WO2019021420A1 - Charged particle beam device, and method of adjusting charged particle beam device - Google Patents

Charged particle beam device, and method of adjusting charged particle beam device Download PDF

Info

Publication number
WO2019021420A1
WO2019021420A1 PCT/JP2017/027255 JP2017027255W WO2019021420A1 WO 2019021420 A1 WO2019021420 A1 WO 2019021420A1 JP 2017027255 W JP2017027255 W JP 2017027255W WO 2019021420 A1 WO2019021420 A1 WO 2019021420A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
condenser
sample
optical system
charged particle
Prior art date
Application number
PCT/JP2017/027255
Other languages
French (fr)
Japanese (ja)
Inventor
高志 土橋
佳史 谷口
央和 玉置
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2017/027255 priority Critical patent/WO2019021420A1/en
Publication of WO2019021420A1 publication Critical patent/WO2019021420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Definitions

  • the present invention relates to a charged particle beam apparatus, and more particularly to a charged particle beam apparatus for observing a sample by irradiating an electron beam to an observation region of the sample and a method of adjusting the charged particle beam apparatus.
  • Patent Document 1 describes in paragraph [0009] of the configuration of the charged particle beam optical system shown in FIG. It comprises an aperture stop FS1, irradiation lenses 17, 18, 19, aligners 23, 24, a scan aligner 25, an aperture 26 etc.
  • the irradiation lenses 17, 18, 19 are electron lenses, for example, circular lenses, 4 A polar lens, an octupole lens or the like is used.
  • the energy filter according to the present invention has charged particles incident along the optical axis, and the charged particles A first filter which converges in one direction perpendicular to an axis, and a charged particle which is disposed at a subsequent stage of the first filter along the optical axis and which is once converged by the first filter is incident, A second filter having the same length as the first filter along the optical axis, wherein the particle trajectory is adapted to be reversed with respect to the convergence position, the first and second filters Have electric and magnetic quadrupole fields respectively along the optical axis, and the first and second filters realize astigmatic convergence with the electric and magnetic quadrupole fields, respectively.
  • the first filter, the slit, and the second filter are provided in the direction in which the charged particles travel along the optical axis, and the charged particles are formed of the first and second filters.
  • the charged particle converges on a slit disposed at an intermediate position, the charged particle has an inverted locus with respect to the converging position, and is imaged on the slit by the first and second filters. Aberrations of charged particles are canceled out.
  • the spread angle of the electron beam is suppressed and the sample is irradiated with an electron beam having a more uniform intensity distribution in the cross section with parallel beams.
  • a configuration of an electron optical system that can be obtained is required.
  • the electron beam irradiation area is expanded until the Fresnel fringes disappear from the observation field of view, and the sample structure is recorded.
  • the region An electron beam with a predetermined amount of abnormality is to be irradiated on the surface, causing damage.
  • the distance between the viewable fields increases due to unnecessary damage, and when the view of the same area is to be observed, the movement distance of the view is compared with the case where the periphery of the view is not damaged by the electron beam irradiation.
  • the problem is that it takes a lot of time and the throughput decreases.
  • Patent Document 1 describes a primary optical system provided with a field stop FS1 and illumination lenses 17, 18 and 19.
  • fresnel fringes on a sample irradiated with an electron beam are described.
  • suppressing the occurrence of there is also no description of the configuration of an electron optical system that can irradiate a sample with an electron beam having a more uniform intensity distribution in a cross section with a parallel beam while suppressing the spread angle of the electron beam.
  • the present invention solves the problems of the prior art as described above and provides a charged optical system having an irradiation optical system capable of irradiating a parallel electron beam whose spread angle is suppressed without generating Fresnel fringes on a sample.
  • a particle beam device and a charged particle beam device adjustment method are provided.
  • an irradiation optical system for irradiating the sample with the primary electron beam and an image of transmission electrons transmitted through the sample irradiated with the primary electron beam by the irradiation optical system
  • the irradiation optical system comprises an electron gun for emitting a primary electron beam and a part of the primary electron beam emitted from the electron gun.
  • Condenser lens unit including a plurality of condenser lenses for adjusting parallelism, and an objective lens for forming an image of a stop hole by a primary electron beam adjusted to parallel light by the condenser lens unit on a sample .
  • the primary electron beam emitted from the electron gun is irradiated to the sample through the irradiation optical system, and the primary electron beam is irradiated through the irradiation optical system.
  • a method of adjusting a charged particle beam apparatus in which transmitted electrons transmitted through a sample are imaged by an imaging optical system to detect an image of the sample, irradiating the sample with the primary electron beam through the irradiation optical system
  • the primary electron beam emitted from the gun is passed through a condenser diaphragm, the trajectory of the primary electron beam passed through the condenser diaphragm is adjusted by a first deflector, and the condenser lens unit including a plurality of condenser lenses is used to perform the first deflector
  • the position of the image plane of the condenser stop by the primary electron beam and the parallelism of the primary electron beam whose orbits have been adjusted by adjusting the position of the image plane by adjusting the position of the image plane by the condenser lens unit The image of the stop capacitor according child beam so as to form an image on the sample by the objective lens.
  • FIG. 3 is a front view showing a schematic configuration of an irradiation optical system of the charged particle beam device for illustrating the principle of the present invention.
  • FIG. 3 is a front view showing a schematic configuration of an irradiation optical system of the charged particle beam device for illustrating the principle of the present invention. It is a graph showing the relationship between the 1st condenser lens focal distance and the 2nd condenser lens focal distance for making parallel irradiation conditions and condenser diaphragm imaging conditions compatible in the principle of the present invention. It is a block diagram which shows the outline
  • the image of a condenser diaphragm is an image figure of electron beam intensity distribution at the time of a Fresnel fringe appearing on a sample, without forming an image in a sample position. is there.
  • FIG. 7 is a front view showing an outline of an irradiation optical system showing a state in which the size of the image of a condenser diaphragm projected onto a sample position is changed using the first deflector in the transmission electron beam microscope according to Example 1 of the present invention.
  • (A) shows a state in which the image of the condenser diaphragm is greatly enlarged and projected onto the sample position
  • (b) shows a state in which the image of the condenser diaphragm is magnified relatively small and projected onto the sample position.
  • a plurality of irradiation lenses are provided between an aperture for restricting an electron beam and a pre-objective magnetic field, and a plurality of irradiation lenses are used in combination to perform parallel irradiation on a sample placed in the objective lens. And an image of the aperture of the stop that limits the electron beam is formed on the sample (an optical system free from Fresnel fringes).
  • the present invention makes it possible to irradiate a parallel electron beam whose spread angle is suppressed on a sample placed in an objective lens without generating Fresnel stripes in an irradiation optical system of a charged particle beam apparatus.
  • a plurality of irradiation lenses are provided between the stop for limiting the spread of the electron beam emitted from the electron gun and the front magnetic field of the objective lens, and a plurality of irradiation lenses are used in combination to parallel irradiation on the sample.
  • Electron beam irradiation according to the magnification of the observation area was made possible by imaging the diaphragm on the sample that limits the spread of the electron beam (an optical system free of Fresnel fringes) and changing the electron beam irradiation area It is a thing.
  • the present invention further provides parallel magnification on the sample and imaging of the image of the aperture of the aperture onto the sample, and by changing the electron beam irradiation area, to the magnification of the observation area. It enables electron beam irradiation according to the requirements.
  • FIG. 1 shows a configuration of an irradiation optical system 50 of a charged particle beam device for explaining the principle of the present invention, a condenser diaphragm 2 for limiting the beam diameter of an electron beam 8 emitted from an electron gun 1 and an objective lens
  • a configuration is shown in which three stages of illumination lenses 3, 4, 5 are provided between 60 pre-fields 6.
  • the parallel irradiation of the electron beam 8 onto the sample 7 placed in the objective lens 60 and the electron beam 8 are performed by using the three-stage irradiation lenses 3, 4 and 5 in combination by the method shown below.
  • An image of the image of the diaphragm hole 201 of the condenser diaphragm 2 to be restricted is formed on the sample 7 (an optical system free of Fresnel fringes), and an electron beam irradiation area is changed to obtain an electron beam according to the magnification of the observation area. I made it possible to irradiate.
  • the focal length on the side of the front magnetic field 6 (the magnetic field formed on the side of the electron gun 1 by the objective lens 60) by the objective lens 60 in one observation mode is fixed, and the three-stage irradiation lens is used in combination. It is 3,4,5.
  • the three-stage irradiation lenses 3, 4 and 5 are called a first condenser lens 3, a second condenser lens 4 and a third condenser lens 5 from the side closer to the electron gun 1.
  • the electron gun 1 Inside the electron gun 1, there are an electron source that generates electrons and an accelerating tube that accelerates the electrons to a required acceleration voltage, but the illustration thereof is omitted. Electrons are subject to the effect of electrostatic lenses by the accelerating tube. Therefore, the distance from the first condenser lens 3 to the optical electron source considered is different from the actual distance to the electron gun 1. Therefore, the position of the electron source in consideration of the influence of the electrostatic lens by the accelerating tube is referred to as a virtual light source 200. In this example, a configuration in which three condenser lenses 3, 4 and 5 are disposed below the condenser diaphragm 2 will be described. However, the number of stages of lenses disposed closer to the electron gun 1 than the condenser diaphragm 2 does not matter.
  • the focal point of the previous field 6 of the objective lens 60 from the sample 7 the distance to the d 0.
  • the distance to the focal point of the front magnetic field 6 of the objective lens 60 is not the gap center of the magnetic field lens constituting the objective lens 60 but the position of the effective main surface.
  • the distance from the focal point of the front magnetic field 6 of the objective lens 60 to the third condenser lens 5 is d 1
  • the distance from the third condenser lens 5 to the second condenser lens 4 is d 2
  • the second condenser lens 4 to the first condenser lens A distance to 3 is d 3
  • a distance from the first condenser lens 3 to the condenser diaphragm 2 is d 4
  • a distance to the virtual light source 200 is a 1G .
  • the electron beam 8 emitted from the electron gun 1 will be described with respect to the irradiation optical system 50 required to irradiate the sample 7. Assuming that the distance from the first condenser lens 3 to the image surface 501 of the virtual light source 200 is b 1 G, and the focal length of the first condenser lens 3 is f 1 G , the relationship of Formula 1 holds from the lens formula.
  • a OG is expressed as (number 6).
  • An optical system free of Fresnel fringes can determine the focal length in the following manner using the relationship shown in FIG.
  • the focal length of the first condenser lens 3 and the capacitor diaphragm second distance d 4 and the first condenser lens 3 and f 1C the distance from the first condenser lens 3 to the image plane 511 of the capacitor the diaphragm 2 as b 1C, ( It becomes a relation like number 9).
  • the distance between the second condenser lens 4 and the object surface (the image plane of the first condenser lens 3) 511 is a 2 C
  • the focal distance of the second condenser lens 4 is f 2 C
  • the distance to the image plane 512 of the second condenser lens 4 B 2 C
  • the focal distance of the third condenser lens 5 f 3 C the image of the third condenser lens 5
  • the distance to the surface 513 is b 3 C.
  • FIG. 3 shows an example in which f 3 G and f 3 C are considered to be equal specific value f 3 ′ , and the condition of the focal length satisfied by f 1 C and f 2 C , f 1 G and f 2 G is plotted.
  • the graph 300 shown in FIG. 3 shows the case where there is only one intersection. If the dotted line 301 satisfies the condition of parallel irradiation, and the solid line 302 satisfies the condition of the image formation of the condenser on the sample, the electron beam is irradiated in parallel with the intersection point of the two, and the condition does not have Fresnel stripes. .
  • the specific value f3 ' is one of the possible focal lengths of the third condenser lens 5, and the focal length of the third condenser lens 5 is several mm to several tens of m or more depending on the designed lens performance. You can change it. Therefore, by changing the focal length f3 ' of the third condenser lens 5, it is possible to obtain an infinite number of compatible conditions for achieving parallel illumination and imaging of the condenser diaphragm on the sample. Among them, aim the irradiation system magnification necessary for the optical system so that the image plane of the third condenser lens 5 coincides with the object plane 513 on the side of the front magnetic field 6 of the objective lens 60 whose focal length is fixed.
  • the optical system of the present invention can be made by
  • FIG. 4 shows a configuration of an optical system in the case of being applied to a transmission electron microscope 100 as a charged particle beam device according to the present embodiment. Note that FIG. 4 shows the configuration of a main optical system as the configuration of the transmission electron microscope 100, and the description of the lens barrel, the control system, and the operation unit is omitted.
  • the transmission electron microscope 100 shown in FIG. 4 includes an electron gun (light source) 11, a condenser diaphragm 12, a first condenser lens 13, a second condenser lens 14, a third condenser lens 15, a front magnetic field 16 of an objective lens 165, 1 and the irradiation optical system 150 provided with the second deflector 27, and the sample 17 mounted in the objective lens 165 by mounting the sample on the sample holder (not shown), and the objective lens 165
  • a rear magnetic field 20 of an objective lens 165 formed on the lower side (the side opposite to the electron gun 1), an objective diaphragm 24, a field limiting diaphragm 25, an imaging lens system 21 formed of a plurality of lenses, and a detector 22 are provided.
  • An imaging optical system 250 is provided.
  • the configuration of the irradiation optical system 150 indicated by the part numbers 11 to 15 and 165 is the part numbers 1 to 5 of the irradiation optical system 50 described in FIGS. Corresponds to 60.
  • the electron beam (primary electron beam) 18 on the irradiation system side generated by the electron gun 11 is limited by the aperture 1201 formed in the condenser aperture 12 and
  • the sample 17 placed inside the objective lens 165 is irradiated via the condenser lens 13, the second condenser lens 14, the third condenser lens 15, and the front magnetic field 16 of the objective lens 165.
  • Electrons (transmission electrons) 23 generated on the side of the imaging optical system 250 by transmitting through the sample 17 pass through the back magnetic field 20 of the objective lens, and then pass through the objective diaphragm 24 and the field limiting diaphragm 25 to form an imaging lens.
  • the light is imaged on the detector 22 via the system 21 and detected.
  • the first deflector 26 is disposed in the vicinity of the condenser diaphragm 12.
  • the first deflector 26 may be located upstream of the first condenser lens 13 and may be disposed in a manner such that the electron gun 11 upstream of the condenser diaphragm 12 or the condenser diaphragm 12 is interposed.
  • the second deflector 27 is a deflector necessary to check that the image of the aperture 1201 of the condenser aperture 12 is imaged on the sample 17 installed inside the objective lens 165. It needs to be upstream.
  • the condenser diaphragm 12 is a diaphragm that limits the size (diameter) of the electron beam irradiated to the sample 17.
  • the size (diameter) of the diaphragm hole 1201 is about several micrometers to several mm at the maximum.
  • the condenser diaphragm 12 may be energized and heated for the purpose of preventing contamination due to the irradiation of the electron beam 18.
  • the first condenser lens 13, the second condenser lens 14 and the third condenser lens 15 under the condenser aperture 12 may be either a magnetic field lens or an electric field lens, but they are not multipole lenses but lenses having rotationally symmetric fields. .
  • the objective lens 165 forming the pre-magnetic field 16 may be either a magnetic lens or an electrostatic lens. In the present embodiment, the case of a magnetic lens will be described.
  • the focal length of the front magnetic field 16 of the objective lens 165 and the rear magnetic field 20 of the objective lens 165 change according to the amount of current supplied to the objective lens 165. Normally, the conditions are established with the strengths of the front magnetic field 16 and the rear magnetic field 20 of the objective lens 165 constant (the respective focal distances are constant), but the excitation of the objective lens 165 is turned off to create a special optical system. You may make the optical system of an Example.
  • the present embodiment shows a configuration in which the imaging lens system 21 is provided with three stages of electron lenses, but the imaging lens system 21 is usually configured by one to about five stages of electron lenses.
  • the present embodiment is not limited to this. That is, the number of crossovers 19 is not limited to three as shown in FIG. 4, and there is no crossover 19 between the first condenser lens 13 and the second condenser lens 14, or the second condenser lens 14 and the third condenser lens 14. It is possible to take a plurality of combinations, such as not having the crossover 19 between the condenser lenses 15.
  • the irradiation optical system 150 is adjusted so that the image plane of the third condenser lens 5 coincides with the object plane 513 of the front magnetic field 16 of the objective lens 165 whose focal length is fixed.
  • the present invention is not limited to this, and even when the focal length of the front magnetic field 16 of the objective lens 165 is changed, the object plane of the front magnetic field 16 of the objective lens 165 accompanying the change of the focal length
  • the position of the image plane of the third condenser lens 5 may be adjusted in accordance with the fluctuation.
  • Fresnel fringes 53 appear in the observed image 51 in a general-purpose transmission electron microscope that does not use the irradiation optical system 150 according to the present embodiment.
  • the Fresnel fringes 53 can not be seen when the image plane (corresponding to 515 in FIG. 2) of the condenser diaphragm 12 is formed on the sample 17, and becomes larger as the image plane moves away from the sample 17.
  • the image 61 obtained by the detector 22 is as shown in FIG.
  • the observation target 62 exists in the peripheral visual field in the image 61 due to the influence of the Fresnel stripes 63
  • the influence of the Fresnel stripes 63 is mixed in addition to the information derived from the observation target 62 compared with the center of the visual field.
  • the first to third condenser lenses 13 to 15 are adjusted to satisfy the conditions as described with reference to FIGS.
  • the electron beam intensity in the image 71 obtained by the detector 22 is as shown in FIG.
  • the Fresnel fringes 53 do not appear, and the shape of the electron beam 18 on the sample 17 matches the shape of the aperture 1201 of the condenser aperture 12.
  • the irradiation optical system 150 since the irradiation optical system 150 can be adjusted so that the Fresnel fringes 53 are not generated, the influence on the contamination of the condenser diaphragm 12 can also be reduced. is there.
  • the image 81 shown in FIG. 8 is obtained by using the electron beam 18 in a state in which the image of the aperture hole 1201 of the condenser aperture 12 is formed on the sample 17 as described in FIG.
  • An image 81 of a region including the observation target 82 is shown.
  • data of the observation target 82 is acquired in all the regions to which the electron beam 18 is irradiated without being affected by the Fresnel fringes 63 as shown in FIG. It is possible to
  • FIG. 9 shows the configuration of an irradiation optical system 150 according to the present embodiment.
  • the electrons from the first condenser lens 13 to the third condenser lens 15 are combined by using three stages of condenser lenses disposed between the condenser diaphragm 12 and the front magnetic field 16 of the objective lens in combination. It shows a state in which the trajectory of the beam 18 is changed.
  • the first deflector 26 of the irradiation optical system 150 starts from the position where the crossover of the electron beam 18 occurs. It is preferable to arrange them as far apart as possible.
  • the first deflector 26 is disposed between the condenser diaphragm 12 and the first condenser lens 13 as a position satisfying such conditions.
  • the first deflector 26 can be placed not only between the condenser diaphragm 12 and the first condenser lens 13 but also from the position where the crossover of the electron beam trajectory occurs. It may be between the third condenser lens 15 and the front magnetic field 16 of the objective lens as a distant position.
  • one image is acquired by the detector 22 in a state where the image of the diaphragm hole 1201 of the condenser diaphragm 12 is not formed at the position where the sample 17 is installed inside the objective lens 165.
  • the second deflector 27 is vibrated in a time shorter than the imaging time required for At this time, an image captured by the detector 22 is an image 101 having an intensity distribution as shown in FIG.
  • circular intensity distributions 103 and 104 corresponding to the image of the aperture hole 1201 of the condenser aperture 12 projected to the position where the sample 17 is placed are observed. This represents the appearance of the electron beam on the sample 17 vibrating in a short time.
  • the irradiation optical system 150 is adjusted to satisfy the conditions as described with reference to FIGS. 1 to 3 so that the image of the stop hole 1201 of the condenser stop 12 is formed at the position where the sample 17 is installed.
  • the second deflector 27 is vibrated in a time shorter than the imaging time required for acquiring one image by the detector 22.
  • the image captured by the detector 22 is an image having a circular intensity distribution 112 corresponding to the image of the aperture hole 1201 of the condenser aperture 12 projected to the position where the sample 17 is installed, as shown in FIG. 111 is obtained.
  • the intensity of the sample position hardly changes and is constant even when the second deflector 27 is vibrated.
  • the irradiation optical system 150 In order to form an image of the diaphragm hole 1201 of the condenser diaphragm 12 at a position where the sample 17 is installed, the irradiation optical system 150 needs to be under the condition that the diaphragm hole 1201 of the condenser diaphragm 12 can be seen by the detector 22 .
  • a method may be considered in which the condenser diaphragm 12 in which the diaphragm hole 1201 having a smaller diameter than the diaphragm used in the observation condition is formed is prepared and used for adjustment.
  • the magnification of the imaging optical system 250 is reduced only at the time of adjustment so that the image of the diaphragm hole 1201 of the condenser diaphragm 12 can be reliably seen by the detector 22, and the image of the diaphragm hole 1201 of the condenser diaphragm 12 is
  • There is also a method of examining the imaging state As another method, there is also a method of performing adjustment by making an edge of a diaphragm hole of a condenser diaphragm visible by using an image shift disposed under an objective lens mounted on a normal electron microscope.
  • the parallel irradiation of the electron beam there is a method of changing an imaging lens system in a normal transmission electron microscope to a diffraction pattern acquisition mode and adjusting.
  • the object plane of the imaging lens system 21 is adjusted to the back focal plane of the back magnetic field 20 of the objective lens 165 in advance, and the angular distribution of the electron beam at the position where the sample 17 is placed inside the objective lens 165 Check.
  • FIG. 12 shows an example of an image 121 acquired by the detector 22 when the parallel illumination of the electron beam 18 on the sample position 17 is insufficient.
  • the image 121 acquired in this state the image 122 of the aperture hole 1201 of the condenser aperture 12 by the primary electron beam is spread in the image 121.
  • the electron beam 18 is incident on the sample position 17 at various angles.
  • the incident angle of the electron beam 18 incident on the sample position 17 is adjusted.
  • FIG. 13 shows an example of the image 131 acquired by the detector 22 in a state in which the incident angle of the electron beam 18 is adjusted and the parallel irradiation of the electron beam 18 to the sample position 17 is sufficient.
  • the electron beam 18 does not spread, and the image of the aperture 1201 of the condenser aperture 12 is observed as a spot 132 having a minute diameter.
  • the adjustment is performed by looking at the intensity of the image of the condenser diaphragm 12 formed on the back focal plane by the lower magnetic field 20 of the objective lens.
  • a method of adjusting the object plane of the imaging lens system 21 to match the back focal plane of the back magnetic field 20 of the objective lens 165 For example, an amorphous sample is placed at a position where the sample 17 is to be placed, and the excitation of the front magnetic field 16 of the objective lens 165 or the excitation of the rear magnetic field 20 of the objective lens 165 is changed to obtain a defocused image
  • FIG. 14 shows a defocused image 141 obtained by irradiating the amorphous sample placed at the position where the sample 17 is placed with the electron beam 18.
  • the defocus image 141 is divided into a plurality of small segments 143.
  • the size of the segment 143 to be divided varies depending on the number of pixels of the detector 22 and the parallelism required for the electron beam 18 incident on the amorphous sample. Generally speaking, it is easier to determine the difference in the incident angle of the electron beam 18 on the amorphous sample in the image if it is finely divided.
  • FIG. 15 shows an analysis image 151 obtained by performing Fourier transform on each of the segments 143 divided in FIG.
  • a difference appears between the Fourier transform result 152 of the central portion and the Fourier transform result 153 of the peripheral portion. It is possible to estimate the difference in parallelism between the center and the peripheral visual field from, for example, the information of the ellipticity and the defocus amount of the Fourier transform results 152 and 153 for each segment.
  • the parallelism was measured from one amorphous image, but there is also a method of using an existing diffractogram as another method.
  • ⁇ Optical system setting method> A method of reducing the conditions necessary for adjustment by linking the diameter of the aperture hole 1201 of the condenser aperture 12 and the magnification in the setting method of the irradiation optical system 150 according to the present embodiment will be described with reference to FIG.
  • the condenser diaphragm 12 adjusts the amount of irradiation current of the electron beam 18 to be irradiated to the sample 17 disposed inside the objective lens 165.
  • the condenser diaphragm 12 In order to increase the amount of irradiation current applied to the sample 17, it is necessary to increase the diameter of the aperture 1201 of the condenser aperture 12.
  • the diameter of the aperture 1201 of the condenser aperture 12 is increased, the irradiation area on the sample also becomes large, and the electron beam 18 is also irradiated to the area outside the observation field of view, damaging the sample 17. There is a possibility of
  • the first condenser lens 13 and the second condenser lens are used to irradiate the same area of the sample 17 before and after the diameter of the diaphragm hole 1201 of the condenser diaphragm 12 is increased.
  • the strength of the third condenser lens 15 is changed to adjust the reduction ratio of the irradiation optical system 150.
  • a table 160 in FIG. 16 shows a setting example of the irradiation optical system 150 when the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 of the condenser diaphragm 12 and the magnification 163 are linked.
  • this table 160 it is shown that the diameter (diaphragm diameter) 162 of the aperture hole 1201 of the condenser aperture 12 and the irradiation current amount 161 have a one-to-one relationship.
  • the magnification 163 of the irradiation optical system 150 is 1k (k is an arbitrary unit amount), 2k and 4k, the diameter (diaphragm diameter) 162 of the aperture 1201 is 1R (R is an arbitrary unit amount),
  • 2R and 4R 9 conditions can be set.
  • Table 160 the same alphabet letters are described in the column where the value obtained by multiplying the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 and the magnification 163 is the same value.
  • the required irradiation current amount 161 is three types 1I, 4I and 16I, but in the relationship between the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 of the condenser diaphragm 12 and the magnification 163 With respect to the optical conditions, five conditions of A to D may be set, and the time and effort for setting conditions can be reduced.
  • the present embodiment it is possible to simultaneously form an image of the condenser diaphragm on the sample while changing the electron beam irradiation area simultaneously while the electron beam is parallel irradiated onto the sample.
  • the first deflector 26 and the second deflector 27 are disposed with the condenser diaphragm 12 interposed therebetween.
  • the fourth condenser lens 171 is provided between them.
  • the configuration of the irradiation optical system 170 according to the present embodiment shown in FIG. 17 is the same as that of the irradiation optical system 150 shown in FIG. 4 described in the first embodiment except the fourth condenser lens 171. The description of the configuration of will be omitted.
  • the fourth condenser lens 171 is disposed between the condenser diaphragm 12 and the second deflector 27 and the electron gun 11 in the irradiation optical system 170 according to the present embodiment shown in FIG.
  • the focal position 172 of the fourth condenser lens 171 By adjusting the focal position 172 of the fourth condenser lens 171 by changing the focal length, the electron beam 178 adjusted by the first to third condenser lenses 13, 14 and 15 downstream of the condenser diaphragm 12 is It is possible to widen the adjustment range of the irradiation area and the irradiation current amount at the position where the sample 17 is installed.
  • the fourth condenser lens 171 by adjusting the excitation condition of the fourth condenser lens 171, it is also possible to control the amount of spherical aberration of the electron beam 178 at the position where the sample 17 is installed inside the objective lens 165. In addition, even when the position of the virtual light source (corresponding to 200 in FIG. 1) in the electron source of the electron gun 1 changes, the fourth condenser lens 171 is not adjusted downstream of the condenser diaphragm 12. Changes can be absorbed.
  • the adjustment range of the irradiation area of the electron beam 178 at the position where the sample 17 is installed inside the objective lens 165 is shown in FIG. Compared with the case of 1, it can be enlarged.
  • the illumination optical system 180 according to the third embodiment of the present invention will be described with reference to FIG.
  • the configuration of the irradiation optical system 180 according to the present embodiment shown in FIG. 18 the configuration of the irradiation optical system 150 shown in FIG. 4 described in the first embodiment except for the fourth condenser lens 171 and the fifth condenser lens 181 Since they are the same, the description of their configuration is omitted.
  • an irradiation optical system 180 including a five-stage condenser lens in which a fifth condenser lens 181 is disposed upstream of the fourth condenser lens 171 (on the side of the electron gun 11) as shown in FIG.
  • a virtual light source (equivalent to 200 in FIG. 1) apparently inside the electron gun 11 without changing the image plane position 182 made by the fourth condenser lens 171 It is possible to adjust the height of the
  • the diameter of the aperture hole 1201 of the condenser aperture 12 is fixed, and the sample 17 inside the objective lens 165 is used. It is possible to change the amount of irradiation current of the electron beam 188 at the installation position. As a result, it is possible to redundantly prepare a diaphragm hole 1201 having a diameter with a high degree of utilization with respect to the diameter of a diaphragm hole 1201 normally provided with four to seven condenser diaphragms 12.
  • one condenser diaphragm 12 can be used for a relatively long time, and the replacement frequency of the condenser diaphragm 12 can be reduced.
  • the irradiation area of the electron beam 188 at the position where the sample 17 is placed inside the objective lens 165 (the image It becomes possible to independently control the size of the image of the condenser diaphragm 12 and the amount of irradiation current (dose amount), and it becomes possible to irradiate the electron beam according to the observation region and the sample to be observed.
  • the configuration of the irradiation optical system 190 according to the present embodiment shown in FIG. 19 is the same as that of FIG. 4 except that the third condenser lens 15 in the configuration of the irradiation optical system 150 shown in FIG. Since the configuration is the same as that described, the description of those configurations is omitted.
  • the condenser lens group is formed by the first condenser lens 13 and the second condenser lens 14 except for the third condenser lens 15 of the illumination optical system 150 shown in FIG.
  • the image of the stop hole 1201 of the condenser stop 12 is formed at the position where the sample 17 is placed.
  • the size of the image of the aperture hole 1201 of the condenser aperture 12 (the diameter of the electron beam 18 irradiated at the location where the sample 17 is placed) formed on the position where the sample 17 is placed inside the objective lens 165 can not be changed.
  • the first condenser lens 13 and the second condenser lens 14 it is possible to irradiate a beam parallel to the position where the sample 17 is placed.
  • the present embodiment unlike the case where the third condenser lens 15 is provided as described in the first embodiment, it is not possible to obtain conditions that can cope with a plurality of wide irradiation areas, but one condenser aperture diameter On the other hand, it is possible to create irradiation conditions limited to one or two conditions.
  • the fourth condenser lens 171 described in FIG. 17 in the second embodiment is added to the configuration shown in FIG. 19, and the position of the virtual light source is changed to install the sample 17 inside the objective lens 165.
  • the size of the image (the diameter of the electron beam 18 irradiated to the sample position 17) of the aperture 1201 of the condenser aperture 12 imaged at the position can be changed.
  • the size of the image 1201 (the diameter of the electron beam 18 irradiated to the position where the sample 17 is placed) and the amount of irradiation current can be adjusted independently.
  • the present invention is not limited to the above-mentioned example, and it can be variously changed in the range which does not deviate from the gist Needless to say.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.

