WO2019021707A1 - Vehicle air-conditioning unit - Google Patents

Vehicle air-conditioning unit Download PDF

Info

Publication number
WO2019021707A1
WO2019021707A1 PCT/JP2018/023640 JP2018023640W WO2019021707A1 WO 2019021707 A1 WO2019021707 A1 WO 2019021707A1 JP 2018023640 W JP2018023640 W JP 2018023640W WO 2019021707 A1 WO2019021707 A1 WO 2019021707A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
flow
passage
air conditioning
Prior art date
Application number
PCT/JP2018/023640
Other languages
French (fr)
Japanese (ja)
Inventor
美徳 田島
安恵 米津
小林 亮
隆裕 中嶋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018079112A external-priority patent/JP6747469B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018003793.2T priority Critical patent/DE112018003793T5/en
Priority to CN201880049700.6A priority patent/CN110997367A/en
Publication of WO2019021707A1 publication Critical patent/WO2019021707A1/en
Priority to US16/741,052 priority patent/US11407271B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers

Definitions

  • the present disclosure relates to a vehicle air conditioning unit.
  • a vehicle air conditioning unit described in Patent Document 1 As a vehicle air conditioning unit of this type, for example, a vehicle air conditioning unit described in Patent Document 1 is conventionally known.
  • the vehicle air conditioning unit described in the patent document 1 includes an air conditioning case in which an in-case passage through which air flows is formed, and a blower for blowing air blown out from the vehicle air conditioning unit toward the vehicle interior.
  • the blower is a centrifugal blower, it has a centrifugal fan (specifically, a sirocco fan) that rotates around the fan axis and blows out air drawn radially inward from one side of the fan axis in the axial direction. ing.
  • the centrifugal fan is disposed upstream of the air flow in the case internal passage.
  • the passage in the case extends to one side in the radial direction of the centrifugal fan on the air flow downstream side of the centrifugal fan. That is, the centrifugal fan is arranged such that the fan axis of the centrifugal fan is orthogonal to the air flow direction on the downstream side of the air flow with respect to the centrifugal fan.
  • the centrifugal fan is disposed such that the fan axis is orthogonal to the air flow direction on the downstream side of the air flow with respect to the centrifugal fan.
  • the direction of the blower fan of the blower can not be made that way depending on the vehicle air conditioning unit.
  • a plurality of air outlets are simultaneously opened.
  • a plurality of face outlets are formed in the air conditioning case of the air conditioning unit for a vehicle, and in the face mode or the like, the plurality of face outlets are simultaneously opened to blow out air.
  • Airflow may be uneven. In such a case, the air volume ratio may collapse between the plurality of air outlets, and the temperature in the passenger compartment may be biased. That is, the wind distribution and temperature controllability of the vehicle air conditioning unit may be deteriorated.
  • the present disclosure can arrange a plurality of air outlets without excessively restricting the arrangement of the air outlets in order to avoid deviation of the blowing air volume caused by the swirling flow due to the rotation of the air blowing fan. It is an object of the present invention to provide a vehicle air conditioning unit.
  • a vehicle air conditioning unit includes: An air conditioning case in which a passage in the case through which air flows is formed, A blower having a blower fan rotated around the fan axis and disposed in the passage in the case, and rotating the blower fan to blow out air drawn in from one side in the axial direction of the fan axis; And a rectifying mechanism disposed downstream of the air flow fan with respect to the air flow fan in the passage in the case and through which the air blown out from the air flow fan passes.
  • the blower fan is disposed in such a direction that the other side of the fan axis line opposite to the one side in the axial direction extends to the air flow downstream side of the passage in the case,
  • the rectification mechanism suppresses the swirling flow generated by the rotation of the blower fan in the air blown out from the blower fan as compared to the air blown out before it flows into the rectification mechanism.
  • the swirling flow is suppressed on the downstream side of the air flow with respect to the flow straightening mechanism, so that it is not necessary to excessively restrict the arrangement of the air outlet in consideration of the swirling flow. That is, it becomes possible to arrange a plurality of air outlets without excessively restricting the arrangement of the air outlets in order to avoid the deviation of the blowing air volume caused by the swirling flow due to the rotation of the air blowing fan.
  • FIG. 2 is a schematic cross-sectional view showing a schematic configuration of a vehicle air conditioning unit in the first embodiment.
  • FIG. 2 is a cross-sectional view showing a II-II cross section in FIG. 1 and is a view showing a schematic shape of a rectifying mechanism of the first embodiment.
  • 1st Embodiment while showing a ventilation fan with a dashed-two dotted line, it is the perspective view which extracted and showed the rectification mechanism. It is the figure which showed the comparative example in which the rectification mechanism of 1st Embodiment is not provided, Comprising: It is sectional drawing corresponded in FIG.
  • FIG. 4th Embodiment it is the perspective view which extracted and showed the ventilation mechanism while showing a ventilation fan with a dashed-two dotted line, Comprising: It is a figure corresponded in FIG.
  • FIG. 13 it is a cross-sectional view showing a schematic shape of the rectifying mechanism of the sixth embodiment and showing a XIII-XIII cross section in FIG.
  • FIG. 12 is a cross-sectional view corresponding to FIG. 2.
  • FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the seventh embodiment and showing a XIII-XIII cross section in FIG. 12, which is a cross-sectional view corresponding to FIG. 13.
  • FIG. 15 is a perspective view showing a blower fan by a two-dot chain line and extracting a flow straightening mechanism in the seventh embodiment, corresponding to FIG. 14; FIG.
  • FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the eighth embodiment and showing a XIII-XIII cross section in FIG. 12, which is a cross-sectional view corresponding to FIG. 13.
  • FIG. 15 is a perspective view showing a blower fan by a two-dot chain line and extracting a flow straightening mechanism in the eighth embodiment, corresponding to FIG. 14;
  • FIG. 13 is a cross-sectional view showing a schematic shape of the flow straightening mechanism of the ninth embodiment, and showing a cross section taken along line XIII-XIII in FIG. 12, corresponding to FIG. 2;
  • FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the tenth embodiment and showing a XIII-XIII cross section in FIG. 12, and is a cross-sectional view corresponding to FIG.
  • FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the eleventh embodiment, and showing a cross section taken along line XIII-XIII in FIG. 12, corresponding to FIG.
  • FIG. 18 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the twelfth embodiment, and showing a cross section taken along line XIII-XIII in FIG. 12, corresponding to FIG.
  • FIG. 19 is a perspective view selectively showing a rectifying mechanism in the twelfth embodiment, which corresponds to FIG.
  • FIG. 18; FIG. 23 is a cross sectional view showing a cross section along line XXIV of FIG. 22.
  • FIG. 25 is a cross sectional view showing a schematic shape of a rectifying mechanism in a thirteenth embodiment, which corresponds to FIG. 24.
  • FIG. 25 is a cross sectional view showing a schematic shape of a rectifying mechanism in a fourteenth embodiment, corresponding to FIG. 24.
  • the vehicle air conditioning unit 10 includes an air conditioning case 12, an evaporator 16, a heater core 18, a blower 20, a plurality of doors 21, 22, 23, 24 a, 24 b, 25, and a rectifying mechanism. It has 26.
  • the vehicle air conditioning unit 10 is disposed, for example, inside an instrument panel provided at the foremost part in the vehicle compartment.
  • Arrows DR1, DR2 and DR3 in FIG. 1 and FIG. 2 indicate the direction of the vehicle on which the vehicle air conditioning unit 10 is mounted. That is, the arrow DR1 in FIG. 1 indicates the vehicle longitudinal direction DR1, the arrow DR2 indicates the vehicle vertical direction DR2, and the arrow DR3 in FIG. 2 indicates the vehicle lateral direction DR3, that is, the vehicle width direction DR3.
  • These directions DR1, DR2, and DR3 are directions intersecting each other, strictly speaking, directions orthogonal to each other.
  • the air conditioning case 12 is a resin member that forms the outer shell of the vehicle air conditioning unit 10.
  • the air conditioning case 12 is formed with an outside air inlet 121, an inside air inlet 122, and outlets 126, 127, 128 for blowing out air from the inside of the air conditioning case 12.
  • an in-case passage 123 through which air flows from one or both of the outside air inlet 121 and the inside air inlet 122 to the outlets 126, 127, 128 is formed inside the air conditioning case 12.
  • the in-case passage 123 is formed to extend in the vehicle longitudinal direction DR1.
  • the outside air introduction port 121 is an introduction port for introducing outside air, which is air outside the vehicle compartment, into the passage 123 in the case.
  • the inside air introduction port 122 is an introduction port for introducing inside air, which is air in the vehicle compartment, into the passage 123 in the case. Outside air or inside air is introduced into the air conditioning case 12 by the blower 20.
  • the outside air introduction port 121 and the inside air introduction port 122 are opened and closed by the inside / outside air switching door 25. Then, the air introduced from one or both of the outside air inlet 121 and the inside air inlet 122 flows into the evaporator 16.
  • the evaporator 16 is a cooling heat exchanger that cools the air passing through the evaporator 16. In short, the evaporator 16 is a cooler.
  • the evaporator 16 is housed in the air conditioning case 12. That is, the evaporator 16 is disposed in the in-case passage 123, and is disposed so that the outside air or the inside air introduced into the in-case passage 123 flows in.
  • the evaporator 16 together with a compressor, a condenser, and an expansion valve (not shown), constitutes a known refrigeration cycle apparatus for circulating a refrigerant.
  • the evaporator 16 exchanges heat between the air passing through the evaporator 16 and the refrigerant, and the heat exchange evaporates the refrigerant and cools the air.
  • the blower 20 has a blower fan 201 that rotates around a fan axis CL1 and is disposed in the in-case passage 123, and a fan motor (not shown) that rotationally drives the blower fan 201.
  • the blower fan 201 is a centrifugal fan in the present embodiment.
  • the blower 20, which is a centrifugal blower sucks air from one side of the axial direction DRa of the fan axis line CL1 by the rotation of the blower fan 201, and blows the sucked air outward in the radial direction of the blower fan 201.
  • the air blown out radially outward is guided by the air conditioning case 12 to the air flow downstream side of the in-case passage 123 (for example, the vehicle rear side in FIG. 1) as indicated by an arrow FLf.
  • the blower fan 201 which is a centrifugal fan, is provided on one side of the axial direction DRa of the fan axis line CL1 and sucks in the air; a fan air inlet 201a; And an outlet 201b.
  • the fan air outlet 201 b is formed over the entire circumference of the outer peripheral portion of the blower fan 201. Then, the blower fan 201 sucks air from one side of the axial direction DRa through the fan air inlet 201 a by the rotation of the blower fan 201. At the same time, the blower fan 201 blows the sucked air from the fan air outlet 201 b radially outward of the blower fan 201.
  • a fan surrounding space 123 b surrounding the air blowing fan 201 outside the air blowing fan 201 in the radial direction and into which the air flows from the air blowing fan 201 is formed as a part of the in-case passage 123.
  • the air conditioning case 12 is configured to guide the air flowing from the blower fan 201 into the fan surrounding space 123b to the other side opposite to one side of the axial direction DRa.
  • a wind guiding wall (not shown) disposed on one side of the axial direction DRa with respect to the fan surrounding space 123 b is provided in the air conditioning case 12. Then, the air conditioning case 12 guides the air in the fan surrounding space 123b to flow to the other side while blocking the flow to one side of the axial direction DRa by the air guide wall.
  • the air blown out from the blower fan 201 radially outward enters the fan surrounding space 123b as indicated by an arrow FLf, and the air from the fan surrounding space 123b to the other side of the axial direction DRa with respect to the blower fan 201 is conditioned. It is guided by the case 12.
  • the axial direction DRa of the fan axis line CL1 coincides with the vehicle longitudinal direction DR1. Further, the axial direction DRa of the fan axial line CL1 is also referred to as a fan axial direction DRa. Further, the radial direction of the blower fan 201 is, in other words, the radial direction of the fan axis line CL1. The radial direction of the fan axis line CL1 is also referred to as a fan radial direction.
  • the blower 20 has a so-called suction layout in which a blower fan 201 is disposed downstream of the evaporator 16 in the air flow.
  • the blower 20 is disposed such that one side of the fan axial direction DRa, which is the air suction side of the blower fan 201, faces the air outflow surface 16b of the evaporator 16.
  • the blower fan 201 is disposed in such a direction that the other side of the fan axial line CL1 opposite to one side of the fan axial direction DRa extends to the air flow downstream side of the case internal passage 123.
  • the blower fan 201 is arranged such that the other side of the fan axis line CL1 is directed to extend toward the air flow downstream side of the in-case passage 123 (specifically, the vehicle rear side).
  • the blower 20 is disposed such that the fan axis CL1 is substantially orthogonal to the air outflow surface 16b of the evaporator 16. Therefore, the other side of the fan axis line CL1 extends in the direction (specifically, the vehicle rear side) in which the fan downstream portion 123a of the in-case passage 123, which is the portion of the air flow downstream of the air blowing fan 201 extends.
  • the fan 201 is arranged. That is, the air flow blown out from the blower fan 201 proceeds to the other side in the fan axial direction DRa in the case internal passage 123.
  • the heater core 18 is disposed downstream of the blower fan 201 in the in-case passage 123 on the air flow downstream side.
  • the heater core 18 is disposed at a central portion in the vehicle vertical direction DR2 of the in-case passage 123.
  • the heater core 18 is a heater that heats the air passing through the heater core 18 among the air flowing through the in-case passage 123.
  • an upper bypass passage 125 a is formed on the upper side of the heater core 18, and a lower bypass passage 125 b is formed on the lower side of the heater core 18.
  • the upper bypass passage 125 a and the lower bypass passage 125 b are both included in the case inner passage 123, and flow air in parallel to the heater core 18. That is, both the upper bypass passage 125 a and the lower bypass passage 125 b are bypass passages that allow air to bypass the heater core 18. In other words, both the upper bypass passage 125 a and the lower bypass passage 125 b are non-heating passages where the heater core 18 is not provided.
  • a first air mix door 24 a and a second air mix door 24 b are provided on the air flow upstream side of the heater core 18 in the case inner passage 123.
  • the first air mix door 24 a and the second air mix door 24 b are provided on the downstream side of the air flow with respect to the flow straightening mechanism 26.
  • the air mixing doors 24 a and 24 b are provided on the other side of the straightening mechanism 26 in the fan axial direction DRa in terms of the position of the fan axial direction DRa.
  • the heater core 18 and the bypass passages 125a and 125b are provided on the other side in the fan axial direction DRa with respect to the air mix doors 24a and 24b.
  • the first air mix door 24a is disposed in the upper bypass passage 125a, and opens and closes the upper bypass passage 125a.
  • the first air mix door 24a is a sliding door mechanism, and is slid by an electric actuator (not shown).
  • the first air mix door 24 a adjusts the air volume ratio between the air volume passing through the heater core 18 and the air volume passing through the upper bypass passage 125 a according to the slide position.
  • the second air mix door 24b is disposed in the lower bypass passage 125b, and opens and closes the lower bypass passage 125b.
  • the second air mix door 24 b is a sliding door mechanism, and is slid by an electric actuator (not shown).
  • the second air mix door 24b adjusts the air volume ratio between the air volume passing through the heater core 18 and the air volume passing through the lower bypass passage 125b according to the slide position.
  • the air-conditioning case 12 is formed with a face outlet 126, a defroster outlet 127, and a foot outlet 128 for blowing air out of the air-conditioning case 12.
  • the face outlet 126, the defroster outlet 127, and the foot outlet 128 are respectively connected to the in-case passage 123 on the downstream side of the heater core 18 and the bypass passages 125a and 125b.
  • Air flowing out of the face outlet 126 is guided through a duct (not shown) and blown out to the face or chest of an occupant seated in the front seat in the vehicle compartment.
  • Air flowing out of the defroster outlet 127 is guided through a duct (not shown) and blown out toward the window glass on the front of the vehicle in the vehicle compartment.
  • Air flowing out of the foot outlet 128 is guided through a duct (not shown) and blown out to the foot of an occupant seated in the front seat in the vehicle compartment.
  • a face door 21 is provided at the face outlet 126, and the face door 21 opens and closes the face outlet 126.
  • a defroster door 22 is provided at the defroster outlet 127, and the defroster door 22 opens and closes the defroster outlet 127.
  • the foot outlet 128 is provided with a foot door 23, and the foot door 23 opens and closes the foot outlet 128.
  • the warm air passing through the heater core 18 and the cold air passing through the upper bypass passage 125a are mixed. Then, the mixed air is blown out into the vehicle cabin mainly from an open one of the face outlet 126 and the defroster outlet 127.
  • the warm air passing through the heater core 18 and the cold air passing through the lower bypass passage 125b are mixed. Then, the mixed air is blown out mainly from the foot outlet 128 into the vehicle compartment when the foot outlet 128 is open.
  • a plurality of face outlets 126 are provided in the air conditioning case 12.
  • the air outlet mode of the vehicle air conditioning unit 10 is set to the face mode, the face outlet 126 is opened, and the defroster outlet 127 and the foot outlet 128 are closed. Therefore, in this case, the air having passed through the flow straightening mechanism 26 disposed on the upstream side of the air flow from the face outlet 126 is distributed and flows into each of the plurality of face outlets 126.
  • the air passing through the flow straightening mechanism 26 is not distributed to the defroster outlet 127 and the foot outlet 128 which are closed. That is, the plurality of outlets through which the air having passed through the flow straightening mechanism 26 as described herein is distributed and flows in are, specifically speaking, a plurality of outlets which are simultaneously opened in any of the outlet modes. .
  • the plurality of face air outlets 126 are disposed in a partial range Wf of the entire circumference around the fan axis line CL1 in the circumferential direction DRc of the fan axis line CL1.
  • the plurality of face air outlets 126 are all disposed above the fan axis line CL1.
  • the plurality of face air outlets 126 are not arranged concentrically around the fan axis line CL1 but arranged linearly in the vehicle width direction DR3.
  • the circumferential direction DRc of the fan axis line CL1 is also referred to as a fan circumferential direction DRc.
  • the fact that the plurality of face outlets 126 described above are disposed in the partial range Wf means, strictly speaking, a connecting portion in which the plurality of face outlets 126 are connected to the in-case passage 123 Is arranged in the range Wf.
  • the flow straightening mechanism 26 is disposed downstream of the air flow fan with respect to the blower fan 201 in the case internal passage 123, and the air flow to the heater core 18 and the air mix doors 24a and 24b. It is located upstream. Therefore, air blown out from the blower fan 201 flows into the flow straightening mechanism 26, and the blown out air passes through the flow straightening mechanism 26 and then flows to the bypass passage 125 a, 125 b or the heater core 18. Further, speaking of the position in the fan axial direction DRa, the rectifying mechanism 26 is provided on the other side of the blower fan 201 in the fan axial direction DRa.
  • the blower fan 201 is disposed so that the other side of the fan axial direction DRa faces the air flow downstream side of the case internal passage 123, the air blown out from the blower fan 201 and flowing into the rectifying mechanism 26 is The rotation of the blower fan 201 produces a swirling flow.
  • the rectifying mechanism 26 suppresses the swirling flow generated by the rotation of the blower fan 201 in the air blown out from the blower fan 201 as compared with the situation in which the blown-out air flows into the rectifying mechanism 26.
  • the flow straightening mechanism 26 makes the swirling flow of the air flowing through the bypass passages 125 a, 125 b out of the air blown out from the blower fan 201 before the air flowing through the bypass passages 125 a, 125 b flows into the flow straightening mechanism 26. It suppresses by comparison.
  • the flow straightening mechanism 26 has a plurality of flow straightening plates 261 extending from the inside to the outside in the radial direction of the blower fan 201 (ie, in the radial direction of the fan).
  • the plurality of rectifying plates 261 are fixed to the air conditioning case 12 respectively. That is, the flow straightening mechanism 26 is fixed to the air conditioning case 12 and is provided as a non-rotating member that does not rotate.
  • the plurality of rectifying plates 261 are spaced apart from one another in the fan circumferential direction DRc. Therefore, a straightening passage 26a is formed between the plurality of straightening vanes 261, and each straightening passage 26a can flow air from the upstream side of the air flow to the straightening mechanism 26 in the case inner passage 123 to the downstream side of the air flow. It is assumed. In short, one end and the other end of the straightening passage 26a in the fan axial direction DRa are also open.
  • the outline of the blower fan 201 is indicated by a two-dot chain line, which is the same as in FIG. 10 described later.
  • the mutual distance between the plurality of rectifying plates 261 in the fan circumferential direction DRc is wider toward the outside in the fan radial direction.
  • the plurality of straightening vanes 261 may be provided in a simple radial manner, but in the present embodiment, they are not simple radial. That is, the plurality of flow control plates 261 in the present embodiment are formed to be positioned on the forward direction side in the rotational direction RTf of the blower fan 201 as it goes to the outer side in the fan radial direction.
  • the plurality of flow straightening plates 261 respectively have passage wall surfaces 261 a and 261 b facing the flow straightening passages 26 a on both sides in the plate thickness direction of the flow straightening plate 261.
  • the passage wall surfaces 261a, 261b are formed along the fan axial direction DRa.
  • the rectifying plates 261 configured in this manner move the air flowing from the blower fan 201 into the rectifying passage 26 a from the air flow upstream side to the air flow downstream side with respect to the rectifying mechanism 26 in the case inner passage 123. Guide along. At this time, each straightening vane 261 guides the air while countering the fan circumferential direction DRc with respect to the swirling flow of the air flowing through the straightening passage 26a. Therefore, the flow straightening mechanism 26 suppresses the swirling flow of the blown air by letting the air blown out from the blower fan 201 pass through the flow straightening passage 26a.
  • the air cooled by the evaporator 16 is sucked into the blower fan 201 of the blower 20, blown outward in the radial direction of the blower fan 201, and guided to the air flow downstream side of the case internal passage 123 by the air conditioning case 12.
  • the air blown out from the blower fan 201 passes through the rectifying mechanism 26.
  • the air that has passed through the flow straightening mechanism 26 warms up when passing through the heater core 18 and flows to the air flow downstream side of the heater core 18 and flows cold to the air flow downstream side of the heater core 18 when passing through the bypass passages 125a and 125b. .
  • the warm air and the cold air are mixed on the air flow downstream side of the heater core 18, and the mixed air is supplied from the air outlet of the face outlet 126, the defroster outlet 127, and the foot outlet 128 which are open. , It is blown out to the predetermined place in the vehicle interior.
  • the rectifying mechanism 26 blows out the swirling flow generated by the rotation of the blowing fan 201 in the air blown out of the blowing fan 201.
  • the air is suppressed as compared to before it flows into the flow straightening mechanism 26. Therefore, since the swirling flow is suppressed on the air flow downstream side with respect to the flow straightening mechanism 26, it is not necessary to excessively limit the arrangement of the plurality of face outlets 126 in consideration of the swirling flow. That is, it is possible to arrange a plurality of face outlets 126 without excessively restricting the arrangement of the face outlets 126 for avoiding deviation of the blowing air volume caused by the swirling flow due to the rotation of the blower fan 201. .
  • the air passing through the bypass passages 125a and 125b has a plurality of face outlets while having a swirling flow generated by the rotation of the blower fan 201. It will reach 126. Then, in the face mode, the amount of air flowing into the outlets becomes smaller as the outlets of the plurality of face outlets 126 located on the forward direction side in the rotational direction RTf of the blower fan 201. Therefore, in the comparative example of FIG. 4, the deviation of the blowing air volume caused by the swirling flow due to the rotation of the blower fan 201 is generated among the plurality of face air outlets 126.
  • arrow FLo of FIG. 4 represents the flow of the air which blows off from the ventilation fan 201 and has rotational flow.
  • the swirling flow generated in the blowout air is suppressed by the flow straightening mechanism 26 in advance. Therefore, as shown in FIG. 2, even if the plurality of face air outlets 126 are arranged in a partial range Wf of the entire circumference around the fan axis line CL1 in the fan circumferential direction DRc, the deviation of the blowing air volume is more than one It is possible to prevent the occurrence of mutual between the face outlets 126 of the air conditioner.
  • the heater core 18 is disposed downstream of the air blowing fan 201 in the case internal passage 123 and heats the air.
  • the in-case passage 123 includes bypass passages 125a and 125b that allow air to flow around the heater core 18.
  • the flow straightening mechanism 26 makes the swirling flow of the air flowing through the bypass passages 125a and 125b among the air blown out from the blower fan 201 before the air flowing through the bypass passages 125a and 125b flows into the flow straightening mechanism 26. It suppresses by comparison. Therefore, it is possible to cause the rectifying mechanism 26 to effectively exhibit the action of suppressing the swirl flow with respect to the air flowing through the bypass passages 125a and 125b having few factors that weaken the swirl flow.
  • the rectifying mechanism 26 is disposed upstream of the heater core 18 in the in-case passage 123 with respect to the air flow. Therefore, the air blown out from the blower fan 201 flows into the heater core 18 after the swirling flow is suppressed by the flow straightening mechanism 26. Therefore, it is possible to reduce pressure loss when air flows into the heater core 18.
  • the rectifying mechanism 26 has a plurality of rectifying plates 261 extending from the inside to the outside in the fan radial direction.
  • a straightening passage 26a is formed between the plurality of straightening vanes 261 so that air can flow from the upstream side of the air flow to the straightening mechanism 26 in the case internal passage 123 to the downstream side of the air flow.
  • the mutual distance between the plurality of current plates 261 is wider toward the outside in the radial direction of the fan. Then, the flow straightening mechanism 26 suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the flow straightening passage 26 a.
  • the air from the blower fan 201 flows into the flow straightening passage 26a, but the flowed air in the flow straightening passage 26a moves to the air flow downstream side while moving outward in the radial direction of the fan. Therefore, in the straightening passage 26a, even if the flow rate of air flowing through the straightening passage 26a is maintained, the flow velocity of the air decreases in accordance with the spread of the mutual spacings of the plurality of straightening plates 261. And the suppression of the said rotational flow advances with the fall of the flow velocity. Therefore, it is possible to reduce the pressure loss resulting from the suppression of the swirling flow.
  • each of the plurality of rectifying plates 261 is formed to be positioned on the forward direction side in the rotational direction RTf of the blower fan 201 as it goes outward in the fan radial direction It is done. Therefore, for example, as compared with the case where the respective straightening vanes 261 extend straight along the radial direction of the blower fan 201, it is possible to reduce the pressure loss caused by suppressing the swirling flow. This is because, as the air including the swirling flow moves outward in the radial direction of the fan, the flow direction of the air can be gently diverted toward the air flow downstream of the in-case passage 123.
  • the straightening vane 261 has passage wall surfaces 261a, 261b facing the flow straightening passage 26a, and the passage wall surfaces 261a, 261b are in the fan axial direction DRa. It is formed along the. Therefore, it is possible to guide the air flow in the direction along the fan axial direction DRa as shown by arrow FL1 in FIG. 3 while suppressing the swirling flow generated by the rotation of the blower fan 201.
  • the vehicle air conditioning unit 10 of the present embodiment includes a filter 28 that filters the air blown out from the blower fan 201.
  • the filter 28 is provided as a rectifying mechanism 26 in place of the rectifying mechanism 26 having a plurality of rectifying plates 261 shown in FIG.
  • the filter 28 of the present embodiment filters the swirling flow generated by the rotation of the blowing fan 201 in the air blown out of the blowing fan 201, the blown air being a filter Compared to before entering the 28 suppress.
  • the filter 28 is disposed downstream of the air blowing fan 201 in the case inner passage 123 with respect to the air flow.
  • the filter 28 is disposed upstream of the bypass passages 125a and 125b, the heater core 18, and the air mix doors 24a and 24b.
  • the filter 28 of the present embodiment is made of, for example, a net or non-woven fabric.
  • the present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show
  • the filter 28 for filtering the air blown out from the blower fan 201 is provided as the rectifying mechanism 26. Therefore, it is possible to reduce the number of parts by utilizing the filter 28 of the vehicle air conditioning unit 10 as the rectification mechanism 26.
  • the order of the evaporator 16 and the blower 20 in the case internal passage 123 is reversed.
  • the evaporator 16 is provided as the rectifying mechanism 26 in place of the rectifying mechanism 26 having the plurality of rectifying plates 261 shown in FIG.
  • the evaporator 16 of the present embodiment is disposed downstream of the air flow fan with respect to the blower fan 201 in the in-case passage 123, similarly to the flow straightening mechanism 26 of the first embodiment.
  • the evaporator 16 is disposed upstream of the bypass passages 125a and 125b, the heater core 18, and the air mix doors 24a and 24b.
  • the evaporator 16 has the swirling flow generated by the rotation of the blower fan 201 in the air blown out of the blower fan 201 in the same manner as the rectifying mechanism 26 of the first embodiment. Compared to before entering the 16 to suppress.
  • the evaporator 16 includes a plurality of refrigerant tubes 161 through which a refrigerant for cooling air flows, and a plurality of refrigerant tubes arranged between the refrigerant tubes 161. And corrugated fins 162.
  • the plurality of refrigerant tubes 161 and the plurality of corrugated fins 162 are alternately stacked. For example, they are stacked in the vehicle width direction DR3. Due to this stacked arrangement, the evaporator 16 is formed with a plurality of heat exchange passages 163 penetrating in the fan axial direction DRa.
  • the air blown out from the blower fan 201 passes through the plurality of heat exchange passages 163. Then, the evaporator 16 cools the air passing through the plurality of heat exchange passages 163 by the refrigerant in the refrigerant tube 161.
  • the plurality of heat exchange passages 163 are passages which are respectively penetrated and subdivided in the fan axial direction DRa, the air blown out from the blower fan 201 passes through the heat exchange passages 163 to suppress the swirling flow. Be done.
  • the present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show
  • the evaporator 16 configured to cool the air passing through the plurality of heat exchange passages 163 is formed by forming the plurality of heat exchange passages 163 through which the air blown out from the blower fan 201 passes. It is provided as Therefore, it is possible to reduce the number of parts by utilizing the evaporator 16 of the vehicle air conditioning unit 10 also as the rectifying mechanism 26.
  • the rectifying mechanism 26 has a plurality of rectifying plates 261 as in the first embodiment, and is fixed to the air conditioning case 12. .
  • the shape of the rectifying mechanism 26 is different from that of the first embodiment.
  • each of the plurality of straightening vanes 261 is in the form of a linearly extending rib.
  • the plurality of straightening vanes 261 are connected to one another to form a lattice as a whole. Therefore, the plurality of rectifying plates 261 define a plurality of rectifying passages 26a.
  • the plurality of straightening passages 26a are provided side by side in the vehicle vertical direction DR2 and also provided side by side in the vehicle width direction DR3.
  • air can flow from the upstream side of the air flow to the straightening mechanism 26 in the case internal passage 123 to the downstream side of the air flow.
  • one end and the other end of the straightening passage 26a in the fan axial direction DRa are also open.
  • each of the plurality of flow straightening plates 261 has passage wall surfaces 261a and 261b facing the flow straightening passages 26a on both sides in the plate thickness direction of the flow straightening plate 261.
  • the passage wall surfaces 261a, 261b are formed along the fan axial direction DRa.
  • the flow straightening mechanism 26 suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the flow straightening passage 26a as shown by arrow FL1 in FIG. Therefore, in the present embodiment, it is possible to suppress the swirling flow by making the rectifying mechanism 26 a simple structure.
  • the present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show
  • the fan axial line CL1 is inclined with respect to the vehicle longitudinal direction DR1, so the fan axial direction DRa does not coincide with the vehicle longitudinal direction DR1.
  • the present embodiment is different from the first embodiment.
  • the fan axial line CL1 is inclined with respect to the vehicle longitudinal direction DR1.
  • the other side of the fan axial line CL1 extends to the air flow downstream side of the case internal passage 123 It is arranged.
  • the present embodiment is the same as the first embodiment.
  • the present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show
  • this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with any of the second, third and fourth embodiments described above.
  • the face air outlet 126 and the defroster air outlet 127 are provided to be shifted upward as compared with the first embodiment. Further, as shown in FIG. 13 and FIG. 14, in the present embodiment, the structure of the rectifying mechanism 26 is different from that of the first embodiment.
  • FIG. 13 in order to show the positional relationship between the plurality of face outlets 126 and the blower fan 201, the outlines of the plurality of face outlets 126 and the blower fan 201 are indicated by two-dot chain lines. . The same applies to FIGS. 15, 19, 20 and 21 described later.
  • the rectifying mechanism 26 has a plurality of cylindrical portions 262 oriented along the fan axial direction DRa. And since the cylindrical part 262 is cylindrical shape, the through-hole 262a extended in the fan axial direction DRa is formed in the cylindrical part 262, respectively.
  • the plurality of cylindrical portions 262 are provided such that the respective through holes 262 a are arranged in parallel to one another. And the rectification
  • straightening mechanism 26 is comprised by the cylindrical part 262 comrades which mutually adjoin among several cylindrical parts 262 mutually become integral structure.
  • the through holes 262a of the cylindrical portion 262 have the same size.
  • Each of the through holes 262a is a hexagonal hole whose cross section orthogonal to the fan axial direction DRa forms a hexagonal shape. Therefore, the flow straightening mechanism 26 of the present embodiment is configured as a honeycomb-shaped porous material.
  • the rectifying mechanism 26 is formed to form a plate shape with the fan axial direction DRa in the thickness direction. ing.
  • the rectifying mechanism 26 is formed so as to extend over the entire in-case passage 123 in a cross section orthogonal to the fan axial direction DRa.
  • the peripheral portion of the rectifying mechanism 26 is joined to the air conditioning case 12.
  • the rectifying mechanism 26 configured in this manner suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the plurality of through holes 262a as shown by arrow FL1 in FIG. Therefore, it is possible to shorten the distance necessary for the rectification of the air flow while well securing the rectification property of suppressing and rectifying the swirling flow. Therefore, it is possible to reduce the thickness of the flow straightening mechanism 26 in the air flow direction.
  • the through hole 262a of the cylindrical portion 262 is a hole in which a cross section orthogonal to the fan axial direction DRa forms a hexagonal shape.
  • the flow straightening mechanism 26 of the present embodiment is configured as a honeycomb porous material. Therefore, the plurality of cylindrical portions 262 in which the through holes 262 a are formed can be easily disposed precisely, and the rigidity of the air conditioning case 12 can be enhanced by the flow straightening mechanism 26.
  • the present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show
  • this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described fifth embodiment.
  • the through holes 262 a formed in each of the plurality of cylindrical portions 262 are circular holes whose cross section orthogonal to the fan axial direction DRa has a circular shape. Except for this, the present embodiment is the same as the sixth embodiment. And in this embodiment, the effect show
  • the vehicle air conditioning unit 10 of the present embodiment is as shown in FIG. 12, which is the same as in the eighth to fourteenth embodiments described later.
