WO2019022054A1 - Production method for sic mono-crystals, production method for ingot sic, production method for sic wafer, and sic mono-crystals - Google Patents

Production method for sic mono-crystals, production method for ingot sic, production method for sic wafer, and sic mono-crystals Download PDF

Info

Publication number
WO2019022054A1
WO2019022054A1 PCT/JP2018/027634 JP2018027634W WO2019022054A1 WO 2019022054 A1 WO2019022054 A1 WO 2019022054A1 JP 2018027634 W JP2018027634 W JP 2018027634W WO 2019022054 A1 WO2019022054 A1 WO 2019022054A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
tsd
single crystal
recess
growth
Prior art date
Application number
PCT/JP2018/027634
Other languages
French (fr)
Japanese (ja)
Inventor
紀人 矢吹
悠介 須藤
純久 阿部
暁 野上
北畠 真
忠昭 金子
晃嗣 芦田
Original Assignee
東洋炭素株式会社
学校法人関西学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社, 学校法人関西学院 filed Critical 東洋炭素株式会社
Publication of WO2019022054A1 publication Critical patent/WO2019022054A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention mainly relates to a method for producing single crystal SiC by removing TSD (penetrating screw dislocation) occurring in a SiC substrate.
  • Patent documents 1 to 5 disclose this type of technology.
  • the surface of the SiC substrate is removed in a lattice shape by a laser to form a plurality of convex portions.
  • crystal growth is performed on the SiC substrate by the MSE method (metastable solvent epitaxy method).
  • the MSE method metalstable solvent epitaxy method
  • the MSE method is performed again.
  • step bunching is formed in the SiC seed crystal to form a second seed crystal.
  • step bunching is formed on the TSD of this second seed crystal.
  • Patent Documents 4 and 5 thin plate-like single crystal SiC is cut out from single crystal SiC manufactured by crystal growth on a SiC substrate. Then, crystal growth is performed again on the thin plate-like single crystal SiC. By repeating the above process, single crystal SiC with a small TSD is manufactured.
  • TSD contained in single crystal SiC plays an important role in stably inheriting the crystal polymorphism of the seed crystal when crystal growth is performed using the single crystal as a seed crystal.
  • it is difficult to perform processing such as removing TSDs generated at other positions while leaving TSDs generated at predetermined positions.
  • TSD currently formed other than a convex part will be removed.
  • the present invention has been made in view of the above circumstances, and the main object of the present invention is to remove the unnecessary TSD while leaving the necessary TSD when the necessary TSD is generated, and to perform the single crystal in a simple process. It is to provide a method of manufacturing.
  • the following method for producing single crystal SiC performs processing including a TSD visualization step, a recess formation step, and a crystal growth step.
  • TSD visualization step dry etching is performed on the SiC substrate to visualize TSD (penetrating screw dislocation).
  • recess forming step the recess is formed by leaving the periphery of the portion in which the TSD is generated while removing the portion in which the TSD visualized in the TSD visualizing step is generated.
  • the crystal growth step single crystal SiC grown from the periphery of the concave portion is connected on the concave portion by performing crystal growth in the a-axis direction and the c-axis direction on the SiC substrate.
  • TSD contained in a SiC substrate can be removed, high quality single crystal SiC can be manufactured.
  • the TSD can be visualized without forming a convex portion or the like in advance, unnecessary TSD can be removed while leaving necessary TSD.
  • all TSD can also be removed.
  • single crystal SiC can be manufactured by a simple process as compared with the conventional method.
  • pits are formed in the portion where the TSD is generated in the TSD visualization step.
  • the portion where the TSD is present grows largely, so when the TSDs are densely packed, the growth portions overlap, and the TSD can not be identified accurately. there is a possibility.
  • small pits of about 1 ⁇ m are formed in the portion where the TSD occurs, so that the TSD can be specified more accurately, so unnecessary TSD can be obtained while leaving necessary TSD. It can be removed.
  • a plurality of portions where the visualized TSD is generated are present, and it is preferable to remove only a portion of the portions.
  • TSD can be selectively left, crystal polymorphism and the like can be stably controlled when crystal growth is performed using a seed crystal.
  • the TSD be unevenly distributed on the surface of the SiC substrate as a result of removing the TSD in the recess forming step.
  • desired crystal polymorph for example, 4H-SiC
  • desired crystal polymorph for example, 4H-SiC
  • the TSD is preferably removed so that the TSD density on the surface is 1000 pieces / cm 2 or less with respect to the visualized TSD.
  • the TSD visualization step it is preferable to visualize the TSD by performing etching by heating under a Si vapor pressure.
  • the surface of the SiC substrate can be planarized with high accuracy and the TSD can be visualized.
  • the recess forming step it is preferable to form the recess by irradiating a portion where the TSD is generated with a laser.
  • the beam diameter of the laser is preferably 1 ⁇ m or more.
  • region of the vicinity of the dislocation core of TSD can be removed.
  • the SiC substrate is etched after the recess formation step and before the crystal growth step, thereby removing the damage caused to the SiC substrate in the recess formation step. It is preferable to perform the damage removal process.
  • Si melt is present between the SiC substrate and a feed material having a higher free energy than the SiC substrate and supplying at least C. It is preferable to perform a metastable solvent epitaxy method of growing the single crystal SiC on the surface of the SiC substrate by heating in a state.
  • the upper part of the recess can be closed with single crystal SiC in a short time.
  • the TSD visualization step the TSD is visualized by performing etching by heating under a Si vapor pressure.
  • the recess is formed by irradiating a laser on a portion where the TSD is generated.
  • etching is performed by heating under a Si vapor pressure to perform a damage removal step of removing damage caused to the SiC substrate.
  • heating is performed in a state in which the Si melt is present between the SiC substrate and a feed material having a free energy higher than that of the SiC substrate and supplying at least C;
  • a metastable solvent epitaxy method is performed to grow the single crystal SiC on the surface.
  • the recess it is preferable to manufacture a SiC ingot using the single crystal SiC manufactured using the above-described manufacturing method.
  • the recess it is preferable to form the recess such that the TSD density of the outer edge portion of the surface of the SiC substrate is higher than the TSD density of other than the outer edge portion.
  • the recess may be formed such that the TSD density at the central portion in the radial direction of the surface of the SiC substrate is higher than the TSD density other than the central portion. preferable.
  • the present invention it is preferable to manufacture a SiC wafer using the single crystal SiC manufactured using the above manufacturing method.
  • the TSD density on the upstream side with respect to the center of the step flow growth in the epitaxial layer forming step is higher than the TSD density on the downstream side with respect to the center.
  • the recess is formed.
  • the single crystal SiC may be used as it is as a SiC wafer.
  • FIG. The schematic diagram which shows the manufacturing process (TSD visualization process, recessed part formation process, and damage removal process) of single crystal SiC.
  • the schematic diagram which shows that distribution of TSD of removal object for producing a SiC ingot, and TSD of remaining object differs according to the growth method.
  • the high temperature vacuum furnace 10 includes a main heating chamber 21 and a preheating chamber 22.
  • the main heating chamber 21 can heat a single crystal SiC substrate (hereinafter, the SiC substrate 40) whose surface is at least a single crystal SiC to a temperature of 1000 ° C. or more and 2300 ° C. or less.
  • the preheating chamber 22 is a space for performing preheating before the SiC substrate 40 is heated in the main heating chamber 21.
  • the main heating chamber 21 is connected to a vacuum forming valve 23, an inert gas injection valve 24, and a vacuum gauge 25.
  • the vacuum forming valve 23 can adjust the degree of vacuum of the main heating chamber 21.
  • the inert gas injection valve 24 can adjust the pressure of the inert gas in the main heating chamber 21.
  • the inert gas is, for example, a gas of a Group 18 element (a rare gas element) such as Ar, that is, a gas having poor reactivity to solid SiC and excluding nitrogen gas.
  • the vacuum gauge 25 can measure the degree of vacuum in the main heating chamber 21.
  • a heater 26 is provided inside the main heating chamber 21. Further, a heat reflecting metal plate (not shown) is fixed to the side wall and ceiling of the main heating chamber 21, and this heat reflecting metal plate reflects the heat of the heater 26 toward the central portion of the main heating chamber 21. Is configured. Thereby, the SiC substrate 40 can be heated strongly and uniformly, and the temperature can be raised to a temperature of 1000 ° C. or more and 2300 ° C. or less.
  • a resistance heating heater or a high frequency induction heating heater can be used as the heater 26, for example.
  • the high temperature vacuum furnace 10 heats the SiC substrate 40 stored in the crucible (storage container) 30.
  • the storage container 30 is placed on a suitable support or the like, and is configured to be movable from at least the preheating chamber to the main heating chamber by moving the support.
  • the storage container 30 includes an upper container 31 and a lower container 32 which can be fitted to each other.
  • the SiC substrate 40 is supported by a support 33 placed on the lower container 32 of the container 30.
  • Containment container 30 includes a tantalum layer (Ta) and a tantalum carbide layer (TaC and TaC) in the order from the outer side to the inner space side in a portion constituting the wall surface (upper surface, side surface, bottom surface) of inner space Ta 2 C), and is composed of tantalum silicide layer (TaSi 2 or Ta 5 Si 3, etc.).
  • the tantalum silicide layer supplies Si to the internal space of the storage container 30 by heating. Further, since the container 30 includes the tantalum layer and the tantalum carbide layer, it is possible to take in the surrounding C vapor. Thereby, the inside of the internal space can be made into a high purity Si atmosphere at the time of heating. Note that instead of providing a tantalum silicide layer, a Si source such as solid Si may be disposed in the internal space. In this case, the inside of the internal space can be made to have a high purity Si vapor pressure by sublimation of solid Si during heating.
  • the storage container 30 When heating the SiC substrate 40, first, the storage container 30 is disposed in the preheating chamber 22 of the high-temperature vacuum furnace 10 as shown by the chain line in FIG. 1 and spared at an appropriate temperature (for example, about 800.degree. C.). Heat up. Next, the storage container 30 is moved to the main heating chamber 21 which has been heated to a set temperature (for example, about 1800 ° C.) in advance. Thereafter, the SiC substrate 40 is heated while adjusting the pressure and the like. Preheating may be omitted.
  • an appropriate temperature for example, about 800.degree. C.
  • FIG. 2 and FIG. 3 are schematic views showing the manufacturing process of single crystal SiC 41.
  • TSD threading screw dislocation, threading screw dislocation
  • FIG. 4 shows a photomicrograph of TSD and a stress analysis result.
  • the analysis of stress is the result of using EBSD (Electron Backscatter Pattern).
  • EBSD Electro Backscatter Pattern
  • the size of the TSD is about 1 ⁇ m. TSD reduces the quality of single crystal SiC 41 by propagating to single crystal SiC 41 at the time of crystal growth.
  • the remaining TSDs are removed (while the TSDs are selectively removed) while intentionally leaving some of the TSDs. The details will be described below. Further, in the following description, when the TSD generated in the SiC substrate 40 is described, the reference numeral 51 is attached and described.
  • the SiC substrate 40 used in the present embodiment is a substrate (on substrate) having an off angle of 0 °, but the off angle may be larger than 0 °.
  • the crystal polymorphism of the SiC substrate 40 is 4H-SiC, but may be another crystal polymorphism (6H-SiC, 3C-SiC, etc.).
  • the main surface (surface to be processed) of the SiC substrate 40 is a Si surface (ie, (0001) surface), but may be a C surface (ie, (000-1) surface).
  • the convex part etc. are not formed in the SiC substrate 40, but the surface (specifically, the main surface, the same applies to the following) is flat.
  • a TSD visualization process is performed on the SiC substrate 40.
  • the TSD 51 produced on the SiC substrate 40 can not be detected (or is difficult) even if the surface is observed with a microscope or the like.
  • the TSD visualization step is a step of changing the TSD 51 generated on the SiC substrate 40 into a viewable state. Note that the TSD visualization step also includes a step of emphasizing the TSD 51 which is difficult but not impossible to make observation easier.
  • the Si vapor pressure etching is performed on the SiC substrate 40, but another dry etching (for example, hydrogen etching) may be performed.
  • pits 52 are formed in the portion where the TSD 51 is generated, as shown in the SiC substrate 40 after the TSD visualization step of FIG.
  • the pits 52 are slight depressions formed on the surface of the SiC substrate 40. This makes it possible to visualize the portion where the TSD 51 is generated.
  • Si vapor pressure etching will be described in detail.
  • the SiC substrate 40 is accommodated in the container 30, and the above-described Si source is present in the container 30 (and in a state in which elements other than Si and an inert gas are not positively supplied) Heating is performed using the high-temperature vacuum furnace 10 in a temperature range of 1500 ° C. or more and 2200 ° C. or less, desirably 1600 ° C. or more and 2000 ° C. or less.
  • the inside of the storage container 30 has a high-purity Si vapor pressure, and the SiC substrate 40 is heated in this state. Thereby, the surface of the SiC substrate 40 is etched and the surface is planarized.
  • SiC substrate 40 is heated under the Si vapor pressure, whereby the SiC of the SiC substrate 40 is thermally decomposed and chemically reacted with Si to become Si 2 C or SiC 2 or the like and sublimated, and the Si atmosphere The lower Si bonds to C at the surface of the SiC substrate 40 to cause self-organization and planarization.
  • SiC (s) ⁇ Si (v) I + C (s) I (2) 2SiC (s) ⁇ Si (v) II + SiC 2 (v) (3) SiC (s) + Si (v) I + II ⁇ Si 2 C (v)
  • the processing damage for example, the processing damage which arose during cutting and polishing etc.
  • the processing damage which arose, for example at the time of preparation of SiC substrate 40 can be removed. That is, in the TSD visualization step of the present embodiment, not only the TSD 51 is visualized, but also the removal of processing damage caused to the SiC substrate 40 can be performed simultaneously.
  • the etching rate by Si vapor pressure etching is preferably, for example, 1 ⁇ m / min or more, and may be less than 1 ⁇ m / min except in the TSD visualization step.
  • the recess forming step is a process of forming the recess 53 by leaving the periphery of the portion where the TSD 51 is generated while removing the portion where the TSD 51 visualized in the TSD visualization step is generated.
  • the portion where the TSD 51 is generated is removed by irradiating the laser.
  • the portion where the TSD 51 is not generated is not irradiated with the laser.
  • the recess 53 has a longer length in the radial direction (horizontal direction, a-axis direction, direction perpendicular to c-axis, the same applies hereinafter) than the pit 52, and further has a length in the depth direction (substrate thickness direction, c-axis direction). That's the long part.
  • the recess 53 is a non-through hole having a circular cross section and a constant diameter, but the shape may be different from that of the present embodiment.
  • the cross section may have a trapezoidal shape (conical concave portion), that is, a shape in which the length in the radial direction becomes shorter as it proceeds in the depth direction.
  • damage occurs in the vicinity of the recess 53.
  • the TSD 51 generated on the SiC substrate 40 is intentionally left.
  • the distribution of TSD 51 is involved in the control of crystal polymorphism. Therefore, in the present embodiment, a part of the TSDs 51 among the plurality of TSDs 51 visualized in the TSD visualization process is irradiated with a laser. That is, a plurality of TSDs 51 visualized in the TSD visualization step are classified into TSDs 51 to be removed and TSDs 51 to be remaining.
  • the recessed part 53 is formed using a laser in this embodiment, as long as the recessed part 53 can be formed, another method can also be used. For example, a mask having an opening formed only in a portion where TSD 51 to be removed is formed is mounted on the surface of SiC substrate 40, and etching (dry etching such as hydrogen etching or wet etching such as KOH etching) Do. Thereby, the recessed part 53 can be formed in the part in which TSD51 of removal object has arisen.
  • the damage removing step is a step of removing the damage caused in the vicinity of the recess 53 in the recess forming step.