Abstract

A charged particle beam device provided with an irradiation optical system for irradiating a sample with a primary electron beam, and an imaging optical system for causing transmitted electrons transmitted through the sample to form an image and detecting an image of the sample, wherein the irradiation optical system is provided with: an electron gun for emitting the primary electron beam; a condenser aperture in which there is formed an aperture hole for passing a part of the primary electron beam emitted from the electron gun; a first deflector for controlling the trajectory of the primary electron beam that has passed through the aperture hole of the condenser aperture; a condenser lens unit provided with a plurality of condenser lenses for adjusting the degree of parallelism of the primary electron beam, the trajectory of which has been controlled by the first deflector; and an objective lens for forming, on the sample, an image of the aperture hole by the primary electron beam that has been adjusted to parallel light by the condenser lens unit.

Description

荷電粒子線装置及び荷電粒子線装置の調整方法Charged particle beam device and method of adjusting charged particle beam device
 本発明は、荷電粒子線装置に関するもので、試料の観察領域へ電子線を照射して試料を観察する荷電粒子線装置及び荷電粒子線装置の調整方法に関する。 The present invention relates to a charged particle beam apparatus, and more particularly to a charged particle beam apparatus for observing a sample by irradiating an electron beam to an observation region of the sample and a method of adjusting the charged particle beam apparatus.
 本発明に係る荷電粒子線装置に関する従来技術として、特許文献1には、図1に示された荷電粒子線光学系の構成の説明として段落[0009]には、「1次光学系は、視野絞りFS1、照射レンズ17、18、19、アライナ23、24、スキャン用アライナ25、アパーチャ26等で構成されている。また、照射レンズ17、18、19は電子レンズであり、例えば円形レンズ、4極子レンズ、8極子レンズ等が用いられる。」と記載されている。 As a prior art related to the charged particle beam apparatus according to the present invention, Patent Document 1 describes in paragraph [0009] of the configuration of the charged particle beam optical system shown in FIG. It comprises an aperture stop FS1, irradiation lenses 17, 18, 19, aligners 23, 24, a scan aligner 25, an aperture 26 etc. The irradiation lenses 17, 18, 19 are electron lenses, for example, circular lenses, 4 A polar lens, an octupole lens or the like is used. "
 また、特許文献2の段落[0027]には、[課題を解決するための手段]として、「本発明に係るエネルギーフィルタは、光軸に沿って荷電粒子が入射され、前記荷電粒子を前記光軸に垂直な一方向に収束する第1のフィルタと、前記光軸に沿って前記第1のフィルタの後段に配置され、前記第1のフィルタによって一旦収束された荷電粒子が入射され、前記荷電粒子の軌道が前記収束位置について反転するようになされた、前記光軸に沿って前記第1のフィルタと同じ長さを有する第2のフィルタと、を有し、前記第1及び第2のフィルタは、それぞれ、前記光軸に沿って、電気及び磁気4極場を有し、前記第1及び第2のフィルタは、前記電気及び磁気4極場によってそれぞれ非点なし収束を実現する。」と記載され、段落[0033]には、「好ましくは、前記光軸に沿って前記荷電粒子が進む方向に、前記第1のフィルタ、前記スリット、前記第2のフィルタを有し、前記荷電粒子は、前記第1及び第2のフィルタの中間の位置に配置されたスリット上において収束する。前記荷電粒子は、この収束する位置に対して反転した軌跡を有し、前記第1及び第2のフィルタによって、前記スリット上に結像した前記荷電粒子の収差はキャンセルされる。」と記載されている。 Further, in paragraph [0027] of Patent Document 2, as a [means for solving the problem], “The energy filter according to the present invention has charged particles incident along the optical axis, and the charged particles A first filter which converges in one direction perpendicular to an axis, and a charged particle which is disposed at a subsequent stage of the first filter along the optical axis and which is once converged by the first filter is incident, A second filter having the same length as the first filter along the optical axis, wherein the particle trajectory is adapted to be reversed with respect to the convergence position, the first and second filters Have electric and magnetic quadrupole fields respectively along the optical axis, and the first and second filters realize astigmatic convergence with the electric and magnetic quadrupole fields, respectively. Listed and in paragraph [0033] "Preferably, the first filter, the slit, and the second filter are provided in the direction in which the charged particles travel along the optical axis, and the charged particles are formed of the first and second filters. The charged particle converges on a slit disposed at an intermediate position, the charged particle has an inverted locus with respect to the converging position, and is imaged on the slit by the first and second filters. Aberrations of charged particles are canceled out. "
特許第04135219号公報Patent No. 04135219 特許第04074185号公報Patent No. 04074185
 荷電粒子線装置を用いて、試料上の数100nmより小さな領域に0.2mrad以下の平行度で電子ビーム(電子線)を照射して試料を観察する場合、電子ビームの断面の径を制限する絞りからの回折の影響を受け、電子ビームを照射した試料上にはフレネル縞の強度むらが現れる場合がある。このフレネル縞は、試料構造に由来しない、荷電粒子線装置本体に由来した不均一な強度分布の一つである。 When using a charged particle beam system to irradiate an electron beam (electron beam) at a degree of parallelism of 0.2 mrad or less to a region smaller than several hundred nm on a sample to observe the sample, limit the diameter of the cross section of the electron beam Under the influence of diffraction from the stop, the intensity unevenness of Fresnel stripes may appear on the sample irradiated with the electron beam. This Fresnel fringe is one of the non-uniform intensity distribution derived from the charged particle beam device main body not derived from the sample structure.
 電子ビームが照射された試料上でフレネル縞が発生すると、透過型電子顕微鏡で試料を観察する場合に、試料構造を正しく反映した透過像の記録ができなくなってしまうという問題がある。 If Fresnel stripes are generated on a sample irradiated with the electron beam, there is a problem that when observing the sample with a transmission electron microscope, it becomes impossible to record a transmission image that correctly reflects the sample structure.
 また、透過型電子顕微鏡で、試料を観察する視野をできるだけ大きくしようとする場合に、電子ビームの広がり角を押さえて平行なビームで断面内でより均一な強度分布を有する電子ビームを試料に照射できるような電子光学系の構成が求められる。 When the field of view of the sample is to be made as large as possible with a transmission electron microscope, the spread angle of the electron beam is suppressed and the sample is irradiated with an electron beam having a more uniform intensity distribution in the cross section with parallel beams. A configuration of an electron optical system that can be obtained is required.
 この問題を解決するためのひとつの方法として、通常の電子顕微鏡では観察視野からフレネル縞が見えなくなるまで電子線照射領域を広げて試料構造を記録する。しかし、このような観察を行うと、電子ビーム照射に弱い試料を観察する場合には、試料の観察視野の外側でフレネル縞が照射された部分に視野を移動させて観察しようとすると、その領域には所定量異常の電子ビームが照射されることになってダメージが発生してしまう。その結果、試料の視野外の近傍領域を観察に用いる事が出来なくなってしまうような場合が発生する。 As one method for solving this problem, in a normal electron microscope, the electron beam irradiation area is expanded until the Fresnel fringes disappear from the observation field of view, and the sample structure is recorded. However, when such observation is performed, when observing a sample that is weak to electron beam irradiation, if the visual field is moved to a portion irradiated with Fresnel stripes outside the observation visual field of the sample, the region An electron beam with a predetermined amount of abnormality is to be irradiated on the surface, causing damage. As a result, there may occur a case where the near region outside the field of view of the sample can not be used for observation.
 即ち、不必要なダメージによって観察可能な視野の間隔が大きくなることとなり、同じ面積の視野を観察しようとする場合、電子ビームの照射により視野周辺にダメージを与えない場合と比べると、視野移動距離が長くなり、その分だけ時間が多くかかって、スループットが低下するという問題が生じる。 That is, the distance between the viewable fields increases due to unnecessary damage, and when the view of the same area is to be observed, the movement distance of the view is compared with the case where the periphery of the view is not damaged by the electron beam irradiation. The problem is that it takes a lot of time and the throughput decreases.
 この様な課題に対して、特許文献1には、視野絞りFS1、照射レンズ17、18、19を備えた1次光学系について記載されているが、電子ビームが照射された試料上でフレネル縞が発生するのを抑制することについては記載されていない。また、電子ビームの広がり角を押さえて平行なビームで断面内でより均一な強度分布を有する電子ビームを試料に照射できるような電子光学系の構成についても記載されていない。 For such problems, Patent Document 1 describes a primary optical system provided with a field stop FS1 and illumination lenses 17, 18 and 19. However, fresnel fringes on a sample irradiated with an electron beam are described. There is no mention of suppressing the occurrence of In addition, there is also no description of the configuration of an electron optical system that can irradiate a sample with an electron beam having a more uniform intensity distribution in a cross section with a parallel beam while suppressing the spread angle of the electron beam.
 また、特許文献2には、第1及び第2のフィルタによって、スリット上に結像した荷電粒子の収差をキャンセルすることについては記載されているが、電子ビームが照射された試料上でフレネル縞が発生するのを抑制することについては記載されていない。また、電子ビームの広がり角を押さえて平行なビームで断面内でより均一な強度分布を有する電子ビームを試料に照射できるような電子光学系の構成についても記載されていない。  Moreover, although it is described in patent document 2 that the aberration of the charged particle imaged on the slit is canceled by the 1st and 2nd filter, the Fresnel fringes on the sample irradiated with the electron beam There is no mention of suppressing the occurrence of In addition, there is also no description of the configuration of an electron optical system that can irradiate a sample with an electron beam having a more uniform intensity distribution in a cross section with a parallel beam while suppressing the spread angle of the electron beam.
 本発明では、上記したような従来技術の課題を解決して、広がり角を押さえた平行な電子ビームをフレネル縞を発生させることなく試料上に照射することが可能な照射光学系を備えた荷電粒子線装置及び荷電粒子線装置の調整方法を提供するものである。 The present invention solves the problems of the prior art as described above and provides a charged optical system having an irradiation optical system capable of irradiating a parallel electron beam whose spread angle is suppressed without generating Fresnel fringes on a sample. A particle beam device and a charged particle beam device adjustment method.
 上記した課題を解決するために、本発明では、試料に1次電子ビームを照射する照射光学系と、照射光学系により1次電子ビームが照射された試料を透過した透過電子を結像させて試料の像を検出する結像光学系とを備えた荷電粒子線装置において、照射光学系は、1次電子ビームを発射する電子銃と、電子銃から発射された1次電子ビームの一部を通過させる絞り穴が形成されたコンデンサ絞りと、コンデンサ絞りの絞り穴を通過した1次電子ビームの軌道を制御する第1偏向器と、第1偏向器で軌道が制御された1次電子ビームの平行度を調整するコンデンサレンズを複数備えたコンデンサレンズ部と、コンデンサレンズ部で平行光に調整された1次電子ビームによる絞り穴の像を試料上に結像させる対物レンズとを備えて構成した。 In order to solve the problems described above, in the present invention, an irradiation optical system for irradiating the sample with the primary electron beam and an image of transmission electrons transmitted through the sample irradiated with the primary electron beam by the irradiation optical system In a charged particle beam apparatus provided with an imaging optical system for detecting an image of a sample, the irradiation optical system comprises an electron gun for emitting a primary electron beam and a part of the primary electron beam emitted from the electron gun. A condenser diaphragm in which a diaphragm hole to be passed is formed, a first deflector for controlling the trajectory of the primary electron beam passing through the diaphragm hole of the condenser diaphragm, and a primary electron beam whose trajectory is controlled by the first deflector Condenser lens unit including a plurality of condenser lenses for adjusting parallelism, and an objective lens for forming an image of a stop hole by a primary electron beam adjusted to parallel light by the condenser lens unit on a sample .
 また、上記した課題を解決するために、本発明では、電子銃から発射した1次電子ビームを照射光学系を介して試料に照射し、照射光学系を介して1次電子ビームが照射された試料を透過した透過電子を結像光学系で結像させて試料の像を検出する荷電粒子線装置の調整方法において、照射光学系を介して1次電子ビームを試料に照射することを、電子銃から発射された1次電子ビームをコンデンサ絞りを通過させ、コンデンサ絞りを通過した1次電子ビームの軌道を第1偏向器で調整し、コンデンサレンズを複数備えたコンデンサレンズ部により第1偏向器で軌道が調整された1次電子ビームの平行度と1次電子ビームによるコンデンサ絞りの像面の位置を調整し、コンデンサレンズ部で平行光に調整されて像面の位置が調整された1次電子ビームによるコンデンサ絞りの像を対物レンズで試料上に結像させるようにした。 Further, in order to solve the problems described above, in the present invention, the primary electron beam emitted from the electron gun is irradiated to the sample through the irradiation optical system, and the primary electron beam is irradiated through the irradiation optical system. In a method of adjusting a charged particle beam apparatus, in which transmitted electrons transmitted through a sample are imaged by an imaging optical system to detect an image of the sample, irradiating the sample with the primary electron beam through the irradiation optical system The primary electron beam emitted from the gun is passed through a condenser diaphragm, the trajectory of the primary electron beam passed through the condenser diaphragm is adjusted by a first deflector, and the condenser lens unit including a plurality of condenser lenses is used to perform the first deflector The position of the image plane of the condenser stop by the primary electron beam and the parallelism of the primary electron beam whose orbits have been adjusted by adjusting the position of the image plane by adjusting the position of the image plane by the condenser lens unit The image of the stop capacitor according child beam so as to form an image on the sample by the objective lens.
 本発明によれば、広がり角を押さえた平行な電子ビームを、試料上にフレネル縞を発生させることなく照射することが出来るようになったので、比較的広い視野で試料を観察することが可能になり、スループットよく試料観察を実施することができるようになった。 According to the present invention, it becomes possible to irradiate a parallel electron beam whose spread angle is suppressed without generating Fresnel fringes on the sample, so it is possible to observe the sample in a relatively wide field of view. It became possible to perform sample observation with good throughput.