  • through holes 262 a extending in the fan axial direction DRa are formed in each of the plurality of cylindrical portions 262.
  • the present embodiment is the same as the sixth embodiment.
  • the hole shape of the through hole 262a formed in each of the plurality of cylindrical portions 262 is different from that of the sixth embodiment.
  • the plurality of through holes 262a are rectangular holes each having a rectangular cross section orthogonal to the fan axial direction DRa.
  • the rectangular shape of the cross section of the through hole 262a may be a strict rectangle or a square, and if it has a substantially rectangular shape, for example, any or all of the four sides surrounding the cross section of the through hole 262a The side of may be curved.
  • the portion of the air conditioning case 12 surrounding the rectifying mechanism 26 is formed in a cylindrical shape centered on the fan axis line CL1.
  • the plurality of through holes 262 a formed in the rectifying mechanism 26 are arranged radially in the fan radial direction. Therefore, a plurality of rows of through holes 262a aligned in the fan circumferential direction DRc are formed concentrically around the fan axis CL1.
  • the circumferential partition walls 263 separating the through holes 262a adjacent to each other in the fan circumferential direction DRc are provided so as to extend radially in the fan radial direction.
  • the flow straightening mechanism 26 has a radial partition 267 separating the through holes 262a adjacent in the fan radial direction.
  • the diameter partition wall 267 has a cylindrical shape centered on the fan axis CL1.
  • Each of the circumferential partition wall 263 and the radial partition wall 267 has a plate-like shape, and functions as a partition plate that divides between the through holes 262a adjacent to each other among the plurality of through holes 262a.
  • the air conditioning case 12 is a part of the inner wall surface forming the in-case passage 123, and faces the portion of the in-case passage 123 where the rectifying mechanism 26 is disposed from the outside in the fan radial direction. It has a face 123f.
  • the rectifying mechanism peripheral surface 123 f is formed so that a cross section orthogonal to the fan axial direction DRa forms a circular shape centering on the fan axis line CL 1 and surrounds the rectifying mechanism 26.
  • the plurality of through holes 262a provided in the rectifying mechanism 26 are arranged along the rectifying mechanism peripheral surface 123f of the air conditioning case 12 so as to be lined around the fan axis CL1. .
  • the shapes of the plurality of through holes 262a each have a rectangular shape as described above, but they are exactly as shown in FIG. That is, the cross-sectional shape of the plurality of through holes 262a is a shape surrounded by the inner arc portion 262g, the outer arc portion 262h, the one side linear portion 262i, and the other side linear portion 262j.
  • the inner arc portion 262g has an arc shape centering on the fan axial line CL1.
  • the outer arc portion 262 h is provided on the outer side in the fan radial direction with respect to the inner arc portion 262 g and has an arc shape concentric with the inner arc portion 262 g.
  • one side linear portion 262i has a linear shape extending in the fan radial direction toward fan axis line CL1 which is the center of blower fan 201, and connects one end of inner arc portion 262g and one end of outer arc portion 262h. It is.
  • the other side straight portion 262j has a linear shape extending in the fan radial direction toward the fan axis line CL1, and connects the other end of the inner arc portion 262g and the other end of the outer arc portion 262h.
  • the inner arc portion 262g, the outer arc portion 262h, the one side straight portion 262i, and the other side straight portion 262j respectively constitute a hole wall surface facing the through hole 262a.
  • the plurality of through holes 262a having such a shape form an annular through hole group 262k in which the through holes 262a are arranged annularly around the fan axial line CL1 via the circumferential partition wall 263.
  • a plurality of annular through hole groups 262k are formed concentrically around the fan axial line CL1 and provided adjacent to each other in the fan radial direction via the diameter partition 267.
  • two annular through holes 262k are provided.
  • the plurality of through holes 262a provided in the flow straightening mechanism 26 are all formed such that the passage cross sectional areas of the through holes 262a are the same. Since the through hole 262a is a hole extending in the fan axial direction DRa, the passage cross sectional area of the through hole 262a is a cross sectional area of the through hole 262a in a cross section orthogonal to the fan axial direction DRa.
  • Each of the plurality of circumferential partitions 263 has a plate shape extending with a constant thickness, and the plurality of circumferential partitions 263 are formed such that the thickness of the circumferential partitions 263 is the same for all of the circumferential partitions 263. ing. Furthermore, the radial partition 267 also has a plate shape extending with a constant thickness. The radial partition 267 is formed such that the thickness of the radial partition 267 is the same as the thickness of the circumferential partition 263.
  • the rectifying mechanism 26 configured as described above suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the plurality of through holes 262a.
  • the present embodiment is the same as the sixth embodiment except for the points described above. And in this embodiment, the effect show
  • each of the plurality of through holes 262a formed in the rectifying mechanism 26 is a rectangular hole having a rectangular cross section orthogonal to the fan axial direction DRa.
  • the plurality of through holes 262a are arranged radially in the fan radial direction. Therefore, when the shape of the portion of the air conditioning case 12 in which the rectifying mechanism 26 is disposed is made cylindrical according to the outer shape of the blower fan 201 as in the present embodiment, the passage cross-sectional areas of the plurality of through holes 262a are made uniform. Cheap. Therefore, for example, the variation of the wind speed distribution of the air passing through the rectifying mechanism 26 can be suppressed, and the wind speed distribution can be adjusted. And if the variation in the wind speed distribution is suppressed, the disturbance of the wind flow on the downstream side of the air flow with respect to the rectifying mechanism 26 is also suppressed.
  • the air conditioning case 12 faces from the outside in the radial direction of the fan to the portion of the in-case passage 123 where the rectifying mechanism 26 is disposed. It has a face 123f.
  • the rectifying mechanism peripheral surface 123 f is formed such that a cross section orthogonal to the fan axial direction DRa forms a circular shape centered on the fan axis line CL 1 and surrounds the rectifying mechanism 26.
  • the plurality of through holes 262 a provided in the rectifying mechanism 26 are arranged along the rectifying mechanism peripheral surface 123 f of the air conditioning case 12 so as to be aligned around the fan axis line CL 1. Then, the flow straightening mechanism 26 suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the plurality of through holes 262a.
  • the swirling flow is suppressed by the air flow constituting the swirling flow being along the wall surface of each hole facing the through hole 262 a of the flow control mechanism 26.
  • the plurality of through holes 262a are arranged side by side around the fan axis CL1 as described above. Therefore, the wall surface of each through hole 262a which suppresses the swirling flow is the wall surface direction relative to the swirling direction of the swirling flow (specifically, the direction toward the fan circumferential direction DRc) whichever through hole It is easy to form each through-hole 262a so that it may be made the same also in 262a.
  • the plurality of through holes 262a are all formed such that the cross-sectional areas of the through holes 262a are the same.
  • the radial partition 267 and the plurality of circumferential partitions 263 are formed such that the plate thickness of the partitions 263 and 267 is the same for all of the partitions 263 and 267. Therefore, it can be said from these things that the ventilation resistance of the rectifying mechanism 26 can be made uniform throughout the rectifying mechanism 26.
  • the rectifying mechanism 26 has a plurality of rectifying plates 261 extending from the inside to the outside in the fan radial direction.
  • the plurality of face air outlets 126 are arranged at a position deviated from the fan axis CL1 to one side in a predetermined arrangement direction DRy which is one direction orthogonal to the fan axis CL1.
  • the predetermined arrangement direction DRy is not limited to the vehicle vertical direction DR2, but in the present embodiment, it coincides with the vehicle vertical direction DR2, one side of the predetermined arrangement direction DRy is the upper side, and the other side of the predetermined arrangement direction DRy is the lower It is the side.
  • the plurality of face air outlets 126 are provided side by side in the air outlet line alignment direction DRx intersecting with the fan axial direction DRa.
  • the blower outlet alignment direction DRx is not limited to the vehicle width direction DR3, but in the present embodiment, it matches the vehicle width direction DR3.
  • the air conditioning case 12 has a plurality of air outlet boundaries 126a, and the air outlet boundary 126a is provided between the face air outlets 126 adjacent to each other among the plurality of face air outlets 126, The outlets 126 are separated from each other.
  • the outlet boundary 126a is provided between the connecting portions of the face outlet 126 connected to the in-case passage 123, and separates the connecting portions.
  • the plurality of flow straightening plates 261 each have an outer end portion 261 c at the outer end in the fan radial direction. Furthermore, any one of the plurality of outer end portions 261c is provided as one side end portion 261d located on one side of the position of the fan axis CL1 in the predetermined arrangement direction DRy. Each one side end portion 261 d is located radially outward with respect to the blower fan 201.
  • the present embodiment is the same as the first embodiment.
  • the positions of the outlet boundary 126a in the outlet alignment direction DRx are aligned with the positions of the one side end 261d of the straightening vane 261, respectively.
  • the fact that the position of the outlet boundary 126a matches the position of the one side end 261d does not necessarily mean that the positions completely match each other, and it may be that they substantially match. . The same applies to the embodiments described later.
  • the present embodiment is the same as the first embodiment, except for the points described as different from the first embodiment as described above. And in this embodiment, the effect show
  • the position of the outlet boundary 126 a of the air conditioning case 12 in the outlet alignment direction DRx is aligned with the position of the one side end 261 d of the flow control plate 261. Therefore, as compared with the case where the position of the outlet boundary 126a is disposed independently of the position of the one end 261d, the wind is directed smoothly to the plurality of face outlets 126, and the plurality of face outlets 126 are arranged. It is possible to improve the distribution of winds evenly.
  • the rectifying mechanism 26 can be provided with a function as a wind direction guide that directs the wind toward each of the plurality of face air outlets 126 as indicated by an arrow FLa in FIG. 19.
  • this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described fifth embodiment.
  • the face outlet 126 and the defroster outlet 127 are provided to be shifted upward as compared with the fourth embodiment.
  • the present embodiment differs from the fourth embodiment, but is otherwise the same as the fourth embodiment. That is, in the present embodiment, as in the fourth embodiment, the rectifying mechanism 26 has a rectifying plate 261 that defines a plurality of rectifying passages 26a. The plurality of face outlets 126 are provided as described in the ninth embodiment, and the air conditioning case 12 has a plurality of outlet boundaries 126a as described in the ninth embodiment.
  • any one of the plurality of rectifying plates 261 is provided as a predetermined rectifying plate 261 e formed so as to extend from one side to the other side in the predetermined arrangement direction DRy.
  • the predetermined rectifying plate 261e has one side end 261d at one end of the predetermined arrangement direction DRy, and the one side end 261d is one side of the position of the fan axis CL1 in the predetermined arrangement direction DRy. It is located in
  • the positions of the outlet boundary 126a in the outlet alignment DRx are aligned with the positions of the one side end 261d of the predetermined straightening vane 261e.
  • the present embodiment is the same as the fourth embodiment.
  • the position of the outlet boundary 126a of the air conditioning case 12 in the outlet alignment direction DRx is aligned with the position of the one side end 261d. Therefore, as in the ninth embodiment, the wind can be smoothly directed to the plurality of face outlets 126 as indicated by an arrow FLa, and the wind distribution to the plurality of face outlets 126 can be improved.
  • the flow straightening mechanism 26 has a rectangular plate shape and is configured as a honeycomb porous material in which a plurality of through holes 262a are formed. It is done.
  • the plurality of face outlets 126 are provided as described in the ninth embodiment, and the air conditioning case 12 has a plurality of outlet boundaries 126a as described in the ninth embodiment.
  • the rectangular flow straightening mechanism 26 has an edge 264 extending in the air outlet alignment direction DRx on one side of the predetermined arrangement direction DRy.
  • the edge part 264 is comprised by the cylindrical part 262f of some cylindrical parts 262 being located in a line in the blower outlet alignment direction DRx.
  • the present embodiment is the same as the sixth embodiment in the points described above.
  • the through holes 262a which are within the range of the outlet width Wx of each of the face outlets 126 in the outlet alignment direction DRx
  • the numbers are equal to one another when the respective blower outlet widths Wx are compared with one another.
  • the number of the through holes 262 a which fall within the range of each outlet width Wx is approximately two.
  • blower outlet width Wx is the width which each of several face blower outlet 126 occupies in the blower outlet row direction DRx if it says in detail.
  • the outlet width Wx of each face outlet 126 is, for example, the same for any of the face outlets 126.
  • the number of the through holes 262a falling within the above-mentioned range of the outlet width Wx is not limited to an integer but may be a small number. For example, if half of the through holes 262a are within the outlet width Wx, the number of the through holes 262a is 0.5. Further, as described above, the fact that the numbers of the through holes 262a are equal to each other does not necessarily mean that the numbers completely match, but it may be that they are substantially the same.
  • the present embodiment is the same as the sixth embodiment except for the point described as different from the sixth embodiment as described above. And in this embodiment, the effect show
  • the number of the through holes 262a in the range of the outlet width Wx of each of the face outlets 126 in the outlet alignment direction DRx The outlet widths Wx are mutually equal when compared with each other. Therefore, as compared with the case where the through holes 262a included in the edge portion 264 of the flow straightening mechanism 26 are disposed regardless of the outlet width Wx, the variation of the air volume ratio of the air flowing to each face outlet 126 is suppressed. Is possible.
  • this embodiment is a modification based on the sixth embodiment, it is also possible to combine this embodiment with the seventh embodiment described above.
  • the rectifying mechanism 26 of the present embodiment is disposed in the other side portion 265 provided on the other side of the fan axial direction DRa with respect to the blower fan 201 and in the fan surrounding space 123b. And a fan surrounding portion 266.
  • the fan surrounding portion 266 is formed to extend from the other side portion 265 to one side of the fan axial direction DRa, and is integrally configured with the other side portion 265. Specifically, the plurality of through holes 262 a formed in the rectifying mechanism 26 respectively extend in the fan axial direction DRa continuously from the other side portion 265 to the fan surrounding portion 266. Accordingly, the fan surrounding portion 266 guides the air blown out from the fan air outlet 201b of the blower fan 201 to the other side portion 265 as indicated by an arrow FLf in FIG.
  • the fan surrounding portion 266 is formed so as to extend from the other side portion 265 in the fan axial direction DRa to the inside of the fan surrounding space 123b as it extends to the outer side in the fan radial direction.
  • the fan peripheral portion 266 has one end 266f on one side in the fan axial direction DRa, and the one end 266f is positioned on one side in the fan axial direction DRa toward the fan radial direction. Is formed.
  • the present embodiment is the same as the eighth embodiment except as described above. And in this embodiment, the effect show
  • the rectifying mechanism 26 includes the other side portion 265 provided on the other side in the fan axial direction DRa with respect to the blower fan 201, and the fan surrounding portion 266 arranged in the fan surrounding space 123b. have. Then, the fan surrounding portion 266 guides the air blown out from the fan air outlet 201b of the blower fan 201 to the other side portion 265 as indicated by an arrow FLf in FIG. Therefore, as compared with the case where the flow straightening mechanism 26 does not have the fan surrounding portion 266, the flowability distribution of air flowing from the blower fan 201 into the flow straightening mechanism 26 is made uniform while securing the straightening performance of the flow straightening mechanism 26 better. It is easy to
  • the fan surrounding portion 266 of the rectifying mechanism 26 has circumferential ribs 266 a.
  • the fan surrounding portion 266 may have components other than the circumferential rib 266a, but in the present embodiment, the fan surrounding portion 266 is composed of only the circumferential rib 266a.
  • the circumferential rib 266a protrudes from the other side portion 265 to one side in the fan axial direction DRa and extends in the fan circumferential direction DRc (see FIG. 22).
  • the circumferential rib 266a extends continuously over the entire circumference around the fan axis line CL1, for example, as indicated by a two-dot chain line Lc in FIG.
  • the length of the dashed-two dotted line Lc indicates the range in which the circumferential rib 266a is provided in the fan circumferential direction DRc.
  • the circumferential rib 266a is located at a position away from the peripheral case surface 123c (in other words, the fan peripheral surface 123c) provided around the fan peripheral space 123b in the fan radial direction. It is provided. In short, the circumferential rib 266a is arranged at an interval inward in the fan radial direction with respect to the peripheral case surface 123c. At the same time, the circumferential rib 266 a is provided on the outside in the radial direction of the fan with respect to the blower fan 201, and is arranged at an interval in the radial direction of the fan with respect to the blower fan 201.
  • the peripheral case surface 123c is an inner wall surface of the air conditioning case 12 and is an inner wall surface facing the fan peripheral space 123b from the outside in the fan radial direction.
  • the peripheral case surface 123c is not connected continuously from the rectifying mechanism peripheral surface 123f, and for example, a cross section orthogonal to the fan axial direction DRa is formed to form a circular shape centered on the fan axial line CL1. .
  • the circumferential rib 266a has a tip 266b on one side in the fan axial direction DRa.
  • the circumferential rib 266a is bent so as to be positioned more inward in the fan radial direction as it is closer to the tip end 266b.
  • an end 201c on one side of the fan air outlet 201b is located on one side of the tip end 266b of the circumferential rib 266a.
  • the present embodiment is the same as the twelfth embodiment except as described above. Further, in the present embodiment, the same effects as those of the twelfth embodiment can be obtained from the configuration common to the twelfth embodiment described above.
  • the circumferential rib 266a is provided at a position away from the surrounding case surface 123c of the air conditioning case 12 facing the fan surrounding space 123b. Therefore, it is possible to adjust the volume of air flowing from the blower fan 201 radially outward of the circumferential rib 266a by the circumferential rib 266a.
  • the air volume distribution of the air flowing from the blower fan 201 into the flow straightening mechanism 26 can be easily made uniform in the fan radial direction.
  • one side of the fan axial direction DRa such that the plurality of rectifying plates 261 of the rectifying mechanism 26 extend into the fan surrounding space 123b. It extends to In FIG. 26, the enlarged part of the rectifying plate 261 of the present embodiment as compared with the first embodiment is indicated by dot hatching.
  • the rectifying mechanism 26 of the present embodiment also has the other side portion 265 and the fan surrounding portion 266 as in the twelfth embodiment. That is, in the present embodiment, each of the plurality of rectifying plates 261 includes the first plate portion 261 f included in the other side portion 265 and the second plate portion 261 g included in the fan surrounding portion 266.
  • the first plate portion 261 f and the second plate portion 261 g are, for example, continuously and integrally configured without a boundary.
  • the second plate portion 261g has one end 261h on one side in the fan axial direction DRa.
  • One end 261 h of the second plate portion 261 g is formed so as to be positioned on one side of the fan axial direction DRa toward the outer side in the fan radial direction.
  • the one end 261 h of the second plate portion 261 g is also one end 266 f of the fan surrounding portion 266.
  • the present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show
  • the rectifying mechanism 26 has a plurality of rectifying plates 261 extending from the inside to the outside in the fan radial direction. Therefore, it is possible to obtain the same function as the function of the rectifying plate 261 (see FIG. 2) of the first embodiment.
  • each of the plurality of rectifying plates 261 has a first plate portion 261 f included in the other side portion 265 and a second plate portion 261 g included in the fan surrounding portion 266. . Therefore, as in the twelfth embodiment, it is easy to achieve uniform air volume distribution of air flowing from the blower fan 201 into the flow straightening mechanism 26 while securing the flow straightening ability of the flow straightening mechanism 26 favorably.
  • the rectifying mechanism 26 is disposed upstream of the bypass passages 125a and 125b and the heater core 18 in the air flow, but this is an example.
  • the rectifying mechanism 26 is disposed downstream of the bypass passages 125a and 125b and the heater core 18 in the air flow direction. The same applies to the second, fourth and fifth embodiments described above.
  • the rectifying plates 261 are provided in a plurality and connected to each other, they may not be connected to each other, and one may be provided instead of a plurality. It may only be For example, in the case where the number of the straightening vanes 261 is one, the straightening vanes 261 form two straightening passages 26 a in the portion of the in-case passage 123 where the straightening mechanism 26 is disposed.
  • the blower fan 201 is a centrifugal fan as shown in FIG. 1, for example.
  • the blower fan 201 is not limited thereto, and may be, for example, an axial fan or a mixed flow fan.
  • the face outlet 126 and the defroster outlet 127 are shifted upward as compared with FIG. 1 of the first embodiment, but this is an example is there.
  • the vertical position of the face outlet 126 and the defroster outlet 127 may be any position of FIG. 1 and FIG. 12, and is not limited to any position of FIG. 1 and FIG. . The same applies to the embodiments other than the sixth embodiment.
  • the through holes 262a of the plurality of cylindrical portions 262 have the same size, but the present invention is not limited thereto. It does not matter if through holes 262a of different sizes are included. That is, it is not necessary that all the passage cross-sectional areas of the plurality of through holes 262a have the same area. The same applies to the seventh and subsequent embodiments.
  • the plurality of through holes 262a are all hexagonal holes having the same cross-sectional shape, but this is an example.
  • the plurality of through holes 262a may include, for example, through holes 262a having a cross-sectional shape different from others, such as a circular hole. The same applies to the seventh and subsequent embodiments.
  • the blowout port alignment direction DRx coincides with the vehicle width direction DR3, so it is a direction along a straight line extending in the vehicle width direction DR3.
  • the outlet alignment direction DRx may be a direction along a curved curve. The same applies to the embodiments other than the ninth embodiment.
  • any one of the plurality of rectifying plates 261 is formed to extend from one side to the other side in the predetermined arrangement direction DRy.
  • the whole of the rectifying plate 261 may be provided as the predetermined rectifying plate 261 e.
  • the circumferential rib 266a in FIG. 25 extends continuously all around the fan axis CL1, but this is an example.
  • the circumferential rib 266a may be provided intermittently over the entire circumference of the fan axis line CL1.
  • the circumferential rib 266a may be provided only in a part around the fan axis CL1.
  • the sectional shapes of the plurality of through holes 262a are the inner arc portion 262g, the outer arc portion 262h, the one side linear portion 262i, and the other side linear portion 262j. Although it is the shape enclosed by these, this is an example.
  • the cross-sectional shapes of the plurality of through holes 262a may be trapezoidal.
  • the radial partition 267 is formed so that the plate thickness of the radial partition 267 is the same as the plate thickness of the circumferential partition 263, but Not limited to this, it can be considered that the thickness of the diameter partition 267 is different from the thickness of the peripheral partition 263. It is also conceivable that the radial partition 267 does not have a plate shape extending with a constant thickness.
  • the plurality of circumferential partition walls 263 are formed so that the plate thickness of the circumferential partition walls 263 is the same for all the circumferential partition walls 263, but this is also an example.
  • the plurality of circumferential partition walls 263 included in the rectifying mechanism 26 include the circumferential partition walls 263 having a plate thickness different from the others.
  • the circumferential partition wall 263 does not have a plate shape extending with a constant thickness.
  • the flow straightening mechanism is configured such that the air blown out from the air blowing fan is generated in the swirling flow generated by the rotation of the air blowing fan. It suppresses compared with before flowing into the rectification mechanism.
  • the heater is disposed downstream of the air flow fan with respect to the blower fan in the case internal passage, and heats the air.
  • the in-case passage includes a bypass passage for flowing air around the heater. Then, the flow straightening mechanism suppresses the swirling flow of the air flowing in the bypass passage among the blown-out air, as compared with the case where the air flowing in the bypass flow passage flows into the flow straightening mechanism. Therefore, it is possible to make the rectifying mechanism effectively exhibit the action of suppressing the swirl flow with respect to the air flowing in the bypass passage which has few factors weakening the swirl flow.
  • the rectifying mechanism is disposed upstream of the heater with respect to the heater in the passage in the case. Therefore, the air blown out from the blower fan flows into the heater after the swirling flow is suppressed by the rectifying mechanism. Therefore, it is possible to reduce pressure loss when air flows into the heater.
  • the air conditioning case is formed with a plurality of outlets for blowing air out of the air conditioning case, and the air having passed through the rectifying mechanism is distributed to each of the plurality of outlets. Flow in.
  • the plurality of air outlets are arranged in a partial range of the entire circumference around the fan axis in the circumferential direction of the fan axis.
  • the rectifying mechanism has a plurality of rectifying plates extending from the inside to the outside in the radial direction of the blower fan. Between the plurality of straightening vanes, there is formed a straightening passage in which air can be circulated from the upstream side of the air flow to the straightening mechanism in the case internal passage to the downstream side of the air flow.
  • the mutual spacing between the plurality of flow straightening plates is wider toward the outside in the radial direction.
  • the rectification mechanism suppresses the swirling flow by causing the air blown out from the blower fan to pass through the rectification passage.
  • the air that has flowed into the straightening passage from the blower fan moves radially outward while flowing toward the air flow downstream side.
  • each of the plurality of flow straightening vanes is formed to be positioned on the forward direction side in the rotation direction of the blower fan as it goes to the outer side in the radial direction. Therefore, for example, as the air including the swirling flow moves radially outward as compared with the case where the straightening vanes extend straight along the radial direction of the blower fan, the air flow direction is It is possible to gently turn the air flow downstream. Therefore, it is possible to reduce the pressure loss caused by suppressing the swirling flow.
  • the rectifying mechanism has a rectifying plate that defines a plurality of rectifying passages.
  • Each of the plurality of straightening passages is a passage in which air can flow from the upstream side of the air flow to the straightening mechanism in the in-case passage, to the downstream side of the air flow.
  • the rectification mechanism suppresses the swirling flow by causing the air blown out from the blower fan to pass through the rectification passage. Therefore, it is possible to aim at suppression of a swirling flow as a simple structure of a rectification mechanism.
  • the straightening vane has a passage wall surface facing the flow straightening passage, and the passage wall surface is formed along the axial direction of the fan axis. Therefore, it is possible to guide the air flow in the direction along the axial direction of the fan axis while suppressing the swirling flow generated by the rotation of the blower fan.
  • a filter for filtering the air blown out from the blower fan is provided as a rectifying mechanism. Therefore, it is possible to reduce the number of parts by utilizing the filter of the air conditioning unit for vehicle as a rectifying mechanism.
  • the tenth aspect there are formed a plurality of passages through which the air blown out from the blower fan passes, and a cooling heat exchanger for cooling the air passing through the plurality of passages is provided as the rectification mechanism. Therefore, it is possible to reduce the number of parts by utilizing the heat exchanger for cooling which the air conditioning unit for a vehicle has as a rectification mechanism.
  • the blower fan is a centrifugal fan.
  • the rectifying mechanism has a plurality of cylindrical portions in which the through holes extending in the axial direction are formed, and the plurality of cylindrical portions are arranged such that the respective through holes are parallel to each other.
  • straightening mechanism is comprised because the mutually adjacent cylindrical parts among several cylindrical parts become integral structure mutually. The rectification mechanism suppresses the swirling flow by causing the blown air to pass through the through hole. Therefore, it is possible to shorten the distance necessary for the rectification of the air flow while well securing the rectification property of suppressing and rectifying the swirling flow. Therefore, it is possible to reduce the thickness of the rectifying mechanism in the air flow direction.
  • the through hole is a hole whose cross section orthogonal to the axial direction forms a hexagonal shape or a circular shape. Therefore, it is easy to arrange
  • the through holes are holes whose cross sections orthogonal to the axial direction have a rectangular shape, and are arranged radially in the radial direction of the blower fan. Therefore, when the shape of the arrangement portion of the flow straightening mechanism in the air conditioning case is made cylindrical according to the outer shape of the blower fan, the passage cross sectional areas of the plurality of through holes can be easily made uniform and the wind speed of the air passing through the flow straightening mechanism It is possible to suppress the variation of the distribution and adjust the wind speed distribution.
  • the air conditioning case has a flow control mechanism peripheral surface facing from the outer side in the radial direction of the blower fan in a portion of the passage in the case where the flow control mechanism is disposed.
  • the rectifying mechanism peripheral surface is formed such that a cross section orthogonal to the axial direction has a circular shape centered on the fan axis and surrounds the rectifying mechanism.
  • a plurality of through holes extending in the axial direction are formed in the rectifying mechanism, and the plurality of through holes are arranged along the peripheral surface of the rectifying mechanism around the fan axis.
  • the flow control mechanism suppresses the swirling flow by causing the blown air to pass through the plurality of through holes.
  • the swirling flow is suppressed by the air flow constituting the swirling flow being along the wall of each hole facing the through hole of the flow straightening mechanism.
  • the hole wall surface of each through hole for suppressing the turning flow is relative to the turning direction of the turning flow (specifically, the circumferential direction of the blower fan) It becomes easy to form each through-hole so that the wall surface direction which makes it similarly may be made the same in any through-hole. Therefore, it is easy to equalize the ventilation resistance of the rectifying mechanism throughout the rectifying mechanism while maintaining the rectifying property of the rectifying mechanism. And if the ventilation resistance can be made uniform, the disturbance of the wind flow can be suppressed, so that the pressure loss of the wind flow can be reduced.
  • the plurality of through holes are formed such that the cross-sectional areas of the through holes are the same. Therefore, it is possible to more sufficiently equalize the ventilation resistance in the entire rectification mechanism as compared with the fifteenth aspect.
  • the flow straightening mechanism has a plurality of partition plates that partition between adjacent ones of the plurality of through holes. And the some partition plate is formed so that the plate
  • the air conditioning case is formed with a plurality of air outlets disposed at a position shifted from the fan axis to one side in one direction orthogonal to the fan axis and blowing out the air to the outside of the air conditioning case There is.
  • the flow straightening mechanism has an edge extending in the air outlet direction on one side of the one direction, and in the edge, a part of the plurality of cylindrical portions is in the air outlet direction It consists of being lined up. Further, at the edge, the number of the through holes that fall within the range of the outlet width occupied by each of the plurality of outlets in the outlet array direction is equal to each other when the respective outlet widths are compared with each other. Therefore, as compared with the case where the through holes included in the edge portion of the flow straightening mechanism are disposed independently of the width of the air outlet, it is possible to suppress the variation of the air volume ratio of the air flowing to each air outlet.
  • the air conditioning case is formed with a plurality of outlets disposed at a position shifted from the fan axis to one side in one direction orthogonal to the fan axis and blowing out air to the outside of the air conditioning case There is. Further, any one of the outer end portions of the plurality of flow straightening plates is provided as one end portion located on one side of the position of the fan axis in the one direction. Further, the position of the outlet boundary in the outlet alignment direction is aligned with the position of the one side end. Therefore, compared with the case where the position of the outlet boundary is arranged independently of the position of the one side end, the winds are directed more smoothly to the plurality of outlets and the wind is sent evenly to the plurality of outlets. It is possible to improve windiness.
  • the air conditioning case is provided with a plurality of outlets for blowing air out of the air conditioning case, disposed at a position shifted from the fan axis to one side in one direction orthogonal to the fan axis. ing.
  • at least one of the plurality of flow straightening plates is provided as a predetermined flow straightening plate formed to extend from one side to the other side of the one direction.
  • the predetermined straightening vane has one side end at one end of the one direction, and the one side end is positioned on one side of the position of the fan axis in the one direction.
  • the position of the outlet boundary in the outlet alignment direction is aligned with the position of the one side end. Therefore, similarly to the nineteenth aspect, it is possible to smoothly direct the wind to the plurality of outlets, and to improve the wind distribution to the plurality of outlets.
  • the air blowing fan is a centrifugal fan which sucks in air from one side in the axial direction by the rotation of the air blowing fan and blows out the sucked air to the outside in the radial direction of the air blowing fan.
  • the rectifying mechanism has the other side portion provided on the other side in the axial direction with respect to the blower fan, and the fan surrounding portion disposed in the fan surrounding space and guiding the air to the other side portion. Therefore, as compared with the case where the flow straightening mechanism does not have the fan surrounding portion, it is easy to achieve uniform air volume distribution of the air flowing from the blower fan into the flow straightening mechanism while securing the flow straightening of the flow straightening mechanism well.
  • the fan surrounding portion of the flow straightening mechanism has a circumferential rib that protrudes from the other side portion to one side in the axial direction and extends in the circumferential direction of the fan axis.
  • the air conditioning case has a peripheral case surface facing the fan peripheral space, and the circumferential rib is provided at a position away from the peripheral case surface. Therefore, it is possible to adjust the air volume of the air which flows to the radial outside of a circumferential rib from a blower fan by a circumferential rib.
  • the rectifying mechanism has a plurality of rectifying plates extending from the inside to the outside in the radial direction of the blower fan.
  • Each of the plurality of rectifier plates has a first plate portion included in the other side portion of the rectifying mechanism, and a second plate portion included in the fan peripheral portion of the rectifying mechanism. Therefore, the same function as the function of the rectifying plate of the fifth aspect can be obtained, and similarly to the twenty-first aspect, the air flows from the blower fan into the rectifying mechanism while favorably securing the rectifying property of the rectifying mechanism. Makes it easy to make the distribution of air volume uniform.