  • the damage removal step is performed by the above-described Si vapor pressure etching. By performing the Si vapor pressure etching, the damage of the recess 53 is removed.
  • the recess 53 has a trapezoidal cross section (conical recess), that is, a shape in which the length in the radial direction becomes shorter as it proceeds in the depth direction.
  • the shape of the recess 53 after the damage removal may be different from that of the present embodiment.
  • the damage removal step is performed using Si vapor pressure etching, but the damage of the recess 53 may be removed by another method (for example, dry etching such as hydrogen etching). Further, in the present embodiment, not only the recess 53 but the entire surface of the SiC substrate 40 is removed, but the configuration may be such that etching (removal of damage) is performed only around the recess 53.
  • a crystal growth step is performed on the SiC substrate 40.
  • crystal growth is performed from the periphery of the recess 53 by performing crystal growth in the a-axis direction (horizontal direction, direction perpendicular to the substrate thickness direction) and c-axis direction (substrate thickness direction) with respect to the SiC substrate 40.
  • the single crystal SiC 41 is connected on the recess 53.
  • single crystal SiC (epitaxial layer) is grown using MSE (metastable solvent epitaxy) which is one of solution growth methods.
  • FIG. 5 is a schematic view showing a crystal growth step by the MSE method.
  • the SiC substrate 40 is accommodated in the accommodation container 30.
  • a Si plate 61 and a feed material 62 are disposed inside the storage container 30. These are supported by a support 33.
  • the SiC substrate 40 is used as a substrate (seed side) for liquid phase epitaxial growth.
  • a Si plate 61 is disposed on one side (upper side) of the SiC substrate 40.
  • the Si plate 61 is a plate-like member made of Si. Since the melting point of Si is about 1400 ° C., the Si plate 61 is melted by heating in the high temperature vacuum furnace 10 described above.
  • a feed material 62 is disposed on one side (upper side) of the Si plate 61.
  • the feed material 62 is made of, for example, polycrystalline 3 C—SiC, and is a substrate having a higher free energy than the SiC substrate 40.
  • the Si plate 61 disposed between the SiC substrate 40 and the feed material 62 is melted, and the silicon melt is used as carbon.
  • the heating temperature is preferably, for example, 1500 ° C. or more and 2300 ° C. or less. This heating generates a concentration gradient in the Si melt based on the difference in free energy between the SiC substrate 40 and the feed material 62, and this concentration gradient becomes a driving force to transfer Si from the feed material 62 to the Si melt.
  • single crystal SiC 41 can be grown on the surface of SiC substrate 40.
  • crystal growth can be performed even when the off-angle is not formed in the SiC substrate 40.
  • single crystal SiC 41 is precipitated on the SiC substrate 40 (specifically, the portion excluding the recess 53) by performing crystal growth by performing the MSE method on the SiC substrate 40 in which the recess 53 is formed.
  • the single crystal SiC 41 grows so as to close the upper part of the recess 53. Thereafter, by further growing single crystal SiC 41, the upper portion of the recess 53 is completely closed.
  • the TSD 51 at the bottom of the recess 53 does not propagate to the single crystal SiC 41.
  • the TSD 51 at the bottom of the recess 53 does not propagate to the single crystal SiC 41.
  • the TSD 51 to be removed can not be propagated to the single crystal SiC 41, and the TSD 51 to be remaining can be propagated to the single crystal SiC 41. .
  • single crystal SiC 41 in which TSD 51 is formed in a desired position can be manufactured.
  • the TSD density of the surface of the single crystal SiC 41 is, for example, 0 / cm 2 or more and 1000 / cm 2 or less by manufacturing the method according to the present embodiment.
  • the crystal growth step is performed using the MSE method, but another method (for example, vapor phase growth method such as CVD method, solution growth in which C in solution is moved by providing a temperature gradient) You may use a law etc.).
  • CVD method it is necessary to form an off angle in the SiC substrate 40.
  • FIG. 6 is a schematic view showing a process of forming SiC wafer 73 from SiC seed crystal 71 through SiC ingot 72.
  • the SiC seed crystal made of single crystal SiC 41 manufactured as described above will be described with reference numeral 71.
  • the SiC ingot 72 can be manufactured.
  • the bulk growth step is performed by, for example, a solution growth method such as MSE, or a vapor phase growth method such as sublimation or HTCVD.
  • the SiC seed crystal 71 has high quality because the TSD 51 to be removed is removed. Furthermore, since the remaining TSD 51 is intentionally left, it is possible to grow a predetermined crystal polymorph (for example, 4H-SiC) regardless of the crystal growth method and various conditions (for example, the overheat temperature). .
  • a wafer manufacturing process is performed on this SiC ingot 72, whereby a plurality of SiC wafers 73 are manufactured.
  • a plurality of SiC wafers 73 are manufactured by cutting the SiC ingot 72 at predetermined intervals by a cutting means such as a diamond wire, for example.
  • the SiC wafer 73 can also be manufactured from the SiC ingot 72 by another method. For example, after providing a damaged layer on the SiC ingot 72 by laser irradiation or the like, it can be formed into a wafer and taken out as the SiC wafer 73.
  • the SiC wafer 73 manufactured in this manner has a low TSD density on the surface, and is formed of a predetermined crystal polymorphism. Further, on this SiC wafer 73, an epitaxial layer forming step of forming an epitaxial layer made of single crystal SiC is performed. Thereby, the SiC wafer 73 having the epitaxial layer 74 is manufactured. The SiC wafer 73 is used to manufacture a semiconductor device.
  • single crystal SiC 41 is used as SiC seed crystal 71 for producing SiC ingot 72 etc.
  • single crystal SiC 41 is used instead of producing SiC ingot 72 from SiC substrate 40 with single crystal SiC 41. It can also be used as a SiC wafer 73.
  • the beam diameter of the laser is the beam diameter set in the laser processing machine, and the diameter of the recess 53 is larger than that.
  • a laser device (MD-T1000) made by Keyence was used.
  • the medium of the laser is Nd: YVO 4 , and the wavelength of the laser is 532 nm.
  • the SiC substrate 40 was divided into three regions, and the TSD 51 was removed by irradiating each region with a laser of different beam diameter (40 ⁇ m, 60 ⁇ m, and 100 ⁇ m). In this experiment, all of the visualized TSDs 51 were irradiated with a laser. Thereafter, crystal growth of the SiC substrate 40 was performed by the MSE method.
  • FIGS. 8 to 10 when crystal growth is performed after removing TSD 51 using lasers with beam diameters of 40 ⁇ m, 60 ⁇ m, and 100 ⁇ m, propagation of TSD 51 occurs where TSD 51 did not occur and propagation of TSD 51 occurred. It is a figure showing distribution of a part.
  • the area where the propagation of the TSD 51 can be prevented by irradiating the laser to the TSD 51 to form the recess 53 is indicated by a black circle, and the area to which the TSD 51 is propagated is grayed even when the laser is irradiated. It is indicated by a circle. As shown in FIG. 8 to FIG. 10, it was confirmed that the propagation of most of the TSD 51 can be prevented by irradiating the laser to form the recess 53.
  • FIG. 7 shows a graph showing the relationship between the beam diameter of the laser used in the recess forming step and the TSD propagation rate.
  • the TSD propagation rate is (the number of TSDs 51 propagated) / (the number of TSDs 51 irradiated with a laser).
  • similar propagation rates are realized in the beam diameter range of 40 ⁇ m to 100 ⁇ m.
  • the transmission rate is 15% to 25% (about 20%) in all cases.
  • the rate at which the TSD 51 can be removed is 75% to 85% (about 80%).
  • a laser device having a beam diameter of 40 ⁇ m to 100 ⁇ m was used.
  • the beam diameter may be 1 ⁇ m or more.
  • the upper limit of the beam diameter is not particularly defined, it takes 40 minutes or less, or preferably 100 ⁇ m or less, for example, because it takes time to close the recess 53 as the beam diameter increases.
  • FIG. 11 is a schematic view showing the distribution of the TSD 51 to be removed of the SiC substrate 40 for manufacturing the SiC ingot 72 and the TSD 51 to be removed.
  • FIG. 12 is a schematic view showing the distribution of the TSD to be removed and the TSD to be left for producing the SiC wafer 73. As shown in FIG.
  • part of the TSD 51 is intentionally left to control (to grow a desired crystal polymorph) in order to control the crystal polymorph of single crystal SiC 41 generated when performing crystal growth,
  • the TSD 51 is left only in the necessary part (as a result, the distribution of the TSD 51 becomes uneven).
  • the selection of the TSD 51 to be removed and the TSD 51 to be remaining is not uniformly determined according to the desired crystal polymorphism and various conditions, and an example will be described below.
  • FIG. 11 is a schematic view showing the distribution of TSD of the SiC substrate 40 (SiC seed crystal 71) for producing the SiC ingot 72 by the solution growth method.
  • the solution growth method first, two-dimensional nucleation is performed on the outer edge portion of the SiC substrate 40, and then crystals are grown so as to perform step-flow growth toward the radial center. Therefore, when the SiC substrate 40 is 4H-SiC, the crystalline polymorphism can be taken over to the SiC ingot 72 by the TSD 51 remaining in the outer edge portion.
  • the recess 53 is formed so that the TSD density of the outer edge portion of the surface of the SiC substrate 40 is higher than the TSD density of other than the outer edge portion. It is preferable to form (forming the recess 53 so that the removal rate of the TSD 51 at the outer edge is lower than the removal rate of the TSD 51 other than the outer edge when the TSD distribution is uniform).
  • FIG. 11 is a schematic view showing distribution of TSD of the SiC substrate 40 (SiC seed crystal 71) for producing the SiC ingot 72 by the vapor phase growth method.
  • the vapor phase growth method is performed, two-dimensional nucleation is first performed in the central portion of the SiC substrate 40, and then the crystal is grown such that step flow growth is performed outward in the radial direction. Therefore, when the SiC substrate 40 is 4H—SiC, the crystalline polymorph can be taken over to the SiC ingot 72 by the TSD 51 remaining in the central portion in the radial direction.
  • the concave portion 53 is formed such that the TSD density in the central portion of the surface of the SiC substrate 40 is higher than the TSD density in the other portions. (If the distribution of TSDs is uniform, it is preferable to form the recess 53 so that the removal rate of the TSD 51 at the central portion is lower than the removal rate of the TSD 51 other than the central portion). Further, it is more preferable to form the recess 53 so that the TSD density becomes higher toward the radial center.
  • the central portion is preferably defined as, for example, a region within 40% of the diameter from the center in the radial direction when the SiC substrate 40 is viewed in the thickness direction (c-axis direction).
  • FIG. 12 is a schematic view showing a TSD distribution of the SiC substrate 40 (or the SiC wafer 73 formed via the SiC ingot 72) for forming the epitaxial layer 74 by the step flow growth by CVD or the like.
  • the growth is performed so as to take over the crystal polymorph on the upstream side of the step flow growth. Therefore, when the SiC substrate 40 is 4H-SiC, the TSD 51 remains on the upstream side of the step flow growth (upstream from the center of the step flow growth direction, hereinafter the same) to epitaxially crystallize this crystal polymorph. Layer 74 can take over.
  • the recessed portion is such that the TSD density on the upstream side of the step flow growth of the SiC substrate 40 is higher than the TSD density on the downstream side.
  • 53 is preferably formed (if the distribution of TSDs is uniform, the recess 53 is formed so that the removal rate of the TSD 51 on the upstream side is lower than the removal rate of the TSD 51 on the downstream side).
  • the manufacturing method of single crystal SiC 41 of this embodiment performs processing including a TSD visualization step, a recess formation step, and a crystal growth step.
  • TSD visualization step dry etching is performed on the SiC substrate 40 to visualize the TSD 51 (penetrating screw dislocation).
  • the recess formation step the recess 53 is formed by leaving the periphery of the portion in which the TSD 51 is generated while removing the portion in which the TSD 51 visualized in the TSD visualization step is generated.
  • single crystal SiC 41 grown from the periphery of the recess 53 is connected on the recess 53 by performing crystal growth in the a-axis direction and the c-axis direction on the SiC substrate 40.
  • TSD 51 contained in SiC substrate 40 can be removed, high quality single crystal SiC 41 can be manufactured.
  • the TSD 51 can be visualized without forming a convex portion or the like in advance, the unnecessary TSD 51 can be removed while leaving the necessary TSD 51.
  • all TSD51 can also be removed.
  • pits 52 are formed in the portion where TSD 51 is generated.
  • the portion where the TSD 51 exists grows largely, so the growth portions overlap when the TSD 51 is densely packed, etc., and the TSD 51 can not be identified accurately. there is a possibility.
  • the TSD 51 can be specified more accurately. Therefore, the unnecessary TSD 51 can be identified while leaving the necessary TSD 51 It can be removed.
  • the recess forming step there are a plurality of portions where the visualized TSD 51 is generated, and only a part of the portions is removed.
  • the TSD 51 can be selectively left, crystal polymorphism and the like can be stably controlled when crystal growth is performed using a seed crystal.
  • TSD 51 be unevenly distributed on the surface of SiC substrate 40 as a result of removing TSD 51 in the recess forming step.
  • desired crystal polymorph for example, 4H-SiC
  • desired crystal polymorph for example, 4H-SiC
  • the recess forming step against TSD51 visualized, the TSD51 as TSD51 density of the surface becomes 0 / cm 2 or more 1000 / cm 2 or less Remove.
  • TSD51 is visualized by performing the etching by heating by Si vapor pressure in a TSD visualization process.
  • the surface of the SiC substrate 40 can be planarized with high accuracy and the TSD 51 can be visualized.
  • the recess 53 is formed by irradiating the portion where the TSD 51 is generated with a laser.
  • the recessed part 53 can be correctly formed in the part which TSD51 has produced by the simple and highly accurate method.
  • the beam diameter of the laser is 1 ⁇ m or more.
  • the strained area near the dislocation core of the TSD 51 can be removed.
  • damage is caused to SiC substrate 40 in the recess forming step by etching SiC substrate 40 after the recess forming step and before the crystal growth step. Perform a damage removal process to remove
  • Si is interposed between SiC substrate 40 and feed material 62 having a higher free energy and supplying at least C than SiC substrate 40.
  • feed material 62 having a higher free energy and supplying at least C than SiC substrate 40.
  • the upper part of the recess 53 can be closed with the single crystal SiC 41 in a short time.
  • the TSD 51 is visualized by performing etching by heating under Si vapor pressure.
  • the recess formation step the recess 53 is formed by irradiating a laser on a portion where the TSD 51 is generated.
  • the damage removal step of removing the damage caused to the SiC substrate 40 is performed by performing the etching by heating under the Si vapor pressure.
  • the crystal growth step heating is performed in a state in which the Si melt is present between the SiC substrate 40 and a feed material having a free energy higher than that of the SiC substrate 40 and supplying at least C, A metastable solvent epitaxy method for growing single crystal SiC 41 on the surface is performed.
  • the manufacturing process described in FIGS. 2 and 3 is an example, and the order of the processes can be changed, some processes can be omitted, and other processes can be added.
  • the damage removal step can be omitted.
  • the temperature conditions and pressure conditions described above are examples and can be changed as appropriate.
  • a heating device other than the high temperature vacuum furnace 10 described above for example, a high temperature vacuum furnace having a plurality of internal spaces), a polycrystalline substrate as a SiC substrate, or a container having a different shape or material from the storage container 30 is used. You may
  • SiC substrate 41 single crystal SiC 51 TSD 52 pit 53 recess 71 SiC seed crystal 72 SiC ingot 73 SiC wafer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This production method for SiC mono-crystals (41) comprises a TSD visualization step, a recessed portion formation step, and a crystal growth step. In the TSD visualization step, TSDs (51) are visualized by dry etching a SiC substrate (40). In the recessed portion formation step, portions in which the TSDs (51) visualized by the TSD visualization step are present are removed, leaving portions surrounding the portions in which the TSDs (51) are present, to form recessed portions (53). In the crystal growth step, crystal growth is promoted on the SiC substrate (40) in the a-axis direction and in the c-axis direction so that SiC mono-crystals (41) grown from the portions surrounding the recessed portions are joined together on the recessed portions (53).