本発明の原理を説明するための荷電粒子線装置の照射光学系の概略の構成を示す正面図である。FIG. 3 is a front view showing a schematic configuration of an irradiation optical system of the charged particle beam device for illustrating the principle of the present invention. 本発明の原理を説明するための荷電粒子線装置の照射光学系の概略の構成を示す正面図である。FIG. 3 is a front view showing a schematic configuration of an irradiation optical system of the charged particle beam device for illustrating the principle of the present invention. 本発明の原理において平行照射条件とコンデンサ絞り結像条件を両立するための第1コンデンサレンズ焦点距離と第2コンデンサレンズ焦点距離との関係を表すグラフである。It is a graph showing the relationship between the 1st condenser lens focal distance and the 2nd condenser lens focal distance for making parallel irradiation conditions and condenser diaphragm imaging conditions compatible in the principle of the present invention. 本発明の実施例1に係る透過型電子顕微鏡の照射光学系の概略の構成を示すブロック図である。It is a block diagram which shows the outline | summary structure of the irradiation optical system of the transmission electron microscope which concerns on Example 1 of this invention. 本発明の実施例1に係る透過型電子線顕微鏡の比較例で、コンデンサ絞りの像が試料位置に結像が出来ておらず試料上にフレネル縞が出た時の電子線強度分布のイメージ図である。In the comparative example of the transmission electron beam microscope which concerns on Example 1 of this invention, the image of a condenser diaphragm is an image figure of electron beam intensity distribution at the time of a Fresnel fringe appearing on a sample, without forming an image in a sample position. is there. 本発明の実施例1に係る透過型電子線顕微鏡の比較例で、試料像とフレネル縞が重なった時の電子線強度分布のイメージ図である。It is a comparative example of the transmission type electron beam microscope which concerns on Example 1 of this invention, and is an image figure of electron beam intensity distribution when a sample image and a fresnel stripe overlap. 本発明の実施例1に係る透過型電子線顕微鏡によりコンデンサ絞りの像が試料位置に結像出来た時の試料上への電子線強度のイメージ図である。It is an image figure of the electron beam intensity on a sample when the image of a capacitor | condenser aperture has been able to be imaged on a sample position with the transmission electron microscope concerning Example 1 of this invention. 本発明の実施例1に係る透過型電子線顕微鏡により一様な電子線で試料を照射した時の観察像のイメージ図である。It is an image figure of an observation image when a sample is irradiated with a uniform electron beam by the transmission type electron beam microscope concerning Example 1 of the present invention. 本発明の実施例1に係る透過型電子線顕微鏡において、第1偏向器を用いて試料位置に投影するコンデンサ絞りの像の大きさを変えた状態を示す照射光学系の概略を示す正面図で、(a)はコンデンサ絞りの像を大きく拡大して試料位置に投影した状態を示し、(b)はコンデンサ絞りの像を比較的小さく拡大して試料位置に投影した状態を示している。FIG. 7 is a front view showing an outline of an irradiation optical system showing a state in which the size of the image of a condenser diaphragm projected onto a sample position is changed using the first deflector in the transmission electron beam microscope according to Example 1 of the present invention. (A) shows a state in which the image of the condenser diaphragm is greatly enlarged and projected onto the sample position, and (b) shows a state in which the image of the condenser diaphragm is magnified relatively small and projected onto the sample position. 本発明の実施例1に係る透過型電子線顕微鏡によるコンデンサ絞りの結像状態を示す試料位置における電子ビーム強度のイメージで、コンデンサ絞りの結像状態を調整前の電子ビーム強度のイメージを示す。The image of the electron beam intensity in the sample position which shows the imaging state of the capacitor | condenser aperture by the transmission type electron beam microscope which concerns on Example 1 of this invention WHEREIN: The image of the electron beam intensity before adjusting the imaging state of a capacitor | condenser aperture is shown. 本発明の実施例1に係る透過型電子線顕微鏡によるコンデンサ絞りの結像状態を示す試料位置における電子ビーム強度のイメージで、コンデンサ絞りの結像状態を調整後の電子ビーム強度のイメージを示す。The image of the electron beam intensity in the sample position which shows the imaging state of the capacitor | condenser aperture by the transmission type electron beam microscope which concerns on Example 1 of this invention WHEREIN: The image of the electron beam intensity after adjusting the imaging state of a capacitor | condenser aperture is shown. 本発明の実施例1に係る透過型電子線顕微鏡による照射光学系の平行照射の調整前における後側焦点面のイメージである。It is an image of the back side focal plane in front of adjustment of parallel irradiation of the irradiation optical system by the transmission electron beam microscope which concerns on Example 1 of this invention. 本発明の実施例1に係る透過型電子線顕微鏡による照射光学系の平行照射の調整後における後側焦点面のイメージである。It is an image of the back side focal plane after adjustment of parallel irradiation of the irradiation optical system by the transmission type electron beam microscope which concerns on Example 1 of this invention. 本発明の実施例1に係る透過型電子線顕微鏡によるアモルファス試料のデフォーカス像を複数のセグメントに分割した状態を示すアモルファス試料の画像である。It is an image of the amorphous sample which shows the state which divided | segmented the defocusing image of the amorphous sample by the transmission electron beam microscope which concerns on Example 1 of this invention into several segment. 本発明の実施例1に係る透過型電子線顕微鏡によるアモルファス試料のデフォーカス像を各セグメントごとにフーリエ変換して求めた解析画像である。It is the analysis image which Fourier-transformed and calculated | required the defocusing image of the amorphous sample by the transmission type electron beam microscope which concerns on Example 1 of this invention for every segment. 本発明の実施例1に係る透過型電子線顕微鏡の照射光学系における電子ビームの照射電流量とコンデンサ絞りの径、照射光学系の倍率との関係を示す表である。It is a table | surface which shows the relationship of the irradiation current amount of the electron beam in the irradiation optical system of the transmission type electron beam microscope which concerns on Example 1 of this invention, the diameter of a capacitor | condenser aperture, and the magnification of an irradiation optical system. 本発明の実施例2に係る透過型電子顕微鏡の照射光学系の概略の構成を示すブロック図である。It is a block diagram which shows schematic structure of the irradiation optical system of the transmission electron microscope which concerns on Example 2 of this invention. 本発明の実施例3に係る透過型電子顕微鏡の照射光学系の概略の構成を示すブロック図である。It is a block diagram which shows schematic structure of the irradiation optical system of the transmission electron microscope which concerns on Example 3 of this invention. 本発明の実施例4に係る透過型電子顕微鏡の照射光学系の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the irradiation optical system of the transmission electron microscope which concerns on Example 4 of this invention.
 本発明は、電子ビームを制限する絞りと対物レンズ前磁場の間に複数段の照射レンズを備え、複数段の照射レンズを複合的に用い、対物レンズの中に設置した試料上への平行照射と電子ビームを制限する絞りの穴の像を試料上への結像(フレネル縞の出ない光学系)を行うようにしたものである。 In the present invention, a plurality of irradiation lenses are provided between an aperture for restricting an electron beam and a pre-objective magnetic field, and a plurality of irradiation lenses are used in combination to perform parallel irradiation on a sample placed in the objective lens. And an image of the aperture of the stop that limits the electron beam is formed on the sample (an optical system free from Fresnel fringes).
 即ち本発明は、荷電粒子線装置の照射光学系で、広がり角を押さえた平行な電子ビームをフレネル縞を発生させることなく対物レンズの中に設置した試料上に照射することを可能にするために、電子銃から発射された電子ビームの広がりを制限する絞りと対物レンズの前磁場との間に複数の照射レンズを備え、複数の照射レンズを複合的に用い、試料上への平行照射と電子ビームの拡がりを制限する絞りの試料上への結像(フレネル縞の出ない光学系)を行い、かつ電子線照射領域を変えることで観察領域の倍率に応じた電子線照射を可能にしたものである。 That is, the present invention makes it possible to irradiate a parallel electron beam whose spread angle is suppressed on a sample placed in an objective lens without generating Fresnel stripes in an irradiation optical system of a charged particle beam apparatus. A plurality of irradiation lenses are provided between the stop for limiting the spread of the electron beam emitted from the electron gun and the front magnetic field of the objective lens, and a plurality of irradiation lenses are used in combination to parallel irradiation on the sample. Electron beam irradiation according to the magnification of the observation area was made possible by imaging the diaphragm on the sample that limits the spread of the electron beam (an optical system free of Fresnel fringes) and changing the electron beam irradiation area It is a thing.
 本発明は、更に、試料上への平行照射と絞りの穴の像の試料上への結像を行うと共に、電子線照射領域を変えることが可能な構成とすることで、観察領域の倍率に応じた電子線照射を可能にしたものである。 The present invention further provides parallel magnification on the sample and imaging of the image of the aperture of the aperture onto the sample, and by changing the electron beam irradiation area, to the magnification of the observation area. It enables electron beam irradiation according to the requirements.
 本発明の原理を、図1乃至図3を用いて説明する。 
 図1には、本発明の原理を説明するための、荷電粒子線装置の照射光学系50の構成として、電子銃1から発射された電子ビーム8のビーム径を制限するコンデンサ絞り2と対物レンズ60の前磁場6の間に3段の照射レンズ3,4,5を備えた構成を示す。
The principle of the present invention will be described with reference to FIGS. 1 to 3.
FIG. 1 shows a configuration of an irradiation optical system 50 of a charged particle beam device for explaining the principle of the present invention, a condenser diaphragm 2 for limiting the beam diameter of an electron beam 8 emitted from an electron gun 1 and an objective lens A configuration is shown in which three stages of illumination lenses 3, 4, 5 are provided between 60 pre-fields 6.
 本発明では、3段の照射レンズ3,4,5を以下に示す方法で複合的に用い、対物レンズ60の中に設置した試料7上への電子ビーム8の平行照射と、電子ビーム8を制限するコンデンサ絞り2の絞り穴201の像の試料7上への結像(フレネル縞の出ない光学系)を行い、かつ電子線照射領域を変えることで、観察領域の倍率に応じた電子線照射を可能にした。 In the present invention, the parallel irradiation of the electron beam 8 onto the sample 7 placed in the objective lens 60 and the electron beam 8 are performed by using the three-stage irradiation lenses 3, 4 and 5 in combination by the method shown below. An image of the image of the diaphragm hole 201 of the condenser diaphragm 2 to be restricted is formed on the sample 7 (an optical system free of Fresnel fringes), and an electron beam irradiation area is changed to obtain an electron beam according to the magnification of the observation area. I made it possible to irradiate.
 一つの観察モードにおける対物レンズ60による前磁場6(対物レンズ60により、電子銃1の側に形成される磁場)の側の焦点距離は固定であり、複合的に用いるのは3段の照射レンズ3,4,5である。3段の照射レンズ3,4,5は、電子銃1に近い方から、第1コンデンサレンズ3、第2コンデンサレンズ4、第3コンデンサレンズ5と呼ぶ。第1コンデンサレンズ3と電子銃1の間にコンデンサ絞り2がある。 The focal length on the side of the front magnetic field 6 (the magnetic field formed on the side of the electron gun 1 by the objective lens 60) by the objective lens 60 in one observation mode is fixed, and the three-stage irradiation lens is used in combination. It is 3,4,5. The three-stage irradiation lenses 3, 4 and 5 are called a first condenser lens 3, a second condenser lens 4 and a third condenser lens 5 from the side closer to the electron gun 1. There is a condenser aperture 2 between the first condenser lens 3 and the electron gun 1.
 電子銃1の内部には、電子を発生する電子源と必要な加速電圧まで電子を加速する加速管があるが、それらの図示を省略する。加速管によって、電子は静電レンズの効果を受ける事になる。そのため、第1コンデンサレンズ3から考えた光学的な電子源までの距離は、電子銃1までの実際の距離とは異なる。そこで加速管による静電レンズの影響を考慮した電子源の位置を、仮想光源200とよぶ。本例では、コンデンサ絞り2の下に3段のコンデンサレンズ3,4,5を配置した構成について説明するが、コンデンサ絞り2より電子銃1の側に配置するレンズの段数は問わない。 Inside the electron gun 1, there are an electron source that generates electrons and an accelerating tube that accelerates the electrons to a required acceleration voltage, but the illustration thereof is omitted. Electrons are subject to the effect of electrostatic lenses by the accelerating tube. Therefore, the distance from the first condenser lens 3 to the optical electron source considered is different from the actual distance to the electron gun 1. Therefore, the position of the electron source in consideration of the influence of the electrostatic lens by the accelerating tube is referred to as a virtual light source 200. In this example, a configuration in which three condenser lenses 3, 4 and 5 are disposed below the condenser diaphragm 2 will be described. However, the number of stages of lenses disposed closer to the electron gun 1 than the condenser diaphragm 2 does not matter.
 図1に示すように、試料7から対物レンズ60の前磁場6の焦点(図1で、前磁場6で示した図形の横方向の中心位置)までの距離をdとする。対物レンズ60の前磁場6の焦点までの距離は、対物レンズ60を構成する磁界レンズのギャップ中心ではなく、実効的な主面の位置である。対物レンズ60の前磁場6の焦点から第3コンデンサレンズ5までの距離をd、第3コンデンサレンズ5から第2コンデンサレンズ4までの距離をd、第2コンデンサレンズ4から第1コンデンサレンズ3までの距離をd、第1コンデンサレンズ3からコンデンサ絞り2までの距離をdおよび仮想光源200までの距離をa1Gとする。 As shown in FIG. 1, (in FIG. 1, front horizontal center of the figure shown in magnetic field 6) the focal point of the previous field 6 of the objective lens 60 from the sample 7 the distance to the d 0. The distance to the focal point of the front magnetic field 6 of the objective lens 60 is not the gap center of the magnetic field lens constituting the objective lens 60 but the position of the effective main surface. The distance from the focal point of the front magnetic field 6 of the objective lens 60 to the third condenser lens 5 is d 1 , the distance from the third condenser lens 5 to the second condenser lens 4 is d 2 , and the second condenser lens 4 to the first condenser lens A distance to 3 is d 3 , a distance from the first condenser lens 3 to the condenser diaphragm 2 is d 4, and a distance to the virtual light source 200 is a 1G .
 電子銃1から発射された電子ビーム8を、試料7上への照射に必要な照射光学系50について説明する。第1コンデンサレンズ3から仮想光源200の像面501まで距離をb1Gとすると、第1コンデンサレンズ3の焦点距離をf1Gとした時、レンズの式から(数1)の関係が成り立つ。 The electron beam 8 emitted from the electron gun 1 will be described with respect to the irradiation optical system 50 required to irradiate the sample 7. Assuming that the distance from the first condenser lens 3 to the image surface 501 of the virtual light source 200 is b 1 G, and the focal length of the first condenser lens 3 is f 1 G , the relationship of Formula 1 holds from the lens formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第2コンデンサレンズ4と物面(第1コンデンサレンズ3の像面)501までの距離をa2Gとすれば、a2Gは(数2)のように表される。 Assuming that the distance between the second condenser lens 4 and the object surface (the image plane of the first condenser lens 3) 501 is a 2G , a 2G is expressed as (Equation 2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に第2コンデンサレンズ4から仮想光源の像面502まで距離をb2Gとすると、第2コンデンサレンズ4の焦点距離をf2Gとした時レンズの式から(数3)の関係が成り立つ。 Similarly, assuming that the distance from the second condenser lens 4 to the image plane 502 of the virtual light source is b 2 G , the relationship of (Equation 3) holds from the lens formula when the focal length of the second condenser lens 4 is f 2 G.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 第3コンデンサレンズ5についても同様に考え、第3コンデンサレンズ5と物面(第2コンデンサレンズ4の像面)502までの距離をa3Gとすると、a3Gは(数4)のように表される。 I thought Similarly, the third condenser lens 5, the table as in the third condenser lens 5 and the object plane and the distance to the (second image plane of the condenser lens 4) 502 and a 3G, a 3G is (Equation 4) Be done.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 同様に第3コンデンサレンズ5から仮想光源の像面503まで距離をb3Gとすると、第3コンデンサレンズ5の焦点距離をf3Gとした時レンズの式から(数5)の関係が成り立つ。 Similarly, assuming that the distance from the third condenser lens 5 to the image plane 503 of the virtual light source is b 3 G , the relationship of (Equation 5) holds from the lens formula when the focal length of the third condenser lens 5 is f 3 G.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 対物レンズ60の前磁場6の側の物面(第3コンデンサレンズ5の像面)503までの距離をaOGとすると、aOGは(数6)のように表される。 When the distance to 503 (the image plane of the third condenser lens 5) object surface side of the front magnetic field 6 of the objective lens 60 and a OG, a OG is expressed as (number 6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
となる。 It becomes.
 対物レンズ60の前磁場6の側の焦点距離をfOGとすると、(数7)のような関係になる。 Assuming that the focal length on the side of the front magnetic field 6 of the objective lens 60 is f OG , the relationship is given by equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 これらの式を用いることで平行照射の際に、第1コンデンサレンズ3の焦点距離に必要な関係式を得る事ができ、(数8)のような関係が成り立つ。 By using these expressions, it is possible to obtain a relational expression necessary for the focal length of the first condenser lens 3 at the time of parallel irradiation, and a relation such as Expression 8 holds.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 フレネル縞の出ない光学系は、図2に示す関係を用いて、以下の方法で焦点距離を定めることができる。 
 第1コンデンサレンズ3とコンデンサ絞り2の距離dおよび第1コンデンサレンズ3の焦点距離をf1Cとすると、第1コンデンサレンズ3からコンデンサ絞り2の像面511までの距離をb1Cとして、(数9)のような関係になる。
An optical system free of Fresnel fringes can determine the focal length in the following manner using the relationship shown in FIG.
When the focal length of the first condenser lens 3 and the capacitor diaphragm second distance d 4 and the first condenser lens 3 and f 1C, the distance from the first condenser lens 3 to the image plane 511 of the capacitor the diaphragm 2 as b 1C, ( It becomes a relation like number 9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 第2コンデンサレンズ4と物面(第1コンデンサレンズ3の像面)511までの距離をa2C、第2コンデンサレンズ4の焦点距離をf2C、第2コンデンサレンズ4の像面512までの距離をb2C、および第3コンデンサレンズ5の物面(第2コンデンサレンズ4の像面)512までの距離をa3C、第3コンデンサレンズ5の焦点距離をf3C、第3コンデンサレンズ5の像面513までの距離をb3Cとする。対物レンズ60の前磁場6の側についても、物面(第3コンデンサレンズ5の像面)513までの距離をaOC、焦点距離をfOC、像面514までの距離をbOCとすると、(数10)のような関係が成り立つ。 The distance between the second condenser lens 4 and the object surface (the image plane of the first condenser lens 3) 511 is a 2 C , the focal distance of the second condenser lens 4 is f 2 C , the distance to the image plane 512 of the second condenser lens 4 B 2 C , and the distance to the object surface (the image surface of the second condenser lens 4) 512 of the third condenser lens 5 a 3 C , the focal distance of the third condenser lens 5 f 3 C , the image of the third condenser lens 5 The distance to the surface 513 is b 3 C. Assuming that the distance to the object plane (image surface of the third condenser lens 5) is a OC , the focal distance is f OC , and the distance to the image surface 514 is b OC on the side of the front magnetic field 6 of the objective lens 60, A relationship like (Equation 10) holds.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 これらの式を考える際は、下流のレンズの励磁を決めてから条件を検討することが好ましい。パラメータとしては、平行光学系とコンデンサ絞り2の絞り穴201の像を結像する光学系で、f1G、f1C、f2G、f2C、f3G、f3Cの6つのパラメータがあるが、実現する光学系は1つであるため、各レンズの焦点距離は1つずつ合計3つに決められればよい。 When considering these equations, it is preferable to determine the excitation of the downstream lens and then consider the conditions. There are six parameters of f 1 G , f 1 C , f 2 G , f 2 C , f 3 G , f 3 C in the optical system for forming the image of the parallel optical system and the aperture hole 201 of the condenser aperture 2 as Since there is only one optical system to be realized, the focal lengths of the respective lenses may be determined to be three in total.
