像画像を取得する撮像装置と、撮像画像に基づいて、培養槽内の細胞塊の最大塊径を測定する画像処理装置と、供給装置による培養液の供給を制御する制御装置と、を備える。培養槽は、培養槽の水平断面積が上方に向かうにつれて増加する形状を有する。制御装置は、最大塊径が予め定められた閾値よりも大きい場合に、単位時間当たりに培養槽に供給される培養液の供給量が増減を繰り返すように供給装置を制御する。
[1] Outline of Embodiment A cell culture apparatus according to one aspect of the present disclosure is a culture vessel for culturing cells in a culture solution, and a culture solution such that the culture solution forms an ascending flow in the culture vessel. , An imaging device for acquiring a captured image by imaging the lower part of the culture tank, an image processing device for measuring the maximum mass diameter of the cell mass in the culture tank based on the captured image, and supply And a controller for controlling the supply of the culture solution by the device. The culture vessel has a shape which increases as the horizontal cross-sectional area of the culture vessel goes upward. The control device controls the supply device such that the supply amount of the culture solution supplied to the culture tank repeats increase and decrease per unit time when the maximum mass diameter is larger than the predetermined threshold value.
 この細胞培養装置では、培養槽内で培養液が上昇流を形成するように培養液が供給される。培養槽の水平断面積が上方に向かうにつれて増加するので、培養液の流速(上昇流の速度)は、培養槽の上方に向かうにつれて減少する。このため、培養槽内の各細胞塊は、細胞塊の沈降速度と培養液の流速とがつり合った高さで浮遊しながら培養される。つまり、培養槽の下方に向かうにつれて、細胞塊の大きさは大きくなり、培養槽の上方に向かうにつれて、細胞塊の大きさは小さくなるように、細胞塊は分布している。したがって、培養槽の下部を撮像することで得られた撮像画像を解析することで、培養槽内の細胞塊の最大の大きさが得られる。また、単位時間当たりに培養槽に供給される培養液の供給量を減少するか、又はゼロにすることによって、培養槽内の細胞塊が沈降を開始する。このため、培養槽内の細胞塊が、培養槽の下部に向かって移動するので、細胞塊が沈降を開始してから培養槽の下部を繰り返し撮像することで、より多くの細胞塊が撮像され得る。したがって、培養槽の下部を撮像することで得られた撮像画像を解析することで、各細胞塊の大きさが得られる。このように、培養槽の下部を撮像することで得られた撮像画像を解析することで、培養槽全体を撮像することなく、細胞塊の大きさを測定することができる。よって、撮像装置又は培養槽を移動する必要がないので、装置を大型化することなく、細胞の培養状態を観察することが可能となる。 In this cell culture apparatus, the culture solution is supplied such that the culture solution forms an ascending flow in the culture tank. Since the horizontal cross-sectional area of the culture vessel increases as it goes upward, the flow rate of the culture solution (the speed of upflow) decreases as it goes upward. For this reason, each cell mass in the culture tank is cultured while floating at a height at which the sedimentation rate of the cell mass and the flow rate of the culture solution are in balance. That is, the cell mass is distributed such that the size of the cell mass increases as it goes downward in the culture vessel, and the size of the cell mass decreases as it goes upward in the culture bath. Therefore, the largest size of the cell mass in the culture tank can be obtained by analyzing the captured image obtained by imaging the lower part of the culture tank. In addition, the cell mass in the culture tank starts to sediment by reducing or zeroing the amount of culture solution supplied to the culture tank per unit time. For this reason, since the cell mass in the culture tank moves toward the lower part of the culture tank, more cell clusters are imaged by repeatedly imaging the lower part of the culture tank after the cell mass starts to precipitate. obtain. Therefore, the size of each cell mass can be obtained by analyzing the captured image obtained by imaging the lower part of the culture vessel. As described above, by analyzing a captured image obtained by imaging the lower part of the culture tank, the size of the cell mass can be measured without imaging the entire culture tank. Therefore, since it is not necessary to move an imaging device or a culture tank, it becomes possible to observe the culture condition of a cell, without enlarging a device.
 上述のように、培養槽の下方に向かうにつれて、細胞塊の大きさは大きくなり、培養槽の上方に向かうにつれて、細胞塊の大きさは小さくなるように、細胞塊は分布している。したがって、培養槽の下部を撮像することで得られた撮像画像を解析することで、培養槽内のうちの細胞塊の最大塊径を得ることができる。 As described above, the cell mass is distributed such that the size of the cell mass increases toward the lower side of the culture vessel and the size of the cell mass decreases toward the upper side of the culture vessel. Therefore, the largest mass diameter of the cell mass in the culture tank can be obtained by analyzing the captured image obtained by imaging the lower part of the culture tank.
 培養液の単位時間当たりの供給量が減少すると、培養槽内の上昇流の流速が低下し、細胞塊が沈降する。その後、培養液の単位時間当たりの供給量が増加に転じると、培養槽内の上昇流の流速が増加する。このとき、培養槽の下方に向かうにつれて、上昇流の流速が大きくなるので、細胞塊はより大きなせん断応力を受けることになる。その結果、細胞塊が破砕され、全体の細胞塊径を閾値以下に維持することが可能となる。 When the amount of culture solution supplied per unit time decreases, the flow rate of the upflow in the culture vessel decreases and the cell mass settles. Thereafter, when the supply amount of the culture solution per unit time starts to increase, the flow rate of the upflow in the culture vessel increases. At this time, the cell mass is subjected to greater shear stress because the upward flow velocity increases as it goes downward in the culture vessel. As a result, the cell mass is disrupted, and the whole cell mass diameter can be maintained at or below the threshold.
 制御装置は、単位時間当たりに培養槽に供給される培養液の供給量が減少するように供給装置を制御してもよい。画像処理装置は、撮像画像に基づいて、培養槽内の細胞塊の大きさの分布を測定してもよい。この場合、単位時間当たりに培養槽に供給される培養液の供給量が減少することによって、培養槽内の細胞塊が沈降を開始する。このため、培養槽内の細胞塊が、培養槽の下部に向かって移動するので、細胞塊が沈降を開始してから培養槽の下部を繰り返し撮像することで、より多くの細胞塊が撮像され得る。したがって、培養槽の下部を撮像することで得られた撮像画像を解析することで、培養槽内の細胞塊の大きさの分布を得ることができる。 The control device may control the supply device such that the amount of culture solution supplied to the culture tank per unit time decreases. The image processing apparatus may measure the size distribution of the cell mass in the culture tank based on the captured image. In this case, the amount of culture solution supplied to the culture tank decreases per unit time, whereby the cell mass in the culture tank starts to precipitate. For this reason, since the cell mass in the culture tank moves toward the lower part of the culture tank, more cell clusters are imaged by repeatedly imaging the lower part of the culture tank after the cell mass starts to precipitate. obtain. Therefore, by analyzing the captured image obtained by imaging the lower part of the culture tank, the distribution of the size of the cell mass in the culture tank can be obtained.