Description

単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiCMethod of manufacturing single crystal SiC, method of manufacturing SiC ingot, method of manufacturing SiC wafer, and single crystal SiC
 本発明は、主として、SiC基板に生じているTSD(貫通螺旋転位)を除去して単結晶SiCを製造する方法に関する。 The present invention mainly relates to a method for producing single crystal SiC by removing TSD (penetrating screw dislocation) occurring in a SiC substrate.
 従来から、高品質な半導体デバイスを作製するために、欠陥が少ない単結晶SiCを製造する方法が模索されている。特許文献1から5は、この種の技術を開示する。 Conventionally, in order to manufacture high quality semiconductor devices, methods of manufacturing single crystal SiC with few defects have been sought. Patent documents 1 to 5 disclose this type of technology.
 特許文献1の単結晶SiCの製造方法では、初めに、SiC基板の表面をレーザにより格子状に除去することにより、複数の凸部を形成する。その後、SiC基板にMSE法(準安定溶媒エピタキシー法)により結晶成長を行う。このとき、TSDが含まれている凸部は、TSDが含まれていない凸部と比較して、c軸方向の成長速度が速くなるため、c軸方向の高さが高くなる。このc軸方向の高さが高い凸部をレーザにより除去した後に、再びMSE法を行う。これにより、複数の凸部から成長させた単結晶SiCが接続され、大面積の単結晶SiCが製造される。 In the method of manufacturing single crystal SiC of Patent Document 1, first, the surface of the SiC substrate is removed in a lattice shape by a laser to form a plurality of convex portions. Thereafter, crystal growth is performed on the SiC substrate by the MSE method (metastable solvent epitaxy method). At this time, since the growth rate in the c-axis direction is faster than that in the case where the TSD is included, the height in the c-axis direction is increased. After the convex portion having a high height in the c-axis direction is removed by laser, the MSE method is performed again. Thereby, single crystal SiC grown from a plurality of convex portions is connected, and large area single crystal SiC is manufactured.
 特許文献2の単結晶SiCの製造方法では、初めに、SiC種結晶にマクロステップバンチングを形成することで、第2の種結晶を形成する。次に、この第2の種結晶のTSD上にステップバンチングを形成する。TSD上にステップバンチングを形成することで、TSDが積層欠陥に変換されるため、TSDが少ない単結晶SiCが製造される。 In the method for producing single crystal SiC of Patent Document 2, first, macro step bunching is formed in the SiC seed crystal to form a second seed crystal. Next, step bunching is formed on the TSD of this second seed crystal. By forming step bunching on the TSD, the TSD is converted into a stacking fault, so that single crystal SiC with a small TSD is manufactured.
 特許文献3の単結晶SiCの製造方法では、初めに、MSE法によりSiC基板上に単結晶SiCを形成する。次に、昇華法を行って、この単結晶SiC上に結晶成長を行う。 In the method of manufacturing single crystal SiC of Patent Document 3, first, single crystal SiC is formed on a SiC substrate by the MSE method. Next, sublimation is performed to grow crystals on this single crystal SiC.
 特許文献4及び5は、SiC基板に対して結晶成長を行って製造した単結晶SiCから、薄板状の単結晶SiCを切り出す。そして、この薄板状の単結晶SiCに再び結晶成長を行う。以上の処理を繰り返すことにより、TSDが少ない単結晶SiCが製造される。 In Patent Documents 4 and 5, thin plate-like single crystal SiC is cut out from single crystal SiC manufactured by crystal growth on a SiC substrate. Then, crystal growth is performed again on the thin plate-like single crystal SiC. By repeating the above process, single crystal SiC with a small TSD is manufactured.
特開2017-88444号公報JP, 2017-88444, A 特開2014-43369号公報JP 2014-43369 特開2010-89983号公報JP, 2010-89983, A 特開2003-119097号公報JP 2003-119097 A 特開2015-54814号公報JP, 2015-54814, A
 ここで、単結晶SiCに含まれるTSDは、当該単結晶を種結晶に用いて結晶成長させた際に種結晶の結晶多形を安定的に引き継ぐために重要な役割を果たす。しかし、特許文献1から5までに記載の方法では、所定の位置に生じているTSDを残存させつつ他の位置に生じているTSDを除去する等の処理は困難である。例えば、特許文献1では、凸部を形成する段階で、凸部以外に形成されているTSDが除去されてしまう。 Here, TSD contained in single crystal SiC plays an important role in stably inheriting the crystal polymorphism of the seed crystal when crystal growth is performed using the single crystal as a seed crystal. However, in the methods described in Patent Documents 1 to 5, it is difficult to perform processing such as removing TSDs generated at other positions while leaving TSDs generated at predetermined positions. For example, in patent document 1, at the stage of forming a convex part, TSD currently formed other than a convex part will be removed.
 なお、特許文献1の方法では、TSDを可視化するためのMSE法と、単結晶SiCを得るためのMSE法と、を行う必要があるため、製造工程が煩雑となる。特許文献2及び3の方法では、2段階の結晶成長が必要となるため、製造工程が煩雑となる。特許文献4及び5の方法では、複数回の結晶成長及び切出しを行う必要があるため、製造工程が煩雑となる。 In addition, in the method of patent document 1, since it is necessary to perform the MSE method for visualizing TSD, and the MSE method for obtaining single crystal SiC, a manufacturing process becomes complicated. In the methods of Patent Documents 2 and 3, since crystal growth of two steps is required, the manufacturing process becomes complicated. In the methods of Patent Documents 4 and 5, since it is necessary to perform crystal growth and cutting out a plurality of times, the manufacturing process becomes complicated.
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、必要なTSDが生じている場合は当該TSDを残存させつつ不要なTSDを除去して単結晶を簡単な工程で製造する方法を提供することにある。 The present invention has been made in view of the above circumstances, and the main object of the present invention is to remove the unnecessary TSD while leaving the necessary TSD when the necessary TSD is generated, and to perform the single crystal in a simple process. It is to provide a method of manufacturing.
課題を解決するための手段及び効果Means and effect for solving the problem
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problem to be solved by the present invention is as described above, and next, means for solving the problem and its effect will be described.
 本発明の観点によれば、以下の単結晶SiCの製造方法が提供される。即ち、この単結晶SiCの製造方法は、TSD可視化工程と、凹部形成工程と、結晶成長工程と、を含む処理を行う。前記TSD可視化工程では、SiC基板にドライエッチングを行ってTSD(貫通螺旋転位)を可視化する。前記凹部形成工程では、前記TSD可視化工程で可視化した前記TSDが生じている部分を除去しつつ、当該TSDが生じている部分の周囲を残存させることで凹部を形成する。前記結晶成長工程では、前記SiC基板に対してa軸方向及びc軸方向の結晶成長を行うことで、前記凹部の周囲から成長した単結晶SiCを当該凹部上で接続させる。 According to an aspect of the present invention, the following method for producing single crystal SiC is provided. That is, the method of manufacturing single crystal SiC performs processing including a TSD visualization step, a recess formation step, and a crystal growth step. In the TSD visualization step, dry etching is performed on the SiC substrate to visualize TSD (penetrating screw dislocation). In the recess forming step, the recess is formed by leaving the periphery of the portion in which the TSD is generated while removing the portion in which the TSD visualized in the TSD visualizing step is generated. In the crystal growth step, single crystal SiC grown from the periphery of the concave portion is connected on the concave portion by performing crystal growth in the a-axis direction and the c-axis direction on the SiC substrate.
 これにより、SiC基板に含まれるTSDを除去することができるので、高品質な単結晶SiCを製造することができる。また、事前に凸部等を形成することなくTSDを可視化できるので、必要なTSDを残存させつつ、不要なTSDを除去することができる。なお、必要なTSDが生じていない場合は、全てのTSDを除去することもできる。また、従来の方法と比較して簡単な工程で単結晶SiCを製造することができる。 Thereby, since TSD contained in a SiC substrate can be removed, high quality single crystal SiC can be manufactured. In addition, since the TSD can be visualized without forming a convex portion or the like in advance, unnecessary TSD can be removed while leaving necessary TSD. In addition, when necessary TSD has not arisen, all TSD can also be removed. In addition, single crystal SiC can be manufactured by a simple process as compared with the conventional method.
 前記の単結晶SiCの製造方法においては、前記TSD可視化工程では、前記TSDが生じている部分にピットが形成されることが好ましい。 In the method of manufacturing single crystal SiC described above, it is preferable that pits are formed in the portion where the TSD is generated in the TSD visualization step.
 特許文献1のようにMSE法を用いてTSDを可視化する場合、TSDが存在する部分が大きく成長するため、TSDが密集している場合等には成長部分が重なり、正確にTSDの特定ができない可能性がある。これに対し、上記の方法ではTSDが生じている部分に1μm程度の小さいピットが形成されるため、TSDをより正確に特定する事ができるので、必要なTSDを残存させつつ、不要なTSDを除去することができる。 When the TSD is visualized using the MSE method as in Patent Document 1, the portion where the TSD is present grows largely, so when the TSDs are densely packed, the growth portions overlap, and the TSD can not be identified accurately. there is a possibility. On the other hand, in the above method, small pits of about 1 μm are formed in the portion where the TSD occurs, so that the TSD can be specified more accurately, so unnecessary TSD can be obtained while leaving necessary TSD. It can be removed.
 前記の単結晶SiCの製造方法においては、前記凹部形成工程では、可視化した前記TSDが生じている部分が複数存在し、その一部のみを除去することが好ましい。 In the method of manufacturing single-crystal SiC described above, in the recess forming step, a plurality of portions where the visualized TSD is generated are present, and it is preferable to remove only a portion of the portions.
 これにより、選択的にTSDを残存させることができるので、種結晶に用いて結晶成長を行う際に結晶多形等を安定的に制御することができる。 Thus, since TSD can be selectively left, crystal polymorphism and the like can be stably controlled when crystal growth is performed using a seed crystal.
 前記の単結晶SiCの製造方法においては、前記凹部形成工程では、前記TSDが除去された結果、前記SiC基板の表面において前記TSDが不均一に分布されることが好ましい。 In the method of manufacturing single crystal SiC, it is preferable that the TSD be unevenly distributed on the surface of the SiC substrate as a result of removing the TSD in the recess forming step.
 これにより、結晶成長工程で所望の結晶多形(例えば4H-SiC)が種結晶から引き継がれ易くなるようにすることができる。 Thereby, desired crystal polymorph (for example, 4H-SiC) can be easily taken over from the seed crystal in the crystal growth step.
 前記の単結晶SiCの製造方法においては、前記凹部形成工程では、可視化した前記TSDに対して、表面のTSD密度が1000個/cm2以下となるように前記TSDを除去することが好ましい。 In the method of manufacturing single-crystal SiC, in the recess forming step, the TSD is preferably removed so that the TSD density on the surface is 1000 pieces / cm 2 or less with respect to the visualized TSD.
 これにより、高品質かつ結晶成長工程で所望の結晶多形(例えば4H-SiC)が種結晶から引き継がれ易くなるようにすることができる。 As a result, it is possible to make it easy for the desired crystal polymorph (for example, 4H-SiC) to be handed over from the seed crystal in the high quality and crystal growth step.
 前記の単結晶SiCの製造方法においては、前記TSD可視化工程では、Si蒸気圧下で加熱することによるエッチングを行うことで、前記TSDを可視化することが好ましい。 In the method of manufacturing single crystal SiC, in the TSD visualization step, it is preferable to visualize the TSD by performing etching by heating under a Si vapor pressure.
 これにより、SiC基板の表面を高精度に平坦化するとともにTSDを可視化することができる。 Thereby, the surface of the SiC substrate can be planarized with high accuracy and the TSD can be visualized.
 前記の単結晶SiCの製造方法においては、前記凹部形成工程では、前記TSDが生じている部分にレーザを照射することで前記凹部を形成することが好ましい。 In the method of manufacturing single crystal SiC, in the recess forming step, it is preferable to form the recess by irradiating a portion where the TSD is generated with a laser.
 これにより、簡単かつ精度の高い方法でTSDが生じている部分に凹部を正確に形成することができる。 As a result, it is possible to accurately form the recess in the portion where the TSD occurs in a simple and highly accurate method.
 前記の単結晶SiCの製造方法においては、前記レーザのビーム径が1μm以上であることが好ましい。 In the method of manufacturing single crystal SiC, the beam diameter of the laser is preferably 1 μm or more.
 これにより、前記凹部を形成した際にTSDの転位芯の近傍の歪領域を除去することができる。 Thereby, when forming the said recessed part, the distortion area | region of the vicinity of the dislocation core of TSD can be removed.
 前記の単結晶SiCの製造方法においては、前記凹部形成工程の後であって前記結晶成長工程の前に、前記SiC基板をエッチングすることで前記凹部形成工程で当該SiC基板に生じたダメージを除去するダメージ除去工程を行うことが好ましい。 In the method of manufacturing single-crystal SiC, the SiC substrate is etched after the recess formation step and before the crystal growth step, thereby removing the damage caused to the SiC substrate in the recess formation step. It is preferable to perform the damage removal process.
 これにより、凹部形成工程で生じたダメージを除去することができるので、より高品質な単結晶SiCを製造できる。 Thereby, since the damage which arose in the recessed part formation process can be removed, higher quality single crystal SiC can be manufactured.
 前記の単結晶SiCの製造方法においては、前記結晶成長工程では、前記SiC基板と、当該SiC基板よりも自由エネルギーが高く、少なくともCを供給するフィード材と、の間にSi融液が存在する状態で加熱することで、前記SiC基板の表面に前記単結晶SiCを成長させる準安定溶媒エピタキシー法を行うことが好ましい。 In the method of manufacturing single crystal SiC, in the crystal growth step, Si melt is present between the SiC substrate and a feed material having a higher free energy than the SiC substrate and supplying at least C. It is preferable to perform a metastable solvent epitaxy method of growing the single crystal SiC on the surface of the SiC substrate by heating in a state.
 これにより、準安定溶媒エピタキシー法はa軸方向の成長速度が速いため、短時間で凹部の上方を単結晶SiCで塞ぐことができる。 Thereby, since the growth rate in the a-axis direction is high in the metastable solvent epitaxy method, the upper part of the recess can be closed with single crystal SiC in a short time.
 前記の単結晶SiCの製造方法においては、以下のようにすることが好ましい。即ち、前記TSD可視化工程では、Si蒸気圧下で加熱することによるエッチングを行うことで、前記TSDを可視化する。前記凹部形成工程では、前記TSDが生じている部分にレーザを照射することで前記凹部を形成する。当該凹部形成工程の後に、Si蒸気圧下で加熱することによるエッチングを行うことで、当該SiC基板に生じたダメージを除去するダメージ除去工程を行う。前記結晶成長工程では、前記SiC基板と、当該SiC基板よりも自由エネルギーが高く、少なくともCを供給するフィード材と、の間にSi融液が存在する状態で加熱することで、前記SiC基板の表面に前記単結晶SiCを成長させる準安定溶媒エピタキシー法を行う。 In the method of manufacturing single crystal SiC described above, it is preferable to do as follows. That is, in the TSD visualization step, the TSD is visualized by performing etching by heating under a Si vapor pressure. In the recess forming step, the recess is formed by irradiating a laser on a portion where the TSD is generated. After the recess formation step, etching is performed by heating under a Si vapor pressure to perform a damage removal step of removing damage caused to the SiC substrate. In the crystal growth step, heating is performed in a state in which the Si melt is present between the SiC substrate and a feed material having a free energy higher than that of the SiC substrate and supplying at least C; A metastable solvent epitaxy method is performed to grow the single crystal SiC on the surface.
 これにより、純度が高い単結晶SiCを短時間で製造することができる。また、2回のエッチングがともにSi蒸気圧エッチングであるため、製造工程を単純化することができる。 Thereby, high purity single crystal SiC can be manufactured in a short time. Moreover, since both etchings are Si vapor pressure etching, the manufacturing process can be simplified.
 また、本発明の別の観点によれば、前記の製造方法を用いて製造された前記単結晶SiCを用いて、SiCインゴットを製造することが好ましい。例えば溶液成長法によりインゴットを作製する場合は、前記SiC基板の表面のうち外縁部のTSD密度が当該外縁部以外のTSD密度よりも高くなるように前記凹部を形成することが好ましい。また、気相成長法によりインゴットを作製する場合は、前記SiC基板の表面のうち径方向の中心部のTSD密度が当該中心部以外のTSD密度よりも高くなるように前記凹部を形成することが好ましい。 Further, according to another aspect of the present invention, it is preferable to manufacture a SiC ingot using the single crystal SiC manufactured using the above-described manufacturing method. For example, in the case of producing an ingot by a solution growth method, it is preferable to form the recess such that the TSD density of the outer edge portion of the surface of the SiC substrate is higher than the TSD density of other than the outer edge portion. In the case of producing an ingot by vapor phase growth, the recess may be formed such that the TSD density at the central portion in the radial direction of the surface of the SiC substrate is higher than the TSD density other than the central portion. preferable.
 これにより、高品質かつ所望の結晶多形を有するSiCインゴットを得ることができる。 This makes it possible to obtain a SiC ingot having high quality and a desired crystal polymorph.
 また、本発明の別の観点によれば、前記の製造方法を用いて製造された前記単結晶SiCを用いて、SiCウエハを製造することが好ましい。オフ角を有するSiCウエハを作製する場合に、前記エピタキシャル層形成工程におけるステップフロー成長の中央に対して上流側のTSD密度が、当該中央に対して下流側のTSD密度よりも高くなるように前記凹部を形成することが好ましい。また、前記単結晶SiCをそのままSiCウエハとして用いても良い。 Further, according to another aspect of the present invention, it is preferable to manufacture a SiC wafer using the single crystal SiC manufactured using the above manufacturing method. In the case of producing a SiC wafer having an off angle, the TSD density on the upstream side with respect to the center of the step flow growth in the epitaxial layer forming step is higher than the TSD density on the downstream side with respect to the center. Preferably, the recess is formed. Further, the single crystal SiC may be used as it is as a SiC wafer.
 これにより、前記エピタキシャル層形成工程における上流側の異種結晶多形の混入を抑制することができる。 Thereby, it is possible to suppress the mixing of the upstream heterocrystal polymorph in the epitaxial layer forming step.