Abstract

This vehicle air-conditioning unit comprises: an air-conditioning case (12) wherein is formed an in-case passage (123) through which air flows; a blower (20); and an airflow rectifier (16, 26, 28). The blower has a blower fan (201) which rotates about a fan axis (CL1) and is disposed in the in-case passage, and air pulled from one side in the axial direction (DRa) of the fan axis is pushed by means of the rotation of the blower fan. The airflow rectifier is disposed in the in-case passage downstream of the airflow with respect to the blower fan, and air pushed by the blower fan passes through the airflow rectifier. The blower fan is disposed in such orientation that the other side along the fan axis, which is opposite of said one side in the axial direction, extends toward the downstream end of the airflow in the in-case passage. The airflow rectifier mitigates swirling flow generated by the rotation of the blower fan in the air pushed by the blower fan, in contrast to the state of the pushed air prior to flowing into the airflow rectifier.

Description

車両用空調ユニットVehicle air conditioning unit 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年7月25日に出願された日本特許出願番号2017-143856号と、2018年2月7日に出願された日本特許出願番号2018-20336号と、2018年4月17日に出願された日本特許出願番号2018-79112号とに基づくもので、ここにその記載内容が参照により組み入れられる。 The present application is based on Japanese Patent Application No. 201-143856 filed on July 25, 2017, Japanese Patent Application No. 2018-20336 filed on February 7, 2018, and April 17, 2018. No. 2018-79112 filed in the United States of America, the contents of which are incorporated herein by reference.
 本開示は、車両用空調ユニットに関するものである。 The present disclosure relates to a vehicle air conditioning unit.
 この種の車両用空調ユニットとして、例えば特許文献1に記載された車両用空調ユニットが従来から知られている。この特許文献1に記載された車両用空調ユニットは、空気が流れるケース内通路が形成された空調ケースと、車両用空調ユニットから車室内へ向けて吹き出される空気を送風する送風機を備えている。その送風機は遠心式の送風機であるので、ファン軸線まわりに回転しそのファン軸線の軸方向の一方側から吸い込んだ空気を径方向外側へ吹き出す遠心ファン(具体的には、シロッコファン)を有している。その遠心ファンは、ケース内通路のうちの空気流れ上流側に配置されている。そして、ケース内通路は、遠心ファンよりも空気流れ下流側では、遠心ファンの径方向の一方側へと延びている。すなわち、遠心ファンのファン軸線が、遠心ファンに対する空気流れ下流側での空気流れ方向に直交する向きになるように、その遠心ファンは配置されている。 As a vehicle air conditioning unit of this type, for example, a vehicle air conditioning unit described in Patent Document 1 is conventionally known. The vehicle air conditioning unit described in the patent document 1 includes an air conditioning case in which an in-case passage through which air flows is formed, and a blower for blowing air blown out from the vehicle air conditioning unit toward the vehicle interior. . Since the blower is a centrifugal blower, it has a centrifugal fan (specifically, a sirocco fan) that rotates around the fan axis and blows out air drawn radially inward from one side of the fan axis in the axial direction. ing. The centrifugal fan is disposed upstream of the air flow in the case internal passage. The passage in the case extends to one side in the radial direction of the centrifugal fan on the air flow downstream side of the centrifugal fan. That is, the centrifugal fan is arranged such that the fan axis of the centrifugal fan is orthogonal to the air flow direction on the downstream side of the air flow with respect to the centrifugal fan.
特開2015-182566号公報JP, 2015-182566, A
 上述のように、特許文献1の車両用空調ユニットでは、ファン軸線が遠心ファンに対する空気流れ下流側での空気流れ方向に直交する向きになるように、遠心ファンは配置されている。しかし、種々の制約などから、車両用空調ユニットによっては、送風機の送風ファンの向きをそのようにすることができないことも考えられる。 As described above, in the vehicle air conditioning unit of Patent Document 1, the centrifugal fan is disposed such that the fan axis is orthogonal to the air flow direction on the downstream side of the air flow with respect to the centrifugal fan. However, due to various limitations, it may be considered that the direction of the blower fan of the blower can not be made that way depending on the vehicle air conditioning unit.
 従って、例えば、ファン軸線の軸方向の一方側(具体的には、空気吸込み側)とは反対側であるファン軸線の他方側がケース内通路の空気流れ下流側へ延びる向きに、送風機の送風ファンが配置されることも考えられる。そのように送風ファンが配置された場合、送風ファンから吹き出された空気は、送風ファンの回転によって生じた旋回流を有したまま、送風ファンの空気流れ下流側へと流れる。 Therefore, for example, the blower fan of the blower in a direction in which the other side of the fan axis that is opposite to one side (specifically, the air intake side) of the fan axis in the axial direction extends downstream of the air flow in the case inner passage. It is also conceivable that the When the blower fan is arranged as such, the air blown out from the blower fan flows to the downstream side of the air flow of the blower fan while having the swirling flow generated by the rotation of the blower fan.
 ここで、車両用空調ユニットでは、空気が吹き出される際には一般的に、複数の吹出口が同時に開放されている。例えば、車両用空調ユニットの空調ケースにはフェイス吹出口が複数形成されており、フェイスモード等においては、その複数のフェイス吹出口は同時に開放されており空気を吹き出すようになっている。 Here, in the air conditioning unit for vehicles, when air is blown out, generally, a plurality of air outlets are simultaneously opened. For example, a plurality of face outlets are formed in the air conditioning case of the air conditioning unit for a vehicle, and in the face mode or the like, the plurality of face outlets are simultaneously opened to blow out air.
 このように同時に開放された複数の吹出口へ上記の旋回流を有したままの空気が到達し車室内へ吹き出されるとすると、その旋回流に起因して、複数の吹出口から吹き出される風量に偏りが生じることがある。そうなると、複数の吹出口の相互間で風量割合が崩れ、車室内の温度にも偏りが生じる可能性がある。すなわち、車両用空調ユニットの配風性および温度コントロール性の悪化を招く可能性がある。 If the air with the swirling flow reaches the plurality of air outlets which are simultaneously opened in this manner and is blown out into the vehicle compartment, the air is blown out from the plurality of air outlets due to the swirling flow. Airflow may be uneven. In such a case, the air volume ratio may collapse between the plurality of air outlets, and the temperature in the passenger compartment may be biased. That is, the wind distribution and temperature controllability of the vehicle air conditioning unit may be deteriorated.
 また、複数の吹出口の相互間における上記旋回流に起因した風量の偏りを抑えるように複数の吹出口を配置することも可能ではあるが、そのように複数の吹出口を配置しなければならないとすれば、吹出口の配置が大幅に制約されることになり好ましくない。発明者らの詳細な検討の結果、以上のようなことが見出された。 In addition, although it is possible to arrange a plurality of outlets so as to suppress the deviation of the air volume caused by the swirling flow among the plurality of outlets, it is necessary to arrange a plurality of outlets as such. If so, the arrangement of the air outlet would be greatly restricted, which is not preferable. As a result of the inventors' detailed studies, the above was found.
 本開示は上記点に鑑みて、送風ファンの回転による旋回流を原因とした吹出し風量の偏り回避のために吹出口の配置を過剰に制限することなく、複数の吹出口を配置することが可能な車両用空調ユニットを提供することを目的とする。 In view of the above-described point, the present disclosure can arrange a plurality of air outlets without excessively restricting the arrangement of the air outlets in order to avoid deviation of the blowing air volume caused by the swirling flow due to the rotation of the air blowing fan. It is an object of the present invention to provide a vehicle air conditioning unit.
 上記目的を達成するため、本開示の1つの観点によれば、車両用空調ユニットは、
 空気が流れるケース内通路が形成された空調ケースと、
 ファン軸線まわりに回転しケース内通路に配置された送風ファンを有し、その送風ファンの回転によりファン軸線の軸方向の一方側から吸い込んだ空気を吹き出す送風機と、
 ケース内通路のうち送風ファンに対し空気流れ下流側に配置され、その送風ファンから吹き出された空気が通過する整流機構とを備え、
 送風ファンは、軸方向の上記一方側とは反対側であるファン軸線の他方側がケース内通路の空気流れ下流側へ延びる向きに配置され、
 整流機構は、送風ファンから吹き出された空気に送風ファンの回転によって生じた旋回流を、その吹き出された空気が整流機構に流入する前に比して抑制する。
In order to achieve the above object, according to one aspect of the present disclosure, a vehicle air conditioning unit includes:
An air conditioning case in which a passage in the case through which air flows is formed,
A blower having a blower fan rotated around the fan axis and disposed in the passage in the case, and rotating the blower fan to blow out air drawn in from one side in the axial direction of the fan axis;
And a rectifying mechanism disposed downstream of the air flow fan with respect to the air flow fan in the passage in the case and through which the air blown out from the air flow fan passes.
The blower fan is disposed in such a direction that the other side of the fan axis line opposite to the one side in the axial direction extends to the air flow downstream side of the passage in the case,
The rectification mechanism suppresses the swirling flow generated by the rotation of the blower fan in the air blown out from the blower fan as compared to the air blown out before it flows into the rectification mechanism.
 このようにすれば、整流機構に対する空気流れ下流側では上記旋回流が抑制されるので、吹出口の配置を、その旋回流を考慮して過剰に制限する必要がなくなる。すなわち、送風ファンの回転による旋回流を原因とした吹出し風量の偏り回避のために吹出口の配置を過剰に制限することなく、複数の吹出口を配置することが可能になる。 In this case, the swirling flow is suppressed on the downstream side of the air flow with respect to the flow straightening mechanism, so that it is not necessary to excessively restrict the arrangement of the air outlet in consideration of the swirling flow. That is, it becomes possible to arrange a plurality of air outlets without excessively restricting the arrangement of the air outlets in order to avoid the deviation of the blowing air volume caused by the swirling flow due to the rotation of the air blowing fan.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 The reference numerals in parentheses attached to each component, etc., shows an example of a relationship of the specific component such as described in the following embodiments and their components, and the like.
第1実施形態において、車両用空調ユニットの概略構成を示した模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a schematic configuration of a vehicle air conditioning unit in the first embodiment. 図1におけるII-II断面を示した断面図であって、第1実施形態の整流機構の概略形状を示した図である。FIG. 2 is a cross-sectional view showing a II-II cross section in FIG. 1 and is a view showing a schematic shape of a rectifying mechanism of the first embodiment. 第1実施形態において、送風ファンを二点鎖線で示すと共に整流機構を抜粋して示した斜視図である。In 1st Embodiment, while showing a ventilation fan with a dashed-two dotted line, it is the perspective view which extracted and showed the rectification mechanism. 第1実施形態の整流機構が設けられていない比較例を示した図であって、図2に相当する断面図である。It is the figure which showed the comparative example in which the rectification mechanism of 1st Embodiment is not provided, Comprising: It is sectional drawing corresponded in FIG. 第2実施形態において、車両用空調ユニットの概略構成を示した模式的な断面図であって、図1に相当する図である。In 2nd Embodiment, it is a schematic cross section which showed schematic structure of the air conditioning unit for vehicles, Comprising: It is a figure corresponded in FIG. 第3実施形態において、車両用空調ユニットの概略構成を示した模式的な断面図であって、図1に相当する図である。In 3rd Embodiment, it is a schematic cross section which showed schematic structure of the air conditioning unit for vehicles, Comprising: It is a figure corresponded in FIG. 第3実施形態において、車両用空調ユニットが有する蒸発器の概略形状を単体で示した斜視図である。In 3rd Embodiment, it is the perspective view which showed the general | schematic shape of the evaporator which the air-conditioning unit for vehicles has by itself. 図7におけるVIII部分を車両後方側から見た拡大図である。It is the enlarged view which looked at the VIII part in FIG. 7 from the vehicle rear side. 第4実施形態の整流機構の概略形状を示した図であって、図2に相当する断面図である。It is the figure which showed the general | schematic shape of the rectification | straightening mechanism of 4th Embodiment, Comprising: It is sectional drawing corresponded in FIG. 第4実施形態において、送風ファンを二点鎖線で示すと共に整流機構を抜粋して示した斜視図であって、図3に相当する図である。In 4th Embodiment, it is the perspective view which extracted and showed the ventilation mechanism while showing a ventilation fan with a dashed-two dotted line, Comprising: It is a figure corresponded in FIG. 第5実施形態において、車両用空調ユニットの概略構成を示した模式的な断面図であって、図1に相当する図である。In 5th Embodiment, it is a schematic cross section which showed schematic structure of the air conditioning unit for vehicles, Comprising: It is a figure corresponded in FIG. 第6実施形態において、車両用空調ユニットの概略構成を示した模式的な断面図であって、図1に相当する断面図である。In 6th Embodiment, it is a schematic sectional drawing which showed schematic structure of the air-conditioning unit for vehicles, Comprising: It is sectional drawing corresponded in FIG. 第6実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図2に相当する断面図である。FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the sixth embodiment and showing a XIII-XIII cross section in FIG. 12, which is a cross-sectional view corresponding to FIG. 2. 第6実施形態において、送風ファンを二点鎖線で示すと共に整流機構を抜粋して示した斜視図である。In 6th Embodiment, while showing a ventilation fan with a dashed-two dotted line, it is the perspective view which extracted and showed the rectification mechanism. 第7実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図13に相当する断面図である。FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the seventh embodiment and showing a XIII-XIII cross section in FIG. 12, which is a cross-sectional view corresponding to FIG. 13. 第7実施形態において、送風ファンを二点鎖線で示すと共に整流機構を抜粋して示した斜視図であって、図14に相当する図である。FIG. 15 is a perspective view showing a blower fan by a two-dot chain line and extracting a flow straightening mechanism in the seventh embodiment, corresponding to FIG. 14; 第8実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図13に相当する断面図である。FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the eighth embodiment and showing a XIII-XIII cross section in FIG. 12, which is a cross-sectional view corresponding to FIG. 13. 第8実施形態において、送風ファンを二点鎖線で示すと共に整流機構を抜粋して示した斜視図であって、図14に相当する図である。FIG. 15 is a perspective view showing a blower fan by a two-dot chain line and extracting a flow straightening mechanism in the eighth embodiment, corresponding to FIG. 14; 第9実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図2に相当する断面図である。FIG. 13 is a cross-sectional view showing a schematic shape of the flow straightening mechanism of the ninth embodiment, and showing a cross section taken along line XIII-XIII in FIG. 12, corresponding to FIG. 2; 第10実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図9に相当する断面図である。FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the tenth embodiment and showing a XIII-XIII cross section in FIG. 12, and is a cross-sectional view corresponding to FIG. 第11実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図13に相当する断面図である。FIG. 13 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the eleventh embodiment, and showing a cross section taken along line XIII-XIII in FIG. 12, corresponding to FIG. 第12実施形態の整流機構の概略形状を示し、図12におけるXIII-XIII断面を示した断面図であって、図17に相当する断面図である。FIG. 18 is a cross-sectional view showing a schematic shape of the rectifying mechanism of the twelfth embodiment, and showing a cross section taken along line XIII-XIII in FIG. 12, corresponding to FIG. 第12実施形態において、整流機構を抜粋して示した斜視図であって、図18に相当する図である。FIG. 19 is a perspective view selectively showing a rectifying mechanism in the twelfth embodiment, which corresponds to FIG. 18; 図22のXXIV-XXIV断面を示した断面図である。FIG. 23 is a cross sectional view showing a cross section along line XXIV of FIG. 22. 第13実施形態において整流機構の概略形状を示した断面図であって、図24に相当する図である。FIG. 25 is a cross sectional view showing a schematic shape of a rectifying mechanism in a thirteenth embodiment, which corresponds to FIG. 24. FIG. 第14実施形態において整流機構の概略形状を示した断面図であって、図24に相当する図である。FIG. 25 is a cross sectional view showing a schematic shape of a rectifying mechanism in a fourteenth embodiment, corresponding to FIG. 24.
 以下、図面を参照しながら、各実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, each embodiment will be described with reference to the drawings. In the following embodiments, parts identical or equivalent to each other are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1に示すように、本実施形態の車両用空調ユニット10は、空調ケース12、蒸発器16、ヒータコア18、送風機20、複数のドア21、22、23、24a、24b、25、および整流機構26を備えている。この車両用空調ユニット10は、例えば、車室内の最前部に設けられたインストルメントパネルの内側に配置されている。なお、図1および図2の各矢印DR1、DR2、DR3は、車両用空調ユニット10が搭載される車両の向きを示す。すなわち、図1の矢印DR1は車両前後方向DR1を示し、矢印DR2は車両上下方向DR2を示し、図2の矢印DR3は車両左右方向DR3すなわち車両幅方向DR3を示している。これらの方向DR1、DR2、DR3は互いに交差する方向、厳密に言えば互いに直交する方向である。
First Embodiment
As shown in FIG. 1, the vehicle air conditioning unit 10 according to this embodiment includes an air conditioning case 12, an evaporator 16, a heater core 18, a blower 20, a plurality of doors 21, 22, 23, 24 a, 24 b, 25, and a rectifying mechanism. It has 26. The vehicle air conditioning unit 10 is disposed, for example, inside an instrument panel provided at the foremost part in the vehicle compartment. Arrows DR1, DR2 and DR3 in FIG. 1 and FIG. 2 indicate the direction of the vehicle on which the vehicle air conditioning unit 10 is mounted. That is, the arrow DR1 in FIG. 1 indicates the vehicle longitudinal direction DR1, the arrow DR2 indicates the vehicle vertical direction DR2, and the arrow DR3 in FIG. 2 indicates the vehicle lateral direction DR3, that is, the vehicle width direction DR3. These directions DR1, DR2, and DR3 are directions intersecting each other, strictly speaking, directions orthogonal to each other.
 空調ケース12は、車両用空調ユニット10の外殻を成す樹脂製の部材である。空調ケース12には、外気導入口121と、内気導入口122と、空調ケース12内から空気を吹き出す吹出口126、127、128とが形成されている。また、空調ケース12の内部には、外気導入口121と内気導入口122との一方または両方から各吹出口126、127、128へ空気が流れるケース内通路123が形成されている。このケース内通路123は車両前後方向DR1へ延びるように形成されている。 The air conditioning case 12 is a resin member that forms the outer shell of the vehicle air conditioning unit 10. The air conditioning case 12 is formed with an outside air inlet 121, an inside air inlet 122, and outlets 126, 127, 128 for blowing out air from the inside of the air conditioning case 12. Further, an in-case passage 123 through which air flows from one or both of the outside air inlet 121 and the inside air inlet 122 to the outlets 126, 127, 128 is formed inside the air conditioning case 12. The in-case passage 123 is formed to extend in the vehicle longitudinal direction DR1.
 外気導入口121は、車室外の空気である外気をケース内通路123へ導入するための導入口である。内気導入口122は、車室内の空気である内気をケース内通路123へ導入するための導入口である。空調ケース12内へは、送風機20によって、外気または内気が導入される。 The outside air introduction port 121 is an introduction port for introducing outside air, which is air outside the vehicle compartment, into the passage 123 in the case. The inside air introduction port 122 is an introduction port for introducing inside air, which is air in the vehicle compartment, into the passage 123 in the case. Outside air or inside air is introduced into the air conditioning case 12 by the blower 20.
 外気導入口121および内気導入口122は、内外気切替ドア25によって開閉される。そして、その外気導入口121と内気導入口122との一方または両方から導入された空気は蒸発器16へ流入する。 The outside air introduction port 121 and the inside air introduction port 122 are opened and closed by the inside / outside air switching door 25. Then, the air introduced from one or both of the outside air inlet 121 and the inside air inlet 122 flows into the evaporator 16.
 蒸発器16は、その蒸発器16を通過する空気を冷却する冷却用熱交換器である。要するに、蒸発器16は冷却器である。 The evaporator 16 is a cooling heat exchanger that cools the air passing through the evaporator 16. In short, the evaporator 16 is a cooler.
 蒸発器16は、空調ケース12内に収容されている。すなわち、蒸発器16は、ケース内通路123に配置されており、ケース内通路123に導入された外気または内気が流入するように配置されている。蒸発器16は、不図示のコンプレッサ、コンデンサ、および膨張弁とともに、冷媒を循環させる周知の冷凍サイクル装置を構成している。蒸発器16は、蒸発器16を通過する空気と冷媒とを熱交換させ、その熱交換により冷媒を蒸発させると共に空気を冷却する。 The evaporator 16 is housed in the air conditioning case 12. That is, the evaporator 16 is disposed in the in-case passage 123, and is disposed so that the outside air or the inside air introduced into the in-case passage 123 flows in. The evaporator 16, together with a compressor, a condenser, and an expansion valve (not shown), constitutes a known refrigeration cycle apparatus for circulating a refrigerant. The evaporator 16 exchanges heat between the air passing through the evaporator 16 and the refrigerant, and the heat exchange evaporates the refrigerant and cools the air.
 送風機20は、ファン軸線CL1まわりに回転しケース内通路123に配置された送風ファン201と、その送風ファン201を回転駆動する不図示のファンモータとを有している。その送風ファン201は本実施形態では遠心ファンである。遠心送風機である送風機20は、送風ファン201の回転によりファン軸線CL1の軸方向DRaの一方側から空気を吸い込み、その吸い込んだ空気を送風ファン201の径方向外側へ吹き出す。その径方向外側へ吹き出された空気は、矢印FLfのように、ケース内通路123の空気流れ下流側(例えば図1では車両後方側)へと空調ケース12によって導かれる。 The blower 20 has a blower fan 201 that rotates around a fan axis CL1 and is disposed in the in-case passage 123, and a fan motor (not shown) that rotationally drives the blower fan 201. The blower fan 201 is a centrifugal fan in the present embodiment. The blower 20, which is a centrifugal blower, sucks air from one side of the axial direction DRa of the fan axis line CL1 by the rotation of the blower fan 201, and blows the sucked air outward in the radial direction of the blower fan 201. The air blown out radially outward is guided by the air conditioning case 12 to the air flow downstream side of the in-case passage 123 (for example, the vehicle rear side in FIG. 1) as indicated by an arrow FLf.
 詳細に言うと、遠心ファンである送風ファン201は、ファン軸線CL1の軸方向DRaの一方側に設けられ空気を吸い込むファン空気入口201aと、送風ファン201の外周部分に設けられ空気が吹き出るファン空気出口201bとを有している。そのファン空気出口201bは送風ファン201の外周部分の全周にわたって形成されている。そして、送風ファン201は、その送風ファン201の回転により、軸方向DRaの一方側からファン空気入口201aを介して空気を吸い込む。それと共に、送風ファン201は、その吸い込んだ空気をファン空気出口201bから送風ファン201の径方向外側へ吹き出す。 More specifically, the blower fan 201, which is a centrifugal fan, is provided on one side of the axial direction DRa of the fan axis line CL1 and sucks in the air; a fan air inlet 201a; And an outlet 201b. The fan air outlet 201 b is formed over the entire circumference of the outer peripheral portion of the blower fan 201. Then, the blower fan 201 sucks air from one side of the axial direction DRa through the fan air inlet 201 a by the rotation of the blower fan 201. At the same time, the blower fan 201 blows the sucked air from the fan air outlet 201 b radially outward of the blower fan 201.
 そのため、空調ケース12には、送風ファン201の径方向外側にてその送風ファン201を取り囲み且つ送風ファン201から空気が流入するファン周囲空間123bが、ケース内通路123の一部として形成されている。そして、空調ケース12は、送風ファン201からファン周囲空間123bへ流入した空気を軸方向DRaの一方側とは反対側である他方側へ導くように構成されている。例えば、ファン周囲空間123bに対する軸方向DRaの一方側に配置された不図示の導風壁が空調ケース12内に設けられている。そして、空調ケース12は、ファン周囲空間123bの空気が軸方向DRaの一方側へ流れることをその導風壁によって阻止しつつ他方側へ流れるように案内する。 Therefore, in the air conditioning case 12, a fan surrounding space 123 b surrounding the air blowing fan 201 outside the air blowing fan 201 in the radial direction and into which the air flows from the air blowing fan 201 is formed as a part of the in-case passage 123. . The air conditioning case 12 is configured to guide the air flowing from the blower fan 201 into the fan surrounding space 123b to the other side opposite to one side of the axial direction DRa. For example, a wind guiding wall (not shown) disposed on one side of the axial direction DRa with respect to the fan surrounding space 123 b is provided in the air conditioning case 12. Then, the air conditioning case 12 guides the air in the fan surrounding space 123b to flow to the other side while blocking the flow to one side of the axial direction DRa by the air guide wall.
 これにより、送風ファン201からその径方向外側へ吹き出された空気は、矢印FLfのように、ファン周囲空間123bへ入り、そのファン周囲空間123bから送風ファン201に対する軸方向DRaの他方側へと空調ケース12によって導かれる。 Thus, the air blown out from the blower fan 201 radially outward enters the fan surrounding space 123b as indicated by an arrow FLf, and the air from the fan surrounding space 123b to the other side of the axial direction DRa with respect to the blower fan 201 is conditioned. It is guided by the case 12.
 なお、ファン軸線CL1の軸方向DRaは本実施形態では車両前後方向DR1に一致している。また、ファン軸線CL1の軸方向DRaをファン軸方向DRaとも呼ぶものとする。また、送風ファン201の径方向は別言すればファン軸線CL1の径方向である。そして、そのファン軸線CL1の径方向をファン径方向とも呼ぶものとする。 In the present embodiment, the axial direction DRa of the fan axis line CL1 coincides with the vehicle longitudinal direction DR1. Further, the axial direction DRa of the fan axial line CL1 is also referred to as a fan axial direction DRa. Further, the radial direction of the blower fan 201 is, in other words, the radial direction of the fan axis line CL1. The radial direction of the fan axis line CL1 is also referred to as a fan radial direction.
 送風機20は、送風ファン201が蒸発器16に対して空気流れ下流側に配置された所謂吸込式レイアウトとなっている。送風機20は、送風ファン201の空気吸込み側であるファン軸方向DRaの一方側が蒸発器16の空気流出面16bと対向するように配置されている。従って、送風ファン201は、ファン軸方向DRaの一方側とは反対側であるファン軸線CL1の他方側がケース内通路123の空気流れ下流側へ延びる向きに配置されている。言い換えれば、送風ファン201は、ファン軸線CL1の他方側がケース内通路123の空気流れ下流側(具体的には車両後方側)へ延びる向きを向くように配置されている。 The blower 20 has a so-called suction layout in which a blower fan 201 is disposed downstream of the evaporator 16 in the air flow. The blower 20 is disposed such that one side of the fan axial direction DRa, which is the air suction side of the blower fan 201, faces the air outflow surface 16b of the evaporator 16. Accordingly, the blower fan 201 is disposed in such a direction that the other side of the fan axial line CL1 opposite to one side of the fan axial direction DRa extends to the air flow downstream side of the case internal passage 123. In other words, the blower fan 201 is arranged such that the other side of the fan axis line CL1 is directed to extend toward the air flow downstream side of the in-case passage 123 (specifically, the vehicle rear side).
 詳細には、送風機20は、ファン軸線CL1が蒸発器16の空気流出面16bに対して略直交するように配置されている。そのため、ケース内通路123のうち送風ファン201の空気流れ下流側の部位であるファン下流部位123aが延伸する向き(具体的には車両後方側)へとファン軸線CL1の他方側が延びるように、送風ファン201は配置されている。すなわち、送風ファン201から吹き出された気流は、ケース内通路123においてファン軸方向DRaの他方側へ進む。 In detail, the blower 20 is disposed such that the fan axis CL1 is substantially orthogonal to the air outflow surface 16b of the evaporator 16. Therefore, the other side of the fan axis line CL1 extends in the direction (specifically, the vehicle rear side) in which the fan downstream portion 123a of the in-case passage 123, which is the portion of the air flow downstream of the air blowing fan 201 extends. The fan 201 is arranged. That is, the air flow blown out from the blower fan 201 proceeds to the other side in the fan axial direction DRa in the case internal passage 123.
 ヒータコア18は、ケース内通路123のうち送風ファン201に対し空気流れ下流側に配置されている。ヒータコア18は、そのケース内通路123のうちで、車両上下方向DR2の中央部に配置されている。ヒータコア18は、ケース内通路123を流れる空気のうちヒータコア18を通過する空気を加熱する加熱器である。 The heater core 18 is disposed downstream of the blower fan 201 in the in-case passage 123 on the air flow downstream side. The heater core 18 is disposed at a central portion in the vehicle vertical direction DR2 of the in-case passage 123. The heater core 18 is a heater that heats the air passing through the heater core 18 among the air flowing through the in-case passage 123.
 空調ケース12内において、ヒータコア18の上側には、上側バイパス通路125aが形成され、ヒータコア18の下側には、下側バイパス通路125bが形成されている。この上側バイパス通路125aと下側バイパス通路125bは何れもケース内通路123に含まれ、ヒータコア18に対して並列に空気を流す。すなわち、上側バイパス通路125aと下側バイパス通路125bは何れも、ヒータコア18を迂回して空気を流す迂回通路である。言い換えれば、その上側バイパス通路125aと下側バイパス通路125bは何れも、ヒータコア18が設けられていない非加熱通路である。 In the air conditioning case 12, an upper bypass passage 125 a is formed on the upper side of the heater core 18, and a lower bypass passage 125 b is formed on the lower side of the heater core 18. The upper bypass passage 125 a and the lower bypass passage 125 b are both included in the case inner passage 123, and flow air in parallel to the heater core 18. That is, both the upper bypass passage 125 a and the lower bypass passage 125 b are bypass passages that allow air to bypass the heater core 18. In other words, both the upper bypass passage 125 a and the lower bypass passage 125 b are non-heating passages where the heater core 18 is not provided.
 ケース内通路123においてヒータコア18に対する空気流れ上流側には、第1エアミックスドア24aと第2エアミックスドア24bとが設けられている。この第1エアミックスドア24aと第2エアミックスドア24bは、整流機構26に対して空気流れ下流側に設けられている。 A first air mix door 24 a and a second air mix door 24 b are provided on the air flow upstream side of the heater core 18 in the case inner passage 123. The first air mix door 24 a and the second air mix door 24 b are provided on the downstream side of the air flow with respect to the flow straightening mechanism 26.
 ファン軸方向DRaの位置で言えば、そのエアミックスドア24a、24bは整流機構26に対してファン軸方向DRaの他方側に設けられている。そして、ヒータコア18およびバイパス通路125a、125bは、エアミックスドア24a、24bに対してファン軸方向DRaの他方側に設けられている。 The air mixing doors 24 a and 24 b are provided on the other side of the straightening mechanism 26 in the fan axial direction DRa in terms of the position of the fan axial direction DRa. The heater core 18 and the bypass passages 125a and 125b are provided on the other side in the fan axial direction DRa with respect to the air mix doors 24a and 24b.
 第1エアミックスドア24aは、上側バイパス通路125aに配設されており、その上側バイパス通路125aを開閉する。第1エアミックスドア24aはスライド式のドア機構であり、不図示の電動アクチュエータによってスライドさせられる。 The first air mix door 24a is disposed in the upper bypass passage 125a, and opens and closes the upper bypass passage 125a. The first air mix door 24a is a sliding door mechanism, and is slid by an electric actuator (not shown).
 そして、第1エアミックスドア24aはそのスライド位置に応じて、ヒータコア18を通過する風量と、上側バイパス通路125aを通過する風量との風量割合を調節する。 Then, the first air mix door 24 a adjusts the air volume ratio between the air volume passing through the heater core 18 and the air volume passing through the upper bypass passage 125 a according to the slide position.
 第2エアミックスドア24bは、下側バイパス通路125bに配設されており、その下側バイパス通路125bを開閉する。第2エアミックスドア24bはスライド式のドア機構であり、不図示の電動アクチュエータによってスライドさせられる。 The second air mix door 24b is disposed in the lower bypass passage 125b, and opens and closes the lower bypass passage 125b. The second air mix door 24 b is a sliding door mechanism, and is slid by an electric actuator (not shown).
 そして、第2エアミックスドア24bはそのスライド位置に応じて、ヒータコア18を通過する風量と、下側バイパス通路125bを通過する風量との風量割合を調節する。 Then, the second air mix door 24b adjusts the air volume ratio between the air volume passing through the heater core 18 and the air volume passing through the lower bypass passage 125b according to the slide position.
 空調ケース12には、その空調ケース12外へ空気を吹き出すフェイス吹出口126、デフロスタ吹出口127、およびフット吹出口128が形成されている。そのフェイス吹出口126、デフロスタ吹出口127、およびフット吹出口128はそれぞれ、ヒータコア18および各バイパス通路125a、125bに対する空気流れ下流側にてケース内通路123に連結している。 The air-conditioning case 12 is formed with a face outlet 126, a defroster outlet 127, and a foot outlet 128 for blowing air out of the air-conditioning case 12. The face outlet 126, the defroster outlet 127, and the foot outlet 128 are respectively connected to the in-case passage 123 on the downstream side of the heater core 18 and the bypass passages 125a and 125b.
 フェイス吹出口126から流出する空気は、不図示のダクトを介して導かれ、車室内の前席に着座する乗員の顔または胸部へ向けて吹き出される。デフロスタ吹出口127から流出する空気は、不図示のダクトを介して導かれ、車室内にて車両前面の窓ガラスに向けて吹き出される。フット吹出口128から流出する空気は、不図示のダクトを介して導かれ、車室内の前席に着座する乗員の足下へ向けて吹き出される。 Air flowing out of the face outlet 126 is guided through a duct (not shown) and blown out to the face or chest of an occupant seated in the front seat in the vehicle compartment. Air flowing out of the defroster outlet 127 is guided through a duct (not shown) and blown out toward the window glass on the front of the vehicle in the vehicle compartment. Air flowing out of the foot outlet 128 is guided through a duct (not shown) and blown out to the foot of an occupant seated in the front seat in the vehicle compartment.
 また、フェイス吹出口126にはフェイスドア21が設けられており、フェイスドア21はフェイス吹出口126を開閉する。デフロスタ吹出口127にはデフロスタドア22が設けられており、デフロスタドア22はデフロスタ吹出口127を開閉する。フット吹出口128にはフットドア23が設けられており、フットドア23はフット吹出口128を開閉する。 Further, a face door 21 is provided at the face outlet 126, and the face door 21 opens and closes the face outlet 126. A defroster door 22 is provided at the defroster outlet 127, and the defroster door 22 opens and closes the defroster outlet 127. The foot outlet 128 is provided with a foot door 23, and the foot door 23 opens and closes the foot outlet 128.
 ケース内通路123においてヒータコア18の空気流れ下流側では、ヒータコア18を通った暖風と上側バイパス通路125aを通った冷風とが混合される。そして、その混合された空気は、主としてフェイス吹出口126とデフロスタ吹出口127とのうちの開いている吹出口から車室内へ吹き出される。 At the air flow downstream side of the heater core 18 in the case internal passage 123, the warm air passing through the heater core 18 and the cold air passing through the upper bypass passage 125a are mixed. Then, the mixed air is blown out into the vehicle cabin mainly from an open one of the face outlet 126 and the defroster outlet 127.
 また、ヒータコア18の空気流れ下流側では、ヒータコア18を通った暖風と下側バイパス通路125bを通った冷風とが混合される。そして、その混合された空気は、フット吹出口128が開いている場合には、主としてそのフット吹出口128から車室内へ吹き出される。 Further, on the air flow downstream side of the heater core 18, the warm air passing through the heater core 18 and the cold air passing through the lower bypass passage 125b are mixed. Then, the mixed air is blown out mainly from the foot outlet 128 into the vehicle compartment when the foot outlet 128 is open.
 図1および図2に示すように、空調ケース12には、フェイス吹出口126が複数設けられている。例えば車両用空調ユニット10の吹出しモードがフェイスモードとされた場合には、フェイス吹出口126は開放され、デフロスタ吹出口127およびフット吹出口128は閉じられる。従って、この場合、複数のフェイス吹出口126の各々には、そのフェイス吹出口126よりも空気流れ上流側に配置された整流機構26を通過した空気が分配されて流入する。そして、閉じられているデフロスタ吹出口127およびフット吹出口128には、整流機構26を通過した空気は分配されない。すなわち、ここで言う整流機構26を通過した空気が分配されて流入する複数の吹出口とは、具体的に言えば、何れかの吹出しモードで同時に開放されている複数の吹出口のことである。 As shown in FIGS. 1 and 2, a plurality of face outlets 126 are provided in the air conditioning case 12. For example, when the air outlet mode of the vehicle air conditioning unit 10 is set to the face mode, the face outlet 126 is opened, and the defroster outlet 127 and the foot outlet 128 are closed. Therefore, in this case, the air having passed through the flow straightening mechanism 26 disposed on the upstream side of the air flow from the face outlet 126 is distributed and flows into each of the plurality of face outlets 126. The air passing through the flow straightening mechanism 26 is not distributed to the defroster outlet 127 and the foot outlet 128 which are closed. That is, the plurality of outlets through which the air having passed through the flow straightening mechanism 26 as described herein is distributed and flows in are, specifically speaking, a plurality of outlets which are simultaneously opened in any of the outlet modes. .
 また、図2に示すように、複数のフェイス吹出口126は、ファン軸線CL1の周方向DRcでは、ファン軸線CL1まわりの全周のうち一部範囲Wfに偏って配置されている。例えば、複数のフェイス吹出口126は全て、ファン軸線CL1よりも上側に偏って配置されている。そして、その複数のフェイス吹出口126は、ファン軸線CL1を中心とした同心円上には並んでおらず、車両幅方向DR3へ直線的に並んで配置されている。なお、ファン軸線CL1の周方向DRcをファン周方向DRcとも呼ぶものとする。また、図2には、複数のフェイス吹出口126と送風ファン201との位置関係を示すために、複数のフェイス吹出口126と送風ファン201の概略の外形とが二点鎖線で表示されており、このことは後述の図4および図9でも同様である。 Further, as shown in FIG. 2, the plurality of face air outlets 126 are disposed in a partial range Wf of the entire circumference around the fan axis line CL1 in the circumferential direction DRc of the fan axis line CL1. For example, the plurality of face air outlets 126 are all disposed above the fan axis line CL1. The plurality of face air outlets 126 are not arranged concentrically around the fan axis line CL1 but arranged linearly in the vehicle width direction DR3. The circumferential direction DRc of the fan axis line CL1 is also referred to as a fan circumferential direction DRc. Further, in FIG. 2, in order to show the positional relationship between the plurality of face outlets 126 and the blower fan 201, the outlines of the plurality of face outlets 126 and the blower fan 201 are indicated by two-dot chain lines. This is the same in FIGS. 4 and 9 described later.