[2]実施形態の例示
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。
[2] Example of Embodiment Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
 図1は、一実施形態に係る細胞培養装置の概略構成を示す図である。図1に示される細胞培養装置1は、液体の培地(培養液)を用いて培養対象である細胞を培養するための装置である。細胞培養装置1は、培養槽2と、ポンプ3と、カメラ4と、画像処理装置5と、制御装置6と、を備える。 FIG. 1 is a view showing a schematic configuration of a cell culture apparatus according to an embodiment. The cell culture apparatus 1 shown in FIG. 1 is an apparatus for culturing cells to be cultured using a liquid medium (culture solution). The cell culture device 1 includes a culture tank 2, a pump 3, a camera 4, an image processing device 5, and a control device 6.
 培養槽2は、培養液中で細胞の培養を行うための容器である。培養槽2は、水平方向での断面積(水平断面積)が上方に向かうにつれて増加する形状を有している。本実施形態では、培養槽2の形状は、逆円錐台状であるが、逆円錐台状には限定されない。例えば、培養槽2の形状は、逆円錐状、逆多角錐状、又は逆多角錐台状であってもよい。培養槽2の内部には、培養液が満たされる。また、培養槽2内では、細胞又は細胞が付着した担体が所定の高さ範囲で浮遊する。 The culture tank 2 is a container for culturing cells in a culture solution. The culture vessel 2 has a shape in which the cross-sectional area in the horizontal direction (horizontal cross-sectional area) increases upward. In the present embodiment, the shape of the culture vessel 2 is an inverted truncated cone shape, but is not limited to the inverted truncated cone shape. For example, the shape of the culture vessel 2 may be an inverted cone, an inverted polygonal pyramid, or an inverted polygonal pyramid. The culture solution is filled in the culture vessel 2. Moreover, in the culture tank 2, the cell or the carrier to which the cell is attached floats in a predetermined height range.
 培養槽2の容量は特に限定されないが、例えば、10mL~10,000mL程度であってもよい。培養槽2の容量は、1つの培養槽2において培養したい細胞の量又は細胞塊の大きさ等に基づいて適宜選択され得る。培養槽2の容量は、培養槽2の取り扱い性等に応じて選択されてもよい。例えば、培養槽2の容量が50mL~500mL程度である場合には、培養槽2単体での取り扱い性が向上する。 The volume of the culture vessel 2 is not particularly limited, but may be, for example, about 10 mL to 10,000 mL. The volume of the culture tank 2 can be appropriately selected based on the amount of cells desired to be cultured in one culture tank 2, the size of a cell mass, and the like. The capacity of the culture tank 2 may be selected according to the handling property of the culture tank 2 or the like. For example, when the capacity of the culture tank 2 is about 50 mL to 500 mL, the handleability of the culture tank 2 alone is improved.
 培養槽2の下端には、循環ラインL1が接続される。培養槽2の上端には、循環ラインL2が接続される。循環ラインL1及び循環ラインL2はそれぞれ、培養槽2とポンプ3との間を連結する。循環ラインL1及び循環ラインL2のそれぞれは、例えば、配管である。 A circulation line L1 is connected to the lower end of the culture tank 2. A circulation line L2 is connected to the upper end of the culture vessel 2. Circulation line L1 and circulation line L2 connect between culture vessel 2 and pump 3, respectively. Each of the circulation line L1 and the circulation line L2 is, for example, a pipe.
 ポンプ3は、培養槽2内で培養液が上昇流を形成するように、培養槽2に培養液を供給する供給装置として機能する。本実施形態では、ポンプ3は、培養槽2内に培養液を供給することで、培養液を循環(灌流)させる。ポンプ3が作動することによって、循環ラインL1を介して培養槽2に培養液が供給され、循環ラインL2を介して培養槽2から培養液が排出される。つまり、ポンプ3が作動することにより、培養液は循環ラインL1、培養槽2、循環ラインL2、及びポンプ3の順に循環する。培養槽2内では、培養液は培養槽2の下部2aから上部に向かって流れる。 The pump 3 functions as a supply device for supplying the culture solution to the culture tank 2 so that the culture solution forms an ascending flow in the culture tank 2. In the present embodiment, the pump 3 circulates (perfuses) the culture fluid by supplying the culture fluid into the culture tank 2. By operating the pump 3, the culture solution is supplied to the culture vessel 2 via the circulation line L1, and the culture solution is discharged from the culture vessel 2 via the circulation line L2. That is, when the pump 3 operates, the culture fluid circulates in the order of the circulation line L1, the culture tank 2, the circulation line L2, and the pump 3. In the culture tank 2, the culture fluid flows from the lower part 2a of the culture tank 2 to the upper part.
 培養槽2、ポンプ3、循環ラインL1、及び循環ラインL2は、インキュベータ10に収容されている。インキュベータ10は、培養液を培養環境に応じた温度に適切に維持するための恒温室である。インキュベータ10の側壁には、窓部10aが設けられている。窓部10aは、インキュベータ10の外部からインキュベータ10の内部を観察可能な部分である。窓部10aとしては、例えば、透明なガラス又はアクリル板が用いられる。 The culture tank 2, the pump 3, the circulation line L1, and the circulation line L2 are accommodated in the incubator 10. The incubator 10 is a constant temperature chamber for appropriately maintaining the culture solution at a temperature according to the culture environment. A window 10 a is provided on the side wall of the incubator 10. The window portion 10 a is a portion where the inside of the incubator 10 can be observed from the outside of the incubator 10. For example, a transparent glass or acrylic plate is used as the window 10a.
 カメラ4は、培養槽2を撮像することで撮像画像を取得する撮像装置である。カメラ4は、培養槽2の少なくとも下部2aを撮像する。本実施形態では、カメラ4は、インキュベータ10の外部に配置されているので、窓部10aを介して培養槽2を撮像する。撮像画像は、静止画像でもよく、動画像でもよい。カメラ4は、撮像画像を画像処理装置5に送信する。撮像画像の背景を統一するために、カメラ4から見て培養槽2の後ろ側に単色の背景紙が設置されてもよい。これにより、撮像画像において、細胞塊の視認性が向上する。背景紙の色は、培養槽2内の細胞の色と異なる色であればよく、例えば、緑色である。背景紙の色は、緑色以外であってもよい。 The camera 4 is an imaging device which acquires a captured image by imaging the culture tank 2. The camera 4 images at least the lower portion 2 a of the culture tank 2. In the present embodiment, since the camera 4 is disposed outside the incubator 10, the culture vessel 2 is imaged through the window 10a. The captured image may be a still image or a moving image. The camera 4 transmits the captured image to the image processing device 5. In order to unify the background of the captured image, a single-color background paper may be placed behind the culture vessel 2 as viewed from the camera 4. Thereby, in the captured image, the visibility of the cell mass is improved. The color of the background paper may be any color different from the color of the cells in the culture tank 2, and is, for example, green. The color of the background paper may be other than green.