本発明の単結晶SiCの製造方法等で用いる高温真空炉の概要を説明する図。BRIEF DESCRIPTION OF THE DRAWINGS The figure explaining the outline | summary of the high temperature vacuum furnace used with the manufacturing method of single crystal SiC of this invention, etc. FIG. 単結晶SiCの製造工程(TSD可視化工程、凹部形成工程、及びダメージ除去工程)を示す模式図。The schematic diagram which shows the manufacturing process (TSD visualization process, recessed part formation process, and damage removal process) of single crystal SiC. 単結晶SiCの製造工程(結晶成長工程)を示す模式図。The schematic diagram which shows the manufacturing process (crystal growth process) of single crystal SiC. SiC基板の表面に生じているTSDの顕微鏡写真及び応力解析結果を示す図。The microphotograph of TSD which has arisen on the surface of a SiC substrate, and a figure showing the stress analysis result. MSE法による結晶成長工程を示す模式図。The schematic diagram which shows the crystal growth process by MSE method. SiC種結晶からSiCインゴットを介してSiCウエハを作成する工程を示す模式図。The schematic diagram which shows the process of producing a SiC wafer from a SiC seed crystal via a SiC ingot. 凹部形成工程で用いたレーザのビーム径とTSD伝播率との関係を示すグラフ。The graph which shows the relationship between the beam diameter of the laser used at the recessed part formation process, and the TSD propagation rate. ビーム径が40μmのレーザを用いてTSDを除去した後に結晶成長を行った場合において、TSDの伝播が生じなかった箇所と、TSDの伝播が生じた箇所の分布を示す図。The figure which shows distribution of the location where TSD propagation did not occur, and the location which TSD propagation produced, when crystal growth was performed after removing TSD using a laser with a beam diameter of 40 micrometers. ビーム径が60μmのレーザを用いてTSDを除去した後に結晶成長を行った場合において、TSDの伝播が生じなかった箇所と、TSDの伝播が生じた箇所の分布を示す図。The figure which shows distribution of the location where propagation of TSD did not occur, and the location which propagation of TSD produced, when crystal growth was performed after removing TSD using a laser with a beam diameter of 60 micrometers. ビーム径が100μmのレーザを用いてTSDを除去した後に結晶成長を行った場合において、TSDの伝播が生じなかった箇所と、TSDの伝播が生じた箇所の分布を示す図。The figure which shows distribution of the location where TSD propagation did not occur, and the location which TSD propagation produced, when crystal growth was performed after removing TSD using a laser with a beam diameter of 100 micrometers. SiCインゴットを作製するための除去対象のTSDと残存対象のTSDの分布が成長法に応じて異なることを示す模式図。The schematic diagram which shows that distribution of TSD of removal object for producing a SiC ingot, and TSD of remaining object differs according to the growth method. SiCウエハを作製するための除去対象のTSDと残存対象のTSDの分布を示す模式図。The schematic diagram which shows distribution of TSD of removal object for producing a SiC wafer, and TSD of remaining object.
 次に、図面を参照して本発明の実施形態を説明する。初めに、図1を参照して、本実施形態の単結晶SiCの製造方法等で用いる高温真空炉10について説明する。 Next, embodiments of the present invention will be described with reference to the drawings. First, with reference to FIG. 1, a high temperature vacuum furnace 10 used in the method of manufacturing single crystal SiC of the present embodiment and the like will be described.
 図1に示すように、高温真空炉10は、本加熱室21と、予備加熱室22と、を備えている。本加熱室21は、少なくとも表面が単結晶SiCで構成される単結晶SiC基板(以下、SiC基板40)を1000℃以上2300℃以下の温度に加熱することができる。予備加熱室22は、SiC基板40を本加熱室21で加熱する前に予備加熱を行うための空間である。 As shown in FIG. 1, the high temperature vacuum furnace 10 includes a main heating chamber 21 and a preheating chamber 22. The main heating chamber 21 can heat a single crystal SiC substrate (hereinafter, the SiC substrate 40) whose surface is at least a single crystal SiC to a temperature of 1000 ° C. or more and 2300 ° C. or less. The preheating chamber 22 is a space for performing preheating before the SiC substrate 40 is heated in the main heating chamber 21.
 本加熱室21には、真空形成用バルブ23と、不活性ガス注入用バルブ24と、真空計25と、が接続されている。真空形成用バルブ23は、本加熱室21の真空度を調整することができる。不活性ガス注入用バルブ24は、本加熱室21内の不活性ガスの圧力を調整することができる。本実施形態において、不活性ガスとは、例えばAr等の第18族元素(希ガス元素)のガス、即ち、固体のSiCに対して反応性が乏しいガスであり、窒素ガスを除くガスである。真空計25は、本加熱室21内の真空度を測定することができる。 The main heating chamber 21 is connected to a vacuum forming valve 23, an inert gas injection valve 24, and a vacuum gauge 25. The vacuum forming valve 23 can adjust the degree of vacuum of the main heating chamber 21. The inert gas injection valve 24 can adjust the pressure of the inert gas in the main heating chamber 21. In the present embodiment, the inert gas is, for example, a gas of a Group 18 element (a rare gas element) such as Ar, that is, a gas having poor reactivity to solid SiC and excluding nitrogen gas. . The vacuum gauge 25 can measure the degree of vacuum in the main heating chamber 21.
 本加熱室21の内部には、ヒータ26が備えられている。また、本加熱室21の側壁及び天井には図略の熱反射金属板が固定されており、この熱反射金属板は、ヒータ26の熱を本加熱室21の中央部に向けて反射させるように構成されている。これにより、SiC基板40を強力かつ均等に加熱し、1000℃以上2300℃以下の温度まで昇温させることができる。なお、ヒータ26としては、例えば、抵抗加熱式のヒータ又は高周波誘導加熱式のヒータを用いることができる。 A heater 26 is provided inside the main heating chamber 21. Further, a heat reflecting metal plate (not shown) is fixed to the side wall and ceiling of the main heating chamber 21, and this heat reflecting metal plate reflects the heat of the heater 26 toward the central portion of the main heating chamber 21. Is configured. Thereby, the SiC substrate 40 can be heated strongly and uniformly, and the temperature can be raised to a temperature of 1000 ° C. or more and 2300 ° C. or less. In addition, as the heater 26, for example, a resistance heating heater or a high frequency induction heating heater can be used.
 高温真空炉10は、坩堝(収容容器)30に収容されたSiC基板40に対して加熱を行う。収容容器30は、適宜の支持台等に載せられており、この支持台が動くことで、少なくとも予備加熱室から本加熱室まで移動可能に構成されている。収容容器30は、互いに嵌合可能な上容器31と下容器32とを備えている。SiC基板40は、収容容器30の下容器32に載置されている支持台33に支持される。 The high temperature vacuum furnace 10 heats the SiC substrate 40 stored in the crucible (storage container) 30. The storage container 30 is placed on a suitable support or the like, and is configured to be movable from at least the preheating chamber to the main heating chamber by moving the support. The storage container 30 includes an upper container 31 and a lower container 32 which can be fitted to each other. The SiC substrate 40 is supported by a support 33 placed on the lower container 32 of the container 30.
 収容容器30は、SiC基板40が収容される内部空間の壁面(上面、側面、底面)を構成する部分において、外部側から内部空間側の順に、タンタル層(Ta)、タンタルカーバイド層(TaC及びTa2C)、及びタンタルシリサイド層(TaSi2又はTa5Si3等)から構成されている。 Containment container 30 includes a tantalum layer (Ta) and a tantalum carbide layer (TaC and TaC) in the order from the outer side to the inner space side in a portion constituting the wall surface (upper surface, side surface, bottom surface) of inner space Ta 2 C), and is composed of tantalum silicide layer (TaSi 2 or Ta 5 Si 3, etc.).
 このタンタルシリサイド層は、加熱を行うことで、収容容器30の内部空間にSiを供給する。また、収容容器30にはタンタル層及びタンタルカーバイド層が含まれるため、周囲のC蒸気を取り込むことができる。これにより、加熱時に内部空間内を高純度のSi雰囲気とすることができる。なお、タンタルシリサイド層を設けることに代えて、固体のSi等のSi源を内部空間に配置しても良い。この場合、加熱時に固体のSiが昇華することで、内部空間内を高純度のSi蒸気圧下とすることができる。 The tantalum silicide layer supplies Si to the internal space of the storage container 30 by heating. Further, since the container 30 includes the tantalum layer and the tantalum carbide layer, it is possible to take in the surrounding C vapor. Thereby, the inside of the internal space can be made into a high purity Si atmosphere at the time of heating. Note that instead of providing a tantalum silicide layer, a Si source such as solid Si may be disposed in the internal space. In this case, the inside of the internal space can be made to have a high purity Si vapor pressure by sublimation of solid Si during heating.
 SiC基板40を加熱する際には、初めに、図1の鎖線で示すように収容容器30を高温真空炉10の予備加熱室22に配置して、適宜の温度(例えば約800℃)で予備加熱する。次に、予め設定温度(例えば、約1800℃)まで昇温させておいた本加熱室21へ収容容器30を移動させる。その後、圧力等を調整しつつSiC基板40を加熱する。なお、予備加熱を省略しても良い。 When heating the SiC substrate 40, first, the storage container 30 is disposed in the preheating chamber 22 of the high-temperature vacuum furnace 10 as shown by the chain line in FIG. 1 and spared at an appropriate temperature (for example, about 800.degree. C.). Heat up. Next, the storage container 30 is moved to the main heating chamber 21 which has been heated to a set temperature (for example, about 1800 ° C.) in advance. Thereafter, the SiC substrate 40 is heated while adjusting the pressure and the like. Preheating may be omitted.
 次に、本実施形態で行われる単結晶SiC41の製造工程について図2及び図3を参照して説明する。図2及び図3は、単結晶SiC41の製造工程を示す模式図である。 Next, the manufacturing process of single crystal SiC 41 performed in the present embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 and FIG. 3 are schematic views showing the manufacturing process of single crystal SiC 41.
 SiC基板40には、図2に示すように、複数のTSD(TSD :threading screw dislocation、貫通螺旋転位)が生じている。TSDとは、結晶の変位方向(バーガースベクトル)と転位線が平行な結晶欠陥である。また、図4には、TSDの顕微鏡写真及び応力解析結果が示されている。応力の解析は、EBSD(Electron Backscatter Pattern)を用いて行った結果である。この応力解析結果によれば、TSDの大きさ(転位芯の近傍の歪み領域)は1μm程度である。TSDは、結晶成長時に単結晶SiC41に伝播することで、単結晶SiC41の品質を低下させる。一方で、SiC基板40に生じている一部のTSDを敢えて残存させることで、結晶多形を制御可能である。従って、本実施形態では、一部のTSDを敢えて残存させつつ、残りのTSDを除去する(TSDを選択的に除去する)。以下、具体的に説明する。また、以下の説明では、SiC基板40に生じているTSDを説明する場合は、符号51を付して説明する。 As shown in FIG. 2, a plurality of TSDs (TSD: threading screw dislocation, threading screw dislocation) are generated in the SiC substrate 40. TSD is a crystal defect in which the displacement direction (Burgers vector) of the crystal and the dislocation line are parallel. Further, FIG. 4 shows a photomicrograph of TSD and a stress analysis result. The analysis of stress is the result of using EBSD (Electron Backscatter Pattern). According to the stress analysis result, the size of the TSD (a strained area near the dislocation core) is about 1 μm. TSD reduces the quality of single crystal SiC 41 by propagating to single crystal SiC 41 at the time of crystal growth. On the other hand, by intentionally leaving a part of the TSD generated in the SiC substrate 40, it is possible to control the crystal polymorphism. Therefore, in the present embodiment, the remaining TSDs are removed (while the TSDs are selectively removed) while intentionally leaving some of the TSDs. The details will be described below. Further, in the following description, when the TSD generated in the SiC substrate 40 is described, the reference numeral 51 is attached and described.
 本実施形態で用いるSiC基板40は、オフ角が0°である基板(オン基板)であるが、オフ角が0°より大きくても良い。また、SiC基板40の結晶多形は4H-SiCであるが、他の結晶多形(6H-SiC、3C-SiC等)であっても良い。SiC基板40の主面(処理が行われる面)はSi面(即ち(0001)面)であるが、C面(即ち(000-1)面)であっても良い。また、SiC基板40は凸部等が形成されておらず、表面(具体的には主面、以下同じ)が平坦である。 The SiC substrate 40 used in the present embodiment is a substrate (on substrate) having an off angle of 0 °, but the off angle may be larger than 0 °. The crystal polymorphism of the SiC substrate 40 is 4H-SiC, but may be another crystal polymorphism (6H-SiC, 3C-SiC, etc.). The main surface (surface to be processed) of the SiC substrate 40 is a Si surface (ie, (0001) surface), but may be a C surface (ie, (000-1) surface). Moreover, the convex part etc. are not formed in the SiC substrate 40, but the surface (specifically, the main surface, the same applies to the following) is flat.
 初めに、SiC基板40に対して、TSD可視化工程を行う。SiC基板40に生じているTSD51は表面を顕微鏡等で観察しても検出ができない(又は困難である)。TSD可視化工程とは、SiC基板40に生じているTSD51を観察可能な状態に変化させる工程である。なお、TSD可視化工程には、観察が困難であるが不可能ではないTSD51を強調して観察し易くする工程も含む。本実施形態では、SiC基板40に対してSi蒸気圧エッチングを行うが、他のドライエッチング(例えば水素エッチング)を行っても良い。SiC基板40に対してドライエッチングを行うことで、図2のTSD可視化工程後のSiC基板40に示すように、TSD51が生じている部分にピット52が生じる。ピット52は、SiC基板40の表面に形成される僅かな窪みである。これにより、TSD51が生じている箇所を可視化できる。 First, a TSD visualization process is performed on the SiC substrate 40. The TSD 51 produced on the SiC substrate 40 can not be detected (or is difficult) even if the surface is observed with a microscope or the like. The TSD visualization step is a step of changing the TSD 51 generated on the SiC substrate 40 into a viewable state. Note that the TSD visualization step also includes a step of emphasizing the TSD 51 which is difficult but not impossible to make observation easier. In the present embodiment, the Si vapor pressure etching is performed on the SiC substrate 40, but another dry etching (for example, hydrogen etching) may be performed. By performing dry etching on the SiC substrate 40, pits 52 are formed in the portion where the TSD 51 is generated, as shown in the SiC substrate 40 after the TSD visualization step of FIG. The pits 52 are slight depressions formed on the surface of the SiC substrate 40. This makes it possible to visualize the portion where the TSD 51 is generated.
 ここで、Si蒸気圧エッチングについて詳細に説明する。Si蒸気圧エッチングは、SiC基板40を収容容器30に収容し、上述したSi源が収容容器30内に存在する状態で(かつSi及び不活性ガス以外の元素を積極的に供給しない状態で)、1500℃以上2200℃以下、望ましくは1600℃以上2000℃以下の温度範囲で高温真空炉10を用いて加熱を行う。これにより、収容容器30内が高純度のSi蒸気圧下となり、この状態でSiC基板40が加熱される。これにより、SiC基板40の表面がエッチングされるとともに当該表面が平坦化されていく。このSi蒸気圧エッチングの際には、以下に示す反応が行われる。簡単に説明すると、SiC基板40がSi蒸気圧下で加熱されることで、SiC基板40のSiCが熱分解ならびにSiとの化学反応によってSi2C又はSiC2等になって昇華するとともに、Si雰囲気下のSiがSiC基板40の表面でCと結合して自己組織化が起こり平坦化される。
(1) SiC(s) → Si(v)I + C(s)I
(2) 2SiC(s) → Si(v)II + SiC2(v)
(3) SiC(s) + Si(v)I+II → Si2C(v)
Here, Si vapor pressure etching will be described in detail. In Si vapor pressure etching, the SiC substrate 40 is accommodated in the container 30, and the above-described Si source is present in the container 30 (and in a state in which elements other than Si and an inert gas are not positively supplied) Heating is performed using the high-temperature vacuum furnace 10 in a temperature range of 1500 ° C. or more and 2200 ° C. or less, desirably 1600 ° C. or more and 2000 ° C. or less. As a result, the inside of the storage container 30 has a high-purity Si vapor pressure, and the SiC substrate 40 is heated in this state. Thereby, the surface of the SiC substrate 40 is etched and the surface is planarized. During the Si vapor pressure etching, the following reaction is performed. Briefly described, the SiC substrate 40 is heated under the Si vapor pressure, whereby the SiC of the SiC substrate 40 is thermally decomposed and chemically reacted with Si to become Si 2 C or SiC 2 or the like and sublimated, and the Si atmosphere The lower Si bonds to C at the surface of the SiC substrate 40 to cause self-organization and planarization.
(1) SiC (s) → Si (v) I + C (s) I
(2) 2SiC (s) → Si (v) II + SiC 2 (v)
(3) SiC (s) + Si (v) I + II → Si 2 C (v)
 Si蒸気圧エッチングは、機械加工ではなく熱化学的エッチングであるため、加工ダメージの原因とならない。むしろ、例えばSiC基板40の作製時に生じた加工ダメージ(例えば切出し及び研磨等の際に生じた加工ダメージ)を除去できる。つまり、本実施形態のTSD可視化工程では、TSD51が可視化されるだけでなく、SiC基板40に生じた加工ダメージの除去も同時に行うことができる。また、前記TSD可視化工程では、Si蒸気圧エッチングによるエッチング速度は、例えば1μm/min以上であることが好ましく、前記TSD可視化工程以外では1μm/min未満であっても良い。 Since Si vapor pressure etching is not chemical mechanical processing but thermochemical etching, it does not cause processing damage. Rather, the processing damage (for example, the processing damage which arose during cutting and polishing etc.) which arose, for example at the time of preparation of SiC substrate 40 can be removed. That is, in the TSD visualization step of the present embodiment, not only the TSD 51 is visualized, but also the removal of processing damage caused to the SiC substrate 40 can be performed simultaneously. In the TSD visualization step, the etching rate by Si vapor pressure etching is preferably, for example, 1 μm / min or more, and may be less than 1 μm / min except in the TSD visualization step.
 次に、SiC基板40に凹部形成工程を行う。凹部形成工程とは、TSD可視化工程で可視化したTSD51が生じている部分を除去しつつ、当該TSD51が生じている部分の周囲を残存させることで凹部53を形成する処理である。本実施形態では、レーザを照射することでTSD51が生じている部分を除去する。当然であるが、TSD51が生じていない部分にはレーザを照射しない。これにより、図2の凹部形成工程後のSiC基板40に示すように、TSD51が生じている部分に凹部53を形成することができる。 Next, a recess forming process is performed on the SiC substrate 40. The recess forming step is a process of forming the recess 53 by leaving the periphery of the portion where the TSD 51 is generated while removing the portion where the TSD 51 visualized in the TSD visualization step is generated. In the present embodiment, the portion where the TSD 51 is generated is removed by irradiating the laser. As a matter of course, the portion where the TSD 51 is not generated is not irradiated with the laser. Thereby, as shown in the SiC substrate 40 after the recess forming step of FIG. 2, the recess 53 can be formed in the portion where the TSD 51 is generated.
 凹部53は、ピット52よりも径方向(水平方向、a軸方向、c軸に垂直な方向、以下同じ)の長さが大きく、更に、深さ方向(基板厚み方向、c軸方向)の長さが長い部分である。凹部53は、断面円形かつ径が一定の非貫通の穴であるが、その形状が本実施形態とは異なっていても良い。例えば、断面が台形状(円錐台形状の凹部)、即ち、深さ方向に進むに連れて径方向の長さが短くなる形状であっても良い。また、レーザを照射することにより、凹部53の近傍においてダメージが生じる。 The recess 53 has a longer length in the radial direction (horizontal direction, a-axis direction, direction perpendicular to c-axis, the same applies hereinafter) than the pit 52, and further has a length in the depth direction (substrate thickness direction, c-axis direction). That's the long part. The recess 53 is a non-through hole having a circular cross section and a constant diameter, but the shape may be different from that of the present embodiment. For example, the cross section may have a trapezoidal shape (conical concave portion), that is, a shape in which the length in the radial direction becomes shorter as it proceeds in the depth direction. In addition, when the laser is irradiated, damage occurs in the vicinity of the recess 53.