 また、上記の複数のフェイス吹出口126が一部範囲Wfに配置されていることとは、厳密に言えば、その複数のフェイス吹出口126がケース内通路123に対して連結している連結部分が一部範囲Wfに配置されていることである。 In addition, the fact that the plurality of face outlets 126 described above are disposed in the partial range Wf means, strictly speaking, a connecting portion in which the plurality of face outlets 126 are connected to the in-case passage 123 Is arranged in the range Wf.
 図1および図2に示すように、整流機構26は、ケース内通路123のうち、送風ファン201に対し空気流れ下流側に配置され、且つ、ヒータコア18およびエアミックスドア24a、24bに対し空気流れ上流側に配置されている。そのため、整流機構26には、送風ファン201から吹き出された空気が流入し、その吹き出された空気は整流機構26を通過してから、バイパス通路125a、125bまたはヒータコア18へと流れる。また、ファン軸方向DRaの位置で言えば、整流機構26は、送風ファン201に対しファン軸方向DRaの他方側に設けられている。 As shown in FIGS. 1 and 2, the flow straightening mechanism 26 is disposed downstream of the air flow fan with respect to the blower fan 201 in the case internal passage 123, and the air flow to the heater core 18 and the air mix doors 24a and 24b. It is located upstream. Therefore, air blown out from the blower fan 201 flows into the flow straightening mechanism 26, and the blown out air passes through the flow straightening mechanism 26 and then flows to the bypass passage 125 a, 125 b or the heater core 18. Further, speaking of the position in the fan axial direction DRa, the rectifying mechanism 26 is provided on the other side of the blower fan 201 in the fan axial direction DRa.
 ここで、ファン軸方向DRaの他方側がケース内通路123の空気流れ下流側を向くように送風ファン201が配置されているので、送風ファン201から吹き出され整流機構26に流入する空気には、その送風ファン201の回転によって旋回流が生じている。整流機構26は、送風ファン201から吹き出された空気に送風ファン201の回転によって生じたその旋回流を、その吹き出された空気が整流機構26に流入する前に比して抑制する。 Here, since the blower fan 201 is disposed so that the other side of the fan axial direction DRa faces the air flow downstream side of the case internal passage 123, the air blown out from the blower fan 201 and flowing into the rectifying mechanism 26 is The rotation of the blower fan 201 produces a swirling flow. The rectifying mechanism 26 suppresses the swirling flow generated by the rotation of the blower fan 201 in the air blown out from the blower fan 201 as compared with the situation in which the blown-out air flows into the rectifying mechanism 26.
 また、上側バイパス通路125aが開かれていれば、整流機構26を通過した空気は上側バイパス通路125aへ流れ、下側バイパス通路125bが開かれていれば、整流機構26を通過した空気は下側バイパス通路125bへ流れる。従って、そのバイパス通路125a、125bに着目すれば、旋回流の抑制について次のようなことが言える。すなわち、整流機構26は、送風ファン201から吹き出された空気のうちバイパス通路125a、125bに流通する空気の旋回流を、そのバイパス通路125a、125bに流通する空気が整流機構26に流入する前に比して抑制する。 Also, if the upper bypass passage 125a is open, the air passing through the rectification mechanism 26 flows to the upper bypass passage 125a, and if the lower bypass passage 125b is open, the air passing through the rectification mechanism 26 is on the lower side. It flows to the bypass passage 125b. Therefore, focusing on the bypass passages 125a and 125b, the following can be said with regard to the suppression of the swirling flow. That is, the flow straightening mechanism 26 makes the swirling flow of the air flowing through the bypass passages 125 a, 125 b out of the air blown out from the blower fan 201 before the air flowing through the bypass passages 125 a, 125 b flows into the flow straightening mechanism 26. It suppresses by comparison.
 具体的には図1~図3に示すように、整流機構26は、送風ファン201の径方向(すなわち、ファン径方向)で内側から外側へと延びる複数の整流板261を有している。その複数の整流板261はそれぞれ空調ケース12に固定されている。すなわち、整流機構26は、空調ケース12に固定され、回転しない非回転部材として設けられている。 Specifically, as shown in FIGS. 1 to 3, the flow straightening mechanism 26 has a plurality of flow straightening plates 261 extending from the inside to the outside in the radial direction of the blower fan 201 (ie, in the radial direction of the fan). The plurality of rectifying plates 261 are fixed to the air conditioning case 12 respectively. That is, the flow straightening mechanism 26 is fixed to the air conditioning case 12 and is provided as a non-rotating member that does not rotate.
 複数の整流板261はファン周方向DRcに相互間隔を空けて配置されている。従って、複数の整流板261の相互間には整流通路26aが形成され、その整流通路26aはそれぞれ、ケース内通路123での整流機構26に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされている。要するに、ファン軸方向DRaにおいて整流通路26aの一方側の端も他方側の端も開放されている。なお、図3には、送風ファン201の概略の外形が二点鎖線で表示されており、このことは後述の図10でも同様である。 The plurality of rectifying plates 261 are spaced apart from one another in the fan circumferential direction DRc. Therefore, a straightening passage 26a is formed between the plurality of straightening vanes 261, and each straightening passage 26a can flow air from the upstream side of the air flow to the straightening mechanism 26 in the case inner passage 123 to the downstream side of the air flow. It is assumed. In short, one end and the other end of the straightening passage 26a in the fan axial direction DRa are also open. In FIG. 3, the outline of the blower fan 201 is indicated by a two-dot chain line, which is the same as in FIG. 10 described later.
 また、図2および図3に示すように、ファン周方向DRcにおける複数の整流板261の相互間隔は、ファン径方向の外側ほど広くなっている。この複数の整流板261は単純な放射状に設けられていてもよいが、本実施形態では単純な放射状ではない。すなわち、本実施形態の複数の整流板261はそれぞれ、ファン径方向の外側ほど送風ファン201の回転方向RTfにおける順方向側に位置するように形成されている。 Further, as shown in FIG. 2 and FIG. 3, the mutual distance between the plurality of rectifying plates 261 in the fan circumferential direction DRc is wider toward the outside in the fan radial direction. The plurality of straightening vanes 261 may be provided in a simple radial manner, but in the present embodiment, they are not simple radial. That is, the plurality of flow control plates 261 in the present embodiment are formed to be positioned on the forward direction side in the rotational direction RTf of the blower fan 201 as it goes to the outer side in the fan radial direction.
 また、複数の整流板261はそれぞれ、整流通路26aに面する通路壁面261a、261bを、その整流板261の板厚方向両側に有している。その通路壁面261a、261bは、ファン軸方向DRaに沿うように形成されている。 Further, the plurality of flow straightening plates 261 respectively have passage wall surfaces 261 a and 261 b facing the flow straightening passages 26 a on both sides in the plate thickness direction of the flow straightening plate 261. The passage wall surfaces 261a, 261b are formed along the fan axial direction DRa.
 このように構成された各整流板261は、送風ファン201から整流通路26aに流入した空気を、ケース内通路123での整流機構26に対する空気流れ上流側から空気流れ下流側へ通路壁面261a、261bに沿わせて案内する。このとき、各整流板261は、整流通路26aを流れる空気の旋回流に対しファン周方向DRcに対抗しつつ、その空気を案内する。従って、整流機構26は、送風ファン201から吹き出された空気を整流通路26aに通過させることにより、その吹き出された空気の旋回流を抑制する。 The rectifying plates 261 configured in this manner move the air flowing from the blower fan 201 into the rectifying passage 26 a from the air flow upstream side to the air flow downstream side with respect to the rectifying mechanism 26 in the case inner passage 123. Guide along. At this time, each straightening vane 261 guides the air while countering the fan circumferential direction DRc with respect to the swirling flow of the air flowing through the straightening passage 26a. Therefore, the flow straightening mechanism 26 suppresses the swirling flow of the blown air by letting the air blown out from the blower fan 201 pass through the flow straightening passage 26a.
 次に、車両用空調ユニット10の作動について説明する。送風機20が作動を開始すると、図1に示すように、外気導入口121または内気導入口122を介して、空調ケース12内に形成されたケース内通路123へ空気が導入される。そして、そのケース内通路123へ導入された空気は、蒸発器16で冷却されると共にその蒸発器16を通過する。 Next, the operation of the vehicle air conditioning unit 10 will be described. When the blower 20 starts operating, air is introduced into the in-case passage 123 formed in the air conditioning case 12 via the outside air inlet 121 or the inside air inlet 122, as shown in FIG. The air introduced into the in-case passage 123 is cooled by the evaporator 16 and passes through the evaporator 16.
 この蒸発器16で冷却された空気は、送風機20の送風ファン201に吸い込まれ、送風ファン201の径方向外側へ吹き出され、空調ケース12によってケース内通路123の空気流れ下流側へと導かれる。 The air cooled by the evaporator 16 is sucked into the blower fan 201 of the blower 20, blown outward in the radial direction of the blower fan 201, and guided to the air flow downstream side of the case internal passage 123 by the air conditioning case 12.
 そして、送風ファン201から吹き出された空気は整流機構26を通過する。その整流機構26を通過した空気は、ヒータコア18を通れば暖風となってヒータコア18の空気流れ下流側へ流れ、バイパス通路125a、125bを通れば冷風のままヒータコア18の空気流れ下流側へ流れる。そして、その暖風と冷風はヒータコア18の空気流れ下流側で混合され、その混合された空気は、フェイス吹出口126、デフロスタ吹出口127、フット吹出口128のうちの開放されている吹出口から、車室内の所定箇所へ吹き出される。 Then, the air blown out from the blower fan 201 passes through the rectifying mechanism 26. The air that has passed through the flow straightening mechanism 26 warms up when passing through the heater core 18 and flows to the air flow downstream side of the heater core 18 and flows cold to the air flow downstream side of the heater core 18 when passing through the bypass passages 125a and 125b. . Then, the warm air and the cold air are mixed on the air flow downstream side of the heater core 18, and the mixed air is supplied from the air outlet of the face outlet 126, the defroster outlet 127, and the foot outlet 128 which are open. , It is blown out to the predetermined place in the vehicle interior.
 上述したように、本実施形態によれば、図1~図3に示すように、整流機構26は、送風ファン201から吹き出された空気に送風ファン201の回転によって生じた旋回流を、その吹き出された空気が整流機構26に流入する前に比して抑制する。従って、整流機構26に対する空気流れ下流側では上記旋回流が抑制されるので、複数のフェイス吹出口126の配置を、その旋回流を考慮して過剰に制限する必要がない。すなわち、送風ファン201の回転による旋回流を原因とした吹出し風量の偏り回避のためにフェイス吹出口126の配置を過剰に制限することなく、複数のフェイス吹出口126を配置することが可能になる。 As described above, according to the present embodiment, as shown in FIGS. 1 to 3, the rectifying mechanism 26 blows out the swirling flow generated by the rotation of the blowing fan 201 in the air blown out of the blowing fan 201. The air is suppressed as compared to before it flows into the flow straightening mechanism 26. Therefore, since the swirling flow is suppressed on the air flow downstream side with respect to the flow straightening mechanism 26, it is not necessary to excessively limit the arrangement of the plurality of face outlets 126 in consideration of the swirling flow. That is, it is possible to arrange a plurality of face outlets 126 without excessively restricting the arrangement of the face outlets 126 for avoiding deviation of the blowing air volume caused by the swirling flow due to the rotation of the blower fan 201. .
 例えば図4の比較例に示すように、仮に整流機構26が無いとすれば、バイパス通路125a、125bを通る空気は、送風ファン201の回転によって生じた旋回流を有したまま複数のフェイス吹出口126に到達することになる。そうなると、フェイスモードでは、複数のフェイス吹出口126のうち送風ファン201の回転方向RTfにおける順方向側に位置する吹出口ほど、その吹出口に流入する風量が小さくなる。従って、図4の比較例では、送風ファン201の回転による旋回流を原因とした吹出し風量の偏りが、複数のフェイス吹出口126の相互間で生じることになる。なお、図4の矢印FLoは、送風ファン201から吹き出されて旋回流を有する空気の流れを表している。 For example, as shown in the comparative example of FIG. 4, if there is no rectifying mechanism 26, the air passing through the bypass passages 125a and 125b has a plurality of face outlets while having a swirling flow generated by the rotation of the blower fan 201. It will reach 126. Then, in the face mode, the amount of air flowing into the outlets becomes smaller as the outlets of the plurality of face outlets 126 located on the forward direction side in the rotational direction RTf of the blower fan 201. Therefore, in the comparative example of FIG. 4, the deviation of the blowing air volume caused by the swirling flow due to the rotation of the blower fan 201 is generated among the plurality of face air outlets 126. In addition, arrow FLo of FIG. 4 represents the flow of the air which blows off from the ventilation fan 201 and has rotational flow.
 これに対し、本実施形態では、送風ファン201の吹出し空気がフェイス吹出口126に到達する前に、その吹出し空気に生じた旋回流が整流機構26によって予め抑制される。従って、図2に示すように、複数のフェイス吹出口126が、ファン周方向DRcでファン軸線CL1まわりの全周のうち一部範囲Wfに偏って配置されていても、吹出し風量の偏りが複数のフェイス吹出口126の相互間で生じることを防止することが可能である。 On the other hand, in the present embodiment, before the blowout air of the blower fan 201 reaches the face outlet 126, the swirling flow generated in the blowout air is suppressed by the flow straightening mechanism 26 in advance. Therefore, as shown in FIG. 2, even if the plurality of face air outlets 126 are arranged in a partial range Wf of the entire circumference around the fan axis line CL1 in the fan circumferential direction DRc, the deviation of the blowing air volume is more than one It is possible to prevent the occurrence of mutual between the face outlets 126 of the air conditioner.
 また、送風ファン201の吹出し空気の流速に含まれる旋回成分が整流機構26の整流板261によってキャンセルされるので、整流機構26の空気流れ下流側では、一様流を流すことが可能である。そして、その旋回成分のキャンセルによりファン軸方向DRaの直交方向において対称的な空気流れとなり、風速分布を均一化することが可能である。延いては、各フェイス吹出口126での配風性および温度コントロール性を向上させることが可能である。 In addition, since the swirling component included in the flow velocity of the blowing air of the blower fan 201 is canceled by the straightening plate 261 of the flow straightening mechanism 26, a uniform flow can be made on the air flow downstream side of the flow straightening mechanism 26. And by cancellation of the turning component, it becomes symmetrical air flow in the direction orthogonal to fan axial direction DRa, and it is possible to equalize wind speed distribution. As a result, it is possible to improve the wind distribution and temperature control at each face outlet 126.
 また、本実施形態によれば、図1に示すように、ヒータコア18は、ケース内通路123のうち送風ファン201に対し空気流れ下流側に配置され、空気を加熱する。そのケース内通路123は、ヒータコア18を迂回して空気を流すバイパス通路125a、125bを含む。そして、整流機構26は、送風ファン201から吹き出された空気のうちバイパス通路125a、125bに流通する空気の旋回流を、そのバイパス通路125a、125bに流通する空気が整流機構26に流入する前に比して抑制する。従って、その旋回流を弱める要因の少ないバイパス通路125a、125bに流通する空気に対し、旋回流を抑制する作用を整流機構26に効果的に発揮させることが可能である。 Further, according to the present embodiment, as shown in FIG. 1, the heater core 18 is disposed downstream of the air blowing fan 201 in the case internal passage 123 and heats the air. The in-case passage 123 includes bypass passages 125a and 125b that allow air to flow around the heater core 18. Then, the flow straightening mechanism 26 makes the swirling flow of the air flowing through the bypass passages 125a and 125b among the air blown out from the blower fan 201 before the air flowing through the bypass passages 125a and 125b flows into the flow straightening mechanism 26. It suppresses by comparison. Therefore, it is possible to cause the rectifying mechanism 26 to effectively exhibit the action of suppressing the swirl flow with respect to the air flowing through the bypass passages 125a and 125b having few factors that weaken the swirl flow.
 また、本実施形態によれば、図1に示すように、整流機構26は、ケース内通路123のうちヒータコア18に対し空気流れ上流側に配置されている。従って、送風ファン201から吹き出された空気は上記旋回流が整流機構26によって抑制されてからヒータコア18へ流入することになる。そのため、そのヒータコア18へ空気が流入する際の圧損を低減することが可能である。 Further, according to the present embodiment, as shown in FIG. 1, the rectifying mechanism 26 is disposed upstream of the heater core 18 in the in-case passage 123 with respect to the air flow. Therefore, the air blown out from the blower fan 201 flows into the heater core 18 after the swirling flow is suppressed by the flow straightening mechanism 26. Therefore, it is possible to reduce pressure loss when air flows into the heater core 18.
 また、本実施形態によれば、図1~図3に示すように、整流機構26は、ファン径方向で内側から外側へと延びる複数の整流板261を有している。その複数の整流板261の相互間には、ケース内通路123での整流機構26に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた整流通路26aが形成されている。複数の整流板261の相互間隔はファン径方向の外側ほど広くなっている。そして、整流機構26は、送風ファン201から吹き出された空気を整流通路26aに通過させることにより上記旋回流を抑制する。 Further, according to the present embodiment, as shown in FIGS. 1 to 3, the rectifying mechanism 26 has a plurality of rectifying plates 261 extending from the inside to the outside in the fan radial direction. A straightening passage 26a is formed between the plurality of straightening vanes 261 so that air can flow from the upstream side of the air flow to the straightening mechanism 26 in the case internal passage 123 to the downstream side of the air flow. The mutual distance between the plurality of current plates 261 is wider toward the outside in the radial direction of the fan. Then, the flow straightening mechanism 26 suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the flow straightening passage 26 a.
 ここで、送風ファン201からの空気は整流通路26aに流入するが、その流入した空気は整流通路26aでは、ファン径方向の外側へ移動しつつ空気流れ下流側へと流れる。従って、整流通路26aでは、その整流通路26aに流れる空気の流量が維持されても、その空気の流速は複数の整流板261の相互間隔の広がりに応じて低下する。そして、その流速の低下を伴って上記旋回流の抑制は進行する。そのため、旋回流の抑制に起因した圧損を低減することが可能である。 Here, the air from the blower fan 201 flows into the flow straightening passage 26a, but the flowed air in the flow straightening passage 26a moves to the air flow downstream side while moving outward in the radial direction of the fan. Therefore, in the straightening passage 26a, even if the flow rate of air flowing through the straightening passage 26a is maintained, the flow velocity of the air decreases in accordance with the spread of the mutual spacings of the plurality of straightening plates 261. And the suppression of the said rotational flow advances with the fall of the flow velocity. Therefore, it is possible to reduce the pressure loss resulting from the suppression of the swirling flow.
 また、本実施形態によれば、図2および図3に示すように、複数の整流板261はそれぞれ、ファン径方向の外側ほど送風ファン201の回転方向RTfにおける順方向側に位置するように形成されている。従って、例えば各整流板261が送風ファン201の径方向に沿って真っ直ぐ延びている場合と比較して、旋回流を抑制することに起因した圧損を低減することが可能である。なぜなら、旋回流を含む空気がファン径方向の外側へ移動するに従って、その空気の流れ方向をケース内通路123の空気流れ下流側向きに緩やかに転向させることが可能だからである。 Further, according to the present embodiment, as shown in FIG. 2 and FIG. 3, each of the plurality of rectifying plates 261 is formed to be positioned on the forward direction side in the rotational direction RTf of the blower fan 201 as it goes outward in the fan radial direction It is done. Therefore, for example, as compared with the case where the respective straightening vanes 261 extend straight along the radial direction of the blower fan 201, it is possible to reduce the pressure loss caused by suppressing the swirling flow. This is because, as the air including the swirling flow moves outward in the radial direction of the fan, the flow direction of the air can be gently diverted toward the air flow downstream of the in-case passage 123.
 また、本実施形態によれば、図2および図3に示すように、整流板261は、整流通路26aに面する通路壁面261a、261bを有し、その通路壁面261a、261bはファン軸方向DRaに沿うように形成されている。従って、送風ファン201の回転によって生じた旋回流を抑制しつつ、図3の矢印FL1のようにファン軸方向DRaに沿った向きに空気流れを案内することが可能である。 Further, according to the present embodiment, as shown in FIGS. 2 and 3, the straightening vane 261 has passage wall surfaces 261a, 261b facing the flow straightening passage 26a, and the passage wall surfaces 261a, 261b are in the fan axial direction DRa. It is formed along the. Therefore, it is possible to guide the air flow in the direction along the fan axial direction DRa as shown by arrow FL1 in FIG. 3 while suppressing the swirling flow generated by the rotation of the blower fan 201.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の実施形態の説明においても同様である。
Second Embodiment
Next, a second embodiment will be described. In the present embodiment, points different from the first embodiment described above will be mainly described. In addition, the same or equivalent parts as those of the above-described embodiment will be described with omission or simplification. The same applies to the description of the embodiments described later.
 図5に示すように、本実施形態の車両用空調ユニット10は、送風ファン201から吹き出された空気を濾過するフィルタ28を備えている。本実施形態では、図2に示す複数の整流板261を有する整流機構26に替えて、このフィルタ28が整流機構26として設けられている。 As shown in FIG. 5, the vehicle air conditioning unit 10 of the present embodiment includes a filter 28 that filters the air blown out from the blower fan 201. In the present embodiment, the filter 28 is provided as a rectifying mechanism 26 in place of the rectifying mechanism 26 having a plurality of rectifying plates 261 shown in FIG.
 従って、第1実施形態の整流機構26と同様に、本実施形態のフィルタ28は、送風ファン201から吹き出された空気に送風ファン201の回転によって生じた旋回流を、その吹き出された空気がフィルタ28に流入する前に比して抑制する。 Therefore, as in the case of the rectifying mechanism 26 of the first embodiment, the filter 28 of the present embodiment filters the swirling flow generated by the rotation of the blowing fan 201 in the air blown out of the blowing fan 201, the blown air being a filter Compared to before entering the 28 suppress.
 また、第1実施形態の整流機構26と同様に、フィルタ28は、ケース内通路123のうち、送風ファン201に対し空気流れ下流側に配置されている。そして、フィルタ28は、バイパス通路125a、125b、ヒータコア18、およびエアミックスドア24a、24bに対し空気流れ上流側に配置されている。 Further, as in the case of the flow straightening mechanism 26 of the first embodiment, the filter 28 is disposed downstream of the air blowing fan 201 in the case inner passage 123 with respect to the air flow. The filter 28 is disposed upstream of the bypass passages 125a and 125b, the heater core 18, and the air mix doors 24a and 24b.
 本実施形態のフィルタ28は、例えば網または不織布などで構成されている。 The filter 28 of the present embodiment is made of, for example, a net or non-woven fabric.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 また、本実施形態によれば、送風ファン201から吹き出された空気を濾過するフィルタ28が整流機構26として設けられている。従って、車両用空調ユニット10が有するフィルタ28を整流機構26としても利用し、部品点数の削減を図ることが可能である。 Further, according to the present embodiment, the filter 28 for filtering the air blown out from the blower fan 201 is provided as the rectifying mechanism 26. Therefore, it is possible to reduce the number of parts by utilizing the filter 28 of the vehicle air conditioning unit 10 as the rectification mechanism 26.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
Third Embodiment
Next, a third embodiment will be described. In the present embodiment, points different from the first embodiment described above will be mainly described.
 図6に示すように、本実施形態の車両用空調ユニット10では、ケース内通路123において蒸発器16と送風機20との並び順が入れ替わっている。これにより、本実施形態では、図2に示す複数の整流板261を有する整流機構26に替えて、この蒸発器16が整流機構26として設けられている。 As shown in FIG. 6, in the vehicle air conditioning unit 10 of the present embodiment, the order of the evaporator 16 and the blower 20 in the case internal passage 123 is reversed. Thus, in the present embodiment, the evaporator 16 is provided as the rectifying mechanism 26 in place of the rectifying mechanism 26 having the plurality of rectifying plates 261 shown in FIG.
 従って、本実施形態の蒸発器16は、第1実施形態の整流機構26と同様に、ケース内通路123のうち、送風ファン201に対し空気流れ下流側に配置されている。そして、蒸発器16は、バイパス通路125a、125b、ヒータコア18、およびエアミックスドア24a、24bに対し空気流れ上流側に配置されている。 Therefore, the evaporator 16 of the present embodiment is disposed downstream of the air flow fan with respect to the blower fan 201 in the in-case passage 123, similarly to the flow straightening mechanism 26 of the first embodiment. The evaporator 16 is disposed upstream of the bypass passages 125a and 125b, the heater core 18, and the air mix doors 24a and 24b.
 この配置により、蒸発器16は、第1実施形態の整流機構26と同様に、送風ファン201から吹き出された空気に送風ファン201の回転によって生じた旋回流を、その吹き出された空気が蒸発器16に流入する前に比して抑制する。 With this arrangement, the evaporator 16 has the swirling flow generated by the rotation of the blower fan 201 in the air blown out of the blower fan 201 in the same manner as the rectifying mechanism 26 of the first embodiment. Compared to before entering the 16 to suppress.
 具体的には、図6~図8に示すように、蒸発器16は、空気を冷却するための冷媒が流通する複数の冷媒チューブ161と、その冷媒チューブ161の相互間に配置された複数のコルゲートフィン162とを有している。この複数の冷媒チューブ161と複数のコルゲートフィン162は交互に積層配置されている。例えば、それらは車両幅方向DR3に積層配置されている。この積層配置により、蒸発器16には、ファン軸方向DRaに貫通した複数の熱交換通路163が形成されている。 Specifically, as shown in FIGS. 6 to 8, the evaporator 16 includes a plurality of refrigerant tubes 161 through which a refrigerant for cooling air flows, and a plurality of refrigerant tubes arranged between the refrigerant tubes 161. And corrugated fins 162. The plurality of refrigerant tubes 161 and the plurality of corrugated fins 162 are alternately stacked. For example, they are stacked in the vehicle width direction DR3. Due to this stacked arrangement, the evaporator 16 is formed with a plurality of heat exchange passages 163 penetrating in the fan axial direction DRa.
 従って、蒸発器16では、送風ファン201から吹き出された空気は、この複数の熱交換通路163を通過する。そして、蒸発器16は、この複数の熱交換通路163を通る空気を冷媒チューブ161内の冷媒によって冷却する。 Therefore, in the evaporator 16, the air blown out from the blower fan 201 passes through the plurality of heat exchange passages 163. Then, the evaporator 16 cools the air passing through the plurality of heat exchange passages 163 by the refrigerant in the refrigerant tube 161.
 そして、複数の熱交換通路163はそれぞれファン軸方向DRaに貫通し細分化された通路であるので、送風ファン201から吹き出された空気がこの熱交換通路163を通ることにより、上記旋回流は抑制される。 And since the plurality of heat exchange passages 163 are passages which are respectively penetrated and subdivided in the fan axial direction DRa, the air blown out from the blower fan 201 passes through the heat exchange passages 163 to suppress the swirling flow. Be done.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 また、本実施形態によれば、送風ファン201から吹き出された空気が通過する複数の熱交換通路163が形成されその複数の熱交換通路163を通る空気を冷却する蒸発器16が、整流機構26として設けられている。従って、車両用空調ユニット10が有する蒸発器16を整流機構26としても利用し、部品点数の削減を図ることが可能である。 Further, according to the present embodiment, the evaporator 16 configured to cool the air passing through the plurality of heat exchange passages 163 is formed by forming the plurality of heat exchange passages 163 through which the air blown out from the blower fan 201 passes. It is provided as Therefore, it is possible to reduce the number of parts by utilizing the evaporator 16 of the vehicle air conditioning unit 10 also as the rectifying mechanism 26.
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
Fourth Embodiment
Next, a fourth embodiment will be described. In the present embodiment, points different from the first embodiment described above will be mainly described.
 図9および図10に示すように、本実施形態の車両用空調ユニット10では、整流機構26は、第1実施形態と同様に複数の整流板261を有し、空調ケース12に固定されている。但し、本実施形態では、整流機構26の形状が第1実施形態と異なっている。 As shown in FIGS. 9 and 10, in the vehicle air conditioning unit 10 of the present embodiment, the rectifying mechanism 26 has a plurality of rectifying plates 261 as in the first embodiment, and is fixed to the air conditioning case 12. . However, in the present embodiment, the shape of the rectifying mechanism 26 is different from that of the first embodiment.
 具体的に本実施形態では、複数の整流板261はそれぞれ、直線的に延びるリブ状である。そして、複数の整流板261は相互に連結され、全体として格子形状を成している。そのため、複数の整流板261は、複数の整流通路26aを区画形成している。例えば、その複数の整流通路26aは、車両上下方向DR2に並んで設けられ、車両幅方向DR3にも並んで設けられている。 Specifically, in the present embodiment, each of the plurality of straightening vanes 261 is in the form of a linearly extending rib. The plurality of straightening vanes 261 are connected to one another to form a lattice as a whole. Therefore, the plurality of rectifying plates 261 define a plurality of rectifying passages 26a. For example, the plurality of straightening passages 26a are provided side by side in the vehicle vertical direction DR2 and also provided side by side in the vehicle width direction DR3.
 整流通路26aはそれぞれ、ケース内通路123での整流機構26に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされている。要するに、ファン軸方向DRaにおいて整流通路26aの一方側の端も他方側の端も開放されている。 In the straightening passages 26a, air can flow from the upstream side of the air flow to the straightening mechanism 26 in the case internal passage 123 to the downstream side of the air flow. In short, one end and the other end of the straightening passage 26a in the fan axial direction DRa are also open.
 なお、第1実施形態と同様に、複数の整流板261はそれぞれ、整流通路26aに面する通路壁面261a、261bを、その整流板261の板厚方向両側に有している。その通路壁面261a、261bは、ファン軸方向DRaに沿うように形成されている。 As in the first embodiment, each of the plurality of flow straightening plates 261 has passage wall surfaces 261a and 261b facing the flow straightening passages 26a on both sides in the plate thickness direction of the flow straightening plate 261. The passage wall surfaces 261a, 261b are formed along the fan axial direction DRa.
 このような構成から、整流機構26は、送風ファン201から吹き出された空気を図10の矢印FL1のように整流通路26aに通過させることにより、上記旋回流を抑制する。従って、本実施形態では、整流機構26を簡素な構造として、その旋回流の抑制を図ることが可能である。 With such a configuration, the flow straightening mechanism 26 suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the flow straightening passage 26a as shown by arrow FL1 in FIG. Therefore, in the present embodiment, it is possible to suppress the swirling flow by making the rectifying mechanism 26 a simple structure.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 (第5実施形態)
 次に、第5実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
Fifth Embodiment
Next, a fifth embodiment will be described. In the present embodiment, points different from the first embodiment described above will be mainly described.
 図11に示すように、本実施形態の車両用空調ユニット10では、ファン軸線CL1が車両前後方向DR1に対して傾いているので、ファン軸方向DRaは車両前後方向DR1に一致していない。この点において、本実施形態は第1実施形態と異なっている。 As shown in FIG. 11, in the vehicle air conditioning unit 10 of the present embodiment, the fan axial line CL1 is inclined with respect to the vehicle longitudinal direction DR1, so the fan axial direction DRa does not coincide with the vehicle longitudinal direction DR1. In this respect, the present embodiment is different from the first embodiment.
 なお、上記のようにファン軸線CL1が車両前後方向DR1に対して傾いているが、本実施形態の送風ファン201は、ファン軸線CL1の他方側がケース内通路123の空気流れ下流側へ延びる向きに配置されている。この点においては、本実施形態でも第1実施形態と同様である。 As described above, the fan axial line CL1 is inclined with respect to the vehicle longitudinal direction DR1. However, in the blower fan 201 of the present embodiment, the other side of the fan axial line CL1 extends to the air flow downstream side of the case internal passage 123 It is arranged. In this respect, the present embodiment is the same as the first embodiment.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2、第3、第4実施形態のうちの何れかと組み合わせることも可能である。 Although this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with any of the second, third and fourth embodiments described above.
 (第6実施形態)
 次に、第6実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
Sixth Embodiment
Next, a sixth embodiment will be described. In the present embodiment, points different from the first embodiment described above will be mainly described.
 図12に示すように、本実施形態の車両用空調ユニット10では、フェイス吹出口126およびデフロスタ吹出口127が第1実施形態と比較して上側へずれて設けられている。また、図13および図14に示すように、本実施形態では、整流機構26の構造が第1実施形態と異なっている。 As shown in FIG. 12, in the vehicle air conditioning unit 10 of the present embodiment, the face air outlet 126 and the defroster air outlet 127 are provided to be shifted upward as compared with the first embodiment. Further, as shown in FIG. 13 and FIG. 14, in the present embodiment, the structure of the rectifying mechanism 26 is different from that of the first embodiment.
 なお、図13には、複数のフェイス吹出口126と送風ファン201との位置関係を示すために、複数のフェイス吹出口126と送風ファン201の概略の外形とが二点鎖線で表示されている。このことは後述の図15、図19、図20、および図21でも同様である。 Note that, in FIG. 13, in order to show the positional relationship between the plurality of face outlets 126 and the blower fan 201, the outlines of the plurality of face outlets 126 and the blower fan 201 are indicated by two-dot chain lines. . The same applies to FIGS. 15, 19, 20 and 21 described later.
 具体的には図13および図14に示すように、本実施形態では、整流機構26は、ファン軸方向DRaに沿った向きの複数の筒状部262を有している。そして、筒状部262は筒形状であるので、その筒状部262にはそれぞれ、ファン軸方向DRaに延びる貫通孔262aが形成されている。 Specifically, as shown in FIGS. 13 and 14, in the present embodiment, the rectifying mechanism 26 has a plurality of cylindrical portions 262 oriented along the fan axial direction DRa. And since the cylindrical part 262 is cylindrical shape, the through-hole 262a extended in the fan axial direction DRa is formed in the cylindrical part 262, respectively.
 その複数の筒状部262は、それぞれの貫通孔262aが互いに並列に配置されるように設けられている。そして、複数の筒状部262のうち互いに隣り合う筒状部262同士が互いに一体構成となることで、整流機構26は構成されている。 The plurality of cylindrical portions 262 are provided such that the respective through holes 262 a are arranged in parallel to one another. And the rectification | straightening mechanism 26 is comprised by the cylindrical part 262 comrades which mutually adjoin among several cylindrical parts 262 mutually become integral structure.
 詳細には、筒状部262のそれぞれの貫通孔262aは、互いに同じ大きさである。そして、その貫通孔262aはそれぞれ、ファン軸方向DRaに直交する断面が六角形形状を成す六角形孔である。従って、本実施形態の整流機構26は、ハニカム状の多孔材として構成されている。そして、複数の筒状部262はファン軸方向DRaに直交する方向へ二次元的に配列されているので、整流機構26は、ファン軸方向DRaを厚み方向とした板状を成すように形成されている。この整流機構26は、ファン軸方向DRaに直交する断面において、ケース内通路123の全体に拡がるように形成されている。そして、その整流機構26の周縁部分は、空調ケース12に接合されている。 In detail, the through holes 262a of the cylindrical portion 262 have the same size. Each of the through holes 262a is a hexagonal hole whose cross section orthogonal to the fan axial direction DRa forms a hexagonal shape. Therefore, the flow straightening mechanism 26 of the present embodiment is configured as a honeycomb-shaped porous material. Further, since the plurality of cylindrical portions 262 are two-dimensionally arranged in the direction orthogonal to the fan axial direction DRa, the rectifying mechanism 26 is formed to form a plate shape with the fan axial direction DRa in the thickness direction. ing. The rectifying mechanism 26 is formed so as to extend over the entire in-case passage 123 in a cross section orthogonal to the fan axial direction DRa. The peripheral portion of the rectifying mechanism 26 is joined to the air conditioning case 12.
 このように構成された整流機構26は、送風ファン201から吹き出された空気を図14の矢印FL1のように複数の貫通孔262aに通過させることにより、上記旋回流を抑制する。従って、その旋回流を抑制して整流する整流性を良好に確保しつつ、その空気流れの整流に必要な距離を短くすることができる。そのため、空気流れ方向における整流機構26の厚みを小さくすることが可能である。 The rectifying mechanism 26 configured in this manner suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the plurality of through holes 262a as shown by arrow FL1 in FIG. Therefore, it is possible to shorten the distance necessary for the rectification of the air flow while well securing the rectification property of suppressing and rectifying the swirling flow. Therefore, it is possible to reduce the thickness of the flow straightening mechanism 26 in the air flow direction.
 また、本実施形態によれば、筒状部262の貫通孔262aは、ファン軸方向DRaに直交する断面が六角形形状を成す孔である。要するに、本実施形態の整流機構26は、ハニカム状の多孔材として構成されている。従って、その貫通孔262aが形成された複数の筒状部262を緻密に配置しやすく、空調ケース12の剛性を整流機構26によって高めることが可能である。 Further, according to the present embodiment, the through hole 262a of the cylindrical portion 262 is a hole in which a cross section orthogonal to the fan axial direction DRa forms a hexagonal shape. In short, the flow straightening mechanism 26 of the present embodiment is configured as a honeycomb porous material. Therefore, the plurality of cylindrical portions 262 in which the through holes 262 a are formed can be easily disposed precisely, and the rigidity of the air conditioning case 12 can be enhanced by the flow straightening mechanism 26.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第5実施形態と組み合わせることも可能である。 Although this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described fifth embodiment.
 (第7実施形態)
 次に、第7実施形態について説明する。本実施形態では、前述の第6実施形態と異なる点を主として説明する。
Seventh Embodiment
Next, a seventh embodiment will be described. In the present embodiment, points different from the sixth embodiment described above will be mainly described.