 画像処理装置5は、カメラ4によって取得された撮像画像に基づいて、培養槽2内の細胞塊を測定する装置である。測定項目としては、培養槽2内の細胞塊の大きさ(細胞塊径)、及び大きさの分布(平均及び分散)等が挙げられる。なお、細胞塊径とは、細胞塊の大きさを表す指標であり、例えば、細胞塊の形状内における任意の2点間の距離のうちの最大値である。細胞塊が円形状である場合には、細胞塊径は、細胞塊の直径を示す。細胞塊が楕円状である場合には、細胞塊径は、細胞塊の長軸の長さを示す。画像処理装置5は、培養槽2内の細胞塊の大きさの分布から、培養槽2内の細胞総数を推定してもよい。細胞塊の測定の詳細は、後述する。画像処理装置5は、測定データを制御装置6に送信する。 The image processing device 5 is a device that measures a cell mass in the culture tank 2 based on a captured image acquired by the camera 4. The measurement items include the size (cell mass diameter) of the cell mass in the culture tank 2 and the distribution (average and dispersion) of the size. The cell mass diameter is an index indicating the size of the cell mass, and is, for example, the maximum value of the distance between any two points in the shape of the cell mass. When the cell mass is circular, the cell mass diameter indicates the diameter of the cell mass. When the cell mass is elliptical, the cell mass diameter indicates the length of the major axis of the cell mass. The image processing device 5 may estimate the total number of cells in the culture tank 2 from the distribution of the sizes of cell masses in the culture tank 2. Details of measurement of cell mass will be described later. The image processing device 5 transmits measurement data to the control device 6.
 制御装置6は、細胞培養装置1に係る各種の制御を行うコントローラである。例えば、制御装置6は、ポンプ3による培養液の供給を制御する。制御装置6は、カメラ4に撮像指令を送信し、カメラ4に撮像させる。制御装置6は、画像処理装置5から受信した測定データを不図示の記憶装置に格納する。記憶装置の例としては、ハードディスク、及び半導体メモリが挙げられる。制御装置6は、インキュベータ10の温度制御、及び溶存酸素の制御を行ってもよい。 The control device 6 is a controller that performs various controls related to the cell culture device 1. For example, the controller 6 controls the supply of the culture solution by the pump 3. The control device 6 transmits an imaging command to the camera 4 and causes the camera 4 to capture an image. The control device 6 stores the measurement data received from the image processing device 5 in a storage device (not shown). Examples of storage devices include hard disks and semiconductor memories. The controller 6 may perform temperature control of the incubator 10 and control of dissolved oxygen.
 制御装置6は、CPU(Central Processing Unit)、主記憶装置であるRAM(Random Access Memory)及びROM(Read Only Memory)、他の機器との間の通信を行う通信モジュール、並びにハードディスク等の補助記憶装置等のハードウェアを備えるコンピュータとして構成される。これらの構成要素が動作することにより、後述の制御装置6の機能が発揮される。なお、画像処理装置5も制御装置6と同様のコンピュータとして構成される。 The control device 6 includes a central processing unit (CPU), a random access memory (RAM) and a read only memory (ROM) as a main storage device, a communication module for communicating with other devices, and an auxiliary storage such as a hard disk. It is configured as a computer including hardware such as an apparatus. The operation of these components exerts the function of the control device 6 described later. The image processing device 5 is also configured as a computer similar to the control device 6.
 なお、細胞培養装置1には、培養液を外部に排出するための排液ライン、及び新たな培養液を供給するための導入ライン等が別途設けられてもよい。 The cell culture apparatus 1 may be additionally provided with a drainage line for discharging the culture solution to the outside, an introduction line for supplying a new culture solution, and the like.
 細胞培養装置1では、培養槽2の上方に向かうにつれて、培養槽2の水平断面積が大きくなるので、培養液の流速(上昇流の速度)は、培養槽2の上方に向かうにつれて減少する。各細胞は、細胞の沈降速度と培養液の流速とがつり合った高さで浮遊しながら培養される。細胞の培養によって多くの細胞が、担体に担持され、固定され、又は付着されて集合体(細胞塊)を成し、細胞の3次元的な培養が進行して細胞塊が成長する。細胞塊が成長することで細胞塊径が大きくなると、細胞塊の沈降速度が大きくなる。そして、細胞塊はさらに沈降し、細胞塊の沈降速度と培養液の流速とがつり合った高さで浮遊する。このため、培養槽2の下方に向かうにつれて、細胞塊の細胞塊径は大きくなり、培養槽2の上方に向かうにつれて、細胞塊の細胞塊径は小さくなるように、細胞塊は分布している。 In the cell culture apparatus 1, the horizontal cross-sectional area of the culture tank 2 becomes larger as it goes upward of the culture tank 2, so the flow rate of the culture solution (the speed of upflow) decreases as it goes upward of the culture tank 2. Each cell is cultured while floating at a height at which the sedimentation rate of the cells and the flow rate of the culture medium are in balance. By culturing the cells, a large number of cells are supported, fixed or attached to a carrier to form an aggregate (cell mass), and the three-dimensional culture of the cells proceeds to grow the cell mass. As the cell mass diameter increases as the cell mass grows, the sedimentation speed of the cell mass increases. Then, the cell mass is further sedimented, and floats at a height at which the sedimentation speed of the cell mass and the flow rate of the culture solution are in balance. For this reason, the cell mass is distributed such that the cell mass diameter of the cell mass increases as going downward to the culture tank 2 and the cell mass diameter of the cell mass decreases as going upward to the culture tank 2 .
 次に、図2及び図3を参照して、培養槽2内の細胞塊の測定方法について説明する。ここでは、細胞培養装置1が、最大塊径測定モードと、塊径分布測定モードと、を実施する場合について説明する。図2は、最大塊径測定モードの一連の処理の一例を示すフローチャートである。最大塊径測定モードは、培養槽2内に存在する細胞塊の細胞塊径のうち、最大の細胞塊径を測定するモードである。図2に示される最大塊径測定モードの一連の処理は、例えば、30分に1回程度の頻度で繰り返し実施される。 Next, with reference to FIG.2 and FIG.3, the measuring method of the cell mass in the culture tank 2 is demonstrated. Here, a case where the cell culture device 1 performs the maximum mass diameter measurement mode and the mass diameter distribution measurement mode will be described. FIG. 2 is a flow chart showing an example of a series of processing of the largest block diameter measurement mode. The largest block size measurement mode is a mode for measuring the largest cell block size among the cell block sizes of the cell blocks present in the culture tank 2. The series of processes of the largest block diameter measurement mode shown in FIG. 2 is repeatedly performed, for example, once every 30 minutes.