 上述したように、本実施形態では、SiC基板40に生じているTSD51を敢えて残存させる。結晶多形の制御には、TSD51の分布が関係している。従って、本実施形態では、TSD可視化工程で可視化された複数のTSD51のうち、一部のTSD51についてレーザを照射する。即ち、TSD可視化工程で可視化された複数のTSD51が、除去対象のTSD51と残存対象のTSD51とに分類される。 As described above, in the present embodiment, the TSD 51 generated on the SiC substrate 40 is intentionally left. The distribution of TSD 51 is involved in the control of crystal polymorphism. Therefore, in the present embodiment, a part of the TSDs 51 among the plurality of TSDs 51 visualized in the TSD visualization process is irradiated with a laser. That is, a plurality of TSDs 51 visualized in the TSD visualization step are classified into TSDs 51 to be removed and TSDs 51 to be remaining.
 なお、本実施形態ではレーザを用いて凹部53を形成するが、凹部53を形成できる方法であれば他の方法を用いることもできる。例えば、除去対象のTSD51が生じている部分のみに開口を形成したマスクを、SiC基板40の表面に載置し、エッチング(水素エッチング等のドライエッチング、又は、KOHエッチング等のウェットエッチング等)を行う。これにより、除去対象のTSD51が生じている部分に凹部53を形成することができる。 In addition, although the recessed part 53 is formed using a laser in this embodiment, as long as the recessed part 53 can be formed, another method can also be used. For example, a mask having an opening formed only in a portion where TSD 51 to be removed is formed is mounted on the surface of SiC substrate 40, and etching (dry etching such as hydrogen etching or wet etching such as KOH etching) Do. Thereby, the recessed part 53 can be formed in the part in which TSD51 of removal object has arisen.
 次に、SiC基板40にダメージ除去工程を行う。ダメージ除去工程とは、凹部形成工程で凹部53の近傍に生じたダメージを除去する工程である。本実施形態では、上記のSi蒸気圧エッチングにより、ダメージ除去工程を行う。Si蒸気圧エッチングを行うことにより、凹部53のダメージが除去される。また、凹部53が断面が台形状(円錐台形状の凹部)、即ち、深さ方向に進むに連れて径方向の長さが短くなる形状となる。また、ダメージ除去後の凹部53の形状が本実施形態とは異なっていても良い。 Next, a damage removal process is performed on the SiC substrate 40. The damage removing step is a step of removing the damage caused in the vicinity of the recess 53 in the recess forming step. In the present embodiment, the damage removal step is performed by the above-described Si vapor pressure etching. By performing the Si vapor pressure etching, the damage of the recess 53 is removed. In addition, the recess 53 has a trapezoidal cross section (conical recess), that is, a shape in which the length in the radial direction becomes shorter as it proceeds in the depth direction. In addition, the shape of the recess 53 after the damage removal may be different from that of the present embodiment.
 なお、本実施形態では、Si蒸気圧エッチングを用いてダメージ除去工程を行うが、他の方法(例えば、水素エッチング等のドライエッチング)により凹部53のダメージを除去しても良い。また、本実施形態では、凹部53だけでなく、SiC基板40の表面の全体が除去されるが、凹部53の周囲のみにエッチング(ダメージの除去)を行う構成であっても良い。 In the present embodiment, the damage removal step is performed using Si vapor pressure etching, but the damage of the recess 53 may be removed by another method (for example, dry etching such as hydrogen etching). Further, in the present embodiment, not only the recess 53 but the entire surface of the SiC substrate 40 is removed, but the configuration may be such that etching (removal of damage) is performed only around the recess 53.
 次に、SiC基板40に結晶成長工程を行う。結晶成長工程とは、SiC基板40に対してa軸方向(水平方向、基板厚み方向に垂直な方向)及びc軸方向(基板厚み方向)の結晶成長を行うことで、凹部53の周囲から成長した単結晶SiC41を当該凹部53上で接続させる。本実施形態では、溶液成長法の1つであるMSE法(準安定溶媒エピタキシー法)を用いて単結晶SiC(エピタキシャル層)を成長させる。 Next, a crystal growth step is performed on the SiC substrate 40. In the crystal growth step, crystal growth is performed from the periphery of the recess 53 by performing crystal growth in the a-axis direction (horizontal direction, direction perpendicular to the substrate thickness direction) and c-axis direction (substrate thickness direction) with respect to the SiC substrate 40. The single crystal SiC 41 is connected on the recess 53. In this embodiment, single crystal SiC (epitaxial layer) is grown using MSE (metastable solvent epitaxy) which is one of solution growth methods.
 以下、MSE法について図5を参照して説明する。図5は、MSE法による結晶成長工程を示す模式図である。図5に示すように、本実施形態では、収容容器30にSiC基板40を収容する。収容容器30の内部には、SiC基板40に加え、Siプレート61と、フィード材62と、が配置されている。これらは、支持台33によって支持されている。 Hereinafter, the MSE method will be described with reference to FIG. FIG. 5 is a schematic view showing a crystal growth step by the MSE method. As shown in FIG. 5, in the present embodiment, the SiC substrate 40 is accommodated in the accommodation container 30. In addition to the SiC substrate 40, a Si plate 61 and a feed material 62 are disposed inside the storage container 30. These are supported by a support 33.
 SiC基板40は、液相エピタキシャル成長の基板(シード側)として使用される。SiC基板40の一側(上側)には、Siプレート61が配置されている。Siプレート61は、Si製の板状の部材である。Siの融点は約1400℃であるので、上記の高温真空炉10で加熱を行うことでSiプレート61は溶融する。Siプレート61の一側(上側)には、フィード材62が配置されている。フィード材62は、例えば多結晶3C-SiC製であり、SiC基板40より自由エネルギーの高い基板である。 The SiC substrate 40 is used as a substrate (seed side) for liquid phase epitaxial growth. A Si plate 61 is disposed on one side (upper side) of the SiC substrate 40. The Si plate 61 is a plate-like member made of Si. Since the melting point of Si is about 1400 ° C., the Si plate 61 is melted by heating in the high temperature vacuum furnace 10 described above. A feed material 62 is disposed on one side (upper side) of the Si plate 61. The feed material 62 is made of, for example, polycrystalline 3 C—SiC, and is a substrate having a higher free energy than the SiC substrate 40.
 SiC基板40、Siプレート61、及びフィード材62を上記のように配置して加熱すると、SiC基板40とフィード材62の間に配置されていたSiプレート61が溶融し、シリコン融液が炭素を移動させるための溶媒として働く。なお、加熱温度は、例えば1500℃以上2300℃以下であることが好ましい。この加熱により、SiC基板40とフィード材62の自由エネルギーの差に基づいて、Si融液に濃度勾配が発生し、この濃度勾配が駆動力となって、フィード材62からSi融液へSiとCが溶出する。Si融液に取り込まれたCは、Si融液のSiと結合し、SiC基板40に単結晶SiCとして析出する。以上により、SiC基板40の表面に単結晶SiC41を成長させることができる。また、MSE法では、SiC基板40にオフ角が形成されていない場合であっても、結晶成長を行うことができる。 When the SiC substrate 40, the Si plate 61, and the feed material 62 are disposed and heated as described above, the Si plate 61 disposed between the SiC substrate 40 and the feed material 62 is melted, and the silicon melt is used as carbon. Act as a solvent for transfer. The heating temperature is preferably, for example, 1500 ° C. or more and 2300 ° C. or less. This heating generates a concentration gradient in the Si melt based on the difference in free energy between the SiC substrate 40 and the feed material 62, and this concentration gradient becomes a driving force to transfer Si from the feed material 62 to the Si melt. C elutes. C taken into the Si melt bonds with Si of the Si melt and precipitates on the SiC substrate 40 as single crystal SiC. As described above, single crystal SiC 41 can be grown on the surface of SiC substrate 40. In addition, in the MSE method, crystal growth can be performed even when the off-angle is not formed in the SiC substrate 40.
 MSE法では、a軸方向及びc軸方向に結晶成長が行われる。従って、凹部53が形成されたSiC基板40にMSE法を行って結晶成長させることで、SiC基板40(詳細には凹部53を除く部分)に単結晶SiC41が析出する。この単結晶SiC41がa軸方向に成長することで、図3の結晶成長工程後のSiC基板40に示すように、凹部53の上方を塞ぐように単結晶SiC41が成長する。その後、更に単結晶SiC41を成長させることで、凹部53の上方が完全に塞がれる。 In the MSE method, crystal growth is performed in the a-axis direction and the c-axis direction. Therefore, single crystal SiC 41 is precipitated on the SiC substrate 40 (specifically, the portion excluding the recess 53) by performing crystal growth by performing the MSE method on the SiC substrate 40 in which the recess 53 is formed. By growing the single crystal SiC 41 in the a-axis direction, as shown in the SiC substrate 40 after the crystal growth step of FIG. 3, the single crystal SiC 41 grows so as to close the upper part of the recess 53. Thereafter, by further growing single crystal SiC 41, the upper portion of the recess 53 is completely closed.
 ここで、凹部53の底部ではフィード材62までの距離が長くなるため、成長速度が遅い又は結晶が成長しない。従って、凹部53の底部のTSD51が単結晶SiC41に伝播しない。一方で、残存対象のTSD51には僅かなピット52しか形成されていないため、単結晶SiC41が成長する。以上のように、SiC基板40に形成されている(可視化した)TSD51のうち、除去対象のTSD51を単結晶SiC41に伝播させず、かつ、残存対象のTSD51を単結晶SiC41に伝播させることができる。これにより、所望の位置にTSD51が形成された単結晶SiC41を製造できる。本実施形態の方法で作製することで、単結晶SiC41の表面のTSD密度は、例えば0個/cm2以上1000個/cm2以下となる。 Here, since the distance to the feed material 62 is long at the bottom of the recess 53, the growth rate is slow or crystals do not grow. Therefore, the TSD 51 at the bottom of the recess 53 does not propagate to the single crystal SiC 41. On the other hand, since only a few pits 52 are formed in the remaining target TSD 51, single crystal SiC 41 grows. As described above, among the TSDs 51 formed (visualized) on the SiC substrate 40, the TSD 51 to be removed can not be propagated to the single crystal SiC 41, and the TSD 51 to be remaining can be propagated to the single crystal SiC 41. . Thereby, single crystal SiC 41 in which TSD 51 is formed in a desired position can be manufactured. The TSD density of the surface of the single crystal SiC 41 is, for example, 0 / cm 2 or more and 1000 / cm 2 or less by manufacturing the method according to the present embodiment.
 なお、本実施形態では、MSE法を用いて結晶成長工程を行うが、他の方法(例えば、CVD法等の気相成長法、温度勾配を設けることにより溶液中のC等を移動させる溶液成長法等)を用いても良い。CVD法を用いる場合は、SiC基板40にオフ角を形成する必要がある。 In this embodiment, the crystal growth step is performed using the MSE method, but another method (for example, vapor phase growth method such as CVD method, solution growth in which C in solution is moved by providing a temperature gradient) You may use a law etc.). When using the CVD method, it is necessary to form an off angle in the SiC substrate 40.
 次に、以上のようにして作製された単結晶SiC41の用途について図6を参照して説明する。図6は、SiC種結晶71からSiCインゴット72を介してSiCウエハ73を作成する工程を示す模式図である。以下の説明では、以上のようにして作製された単結晶SiC41によるSiC種結晶を符号71を付して説明する。 Next, applications of the single crystal SiC 41 manufactured as described above will be described with reference to FIG. FIG. 6 is a schematic view showing a process of forming SiC wafer 73 from SiC seed crystal 71 through SiC ingot 72. In the following description, the SiC seed crystal made of single crystal SiC 41 manufactured as described above will be described with reference numeral 71.
 SiC種結晶71にバルク成長工程を行うことで、図6に示すように、SiCインゴット72を作製することができる。バルク成長工程は、例えばMSE法等の溶液成長法や、昇華法又はHTCVD等の気相成長法によって行われる。上述のように、SiC種結晶71は除去対象のTSD51が除去されているため、高品質である。更に、残存対象のTSD51を意図的に残存させているため、結晶成長方法、及び各種条件(例えば過熱温度)に関係なく、予め定めた結晶多形(例えば4H-SiC)を成長させることができる。 By performing the bulk growth process on the SiC seed crystal 71, as shown in FIG. 6, the SiC ingot 72 can be manufactured. The bulk growth step is performed by, for example, a solution growth method such as MSE, or a vapor phase growth method such as sublimation or HTCVD. As described above, the SiC seed crystal 71 has high quality because the TSD 51 to be removed is removed. Furthermore, since the remaining TSD 51 is intentionally left, it is possible to grow a predetermined crystal polymorph (for example, 4H-SiC) regardless of the crystal growth method and various conditions (for example, the overheat temperature). .
 また、図6に示すように、このSiCインゴット72にウエハ作製工程が行われることで、複数のSiCウエハ73が製造される。ウエハ作製工程は、例えばダイヤモンドワイヤ等の切断手段によってSiCインゴット72を所定の間隔で切断することで、複数のSiCウエハ73を作製する。なお、SiCインゴット72からSiCウエハ73を別の方法で作製することもできる。例えば、SiCインゴット72にレーザ照射等でダメージ層を設けた後に、ウエハ形状にしてSiCウエハ73として取り出すこともできる。 Further, as shown in FIG. 6, a wafer manufacturing process is performed on this SiC ingot 72, whereby a plurality of SiC wafers 73 are manufactured. In the wafer manufacturing process, a plurality of SiC wafers 73 are manufactured by cutting the SiC ingot 72 at predetermined intervals by a cutting means such as a diamond wire, for example. The SiC wafer 73 can also be manufactured from the SiC ingot 72 by another method. For example, after providing a damaged layer on the SiC ingot 72 by laser irradiation or the like, it can be formed into a wafer and taken out as the SiC wafer 73.
 このようにして作製されたSiCウエハ73は、SiC種結晶71及びSiCインゴット72と同様に、表面のTSD密度が低く、予め定めた結晶多形で構成されている。また、このSiCウエハ73には、単結晶SiCからなるエピタキシャル層を形成するエピタキシャル層形成工程が行われる。これにより、エピタキシャル層74を有するSiCウエハ73が製造される。このSiCウエハ73は半導体デバイスを作製するために用いられる。 Similar to the SiC seed crystal 71 and the SiC ingot 72, the SiC wafer 73 manufactured in this manner has a low TSD density on the surface, and is formed of a predetermined crystal polymorphism. Further, on this SiC wafer 73, an epitaxial layer forming step of forming an epitaxial layer made of single crystal SiC is performed. Thereby, the SiC wafer 73 having the epitaxial layer 74 is manufactured. The SiC wafer 73 is used to manufacture a semiconductor device.
 本実施形態では、単結晶SiC41を、SiCインゴット72等を作製するためのSiC種結晶71として用いたが、それに代えて、単結晶SiC41付きのSiC基板40からSiCインゴット72を製造せずに、SiCウエハ73として用いることもできる。 In the present embodiment, single crystal SiC 41 is used as SiC seed crystal 71 for producing SiC ingot 72 etc. However, instead of producing SiC ingot 72 from SiC substrate 40 with single crystal SiC 41, single crystal SiC 41 is used. It can also be used as a SiC wafer 73.
 次に、図7から図10を参照して、凹部形成工程で照射したレーザのビーム径とTSD伝播率との関係について確かめるために行った実験について説明する。なお、レーザのビーム径とは、レーザ加工機に設定するビーム径であり、凹部53の径はそれより大きくなる。本実験では、キーエンス製のレーザ装置(MD-T1000)を用いて行った。また、レーザの媒質はNd:YVO4、レーザの波長は532nmとした。 Next, with reference to FIGS. 7 to 10, an experiment conducted to confirm the relationship between the beam diameter of the laser irradiated in the recess forming step and the TSD propagation rate will be described. The beam diameter of the laser is the beam diameter set in the laser processing machine, and the diameter of the recess 53 is larger than that. In this experiment, a laser device (MD-T1000) made by Keyence was used. The medium of the laser is Nd: YVO 4 , and the wavelength of the laser is 532 nm.
 初めに、SiC基板40を3つの領域に分割し、それぞれの領域に異なるビーム径(40μm、60μm、及び100μm)のレーザを照射することでTSD51を除去した。なお、この実験では、可視化されたTSD51の全てにレーザを照射した。その後、このSiC基板40をMSE法により結晶成長させた。 First, the SiC substrate 40 was divided into three regions, and the TSD 51 was removed by irradiating each region with a laser of different beam diameter (40 μm, 60 μm, and 100 μm). In this experiment, all of the visualized TSDs 51 were irradiated with a laser. Thereafter, crystal growth of the SiC substrate 40 was performed by the MSE method.
 図8から図10は、それぞれビーム径が40μm、60μm、100μmのレーザを用いてTSD51を除去した後に結晶成長を行った場合において、TSD51の伝播が生じなかった箇所と、TSD51の伝播が生じた箇所の分布を示す図である。図8から図10では、TSD51にレーザを照射して凹部53を形成することでTSD51の伝播を防止できた領域を黒丸で表示し、レーザを照射してもTSD51が伝播された部分を灰色の丸で表示している。図8から図10に示すように、レーザを照射して凹部53を形成することで大部分のTSD51の伝播を防止できることが確かめられた。 In FIGS. 8 to 10, when crystal growth is performed after removing TSD 51 using lasers with beam diameters of 40 μm, 60 μm, and 100 μm, propagation of TSD 51 occurs where TSD 51 did not occur and propagation of TSD 51 occurred. It is a figure showing distribution of a part. In FIG. 8 to FIG. 10, the area where the propagation of the TSD 51 can be prevented by irradiating the laser to the TSD 51 to form the recess 53 is indicated by a black circle, and the area to which the TSD 51 is propagated is grayed even when the laser is irradiated. It is indicated by a circle. As shown in FIG. 8 to FIG. 10, it was confirmed that the propagation of most of the TSD 51 can be prevented by irradiating the laser to form the recess 53.
 また、図7には、凹部形成工程で用いたレーザのビーム径とTSD伝播率との関係を示すグラフが示されている。TSD伝播率とは、(TSD51が伝播した数)/(TSD51にレーザを照射した数)である。図7のグラフに示すように、ビーム径が40μmから100μmの範囲では、同程度の伝播率が実現される。具体的には、伝播率は、何れも15%から25%(約20%)である。言い換えれば、TSD51を除去できた割合は、何れも75%から85%(約80%)である。なお、本実験では、ビーム径が40μm以上100μm以下のレーザ装置を用いたが、上述のようにTSD51の大きさは1μm程度であるため、ビーム径は1μm以上であれば良い。また、ビーム径の上限は特に規定しないが、ビーム径が大きくなるに連れて、凹部53を塞ぐために時間が掛かるため、例えば40μm以下、又は、100μm以下であることが好ましい。 Further, FIG. 7 shows a graph showing the relationship between the beam diameter of the laser used in the recess forming step and the TSD propagation rate. The TSD propagation rate is (the number of TSDs 51 propagated) / (the number of TSDs 51 irradiated with a laser). As shown in the graph of FIG. 7, similar propagation rates are realized in the beam diameter range of 40 μm to 100 μm. Specifically, the transmission rate is 15% to 25% (about 20%) in all cases. In other words, the rate at which the TSD 51 can be removed is 75% to 85% (about 80%). In this experiment, a laser device having a beam diameter of 40 μm to 100 μm was used. However, as described above, since the size of the TSD 51 is about 1 μm, the beam diameter may be 1 μm or more. Although the upper limit of the beam diameter is not particularly defined, it takes 40 minutes or less, or preferably 100 μm or less, for example, because it takes time to close the recess 53 as the beam diameter increases.