 そこで、f3Gとf3Cを等しく特定の値f3’であると考え、それぞれf1Cとf2C、f1G,f2Gが満たす焦点距離の条件をプロットとした例を図3に示す。レンズ間距離や焦点距離によって描かれるグラフには複数の交点が現れる場合もあるが、図3に示したグラフ300には、1点だけ交点がある場合を示す。点線301が平行照射が満たされる条件、実線302がコンデンサ絞りの試料上への結像が満たされる条件とすれば、両者の交点が平行に電子線を照射した上でフレネル縞のでない条件となる。 Therefore, FIG. 3 shows an example in which f 3 G and f 3 C are considered to be equal specific value f 3 ′ , and the condition of the focal length satisfied by f 1 C and f 2 C , f 1 G and f 2 G is plotted. Although a plurality of intersections may appear in the graph drawn by the distance between lenses and the focal distance, the graph 300 shown in FIG. 3 shows the case where there is only one intersection. If the dotted line 301 satisfies the condition of parallel irradiation, and the solid line 302 satisfies the condition of the image formation of the condenser on the sample, the electron beam is irradiated in parallel with the intersection point of the two, and the condition does not have Fresnel stripes. .
 上記特定の値f3’は第3コンデンサレンズ5の取り得る焦点距離の一つであり、第3コンデンサレンズ5の焦点距離は、設計したレンズ性能によって数mmから数十m以上の長さに変更できる。そのため、第3コンデンサレンズ5の焦点距離f3’をかえることによって、平行照射とコンデンサ絞りの試料上への結像とを成り立たせる無数の両立条件を得る事が可能である。それらの中から、焦点距離が固定されている対物レンズ60の前磁場6の側の物面513に第3コンデンサレンズ5の像面が一致するように、光学系として必要な照射系倍率を狙って作り出すことで本発明の光学系を作る事が可能となる。 The specific value f3 ' is one of the possible focal lengths of the third condenser lens 5, and the focal length of the third condenser lens 5 is several mm to several tens of m or more depending on the designed lens performance. You can change it. Therefore, by changing the focal length f3 ' of the third condenser lens 5, it is possible to obtain an infinite number of compatible conditions for achieving parallel illumination and imaging of the condenser diaphragm on the sample. Among them, aim the irradiation system magnification necessary for the optical system so that the image plane of the third condenser lens 5 coincides with the object plane 513 on the side of the front magnetic field 6 of the objective lens 60 whose focal length is fixed. The optical system of the present invention can be made by
 以上に説明した原理に基づく本発明の実施例を、以下に図を用いて説明する。 Embodiments of the present invention based on the principle described above will be described below with reference to the drawings.
 本発明の第1の実施例における荷電粒子線装置の光学系について、図4乃至図14を用いて説明する。 The optical system of the charged particle beam apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 4 to 14.
 図4は、本実施例に係る荷電粒子線装置として、透過型電子顕微鏡100に適用した場合の光学系の構成を示す。なお、図4には、透過型電子顕微鏡100の構成として、主な光学系の構成を示し、鏡筒や制御系、操作部の記載を省略してある。 FIG. 4 shows a configuration of an optical system in the case of being applied to a transmission electron microscope 100 as a charged particle beam device according to the present embodiment. Note that FIG. 4 shows the configuration of a main optical system as the configuration of the transmission electron microscope 100, and the description of the lens barrel, the control system, and the operation unit is omitted.
 図4に示した透過型電子顕微鏡100は、電子銃(光源)11、コンデンサ絞り12、第1コンデンサレンズ13、第2コンデンサレンズ14、第3コンデンサレンズ15、対物レンズ165の前磁場16、第1偏向器26、第2偏向器27を備えた照射光学系150、及び、図示していない試料ホルダに試料を搭載して対物レンズ165の中に設置された試料17、更に、対物レンズ165の下側(電子銃1と反対の側)に形成された対物レンズ165の後磁場20、対物絞り24、視野制限絞り25、複数のレンズで形成された結像レンズ系21、検出器22を備えた結像光学系250を備えて構成される。 The transmission electron microscope 100 shown in FIG. 4 includes an electron gun (light source) 11, a condenser diaphragm 12, a first condenser lens 13, a second condenser lens 14, a third condenser lens 15, a front magnetic field 16 of an objective lens 165, 1 and the irradiation optical system 150 provided with the second deflector 27, and the sample 17 mounted in the objective lens 165 by mounting the sample on the sample holder (not shown), and the objective lens 165 A rear magnetic field 20 of an objective lens 165 formed on the lower side (the side opposite to the electron gun 1), an objective diaphragm 24, a field limiting diaphragm 25, an imaging lens system 21 formed of a plurality of lenses, and a detector 22 are provided. An imaging optical system 250 is provided.
 図4に示した透過型電子顕微鏡100において、部品番号11乃至15および165で示されている照射光学系150の構成は、図1及び2で説明した照射光学系50の部品番号1乃至5および60に対応する。 In the transmission electron microscope 100 shown in FIG. 4, the configuration of the irradiation optical system 150 indicated by the part numbers 11 to 15 and 165 is the part numbers 1 to 5 of the irradiation optical system 50 described in FIGS. Corresponds to 60.
 図4に示した透過型電子顕微鏡100において、電子銃11で生成された照射系側の電子ビーム(1次電子ビーム)18は、コンデンサ絞り12に形成された絞り穴1201によって制限され、第1コンデンサレンズ13、第2コンデンサレンズ14、第3コンデンサレンズ15、対物レンズ165の前磁場16を経て対物レンズ165の内部に設置された試料17に照射される。 In the transmission electron microscope 100 shown in FIG. 4, the electron beam (primary electron beam) 18 on the irradiation system side generated by the electron gun 11 is limited by the aperture 1201 formed in the condenser aperture 12 and The sample 17 placed inside the objective lens 165 is irradiated via the condenser lens 13, the second condenser lens 14, the third condenser lens 15, and the front magnetic field 16 of the objective lens 165.
 試料17を透過して結像光学系250の側に発生した電子(透過電子)23は、対物レンズの後磁場20を通過した後、対物絞り24、視野制限絞り25を通過し、結像レンズ系21を経て検出器22上に結像されて検出される。 Electrons (transmission electrons) 23 generated on the side of the imaging optical system 250 by transmitting through the sample 17 pass through the back magnetic field 20 of the objective lens, and then pass through the objective diaphragm 24 and the field limiting diaphragm 25 to form an imaging lens. The light is imaged on the detector 22 via the system 21 and detected.
 この構成で、コンデンサ絞り12の近傍には第1偏向器26を配置する。第1偏向器26は第1コンデンサレンズ13の上流にあればよく、コンデンサ絞り12よりも上流の電子銃11の方や、コンデンサ絞り12を挟むような形で配置してもよい。第2偏向器27はコンデンサ絞り12の絞り穴1201の像が対物レンズ165の内部に設置された試料17上へ結像されていることを調べるのに必要な偏向器であり、コンデンサ絞り12より上流にある必要がある。 In this configuration, the first deflector 26 is disposed in the vicinity of the condenser diaphragm 12. The first deflector 26 may be located upstream of the first condenser lens 13 and may be disposed in a manner such that the electron gun 11 upstream of the condenser diaphragm 12 or the condenser diaphragm 12 is interposed. The second deflector 27 is a deflector necessary to check that the image of the aperture 1201 of the condenser aperture 12 is imaged on the sample 17 installed inside the objective lens 165. It needs to be upstream.
 コンデンサ絞り12は試料17に照射される電子ビームの大きさ(径)を制限する絞りであり、絞り穴1201の大きさ(径)は数マイクロメートルから最大数mm程度である。コンデンサ絞り12は電子ビーム18の照射による汚れを防止する目的で通電加熱することもある。 The condenser diaphragm 12 is a diaphragm that limits the size (diameter) of the electron beam irradiated to the sample 17. The size (diameter) of the diaphragm hole 1201 is about several micrometers to several mm at the maximum. The condenser diaphragm 12 may be energized and heated for the purpose of preventing contamination due to the irradiation of the electron beam 18.
 コンデンサ絞り12の下にある第1コンデンサレンズ13、第2コンデンサレンズ14、第3コンデンサレンズ15は磁界レンズもしくは電界レンズのどちらでも良いが、多極子レンズではなく回転対称な場を持つレンズである。 The first condenser lens 13, the second condenser lens 14 and the third condenser lens 15 under the condenser aperture 12 may be either a magnetic field lens or an electric field lens, but they are not multipole lenses but lenses having rotationally symmetric fields. .
 前磁場16を形成する対物レンズ165は磁界レンズ、電界レンズのどちらでも良い。本実施例では、磁界レンズの場合を説明する。対物レンズ165の前磁場16、対物レンズ165の後磁場20は、対物レンズ165に流す電流量によって焦点距離が変わる。通常は、対物レンズ165の前磁場16及び後磁場20の強さは一定(それぞれの焦点距離が一定)として条件を作るが、特別な光学系を作るために対物レンズ165の励磁を切って本実施例の光学系を作ってもよい。 The objective lens 165 forming the pre-magnetic field 16 may be either a magnetic lens or an electrostatic lens. In the present embodiment, the case of a magnetic lens will be described. The focal length of the front magnetic field 16 of the objective lens 165 and the rear magnetic field 20 of the objective lens 165 change according to the amount of current supplied to the objective lens 165. Normally, the conditions are established with the strengths of the front magnetic field 16 and the rear magnetic field 20 of the objective lens 165 constant (the respective focal distances are constant), but the excitation of the objective lens 165 is turned off to create a special optical system. You may make the optical system of an Example.
 試料17を透過した電子(透過電子)23は、結像光学系250の側で、試料17の下流に形成された対物レンズ165の後磁場20によって収束効果を受けながら結像レンズ系21に入る。本実施例では結像レンズ系21に3段の電子レンズを備えた構成を示すが、結像レンズ系21は通常1段から5段程度の電子レンズで構成される。 Electrons (transmission electrons) 23 transmitted through the sample 17 enter the imaging lens system 21 on the side of the imaging optical system 250 while receiving a focusing effect by the back magnetic field 20 of the objective lens 165 formed downstream of the sample 17 . The present embodiment shows a configuration in which the imaging lens system 21 is provided with three stages of electron lenses, but the imaging lens system 21 is usually configured by one to about five stages of electron lenses.
 本実施例では、第1コンデンサレンズ13から対物レンズ165の前磁場16の間に3つのクロスオーバー19が形成される場合を示している。但し、本実施例はこれに限られるものではない。すなわち、クロスオーバー19は、図4のように3つだけではなく、第1コンデンサレンズ13と第2コンデンサレンズ14の間にはクロスオーバー19を持たない場合や、第2コンデンサレンズ14と第3コンデンサレンズ15の間にはクロスオーバー19を持たない等、複数の組み合わせを取ることが可能である。 In this embodiment, the case where three crossovers 19 are formed between the first condenser lens 13 and the front magnetic field 16 of the objective lens 165 is shown. However, the present embodiment is not limited to this. That is, the number of crossovers 19 is not limited to three as shown in FIG. 4, and there is no crossover 19 between the first condenser lens 13 and the second condenser lens 14, or the second condenser lens 14 and the third condenser lens 14. It is possible to take a plurality of combinations, such as not having the crossover 19 between the condenser lenses 15.
 また、本実施例では、焦点距離が固定されている対物レンズ165の前磁場16の物面513に第3コンデンサレンズ5の像面が一致するように、照射光学系150を調整する例を示す。しかし、本発明はこれに限定されることなく、対物レンズ165の前磁場16の焦点距離を変化させた場合であっても、焦点距離の変化に伴う対物レンズ165の前磁場16の物面の変動に合せて第3コンデンサレンズ5の像面の位置を調整すればよい。 Further, in this embodiment, an example is shown in which the irradiation optical system 150 is adjusted so that the image plane of the third condenser lens 5 coincides with the object plane 513 of the front magnetic field 16 of the objective lens 165 whose focal length is fixed. . However, the present invention is not limited to this, and even when the focal length of the front magnetic field 16 of the objective lens 165 is changed, the object plane of the front magnetic field 16 of the objective lens 165 accompanying the change of the focal length The position of the image plane of the third condenser lens 5 may be adjusted in accordance with the fluctuation.
 <本実施例を適用した時の効果> 
 本実施例に係る照射光学系150を用いない場合の試料17上での電子ビーム強度について、図5を用いて説明する。
<Effect of applying this embodiment>
The electron beam intensity on the sample 17 when the irradiation optical system 150 according to the present embodiment is not used will be described with reference to FIG.
 試料上の小さな領域に平行な電子ビームを照射した場合、本実施例に係る照射光学系150を用いない一般の汎用透過電子顕微鏡では、観察される画像51の中にフレネル縞53が現れる。フレネル縞53は、コンデンサ絞り12の像面(図2の515に相当)が試料17上に形成される場合には見えず、像面が試料17から離れるほど大きくなる。 When a small region on the sample is irradiated with parallel electron beams, Fresnel fringes 53 appear in the observed image 51 in a general-purpose transmission electron microscope that does not use the irradiation optical system 150 according to the present embodiment. The Fresnel fringes 53 can not be seen when the image plane (corresponding to 515 in FIG. 2) of the condenser diaphragm 12 is formed on the sample 17, and becomes larger as the image plane moves away from the sample 17.
 本実施例に係る照射光学系150を用いない場合に、検出器22で得られる試料像について、図6を用いて説明する。 A sample image obtained by the detector 22 when the irradiation optical system 150 according to the present embodiment is not used will be described with reference to FIG.
 視野の中に複数の観察対象62がある時、フレネル縞63(図5のフレネル縞53に相当)が重なると、検出器22で得られる画像61は図6に示すようなものとなる。フレネル縞63の影響で画像61内の周辺視野では観察対象62が存在することがわかるものの、視野の中心に比べて観察対象62由来の情報以外にフレネル縞63の影響が混在してしまう。 When there are a plurality of observation targets 62 in the field of view, and the Fresnel stripes 63 (corresponding to the Fresnel stripes 53 in FIG. 5) overlap, the image 61 obtained by the detector 22 is as shown in FIG. Although it is known that the observation target 62 exists in the peripheral visual field in the image 61 due to the influence of the Fresnel stripes 63, the influence of the Fresnel stripes 63 is mixed in addition to the information derived from the observation target 62 compared with the center of the visual field.
 本実施例に係る照射光学系150を用いた場合の、対物レンズ165の内部に設置した試料17上での電子ビーム強度について、図7を用いて説明する。 The electron beam intensity on the sample 17 placed inside the objective lens 165 when using the irradiation optical system 150 according to the present embodiment will be described with reference to FIG.
 本実施例に係る照射光学系150を用いた場合、図1乃至3を用いて説明したような条件を満たすように第1コンデンサレンズ13乃至第3コンデンサレンズ15を調整する。このように試料17上にコンデンサ絞り12の絞り穴1201の像が結像されるように調整することにより、検出器22で得られる画像71における電子ビーム強度には、図5に示したようなフレネル縞53が現れず、試料17上における電子ビーム18の形状は、コンデンサ絞り12の絞り穴1201の形状と一致する。 When the irradiation optical system 150 according to the present embodiment is used, the first to third condenser lenses 13 to 15 are adjusted to satisfy the conditions as described with reference to FIGS. By adjusting so that the image of the stop hole 1201 of the condenser stop 12 is formed on the sample 17 in this manner, the electron beam intensity in the image 71 obtained by the detector 22 is as shown in FIG. The Fresnel fringes 53 do not appear, and the shape of the electron beam 18 on the sample 17 matches the shape of the aperture 1201 of the condenser aperture 12.
 通常の電子顕微鏡観察では、コンデンサ絞り12の絞り穴1201の周辺に付着した小さな汚れが、フレネル縞53で拡大してしまう。これに対して、本実施例に係る照射光学系150では、フレネル縞53が発生しないように照射光学系150を調整することが可能なので、コンデンサ絞り12の汚れに対する影響も小さくすることが可能である。 Under normal electron microscope observation, small dirt attached around the aperture 1201 of the condenser aperture 12 is enlarged by the Fresnel fringes 53. On the other hand, in the irradiation optical system 150 according to the present embodiment, since the irradiation optical system 150 can be adjusted so that the Fresnel fringes 53 are not generated, the influence on the contamination of the condenser diaphragm 12 can also be reduced. is there.
 本実施例に係る照射光学系150を用いた場合に検出器22で得られる画像81について、図8を用いて説明する。 An image 81 obtained by the detector 22 when the irradiation optical system 150 according to the present embodiment is used will be described with reference to FIG.