 まず、制御装置6が、カメラ4に撮像指令を送信するとともに、画像処理装置5に最大塊径測定指令を送信する。このとき、ポンプ3は通常通り、単位時間当たり一定の供給量で培養液を培養槽2に供給しているので、培養槽2の下方に向かうにつれて、細胞塊の細胞塊径は大きくなり、培養槽2の上方に向かうにつれて、細胞塊の細胞塊径は小さくなるように、細胞塊は分布している。そして、カメラ4は制御装置6から撮像指令を受信すると、培養槽2の下部2aを撮像し、撮像画像を画像処理装置5に送信する。そして、画像処理装置5は、カメラ4から撮像画像を取得する(ステップS11)。 First, the control device 6 transmits an imaging command to the camera 4 and transmits a maximum block size measurement command to the image processing device 5. At this time, since the pump 3 supplies the culture solution to the culture tank 2 at a constant supply amount per unit time as usual, the cell mass of the cell mass becomes larger as it goes downward of the culture tank 2, The cell mass is distributed such that the cell mass diameter of the cell mass decreases toward the upper side of the tank 2. When the camera 4 receives an imaging command from the control device 6, the camera 4 captures an image of the lower portion 2 a of the culture tank 2 and transmits the captured image to the image processing device 5. Then, the image processing device 5 acquires a captured image from the camera 4 (step S11).
 続いて、画像処理装置5は、撮像画像と予め記憶されている背景画像とを用いて、差分画像を生成する(ステップS12)。具体的には、画像処理装置5は、撮像画像に含まれる各画素の画素値と、当該画素に対応する背景画像の画素の画素値との差分を算出することで、差分画像を生成する。背景画像は、細胞を培養していない状態で培養液を循環させている培養槽2の下部2aを撮像することで得られた画像である。背景画像は、例えば、初期培養時において、細胞を投入する前の培養槽2を撮像することによって取得される。 Subsequently, the image processing device 5 generates a difference image using the captured image and the background image stored in advance (step S12). Specifically, the image processing device 5 generates a difference image by calculating the difference between the pixel value of each pixel included in the captured image and the pixel value of the pixel of the background image corresponding to the pixel. The background image is an image obtained by imaging the lower portion 2a of the culture tank 2 in which the culture solution is circulated in a state where the cells are not cultured. The background image is acquired, for example, by imaging the culture tank 2 before charging the cells at the time of initial culture.
 続いて、画像処理装置5は、差分画像に対してフィルタ処理を行う(ステップS13)。画像処理装置5は、例えば、フィルタ処理として、ノイズ処理、及びエッジ処理等を行う。そして、画像処理装置5は、フィルタ処理が行われた差分画像を2値化画像に変換する(ステップS14)。具体的には、画像処理装置5は、フィルタ処理が行われた差分画像の各画素の画素値と予め定められた2値化閾値とを比較し、画素値が2値化閾値よりも大きい場合には0(黒)とし、画素値が2値化閾値以下の場合には1(白)とすることで、差分画像を2値化画像に変換する。 Subsequently, the image processing device 5 performs filter processing on the difference image (step S13). The image processing device 5 performs, for example, noise processing and edge processing as filter processing. Then, the image processing device 5 converts the differential image subjected to the filtering process into a binarized image (step S14). Specifically, the image processing device 5 compares the pixel value of each pixel of the differential image subjected to the filtering process with a predetermined binarization threshold, and the pixel value is larger than the binarization threshold. The difference image is converted into a binarized image by setting it to 0 (black) and setting it to 1 (white) if the pixel value is equal to or less than the binarization threshold.
 続いて、画像処理装置5は、2値化画像に対してラベリングを行う(ステップS15)。このラベリングによって、2値化画像において連続している部分に同じラベル番号が割り振られ、背景の領域及び各細胞塊の領域が抽出される。そして、画像処理装置5は、各細胞塊の細胞塊径を算出する(ステップS16)。画像処理装置5は、例えば、楕円フィッティングを用いて、細胞塊を楕円形とみなしたときの長軸の長さを細胞塊径として算出する。なお、楕円フィッティングでは、長軸が長くなる可能性がある。このため、画像処理装置5は、円フィッティング又は矩形フィッティングを用いて、細胞塊径を算出してもよい。 Subsequently, the image processing apparatus 5 labels the binarized image (step S15). By this labeling, the same label number is assigned to the continuous part in the binarized image, and the background area and the area of each cell mass are extracted. Then, the image processing device 5 calculates the cell mass diameter of each cell mass (step S16). The image processing device 5 calculates, for example, the length of the major axis when the cell mass is regarded as elliptical, as the cell mass diameter, using the elliptical fitting. In elliptical fitting, the major axis may be long. Therefore, the image processing device 5 may calculate the cell mass diameter using circle fitting or rectangular fitting.
 続いて、画像処理装置5は、最大塊径を算出する(ステップS17)。具体的には、画像処理装置5は、撮像画像(2値化画像)に含まれるすべての細胞塊の細胞塊径のうちの最大の細胞塊径を抽出し、抽出した細胞塊径を培養槽2内の細胞塊の最大塊径とする。そして、画像処理装置5は、最大塊径を含む測定データを出力する(ステップS18)。例えば、画像処理装置5は、最大塊径を含む測定データを制御装置6に送信する。そして、制御装置6は測定データを記憶装置に記憶する。このようにして、最大塊径測定モードの一連の処理が終了する。 Subsequently, the image processing device 5 calculates the maximum mass diameter (step S17). Specifically, the image processing device 5 extracts the largest cell mass diameter among the cell mass diameters of all cell masses included in the captured image (binarized image), and the extracted cell mass diameter The largest block size of the cell mass in 2. Then, the image processing device 5 outputs measurement data including the largest block diameter (step S18). For example, the image processing device 5 transmits measurement data including the maximum mass diameter to the control device 6. Then, the control device 6 stores the measurement data in the storage device. In this way, the series of processes in the largest block diameter measurement mode is completed.
 このように、最大塊径測定モードでは、ポンプ3は通常通り作動しているので、培養槽2の下方に向かうにつれて、細胞塊の細胞塊径は大きくなり、培養槽2の上方に向かうにつれて、細胞塊の細胞塊径は小さくなるように、細胞塊は分布している。つまり、最大塊径を有する細胞塊は、培養槽2の下部2aに浮遊している。このため、培養槽2の下部2aを撮像することで得られた撮像画像を解析することで、最大塊径が得られる。 Thus, in the maximum block diameter measurement mode, since the pump 3 operates normally, the cell block diameter of the cell block increases toward the lower side of the culture tank 2 and as the cell block diameter increases toward the upper side of the culture tank 2 The cell mass is distributed such that the cell mass size of the cell mass is smaller. That is, the cell mass having the largest mass diameter is suspended in the lower portion 2 a of the culture tank 2. For this reason, the largest lump diameter is obtained by analyzing the captured image obtained by imaging the lower part 2a of the culture tank 2. As shown in FIG.
 なお、図2に示された処理では、撮像画像において細胞塊同士が重なっている場合、実際の細胞塊よりも大きい細胞塊が検出される場合がある。このため、画像処理装置5は、ステップS11~ステップS17の処理を繰り返し行い、一定回数の計算で得られた複数の最大塊径のうちの中央値を、最大塊径としてもよい。また、画像処理装置5は、上記以外の画像処理方式を用いて、最大塊径を算出してもよい。 In addition, in the process shown by FIG. 2, when cell mass overlaps in a captured image, a cell mass larger than an actual cell mass may be detected. For this reason, the image processing apparatus 5 may repeat the processing of step S11 to step S17, and set the median value among the plurality of maximum block sizes obtained by the calculation of the fixed number of times as the maximum block size. In addition, the image processing apparatus 5 may calculate the maximum mass diameter using an image processing method other than the above.