 次に、TSD51を選択的に除去する例について図11及び図12を参照して簡単に説明する。図11は、SiCインゴット72を作製するためのSiC基板40の除去対象のTSD51と残存対象のTSD51の分布を示す模式図である。図12は、SiCウエハ73を作製するための除去対象のTSDと残存対象のTSDの分布を示す模式図である。 Next, an example of selectively removing the TSD 51 will be briefly described with reference to FIGS. 11 and 12. FIG. 11 is a schematic view showing the distribution of the TSD 51 to be removed of the SiC substrate 40 for manufacturing the SiC ingot 72 and the TSD 51 to be removed. FIG. 12 is a schematic view showing the distribution of the TSD to be removed and the TSD to be left for producing the SiC wafer 73. As shown in FIG.
 上述の本実施形態では、結晶成長を行った際に生じる単結晶SiC41の結晶多形を制御するために(所望の結晶多形を成長させるために)、TSD51の一部を敢えて残存させて、必要な部分のみにTSD51が残存するように(結果としてTSD51の分布が不均一となるように)する。除去対象のTSD51と残存対象のTSD51の選択は、所望の結晶多形、及び各種条件に応じて一律には定まらないため、以下では一例を説明する。 In the above-described embodiment, part of the TSD 51 is intentionally left to control (to grow a desired crystal polymorph) in order to control the crystal polymorph of single crystal SiC 41 generated when performing crystal growth, The TSD 51 is left only in the necessary part (as a result, the distribution of the TSD 51 becomes uneven). The selection of the TSD 51 to be removed and the TSD 51 to be remaining is not uniformly determined according to the desired crystal polymorphism and various conditions, and an example will be described below.
 図11の上部は、溶液成長法でSiCインゴット72を作製するためのSiC基板40(SiC種結晶71)のTSDの分布を示す模式図である。溶液成長法を行う場合、初めにSiC基板40の外縁部に二次元核形成が行われ、その後に径方向の中心へ向けてステップフロー成長を行うようにして結晶が成長する。従って、SiC基板40が4H-SiCである場合、外縁部にTSD51が残存していることで、この結晶多形をSiCインゴット72に引き継がせることができる。従って、溶液成長法でSiCインゴット72を作製するためのSiC基板40においては、SiC基板40の表面のうち外縁部のTSD密度が、当該外縁部以外のTSD密度よりも高くなるように凹部53を形成する(TSDの分布が均一である場合は外縁部のTSD51の除去率が、外縁部以外のTSD51の除去率よりも低くなるように凹部53を形成する)ことが好ましい。また、外縁部とは、例えばSiC基板40を厚み方向(c軸方向)で見たときに、外周面から10mm以内(図11のL1=10mm)であると規定することが好ましく、外周面から5mm以内であると規定することが更に好ましい。 The upper part of FIG. 11 is a schematic view showing the distribution of TSD of the SiC substrate 40 (SiC seed crystal 71) for producing the SiC ingot 72 by the solution growth method. When the solution growth method is performed, first, two-dimensional nucleation is performed on the outer edge portion of the SiC substrate 40, and then crystals are grown so as to perform step-flow growth toward the radial center. Therefore, when the SiC substrate 40 is 4H-SiC, the crystalline polymorphism can be taken over to the SiC ingot 72 by the TSD 51 remaining in the outer edge portion. Therefore, in the SiC substrate 40 for producing the SiC ingot 72 by the solution growth method, the recess 53 is formed so that the TSD density of the outer edge portion of the surface of the SiC substrate 40 is higher than the TSD density of other than the outer edge portion. It is preferable to form (forming the recess 53 so that the removal rate of the TSD 51 at the outer edge is lower than the removal rate of the TSD 51 other than the outer edge when the TSD distribution is uniform). The outer edge portion is preferably defined within 10 mm (L1 = 10 mm in FIG. 11) from the outer peripheral surface, for example, when the SiC substrate 40 is viewed in the thickness direction (c axis direction). It is further preferred to define within 5 mm.
 図11の下部は、気相成長法でSiCインゴット72を作製するためのSiC基板40(SiC種結晶71)のTSDの分布を示す模式図である。気相成長法を行う場合、初めにSiC基板40の中心部に二次元核形成が行われ、その後に径方向の外側へ向けてステップフロー成長を行うようにして結晶が成長する。従って、SiC基板40が4H-SiCである場合、径方向の中心部にTSD51が残存していることで、この結晶多形をSiCインゴット72に引き継がせることができる。従って、気相成長法でSiCインゴット72を作製するためのSiC基板40においては、SiC基板40の表面のうち中心部のTSD密度が、当該中心部以外のTSD密度よりも高くなるように凹部53を形成する(TSDの分布が均一である場合は中心部のTSD51の除去率が、中心部以外のTSD51の除去率よりも低くなるように凹部53を形成する)ことが好ましい。また、径方向の中心に近づくに連れてTSD密度が高くなるように凹部53を形成することが更に好ましい。また、中心部とは、例えばSiC基板40を厚み方向(c軸方向)で見たときに、径方向の中心から直径の40%以内の領域と規定することが好ましい。 The lower part of FIG. 11 is a schematic view showing distribution of TSD of the SiC substrate 40 (SiC seed crystal 71) for producing the SiC ingot 72 by the vapor phase growth method. When the vapor phase growth method is performed, two-dimensional nucleation is first performed in the central portion of the SiC substrate 40, and then the crystal is grown such that step flow growth is performed outward in the radial direction. Therefore, when the SiC substrate 40 is 4H—SiC, the crystalline polymorph can be taken over to the SiC ingot 72 by the TSD 51 remaining in the central portion in the radial direction. Therefore, in the SiC substrate 40 for producing the SiC ingot 72 by the vapor phase growth method, the concave portion 53 is formed such that the TSD density in the central portion of the surface of the SiC substrate 40 is higher than the TSD density in the other portions. (If the distribution of TSDs is uniform, it is preferable to form the recess 53 so that the removal rate of the TSD 51 at the central portion is lower than the removal rate of the TSD 51 other than the central portion). Further, it is more preferable to form the recess 53 so that the TSD density becomes higher toward the radial center. The central portion is preferably defined as, for example, a region within 40% of the diameter from the center in the radial direction when the SiC substrate 40 is viewed in the thickness direction (c-axis direction).
 図12は、CVD等によるステップフロー成長でエピタキシャル層74を形成するためのSiC基板40(あるいは、SiCインゴット72を経由して作成されるSiCウエハ73)のTSDの分布を示す模式図である。CVD等によるステップフロー成長を行う場合、図12の下部に示すように、ステップフロー成長の上流側の結晶多形を引き継ぐように成長が行われる。従って、SiC基板40が4H-SiCである場合、ステップフロー成長の上流側(ステップフロー成長方向の中央よりも上流側、以下同様)にTSD51が残存していることで、この結晶多形をエピタキシャル層74に引き継がせることができる。従って、CVD等によるステップフロー成長でエピタキシャル層74を成長させるためのSiC基板40においては、SiC基板40のステップフロー成長の上流側のTSD密度が、下流側のTSD密度よりも高くなるように凹部53を形成する(TSDの分布が均一である場合は上流側のTSD51の除去率が、下流側のTSD51の除去率よりも低くなるように凹部53を形成する)ことが好ましい。 FIG. 12 is a schematic view showing a TSD distribution of the SiC substrate 40 (or the SiC wafer 73 formed via the SiC ingot 72) for forming the epitaxial layer 74 by the step flow growth by CVD or the like. When performing step flow growth by CVD or the like, as shown in the lower part of FIG. 12, the growth is performed so as to take over the crystal polymorph on the upstream side of the step flow growth. Therefore, when the SiC substrate 40 is 4H-SiC, the TSD 51 remains on the upstream side of the step flow growth (upstream from the center of the step flow growth direction, hereinafter the same) to epitaxially crystallize this crystal polymorph. Layer 74 can take over. Therefore, in the SiC substrate 40 for growing the epitaxial layer 74 by step flow growth by CVD or the like, the recessed portion is such that the TSD density on the upstream side of the step flow growth of the SiC substrate 40 is higher than the TSD density on the downstream side. 53 is preferably formed (if the distribution of TSDs is uniform, the recess 53 is formed so that the removal rate of the TSD 51 on the upstream side is lower than the removal rate of the TSD 51 on the downstream side).
 以上に説明したように、本実施形態の単結晶SiC41の製造方法は、TSD可視化工程と、凹部形成工程と、結晶成長工程と、を含む処理を行う。TSD可視化工程では、SiC基板40にドライエッチングを行ってTSD51(貫通螺旋転位)を可視化する。凹部形成工程では、TSD可視化工程で可視化したTSD51が生じている部分を除去しつつ、当該TSD51が生じている部分の周囲を残存させることで凹部53を形成する。結晶成長工程では、SiC基板40に対してa軸方向及びc軸方向の結晶成長を行うことで、凹部53の周囲から成長した単結晶SiC41を当該凹部53上で接続させる。 As explained above, the manufacturing method of single crystal SiC 41 of this embodiment performs processing including a TSD visualization step, a recess formation step, and a crystal growth step. In the TSD visualization step, dry etching is performed on the SiC substrate 40 to visualize the TSD 51 (penetrating screw dislocation). In the recess formation step, the recess 53 is formed by leaving the periphery of the portion in which the TSD 51 is generated while removing the portion in which the TSD 51 visualized in the TSD visualization step is generated. In the crystal growth step, single crystal SiC 41 grown from the periphery of the recess 53 is connected on the recess 53 by performing crystal growth in the a-axis direction and the c-axis direction on the SiC substrate 40.
 これにより、SiC基板40に含まれるTSD51を除去することができるので、高品質な単結晶SiC41を製造することができる。また、事前に凸部等を形成することなくTSD51を可視化できるので、必要なTSD51を残存させつつ、不要なTSD51を除去することができる。なお、必要なTSD51が生じていない場合は、全てのTSD51を除去することもできる。 Thereby, since TSD 51 contained in SiC substrate 40 can be removed, high quality single crystal SiC 41 can be manufactured. In addition, since the TSD 51 can be visualized without forming a convex portion or the like in advance, the unnecessary TSD 51 can be removed while leaving the necessary TSD 51. In addition, when required TSD51 has not arisen, all TSD51 can also be removed.
 また、本実施形態の単結晶SiC41の製造方法においては、TSD可視化工程では、TSD51が生じている部分にピット52が形成される。 Further, in the method of manufacturing single crystal SiC 41 of the present embodiment, in the TSD visualization step, pits 52 are formed in the portion where TSD 51 is generated.
 特許文献1のようにMSE法を用いてTSD51を可視化する場合、TSD51が存在する部分が大きく成長するため、TSD51が密集している場合等には成長部分が重なり、正確にTSD51の特定ができない可能性がある。これに対し、上記の方法ではTSD51が生じている部分に1μm程度の小さいピットが形成されるため、TSD51をより正確に特定する事ができるので、必要なTSD51を残存させつつ、不要なTSD51を除去することができる。 When the TSD 51 is visualized using the MSE method as in Patent Document 1, the portion where the TSD 51 exists grows largely, so the growth portions overlap when the TSD 51 is densely packed, etc., and the TSD 51 can not be identified accurately. there is a possibility. On the other hand, according to the above method, since small pits of about 1 μm are formed in the portion where the TSD 51 is generated, the TSD 51 can be specified more accurately. Therefore, the unnecessary TSD 51 can be identified while leaving the necessary TSD 51 It can be removed.
 また、本実施形態の単結晶SiC41の製造方法においては、凹部形成工程では、可視化したTSD51が生じている部分が複数存在し、その一部のみを除去する。 Further, in the method of manufacturing single crystal SiC 41 of the present embodiment, in the recess forming step, there are a plurality of portions where the visualized TSD 51 is generated, and only a part of the portions is removed.
 これにより、選択的にTSD51を残存させることができるので、種結晶に用いて結晶成長を行う際に結晶多形等を安定的に制御することができる。 Thus, since the TSD 51 can be selectively left, crystal polymorphism and the like can be stably controlled when crystal growth is performed using a seed crystal.
 また、本実施形態の単結晶SiC41の製造方法においては、凹部形成工程では、TSD51が除去された結果、SiC基板40の表面においてTSD51が不均一に分布されることが好ましい。 Further, in the method of manufacturing single crystal SiC 41 of the present embodiment, it is preferable that TSD 51 be unevenly distributed on the surface of SiC substrate 40 as a result of removing TSD 51 in the recess forming step.
 これにより、結晶成長工程で所望の結晶多形(例えば4H-SiC)が種結晶から引き継がれ易くなるようにすることができる。 Thereby, desired crystal polymorph (for example, 4H-SiC) can be easily taken over from the seed crystal in the crystal growth step.
 また、本実施形態の単結晶SiC41の製造方法においては、凹部形成工程では、可視化したTSD51に対して、表面のTSD51密度が0個/cm2以上1000個/cm2以下となるようにTSD51を除去する。 In the method for producing a single crystal SiC41 of this embodiment, the recess forming step, against TSD51 visualized, the TSD51 as TSD51 density of the surface becomes 0 / cm 2 or more 1000 / cm 2 or less Remove.
 これにより、高品質かつ結晶成長工程で所望の結晶多形(例えば4H-SiC)が種結晶から引き継がれ易くなるようにすることができる。 As a result, it is possible to make it easy for the desired crystal polymorph (for example, 4H-SiC) to be handed over from the seed crystal in the high quality and crystal growth step.
 また、本実施形態の単結晶SiC41の製造方法においては、TSD可視化工程では、Si蒸気圧下で加熱することによるエッチングを行うことで、TSD51を可視化する。 Moreover, in the manufacturing method of single crystal SiC41 of this embodiment, TSD51 is visualized by performing the etching by heating by Si vapor pressure in a TSD visualization process.
 これにより、SiC基板40の表面を高精度に平坦化するとともにTSD51を可視化することができる。 Thereby, the surface of the SiC substrate 40 can be planarized with high accuracy and the TSD 51 can be visualized.
 また、本実施形態の単結晶SiC41の製造方法においては、凹部形成工程では、TSD51が生じている部分にレーザを照射することで凹部53を形成する。 Further, in the method of manufacturing single crystal SiC 41 according to the present embodiment, in the recess forming step, the recess 53 is formed by irradiating the portion where the TSD 51 is generated with a laser.
 これにより、簡単かつ精度の高い方法でTSD51が生じている部分に凹部53を正確に形成することができる。 Thereby, the recessed part 53 can be correctly formed in the part which TSD51 has produced by the simple and highly accurate method.
 また、本実施形態の単結晶SiC41の製造方法においては、レーザのビーム径が1μm以上である。 Further, in the method of manufacturing single crystal SiC 41 of the present embodiment, the beam diameter of the laser is 1 μm or more.
 これにより、凹部53を形成した際にTSD51の転位芯の近傍の歪領域を除去することができる。 Thereby, when the recess 53 is formed, the strained area near the dislocation core of the TSD 51 can be removed.
 また、本実施形態の単結晶SiC41の製造方法においては、凹部形成工程の後であって結晶成長工程の前に、SiC基板40をエッチングすることで凹部形成工程で当該SiC基板40に生じたダメージを除去するダメージ除去工程を行う。 Further, in the method of manufacturing single crystal SiC 41 according to the present embodiment, damage is caused to SiC substrate 40 in the recess forming step by etching SiC substrate 40 after the recess forming step and before the crystal growth step. Perform a damage removal process to remove
 これにより、凹部形成工程で生じたダメージを除去することができるので、より高品質な単結晶SiC41を製造できる。 Thereby, since the damage which arose in the recessed part formation process can be removed, higher quality single crystal SiC41 can be manufactured.
 また、本実施形態の単結晶SiC41の製造方法においては、結晶成長工程では、SiC基板40と、当該SiC基板40よりも自由エネルギーが高く、少なくともCを供給するフィード材62と、の間にSi融液が存在する状態で加熱することで、SiC基板40の表面に単結晶SiC41を成長させるMSE法を行う。 Further, in the method of manufacturing single crystal SiC 41 of the present embodiment, in the crystal growth step, Si is interposed between SiC substrate 40 and feed material 62 having a higher free energy and supplying at least C than SiC substrate 40. By heating in the presence of the melt, the MSE method of growing single crystal SiC 41 on the surface of the SiC substrate 40 is performed.
 これにより、MSE法はa軸方向の成長速度が速いため、短時間で凹部53の上方を単結晶SiC41で塞ぐことができる。 Thus, since the growth rate in the a-axis direction is high in the MSE method, the upper part of the recess 53 can be closed with the single crystal SiC 41 in a short time.
 また、本実施形態の単結晶SiC41の製造方法において、TSD可視化工程では、Si蒸気圧下で加熱することによるエッチングを行うことで、TSD51を可視化する。凹部形成工程では、TSD51が生じている部分にレーザを照射することで凹部53を形成する。当該凹部形成工程の後に、Si蒸気圧下で加熱することによるエッチングを行うことで、当該SiC基板40に生じたダメージを除去するダメージ除去工程を行う。結晶成長工程では、SiC基板40と、当該SiC基板40よりも自由エネルギーが高く、少なくともCを供給するフィード材と、の間にSi融液が存在する状態で加熱することで、SiC基板40の表面に単結晶SiC41を成長させる準安定溶媒エピタキシー法を行う。 Moreover, in the manufacturing method of single crystal SiC 41 of the present embodiment, in the TSD visualizing step, the TSD 51 is visualized by performing etching by heating under Si vapor pressure. In the recess formation step, the recess 53 is formed by irradiating a laser on a portion where the TSD 51 is generated. After the recess formation step, the damage removal step of removing the damage caused to the SiC substrate 40 is performed by performing the etching by heating under the Si vapor pressure. In the crystal growth step, heating is performed in a state in which the Si melt is present between the SiC substrate 40 and a feed material having a free energy higher than that of the SiC substrate 40 and supplying at least C, A metastable solvent epitaxy method for growing single crystal SiC 41 on the surface is performed.
 これにより、純度が高い単結晶SiC41を短時間で製造することができる。また、2回のエッチングがともにSi蒸気圧エッチングであるため、製造工程を単純化することができる。 Thereby, high purity single crystal SiC 41 can be manufactured in a short time. Moreover, since both etchings are Si vapor pressure etching, the manufacturing process can be simplified.
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 The preferred embodiment of the present invention has been described above, but the above-described configuration can be modified, for example, as follows.
 図2及び3等で説明した製造工程は一例であり、工程の順序を入れ替えたり、一部の工程を省略したり、他の工程を追加したりすることができる。例えば、ダメージ除去工程は省略することができる。 The manufacturing process described in FIGS. 2 and 3 is an example, and the order of the processes can be changed, some processes can be omitted, and other processes can be added. For example, the damage removal step can be omitted.
 上記で説明した温度条件及び圧力条件等は一例であり、適宜変更することができる。また、上述した高温真空炉10以外の加熱装置(例えば内部空間が複数存在する高温真空炉)を用いたり、SiC基板として多結晶基板を用いたり、収容容器30と異なる形状又は素材の容器を用いたりしても良い。 The temperature conditions and pressure conditions described above are examples and can be changed as appropriate. In addition, a heating device other than the high temperature vacuum furnace 10 described above (for example, a high temperature vacuum furnace having a plurality of internal spaces), a polycrystalline substrate as a SiC substrate, or a container having a different shape or material from the storage container 30 is used. You may
 10 高温真空炉
 40 SiC基板
 41 単結晶SiC
 51 TSD
 52 ピット
 53 凹部
 71 SiC種結晶
 72 SiCインゴット
 73 SiCウエハ
10 high temperature vacuum furnace 40 SiC substrate 41 single crystal SiC
51 TSD
52 pit 53 recess 71 SiC seed crystal 72 SiC ingot 73 SiC wafer