 図15および図16に示すように、本実施形態では、複数の筒状部262のそれぞれに形成された貫通孔262aは、ファン軸方向DRaに直交する断面が円形状を成す円形孔である。このことを除き、本実施形態は第6実施形態と同様である。そして、本実施形態では、前述の第6実施形態と共通の構成から奏される効果を第6実施形態と同様に得ることができる。なお、本実施形態の車両用空調ユニット10は図12に示されたものであり、このことは後述の第8~第14実施形態でも同様である。 As shown in FIGS. 15 and 16, in the present embodiment, the through holes 262 a formed in each of the plurality of cylindrical portions 262 are circular holes whose cross section orthogonal to the fan axial direction DRa has a circular shape. Except for this, the present embodiment is the same as the sixth embodiment. And in this embodiment, the effect show | played from the structure common to above-mentioned 6th Embodiment can be acquired similarly to 6th Embodiment. The vehicle air conditioning unit 10 of the present embodiment is as shown in FIG. 12, which is the same as in the eighth to fourteenth embodiments described later.
 (第8実施形態)
 次に、第8実施形態について説明する。本実施形態では、前述の第6実施形態と異なる点を主として説明する。
Eighth Embodiment
An eighth embodiment will now be described. In the present embodiment, points different from the sixth embodiment described above will be mainly described.
 図17および図18に示すように、複数の筒状部262にはそれぞれ、ファン軸方向DRaに延びる貫通孔262aが形成されている。この点では本実施形態は第6実施形態と同様である。しかし、本実施形態では、複数の筒状部262のそれぞれに形成された貫通孔262aの孔形状が、第6実施形態と異なっている。 As shown in FIGS. 17 and 18, through holes 262 a extending in the fan axial direction DRa are formed in each of the plurality of cylindrical portions 262. In this respect, the present embodiment is the same as the sixth embodiment. However, in the present embodiment, the hole shape of the through hole 262a formed in each of the plurality of cylindrical portions 262 is different from that of the sixth embodiment.
 具体的に、本実施形態では、その複数の貫通孔262aはそれぞれ、ファン軸方向DRaに直交する断面が矩形状を成す矩形状孔である。その貫通孔262aの断面の矩形状とは、厳密な長方形または正方形であってもよいし、略矩形の形状を呈していれば、例えば貫通孔262aの断面を囲む四辺のうちの何れかまたは全ての辺が湾曲していてもよい。 Specifically, in the present embodiment, the plurality of through holes 262a are rectangular holes each having a rectangular cross section orthogonal to the fan axial direction DRa. The rectangular shape of the cross section of the through hole 262a may be a strict rectangle or a square, and if it has a substantially rectangular shape, for example, any or all of the four sides surrounding the cross section of the through hole 262a The side of may be curved.
 空調ケース12のうち整流機構26を囲む部分は、ファン軸線CL1を中心とした円筒状に形成されている。そして、整流機構26に形成された複数の貫通孔262aは、ファン径方向へ放射状に配列されている。そのため、ファン周方向DRcへ並んだ貫通孔262aの列が、ファン軸線CL1を中心とした同心状に複数形成されている。そして、ファン周方向DRcに隣接する貫通孔262a同士を隔てる周隔壁263は、ファン径方向へ放射状に延びる形状を成して設けられている。 The portion of the air conditioning case 12 surrounding the rectifying mechanism 26 is formed in a cylindrical shape centered on the fan axis line CL1. The plurality of through holes 262 a formed in the rectifying mechanism 26 are arranged radially in the fan radial direction. Therefore, a plurality of rows of through holes 262a aligned in the fan circumferential direction DRc are formed concentrically around the fan axis CL1. The circumferential partition walls 263 separating the through holes 262a adjacent to each other in the fan circumferential direction DRc are provided so as to extend radially in the fan radial direction.
 また、整流機構26は、その周隔壁263のほかに、ファン径方向に隣接する貫通孔262a同士を隔てる径隔壁267を有している。この径隔壁267は、ファン軸線CL1を中心とした円筒形状を成している。周隔壁263および径隔壁267は何れも板状であり、複数の貫通孔262aのうち互いに隣り合う貫通孔262a同士の間を仕切る仕切板として機能する。 Further, in addition to the circumferential partition 263, the flow straightening mechanism 26 has a radial partition 267 separating the through holes 262a adjacent in the fan radial direction. The diameter partition wall 267 has a cylindrical shape centered on the fan axis CL1. Each of the circumferential partition wall 263 and the radial partition wall 267 has a plate-like shape, and functions as a partition plate that divides between the through holes 262a adjacent to each other among the plurality of through holes 262a.
 詳細に説明すると、空調ケース12は、ケース内通路123を形成する内壁面の一部として、ケース内通路123のうち整流機構26が配置された部分にファン径方向の外側から面する整流機構周囲面123fを有している。そして、その整流機構周囲面123fは、ファン軸方向DRaに直交する断面がファン軸線CL1を中心とした円形状を成し、且つ整流機構26を取り囲むように形成されている。 Explaining in detail, the air conditioning case 12 is a part of the inner wall surface forming the in-case passage 123, and faces the portion of the in-case passage 123 where the rectifying mechanism 26 is disposed from the outside in the fan radial direction. It has a face 123f. The rectifying mechanism peripheral surface 123 f is formed so that a cross section orthogonal to the fan axial direction DRa forms a circular shape centering on the fan axis line CL 1 and surrounds the rectifying mechanism 26.
 そして、図17および図18に示すように、整流機構26に設けられた複数の貫通孔262aは、空調ケース12の整流機構周囲面123fに沿ってファン軸線CL1まわりに並ぶように配置されている。 And as shown in FIG. 17 and FIG. 18, the plurality of through holes 262a provided in the rectifying mechanism 26 are arranged along the rectifying mechanism peripheral surface 123f of the air conditioning case 12 so as to be lined around the fan axis CL1. .
 また、ファン軸方向DRaに直交する断面において複数の貫通孔262aの形状はそれぞれ、上述のように矩形状を成すが、正確には図17に示すとおりである。すなわち、その複数の貫通孔262aの断面形状はそれぞれ、内側円弧部262gと外側円弧部262hと一方側直線部262iと他方側直線部262jとで囲まれる形状である。 Further, in the cross section orthogonal to the fan axial direction DRa, the shapes of the plurality of through holes 262a each have a rectangular shape as described above, but they are exactly as shown in FIG. That is, the cross-sectional shape of the plurality of through holes 262a is a shape surrounded by the inner arc portion 262g, the outer arc portion 262h, the one side linear portion 262i, and the other side linear portion 262j.
 そして、ファン軸方向DRaに直交する上記断面において、その内側円弧部262gは、ファン軸線CL1を中心とした円弧形状を成している。また、外側円弧部262hは、その内側円弧部262gに対しファン径方向の外側に設けられ内側円弧部262gと同心の円弧形状を成している。また、一方側直線部262iは、送風ファン201の中心であるファン軸線CL1に向かってファン径方向に延びる直線状を成し、且つ内側円弧部262gの一端と外側円弧部262hの一端とを結んでいる。また、他方側直線部262jは、ファン軸線CL1に向かってファン径方向に延びる直線状を成し、且つ内側円弧部262gの他端と外側円弧部262hの他端とを結んでいる。これらの内側円弧部262g、外側円弧部262h、一方側直線部262i、および他方側直線部262jはそれぞれ、貫通孔262aに面する孔壁面を構成する。 Then, in the cross section orthogonal to the fan axial direction DRa, the inner arc portion 262g has an arc shape centering on the fan axial line CL1. Further, the outer arc portion 262 h is provided on the outer side in the fan radial direction with respect to the inner arc portion 262 g and has an arc shape concentric with the inner arc portion 262 g. Further, one side linear portion 262i has a linear shape extending in the fan radial direction toward fan axis line CL1 which is the center of blower fan 201, and connects one end of inner arc portion 262g and one end of outer arc portion 262h. It is. Further, the other side straight portion 262j has a linear shape extending in the fan radial direction toward the fan axis line CL1, and connects the other end of the inner arc portion 262g and the other end of the outer arc portion 262h. The inner arc portion 262g, the outer arc portion 262h, the one side straight portion 262i, and the other side straight portion 262j respectively constitute a hole wall surface facing the through hole 262a.
 このような形状を成す複数の貫通孔262aは、その貫通孔262aがファン軸線CL1まわりに周隔壁263を介して環状に並んで配置された環状貫通孔群262kを形成している。そして、その環状貫通孔群262kは、ファン軸線CL1を中心とした同心状に複数形成され、ファン径方向に径隔壁267を介し隣接して設けられている。例えば本実施形態では、その環状貫通孔群262kは2つ設けられている。 The plurality of through holes 262a having such a shape form an annular through hole group 262k in which the through holes 262a are arranged annularly around the fan axial line CL1 via the circumferential partition wall 263. A plurality of annular through hole groups 262k are formed concentrically around the fan axial line CL1 and provided adjacent to each other in the fan radial direction via the diameter partition 267. For example, in the present embodiment, two annular through holes 262k are provided.
 また、整流機構26に設けられた複数の貫通孔262aは全て、その貫通孔262aの通路断面積が互いに同じになるように形成されている。その貫通孔262aはファン軸方向DRaに延びる孔であるので、貫通孔262aの通路断面積とは、ファン軸方向DRaに直交する断面における貫通孔262aの断面積である。 Further, the plurality of through holes 262a provided in the flow straightening mechanism 26 are all formed such that the passage cross sectional areas of the through holes 262a are the same. Since the through hole 262a is a hole extending in the fan axial direction DRa, the passage cross sectional area of the through hole 262a is a cross sectional area of the through hole 262a in a cross section orthogonal to the fan axial direction DRa.
 また、複数の周隔壁263はそれぞれ、一定の板厚で延びる板状を成し、複数の周隔壁263は、その周隔壁263の全てで周隔壁263の板厚が同じになるように形成されている。更に、径隔壁267も、一定の板厚で延びる板状を成している。そして、その径隔壁267は、その径隔壁267の板厚が周隔壁263の板厚と同じになるように形成されている。 Each of the plurality of circumferential partitions 263 has a plate shape extending with a constant thickness, and the plurality of circumferential partitions 263 are formed such that the thickness of the circumferential partitions 263 is the same for all of the circumferential partitions 263. ing. Furthermore, the radial partition 267 also has a plate shape extending with a constant thickness. The radial partition 267 is formed such that the thickness of the radial partition 267 is the same as the thickness of the circumferential partition 263.
 このように構成された整流機構26は、送風ファン201から吹き出された空気を複数の貫通孔262aに通過させることにより、上記旋回流を抑制する。 The rectifying mechanism 26 configured as described above suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the plurality of through holes 262a.
 以上説明したことを除き、本実施形態は第6実施形態と同様である。そして、本実施形態では、前述の第6実施形態と共通の構成から奏される効果を第6実施形態と同様に得ることができる。 The present embodiment is the same as the sixth embodiment except for the points described above. And in this embodiment, the effect show | played from the structure common to above-mentioned 6th Embodiment can be acquired similarly to 6th Embodiment.
 また、本実施形態によれば、整流機構26に形成された複数の貫通孔262aはそれぞれ、ファン軸方向DRaに直交する断面が矩形状を成す矩形状孔である。そして、その複数の貫通孔262aは、ファン径方向へ放射状に配列されている。従って、本実施形態のように空調ケース12のうち整流機構26の配置部分の形状を送風ファン201の外形に合わせて円筒状にした場合に、複数の貫通孔262aの通路断面積を互いに均一にしやすい。そのため、例えば、整流機構26を通過する空気の風速分布のばらつきを抑えてその風速分布を整えることができる。そして、その風速分布のばらつきが抑えられると、整流機構26に対する空気流れ下流側において風流れの乱れも抑えられる。 Further, according to the present embodiment, each of the plurality of through holes 262a formed in the rectifying mechanism 26 is a rectangular hole having a rectangular cross section orthogonal to the fan axial direction DRa. The plurality of through holes 262a are arranged radially in the fan radial direction. Therefore, when the shape of the portion of the air conditioning case 12 in which the rectifying mechanism 26 is disposed is made cylindrical according to the outer shape of the blower fan 201 as in the present embodiment, the passage cross-sectional areas of the plurality of through holes 262a are made uniform. Cheap. Therefore, for example, the variation of the wind speed distribution of the air passing through the rectifying mechanism 26 can be suppressed, and the wind speed distribution can be adjusted. And if the variation in the wind speed distribution is suppressed, the disturbance of the wind flow on the downstream side of the air flow with respect to the rectifying mechanism 26 is also suppressed.
 また、本実施形態によれば、図17および図18に示すように、空調ケース12は、ケース内通路123のうち整流機構26が配置された部分にファン径方向の外側から面する整流機構周囲面123fを有している。その整流機構周囲面123fは、ファン軸方向DRaに直交する断面がファン軸線CL1を中心とした円形状を成し、且つ整流機構26を取り囲むように形成されている。また、整流機構26に設けられた複数の貫通孔262aは、空調ケース12の整流機構周囲面123fに沿ってファン軸線CL1まわりに並ぶように配置されている。そして、整流機構26は、送風ファン201から吹き出された空気を複数の貫通孔262aに通過させることにより、上記旋回流を抑制する。 Further, according to the present embodiment, as shown in FIG. 17 and FIG. 18, the air conditioning case 12 faces from the outside in the radial direction of the fan to the portion of the in-case passage 123 where the rectifying mechanism 26 is disposed. It has a face 123f. The rectifying mechanism peripheral surface 123 f is formed such that a cross section orthogonal to the fan axial direction DRa forms a circular shape centered on the fan axis line CL 1 and surrounds the rectifying mechanism 26. Further, the plurality of through holes 262 a provided in the rectifying mechanism 26 are arranged along the rectifying mechanism peripheral surface 123 f of the air conditioning case 12 so as to be aligned around the fan axis line CL 1. Then, the flow straightening mechanism 26 suppresses the swirling flow by causing the air blown out from the blower fan 201 to pass through the plurality of through holes 262a.
 ここで、その旋回流は、旋回流を構成する空気流れが、整流機構26の貫通孔262aに面する各々の孔壁面に沿わされることで抑制される。 Here, the swirling flow is suppressed by the air flow constituting the swirling flow being along the wall surface of each hole facing the through hole 262 a of the flow control mechanism 26.
 そして、複数の貫通孔262aは、上記のようにファン軸線CL1まわりに並ぶように配置されている。そのため、その旋回流を抑制する各貫通孔262aの孔壁面が旋回流の旋回向き(具体的には、ファン周方向DRcを向いた向き)に対して相対的に成す壁面向きを何れの貫通孔262aでも同じにするように、各貫通孔262aを形成しやすい。 The plurality of through holes 262a are arranged side by side around the fan axis CL1 as described above. Therefore, the wall surface of each through hole 262a which suppresses the swirling flow is the wall surface direction relative to the swirling direction of the swirling flow (specifically, the direction toward the fan circumferential direction DRc) whichever through hole It is easy to form each through-hole 262a so that it may be made the same also in 262a.
 従って、整流機構26が有する整流性を維持しながら、整流機構26の通風抵抗を整流機構26の全体で均一化することが容易である。そして、その通風抵抗の均一化が図れれば、風流れの乱れも抑えられるので、その風流れの圧損を低減することができる。 Therefore, it is easy to equalize the ventilation resistance of the rectifying mechanism 26 throughout the rectifying mechanism 26 while maintaining the rectifying property of the rectifying mechanism 26. And if the ventilation resistance can be made uniform, the disturbance of the wind flow can be suppressed, so that the pressure loss of the wind flow can be reduced.
 更に、本実施形態によれば、複数の貫通孔262aは全て、その貫通孔262aの通路断面積が互いに同じになるように形成されている。そして、径隔壁267および複数の周隔壁263は、それらの隔壁263、267の全てで隔壁263、267の板厚が互いに同じになるように形成されている。従って、これらのことからも、整流機構26の通風抵抗を整流機構26の全体で均一化することが可能であると言える。 Furthermore, according to the present embodiment, the plurality of through holes 262a are all formed such that the cross-sectional areas of the through holes 262a are the same. The radial partition 267 and the plurality of circumferential partitions 263 are formed such that the plate thickness of the partitions 263 and 267 is the same for all of the partitions 263 and 267. Therefore, it can be said from these things that the ventilation resistance of the rectifying mechanism 26 can be made uniform throughout the rectifying mechanism 26.
 (第9実施形態)
 次に、第9実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
The ninth embodiment
Next, a ninth embodiment will be described. In the present embodiment, points different from the first embodiment described above will be mainly described.
 図12および図19に示すように、本実施形態では第1実施形態と同様に、整流機構26は、ファン径方向で内側から外側へと延びる複数の整流板261を有している。そして、複数のフェイス吹出口126は、ファン軸線CL1に直交する一方向である所定配置方向DRyにおいてファン軸線CL1から一方側へずれた位置に配置されている。例えばその所定配置方向DRyは車両上下方向DR2に限らないが、本実施形態では車両上下方向DR2に一致しており、所定配置方向DRyの一方側は上側で、所定配置方向DRyの他方側は下側である。 As shown in FIGS. 12 and 19, in the present embodiment, as in the first embodiment, the rectifying mechanism 26 has a plurality of rectifying plates 261 extending from the inside to the outside in the fan radial direction. The plurality of face air outlets 126 are arranged at a position deviated from the fan axis CL1 to one side in a predetermined arrangement direction DRy which is one direction orthogonal to the fan axis CL1. For example, the predetermined arrangement direction DRy is not limited to the vehicle vertical direction DR2, but in the present embodiment, it coincides with the vehicle vertical direction DR2, one side of the predetermined arrangement direction DRy is the upper side, and the other side of the predetermined arrangement direction DRy is the lower It is the side.
 また、図19に示すように、複数のフェイス吹出口126は、ファン軸方向DRaに交差する吹出口並び方向DRxに並んで設けられている。例えばその吹出口並び方向DRxは車両幅方向DR3に限らないが、本実施形態では車両幅方向DR3に一致している。 Further, as shown in FIG. 19, the plurality of face air outlets 126 are provided side by side in the air outlet line alignment direction DRx intersecting with the fan axial direction DRa. For example, the blower outlet alignment direction DRx is not limited to the vehicle width direction DR3, but in the present embodiment, it matches the vehicle width direction DR3.
 また、空調ケース12は複数の吹出口境界部126aを有し、その吹出口境界部126aは、複数のフェイス吹出口126のうち互いに隣り合うフェイス吹出口126同士の間に設けられ、そのフェイス吹出口126同士を隔てている。詳細に表現すれば、その吹出口境界部126aは、フェイス吹出口126のうちケース内通路123に対して連結している連結部分同士の間に設けられ、その連結部分同士を隔てている。 Further, the air conditioning case 12 has a plurality of air outlet boundaries 126a, and the air outlet boundary 126a is provided between the face air outlets 126 adjacent to each other among the plurality of face air outlets 126, The outlets 126 are separated from each other. Expressed in detail, the outlet boundary 126a is provided between the connecting portions of the face outlet 126 connected to the in-case passage 123, and separates the connecting portions.
 また、複数の整流板261は、ファン径方向の外側の端に、外側端部261cをそれぞれ有している。更に、その複数の外側端部261cのうちの何れかは、所定配置方向DRyにおいてファン軸線CL1の位置よりも一方側に位置する一方側端部261dとして設けられている。この一方側端部261dは何れも、送風ファン201に対し径方向外側に位置している。 Further, the plurality of flow straightening plates 261 each have an outer end portion 261 c at the outer end in the fan radial direction. Furthermore, any one of the plurality of outer end portions 261c is provided as one side end portion 261d located on one side of the position of the fan axis CL1 in the predetermined arrangement direction DRy. Each one side end portion 261 d is located radially outward with respect to the blower fan 201.
 以上述べた点では、本実施形態は第1実施形態と同様である。このようなことに加え、本実施形態では第1実施形態と異なり、吹出口並び方向DRxにおいて吹出口境界部126aの位置は各々、整流板261の一方側端部261dの位置に合っている。この吹出口境界部126aの位置が一方側端部261dの位置に合っていることとは、両者に位置が完全に一致していることに限らず、略一致していることであってもよい。このことは後述の実施形態でも同様である。 In the points described above, the present embodiment is the same as the first embodiment. In addition to this, unlike the first embodiment, in the present embodiment, the positions of the outlet boundary 126a in the outlet alignment direction DRx are aligned with the positions of the one side end 261d of the straightening vane 261, respectively. The fact that the position of the outlet boundary 126a matches the position of the one side end 261d does not necessarily mean that the positions completely match each other, and it may be that they substantially match. . The same applies to the embodiments described later.
 上述のように第1実施形態と異なると述べた点を除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment, except for the points described as different from the first embodiment as described above. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 また、本実施形態によれば、吹出口並び方向DRxにおいて空調ケース12の吹出口境界部126aの位置は、整流板261の一方側端部261dの位置に合っている。従って、吹出口境界部126aの位置が一方側端部261dの位置とは無関係に配置される場合と比較して、複数のフェイス吹出口126へ風を滑らかに向かわせ、複数のフェイス吹出口126へ満遍なく風を送る配風性を向上させることが可能である。例えば、複数のフェイス吹出口126の各々へ向けて図19の矢印FLaのように風を向かわせる風向ガイドとしての機能を、整流機構26に備えさせることが可能である。 Further, according to the present embodiment, the position of the outlet boundary 126 a of the air conditioning case 12 in the outlet alignment direction DRx is aligned with the position of the one side end 261 d of the flow control plate 261. Therefore, as compared with the case where the position of the outlet boundary 126a is disposed independently of the position of the one end 261d, the wind is directed smoothly to the plurality of face outlets 126, and the plurality of face outlets 126 are arranged. It is possible to improve the distribution of winds evenly. For example, the rectifying mechanism 26 can be provided with a function as a wind direction guide that directs the wind toward each of the plurality of face air outlets 126 as indicated by an arrow FLa in FIG. 19.
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第5実施形態と組み合わせることも可能である。 Although this embodiment is a modification based on the first embodiment, it is also possible to combine this embodiment with the above-described fifth embodiment.
 (第10実施形態)
 次に、第10実施形態について説明する。本実施形態では、前述の第4実施形態と異なる点を主として説明する。
Tenth Embodiment
Next, a tenth embodiment will be described. In the present embodiment, differences from the above-described fourth embodiment will be mainly described.
 図12および図20に示すように、本実施形態の車両用空調ユニット10では、フェイス吹出口126およびデフロスタ吹出口127が第4実施形態と比較して上側へずれて設けられている。 As shown in FIGS. 12 and 20, in the vehicle air conditioning unit 10 of the present embodiment, the face outlet 126 and the defroster outlet 127 are provided to be shifted upward as compared with the fourth embodiment.
 この点では本実施形態は第4実施形態と異なるが、それ以外では第4実施形態と同様である。すなわち、本実施形態では第4実施形態と同様に、整流機構26は、複数の整流通路26aを区画形成する整流板261を有している。そして、複数のフェイス吹出口126は、第9実施形態で説明したように設けられ、空調ケース12は、第9実施形態で説明したように複数の吹出口境界部126aを有している。 In this respect, the present embodiment differs from the fourth embodiment, but is otherwise the same as the fourth embodiment. That is, in the present embodiment, as in the fourth embodiment, the rectifying mechanism 26 has a rectifying plate 261 that defines a plurality of rectifying passages 26a. The plurality of face outlets 126 are provided as described in the ninth embodiment, and the air conditioning case 12 has a plurality of outlet boundaries 126a as described in the ninth embodiment.
 また、複数の整流板261のうちの何れかは、所定配置方向DRyの一方側から他方側へ延びるように形成された所定整流板261eとして設けられている。そして、その所定整流板261eは、所定配置方向DRyの一方側の端に一方側端部261dを有し、その一方側端部261dは、所定配置方向DRyにおいてファン軸線CL1の位置よりも一方側に位置している。 Further, any one of the plurality of rectifying plates 261 is provided as a predetermined rectifying plate 261 e formed so as to extend from one side to the other side in the predetermined arrangement direction DRy. The predetermined rectifying plate 261e has one side end 261d at one end of the predetermined arrangement direction DRy, and the one side end 261d is one side of the position of the fan axis CL1 in the predetermined arrangement direction DRy. It is located in
 また、第9実施形態で説明したことと同様に、吹出口並び方向DRxにおいて吹出口境界部126aの位置は各々、所定整流板261eの一方側端部261dの位置に合っている。以上のような点において、本実施形態は第4実施形態と同様になっている。 Further, as described in the ninth embodiment, the positions of the outlet boundary 126a in the outlet alignment DRx are aligned with the positions of the one side end 261d of the predetermined straightening vane 261e. In the above point, the present embodiment is the same as the fourth embodiment.
 本実施形態では、前述の第4実施形態と共通の構成から奏される効果を第4実施形態と同様に得ることができる。 In the present embodiment, the same advantages as those of the fourth embodiment can be obtained from the configuration common to the fourth embodiment described above.
 また、本実施形態によれば、第9実施形態と同様に、吹出口並び方向DRxにおいて空調ケース12の吹出口境界部126aの位置は、一方側端部261dの位置に合っている。従って、第9実施形態と同様に、複数のフェイス吹出口126へ矢印FLaのように風を滑らかに向かわせ、複数のフェイス吹出口126への配風性を向上させることが可能である。 Further, according to the present embodiment, as in the ninth embodiment, the position of the outlet boundary 126a of the air conditioning case 12 in the outlet alignment direction DRx is aligned with the position of the one side end 261d. Therefore, as in the ninth embodiment, the wind can be smoothly directed to the plurality of face outlets 126 as indicated by an arrow FLa, and the wind distribution to the plurality of face outlets 126 can be improved.
 なお、本実施形態は第4実施形態に基づいた変形例であるが、本実施形態を前述の第5実施形態と組み合わせることも可能である。 Although the present embodiment is a modification based on the fourth embodiment, it is also possible to combine this embodiment with the above-described fifth embodiment.
 (第11実施形態)
 次に、第11実施形態について説明する。本実施形態では、前述の第6実施形態と異なる点を主として説明する。
Eleventh Embodiment
An eleventh embodiment will now be described. In the present embodiment, points different from the sixth embodiment described above will be mainly described.
 図12および図21に示すように、本実施形態では第6実施形態と同様に、整流機構26は矩形の板状を成し、複数の貫通孔262aが形成されたハニカム状の多孔材として構成されている。そして、複数のフェイス吹出口126は、第9実施形態で説明したように設けられ、空調ケース12は、第9実施形態で説明したように複数の吹出口境界部126aを有している。 As shown in FIGS. 12 and 21, in the present embodiment, as in the sixth embodiment, the flow straightening mechanism 26 has a rectangular plate shape and is configured as a honeycomb porous material in which a plurality of through holes 262a are formed. It is done. The plurality of face outlets 126 are provided as described in the ninth embodiment, and the air conditioning case 12 has a plurality of outlet boundaries 126a as described in the ninth embodiment.
 また、図21に示すように、矩形状の整流機構26は、吹出口並び方向DRxに延びる縁部264を、所定配置方向DRyの一方側に有している。その縁部264は、複数の筒状部262のうちの一部の筒状部262fが吹出口並び方向DRxに並ぶことで構成されている。 Further, as shown in FIG. 21, the rectangular flow straightening mechanism 26 has an edge 264 extending in the air outlet alignment direction DRx on one side of the predetermined arrangement direction DRy. The edge part 264 is comprised by the cylindrical part 262f of some cylindrical parts 262 being located in a line in the blower outlet alignment direction DRx.
 以上述べた点では、本実施形態は第6実施形態と同様である。このようなことに加え、本実施形態では第6実施形態と異なり、上記縁部264において、吹出口並び方向DRxでフェイス吹出口126の各々の吹出口幅Wxの範囲内に入る貫通孔262aの数は、それぞれの吹出口幅Wxを相互比較した場合に互いに揃っている。図21では、各吹出口幅Wxの範囲内に入る貫通孔262aの数はそれぞれ略2つである。 The present embodiment is the same as the sixth embodiment in the points described above. In addition to this, in the present embodiment, unlike the sixth embodiment, in the edge portion 264, the through holes 262a which are within the range of the outlet width Wx of each of the face outlets 126 in the outlet alignment direction DRx The numbers are equal to one another when the respective blower outlet widths Wx are compared with one another. In FIG. 21, the number of the through holes 262 a which fall within the range of each outlet width Wx is approximately two.
 なお、上記の吹出口幅Wxとは、詳しく言えば、吹出口並び方向DRxで複数のフェイス吹出口126の各々が占める幅である。本実施形態では、各フェイス吹出口126の吹出口幅Wxは、例えば、何れのフェイス吹出口126でも同じになっている。 In addition, said blower outlet width Wx is the width which each of several face blower outlet 126 occupies in the blower outlet row direction DRx if it says in detail. In the present embodiment, the outlet width Wx of each face outlet 126 is, for example, the same for any of the face outlets 126.
 また、上記の吹出口幅Wxの範囲内に入る貫通孔262aの数としては、整数に限らず少数もあり得る。例えば貫通孔262aの半分が吹出口幅Wx内に入っていれば、その貫通孔262aの数は0.5である。また、上記のように貫通孔262aの数が互いに揃っていることとは、その数が完全に一致していることに限らず、略一致していることであっても差し支えない。 Further, the number of the through holes 262a falling within the above-mentioned range of the outlet width Wx is not limited to an integer but may be a small number. For example, if half of the through holes 262a are within the outlet width Wx, the number of the through holes 262a is 0.5. Further, as described above, the fact that the numbers of the through holes 262a are equal to each other does not necessarily mean that the numbers completely match, but it may be that they are substantially the same.
 上述のように第6実施形態と異なると述べた点を除き、本実施形態は第6実施形態と同様である。そして、本実施形態では、前述の第6実施形態と共通の構成から奏される効果を第6実施形態と同様に得ることができる。 The present embodiment is the same as the sixth embodiment except for the point described as different from the sixth embodiment as described above. And in this embodiment, the effect show | played from the structure common to above-mentioned 6th Embodiment can be acquired similarly to 6th Embodiment.
 また、本実施形態によれば、整流機構26の縁部264において、吹出口並び方向DRxでフェイス吹出口126の各々の吹出口幅Wxの範囲内に入る貫通孔262aの数は、それぞれの吹出口幅Wxを相互比較した場合に互いに揃っている。従って、整流機構26の縁部264に含まれる貫通孔262aが吹出口幅Wxとは無関係に配置される場合と比較して、各フェイス吹出口126へ流れる空気の風量割合のばらつきを抑制することが可能である。 Further, according to the present embodiment, in the edge portion 264 of the flow straightening mechanism 26, the number of the through holes 262a in the range of the outlet width Wx of each of the face outlets 126 in the outlet alignment direction DRx The outlet widths Wx are mutually equal when compared with each other. Therefore, as compared with the case where the through holes 262a included in the edge portion 264 of the flow straightening mechanism 26 are disposed regardless of the outlet width Wx, the variation of the air volume ratio of the air flowing to each face outlet 126 is suppressed. Is possible.
 なお、本実施形態は第6実施形態に基づいた変形例であるが、本実施形態を前述の第7実施形態と組み合わせることも可能である。 Although this embodiment is a modification based on the sixth embodiment, it is also possible to combine this embodiment with the seventh embodiment described above.
 (第12実施形態)
 次に、第12実施形態について説明する。本実施形態では、前述の第8実施形態と異なる点を主として説明する。
(Twelfth embodiment)
The twelfth embodiment will now be described. In the present embodiment, differences from the above-described eighth embodiment will be mainly described.
 図22~図24に示すように、本実施形態の整流機構26は、送風ファン201に対しファン軸方向DRaの他方側に設けられた他方側部分265と、ファン周囲空間123b内に配置されたファン周囲部分266とを有している。 As shown in FIGS. 22 to 24, the rectifying mechanism 26 of the present embodiment is disposed in the other side portion 265 provided on the other side of the fan axial direction DRa with respect to the blower fan 201 and in the fan surrounding space 123b. And a fan surrounding portion 266.
 このファン周囲部分266は、他方側部分265からファン軸方向DRaの一方側へ延設されるようにして形成され、他方側部分265と一体構成になっている。詳細には、整流機構26に形成された複数の貫通孔262aはそれぞれ、他方側部分265からファン周囲部分266にわたるまで連続してファン軸方向DRaに延びている。従って、ファン周囲部分266は、送風ファン201のファン空気出口201bから吹き出された空気を、図24の矢印FLfのように他方側部分265へ導く。 The fan surrounding portion 266 is formed to extend from the other side portion 265 to one side of the fan axial direction DRa, and is integrally configured with the other side portion 265. Specifically, the plurality of through holes 262 a formed in the rectifying mechanism 26 respectively extend in the fan axial direction DRa continuously from the other side portion 265 to the fan surrounding portion 266. Accordingly, the fan surrounding portion 266 guides the air blown out from the fan air outlet 201b of the blower fan 201 to the other side portion 265 as indicated by an arrow FLf in FIG.
 また、ファン周囲部分266は、ファン径方向の外側ほどファン周囲空間123b内へ他方側部分265からファン軸方向DRaに大きく延設されるように形成されている。別言すれば、そのファン周囲部分266は、ファン軸方向DRaの一方側に一方端266fを有し、その一方端266fは、ファン径方向の外側ほどファン軸方向DRaの一方側に位置するように形成されている。 Further, the fan surrounding portion 266 is formed so as to extend from the other side portion 265 in the fan axial direction DRa to the inside of the fan surrounding space 123b as it extends to the outer side in the fan radial direction. In other words, the fan peripheral portion 266 has one end 266f on one side in the fan axial direction DRa, and the one end 266f is positioned on one side in the fan axial direction DRa toward the fan radial direction. Is formed.
 以上説明したことを除き、本実施形態は第8実施形態と同様である。そして、本実施形態では、前述の第8実施形態と共通の構成から奏される効果を第8実施形態と同様に得ることができる。 The present embodiment is the same as the eighth embodiment except as described above. And in this embodiment, the effect show | played from the structure common to above-mentioned 8th Embodiment can be acquired similarly to 8th Embodiment.
 また、本実施形態によれば、整流機構26は、送風ファン201に対しファン軸方向DRaの他方側に設けられた他方側部分265と、ファン周囲空間123b内に配置されたファン周囲部分266とを有している。そして、そのファン周囲部分266は、送風ファン201のファン空気出口201bから吹き出された空気を、図24の矢印FLfのように他方側部分265へ導く。従って、整流機構26がファン周囲部分266を有さない場合と比較して、整流機構26の整流性を良好に確保しつつ、送風ファン201から整流機構26へ流入する空気の風量分布の均一化を図りやすい。 Further, according to the present embodiment, the rectifying mechanism 26 includes the other side portion 265 provided on the other side in the fan axial direction DRa with respect to the blower fan 201, and the fan surrounding portion 266 arranged in the fan surrounding space 123b. have. Then, the fan surrounding portion 266 guides the air blown out from the fan air outlet 201b of the blower fan 201 to the other side portion 265 as indicated by an arrow FLf in FIG. Therefore, as compared with the case where the flow straightening mechanism 26 does not have the fan surrounding portion 266, the flowability distribution of air flowing from the blower fan 201 into the flow straightening mechanism 26 is made uniform while securing the straightening performance of the flow straightening mechanism 26 better. It is easy to
 (第13実施形態)
 次に、第13実施形態について説明する。本実施形態では、前述の第12実施形態と異なる点を主として説明する。
(13th Embodiment)
The thirteenth embodiment will now be described. In the present embodiment, differences from the above-described twelfth embodiment will be mainly described.
 図25に示すように、本実施形態では、整流機構26のファン周囲部分266は、周方向リブ266aを有している。ファン周囲部分266は周方向リブ266a以外の構成要素を有していてもよいが、本実施形態のファン周囲部分266は周方向リブ266aだけで構成されている。 As shown in FIG. 25, in the present embodiment, the fan surrounding portion 266 of the rectifying mechanism 26 has circumferential ribs 266 a. The fan surrounding portion 266 may have components other than the circumferential rib 266a, but in the present embodiment, the fan surrounding portion 266 is composed of only the circumferential rib 266a.
 この周方向リブ266aは、他方側部分265からファン軸方向DRaの一方側へ突き出てファン周方向DRc(図22参照)へ延びている。その周方向リブ266aは、例えば、図22の二点鎖線Lcで示すように、ファン軸線CL1まわりの全周にわたって連続して延びている。この二点鎖線Lcの長さは、ファン周方向DRcにおいて周方向リブ266aが設けられている範囲を示している。 The circumferential rib 266a protrudes from the other side portion 265 to one side in the fan axial direction DRa and extends in the fan circumferential direction DRc (see FIG. 22). The circumferential rib 266a extends continuously over the entire circumference around the fan axis line CL1, for example, as indicated by a two-dot chain line Lc in FIG. The length of the dashed-two dotted line Lc indicates the range in which the circumferential rib 266a is provided in the fan circumferential direction DRc.
 また、図25に示すように、周方向リブ266aは、ファン周囲空間123b周りに設けられた周囲ケース面123c(別言すれば、ファン周囲面123c)からファン径方向の内側へ離れた位置に設けられている。要するに、周方向リブ266aは、周囲ケース面123cに対しファン径方向の内側へ間隔を空けて配置されている。それと共に、周方向リブ266aは、送風ファン201に対しファン径方向の外側に設けられ、その送風ファン201に対してファン径方向に間隔を空けて配置されている。すなわち、本実施形態の整流機構26では、ファン径方向において周方向リブ266aに対する外側と内側との何れの側にもそれぞれ、空気通路としての貫通孔262aが設けられている。なお、上記の周囲ケース面123cとは、空調ケース12が有する内壁面であって、ファン周囲空間123bに対しファン径方向の外側から面する内壁面である。そして、その周囲ケース面123cは、整流機構周囲面123fから連続的につなかっており、例えばファン軸方向DRaに直交する断面がファン軸線CL1を中心とした円形状を成すように形成されている。 Further, as shown in FIG. 25, the circumferential rib 266a is located at a position away from the peripheral case surface 123c (in other words, the fan peripheral surface 123c) provided around the fan peripheral space 123b in the fan radial direction. It is provided. In short, the circumferential rib 266a is arranged at an interval inward in the fan radial direction with respect to the peripheral case surface 123c. At the same time, the circumferential rib 266 a is provided on the outside in the radial direction of the fan with respect to the blower fan 201, and is arranged at an interval in the radial direction of the fan with respect to the blower fan 201. That is, in the flow straightening mechanism 26 of the present embodiment, through holes 262a as air passages are provided on either the outer side or the inner side with respect to the circumferential rib 266a in the fan radial direction. The peripheral case surface 123c is an inner wall surface of the air conditioning case 12 and is an inner wall surface facing the fan peripheral space 123b from the outside in the fan radial direction. The peripheral case surface 123c is not connected continuously from the rectifying mechanism peripheral surface 123f, and for example, a cross section orthogonal to the fan axial direction DRa is formed to form a circular shape centered on the fan axial line CL1. .