 次に、塊径分布測定モードについて説明する。図3は、塊径分布測定モードの一連の処理の一例を示すフローチャートである。塊径分布測定モードは、培養槽2内に存在する細胞塊の細胞塊径の分布を測定するモードである。図3に示される塊径分布測定モードの一連の処理は、例えば、1日に1回程度の頻度で繰り返し実施される。 Next, the block size distribution measurement mode will be described. FIG. 3 is a flow chart showing an example of a series of processing in the block size distribution measurement mode. The block size distribution measurement mode is a mode for measuring the distribution of cell block sizes of cell blocks present in the culture tank 2. The series of processes in the block size distribution measurement mode shown in FIG. 3 is repeatedly performed, for example, at a frequency of about once a day.
 まず、制御装置6が、ポンプ3の運転を停止する(ステップS21)。なお、制御装置6は、単位時間当たりに培養槽2に供給される培養液の供給量が減少するようにポンプ3を制御してもよい。これにより、培養槽2内における培養液(上昇流)の流速は減少し始めるので、培養槽2内の細胞塊は、培養液中で浮遊することができなくなり、沈降を開始する。そして、制御装置6は、カメラ4に撮像指令を送信するとともに、画像処理装置5に塊径分布測定指令を送信する。ステップS22~ステップS27の処理は、ステップS11~ステップS16の処理と同様であるので、ここでは説明を省略する。 First, the control device 6 stops the operation of the pump 3 (step S21). The controller 6 may control the pump 3 so that the amount of culture solution supplied to the culture tank 2 decreases per unit time. As a result, the flow rate of the culture solution (upflow) in the culture tank 2 starts to decrease, so the cell mass in the culture tank 2 can not float in the culture solution, and sedimentation starts. Then, the control device 6 transmits an imaging command to the camera 4 and also transmits a chunk diameter distribution measurement command to the image processing device 5. The processes of step S22 to step S27 are the same as the processes of step S11 to step S16, and thus the description thereof is omitted here.
 続いて、画像処理装置5は、すべての細胞塊が沈降したか否かを判定する(ステップS28)。例えば、画像処理装置5は、撮像画像に円形の物体が存在するか否かによって、すべての細胞塊が沈降したか否かを判定してもよい。具体的には、画像処理装置5は、撮像画像に円形の物体が存在する場合にすべての細胞塊が沈降したわけではないと判定し、撮像画像に円形の物体が存在しない場合にすべての細胞塊が沈降したと判定する。また、画像処理装置5は、細胞塊の沈降開始からの経過時間によって、すべての細胞塊が沈降したか否かを判定してもよい。具体的には、画像処理装置5は、塊径分布測定指令を受信してから所定時間が経過していない場合に、すべての細胞塊が沈降したわけではないと判定し、塊径分布測定指令を受信してから所定時間が経過した場合に、すべての細胞塊が沈降したと判定する。所定時間は、すべての細胞塊が沈降するまでに要する時間であって、予め測定されて、設定されている。 Subsequently, the image processing device 5 determines whether or not all cell aggregates have been sedimented (step S28). For example, the image processing device 5 may determine whether or not all cell clusters have been sedimented based on whether or not a circular object is present in the captured image. Specifically, the image processing device 5 determines that not all cell clusters have been sedimented when a circular object is present in the captured image, and all cells are present when no circular object is present in the captured image. Determine that the mass has settled. In addition, the image processing device 5 may determine whether all the cell clusters have been sedimented or not based on the elapsed time from the start of the cell mass sedimentation. Specifically, the image processing device 5 determines that not all cell aggregates have been sedimented when a predetermined time has not elapsed since receiving the mass diameter distribution measurement command, and the mass diameter distribution measurement command It is determined that all cell clusters have sedimented when a predetermined time has elapsed since the reception of. The predetermined time is a time required for settling of all cell masses, and is previously measured and set.
 ステップS28において、画像処理装置5は、すべての細胞塊が沈降したわけではないと判定した場合(ステップS28;NO)、ステップS22~ステップS28の処理を再び行う。なお、画像処理装置5は、複数の撮像画像のそれぞれについて、その撮像画像に含まれる各細胞塊の細胞塊径を算出する。このとき、画像処理装置5は、各細胞塊を逐次トラッキングすることにより、2以上の撮像画像に亘って存在する同じ細胞塊に対して1つの細胞塊径を算出する。トラッキングは、例えば、Mean-shift法によって実施される。 When it is determined in step S28 that the image processing apparatus 5 does not mean that all cell clusters have been sedimented (step S28; NO), the process of step S22 to step S28 is performed again. The image processing device 5 calculates, for each of the plurality of captured images, the diameter of the cell mass of each cell mass included in the captured image. At this time, the image processing device 5 calculates one cell block diameter for the same cell block existing over two or more captured images by sequentially tracking each cell block. Tracking is performed, for example, by the Mean-shift method.
 一方、ステップS28において、画像処理装置5は、すべての細胞塊が沈降したと判定した場合(ステップS28;YES)、各細胞塊の細胞塊径(塊径分布)を含む測定データを出力する(ステップS29)。例えば、画像処理装置5は、各細胞塊の細胞塊径(塊径分布)を含む測定データを制御装置6に送信する。そして、制御装置6は測定データを記憶装置に記憶する。そして、制御装置6は、ポンプの運転を再開する(ステップS30)。具体的には、制御装置6は、培養槽2内の培養液(上昇流)の流速を塊径分布測定モードの実施前の状態に戻すようにポンプ3を制御する。そして、塊径分布測定モードの一連の処理が終了する。 On the other hand, when it is determined in step S28 that the image processing apparatus 5 determines that all the cell masses have been sedimented (step S28; YES), the image processing apparatus 5 outputs measurement data including cell mass size (mass size distribution) of each cell mass ( Step S29). For example, the image processing device 5 transmits measurement data including the cell mass diameter (mass diameter distribution) of each cell mass to the control device 6. Then, the control device 6 stores the measurement data in the storage device. Then, the control device 6 resumes the operation of the pump (step S30). Specifically, the control device 6 controls the pump 3 to return the flow rate of the culture solution (upflow) in the culture tank 2 to the state before the execution of the mass distribution measurement mode. Then, the series of processing in the mass distribution measurement mode ends.