Claims (20)

  1.  SiC基板にドライエッチングを行ってTSD(貫通螺旋転位)を可視化するTSD可視化工程と、
     前記TSD可視化工程で可視化した前記TSDが生じている部分を除去しつつ、当該TSDが生じている部分の周囲を残存させることで凹部を形成する凹部形成工程と、
     前記SiC基板に対してa軸方向及びc軸方向の結晶成長を行うことで、前記凹部の周囲から成長した単結晶SiCを当該凹部上で接続させる結晶成長工程と、
    を含む処理を行うことを特徴とする単結晶SiCの製造方法。
    TSD visualization step of performing dry etching on the SiC substrate to visualize TSD (penetration screw dislocation);
    A recess forming step of forming a recess by leaving the periphery of the portion where the TSD is generated while removing the portion where the TSD is visualized in the TSD visualization step;
    A crystal growth step of connecting single crystal SiC grown from the periphery of the recess on the recess by performing crystal growth in the a-axis direction and c-axis direction on the SiC substrate;
    A process for producing single crystal SiC characterized in that the process includes
  2.  請求項1に記載の単結晶SiCの製造方法であって、
     前記TSD可視化工程では、前記TSDが生じている部分にピットが形成されることを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    In the TSD visualization step, a pit is formed in a portion where the TSD is generated.
  3.  請求項1に記載の単結晶SiCの製造方法であって、
     前記凹部形成工程では、可視化した前記TSDが生じている部分が複数存在し、その一部のみを除去することを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    In the concave portion forming step, there are a plurality of portions where the visualized TSD is generated, and only a part of the portions is removed.
  4.  請求項3に記載の単結晶SiCの製造方法であって、
     前記凹部形成工程では、前記TSDが除去された結果、前記SiC基板の表面において前記TSDが不均一に分布されることを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 3, wherein
    In the recess formation step, as a result of removing the TSD, the TSD is unevenly distributed on the surface of the SiC substrate, and the method for manufacturing single crystal SiC is provided.
  5.  請求項3に記載の単結晶SiCの製造方法であって、
     前記凹部形成工程では、可視化した前記TSDに対して、表面のTSD密度が1000個/cm2以下となるように前記TSDを除去することを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 3, wherein
    In the recess forming step, the TSD is removed so that the TSD density on the surface is 1000 pieces / cm 2 or less with respect to the visualized TSD.
  6.  請求項1に記載の単結晶SiCの製造方法であって、
     前記TSD可視化工程では、Si蒸気圧下で加熱することによるエッチングを行うことで、前記TSDを可視化することを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    In the TSD visualization step, the TSD is visualized by performing etching by heating under a Si vapor pressure, thereby producing a single crystal SiC.
  7.  請求項1に記載の単結晶SiCの製造方法であって、
     前記凹部形成工程では、前記TSDが生じている部分にレーザを照射することで前記凹部を形成することを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    In the concave portion forming step, the concave portion is formed by irradiating the portion where the TSD is generated with a laser, thereby forming a single crystal SiC.
  8.  請求項7に記載の単結晶SiCの製造方法であって、
     前記レーザのビーム径が1μm以上であることを特徴とする単結晶SiCの製造方法。
    8. A method of manufacturing single crystal SiC according to claim 7, wherein
    A method of manufacturing single crystal SiC, wherein a beam diameter of the laser is 1 μm or more.
  9.  請求項1に記載の単結晶SiCの製造方法であって、
     前記凹部形成工程の後であって前記結晶成長工程の前に、前記SiC基板をエッチングすることで前記凹部形成工程で当該SiC基板に生じたダメージを除去するダメージ除去工程を行うことを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    After the recess forming step and before the crystal growth step, a damage removing step of removing the damage caused to the SiC substrate in the recess forming step by etching the SiC substrate is performed. Method of manufacturing single crystal SiC.
  10.  請求項1に記載の単結晶SiCの製造方法であって、
     前記結晶成長工程では、前記SiC基板と、当該SiC基板よりも自由エネルギーが高く、少なくともCを供給するフィード材と、の間にSi融液が存在する状態で加熱することで、前記SiC基板の表面に前記単結晶SiCを成長させる準安定溶媒エピタキシー法を行うことを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    In the crystal growth step, heating is performed in a state in which the Si melt is present between the SiC substrate and a feed material having a free energy higher than that of the SiC substrate and supplying at least C; A method for producing single crystal SiC comprising performing metastable solvent epitaxy method for growing the single crystal SiC on the surface.
  11.  請求項1に記載の単結晶SiCの製造方法であって、
     前記TSD可視化工程では、Si蒸気圧下で加熱することによるエッチングを行うことで、前記TSDを可視化し、
     前記凹部形成工程では、前記TSDが生じている部分にレーザを照射することで前記凹部を形成し、
     当該凹部形成工程の後に、Si蒸気圧下で加熱することによるエッチングを行うことで、当該SiC基板に生じたダメージを除去するダメージ除去工程を行い、
     前記結晶成長工程では、前記SiC基板と、当該SiC基板よりも自由エネルギーが高く、少なくともCを供給するフィード材と、の間にSi融液が存在する状態で加熱することで、前記SiC基板の表面に前記単結晶SiCを成長させる準安定溶媒エピタキシー法を行うことを特徴とする単結晶SiCの製造方法。
    A method of producing single crystal SiC according to claim 1, wherein
    In the TSD visualization step, the TSD is visualized by performing etching by heating under Si vapor pressure,
    In the recess forming step, the recess is formed by irradiating a laser on a portion where the TSD is generated;
    After the recess formation step, a damage removal step of removing damage caused to the SiC substrate is performed by performing etching by heating under Si vapor pressure,
    In the crystal growth step, heating is performed in a state in which the Si melt is present between the SiC substrate and a feed material having a free energy higher than that of the SiC substrate and supplying at least C; A method for producing single crystal SiC comprising performing metastable solvent epitaxy method for growing the single crystal SiC on the surface.
  12.  請求項1に記載の単結晶SiCの製造方法を用いて製造された前記単結晶SiCを種結晶として用いて結晶成長を行うバルク成長工程を行うことでSiCインゴットを製造することを特徴とするSiCインゴットの製造方法。 A SiC ingot is manufactured by performing a bulk growth step of performing crystal growth using the single crystal SiC manufactured using the method of manufacturing single crystal SiC according to claim 1 as a seed crystal. Method of manufacturing ingots.
  13.  請求項12に記載のSiCインゴットの製造方法であって、
     前記バルク成長工程では、予め定められた結晶多形に応じた前記種結晶を用いることで、当該予め定められた結晶多形の単結晶SiCを成長させることを特徴とするSiCインゴットの製造方法。
    A method of manufacturing a SiC ingot according to claim 12, wherein
    In the bulk growth step, a single crystal SiC of the predetermined crystal polymorphism is grown by using the seed crystal according to the predetermined crystal polymorphism.
  14.  請求項12に記載のSiCインゴットの製造方法であって、
     前記凹部形成工程では、前記SiC基板の表面のうち外縁部のTSD密度が当該外縁部以外のTSD密度よりも高くなるように前記凹部を形成し、
     前記バルク成長工程では、溶液成長法により結晶成長を行うことを特徴とするSiCインゴットの製造方法。
    A method of manufacturing a SiC ingot according to claim 12, wherein
    In the recess forming step, the recess is formed such that the TSD density of the outer edge portion of the surface of the SiC substrate is higher than the TSD density of other than the outer edge portion,
    In the said bulk growth process, crystal growth is performed by the solution growth method, The manufacturing method of the SiC ingot characterized by the above-mentioned.
  15.  請求項12に記載のSiCインゴットの製造方法であって、
     前記凹部形成工程では、前記SiC基板の表面のうち径方向の中心部のTSD密度が当該中心部以外のTSD密度よりも高くなるように前記凹部を形成し、
     前記バルク成長工程では、気相成長法により結晶成長を行うことを特徴とするSiCインゴットの製造方法。
    A method of manufacturing a SiC ingot according to claim 12, wherein
    In the recess forming step, the recess is formed such that the TSD density at the central portion in the radial direction of the surface of the SiC substrate is higher than the TSD density other than the central portion,
    In the said bulk growth process, crystal growth is performed by a vapor phase growth method, The manufacturing method of the SiC ingot characterized by the above-mentioned.
  16.  請求項12に記載のSiCインゴットの製造方法を用いて製造された前記SiCインゴットを用いてSiCウエハを作製することを特徴とするSiCウエハの製造方法。 A method for producing a SiC wafer, comprising producing a SiC wafer using the SiC ingot produced by using the method for producing a SiC ingot according to claim 12.
  17.  請求項1に記載の単結晶SiCの製造方法を用いて製造された前記単結晶SiCを用いてエピタキシャル層を形成するエピタキシャル層形成工程を行うことで、SiCウエハを作製することを特徴とするSiCウエハの製造方法。 A SiC wafer is manufactured by performing an epitaxial layer forming step of forming an epitaxial layer using the single crystal SiC manufactured using the method of manufacturing single crystal SiC according to claim 1. Wafer manufacturing method.
  18.  請求項17に記載のSiCウエハの製造方法であって、
     前記凹部形成工程では、前記エピタキシャル層形成工程におけるステップフロー成長の中央に対して上流側のTSD密度が、当該中央に対して下流側のTSD密度よりも高くなるように前記凹部を形成することを特徴とするSiCウエハの製造方法。
    The method of manufacturing a SiC wafer according to claim 17, wherein
    In the recess forming step, the recess is formed such that the TSD density on the upstream side with respect to the center of the step flow growth in the epitaxial layer forming step is higher than the TSD density on the downstream side with respect to the center. A method of manufacturing a characterized SiC wafer.
  19.  表面のTSD密度が1000個/cm2以下であって、
     予め定められた結晶多形に応じたTSD分布を有していることにより、当該予め定められた結晶多形の単結晶SiCを成長させることが可能であることを特徴とする単結晶SiC。
    The surface TSD density is 1000 pcs / cm 2 or less,
    Single crystal SiC characterized in that it is possible to grow single crystal SiC of the predetermined crystal polymorphism by having a TSD distribution according to a predetermined crystal polymorphism.
  20.  請求項19に記載の単結晶SiCであって、
     オフ角を有し、結晶成長の際のステップフロー成長の中央に対して上流側のTSD密度が、当該中央に対して下流側のTSD密度よりも大きいことを特徴とする単結晶SiC。
    21. Single crystal SiC according to claim 19, wherein
    Single crystal SiC characterized in that it has an off angle, and the TSD density on the upstream side with respect to the center of step-flow growth in crystal growth is larger than the TSD density on the downstream side with respect to the center.
PCT/JP2018/027634 2017-07-28 2018-07-24 Production method for sic mono-crystals, production method for ingot sic, production method for sic wafer, and sic mono-crystals WO2019022054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017146204A JP6949358B2 (en) 2017-07-28 2017-07-28 Method for manufacturing single crystal SiC, method for manufacturing SiC ingot, and method for manufacturing SiC wafer
JP2017-146204 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019022054A1 true WO2019022054A1 (en) 2019-01-31

Family

ID=65041219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027634 WO2019022054A1 (en) 2017-07-28 2018-07-24 Production method for sic mono-crystals, production method for ingot sic, production method for sic wafer, and sic mono-crystals

Country Status (2)

Country Link
JP (1) JP6949358B2 (en)
WO (1) WO2019022054A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021025085A1 (en) * 2019-08-06 2021-02-11 学校法人関西学院 SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
EP3936646A4 (en) * 2019-03-05 2023-01-04 Kwansei Gakuin Educational Foundation Sic substrate manufacturing method and manufacturing device, and method for reducing work-affected layer in sic substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012077A4 (en) * 2019-08-06 2023-09-20 Kwansei Gakuin Educational Foundation Sic substrate production method
US20230193507A1 (en) * 2020-04-14 2023-06-22 Kwansei Gakuin Educational Foundation Method for manufacturing semiconductor substrate, semiconductor substrate, and method for forming grown layer
WO2021210394A1 (en) * 2020-04-14 2021-10-21 学校法人関西学院 Silicon carbide substrate manufacturing method, silicon carbide substrate, and method of removing strain layer introduced into silicon carbide substrate by laser processing
US20230197486A1 (en) * 2020-04-14 2023-06-22 Kwansei Gakuin Educational Foundation Method for producing aluminum nitride substrate, aluminum nitride substrate, and method for suppressing occurrence of cracks in aluminum nitride layer
TW202143303A (en) * 2020-04-14 2021-11-16 學校法人關西學院 Method for producing semiconductor substrate, semiconductor substrate, and method for preventing crack occurrence in growth layer
WO2021210393A1 (en) * 2020-04-14 2021-10-21 学校法人関西学院 Method for manufacturing aluminum nitride substrate, aluminum nitride substrate, and method for forming aluminum nitride layer
WO2023233887A1 (en) * 2022-06-02 2023-12-07 住友電気工業株式会社 Silicon carbide substrate, silicon carbide epitaxial substrate and method for producing silicon carbide semiconductor device
JP7294502B1 (en) 2022-06-03 2023-06-20 株式会社レゾナック SiC single crystal substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183368A1 (en) * 2012-06-05 2013-12-12 トヨタ自動車株式会社 SiC SINGLE-CRYSTAL INGOT, SiC SINGLE CRYSTAL, AND PRODUCTION METHOD FOR SAME
WO2014189008A1 (en) * 2013-05-20 2014-11-27 日立化成株式会社 Silicon carbide single crystal and manufacturing method therefor
WO2015151412A1 (en) * 2014-03-31 2015-10-08 東洋炭素株式会社 METHOD FOR REMOVING WORK-AFFECTED LAYER ON SiC SEED CRYSTAL, SiC SEED CRYSTAL, AND SiC SUBSTRATE MANUFACTURING METHOD
WO2016051975A1 (en) * 2014-10-01 2016-04-07 住友電気工業株式会社 Silicon carbide epitaxial substrate
WO2017057742A1 (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Sic single crystal ingot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183368A1 (en) * 2012-06-05 2013-12-12 トヨタ自動車株式会社 SiC SINGLE-CRYSTAL INGOT, SiC SINGLE CRYSTAL, AND PRODUCTION METHOD FOR SAME
WO2014189008A1 (en) * 2013-05-20 2014-11-27 日立化成株式会社 Silicon carbide single crystal and manufacturing method therefor
WO2015151412A1 (en) * 2014-03-31 2015-10-08 東洋炭素株式会社 METHOD FOR REMOVING WORK-AFFECTED LAYER ON SiC SEED CRYSTAL, SiC SEED CRYSTAL, AND SiC SUBSTRATE MANUFACTURING METHOD
WO2016051975A1 (en) * 2014-10-01 2016-04-07 住友電気工業株式会社 Silicon carbide epitaxial substrate
WO2017057742A1 (en) * 2015-10-02 2017-04-06 新日鐵住金株式会社 Sic single crystal ingot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936646A4 (en) * 2019-03-05 2023-01-04 Kwansei Gakuin Educational Foundation Sic substrate manufacturing method and manufacturing device, and method for reducing work-affected layer in sic substrate
US11972949B2 (en) 2019-03-05 2024-04-30 Kwansei Gakuin Educational Foundation SiC substrate manufacturing method and manufacturing device, and method for reducing work-affected layer in sic substrate
WO2021025085A1 (en) * 2019-08-06 2021-02-11 学校法人関西学院 SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF

Also Published As

Publication number Publication date
JP6949358B2 (en) 2021-10-13
JP2019026500A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2019022054A1 (en) Production method for sic mono-crystals, production method for ingot sic, production method for sic wafer, and sic mono-crystals
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
US10087549B2 (en) Method for producing sic single crystal having low defects by solution process
JP7464265B2 (en) Silicon carbide wafer, method for manufacturing silicon carbide ingot, and method for manufacturing silicon carbide wafer
JP6232329B2 (en) Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate
US10428440B2 (en) SiC single crystal and production method thereof
CN107208311B (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
US20140127466A1 (en) Sic single crystal and method of producing same
JP2007119273A (en) Method for growing silicon carbide single crystal
TW202113172A (en) SiC seed crystal and method thereof, SiC ingot produced by growing said SiC seed crystal and method thereof, and SiC wafer produced from said SiC ingot and SiC wafer with epitaxial film and methods respectively for producing said SiC wafer
JP2018111639A (en) Silicon carbide single crystal wafer, silicon carbide single crystal ingot and method for manufacturing silicon carbide single crystal wafer
US9951441B2 (en) Method for producing SiC substrate
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
JP6883409B2 (en) SiC single crystal growth method, SiC single crystal growth device and SiC single crystal ingot
JP7194407B2 (en) Single crystal manufacturing method
WO2020059810A1 (en) Method for manufacturing device fabrication wafer
WO2019017043A1 (en) Single-crystal aln production method and single-crystal aln
JP5651480B2 (en) Method for producing group 3B nitride crystals
JP2019119623A (en) Silicon carbide single crystal ingot and method for manufacturing silicon carbide single crystal
WO2023054263A1 (en) Single-crystal silicon carbide wafer, single-crystal silicon carbide ingot, and single-crystal silicon carbide production method
US20230304186A1 (en) Method for manufacturing aluminum nitride substrate, aluminum nitride substrate, and method for forming aluminum nitride layer
JP6628673B2 (en) Manufacturing method of epitaxial silicon carbide single crystal wafer
CN117166055A (en) SiC single crystal substrate
JP2024510617A (en) Method for manufacturing SiC bulk single crystal with heterogeneous screw dislocation distribution and SiC substrate
JP2008273804A (en) SEMI-INSULATING GaAs WAFER AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838586

Country of ref document: EP

Kind code of ref document: A1