 図8に示す画像81は、図7で説明したように、試料17上にコンデンサ絞り12の絞り穴1201の像が結像されるように調整した状態の電子ビーム18を用いて、試料17の観察対象82を含む領域の画像81を示す。画像81の視野の中に複数の観察対象82がある時、図6に示したようなフレネル縞63の影響を受けることなく電子ビーム18が照射されるすべての領域で観察対象82のデータを取得することが可能となる。 The image 81 shown in FIG. 8 is obtained by using the electron beam 18 in a state in which the image of the aperture hole 1201 of the condenser aperture 12 is formed on the sample 17 as described in FIG. An image 81 of a region including the observation target 82 is shown. When there are a plurality of observation targets 82 in the field of view of the image 81, data of the observation target 82 is acquired in all the regions to which the electron beam 18 is irradiated without being affected by the Fresnel fringes 63 as shown in FIG. It is possible to
 <偏向器の位置> 
 本実施例に係る照射光学系150における第1偏向器26の位置について図9を用いて説明する。
<Position of deflector>
The position of the first deflector 26 in the irradiation optical system 150 according to the present embodiment will be described with reference to FIG.
 図9には、本実施例に係る照射光学系150の構成を示す。図9に示した構成では、コンデンサ絞り12と対物レンズの前磁場16の間に配置した3段のコンデンサレンズを複合的に用いることにより、第1コンデンサレンズ13から第3コンデンサレンズ15までの電子ビーム18の軌道を変化させた状態を示している。 FIG. 9 shows the configuration of an irradiation optical system 150 according to the present embodiment. In the configuration shown in FIG. 9, the electrons from the first condenser lens 13 to the third condenser lens 15 are combined by using three stages of condenser lenses disposed between the condenser diaphragm 12 and the front magnetic field 16 of the objective lens in combination. It shows a state in which the trajectory of the beam 18 is changed.
 図9の(a)の側の電子ビームの軌道91と、図9の(b)の側の電子ビームの軌道92を比較すると、(a)の側の電子ビームの軌道91におけるクロスオーバー93の位置と(b)の側の電子ビームの軌道92におけるクロスオーバー94の位置の高さが異なる。第1偏向器26の周辺でクロスオーバーの位置が変化すると、電子ビームに対する第1偏向器26の効き方が変わってしまう。 Comparing the trajectory 91 of the electron beam on the side of (a) in FIG. 9 with the trajectory 92 of the electron beam on the side of (b) in FIG. 9, the crossover 93 in the trajectory 91 of the electron beam on the side of (a) The height of the position and the position of the crossover 94 in the trajectory 92 of the electron beam on the side of (b) are different. When the position of the crossover changes around the first deflector 26, the effect of the first deflector 26 on the electron beam changes.
 この電子ビームの軌道のクロスオーバーの位置の変化の影響を少なくするために、本実施例に係る照射光学系150の第1偏向器26は、電子ビーム18の軌道のクロスオーバーが発生する位置から出来るだけ離れた位置に配置するのが好ましい。このような条件を満たす位置として、本実施例では、第1偏向器26を、コンデンサ絞り12と第1コンデンサレンズ13の間に配置するようにした。 In order to reduce the influence of the change in the position of the crossover of the electron beam trajectory, the first deflector 26 of the irradiation optical system 150 according to the present embodiment starts from the position where the crossover of the electron beam 18 occurs. It is preferable to arrange them as far apart as possible. In the present embodiment, the first deflector 26 is disposed between the condenser diaphragm 12 and the first condenser lens 13 as a position satisfying such conditions.
 また、同様な理由で、第1偏向器26を置くことの可能な位置は、コンデンサ絞り12と第1コンデンサレンズ13の間以外にも、電子ビームの軌道のクロスオーバーが発生する位置から出来るだけ離れた位置として、第3コンデンサレンズ15と対物レンズの前磁場16の間としても良い。 Also, for the same reason, the first deflector 26 can be placed not only between the condenser diaphragm 12 and the first condenser lens 13 but also from the position where the crossover of the electron beam trajectory occurs. It may be between the third condenser lens 15 and the front magnetic field 16 of the objective lens as a distant position.
 <コンデンサ絞り結像の調整方法> 
対物レンズ165の内部に設置した試料17上にコンデンサ絞り12の絞り穴1201の像を結像させる場合の調整方法について、図10及び図11を用いて説明する。コンデンサ絞り12に対して電子銃11の側にある第2偏向器27を用いることで、対物レンズ165の内部の試料17を設置する位置へのコンデンサ絞り12の絞り穴1201の像の結像状態を判断することができる。
<Adjustment method of condenser aperture imaging>
An adjustment method in the case of forming an image of the diaphragm hole 1201 of the condenser diaphragm 12 on the sample 17 disposed inside the objective lens 165 will be described with reference to FIGS. 10 and 11. FIG. By using the second deflector 27 on the side of the electron gun 11 with respect to the condenser diaphragm 12, the imaging state of the image of the diaphragm hole 1201 of the condenser diaphragm 12 to the position where the sample 17 is installed inside the objective lens 165 Can be judged.
 具体的な方法としては、コンデンサ絞り12の絞り穴1201の像が、対物レンズ165の内部の試料17を設置する位置に結像されていない状態で、検出器22で1枚の画像を取得するために必要な撮像時間より短い時間で第2偏向器27を振動させる。このとき検出器22により撮像される画像は、図10に示すような強度分布を有する画像101になる。画像101には、試料17を設置する位置に投影されたコンデンサ絞り12の絞り穴1201の像に対応する円形の強度分布103と104が観察される。これは、短い時間で振動する試料17上の電子ビームの様子を表す。 As a specific method, one image is acquired by the detector 22 in a state where the image of the diaphragm hole 1201 of the condenser diaphragm 12 is not formed at the position where the sample 17 is installed inside the objective lens 165. The second deflector 27 is vibrated in a time shorter than the imaging time required for At this time, an image captured by the detector 22 is an image 101 having an intensity distribution as shown in FIG. In the image 101, circular intensity distributions 103 and 104 corresponding to the image of the aperture hole 1201 of the condenser aperture 12 projected to the position where the sample 17 is placed are observed. This represents the appearance of the electron beam on the sample 17 vibrating in a short time.
 一方、図1乃至3を用いて説明したような条件を満たすように照射光学系150を調整して、コンデンサ絞り12の絞り穴1201の像が試料17が設置される位置に結像されるようにした状態で、検出器22で1枚の画像を取得するために必要な撮像時間より短い時間で第2偏向器27を振動させる。 On the other hand, the irradiation optical system 150 is adjusted to satisfy the conditions as described with reference to FIGS. 1 to 3 so that the image of the stop hole 1201 of the condenser stop 12 is formed at the position where the sample 17 is installed. In this state, the second deflector 27 is vibrated in a time shorter than the imaging time required for acquiring one image by the detector 22.
 このとき検出器22により撮像される画像は、図11に示すような、試料17が設置される位置に投影されたコンデンサ絞り12の絞り穴1201の像に対応する円形の強度分布112を有する画像111が得られる。 At this time, the image captured by the detector 22 is an image having a circular intensity distribution 112 corresponding to the image of the aperture hole 1201 of the condenser aperture 12 projected to the position where the sample 17 is installed, as shown in FIG. 111 is obtained.
 この画像111において、コンデンサ絞り12の絞り穴1201の像に対応する円形の強度分布112の領域は、第2偏向器27を振動させても試料位置の強度はほとんど動かず一定となっている。 In the image 111, in the region of the circular intensity distribution 112 corresponding to the image of the aperture 1201 of the condenser aperture 12, the intensity of the sample position hardly changes and is constant even when the second deflector 27 is vibrated.
 コンデンサ絞り12の絞り穴1201の像を試料17が設置される位置に結像させるため、照射光学系150は、コンデンサ絞り12の絞り穴1201が検出器22で見えるような条件にする必要がある。例えば、観察条件で用いる絞りに比べ径が小さな絞り穴1201が形成されたコンデンサ絞り12を用意し、調整のために使う等の方法が考えられる。 In order to form an image of the diaphragm hole 1201 of the condenser diaphragm 12 at a position where the sample 17 is installed, the irradiation optical system 150 needs to be under the condition that the diaphragm hole 1201 of the condenser diaphragm 12 can be seen by the detector 22 . For example, a method may be considered in which the condenser diaphragm 12 in which the diaphragm hole 1201 having a smaller diameter than the diaphragm used in the observation condition is formed is prepared and used for adjustment.
 他の方法として、調整のときのみ結像光学系250の倍率を下げ、コンデンサ絞り12の絞り穴1201の像が検出器22で確実に見える条件にして、コンデンサ絞り12の絞り穴1201の像の結像状態を調べる方法もある。また、その他の方法としては、通常の電子顕微鏡に搭載される対物レンズの下に配置されるイメージシフトを用いてコンデンサ絞りの絞り穴の縁が見える状態にし、調整を行う方法もある。 As another method, the magnification of the imaging optical system 250 is reduced only at the time of adjustment so that the image of the diaphragm hole 1201 of the condenser diaphragm 12 can be reliably seen by the detector 22, and the image of the diaphragm hole 1201 of the condenser diaphragm 12 is There is also a method of examining the imaging state. As another method, there is also a method of performing adjustment by making an edge of a diaphragm hole of a condenser diaphragm visible by using an image shift disposed under an objective lens mounted on a normal electron microscope.
 <平行照射の調整方法> 
本実施例に係る照射光学系150において、電子ビーム18を試料位置17に平行照射させるための調整方法について図12及び図13を用いて説明する。
<Method of adjusting parallel irradiation>
In the irradiation optical system 150 according to the present embodiment, an adjustment method for irradiating the electron beam 18 in parallel to the sample position 17 will be described with reference to FIGS. 12 and 13.
 電子ビーム18の平行照射を調整する方法の一つとして、通常の透過電子顕微鏡にある結像レンズ系を回折図形取得モードに変更して調整する方法がある。あらかじめ対物レンズ165の後磁場20の後側焦点面に結像レンズ系21の物面を調整しておき、対物レンズ165の内部の試料17を設置する位置における電子ビームの角度分布を回折モードにて調べる。 As one method of adjusting the parallel irradiation of the electron beam 18, there is a method of changing an imaging lens system in a normal transmission electron microscope to a diffraction pattern acquisition mode and adjusting. The object plane of the imaging lens system 21 is adjusted to the back focal plane of the back magnetic field 20 of the objective lens 165 in advance, and the angular distribution of the electron beam at the position where the sample 17 is placed inside the objective lens 165 Check.
 図12は、電子ビーム18の試料位置17への平行照射が不十分な時に、検出器22で取得される画像121の例を示す。この状態で取得される画像121では、1次電子ビームによるコンデンサ絞り12の絞り穴1201の像122が画像121内に広がっている。この状態では、試料位置17へ様々な角度で電子ビーム18が入射している。この強度分布をみながら、第1乃至第3のコンデンサレンズ13乃至15を調整することで試料位置17に入射する電子ビーム18の入射角度の調整を行う。 FIG. 12 shows an example of an image 121 acquired by the detector 22 when the parallel illumination of the electron beam 18 on the sample position 17 is insufficient. In the image 121 acquired in this state, the image 122 of the aperture hole 1201 of the condenser aperture 12 by the primary electron beam is spread in the image 121. In this state, the electron beam 18 is incident on the sample position 17 at various angles. By adjusting the first to third condenser lenses 13 to 15 while observing the intensity distribution, the incident angle of the electron beam 18 incident on the sample position 17 is adjusted.
 図13は、電子ビーム18の入射角度の調整を行って、電子ビーム18の試料位置17への平行照射が十分な状態で、検出器22で取得される画像131の例を示す。平行照射が得られる時は電子ビーム18が広がらず、コンデンサ絞り12の絞り穴1201の像が、微小な径を有するスポット132として観察される。 FIG. 13 shows an example of the image 131 acquired by the detector 22 in a state in which the incident angle of the electron beam 18 is adjusted and the parallel irradiation of the electron beam 18 to the sample position 17 is sufficient. When parallel irradiation is obtained, the electron beam 18 does not spread, and the image of the aperture 1201 of the condenser aperture 12 is observed as a spot 132 having a minute diameter.
 上記に説明した試料位置17に入射する電子ビーム18の平行照射の調整方法では、対物レンズの下磁場20により後側焦点面に形成されるコンデンサ絞り12の像の強度を見ることで調整を行った。 In the adjustment method of parallel irradiation of the electron beam 18 incident on the sample position 17 described above, the adjustment is performed by looking at the intensity of the image of the condenser diaphragm 12 formed on the back focal plane by the lower magnetic field 20 of the objective lens. The
 対物レンズ165の後磁場20の後側焦点面に結像レンズ系21の物面が合うように調整する方法には、いくつかの方法が考えられる。例えば、試料17を設置する位置にアモルファス試料を配置し,対物レンズ165の前磁場16又は対物レンズ165の後磁場20の励磁を変えてデフォーカスさせた像を検出器22で撮像して取得し、取得画像を複数の領域に分割してフーリエ変換する方法がある。 Several methods can be considered as a method of adjusting the object plane of the imaging lens system 21 to match the back focal plane of the back magnetic field 20 of the objective lens 165. For example, an amorphous sample is placed at a position where the sample 17 is to be placed, and the excitation of the front magnetic field 16 of the objective lens 165 or the excitation of the rear magnetic field 20 of the objective lens 165 is changed to obtain a defocused image There are methods of dividing an acquired image into a plurality of regions and performing Fourier transform.
 平行照射の調整方法に関し、アモルファス試料の1枚のデフォーカス像141から、試料17を設置する位置に入射する電子ビーム18の視野内における平行性を見積もる方法を、図14及び図15を用いて説明する。 A method of estimating the parallelism in the field of view of the electron beam 18 incident on the position where the sample 17 is to be installed from the single defocus image 141 of the amorphous sample regarding the adjustment method of parallel irradiation, using FIG. 14 and FIG. explain.
 図14は、試料17を設置する位置に配置したアモルファス試料に電子ビーム18を照射して得られたデフォーカス像141を示す。このデフォーカス像141を、複数の細かなセグメント143に分ける。分割するセグメント143の大きさは、検出器22の画素数と、アモルファス試料に入射する電子ビーム18に求められる平行性によって変わる。一般的には、細かく分けた方が画像内におけるアモルファス試料への電子ビーム18の入射角度の違いを判断しやすい。 FIG. 14 shows a defocused image 141 obtained by irradiating the amorphous sample placed at the position where the sample 17 is placed with the electron beam 18. The defocus image 141 is divided into a plurality of small segments 143. The size of the segment 143 to be divided varies depending on the number of pixels of the detector 22 and the parallelism required for the electron beam 18 incident on the amorphous sample. Generally speaking, it is easier to determine the difference in the incident angle of the electron beam 18 on the amorphous sample in the image if it is finely divided.
 図15には、図14において分割したセグメント143毎にフーリエ変換して得た解析画像151を示す。この解析画像151においては、中心部分のフーリエ変換結果152と周辺部分のフーリエ変換結果153とに違いが現れている。このセグメントごとのフーリエ変換結果152,153の、例えば楕円率と、デフォーカス量の情報から、中心と周辺の視野における平行性の違いを見積もる事が可能である。 FIG. 15 shows an analysis image 151 obtained by performing Fourier transform on each of the segments 143 divided in FIG. In the analysis image 151, a difference appears between the Fourier transform result 152 of the central portion and the Fourier transform result 153 of the peripheral portion. It is possible to estimate the difference in parallelism between the center and the peripheral visual field from, for example, the information of the ellipticity and the defocus amount of the Fourier transform results 152 and 153 for each segment.
 上記に説明した電子ビーム18の平行照射の調整では、1枚のアモルファス画像から平行性の計測を行ったが、その他の方法として既存のディフラクトグラムを用いる方法もある。 In the adjustment of parallel irradiation of the electron beam 18 described above, the parallelism was measured from one amorphous image, but there is also a method of using an existing diffractogram as another method.
 <光学系設定方法> 
 本実施例に係る照射光学系150の設定方法において、コンデンサ絞り12の絞り穴1201の径と倍率をリンクすることで調整に必要な条件を減らす方法について、図16を用いて説明する。
<Optical system setting method>
A method of reducing the conditions necessary for adjustment by linking the diameter of the aperture hole 1201 of the condenser aperture 12 and the magnification in the setting method of the irradiation optical system 150 according to the present embodiment will be described with reference to FIG.
 本実施例に係る照射光学系150では、コンデンサ絞り12で、対物レンズ165の内部に設置した試料17に照射する電子ビーム18の照射電流量を調整する。試料17に照射する照射電流量を増やすためには、コンデンサ絞り12の絞り穴1201の径を大きくする必要がある。しかし、コンデンサ絞り12の絞り穴1201の径を大きくすると、試料上での照射領域も大きくなり、観察視野外の領域にも電子ビーム18を照射してしまうことになり、試料17にダメージを与えてしまう可能性がある。 In the irradiation optical system 150 according to the present embodiment, the condenser diaphragm 12 adjusts the amount of irradiation current of the electron beam 18 to be irradiated to the sample 17 disposed inside the objective lens 165. In order to increase the amount of irradiation current applied to the sample 17, it is necessary to increase the diameter of the aperture 1201 of the condenser aperture 12. However, if the diameter of the aperture 1201 of the condenser aperture 12 is increased, the irradiation area on the sample also becomes large, and the electron beam 18 is also irradiated to the area outside the observation field of view, damaging the sample 17. There is a possibility of