 また、周方向リブ266aは、ファン軸方向DRaの一方側に先端266bを有している。そして、周方向リブ266aは、その先端266bに近いほどファン径方向の内側に位置するように曲がっている。 The circumferential rib 266a has a tip 266b on one side in the fan axial direction DRa. The circumferential rib 266a is bent so as to be positioned more inward in the fan radial direction as it is closer to the tip end 266b.
 また、ファン軸方向DRaにおいて、ファン空気出口201bの一方側の端201cは、周方向リブ266aの先端266bよりも一方側に位置している。 Further, in the fan axial direction DRa, an end 201c on one side of the fan air outlet 201b is located on one side of the tip end 266b of the circumferential rib 266a.
 以上説明したことを除き、本実施形態は第12実施形態と同様である。そして、本実施形態では、前述の第12実施形態と共通の構成から奏される効果を第12実施形態と同様に得ることができる。 The present embodiment is the same as the twelfth embodiment except as described above. Further, in the present embodiment, the same effects as those of the twelfth embodiment can be obtained from the configuration common to the twelfth embodiment described above.
 また、本実施形態によれば、周方向リブ266aは、空調ケース12が有しファン周囲空間123bに面する周囲ケース面123cから離れた位置に設けられている。従って、送風ファン201から周方向リブ266aの径方向外側へ流れる空気の風量を、周方向リブ266aによって調整することが可能である。これにより、例えば、送風ファン201から整流機構26へ流入する空気の風量分布を、ファン径方向において均一化しやすくなる。 Further, according to the present embodiment, the circumferential rib 266a is provided at a position away from the surrounding case surface 123c of the air conditioning case 12 facing the fan surrounding space 123b. Therefore, it is possible to adjust the volume of air flowing from the blower fan 201 radially outward of the circumferential rib 266a by the circumferential rib 266a. Thus, for example, the air volume distribution of the air flowing from the blower fan 201 into the flow straightening mechanism 26 can be easily made uniform in the fan radial direction.
 (第14実施形態)
 次に、第14実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
Fourteenth Embodiment
A fourteenth embodiment will now be described. In the present embodiment, points different from the first embodiment described above will be mainly described.
 図26に示すように、本実施形態では、第1実施形態と比較して、整流機構26が有する複数の整流板261がそれぞれ、ファン周囲空間123b内へ及ぶようにファン軸方向DRaの一方側へ延びている。図26では、本実施形態の整流板261のうち、第1実施形態と比較して拡大した部分が点ハッチングで示されている。 As shown in FIG. 26, in the present embodiment, compared to the first embodiment, one side of the fan axial direction DRa such that the plurality of rectifying plates 261 of the rectifying mechanism 26 extend into the fan surrounding space 123b. It extends to In FIG. 26, the enlarged part of the rectifying plate 261 of the present embodiment as compared with the first embodiment is indicated by dot hatching.
 従って、本実施形態の整流機構26も、第12実施形態と同様に、他方側部分265とファン周囲部分266とを有している。すなわち、本実施形態では、複数の整流板261はそれぞれ、他方側部分265に含まれる第1板部261fと、ファン周囲部分266に含まれる第2板部261gとを有している。そして、第1板部261fと第2板部261gは、例えば境目無く連続して一体構成となっている。 Therefore, the rectifying mechanism 26 of the present embodiment also has the other side portion 265 and the fan surrounding portion 266 as in the twelfth embodiment. That is, in the present embodiment, each of the plurality of rectifying plates 261 includes the first plate portion 261 f included in the other side portion 265 and the second plate portion 261 g included in the fan surrounding portion 266. The first plate portion 261 f and the second plate portion 261 g are, for example, continuously and integrally configured without a boundary.
 また、その第2板部261gは、ファン軸方向DRaの一方側に一方端261hを有している。その第2板部261gの一方端261hは、ファン径方向の外側ほどファン軸方向DRaの一方側に位置するように形成されている。なお、第2板部261gの一方端261hはファン周囲部分266の一方端266fでもある。 The second plate portion 261g has one end 261h on one side in the fan axial direction DRa. One end 261 h of the second plate portion 261 g is formed so as to be positioned on one side of the fan axial direction DRa toward the outer side in the fan radial direction. The one end 261 h of the second plate portion 261 g is also one end 266 f of the fan surrounding portion 266.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 The present embodiment is the same as the first embodiment except for the above description. And in this embodiment, the effect show | played from the structure common to above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 また、本実施形態によれば、第1実施形態と同様に、整流機構26は、ファン径方向で内側から外側へと延びる複数の整流板261を有している。従って、第1実施形態の整流板261(図2参照)が有する機能と同様の機能を得ることができる。 Further, according to the present embodiment, as in the first embodiment, the rectifying mechanism 26 has a plurality of rectifying plates 261 extending from the inside to the outside in the fan radial direction. Therefore, it is possible to obtain the same function as the function of the rectifying plate 261 (see FIG. 2) of the first embodiment.
 そして、本実施形態の整流機構26において複数の整流板261はそれぞれ、他方側部分265に含まれる第1板部261fと、ファン周囲部分266に含まれる第2板部261gとを有している。従って、第12実施形態と同様に、整流機構26の整流性を良好に確保しつつ、送風ファン201から整流機構26へ流入する空気の風量分布の均一化を図りやすい。 Further, in the rectifying mechanism 26 of the present embodiment, each of the plurality of rectifying plates 261 has a first plate portion 261 f included in the other side portion 265 and a second plate portion 261 g included in the fan surrounding portion 266. . Therefore, as in the twelfth embodiment, it is easy to achieve uniform air volume distribution of air flowing from the blower fan 201 into the flow straightening mechanism 26 while securing the flow straightening ability of the flow straightening mechanism 26 favorably.
 (他の実施形態)
 (1)上述の第1実施形態では図1に示すように、整流機構26は、バイパス通路125a、125bおよびヒータコア18に対し空気流れ上流側に配置されているが、これは一例である。例えば、整流機構26が、バイパス通路125a、125bおよびヒータコア18に対し空気流れ下流側に配置されていることも考え得る。このことは、上述の第2、第4、第5実施形態においても同様である。
(Other embodiments)
(1) As shown in FIG. 1 in the first embodiment described above, the rectifying mechanism 26 is disposed upstream of the bypass passages 125a and 125b and the heater core 18 in the air flow, but this is an example. For example, it may be conceivable that the rectifying mechanism 26 is disposed downstream of the bypass passages 125a and 125b and the heater core 18 in the air flow direction. The same applies to the second, fourth and fifth embodiments described above.
 (2)上述の第4実施形態では図9に示すように、整流板261は複数設けられ相互に連結されているが、相互に連結されていなくてもよいし、複数ではなく1つ設けられているだけであってもよい。例えば整流板261が1つである場合には、その整流板261は、ケース内通路123のうち整流機構26が配置された部位において2つ並んだ整流通路26aを形成する。 (2) As shown in FIG. 9 in the fourth embodiment described above, although the rectifying plates 261 are provided in a plurality and connected to each other, they may not be connected to each other, and one may be provided instead of a plurality. It may only be For example, in the case where the number of the straightening vanes 261 is one, the straightening vanes 261 form two straightening passages 26 a in the portion of the in-case passage 123 where the straightening mechanism 26 is disposed.
 (3)上述の各実施形態では例えば図1に示すように、送風ファン201は遠心ファンであるが、それに限らず例えば、軸流ファンまたは斜流ファンであっても差し支えない。 (3) In each of the embodiments described above, the blower fan 201 is a centrifugal fan as shown in FIG. 1, for example. However, the blower fan 201 is not limited thereto, and may be, for example, an axial fan or a mixed flow fan.
 (4)上述の第6実施形態では図12に示すように、フェイス吹出口126およびデフロスタ吹出口127が、第1実施形態の図1と比較して上側へずれているが、これは一例である。そのフェイス吹出口126およびデフロスタ吹出口127の上下方向位置は、図1と図12との何れの位置であってもよく、図1と図12との何れかの位置に限定されるわけでもない。このことは第6実施形態以外の実施形態でも同様である。 (4) In the above-described sixth embodiment, as shown in FIG. 12, the face outlet 126 and the defroster outlet 127 are shifted upward as compared with FIG. 1 of the first embodiment, but this is an example is there. The vertical position of the face outlet 126 and the defroster outlet 127 may be any position of FIG. 1 and FIG. 12, and is not limited to any position of FIG. 1 and FIG. . The same applies to the embodiments other than the sixth embodiment.
 (5)上述の第6実施形態では図13に示すように、複数の筒状部262の貫通孔262aは互いに同じ大きさであるが、これに限らず、複数の貫通孔262aに、他と異なる大きさの貫通孔262aが含まれていても差し支えない。すなわち、複数の貫通孔262aの通路断面積が全て同一の面積であるという必要はない。このことは第7実施形態以降の実施形態でも同様である。 (5) As shown in FIG. 13 in the sixth embodiment described above, the through holes 262a of the plurality of cylindrical portions 262 have the same size, but the present invention is not limited thereto. It does not matter if through holes 262a of different sizes are included. That is, it is not necessary that all the passage cross-sectional areas of the plurality of through holes 262a have the same area. The same applies to the seventh and subsequent embodiments.
 (6)上述の第6実施形態では図13に示すように、複数の貫通孔262aは何れも六角形孔であり同じ断面形状の孔であるが、これは一例である。例えば、複数の貫通孔262aに、例えば円形孔など他と異なる断面形状の貫通孔262aが含まれていても差し支えない。このことは第7実施形態以降の実施形態でも同様である。 (6) In the sixth embodiment described above, as shown in FIG. 13, the plurality of through holes 262a are all hexagonal holes having the same cross-sectional shape, but this is an example. For example, the plurality of through holes 262a may include, for example, through holes 262a having a cross-sectional shape different from others, such as a circular hole. The same applies to the seventh and subsequent embodiments.
 (7)上述の第9実施形態では図19に示すように、吹出口並び方向DRxは車両幅方向DR3に一致しているので、車両幅方向DR3に延びる直線に沿った方向であるが、吹出口並び方向DRxは、湾曲した曲線に沿った方向であってもよい。このことは第9実施形態以外の実施形態でも同様である。 (7) In the above-described ninth embodiment, as shown in FIG. 19, the blowout port alignment direction DRx coincides with the vehicle width direction DR3, so it is a direction along a straight line extending in the vehicle width direction DR3. The outlet alignment direction DRx may be a direction along a curved curve. The same applies to the embodiments other than the ninth embodiment.
 (8)上述の第10実施形態では図20に示すように、複数の整流板261のうちの何れかは、所定配置方向DRyの一方側から他方側へ延びるように形成された所定整流板261eとして設けられているが、これは一例である。例えば、その整流板261の全部が所定整流板261eとして設けられていても差し支えない。 (8) In the above-described tenth embodiment, as shown in FIG. 20, any one of the plurality of rectifying plates 261 is formed to extend from one side to the other side in the predetermined arrangement direction DRy. , But this is an example. For example, the whole of the rectifying plate 261 may be provided as the predetermined rectifying plate 261 e.
 (9)上述の第13実施形態において、図25の周方向リブ266aは、ファン軸線CL1まわりの全周にわたって連続して延びているが、これは一例である。例えば、その周方向リブ266aは、ファン軸線CL1まわりの全周にわたって断続して設けられていてもよい。或いは、周方向リブ266aは、ファン軸線CL1まわりの一部分にだけ設けられていてもよい。 (9) In the above-described thirteenth embodiment, the circumferential rib 266a in FIG. 25 extends continuously all around the fan axis CL1, but this is an example. For example, the circumferential rib 266a may be provided intermittently over the entire circumference of the fan axis line CL1. Alternatively, the circumferential rib 266a may be provided only in a part around the fan axis CL1.
 (10)上述の第8実施形態では図17に示すように、複数の貫通孔262aの断面形状はそれぞれ、内側円弧部262gと外側円弧部262hと一方側直線部262iと他方側直線部262jとで囲まれる形状であるが、これは一例である。例えば、その複数の貫通孔262aの断面形状はそれぞれ、台形形状であっても差し支えない。 (10) In the eighth embodiment described above, as shown in FIG. 17, the sectional shapes of the plurality of through holes 262a are the inner arc portion 262g, the outer arc portion 262h, the one side linear portion 262i, and the other side linear portion 262j. Although it is the shape enclosed by these, this is an example. For example, the cross-sectional shapes of the plurality of through holes 262a may be trapezoidal.
 (11)上述の第8実施形態では図17に示すように、径隔壁267は、その径隔壁267の板厚が周隔壁263の板厚と同じになるように形成されているが、これに限らず、径隔壁267の板厚が周隔壁263の板厚と異なっていることも考え得る。また、径隔壁267は、一定の板厚で延びる板状を成していないことも考え得る。 (11) In the eighth embodiment described above, as shown in FIG. 17, the radial partition 267 is formed so that the plate thickness of the radial partition 267 is the same as the plate thickness of the circumferential partition 263, but Not limited to this, it can be considered that the thickness of the diameter partition 267 is different from the thickness of the peripheral partition 263. It is also conceivable that the radial partition 267 does not have a plate shape extending with a constant thickness.
 また、複数の周隔壁263は、その周隔壁263の全てで周隔壁263の板厚が同じになるように形成されているが、これも一例である。例えば、整流機構26が有する複数の周隔壁263に、他と異なる板厚の周隔壁263が含まれていることも考え得る。また、周隔壁263は、一定の板厚で延びる板状を成していないことも考え得る。 The plurality of circumferential partition walls 263 are formed so that the plate thickness of the circumferential partition walls 263 is the same for all the circumferential partition walls 263, but this is also an example. For example, it can be considered that the plurality of circumferential partition walls 263 included in the rectifying mechanism 26 include the circumferential partition walls 263 having a plate thickness different from the others. In addition, it can be considered that the circumferential partition wall 263 does not have a plate shape extending with a constant thickness.
 (12)なお、本開示は、上述の実施形態に限定されることなく、種々変形して実施することができる。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (12) Note that the present disclosure is not limited to the above-described embodiment, and can be variously modified and implemented. Moreover, said each embodiment is not mutually irrelevant and can be combined suitably, unless the combination is clearly impossible. Further, in each of the above-described embodiments, it is needless to say that the elements constituting the embodiment are not necessarily essential except when clearly indicated as being essential and when it is considered to be obviously essential in principle. Yes.
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Further, in the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of constituent elements of the embodiment are mentioned, it is clearly indicated that they are particularly essential and clearly limited to a specific number in principle. It is not limited to the specific number except when it is done. Further, in the above embodiments, when referring to materials, shapes, positional relationships, etc. of constituent elements etc., unless specifically stated otherwise or in principle when limited to a specific material, shape, positional relationship, etc., etc. It is not limited to the material, the shape, the positional relationship, etc.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、整流機構は、送風ファンから吹き出された空気に送風ファンの回転によって生じた旋回流を、その吹き出された空気が整流機構に流入する前に比して抑制する。
(Summary)
According to the first aspect of the present invention shown in part or all of the above embodiments, the flow straightening mechanism is configured such that the air blown out from the air blowing fan is generated in the swirling flow generated by the rotation of the air blowing fan. It suppresses compared with before flowing into the rectification mechanism.
 また、第2の観点によれば、加熱器は、ケース内通路のうち送風ファンに対し空気流れ下流側に配置され、空気を加熱する。ケース内通路は、加熱器を迂回して空気を流す迂回通路を含む。そして、整流機構は、上記吹き出された空気のうち迂回通路に流通する空気の旋回流を、その迂回通路に流通する空気が整流機構に流入する前に比して抑制する。従って、その旋回流を弱める要因の少ない迂回通路に流通する空気に対し、旋回流を抑制する作用を整流機構に効果的に発揮させることが可能である。 Further, according to the second aspect, the heater is disposed downstream of the air flow fan with respect to the blower fan in the case internal passage, and heats the air. The in-case passage includes a bypass passage for flowing air around the heater. Then, the flow straightening mechanism suppresses the swirling flow of the air flowing in the bypass passage among the blown-out air, as compared with the case where the air flowing in the bypass flow passage flows into the flow straightening mechanism. Therefore, it is possible to make the rectifying mechanism effectively exhibit the action of suppressing the swirl flow with respect to the air flowing in the bypass passage which has few factors weakening the swirl flow.
 また、第3の観点によれば、整流機構は、ケース内通路のうち加熱器に対し空気流れ上流側に配置されている。従って、送風ファンから吹き出された空気は上記旋回流が整流機構によって抑制されてから加熱器へ流入することになる。そのため、その加熱器へ空気が流入する際の圧損を低減することが可能である。 Further, according to the third aspect, the rectifying mechanism is disposed upstream of the heater with respect to the heater in the passage in the case. Therefore, the air blown out from the blower fan flows into the heater after the swirling flow is suppressed by the rectifying mechanism. Therefore, it is possible to reduce pressure loss when air flows into the heater.
 また、第4の観点によれば、空調ケースには、その空調ケース外へ空気を吹き出す複数の吹出口が形成され、その複数の吹出口の各々には、整流機構を通過した空気が分配されて流入する。そして、その複数の吹出口は、ファン軸線の周方向では、ファン軸線まわりの全周のうち一部範囲に偏って配置されている。 Further, according to the fourth aspect, the air conditioning case is formed with a plurality of outlets for blowing air out of the air conditioning case, and the air having passed through the rectifying mechanism is distributed to each of the plurality of outlets. Flow in. The plurality of air outlets are arranged in a partial range of the entire circumference around the fan axis in the circumferential direction of the fan axis.
 また、第5の観点によれば、整流機構は、送風ファンの径方向で内側から外側へと延びる複数の整流板を有する。その複数の整流板の相互間には、ケース内通路での整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた整流通路が形成される。複数の整流板の相互間隔は径方向の外側ほど広くなっている。そして、整流機構は、送風ファンから吹き出された空気を整流通路に通過させることにより旋回流を抑制する。ここで、送風ファンから整流通路に流入した空気は径方向の外側へ移動しつつ空気流れ下流側へと流れる。従って、整流通路では、その整流通路に流れる空気の流量が維持されても、その空気の流速は複数の整流板の相互間隔の広がりに応じて低下する。そして、その流速の低下を伴って上記旋回流の抑制は進行する。そのため、旋回流の抑制に起因した圧損を低減することが可能である。 Further, according to the fifth aspect, the rectifying mechanism has a plurality of rectifying plates extending from the inside to the outside in the radial direction of the blower fan. Between the plurality of straightening vanes, there is formed a straightening passage in which air can be circulated from the upstream side of the air flow to the straightening mechanism in the case internal passage to the downstream side of the air flow. The mutual spacing between the plurality of flow straightening plates is wider toward the outside in the radial direction. The rectification mechanism suppresses the swirling flow by causing the air blown out from the blower fan to pass through the rectification passage. Here, the air that has flowed into the straightening passage from the blower fan moves radially outward while flowing toward the air flow downstream side. Therefore, in the straightening passage, even if the flow rate of air flowing through the straightening passage is maintained, the flow velocity of the air is reduced according to the spread of the mutual spacings of the plurality of straightening vanes. And the suppression of the said rotational flow advances with the fall of the flow velocity. Therefore, it is possible to reduce the pressure loss resulting from the suppression of the swirling flow.
 また、第6の観点によれば、複数の整流板はそれぞれ、径方向の外側ほど送風ファンの回転方向における順方向側に位置するように形成されている。従って、例えば各整流板が送風ファンの径方向に沿って真っ直ぐ延びている場合と比較して、旋回流を含む空気が径方向の外側へ移動するに従って、その空気の流れ方向をケース内通路の空気流れ下流側向きに緩やかに転向させることが可能である。そのため、旋回流を抑制することに起因した圧損を低減することが可能である。 Further, according to the sixth aspect, each of the plurality of flow straightening vanes is formed to be positioned on the forward direction side in the rotation direction of the blower fan as it goes to the outer side in the radial direction. Therefore, for example, as the air including the swirling flow moves radially outward as compared with the case where the straightening vanes extend straight along the radial direction of the blower fan, the air flow direction is It is possible to gently turn the air flow downstream. Therefore, it is possible to reduce the pressure loss caused by suppressing the swirling flow.
 また、第7の観点によれば、整流機構は、複数の整流通路を区画形成する整流板を有する。その複数の整流通路はそれぞれ、ケース内通路での整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた通路である。そして、整流機構は、送風ファンから吹き出された空気を整流通路に通過させることにより旋回流を抑制する。従って、整流機構を簡素な構造として、旋回流の抑制を図ることが可能である。 Further, according to the seventh aspect, the rectifying mechanism has a rectifying plate that defines a plurality of rectifying passages. Each of the plurality of straightening passages is a passage in which air can flow from the upstream side of the air flow to the straightening mechanism in the in-case passage, to the downstream side of the air flow. The rectification mechanism suppresses the swirling flow by causing the air blown out from the blower fan to pass through the rectification passage. Therefore, it is possible to aim at suppression of a swirling flow as a simple structure of a rectification mechanism.
 また、第8の観点によれば、整流板は、整流通路に面する通路壁面を有し、その通路壁面はファン軸線の軸方向に沿うように形成されている。従って、送風ファンの回転によって生じた旋回流を抑制しつつ、ファン軸線の軸方向に沿った向きに空気流れを案内することが可能である。 Further, according to the eighth aspect, the straightening vane has a passage wall surface facing the flow straightening passage, and the passage wall surface is formed along the axial direction of the fan axis. Therefore, it is possible to guide the air flow in the direction along the axial direction of the fan axis while suppressing the swirling flow generated by the rotation of the blower fan.
 また、第9の観点によれば、送風ファンから吹き出された空気を濾過するフィルタが整流機構として設けられている。従って、車両用空調ユニットが有するフィルタを整流機構としても利用し、部品点数の削減を図ることが可能である。 Further, according to the ninth aspect, a filter for filtering the air blown out from the blower fan is provided as a rectifying mechanism. Therefore, it is possible to reduce the number of parts by utilizing the filter of the air conditioning unit for vehicle as a rectifying mechanism.
 また、第10の観点によれば、送風ファンから吹き出された空気が通過する複数の通路が形成されその複数の通路を通る空気を冷却する冷却用熱交換器が、整流機構として設けられている。従って、車両用空調ユニットが有する冷却用熱交換器を整流機構としても利用し、部品点数の削減を図ることが可能である。 Further, according to the tenth aspect, there are formed a plurality of passages through which the air blown out from the blower fan passes, and a cooling heat exchanger for cooling the air passing through the plurality of passages is provided as the rectification mechanism. . Therefore, it is possible to reduce the number of parts by utilizing the heat exchanger for cooling which the air conditioning unit for a vehicle has as a rectification mechanism.
 また、第11の観点によれば、送風ファンは遠心ファンである。 Further, according to the eleventh aspect, the blower fan is a centrifugal fan.
 また、第12の観点によれば、整流機構は、軸方向に延びる貫通孔が形成された複数の筒状部を有し、その複数の筒状部は、それぞれの貫通孔が互いに並列に配置されるように設けられる。また、複数の筒状部のうち互いに隣り合う筒状部同士が互いに一体構成となることで、整流機構は構成されている。その整流機構は、上記吹き出された空気を貫通孔に通過させることにより旋回流を抑制する。従って、その旋回流を抑制して整流する整流性を良好に確保しつつ、その空気流れの整流に必要な距離を短くすることができる。そのため、空気流れ方向における整流機構の厚みを小さくすることが可能である。 Further, according to the twelfth aspect, the rectifying mechanism has a plurality of cylindrical portions in which the through holes extending in the axial direction are formed, and the plurality of cylindrical portions are arranged such that the respective through holes are parallel to each other. Provided to be Moreover, the rectification | straightening mechanism is comprised because the mutually adjacent cylindrical parts among several cylindrical parts become integral structure mutually. The rectification mechanism suppresses the swirling flow by causing the blown air to pass through the through hole. Therefore, it is possible to shorten the distance necessary for the rectification of the air flow while well securing the rectification property of suppressing and rectifying the swirling flow. Therefore, it is possible to reduce the thickness of the rectifying mechanism in the air flow direction.
 また、第13の観点によれば、貫通孔は、軸方向に直交する断面が六角形形状または円形状を成す孔である。従って、その貫通孔が形成された複数の筒状部を緻密に配置しやすく、空調ケースの剛性を整流機構によって高めることが可能である。 Further, according to the thirteenth aspect, the through hole is a hole whose cross section orthogonal to the axial direction forms a hexagonal shape or a circular shape. Therefore, it is easy to arrange | position precisely the several cylindrical part in which the through-hole was formed, and it is possible to raise the rigidity of an air-conditioning case by a rectification mechanism.
 また、第14の観点によれば、貫通孔は、軸方向に直交する断面が矩形状を成す孔であり、送風ファンの径方向へ放射状に配列されている。従って、空調ケースのうち整流機構の配置部分の形状を送風ファンの外形に合わせて円筒状にした場合に、複数の貫通孔の通路断面積を互いに均一にしやすく、整流機構を通過する空気の風速分布のばらつきを抑えてその風速分布を整えることができる。 Further, according to the fourteenth aspect, the through holes are holes whose cross sections orthogonal to the axial direction have a rectangular shape, and are arranged radially in the radial direction of the blower fan. Therefore, when the shape of the arrangement portion of the flow straightening mechanism in the air conditioning case is made cylindrical according to the outer shape of the blower fan, the passage cross sectional areas of the plurality of through holes can be easily made uniform and the wind speed of the air passing through the flow straightening mechanism It is possible to suppress the variation of the distribution and adjust the wind speed distribution.
 また、第15の観点によれば、空調ケースは、ケース内通路のうち整流機構が配置された部分に送風ファンの径方向の外側から面する整流機構周囲面を有する。その整流機構周囲面は、軸方向に直交する断面がファン軸線を中心とした円形状を成し、且つ整流機構を取り囲むように形成される。また、整流機構には、軸方向に延びる複数の貫通孔が形成され、その複数の貫通孔は、整流機構周囲面に沿ってファン軸線まわりに並ぶように配置されている。そして、整流機構は、吹き出された空気を複数の貫通孔に通過させることにより旋回流を抑制する。 Further, according to the fifteenth aspect, the air conditioning case has a flow control mechanism peripheral surface facing from the outer side in the radial direction of the blower fan in a portion of the passage in the case where the flow control mechanism is disposed. The rectifying mechanism peripheral surface is formed such that a cross section orthogonal to the axial direction has a circular shape centered on the fan axis and surrounds the rectifying mechanism. Further, a plurality of through holes extending in the axial direction are formed in the rectifying mechanism, and the plurality of through holes are arranged along the peripheral surface of the rectifying mechanism around the fan axis. The flow control mechanism suppresses the swirling flow by causing the blown air to pass through the plurality of through holes.
 ここで、その旋回流は、旋回流を構成する空気流れが、整流機構の貫通孔に面する各々の孔壁面に沿わされることで抑制される。そして、複数の貫通孔を上記のように配置すれば、その旋回流を抑制する各貫通孔の孔壁面が旋回流の旋回向き(具体的には、送風ファンの周方向向き)に対して相対的に成す壁面向きを何れの貫通孔でも同じにするように、各貫通孔を形成しやすくなる。従って、整流機構が有する整流性を維持しながら、整流機構の通風抵抗を整流機構の全体で均一化することが容易である。そして、その通風抵抗の均一化が図れれば、風流れの乱れも抑えられるので、その風流れの圧損を低減することができる。 Here, the swirling flow is suppressed by the air flow constituting the swirling flow being along the wall of each hole facing the through hole of the flow straightening mechanism. And if a plurality of through holes are arranged as described above, the hole wall surface of each through hole for suppressing the turning flow is relative to the turning direction of the turning flow (specifically, the circumferential direction of the blower fan) It becomes easy to form each through-hole so that the wall surface direction which makes it similarly may be made the same in any through-hole. Therefore, it is easy to equalize the ventilation resistance of the rectifying mechanism throughout the rectifying mechanism while maintaining the rectifying property of the rectifying mechanism. And if the ventilation resistance can be made uniform, the disturbance of the wind flow can be suppressed, so that the pressure loss of the wind flow can be reduced.
 また、第16の観点によれば、複数の貫通孔は、その貫通孔の通路断面積が互いに同じになるように形成されている。従って、整流機構の全体における通風抵抗の均一化を、上記第15の観点と比較してより十分に図ることが可能である。 Further, according to the sixteenth aspect, the plurality of through holes are formed such that the cross-sectional areas of the through holes are the same. Therefore, it is possible to more sufficiently equalize the ventilation resistance in the entire rectification mechanism as compared with the fifteenth aspect.
 また、第17の観点によれば、整流機構は、複数の貫通孔のうち互いに隣り合う貫通孔同士の間を仕切る仕切板を複数有する。そして、その複数の仕切板は、その仕切板の板厚が互いに同じになるように形成されている。従って、整流機構の全体における通風抵抗の均一化を、上記第15の観点と比較してより十分に図ることが可能である。 Further, according to the seventeenth aspect, the flow straightening mechanism has a plurality of partition plates that partition between adjacent ones of the plurality of through holes. And the some partition plate is formed so that the plate | board thickness of the partition plate may mutually become the same. Therefore, it is possible to more sufficiently equalize the ventilation resistance in the entire rectification mechanism as compared with the fifteenth aspect.
 また、第18の観点によれば、空調ケースには、ファン軸線に直交する一方向においてファン軸線から一方側へずれた位置に配置され空調ケース外へ空気を吹き出す複数の吹出口が形成されている。また、整流機構は、吹出口並び方向に延びる縁部を、上記一方向の一方側に有し、その縁部は、複数の筒状部のうちの一部の筒状部が吹出口並び方向に並ぶことで構成される。また、縁部において、吹出口並び方向で複数の吹出口の各々が占める吹出口幅の範囲内に入る貫通孔の数は、それぞれの吹出口幅を相互比較した場合に互いに揃っている。従って、整流機構の縁部に含まれる貫通孔が吹出口幅とは無関係に配置される場合と比較して、各吹出口へ流れる空気の風量割合のばらつきを抑制することが可能である。 Further, according to the eighteenth aspect, the air conditioning case is formed with a plurality of air outlets disposed at a position shifted from the fan axis to one side in one direction orthogonal to the fan axis and blowing out the air to the outside of the air conditioning case There is. In addition, the flow straightening mechanism has an edge extending in the air outlet direction on one side of the one direction, and in the edge, a part of the plurality of cylindrical portions is in the air outlet direction It consists of being lined up. Further, at the edge, the number of the through holes that fall within the range of the outlet width occupied by each of the plurality of outlets in the outlet array direction is equal to each other when the respective outlet widths are compared with each other. Therefore, as compared with the case where the through holes included in the edge portion of the flow straightening mechanism are disposed independently of the width of the air outlet, it is possible to suppress the variation of the air volume ratio of the air flowing to each air outlet.
 また、第19の観点によれば、空調ケースには、ファン軸線に直交する一方向においてファン軸線から一方側へずれた位置に配置され空調ケース外へ空気を吹き出す複数の吹出口が形成されている。また、複数の整流板が有する外側端部のうちの何れかは、上記一方向においてファン軸線の位置よりも一方側に位置する一方側端部として設けられる。また、吹出口並び方向において吹出口境界部の位置は、一方側端部の位置に合っている。従って、吹出口境界部の位置が一方側端部の位置とは無関係に配置される場合と比較して、複数の吹出口へ風を滑らかに向かわせ、複数の吹出口へ満遍なく風を送る配風性を向上させることが可能である。 Further, according to the nineteenth aspect, the air conditioning case is formed with a plurality of outlets disposed at a position shifted from the fan axis to one side in one direction orthogonal to the fan axis and blowing out air to the outside of the air conditioning case There is. Further, any one of the outer end portions of the plurality of flow straightening plates is provided as one end portion located on one side of the position of the fan axis in the one direction. Further, the position of the outlet boundary in the outlet alignment direction is aligned with the position of the one side end. Therefore, compared with the case where the position of the outlet boundary is arranged independently of the position of the one side end, the winds are directed more smoothly to the plurality of outlets and the wind is sent evenly to the plurality of outlets. It is possible to improve windiness.
 また、第20の観点によれば、空調ケースには、ファン軸線に直交する一方向において該ファン軸線から一方側へずれた位置に配置され空調ケース外へ空気を吹き出す複数の吹出口が形成されている。また、複数の整流板のうちの少なくとも何れかは、上記一方向の一方側から他方側へ延びるように形成された所定整流板として設けられる。また、その所定整流板は、上記一方向の一方側の端に一方側端部を有し、その一方側端部は、上記一方向においてファン軸線の位置よりも一方側に位置する。また、吹出口並び方向において吹出口境界部の位置は、一方側端部の位置に合っている。従って、上記第19の観点と同様に、複数の吹出口へ風を滑らかに向かわせ、複数の吹出口への配風性を向上させることが可能である。 Further, according to the twentieth aspect, the air conditioning case is provided with a plurality of outlets for blowing air out of the air conditioning case, disposed at a position shifted from the fan axis to one side in one direction orthogonal to the fan axis. ing. Further, at least one of the plurality of flow straightening plates is provided as a predetermined flow straightening plate formed to extend from one side to the other side of the one direction. The predetermined straightening vane has one side end at one end of the one direction, and the one side end is positioned on one side of the position of the fan axis in the one direction. Further, the position of the outlet boundary in the outlet alignment direction is aligned with the position of the one side end. Therefore, similarly to the nineteenth aspect, it is possible to smoothly direct the wind to the plurality of outlets, and to improve the wind distribution to the plurality of outlets.
 また、第21の観点によれば、送風ファンは、その送風ファンの回転により軸方向の一方側から空気を吸い込むと共にその吸い込んだ空気を送風ファンの径方向外側へ吹き出す遠心ファンである。そして、整流機構は、送風ファンに対し軸方向の他方側に設けられた他方側部分と、ファン周囲空間内に配置され他方側部分へ空気を導くファン周囲部分とを有している。従って、整流機構がファン周囲部分を有さない場合と比較して、整流機構の整流性を良好に確保しつつ、送風ファンから整流機構へ流入する空気の風量分布の均一化を図りやすい。 Further, according to the twenty-first aspect, the air blowing fan is a centrifugal fan which sucks in air from one side in the axial direction by the rotation of the air blowing fan and blows out the sucked air to the outside in the radial direction of the air blowing fan. The rectifying mechanism has the other side portion provided on the other side in the axial direction with respect to the blower fan, and the fan surrounding portion disposed in the fan surrounding space and guiding the air to the other side portion. Therefore, as compared with the case where the flow straightening mechanism does not have the fan surrounding portion, it is easy to achieve uniform air volume distribution of the air flowing from the blower fan into the flow straightening mechanism while securing the flow straightening of the flow straightening mechanism well.
 また、第22の観点によれば、整流機構のファン周囲部分は、他方側部分から軸方向の一方側へ突き出てファン軸線の周方向へ延びる周方向リブを有する。また、空調ケースは、ファン周囲空間に面する周囲ケース面を有し、周方向リブは、その周囲ケース面から離れた位置に設けられている。従って、送風ファンから周方向リブの径方向外側へ流れる空気の風量を、周方向リブによって調整することが可能である。 Further, according to a twenty-second aspect, the fan surrounding portion of the flow straightening mechanism has a circumferential rib that protrudes from the other side portion to one side in the axial direction and extends in the circumferential direction of the fan axis. Further, the air conditioning case has a peripheral case surface facing the fan peripheral space, and the circumferential rib is provided at a position away from the peripheral case surface. Therefore, it is possible to adjust the air volume of the air which flows to the radial outside of a circumferential rib from a blower fan by a circumferential rib.
 また、第23の観点によれば、整流機構は、送風ファンの径方向で内側から外側へと延びる複数の整流板を有する。そして、その複数の整流板はそれぞれ、整流機構の他方側部分に含まれる第1板部と、整流機構のファン周囲部分に含まれる第2板部とを有している。従って、第5の観点の整流板が有する機能と同様の機能を得ることができると共に、第21の観点と同様に、整流機構の整流性を良好に確保しつつ、送風ファンから整流機構へ流入する空気の風量分布の均一化を図りやすい。 Further, according to a twenty-third aspect, the rectifying mechanism has a plurality of rectifying plates extending from the inside to the outside in the radial direction of the blower fan. Each of the plurality of rectifier plates has a first plate portion included in the other side portion of the rectifying mechanism, and a second plate portion included in the fan peripheral portion of the rectifying mechanism. Therefore, the same function as the function of the rectifying plate of the fifth aspect can be obtained, and similarly to the twenty-first aspect, the air flows from the blower fan into the rectifying mechanism while favorably securing the rectifying property of the rectifying mechanism. Makes it easy to make the distribution of air volume uniform.