 このように、塊径分布測定モードでは、測定開始時に、ポンプ3の流量が減少され、又はゼロにされるので、培養槽2内の細胞塊が沈降を開始する。したがって、培養槽2内のすべての細胞塊が培養槽2の下部2aに到達するので、すべての細胞塊が沈降を開始してから沈降し終わるまで培養槽2の下部2aを撮像することで、すべての細胞塊が撮像され得る。このため、培養槽2の下部2aを撮像することで得られた複数の撮像画像を解析することで、すべての細胞塊の細胞塊径(塊径分布)が得られる。 As described above, in the mass distribution measurement mode, the flow rate of the pump 3 is decreased or made zero at the start of measurement, and thus the cell mass in the culture tank 2 starts to precipitate. Therefore, since all cell clusters in the culture tank 2 reach the lower part 2a of the culture tank 2, by imaging the lower part 2a of the culture tank 2 from the start of sedimentation to the end of sedimentation, All cell masses can be imaged. For this reason, by analyzing a plurality of captured images obtained by imaging the lower portion 2a of the culture tank 2, cell mass diameters (mass diameter distribution) of all cell masses can be obtained.
 なお、細胞塊が沈降し終わった後に、培養槽2の下部2aを撮像しても、細胞塊が循環ラインL1に流れ込んでいる可能性があり、すべての細胞塊を撮像することができない。また、すべての細胞塊が培養槽2の底に溜まっていたとしても、撮像画像において細胞塊同士の距離が短く、各細胞塊の輪郭を特定することが困難である。このため、すべての細胞塊が沈降を開始してから沈降し終わるまで培養槽2の下部2aを撮像することで、すべての細胞塊が観察され得る。 In addition, even if imaging the lower part 2a of the culture tank 2 after a cell mass finishes settling, a cell mass may have flowed in into the circulation line L1, and it can not image all cell masses. In addition, even if all cell clusters are accumulated at the bottom of the culture tank 2, the distance between the cell clusters is short in the captured image, and it is difficult to specify the contour of each cell cluster. Therefore, by imaging the lower portion 2a of the culture tank 2 from the start of sedimentation to the end of sedimentation, all cell masses can be observed.
 以上説明したように、細胞培養装置1では、培養槽2内で培養液が上昇流を形成するように培養液が供給される。培養槽2の水平断面積が上方に向かうにつれて増加するので、培養液の流速(上昇流の速度)は、培養槽2の上方に向かうにつれて減少する。このため、培養槽2内の各細胞は、細胞の沈降速度と培養液の流速とがつり合った高さで浮遊しながら培養される。つまり、培養槽2の下方に向かうにつれて、細胞塊の大きさ(細胞塊径)は大きくなり、培養槽の上方に向かうにつれて、細胞塊の大きさ(細胞塊径)は小さくなるように、細胞塊は分布している。したがって、培養槽2の下部2aを撮像することで得られた撮像画像を解析することで、培養槽2内のうちの細胞塊の最大の大きさ(最大塊径)を得ることができる。 As described above, in the cell culture apparatus 1, the culture solution is supplied such that the culture solution forms an ascending flow in the culture tank 2. As the horizontal cross-sectional area of the culture vessel 2 increases as it goes upward, the flow rate of the culture solution (the speed of the upflow) decreases as it goes upward. For this reason, each cell in the culture tank 2 is cultured while floating at a height at which the settling speed of the cells and the flow rate of the culture solution are balanced. That is, the cell mass (cell mass diameter) becomes larger as it goes downward in the culture tank 2, and the cell mass size (cell mass diameter) becomes smaller as it goes upward in the culture tank The mass is distributed. Therefore, by analyzing the captured image obtained by imaging the lower portion 2a of the culture tank 2, the maximum size (maximum mass diameter) of the cell mass in the culture tank 2 can be obtained.
 また、単位時間当たりに培養槽2に供給される培養液の供給量を減少するか、又はゼロにすることによって、培養槽2内の細胞塊が沈降を開始する。このため、培養槽2内の細胞塊が、培養槽2の下部2aに向かって移動するので、細胞塊が沈降を開始してから培養槽2の下部2aを繰り返し撮像することで、より多くの細胞塊が撮像され得る。したがって、培養槽2の下部2aを撮像することで得られた撮像画像を解析することで、各細胞塊の大きさを得ることができ、塊径分布を得ることができる。 In addition, the cell mass in the culture tank 2 starts to be sedimented by reducing or zeroing the supply amount of the culture solution supplied to the culture tank 2 per unit time. For this reason, since the cell mass in the culture tank 2 moves toward the lower part 2a of the culture tank 2, more cells can be collected by repeatedly imaging the lower part 2a of the culture tank 2 after sedimentation starts. Cell clusters can be imaged. Therefore, by analyzing the captured image obtained by imaging the lower part 2a of the culture tank 2, the size of each cell mass can be obtained, and the mass diameter distribution can be obtained.
 このように、培養槽2の下部2aを撮像することで得られた撮像画像を解析することで、培養槽2全体を撮像することなく、細胞塊の大きさ(本実施形態では、最大塊径及び塊径分布)を測定することができる。よって、カメラ4又は培養槽2を移動する必要がないので、装置を大型化することなく、細胞の培養状態を観察することが可能となる。また、カメラ4又は培養槽2を移動する必要がないので、構成部品を減らすことができ、製造コスト、及びメンテナンスコストを低減することが可能となる。 As described above, by analyzing a captured image obtained by imaging the lower portion 2a of the culture tank 2, without imaging the entire culture tank 2, the size of the cell mass (in the present embodiment, the maximum mass diameter) And mass size distribution) can be measured. Therefore, since it is not necessary to move the camera 4 or the culture tank 2, it becomes possible to observe the culture state of cells without upsizing the apparatus. Moreover, since it is not necessary to move the camera 4 or the culture tank 2, it is possible to reduce the number of components and to reduce the manufacturing cost and the maintenance cost.
 従来、培養槽内で培養中の細胞数を計測するために、培養槽内の細胞を一部取り出して、顕微鏡と血球算定盤とを用いた目視計測が行われている。しかし、培養槽から細胞を取り出す過程で細胞が大気と接触するために、意図しない雑菌が培養槽に混入するおそれがある。また、計測に使用した細胞を再び培養槽に戻して培養を行うことはできないので、細胞培養速度が低下してしまう。これに対して、細胞培養装置1では、撮像画像を解析することによって、細胞塊の最大塊径及び分布を測定しているので、培養槽2から細胞塊を取り出すことなく、細胞の培養状態をリアルタイムで観察することが可能となる。 Conventionally, in order to measure the number of cells in culture in a culture tank, some cells in the culture tank are taken out and visual measurement using a microscope and a hemocytometer is performed. However, in the process of removing the cells from the culture tank, unintended contaminants may contaminate the culture tank because the cells come in contact with the atmosphere. In addition, since the cells used for measurement can not be cultured again by returning them to the culture tank, the cell culture rate is reduced. On the other hand, in the cell culture apparatus 1, since the largest block diameter and distribution of the cell mass are measured by analyzing the captured image, the culture state of the cells can be obtained without taking out the cell mass from the culture tank 2. It becomes possible to observe in real time.