 そこで、本実施例では、コンデンサ絞り12の絞り穴1201の径を大きくする前と後で、試料17の同じ領域を照射できるようにすることを目的に、第1コンデンサレンズ13、第2コンデンサレンズ14、第3コンデンサレンズ15の強さを変え、照射光学系150の縮小率を調整できるようにした。 Therefore, in the present embodiment, the first condenser lens 13 and the second condenser lens are used to irradiate the same area of the sample 17 before and after the diameter of the diaphragm hole 1201 of the condenser diaphragm 12 is increased. 14 The strength of the third condenser lens 15 is changed to adjust the reduction ratio of the irradiation optical system 150.
 図16の表160に、コンデンサ絞り12の絞り穴1201の径(絞り径)162と倍率163をリンクした時の照射光学系150の設定例を示す。この表160において、コンデンサ絞り12の絞り穴1201の径(絞り径)162と照射電流量161とは、1対1の関係になっていることを示している。 A table 160 in FIG. 16 shows a setting example of the irradiation optical system 150 when the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 of the condenser diaphragm 12 and the magnification 163 are linked. In this table 160, it is shown that the diameter (diaphragm diameter) 162 of the aperture hole 1201 of the condenser aperture 12 and the irradiation current amount 161 have a one-to-one relationship.
 一方、照射光学系150の倍率163が1k倍(kは任意の単位量)、2k倍、4k倍に対し、絞り穴1201の径(絞り径)162を1R(Rは任意の単位量)、2R、4Rに設定することで、9条件を設定することが出来る。表160において、絞り穴1201の径(絞り径)162と倍率163とを掛け合わせた値が同じ値になる欄には、同じアルファベット文字を記載してある。 On the other hand, when the magnification 163 of the irradiation optical system 150 is 1k (k is an arbitrary unit amount), 2k and 4k, the diameter (diaphragm diameter) 162 of the aperture 1201 is 1R (R is an arbitrary unit amount), By setting 2R and 4R, 9 conditions can be set. In Table 160, the same alphabet letters are described in the column where the value obtained by multiplying the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 and the magnification 163 is the same value.
 この表160において、照射電流量161が1I(Iは任意の単位量)で絞り穴1201の径(絞り径)162が1Rの場合における4k倍のC条件を、絞り穴1201の径(絞り径)162だけを変えることで、倍率163が1k倍のときの照射電流量161が16Iの条件に転用することができることがわかる。 In this table 160, when the irradiation current amount 161 is 1I (I is an arbitrary unit amount) and the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 is 1R, the C condition of 4k times the diameter of the diaphragm hole 1201 (diaphragm diameter By changing only 162), it is understood that the irradiation current amount 161 when the magnification 163 is 1 k can be diverted to the condition of 16I.
 例えば、図16のケースでは、必要な照射電流量161は1I,4I,16Iの3種類であるが、コンデンサ絞り12の絞り穴1201の径(絞り径)162と倍率163との関係における9つの光学条件に対し、A~Dの5つの条件を設定すればよいこととなり、条件設定の手間を少なくすることが可能となる。 For example, in the case of FIG. 16, the required irradiation current amount 161 is three types 1I, 4I and 16I, but in the relationship between the diameter (diaphragm diameter) 162 of the diaphragm hole 1201 of the condenser diaphragm 12 and the magnification 163 With respect to the optical conditions, five conditions of A to D may be set, and the time and effort for setting conditions can be reduced.
 本実施例によれば、電子ビームを試料上に平行照射した状態でコンデンサ絞りの像を試料上へ結像することと、電子線照射領域を変えることを同時に行うことが可能な構成とすることで、観察領域の倍率に応じた電子ビームの照射を可能にした。 According to the present embodiment, it is possible to simultaneously form an image of the condenser diaphragm on the sample while changing the electron beam irradiation area simultaneously while the electron beam is parallel irradiated onto the sample. Thus, it became possible to irradiate the electron beam according to the magnification of the observation area.
 実施例1における図4に示した照射光学系150の構成では、コンデンサ絞り12を挟んで第1偏向器26と第2偏向器27を配置していた。 In the configuration of the irradiation optical system 150 shown in FIG. 4 in the first embodiment, the first deflector 26 and the second deflector 27 are disposed with the condenser diaphragm 12 interposed therebetween.
 これに対して、本実施例においては、試料17を設置する位置における電子ビームの照射領域の調整範囲を拡大させる目的で、図17に示すように、第2偏向器27と電子銃11との間に、第4コンデンサレンズ171を設ける構成とした。 On the other hand, in the present embodiment, for the purpose of expanding the adjustment range of the irradiation area of the electron beam at the position where the sample 17 is placed, as shown in FIG. The fourth condenser lens 171 is provided between them.
 図17に示した本実施例に係る照射光学系170の構成において、第4コンデンサレンズ171以外は、実施例1で説明した図4に示した照射光学系150の構成と同じであるので、それらの構成についての説明は省略する。 The configuration of the irradiation optical system 170 according to the present embodiment shown in FIG. 17 is the same as that of the irradiation optical system 150 shown in FIG. 4 described in the first embodiment except the fourth condenser lens 171. The description of the configuration of will be omitted.
 図17に示した本実施例に係る照射光学系170において、コンデンサ絞り12及び第2偏向器27と電子銃11との間に第4コンデンサレンズ171を配置した構成では、第4コンデンサレンズ171の焦点距離を変えて第4コンデンサレンズ171の焦点位置172を調整することで、コンデンサ絞り12より下流の3段の第1乃至第3のコンデンサレンズ13,14,15により調整される電子ビーム178の試料17を設置する位置における照射領域、照射電流量の調整幅を広げる事が可能となる。 In the configuration in which the fourth condenser lens 171 is disposed between the condenser diaphragm 12 and the second deflector 27 and the electron gun 11 in the irradiation optical system 170 according to the present embodiment shown in FIG. By adjusting the focal position 172 of the fourth condenser lens 171 by changing the focal length, the electron beam 178 adjusted by the first to third condenser lenses 13, 14 and 15 downstream of the condenser diaphragm 12 is It is possible to widen the adjustment range of the irradiation area and the irradiation current amount at the position where the sample 17 is installed.
 さらに、第4コンデンサレンズ171の励磁条件を調整することで、対物レンズ165の内部の試料17を設置する位置における電子ビーム178の球面収差量をコントロールすることも可能となる。加えて、電子銃1の電子源における仮想光源(図1の200に相当)の位置が変化する時にも、コンデンサ絞り12より下流で照射光学系170を調整するのではなく、第4コンデンサレンズ171にて変化を吸収することが可能となる。 Furthermore, by adjusting the excitation condition of the fourth condenser lens 171, it is also possible to control the amount of spherical aberration of the electron beam 178 at the position where the sample 17 is installed inside the objective lens 165. In addition, even when the position of the virtual light source (corresponding to 200 in FIG. 1) in the electron source of the electron gun 1 changes, the fourth condenser lens 171 is not adjusted downstream of the condenser diaphragm 12. Changes can be absorbed.
 本実施例によれば、実施例1で接明した効果に加えて、対物レンズ165の内部の試料17を設置する位置における電子ビーム178の照射領域の調整範囲を、図4に示した実施例1の場合と比べて、拡大させることができる。 According to this embodiment, in addition to the effect of lightening in Embodiment 1, the adjustment range of the irradiation area of the electron beam 178 at the position where the sample 17 is installed inside the objective lens 165 is shown in FIG. Compared with the case of 1, it can be enlarged.
 本発明の第3の実施例における照射光学系180について、図18を用いて説明する。 The illumination optical system 180 according to the third embodiment of the present invention will be described with reference to FIG.
 図18に示した本実施例に係る照射光学系180の構成において、第4コンデンサレンズ171及び第5コンデンサレンズ181以外は、実施例1で説明した図4に示した照射光学系150の構成と同じであるので、それらの構成についての説明は省略する。 In the configuration of the irradiation optical system 180 according to the present embodiment shown in FIG. 18, the configuration of the irradiation optical system 150 shown in FIG. 4 described in the first embodiment except for the fourth condenser lens 171 and the fifth condenser lens 181 Since they are the same, the description of their configuration is omitted.
 図18に示したような、第4コンデンサレンズ171の上流(電子銃11の側)に第5コンデンサレンズ181を配置した5段のコンデンサレンズからなる照射光学系180では、第4コンデンサレンズ171と第5コンデンサレンズ181との強さを変えることで、第4コンデンサレンズ171にて作る像面位置182を変えずに見かけ上、電子銃11の内部にある仮想光源(図1の200に相当)の高さを調整することが可能となる。 In an irradiation optical system 180 including a five-stage condenser lens in which a fifth condenser lens 181 is disposed upstream of the fourth condenser lens 171 (on the side of the electron gun 11) as shown in FIG. By changing the strength with the fifth condenser lens 181, a virtual light source (equivalent to 200 in FIG. 1) apparently inside the electron gun 11 without changing the image plane position 182 made by the fourth condenser lens 171 It is possible to adjust the height of the
 これによりコンデンサ絞り12の絞り穴1201の径を固定したまま対物レンズ165の内部の試料17を設置する位置における電子ビーム188の照射電流量を任意に調整することが可能となる。 This makes it possible to arbitrarily adjust the amount of irradiation current of the electron beam 188 at the position where the sample 17 is installed inside the objective lens 165 while the diameter of the aperture hole 1201 of the condenser aperture 12 is fixed.
 本実施例に係る5段のコンデンサレンズ13,14,15,171,181からなる照射光学系180では、コンデンサ絞り12の絞り穴1201の径を固定して、対物レンズ165の内部の試料17を設置する位置における電子ビーム188の照射電流量を変更することが可能である。その結果、コンデンサ絞り12として通常4つから7つ設ける絞りの穴1201の径に対し、利用度の高い径の絞り穴1201を重複して用意することが可能となる。このように利用頻度の高い径の絞り穴1201を複数形成することにより、1つのコンデンサ絞り12を比較的長い間使用することが出来、コンデンサ絞り12の交換頻度を少なくすることが出来る。 In the irradiation optical system 180 consisting of the condenser lens 13, 14, 15, 171, 181 according to this embodiment, the diameter of the aperture hole 1201 of the condenser aperture 12 is fixed, and the sample 17 inside the objective lens 165 is used. It is possible to change the amount of irradiation current of the electron beam 188 at the installation position. As a result, it is possible to redundantly prepare a diaphragm hole 1201 having a diameter with a high degree of utilization with respect to the diameter of a diaphragm hole 1201 normally provided with four to seven condenser diaphragms 12. By forming a plurality of diaphragm holes 1201 having a diameter frequently used as described above, one condenser diaphragm 12 can be used for a relatively long time, and the replacement frequency of the condenser diaphragm 12 can be reduced.
 以上、本実施例によれば、実施例1で説明した効果に加えて、対物レンズ165の内部の試料17を設置する位置における電子ビーム188の照射領域(試料17を設置する位置に結像されるコンデンサ絞り12の像の大きさ)と照射電流量(ドーズ量)とを独立に制御することが可能になり、観察領域及び観察対象試料に応じた電子ビームの照射を可能にした。 As described above, according to the present embodiment, in addition to the effects described in the first embodiment, the irradiation area of the electron beam 188 at the position where the sample 17 is placed inside the objective lens 165 (the image It becomes possible to independently control the size of the image of the condenser diaphragm 12 and the amount of irradiation current (dose amount), and it becomes possible to irradiate the electron beam according to the observation region and the sample to be observed.
 実施例1乃至3においては、コンデンサ絞り12と対物レンズ165の前磁場16との間に3段のコンデンサレンズ13,14,15設けた構成について説明したが、本実施例では、コンデンサレンズを2段にした構成について、図19を用いて説明する。 In the first to third embodiments, the configuration in which the three- stage condenser lenses 13, 14 and 15 are provided between the condenser diaphragm 12 and the front magnetic field 16 of the objective lens 165 has been described. The stepped structure is described with reference to FIG.
 図19に示した本実施例に係る照射光学系190の構成において、実施例1で説明した図4に示した照射光学系150の構成における第3コンデンサレンズ15を除いた以外は、図4で説明した構成と同じであるので、それらの構成についての説明は省略する。 The configuration of the irradiation optical system 190 according to the present embodiment shown in FIG. 19 is the same as that of FIG. 4 except that the third condenser lens 15 in the configuration of the irradiation optical system 150 shown in FIG. Since the configuration is the same as that described, the description of those configurations is omitted.
 図19に示した照射光学系190のように、図4に示した照射光学系150の第3コンデンサレンズ15を除いて、第1コンデンサレンズ13と第2コンデンサレンズ14とでコンデンサレンズ群を形成した光学系においても、コンデンサ絞り12の絞り穴1201の像を試料17を設置する位置に結像する結像光学系を作成することが可能である。対物レンズ165の内部の試料17を設置する位置に結像するコンデンサ絞り12の絞り穴1201の像の大きさ(試料17を設置する位置に照射される電子ビーム18の径)を変えることはできないが、第1コンデンサレンズ13と第2コンデンサレンズ14とを調整することにより、試料17を設置する位置に平行なビームを照射することが可能である。 Like the illumination optical system 190 shown in FIG. 19, the condenser lens group is formed by the first condenser lens 13 and the second condenser lens 14 except for the third condenser lens 15 of the illumination optical system 150 shown in FIG. Also in the optical system described above, it is possible to create an imaging optical system in which the image of the stop hole 1201 of the condenser stop 12 is formed at the position where the sample 17 is placed. The size of the image of the aperture hole 1201 of the condenser aperture 12 (the diameter of the electron beam 18 irradiated at the location where the sample 17 is placed) formed on the position where the sample 17 is placed inside the objective lens 165 can not be changed. However, by adjusting the first condenser lens 13 and the second condenser lens 14, it is possible to irradiate a beam parallel to the position where the sample 17 is placed.
 本実施例によれば、実施例1で説明したような、第3コンデンサレンズ15がある場合と異なり、複数の幅広い照射領域に対応できる条件を得ることは出来ないが、一つのコンデンサ絞り穴径に対し、一つないし二つの条件に限定された照射条件を作り出すことが可能である。 According to the present embodiment, unlike the case where the third condenser lens 15 is provided as described in the first embodiment, it is not possible to obtain conditions that can cope with a plurality of wide irradiation areas, but one condenser aperture diameter On the other hand, it is possible to create irradiation conditions limited to one or two conditions.
 また、図19に示した構成に、実施例2において図17で説明した第4コンデンサレンズ171を追加して、仮想光源の位置を変化させることで、対物レンズ165に内部の試料17を設置する位置に結像するコンデンサ絞り12の絞り穴1201の像の大きさ(試料位置17に照射される電子ビーム18の径)を変えることができる。 In addition, the fourth condenser lens 171 described in FIG. 17 in the second embodiment is added to the configuration shown in FIG. 19, and the position of the virtual light source is changed to install the sample 17 inside the objective lens 165. The size of the image (the diameter of the electron beam 18 irradiated to the sample position 17) of the aperture 1201 of the condenser aperture 12 imaged at the position can be changed.
 更に、図19に示した構成に、実施例3において図18で説明した第4コンデンサレンズ171と第5コンデンサレンズ181とを追加することで、試料位置17に結像するコンデンサ絞り12の絞り穴1201の像の大きさ(試料17を設置する位置に照射される電子ビーム18の径)と照射電流量とを独立に調整することができる。 Furthermore, by adding the fourth condenser lens 171 and the fifth condenser lens 181 described in FIG. 18 in the third embodiment to the configuration shown in FIG. The size of the image 1201 (the diameter of the electron beam 18 irradiated to the position where the sample 17 is placed) and the amount of irradiation current can be adjusted independently.
 以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記した実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 As mentioned above, although the invention made by the present inventor was concretely explained based on an example, the present invention is not limited to the above-mentioned example, and it can be variously changed in the range which does not deviate from the gist Needless to say. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 1、11・・・電子銃  2、12・・・コンデンサ絞り  3,13・・・第1コンデンサレンズ  4,14・・・第2コンデンサレンズ  5、15・・・第3コンデンサレンズ  6、16・・・対物レンズ前磁場  7、17・・・試料  8、18・・・電子ビーム  9・・・クロスオーバー  20・・・対物レンズ後磁場  21・・・結像レンズ系  22・・・検出器  23・・・透過電子  24・・・対物絞り  25・・・制限視野絞り  26・・・第1偏向器  27・・・第2偏向器  50、150,170,180,190・・・照射光学系  60,165・・・対物レンズ  160・・・結像光学系  171・・・第4コンデンサレンズ  181・・・第5コンデンサレンズ。 1, 11 ... electron gun 2, 12 ... condenser aperture 3, 13 ... first condenser lens 4, 14 ... second condenser lens 5, 15 ... third condenser lens 6, 16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ... Transmission electron 24 ... Objective stop 25 ... Limited field stop 26 ... First deflector 27 ... Second deflector 50, 150, 170, 180, 190 ... Irradiation optical system 60 , 165 ... objective lens 160 ... imaging optical system 171 ... fourth condenser lens 181 ... fifth condenser lens.