Claims (23)

  1.  車両用空調ユニットであって、
     空気が流れるケース内通路(123)が形成された空調ケース(12)と、
     ファン軸線(CL1)まわりに回転し前記ケース内通路に配置された送風ファン(201)を有し、該送風ファンの回転により前記ファン軸線の軸方向(DRa)の一方側から吸い込んだ空気を吹き出す送風機(20)と、
     前記ケース内通路のうち前記送風ファンに対し空気流れ下流側に配置され、該送風ファンから吹き出された空気が通過する整流機構(16、26、28)とを備え、
     前記送風ファンは、前記軸方向の前記一方側とは反対側である前記ファン軸線の他方側が前記ケース内通路の空気流れ下流側へ延びる向きに配置され、
     前記整流機構は、前記送風ファンから吹き出された空気に前記送風ファンの回転によって生じた旋回流を、該吹き出された空気が前記整流機構に流入する前に比して抑制する、車両用空調ユニット。
    A vehicle air conditioning unit,
    An air conditioning case (12) having an in-case passage (123) through which air flows;
    It has a blower fan (201) which rotates around the fan axis (CL1) and is disposed in the passage in the case, and blows out the air drawn in from one side of the axial direction (DRa) of the fan axis by the rotation of the blower fan. A blower (20),
    A flow straightening mechanism (16, 26, 28) disposed downstream of the air flow fan with respect to the air flow fan in the case internal passage and through which the air blown out from the air flow fan passes;
    The blower fan is disposed in a direction in which the other side of the fan axial line opposite to the one side in the axial direction extends to the air flow downstream side of the passage in the case,
    The air conditioning unit for a vehicle, wherein the flow straightening mechanism suppresses a swirling flow generated by the rotation of the air blowing fan in the air blown out from the air blowing fan as compared to before the air blown out flows into the flow straightening mechanism. .
  2.  前記ケース内通路のうち前記送風ファンに対し空気流れ下流側に配置され、空気を加熱する加熱器(18)を備え、
     前記ケース内通路は、前記加熱器を迂回して空気を流す迂回通路(125a、125b)を含み、
     前記整流機構は、前記吹き出された空気のうち前記迂回通路に流通する空気の前記旋回流を、該迂回通路に流通する空気が前記整流機構に流入する前に比して抑制する、請求項1に記載の車両用空調ユニット。
    A heater (18) disposed on the downstream side of the air flow relative to the blower fan in the case internal passage, and heating the air;
    The in-case passage includes a bypass passage (125a, 125b) for flowing air around the heater.
    The flow straightening mechanism suppresses the swirling flow of air flowing in the bypass passage among the blown-out air, as compared to before air flowing in the bypass passage flows into the flow straightening mechanism. The air conditioning unit for vehicles as described in.
  3.  前記整流機構は、前記ケース内通路のうち前記加熱器に対し空気流れ上流側に配置されている、請求項2に記載の車両用空調ユニット。 The air conditioning unit for a vehicle according to claim 2, wherein the flow straightening mechanism is disposed upstream of the heater with respect to the heater in the passage in the case.
  4.  前記空調ケースには、該空調ケース外へ空気を吹き出す複数の吹出口(126)が形成され、
     該複数の吹出口の各々には、前記整流機構を通過した空気が分配されて流入し、
     該複数の吹出口は、前記ファン軸線の周方向(DRc)では、前記ファン軸線まわりの全周のうち一部範囲(Wf)に偏って配置されている、請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
    The air conditioning case is formed with a plurality of outlets (126) for blowing air out of the air conditioning case,
    The air having passed through the flow straightening mechanism is distributed and flows into each of the plurality of outlets.
    The plurality of air outlets are arranged in a partial direction (Wf) of the entire circumference around the fan axis in the circumferential direction (DRc) of the fan axis. Air conditioning unit according to claim 1.
  5.  前記整流機構(26)は、前記送風ファンの径方向で内側から外側へと延びる複数の整流板(261)を有し、
     前記複数の整流板の相互間には、前記ケース内通路での前記整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた整流通路(26a)が形成され、
     前記複数の整流板の相互間隔は前記径方向の外側ほど広くなっており、
     前記整流機構は、前記吹き出された空気を前記整流通路に通過させることにより前記旋回流を抑制する、請求項1ないし4のいずれか1つに記載の車両用空調ユニット。
    The rectifying mechanism (26) includes a plurality of rectifying plates (261) extending radially inward from the inside of the blower fan,
    Between the plurality of straightening vanes, a straightening passage (26a) is formed in which air can flow from the upstream side to the downstream side of the air flow to the straightening mechanism in the case internal passage,
    The distance between the plurality of straightening vanes is wider toward the outside in the radial direction,
    The air conditioning unit for a vehicle according to any one of claims 1 to 4, wherein the flow straightening mechanism suppresses the swirling flow by causing the blown air to pass through the flow straightening passage.
  6.  前記複数の整流板はそれぞれ、前記径方向の外側ほど前記送風ファンの回転方向(RTf)における順方向側に位置するように形成されている、請求項5に記載の車両用空調ユニット。 The air conditioning unit for a vehicle according to claim 5, wherein each of the plurality of straightening vanes is formed to be positioned on the forward direction side in the rotation direction (RTf) of the blower fan as it goes outward in the radial direction.
  7.  前記整流機構(26)は、複数の整流通路(26a)を区画形成する整流板(261)を有し、
     前記複数の整流通路はそれぞれ、前記ケース内通路での前記整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた通路であり、
     前記整流機構は、前記吹き出された空気を前記整流通路に通過させることにより前記旋回流を抑制する、請求項1ないし4のいずれか1つに記載の車両用空調ユニット。
    The rectifying mechanism (26) has a rectifying plate (261) defining a plurality of rectifying passages (26a),
    Each of the plurality of straightening passages is a passage in which air can flow from the upstream side to the downstream side of the air flow with respect to the straightening mechanism in the case internal passage,
    The air conditioning unit for a vehicle according to any one of claims 1 to 4, wherein the flow straightening mechanism suppresses the swirling flow by causing the blown air to pass through the flow straightening passage.
  8.  前記整流板は、前記整流通路に面する通路壁面(261a、261b)を有し、
     該通路壁面は前記軸方向に沿うように形成されている、請求項5ないし7のいずれか1つに記載の車両用空調ユニット。
    The straightening vane has passage wall surfaces (261a, 261b) facing the straightening passage,
    The air conditioning unit for a vehicle according to any one of claims 5 to 7, wherein the passage wall surface is formed along the axial direction.
  9.  前記送風ファンから吹き出された空気を濾過するフィルタ(28)が前記整流機構として設けられている、請求項1ないし4のいずれか1つに記載の車両用空調ユニット。 The air conditioning unit for vehicles according to any one of claims 1 to 4, wherein a filter (28) for filtering the air blown out from the blower fan is provided as the rectifying mechanism.
  10.  前記送風ファンから吹き出された空気が通過する複数の通路(163)が形成され該複数の通路を通る空気を冷却する冷却用熱交換器(16)が、前記整流機構として設けられている、請求項1ないし4のいずれか1つに記載の車両用空調ユニット。 A plurality of passages (163) through which air blown out from the blower fan is formed, and a cooling heat exchanger (16) for cooling air passing through the plurality of passages is provided as the rectification mechanism. The air conditioning unit for vehicles as described in any one of claim 1 to 4.
  11.  前記送風ファンは遠心ファンである、請求項1ないし10のいずれか1つに記載の車両用空調ユニット。 The air conditioning unit for vehicles according to any one of claims 1 to 10, wherein the blower fan is a centrifugal fan.
  12.  前記整流機構(26)は、前記軸方向に延びる貫通孔(262a)が形成された複数の筒状部(262)を有し、
     該複数の筒状部は、それぞれの前記貫通孔が互いに並列に配置されるように設けられ、
     前記複数の筒状部のうち互いに隣り合う筒状部同士が互いに一体構成となることで、前記整流機構は構成されており、
     前記整流機構は、前記吹き出された空気を前記貫通孔に通過させることにより前記旋回流を抑制する、請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
    The rectification mechanism (26) has a plurality of cylindrical portions (262) in which the through holes (262a) extending in the axial direction are formed,
    The plurality of cylindrical portions are provided such that the respective through holes are arranged in parallel with each other,
    The flow straightening mechanism is configured such that adjacent cylindrical portions of the plurality of cylindrical portions are integrated with each other.
    The air conditioning unit for a vehicle according to any one of claims 1 to 3, wherein the flow straightening mechanism suppresses the swirling flow by letting the blown air pass through the through hole.
  13.  前記貫通孔は、前記軸方向に直交する断面が六角形形状または円形状を成す孔である、請求項12に記載の車両用空調ユニット。 The air conditioning unit for a vehicle according to claim 12, wherein the through hole is a hole in which a cross section orthogonal to the axial direction forms a hexagonal shape or a circular shape.
  14.  前記貫通孔は、前記軸方向に直交する断面が矩形状を成す孔であり、前記送風ファンの径方向へ放射状に配列されている、請求項12に記載の車両用空調ユニット。 The air conditioning unit for a vehicle according to claim 12, wherein the through hole is a hole in which a cross section orthogonal to the axial direction has a rectangular shape, and is radially arranged in the radial direction of the blower fan.
  15.  前記空調ケースは、前記ケース内通路のうち前記整流機構が配置された部分に前記送風ファンの径方向の外側から面する整流機構周囲面(123f)を有し、
     前記整流機構周囲面は、前記軸方向に直交する断面が前記ファン軸線を中心とした円形状を成し、且つ前記整流機構を取り囲むように形成され、
     前記整流機構には、前記軸方向に延びる複数の貫通孔(262a)が形成され、
     前記複数の貫通孔は、前記整流機構周囲面に沿って前記ファン軸線まわりに並ぶように配置されており、
     前記整流機構は、前記吹き出された空気を前記複数の貫通孔に通過させることにより前記旋回流を抑制する、請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
    The air conditioning case has a flow control mechanism peripheral surface (123f) facing from the outer side in the radial direction of the blower fan in a portion of the passage in the case where the flow control mechanism is disposed;
    The rectifying mechanism peripheral surface is formed such that a cross section orthogonal to the axial direction has a circular shape centered on the fan axis and surrounds the rectifying mechanism.
    A plurality of through holes (262a) extending in the axial direction are formed in the rectifying mechanism,
    The plurality of through holes are arranged around the fan axis along the surface around the flow control mechanism,
    The air conditioning unit for a vehicle according to any one of claims 1 to 3, wherein the flow straightening mechanism suppresses the swirling flow by causing the blown air to pass through the plurality of through holes.
  16.  前記複数の貫通孔は、該貫通孔の通路断面積が互いに同じになるように形成されている、請求項15に記載の車両用空調ユニット。 The vehicle air conditioning unit according to claim 15, wherein the plurality of through holes are formed such that the passage cross-sectional areas of the through holes are the same.
  17.  前記整流機構は、前記複数の貫通孔のうち互いに隣り合う貫通孔同士の間を仕切る仕切板(263、267)を複数有し、
     複数の前記仕切板は、該仕切板の板厚が互いに同じになるように形成されている、請求項15または16に記載の車両用空調ユニット。
    The flow straightening mechanism has a plurality of partition plates (263, 267) for partitioning between adjacent ones of the plurality of through holes,
    The vehicle air conditioning unit according to claim 15 or 16, wherein the plurality of partition plates are formed such that the plate thicknesses of the partition plates are equal to one another.
  18.  前記空調ケースには、前記ファン軸線に直交する一方向(DRy)において該ファン軸線から一方側へずれた位置に配置され前記空調ケース外へ空気を吹き出す複数の吹出口(126)が形成され、
     前記複数の吹出口の各々には、前記整流機構を通過した空気が分配されて流入し、
     前記複数の吹出口は、前記軸方向に交差する吹出口並び方向(DRx)に並んで設けられ、
     前記整流機構は、前記吹出口並び方向に延びる縁部(264)を、前記一方向の前記一方側に有し、
     前記縁部は、前記複数の筒状部のうちの一部の筒状部(262f)が前記吹出口並び方向に並ぶことで構成され、
     前記縁部において、前記吹出口並び方向で前記複数の吹出口の各々が占める吹出口幅(Wx)の範囲内に入る前記貫通孔の数は、それぞれの前記吹出口幅を相互比較した場合に互いに揃っている、請求項12または13に記載の車両用空調ユニット。
    The air conditioning case is formed with a plurality of outlets (126) arranged at positions shifted from the fan axis to one side in one direction (DRy) orthogonal to the fan axis, and blowing air out of the air conditioning case.
    The air having passed through the flow straightening mechanism is distributed and flows into each of the plurality of outlets.
    The plurality of blower outlets are provided side by side in a blower outlet alignment direction (DRx) intersecting the axial direction,
    The flow straightening mechanism has an edge (264) extending in the air outlet direction, on one side of the one direction;
    The edge portion is configured such that some cylindrical portions (262f) of the plurality of cylindrical portions are arranged in the air outlet line-up direction,
    At the edge, the number of the through holes within the range of the outlet width (Wx) occupied by each of the plurality of outlets in the outlet alignment direction is the case where the respective outlet widths are compared with each other. Vehicle air conditioning unit according to claim 12 or 13, which is aligned with one another.
  19.  前記整流機構(26)は、前記送風ファンの径方向で内側から外側へと延びる複数の整流板(261)を有し、
     前記複数の整流板の相互間には、前記ケース内通路での前記整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた整流通路(26a)が形成され、
     前記整流機構は、前記吹き出された空気を前記整流通路に通過させることにより前記旋回流を抑制し、
     前記空調ケースには、前記ファン軸線に直交する一方向(DRy)において該ファン軸線から一方側へずれた位置に配置され前記空調ケース外へ空気を吹き出す複数の吹出口(126)が形成され、
     前記複数の吹出口の各々には、前記整流機構を通過した空気が分配されて流入し、
     前記複数の吹出口は、前記軸方向に交差する吹出口並び方向(DRx)に並んで設けられ、
     前記空調ケースは、前記複数の吹出口のうち互いに隣り合う吹出口同士の間に設けられ該吹出口同士を隔てる吹出口境界部(126a)を有し、
     前記複数の整流板は、前記径方向の外側の端に、外側端部(261c)をそれぞれ有し、
     該複数の整流板が有する前記外側端部のうちの何れかは、前記一方向において前記ファン軸線の位置よりも前記一方側に位置する一方側端部(261d)として設けられ、
     前記吹出口並び方向において前記吹出口境界部の位置は、前記一方側端部の位置に合っている、請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
    The rectifying mechanism (26) includes a plurality of rectifying plates (261) extending radially inward from the inside of the blower fan,
    Between the plurality of straightening vanes, a straightening passage (26a) is formed in which air can flow from the upstream side to the downstream side of the air flow to the straightening mechanism in the case internal passage,
    The rectification mechanism suppresses the swirling flow by causing the blown air to pass through the rectification passage;
    The air conditioning case is formed with a plurality of outlets (126) arranged at positions shifted from the fan axis to one side in one direction (DRy) orthogonal to the fan axis, and blowing air out of the air conditioning case.
    The air having passed through the flow straightening mechanism is distributed and flows into each of the plurality of outlets.
    The plurality of blower outlets are provided side by side in a blower outlet alignment direction (DRx) intersecting the axial direction,
    The air conditioning case has an outlet boundary (126a) provided between adjacent ones of the plurality of outlets, and separating the outlets.
    The plurality of straightening vanes each have an outer end (261c) at the radially outer end,
    Any one of the outer ends of the plurality of flow straightening plates is provided as one end (261d) positioned on the one side with respect to the position of the fan axis in the one direction,
    The vehicle air conditioning unit according to any one of claims 1 to 3, wherein the position of the outlet boundary in the outlet alignment direction matches the position of the one side end.
  20.  前記整流機構(26)は、複数の整流通路(26a)を区画形成する整流板(261)を有し、
     前記複数の整流通路はそれぞれ、前記ケース内通路での前記整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた通路であり、
     前記整流機構は、前記吹き出された空気を前記整流通路に通過させることにより前記旋回流を抑制し、
     前記空調ケースには、前記ファン軸線に直交する一方向(DRy)において該ファン軸線から一方側へずれた位置に配置され前記空調ケース外へ空気を吹き出す複数の吹出口(126)が形成され、
     前記複数の吹出口の各々には、前記整流機構を通過した空気が分配されて流入し、
     前記複数の吹出口は、前記軸方向に交差する吹出口並び方向(DRx)に並んで設けられ、
     前記空調ケースは、前記複数の吹出口のうち互いに隣り合う吹出口同士の間に設けられ該吹出口同士を隔てる吹出口境界部(126a)を有し、
     前記複数の整流板のうちの少なくとも何れかは、前記一方向の前記一方側から他方側へ延びるように形成された所定整流板(261e)として設けられ、
     前記所定整流板は、前記一方向の前記一方側の端に一方側端部(261d)を有し、
     前記一方側端部は、前記一方向において前記ファン軸線の位置よりも前記一方側に位置し、
     前記吹出口並び方向において前記吹出口境界部の位置は、前記一方側端部の位置に合っている、請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
    The rectifying mechanism (26) has a rectifying plate (261) defining a plurality of rectifying passages (26a),
    Each of the plurality of straightening passages is a passage in which air can flow from the upstream side to the downstream side of the air flow with respect to the straightening mechanism in the case internal passage,
    The rectification mechanism suppresses the swirling flow by causing the blown air to pass through the rectification passage;
    The air conditioning case is formed with a plurality of outlets (126) arranged at positions shifted from the fan axis to one side in one direction (DRy) orthogonal to the fan axis, and blowing air out of the air conditioning case.
    The air having passed through the flow straightening mechanism is distributed and flows into each of the plurality of outlets.
    The plurality of blower outlets are provided side by side in a blower outlet alignment direction (DRx) intersecting the axial direction,
    The air conditioning case has an outlet boundary (126a) provided between adjacent ones of the plurality of outlets, and separating the outlets.
    At least one of the plurality of rectifying plates is provided as a predetermined rectifying plate (261e) formed to extend from the one side to the other side of the one direction,
    The predetermined current plate has one side end (261d) at the one side end of the one direction,
    The one side end portion is positioned on the one side with respect to the position of the fan axis in the one direction,
    The vehicle air conditioning unit according to any one of claims 1 to 3, wherein the position of the outlet boundary in the outlet alignment direction matches the position of the one side end.
  21.  前記送風ファンは、該送風ファンの回転により前記軸方向の前記一方側から空気を吸い込むと共に該吸い込んだ空気を前記送風ファンの径方向外側へ吹き出す遠心ファンであり、
     前記空調ケースには、前記送風ファンの径方向外側にて該送風ファンを取り囲み且つ該送風ファンから空気が流入するファン周囲空間(123b)が、前記ケース内通路の一部として形成され、
     前記空調ケースは、前記送風ファンから前記ファン周囲空間へ流入した空気を前記軸方向の前記一方側とは反対側である他方側へ導くように構成されており、
     前記整流機構は、前記送風ファンに対し前記軸方向の前記他方側に設けられた他方側部分(265)と、前記ファン周囲空間内に配置され前記他方側部分へ空気を導くファン周囲部分(266)とを有している、請求項1ないし4のいずれか1つに記載の車両用空調ユニット。
    The blower fan is a centrifugal fan that sucks in air from the one side in the axial direction by the rotation of the blower fan and blows the sucked air outward in the radial direction of the blower fan.
    In the air conditioning case, a fan surrounding space (123b) surrounding the air blowing fan radially outward of the air blowing fan and into which air flows from the air blowing fan is formed as a part of the in-case passage.
    The air conditioning case is configured to lead air flowing from the blower fan into the space surrounding the fan to the other side opposite to the one side in the axial direction.
    The flow straightening mechanism includes a second portion (265) provided on the other side in the axial direction with respect to the blower fan, and a fan circumferential portion (266 that is disposed in the fan circumferential space and guides air to the other side. The vehicle air conditioning unit according to any one of claims 1 to 4, wherein
  22.  前記ファン周囲部分は、前記他方側部分から前記軸方向の前記一方側へ突き出て前記ファン軸線の周方向(DRc)へ延びる周方向リブ(266a)を有し、
     前記空調ケースは、前記ファン周囲空間に面する周囲ケース面(123c)を有し、
     前記周方向リブは、前記周囲ケース面から離れた位置に設けられている、請求項21に記載の車両用空調ユニット。
    The fan peripheral portion has a circumferential rib (266a) projecting from the other side portion to the one side in the axial direction and extending in a circumferential direction (DRc) of the fan axis,
    The air conditioning case has a surrounding case surface (123c) facing the fan surrounding space;
    The vehicle air conditioning unit according to claim 21, wherein the circumferential rib is provided at a position separated from the peripheral case surface.
  23.  前記整流機構(26)は、前記送風ファンの径方向で内側から外側へと延びる複数の整流板(261)を有し、
     前記複数の整流板の相互間には、前記ケース内通路での前記整流機構に対する空気流れ上流側から空気流れ下流側へ空気が流通可能とされた整流通路(26a)が形成され、
     前記整流機構は、前記吹き出された空気を前記整流通路に通過させることにより前記旋回流を抑制し、
     前記複数の整流板はそれぞれ、前記他方側部分に含まれる第1板部(261f)と、前記ファン周囲部分に含まれる第2板部(261g)とを有している、請求項21に記載の車両用空調ユニット。
    The rectifying mechanism (26) includes a plurality of rectifying plates (261) extending radially inward from the inside of the blower fan,
    Between the plurality of straightening vanes, a straightening passage (26a) is formed in which air can flow from the upstream side to the downstream side of the air flow to the straightening mechanism in the case internal passage,
    The rectification mechanism suppresses the swirling flow by causing the blown air to pass through the rectification passage;
    The plurality of straightening vanes according to claim 21, wherein each of the plurality of flow straightening plates has a first plate portion (261f) included in the other side portion and a second plate portion (261g) included in the fan surrounding portion. Air conditioning unit for vehicles.
PCT/JP2018/023640 2017-07-25 2018-06-21 Vehicle air-conditioning unit WO2019021707A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018003793.2T DE112018003793T5 (en) 2017-07-25 2018-06-21 Air conditioning unit for a vehicle
CN201880049700.6A CN110997367A (en) 2017-07-25 2018-06-21 Air conditioning unit for vehicle
US16/741,052 US11407271B2 (en) 2017-07-25 2020-01-13 Air-conditioning unit for vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017143856 2017-07-25
JP2017-143856 2017-07-25
JP2018020336 2018-02-07
JP2018-020336 2018-02-07
JP2018-079112 2018-04-17
JP2018079112A JP6747469B2 (en) 2017-07-25 2018-04-17 Vehicle air conditioning unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/741,052 Continuation US11407271B2 (en) 2017-07-25 2020-01-13 Air-conditioning unit for vehicle