 また、細胞培養装置1では、カメラ4は、培養槽2全体を撮像する必要がなく、少なくとも培養槽2の下部2aを撮像すればよい。このため、カメラ4として、高性能(高解像度、及び広角)なカメラが用いられなくてもよい。 Moreover, in the cell culture apparatus 1, the camera 4 does not need to image the whole culture tank 2, and should just image at least the lower part 2a of the culture tank 2. Therefore, a high-performance (high resolution and wide angle) camera may not be used as the camera 4.
 以上、本開示の実施形態について説明したが、本発明は上記実施形態に限定されない。 As mentioned above, although embodiment of this indication was described, this invention is not limited to the said embodiment.
 例えば、細胞培養装置1によって培養される細胞の種類は、特に限定されない。例えば、動物における幹細胞等が培養される。細胞培養における培地となる培養液は、培養の対象となる細胞の種類に応じて適宜選択される。 For example, the type of cells cultured by the cell culture apparatus 1 is not particularly limited. For example, stem cells and the like in animals are cultured. A culture solution to be a culture medium in cell culture is appropriately selected according to the type of cells to be cultured.
 上記実施形態では、カメラ4、画像処理装置5、及び制御装置6は、インキュベータ10の外部に配置されているが、カメラ4、画像処理装置5、及び制御装置6の一部又は全部は、インキュベータ10の内部に配置されてもよい。ポンプ3、循環ラインL1、及び循環ラインL2の一部又は全部は、インキュベータ10の外部に配置されてもよい。 In the above embodiment, the camera 4, the image processing device 5, and the control device 6 are disposed outside the incubator 10. However, some or all of the camera 4, the image processing device 5, and the control device 6 are incubators. It may be arranged inside of ten. The pump 3, the circulation line L 1, and part or all of the circulation line L 2 may be disposed outside the incubator 10.
 上記実施形態では、画像処理装置5と制御装置6とは異なるコンピュータによって構成されているが、画像処理装置5と制御装置6とが1つのコンピュータによって構成されてもよい。 In the above embodiment, the image processing device 5 and the control device 6 are configured by different computers, but the image processing device 5 and the control device 6 may be configured by one computer.
 上記実施形態では、細胞塊径、及び細胞塊径の分布が測定されているが、測定項目は、これらに限られない。細胞塊の形状、真円度、アスペクト比、円形度、及び面積が測定されてもよい。 In the above embodiment, the cell mass diameter and the distribution of the cell mass diameter are measured, but the measurement items are not limited to these. Cell mass shape, roundness, aspect ratio, circularity, and area may be measured.
 また、画像処理装置5は、測定対象となる細胞塊の画像をニューラルネットワーク等のモデルに学習させておき、撮像画像から細胞塊領域を抽出してもよい。 In addition, the image processing device 5 may learn the image of the cell mass to be measured by a model such as a neural network and extract the cell mass region from the captured image.
 制御装置6は、測定データに基づいて、ポンプ3の制御を行ってもよい。例えば、培養槽2の下部2aに大きな細胞塊が発生すると、培養全体に悪影響を及ぼすことがある。そこで、制御装置6は、画像処理装置5によって測定された最大塊径と、予め定められた閾値と、を比較することによって、ポンプ3を制御してもよい。具体的には、制御装置6は、最大塊径が閾値以下である場合には、単位時間当たり一定の供給量で培養液を培養槽2に供給するようにポンプ3を制御する。一方、制御装置6は、最大塊径が閾値よりも大きい場合には、単位時間当たりに培養槽2に供給される培養液の供給量が時間の経過とともに増減を繰り返すようにポンプ3を制御する。閾値は、例えば、500μmである。 The controller 6 may control the pump 3 based on the measurement data. For example, if a large cell mass is generated in the lower part 2a of the culture tank 2, the whole culture may be adversely affected. Therefore, the control device 6 may control the pump 3 by comparing the maximum mass diameter measured by the image processing device 5 with a predetermined threshold value. Specifically, the control device 6 controls the pump 3 to supply the culture solution to the culture tank 2 at a constant supply amount per unit time when the maximum mass diameter is equal to or less than the threshold value. On the other hand, when the maximum mass diameter is larger than the threshold, the control device 6 controls the pump 3 so that the supply amount of the culture solution supplied to the culture tank 2 per unit time repeats increase and decrease with time. . The threshold is, for example, 500 μm.
 例えば、制御装置6は、ポンプ3をONとする駆動時間とポンプ3をOFFとする停止時間とを交互に繰り返すように、ポンプ3を制御する。そして、制御装置6は、最大塊径が閾値以下となると、単位時間当たり一定の供給量で培養液を培養槽2に供給するようにポンプ3を制御する。これにより、ポンプ3が停止すると、培養液の単位時間当たりの供給量が減少するので、培養槽2内の培養液の流速が低下し、細胞塊が沈降する。その後、ポンプ3が駆動すると、培養液の単位時間当たりの供給量が増加に転じ、培養槽2内の培養液の流速が増加する。このとき、各細胞塊は、通常稼働時に当該細胞塊が浮遊している高さよりも低い位置に沈降している。そして、培養槽2の下方に向かうにつれて、培養液の流速が大きくなるので、各細胞塊は、通常稼働時よりも大きなせん断応力を受けることになる。その結果、細胞塊が破砕され、全体の細胞塊径を閾値以下に維持することが可能となる。 For example, the control device 6 controls the pump 3 so that the driving time for turning on the pump 3 and the stopping time for turning off the pump 3 are alternately repeated. Then, the control device 6 controls the pump 3 to supply the culture solution to the culture tank 2 at a constant supply amount per unit time when the maximum mass diameter becomes equal to or less than the threshold. Thereby, when the pump 3 is stopped, the amount of supply of the culture solution per unit time decreases, so that the flow rate of the culture solution in the culture tank 2 is reduced, and the cell mass is sedimented. Thereafter, when the pump 3 is driven, the supply amount of the culture solution per unit time starts to increase, and the flow rate of the culture solution in the culture tank 2 increases. At this time, each cell mass is sedimented at a position lower than the height at which the cell mass is suspended during normal operation. Then, as the flow rate of the culture solution increases toward the lower side of the culture tank 2, each cell mass is subjected to a shear stress larger than that during normal operation. As a result, the cell mass is disrupted, and the whole cell mass diameter can be maintained at or below the threshold.
 制御装置6は、通常稼働時よりも大きなせん断応力を細胞塊に与えるために、単位時間当たりに培養槽2に供給される培養液の供給量が増加するようにポンプ3を制御してもよく、単位時間当たりに培養槽2に供給される培養液の供給量が正弦波状に変化するようにポンプ3を制御してもよい。 The controller 6 may control the pump 3 so that the supply amount of the culture solution supplied to the culture tank 2 is increased per unit time in order to apply a larger shear stress to the cell mass than during normal operation. The pump 3 may be controlled so that the amount of culture solution supplied to the culture tank 2 per unit time changes sinusoidally.
1 細胞培養装置
2 培養槽
2a 下部
3 ポンプ(供給装置)
4 カメラ(撮像装置)
5 画像処理装置
6 制御装置
10 インキュベータ
10a 窓部
L1 循環ライン
L2 循環ライン
1 cell culture apparatus 2 culture tank 2a lower part 3 pump (supply device)
4 Camera (imaging device)
5 Image processing device 6 Control device 10 Incubator 10a Window part L1 Circulation line L2 Circulation line

Claims (2)

  1.  培養液中で細胞の培養を行うための培養槽と、
     前記培養槽内で前記培養液が上昇流を形成するように前記培養液を供給する供給装置と、
     前記培養槽の下部を撮像することで撮像画像を取得する撮像装置と、
     前記撮像画像に基づいて、前記培養槽内の細胞塊の最大塊径を測定する画像処理装置と、
     前記供給装置による前記培養液の供給を制御する制御装置と、
    を備え、
     前記培養槽は、前記培養槽の水平断面積が上方に向かうにつれて増加する形状を有し、
     前記制御装置は、前記最大塊径が予め定められた閾値よりも大きい場合に、単位時間当たりに前記培養槽に供給される前記培養液の供給量が増減を繰り返すように前記供給装置を制御する、細胞培養装置。
    A culture vessel for culturing cells in a culture solution,
    A supply device for supplying the culture solution so that the culture solution forms an upflow in the culture vessel;
    An imaging device for acquiring a captured image by imaging a lower portion of the culture vessel;
    An image processing apparatus for measuring the maximum mass diameter of the cell mass in the culture tank based on the captured image;
    A control device that controls the supply of the culture solution by the supply device;
    Equipped with
    The culture vessel has a shape that increases as the horizontal cross-sectional area of the culture vessel goes upward,
    The control device controls the supply device such that the supply amount of the culture fluid supplied to the culture tank repeats increase and decrease per unit time when the maximum mass diameter is larger than a predetermined threshold value. , Cell culture equipment.
  2.  前記制御装置は、単位時間当たりに前記培養槽に供給される前記培養液の供給量が減少するように前記供給装置を制御し、
     前記画像処理装置は、前記撮像画像に基づいて、前記培養槽内の細胞塊の大きさの分布を測定する、請求項1に記載の細胞培養装置。
    The control device controls the supply device such that the supply amount of the culture solution supplied to the culture tank per unit time decreases.
    The cell culture device according to claim 1, wherein the image processing device measures a distribution of sizes of cell clusters in the culture tank based on the captured image.
PCT/JP2018/027669 2017-07-27 2018-07-24 Cell culture device WO2019022067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532632A JPWO2019022067A1 (en) 2017-07-27 2018-07-24 Cell culture equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145476 2017-07-27
JP2017-145476 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019022067A1 true WO2019022067A1 (en) 2019-01-31

Family

ID=65041209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027669 WO2019022067A1 (en) 2017-07-27 2018-07-24 Cell culture device

Country Status (2)

Country Link
JP (1) JPWO2019022067A1 (en)
WO (1) WO2019022067A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000100A (en) * 2017-06-12 2019-01-10 株式会社Ihi Cell culture tank and cell culture apparatus
JP2020150865A (en) * 2019-03-20 2020-09-24 ヤマハ発動機株式会社 Culture method and culture unit of biological object
JP2020167959A (en) * 2019-04-04 2020-10-15 オリンパス株式会社 Medium monitoring device
JP2020188691A (en) * 2019-05-20 2020-11-26 株式会社Ihi Cell culture device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075041A (en) * 2004-09-08 2006-03-23 Ishikawajima Harima Heavy Ind Co Ltd Cell culture apparatus and method
WO2018038228A1 (en) * 2016-08-26 2018-03-01 株式会社Ihi Cell culture device and cell culture method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075041A (en) * 2004-09-08 2006-03-23 Ishikawajima Harima Heavy Ind Co Ltd Cell culture apparatus and method
WO2018038228A1 (en) * 2016-08-26 2018-03-01 株式会社Ihi Cell culture device and cell culture method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHII KOSUKE: "Novel suspension-culture reactor for mass-cultivation of pluripotent stem cells", THE CELL, vol. 48, no. 2, 20 February 2016 (2016-02-20), pages 94 - 98 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019000100A (en) * 2017-06-12 2019-01-10 株式会社Ihi Cell culture tank and cell culture apparatus
JP7127335B2 (en) 2017-06-12 2022-08-30 株式会社Ihi Cell culture tank and cell culture equipment
JP2020150865A (en) * 2019-03-20 2020-09-24 ヤマハ発動機株式会社 Culture method and culture unit of biological object
JP7242364B2 (en) 2019-03-20 2023-03-20 ヤマハ発動機株式会社 Culturing method and culture unit for biological object
JP2020167959A (en) * 2019-04-04 2020-10-15 オリンパス株式会社 Medium monitoring device
JP2020188691A (en) * 2019-05-20 2020-11-26 株式会社Ihi Cell culture device

Also Published As

Publication number Publication date
JPWO2019022067A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2019022067A1 (en) Cell culture device
EP2441827B1 (en) Technique for determining the state of a cell mass, image processing program and image processing device using said technique, and method for producing a cell mass
US20100260422A1 (en) Image-processing method, image-processing program and image-processing device for processing time-lapse image
JP4932703B2 (en) Cell culture evaluation system, cell culture evaluation method, and cell culture evaluation program
JP2022506485A (en) Systems and methods for determining the type and size of defects on blank reticle
WO2012117647A1 (en) Observation program and observation device
JPH0484884A (en) Image recognizing system and image recognizing control system
JPWO2006051813A1 (en) Cell culture device, image processing device, and cell detection system
CN101702053A (en) Method for automatically focusing microscope system in urinary sediment examination equipment
WO2011004568A1 (en) Image processing method for observation of fertilized eggs, image processing program, image processing device, and method for producing fertilized eggs
US20100182417A1 (en) Automatic focusing apparatus, microscope, and automatic focusing method
US20190234853A1 (en) Holographic characterization using hu moments
WO2018038228A1 (en) Cell culture device and cell culture method
JP4774835B2 (en) microscope
US20220113533A1 (en) Microscopy System and Method for Analyzing an Overview Image
JPWO2008146474A1 (en) Observation device
JP6501112B2 (en) Cloud particle observation microscope
CN112329620A (en) Water change amount prediction system of tightness detection device based on visual perception
US5162204A (en) Apparatus and method of culturing and diagnosis of animal cells using image processing
WO2017030138A1 (en) Jig for device for evaluating water treatment tank activated sludge condition, and device for evaluating water treatment tank activated sludge condition and condition-evaluating method using same
JP2007110932A (en) Automatic method for culturing and cell culture apparatus
CN106081907A (en) A kind of contactless row hangs lifting rope swing angle monitoring device
CN111912752A (en) Flocculation detection device and method and sewage treatment system
JP3114022B2 (en) Microorganism monitoring device and method
CN104406917A (en) Transmission hyperspectral image acquisition device for detecting different algae solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837720

Country of ref document: EP

Kind code of ref document: A1