Claims (14)

  1.  試料に1次電子ビームを照射する照射光学系と、
     前記照射光学系により前記1次電子ビームが照射された前記試料より発生した透過電子を結像させて前記試料の像を検出する結像光学系と
    を備えた荷電粒子線装置であって、
     前記照射光学系は、
      前記1次電子ビームを発射する電子銃と、
      前記電子銃から発射された前記1次電子ビームの一部を通過させる絞り穴が形成されたコンデンサ絞りと、
      前記コンデンサ絞りの前記絞り穴を通過した前記1次電子ビームの軌道を制御する第1偏向器と、
      前記第1偏向器で軌道が制御された前記1次電子ビームの平行度を調整するコンデンサレンズを複数備えたコンデンサレンズ部と、
      前記コンデンサレンズ部で平行光に調整された前記1次電子ビームによる前記絞り穴の像を前記試料上に結像させる対物レンズと
    を備えたことを特徴とする荷電粒子線装置。
    An irradiation optical system for irradiating the sample with a primary electron beam;
    A charged particle beam apparatus comprising: an imaging optical system for imaging transmitted electrons generated from the sample irradiated with the primary electron beam by the irradiation optical system to detect an image of the sample;
    The irradiation optical system is
    An electron gun for emitting the primary electron beam;
    A condenser diaphragm in which a diaphragm hole is formed for passing a part of the primary electron beam emitted from the electron gun;
    A first deflector for controlling the trajectory of the primary electron beam that has passed through the aperture hole of the condenser aperture;
    A condenser lens unit including a plurality of condenser lenses for adjusting the parallelism of the primary electron beam whose orbit is controlled by the first deflector;
    A charged particle beam apparatus, comprising: an objective lens configured to form an image of the stop hole by the primary electron beam adjusted to be parallel light by the condenser lens portion on the sample.
  2.  請求項1記載の荷電粒子線装置であって、前記荷電粒子線装置は透過型電子顕微鏡であって、前記結像光学系は、前記照射光学系により平行度が調整された前記1次電子ビームが照射された前記試料を透過した透過電子を結像させて、前記結像させた前記透過電子の画像を検出することを特徴とする荷電粒子線装置。 The charged particle beam apparatus according to claim 1, wherein the charged particle beam apparatus is a transmission electron microscope, and the imaging optical system is the primary electron beam whose parallelism is adjusted by the irradiation optical system. A charged particle beam apparatus, comprising: forming an image of transmitted electrons transmitted through the sample irradiated with the light; and detecting an image of the formed transmitted electrons.
  3.  請求項1記載の荷電粒子線装置であって、前記コンデンサレンズ部は3つのコンデンサレンズを備え、前記3つのコンデンサレンズは、前記第1偏向器で軌道が制御された前記1次電子ビームの平行度を調整する機能と、前記コンデンサレンズ部の像面の前記対物レンズの物面への合せこみの調整を行う機能とを備えていることを特徴とする荷電粒子線装置。 The charged particle beam device according to claim 1, wherein the condenser lens unit includes three condenser lenses, and the three condenser lenses are parallel to the primary electron beam whose orbit is controlled by the first deflector. A charged particle beam device comprising: a function of adjusting a degree; and a function of adjusting alignment of an image surface of the condenser lens portion to an object surface of the objective lens.
  4.  請求項1記載の荷電粒子線装置であって、前記照射光学系は、前記コンデンサ絞りを挟んで、前記第1偏向器と対向する位置に第2偏向器を備えたことを特徴とする荷電粒子線装置。 The charged particle beam apparatus according to claim 1, wherein the irradiation optical system includes a second deflector at a position facing the first deflector with the condenser diaphragm interposed therebetween. Wire equipment.
  5.  請求項4記載の荷電粒子線装置であって、前記照射光学系は、前記第2偏向器と前記電子銃との間に、前記コンデンサレンズ部で平行光に調整する前記1次電子ビームの径と照射電流を調整する第1コンデンサレンズを備えたことを特徴とする荷電粒子線装置。 5. The charged particle beam device according to claim 4, wherein the irradiation optical system adjusts the diameter of the primary electron beam to be collimated by the condenser lens unit between the second deflector and the electron gun. And a first condenser lens for adjusting an irradiation current.
  6.  請求項5記載の荷電粒子線装置であって、前記照射光学系は、前記第1コンデンサレンズと前記電子銃との間に、前記試料に照射する前記1次電子ビームの照射電流量を調整する第2コンデンサレンズを更に備えたことを特徴とする荷電粒子線装置。 6. The charged particle beam device according to claim 5, wherein the irradiation optical system adjusts an irradiation current amount of the primary electron beam to be irradiated to the sample between the first condenser lens and the electron gun. A charged particle beam device further comprising a second condenser lens.
  7.  電子銃から発射した1次電子ビームを照射光学系を介して試料に照射し、
     前記照射光学系を介して前記1次電子ビームが照射された前記試料より発生した透過電子を結像光学系で結像させて前記試料の像を検出する
    荷電粒子線装置の調整方法であって、
     前記照射光学系を介して前記1次電子ビームを前記試料に照射することを、
      前記電子銃から発射された前記1次電子ビームをコンデンサ絞りを通過させ、
      前記コンデンサ絞りを通過した前記1次電子ビームの軌道を第1偏向器で調整し、
      コンデンサレンズを複数備えたコンデンサレンズ部により前記第1偏向器で軌道が調整された前記1次電子ビームの平行度と前記1次電子ビームによる前記コンデンサ絞りの像面の位置を調整し、
      前記コンデンサレンズ部で平行光に調整されて前記像面の位置が調整された前記1次電子ビームによる前記コンデンサ絞りの像を対物レンズで前記試料上に結像させる
    ことを特徴とする荷電粒子線装置の調整方法。
    The primary electron beam emitted from the electron gun is irradiated to the sample through the irradiation optical system,
    An adjusting method of a charged particle beam apparatus, which images transmission electrons generated from the sample irradiated with the primary electron beam through the irradiation optical system by an imaging optical system and detects an image of the sample. ,
    Irradiating the sample with the primary electron beam through the irradiation optical system;
    Passing the primary electron beam emitted from the electron gun through a condenser aperture;
    Adjusting a trajectory of the primary electron beam having passed through the condenser aperture by a first deflector;
    Adjusting a degree of parallelism of the primary electron beam whose orbit is adjusted by the first deflector by a condenser lens unit including a plurality of condenser lenses, and adjusting a position of an image plane of the condenser diaphragm by the primary electron beam;
    Charged particle beam characterized in that an image of the condenser diaphragm by the primary electron beam adjusted to parallel light by the condenser lens portion and the position of the image plane adjusted is formed on the sample by an objective lens How to adjust the device.
  8.  請求項7記載の荷電粒子線装置の調整方法であって、前記荷電粒子線装置は透過型電子顕微鏡であって、前記照射光学系を介して前記平行度と前記コンデンサ絞りの前記像面の位置とが調整された前記1次電子ビームが照射された前記試料を透過した透過電子を結像光学系で結像させて前記試料の電子線透過画像を検出することを特徴とする荷電粒子線装置の調整方法。 8. The method for adjusting a charged particle beam device according to claim 7, wherein the charged particle beam device is a transmission electron microscope, and the degree of parallelism and the position of the image plane of the condenser diaphragm through the irradiation optical system. A charged particle beam device characterized in that an electron beam transmission image of the sample is detected by forming an image of transmission electrons transmitted through the sample irradiated with the primary electron beam adjusted by the imaging optical system with an imaging optical system. How to adjust the
  9.  請求項7記載の荷電粒子線装置の調整方法であって、前記第1偏向器で前記1次電子ビームの軌道を調整し、前記コンデンサレンズ部の複数の前記コンデンサレンズで、前記第1偏向器で軌道が調整された前記1次電子ビームの平行度の調整と、前記コンデンサ絞りの前記像面を前記対物レンズの物面に合せこむ調整とを行うことを特徴とする荷電粒子線装置の調整方法。 8. The method of adjusting a charged particle beam device according to claim 7, wherein a trajectory of said primary electron beam is adjusted by said first deflector, and said first deflector is constituted by a plurality of said condenser lenses of said condenser lens portion. Adjustment of the parallelism of the primary electron beam whose orbit is adjusted, and adjustment of aligning the image plane of the condenser diaphragm with the object plane of the objective lens Method.
  10.  請求項7記載の荷電粒子線装置の調整方法であって、前記照射光学系の前記コンデンサ絞りを挟んで前記第1偏向器と対向する位置に配置された第2偏向器で、前記第2偏向器から前記対物レンズまでの前記1次電子ビームが通過する光軸の調整を行うことを特徴とする荷電粒子線装置の調整方法。 The adjustment method of a charged particle beam device according to claim 7, wherein the second deflector is disposed at a position facing the first deflector across the condenser diaphragm of the irradiation optical system. And adjusting the optical axis through which the primary electron beam passes from the target to the objective lens.
  11.  請求項10記載の荷電粒子線装置の調整方法であって、前記第2偏向器を用いて前記コンデンサ絞りを通過した前記1次電子ビームの光軸を振り、前記光軸が振られた前記1次電子ビームが照射された前記試料を透過した透過電子による像を前記結像光学系で検出し、前記結像光学系で検出した前記透過電子による像に基づいて前記コンデンサレンズ部を用いて前記コンデンサ絞りの像の前記試料上への結像の状態を調整することを特徴とする荷電粒子線装置の調整方法。 11. The method of adjusting a charged particle beam device according to claim 10, wherein the second deflector is used to swing the optical axis of the primary electron beam that has passed through the condenser diaphragm, and the first optical beam is deflected. The image by the transmission electron transmitted through the sample irradiated with the next electron beam is detected by the imaging optical system, and the condenser lens unit is used based on the image by the transmission electron detected by the imaging optical system. A method of adjusting a charged particle beam device, comprising adjusting a state of imaging of an image of a condenser diaphragm on the sample.
  12.  請求項10記載の荷電粒子線装置の調整方法であって、前記照射光学系の前記第2偏向器と前記電子銃との間に設置した第1コンデンサレンズを用いて、前記コンデンサレンズ部で平行光に調整する前記1次電子ビームの径と前記試料に照射する前記1次電子ビームの照射電流を調整することを特徴とする荷電粒子線装置の調整方法。 11. The method of adjusting a charged particle beam device according to claim 10, further comprising: using a first condenser lens disposed between the second deflector of the irradiation optical system and the electron gun, paralleling at the condenser lens portion. And adjusting a diameter of the primary electron beam to be adjusted to light and an irradiation current of the primary electron beam to be irradiated to the sample.
  13.  請求項12記載の荷電粒子線装置の調整方法であって、前記第1コンデンサレンズを用いて、前記試料に照射する前記1次電子ビームの非球面収差を調整することを特徴とする荷電粒子線装置の調整方法。 The charged particle beam apparatus according to claim 12, wherein the aspheric aberration of the primary electron beam irradiated to the sample is adjusted using the first condenser lens. How to adjust the device.
  14.  請求項12記載の荷電粒子線装置の調整方法であって、前記照射光学系の前記第2偏向器と前記電子銃との間で前記第2偏向器の側に設置した第1コンデンサレンズと前記電子銃の側に設置した第2コンデンサレンズとを用いて、前記コンデンサレンズ部で平行光に調整する前記1次電子ビームの径と前記試料に照射する前記1次電子ビームの照射電流を調整することを特徴とする荷電粒子線装置の調整方法。 13. The method of adjusting a charged particle beam device according to claim 12, further comprising: a first condenser lens disposed on the side of the second deflector between the second deflector of the irradiation optical system and the electron gun; Adjusting the diameter of the primary electron beam adjusted to parallel light by the condenser lens unit and the irradiation current of the primary electron beam irradiated to the sample using the second condenser lens installed on the electron gun side And a method of adjusting a charged particle beam device.
PCT/JP2017/027255 2017-07-27 2017-07-27 Charged particle beam device, and method of adjusting charged particle beam device WO2019021420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027255 WO2019021420A1 (en) 2017-07-27 2017-07-27 Charged particle beam device, and method of adjusting charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027255 WO2019021420A1 (en) 2017-07-27 2017-07-27 Charged particle beam device, and method of adjusting charged particle beam device