Publications (1)

Publication Number Publication Date
WO2019021707A1 true WO2019021707A1 (en) 2019-01-31

Family

ID=65041103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023640 WO2019021707A1 (en) 2017-07-25 2018-06-21 Vehicle air-conditioning unit

Country Status (1)

Country Link
WO (1) WO2019021707A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511594B2 (en) 2017-07-25 2022-11-29 Denso Corporation Air-conditioning unit for vehicle
DE112021003030T5 (en) 2020-05-29 2023-06-01 Denso Corporation blower device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129452U (en) * 1974-08-21 1976-03-03
JPS53101646U (en) * 1977-01-22 1978-08-16
US5545085A (en) * 1993-04-09 1996-08-13 Valeo Climatisation Heating-ventilation and/or air conditioning apparatus for the passenger space in a motor vehicle.
JPH08276722A (en) * 1995-04-06 1996-10-22 Zexel Corp Air conditioning unit
JPH09216512A (en) * 1995-01-12 1997-08-19 Denso Corp Vehicular cooler mounted on roof
JPH10205496A (en) * 1996-11-20 1998-08-04 Mitsubishi Electric Corp Ventilation fan device and ventilation fan system
FR2773110A1 (en) * 1997-12-26 1999-07-02 Valeo Climatisation Air flow control equipment especially for motor vehicle
JP2003172528A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Fan grill and outdoor equipment for air-conditioner
JP2009062035A (en) * 2007-08-10 2009-03-26 Denso Corp Air conditioning unit for vehicle air conditioning system, manufacturing method for air conditioning unit for vehicle air conditioning system, heat exchanger mounting method for air conditioning unit and use method for case for air conditioning unit
JP2009180457A (en) * 2008-01-31 2009-08-13 San Road:Kk Clean air conditioner
JP2010064608A (en) * 2008-09-10 2010-03-25 Denso Corp Fluid flow blowout apparatus
JP2010100140A (en) * 2008-10-22 2010-05-06 Denso Corp Vehicular air-conditioner
WO2016047522A1 (en) * 2014-09-25 2016-03-31 株式会社ケーヒン Air conditioning device for vehicle
JP2016044586A (en) * 2014-08-22 2016-04-04 日立アプライアンス株式会社 Outdoor unit of air conditioner
WO2016125731A1 (en) * 2015-02-03 2016-08-11 株式会社デンソー Vehicular air conditioning device
JP2016196209A (en) * 2015-04-02 2016-11-24 株式会社デンソー Vehicle air conditioning unit
WO2017022652A1 (en) * 2015-08-03 2017-02-09 株式会社ヴァレオジャパン Vehicle air-conditioning device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129452U (en) * 1974-08-21 1976-03-03
JPS53101646U (en) * 1977-01-22 1978-08-16
US5545085A (en) * 1993-04-09 1996-08-13 Valeo Climatisation Heating-ventilation and/or air conditioning apparatus for the passenger space in a motor vehicle.
JPH09216512A (en) * 1995-01-12 1997-08-19 Denso Corp Vehicular cooler mounted on roof
JPH08276722A (en) * 1995-04-06 1996-10-22 Zexel Corp Air conditioning unit
JPH10205496A (en) * 1996-11-20 1998-08-04 Mitsubishi Electric Corp Ventilation fan device and ventilation fan system
FR2773110A1 (en) * 1997-12-26 1999-07-02 Valeo Climatisation Air flow control equipment especially for motor vehicle
JP2003172528A (en) * 2001-12-06 2003-06-20 Mitsubishi Electric Corp Fan grill and outdoor equipment for air-conditioner
JP2009062035A (en) * 2007-08-10 2009-03-26 Denso Corp Air conditioning unit for vehicle air conditioning system, manufacturing method for air conditioning unit for vehicle air conditioning system, heat exchanger mounting method for air conditioning unit and use method for case for air conditioning unit
JP2009180457A (en) * 2008-01-31 2009-08-13 San Road:Kk Clean air conditioner
JP2010064608A (en) * 2008-09-10 2010-03-25 Denso Corp Fluid flow blowout apparatus
JP2010100140A (en) * 2008-10-22 2010-05-06 Denso Corp Vehicular air-conditioner
JP2016044586A (en) * 2014-08-22 2016-04-04 日立アプライアンス株式会社 Outdoor unit of air conditioner
WO2016047522A1 (en) * 2014-09-25 2016-03-31 株式会社ケーヒン Air conditioning device for vehicle
WO2016125731A1 (en) * 2015-02-03 2016-08-11 株式会社デンソー Vehicular air conditioning device
JP2016196209A (en) * 2015-04-02 2016-11-24 株式会社デンソー Vehicle air conditioning unit
WO2017022652A1 (en) * 2015-08-03 2017-02-09 株式会社ヴァレオジャパン Vehicle air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511594B2 (en) 2017-07-25 2022-11-29 Denso Corporation Air-conditioning unit for vehicle
DE112021003030T5 (en) 2020-05-29 2023-06-01 Denso Corporation blower device

Similar Documents

Publication Publication Date Title
JP6747469B2 (en) Vehicle air conditioning unit
JP7073480B2 (en) Blowers for corresponding automatic vehicle heating, ventilation and / or air conditioning
US11511594B2 (en) Air-conditioning unit for vehicle
JP2019521907A (en) Heating, ventilation and / or air conditioning equipment for motor vehicles
JP7133009B2 (en) Fans and corresponding heating, ventilation and/or air conditioning systems for motor vehicles
EP3524452A1 (en) Air conditioning unit for vehicle
WO2019021707A1 (en) Vehicle air-conditioning unit
WO2019077959A1 (en) Air conditioning device for vehicles
WO2016088361A1 (en) Vehicular air-conditioning unit
JP7150029B2 (en) Air intake housings and blowers for corresponding motor vehicle heating, ventilation and/or air conditioning systems
WO2018083940A1 (en) Air conditioning unit for vehicle
WO2017145617A1 (en) Vehicle air conditioner unit
WO2016047522A1 (en) Air conditioning device for vehicle
JP7245915B2 (en) Blowers for corresponding automotive heating, ventilation and/or air conditioning systems
US20210276397A1 (en) Air-conditioning unit for vehicle
WO2017159093A1 (en) Air-conditioning device for vehicles
WO2015129216A1 (en) Vehicular air conditioning device
JP2006159924A (en) Air conditioner for automobile
JP2022177627A (en) Air-conditioning unit for vehicle
WO2020170753A1 (en) Vehicle air-conditioning unit
JP2011207278A (en) Air conditioning case
JP5822619B2 (en) Air conditioner for vehicles
JP2001113931A (en) Integrated air conditioner for vehicle
JP2006151316A (en) Air-conditioner for vehicle
JP2011207279A (en) Air conditioning case

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839079

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18839079

Country of ref document: EP

Kind code of ref document: A1