Publications (1)

Publication Number Publication Date
WO2019021420A1 true WO2019021420A1 (en) 2019-01-31

Family

ID=65041158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027255 WO2019021420A1 (en) 2017-07-27 2017-07-27 Charged particle beam device, and method of adjusting charged particle beam device

Country Status (1)

Country Link
WO (1) WO2019021420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823005A1 (en) * 2019-11-15 2021-05-19 Jeol Ltd. Transmission electron microscope and method of controlling same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220541A (en) * 1984-04-17 1985-11-05 Jeol Ltd Transmission electron microscope
JPS6113541A (en) * 1984-06-22 1986-01-21 カール・ツアイス‐スチフツング Method and device for using transmission electron microscopeto filter and focus electron energy in article or article diffracted figure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60220541A (en) * 1984-04-17 1985-11-05 Jeol Ltd Transmission electron microscope
JPS6113541A (en) * 1984-06-22 1986-01-21 カール・ツアイス‐スチフツング Method and device for using transmission electron microscopeto filter and focus electron energy in article or article diffracted figure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823005A1 (en) * 2019-11-15 2021-05-19 Jeol Ltd. Transmission electron microscope and method of controlling same
JP2021082408A (en) * 2019-11-15 2021-05-27 日本電子株式会社 Transmission electron microscope and transmission electron microscope control method
JP6995103B2 (en) 2019-11-15 2022-01-14 日本電子株式会社 Control method of transmission electron microscope and transmission electron microscope

Similar Documents

Publication Publication Date Title
JP5663717B2 (en) Charged particle system
JP6268169B2 (en) Apparatus and method for inspecting the surface of a sample
TWI732305B (en) Charged particle beam device, field curvature corrector, and methods of operating a charged particle beam device
JP4813063B2 (en) Improved prism array for electron beam inspection and defect inspection
US7863580B2 (en) Electron beam apparatus and an aberration correction optical apparatus
JP5518128B2 (en) Monochromator for charged particle beam device and electronic device using the same
JP5825905B2 (en) Charged particle beam system
US9543053B2 (en) Electron beam equipment
US8471203B2 (en) Particle-beam microscope
JP7194849B2 (en) electron optical system
JP2023540380A (en) Multiple particle beam system with contrast correction lens system
JP2019521495A (en) Aberration correction device for an electron microscope and an electron microscope equipped with such a device
WO2019021420A1 (en) Charged particle beam device, and method of adjusting charged particle beam device
US6440620B1 (en) Electron beam lithography focusing through spherical aberration introduction
TWI723349B (en) Beam irradiation device
JP5281792B2 (en) Irradiation condenser for particle-optical irradiation systems
JP2018129171A (en) Energy filter and charged particle beam device
US10665423B2 (en) Analyzing energy of charged particles
US11456149B2 (en) Methods and systems for acquiring 3D diffraction data
CN109786195B (en) Method for adjusting a particle beam microscope
JP7188910B2 (en) Particle source and particle-optical device for generating a particle beam
WO2021071357A1 (en) Device for generating a plurality of charged particle beamlets, and an inspection imaging or processing apparatus and method for using the same.
TW202205336A (en) Particle beam system with multi-source system and multi-beam particle microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP