WO2019020605A1 - Unit for desalination of water by mechanical steam compression - Google Patents

Unit for desalination of water by mechanical steam compression Download PDF

Info

Publication number
WO2019020605A1
WO2019020605A1 PCT/EP2018/070000 EP2018070000W WO2019020605A1 WO 2019020605 A1 WO2019020605 A1 WO 2019020605A1 EP 2018070000 W EP2018070000 W EP 2018070000W WO 2019020605 A1 WO2019020605 A1 WO 2019020605A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
desalination
compartment
unit
energy
Prior art date
Application number
PCT/EP2018/070000
Other languages
French (fr)
Inventor
Winandy FRANÇOIS-MATHIEU
Original Assignee
Industrial Advanced Services Fz, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Advanced Services Fz, Llc filed Critical Industrial Advanced Services Fz, Llc
Priority to MA52673A priority Critical patent/MA52673B1/en
Priority to EP18745906.0A priority patent/EP3658509A1/en
Publication of WO2019020605A1 publication Critical patent/WO2019020605A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2887The compressor is integrated in the evaporation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the field of the invention is the desalination of water, mainly sea water or brackish water, to produce drinking water or demineralized water, by the thermal distillation process by mechanical compression of steam, commonly referred to as “mechanical vapor compression” (CMV). It will be noted that such a desalting process is in competition with the processes of reverse osmosis, freezing, electrodialysis, ion exchange, etc.
  • CMV mechanical vapor compression
  • CE being the total energy efficiency of equipment used for desalination, including pumps or compressors and their engines.
  • a conventional steam mechanical desalination unit comprises an overall shell, generally under partial vacuum, in order to reduce the boiling point of the water to be evaporated and condensed, in which there is a water bath, the surface of which ensures evaporation, and a heat exchanger immersed in the bath which ensures condensation. It is often a tube-type or plate-type evaporator-condenser (EC).
  • the EC is made of a conductive heat transfer material, one side of which ensures
  • the unit is equipped with a steam transport and compression system and ancillary equipment, including a raw water supply system, a partial vacuum system and non-condensable gas elimination system. distillate extraction system and a concentrate extraction system.
  • Wm is a constant of the salinity of the water.
  • Desalination to separate a saline solution (solution 0 or raw water) into two solutions of different salinity, one superior (solution 1 or concentrate) and the other lower (solution 2, or distillate in the case of processes thermal, or permeate in the case of reverse osmosis) Wm represents the energy which is equivalent to the difference of the energy potentials between the two solutions 1 and 2. From the foregoing, it is understood that Wm corresponds to the energy of a zero production equilibrium desalination system, a function of the difference in salinity between solutions 1 and 2, and that any additional energy addition will generate a start of production of desalinated water.
  • Wt is the energy, complementary to Wm, to ensure a quantity of desalinated water production. Wt serves to overcome the losses of energy in the different trading systems implemented.
  • Wt mainly corresponds to the hydraulic pressure losses of the permeate which passes through the membranes and, in a distillation unit, Wt corresponds substantially to the thermal differential necessary for the transfer of the latent condensation energy through of the exchanger.
  • Wt is therefore directly proportional to the required production flow rate, the resistance of the exchangers (reverse osmosis membrane pressure drop or thermal resistivity of the evapo-condenser material), and inversely proportional to the exchanger surface used. artwork.
  • the problem at the origin of the invention of the present application is therefore to reduce the electrical energy consumption of a desalination unit, or demineralization, of water by mechanical compression of steam and to make the unit less as attractive as a unit implementing the reverse osmosis process.
  • the invention of the present application relates to a unit for desalinating water by thermal distillation by mechanical vapor compression comprising:
  • an evaporator-condenser in said reception space having evaporation and condensation exchange surfaces, at least one compressor with a motor and means of transport to the evaporative vapor compressor and, of the compressor, to compressed steam to be condensed,
  • the envelope comprising a salt water supply inlet, means for heating the water to be desalinated and distillate, concentrate and non-condensable gas extraction outlets as well as means for evacuating the water.
  • the evaporator-condenser is arranged to operate at low temperature, is made of a heat conductive plastic and its exchange surfaces are determined so that the transfer energy (Wt) of the unit is less than or equal to twice the minimum desalination energy Wm, in order to minimize the total desalination energy W.
  • the solution of the invention is therefore born with the appearance on the market of i) compressors having excellent yields, allowing low operating temperatures, as well as ii) heat conductive polymers (having a certain percentage of nano-carbons) that can be used because of low temperature operation.
  • the applicant has dared to significantly increase the exchange surfaces of evaporator-condensers but, thanks to the conductive polymers of heat, at a reasonable cost .
  • the vacuum prevailing inside the hermetic envelope is actually a partial vacuum, which is only intended to reduce the boiling point of the water to be evaporated and condensed.
  • low temperature is understood to mean a vapor temperature of the order of 20 to 60 ° C.
  • the compressor or the compressors of the unit of the invention have a yield greater than 78% and the exchange surfaces are determined so that the desalination transfer energy is greater than or equal to minimal transfer energy Wtm.
  • the total minimum desalination energy (Wm + Wtm) is the energy that the compressor needs in order to overcome the solution's ebullioscopic difference to its maximum salinity, ie that of the concentrate. If this low limit Wtm was not respected, the part of the evaporator-condenser, in contact with a solution whose ebullioscopic difference is greater than the gap which defines the limit Wtm, would not be operational and the rate of ⁇ conversion of the unit would not be achieved. Conversion rate refers to the ratio of distillate flow to raw water flow, involving the concept of continuous water renewal.
  • the process of the invention, as well as the reverse osmosis process uses reservoirs whose water is renewed to avoid an infinite increase in concentration salinity.
  • the ebullioscopic difference is the difference between the boiling point of pure water and the boiling temperature of a saline solution, all other conditions being equal. For a salt water with a salinity of 35 g / l and a pressure equal to atmospheric pressure, this difference is 0.54 ° C.
  • the ebullioscopic difference also varies with the boiling temperature. Thus, under a pressure of 0.1 bar, ie a boiling point of pure water of about 46 ° C., the ebullioscopic difference with a saline solution of salinity of 35 g / l will be about 0, 37 ° C.
  • the invention will be better understood with the aid of the following description of several CMV water desalination units and of the desalination process that is implemented therein, with reference to the drawing in the appendix on which
  • FIG. 1 is a schematic representation of the preferred embodiment of the unit of the invention.
  • FIG. 2 is an even more schematic representation of a unit of the invention with several effects.
  • FIG. 1 The diagram of the unit of FIG. 1 is that of a preferred embodiment, but which should not be considered as limiting of the invention. Other embodiments are perfectly conceivable and can therefore advantageously refer to those presented in WO 2015/014840.
  • the unit comprises a hermetic envelope 1 under partial vacuum comprising two compartments 2 and 3.
  • the first compartment 2 comprises an enclosure 4 in which is disposed an exchange coil 5 traversed by non-condensable gases. from the second compartment 3, escaping from the enclosure 4 and the compartment 2, and heating the incoming desalination water from a supply source 6.
  • the second compartment 3 in which the partial vacuum prevails, provides a space for receiving the water to be desalinated, in which an evaporator-condenser 8 is disposed, which in this case comprises a plurality of evaporation tubes 9 and which form two-by-two Condensation ducts 10 opening into the first compartment 2.
  • an evaporator-condenser 8 is disposed, which in this case comprises a plurality of evaporation tubes 9 and which form two-by-two Condensation ducts 10 opening into the first compartment 2.
  • the evaporator-condenser extend, on the opposite side to the first compartment 2, by a nozzle 11 for receiving a compressor 12 and, in part, an enclosure 13 in which the compressor drive motor 14 and an exchange coil 15.
  • the coil 15, traversed by the water to be desalted as described below, is connected here to a ramp 16 watering the water to be desalinated on the evaporator r-condenser 8, the watering being carried out by apples 17.
  • the two compartments 2, 3 are separated by a partition 18 through which the condensation ducts 10 pass.
  • the second compartment 3, which is the desalination compartment, has a partition 19 for retaining a water of greater salinity. here a concentrate 20, while the desalinated water, that is to say the distillate 21 from the condensation ducts 10, is retained in the first compartment 2.
  • the unit of the invention could comprise several compressors.
  • the flowing water to be desalinated by the you bul ure 7 passes through first two exchangers 22, 23 where it is reheated g ith serpen ⁇ two tins 24, 25 respectively driven by the d 21 and the concentrate istillât 20, the two currents from the two heat exchangers 22, 23 being joined to pass through a third heat exchanger 26 fed by a heating iq uide of a heating ⁇ team 27.
  • this third exchanger 26 At the outlet of this third exchanger 26, outside, like the first two 22, 23, to the enclosure, the water to be desalinated, through a pipe 28, enters the exchanger 13, inside the enclosure.
  • the water to be desalinated thus reaches the evaporator-condenser by a film falling from the watering heads 17 which distribute the water on the exchange surface of all the water.
  • the nozzle 11 is here shaped to transport evaporated steam tubes 9 to the compressor 12 and the compressed steam to be condensed in the ducts 10.
  • the compressor 12 is again, here, an axial flow compressor, of excellent performance, in this case, here, greater than 78%.
  • the evaporation-condensation tubes 9 are made of a heat conducting polymer, the unit operating at a low temperature.
  • the total exchange surface of the tubes 9 is very large and such that the transfer energy Wt of the unit is lower, possibly equal to twice the minimum desalination energy Wm and such that, in the example considered , this transfer energy Wt is between the minimum transfer energy Wtm and the double 2 Wm of the minimum desalination energy.
  • the heating equipment supplying the exchanger 27 may be an electrical resistance, a heat pump or an exchanger supplied with auxiliary thermal energy by steam or hot water.
  • the heating liquid of this exchanger 27 warms the water to be desalinated which will enter the casing 1 through the tubing 28, whereas in the exchangers 22, 23, the water to be desalinated is heated by recovery of the heat energy. outflows of distillate and concentrate.
  • the unit shown in the figure comprises evaporation tubes.
  • Another CMV water desalination unit could be equipped, not with tubes, but with plates, in the same material as the tubes.
  • the equipment for supplying the water desalination unit generally comprises reservoirs whose water is renewed in order to avoid an infinite increase in salinity of the concentrate. This renewal of water characterizes the conversion rate ⁇ of the unit.
  • Wm therefore depends on the salinity of the raw water and the conversion rate applied to the desalination unit.
  • P3 is the operating pressure of the desalination unit
  • Hec is the heat exchange coefficient of the evaporator-condenser, determined empirically and fixed, here, arbitrarily
  • the desalination unit may have several evaporation-condensation effects 31, 32, 33.
  • the vapor 34 created on the evaporation surface The first effect 31 is channeled to the condensing surface 36 of the following effect 32 and so on until the last effect 33 where the vapor 37 is then transported and compressed in the compressor 38 again before being recycled to head of the first effect 31.
  • the respective vapor temperatures in the compartments of the three effects 31, 32, 33 are different and drop by a few degrees from one compartment to another, here with temperatures of 50 ° C., 49 ° C. and 48 ° C. respectively. .
  • the concentrates and distillates from the three compartments 31, 32, 33 are grouped respectively by two pipes 39, 40.
  • the water to be desalinated it arrives in the compartments of the three effects 31, 32, 33 by a pipe 41 and three groups of apples of watering can 42-44.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The unit comprises a hermetically-sealed casing (1) under vacuum, an evaporator-condenser (8) and at least one compressor (12), wherein the evaporator-condenser (8) is arranged to operate at low temperature, is made of a heat-conducting plastic material, and the exchange surfaces (9) thereof are determined such that the transfer of energy (Wt) of the unit is less than or equal to double the minimum desalination energy (Wm), in order to minimize the total desalination energy (W).

Description

Unité de dessalement d'eau par compression mécanique  Mechanical water desalination unit
de vapeur  Steam
Le domaine de l'invention est le dessalement de l'eau, essentiellement de l'eau de mer ou de l'eau saumâtre, pour produire de l'eau potable ou déminéralisée, par le procédé de distillation thermique par compression mécanique de vapeur, communément désignée sous le nom de « compression mécanique de vapeur » (CMV). On notera qu'un tel procédé de dessalement est en concurrence avec les procédés d'osmose inverse, de congélation, d'électrodialyse, d'échange ionique, etc. The field of the invention is the desalination of water, mainly sea water or brackish water, to produce drinking water or demineralized water, by the thermal distillation process by mechanical compression of steam, commonly referred to as "mechanical vapor compression" (CMV). It will be noted that such a desalting process is in competition with the processes of reverse osmosis, freezing, electrodialysis, ion exchange, etc.
L'énergie minimale de dessalement, commune à tous les procédés, pour parvenir au seuil de production de perméat (pression osmotique atteinte) ou de distillât (écart ébullioscopique atteint), étant Wm, et l'énergie de transfert, pour véritablement produire le perméat ou le distillât, étant Wt, énergie qui est inversement proportionnelle à la surface d'échange mise en œuvre dans le procédé, l'énergie totale W de dessalement est donnée par la formule : The minimum desalination energy, common to all processes, to reach the threshold of production of permeate (osmotic pressure reached) or distillate (reached ebullioscopic gap), being Wm, and the transfer energy, to truly produce the permeate or the distillate, being Wt, energy which is inversely proportional to the exchange surface used in the process, the total energy W of desalination is given by the formula:
Wm + Wt  Wm + Wt
CE étant le rendement énergétique total des équipements utilisés pour le dessalement, notamment les pompes ou compresseurs et leurs moteurs. Avec le procédé d'osmose inverse, on peut admettre : CE being the total energy efficiency of equipment used for desalination, including pumps or compressors and their engines. With the reverse osmosis process, we can admit:
Wt = Wm  Wt = Wm
Avec le procédé par compression mécanique de vapeur, Wt se trouve dans une plage de 7Wm à 15Wm. Ainsi, avec l'osmose inverse, l'énergie à consommer est de l'ordre de 2,5 à 5 kWh pour 1 m3 de perméat. Avec le procédé par compression mécanique de vapeur, il faut, pour produire 1 m3 de distillât, consommer au moins 8 kWh et même jusqu'à 18 kWh. With the mechanical steam compression process, Wt is in a range of 7Wm to 15Wm. Thus, with reverse osmosis, the energy to be consumed is of the order of 2.5 to 5 kWh for 1 m 3 of permeate. With the mechanical compression process of In order to produce 1 m 3 of distillate, it is necessary to consume at least 8 kWh and even up to 18 kWh.
Le procédé par compression mécanique de vapeur, tel qu'il est mis en œuvre aujourd'hui, présente donc l'inconvénient d'une grande consommation énergétique. Mais il présente quand même des avantages. Il est très stable et d'un grand confort d'utilisation. The process by mechanical vapor compression, as it is implemented today, therefore has the disadvantage of high energy consumption. But it still has advantages. It is very stable and comfortable to use.
Une unité classique de dessalement par compression mécanique de vapeur comporte une enveloppe globale, généralement sous vide partiel afin de diminuer le point d'ébullition de l'eau à évaporer et à condenser, dans laquelle se trouve un bain d'eau, dont la surface assure l'évaporation, et un échangeur immergé dans le bain qui assure la condensation. Il s'agit souvent d'un évapo- rateur-condenseur (EC) de type à tubes ou à plaques. L'EC est réalisé en un matériau de transfert conducteur de chaleur dont une face assure A conventional steam mechanical desalination unit comprises an overall shell, generally under partial vacuum, in order to reduce the boiling point of the water to be evaporated and condensed, in which there is a water bath, the surface of which ensures evaporation, and a heat exchanger immersed in the bath which ensures condensation. It is often a tube-type or plate-type evaporator-condenser (EC). The EC is made of a conductive heat transfer material, one side of which ensures
l'évaporation et, l'autre face, la condensation. evaporation and, on the other side, condensation.
L'unité est pourvue d'un système de transport et de compression de la vapeur et d'équipements auxiliaires dont un système d'alimentation en eau brute, un système de mise sous vide partiel et d'élimination des gaz non condensables, un système d'extraction du distillât et un système d'extraction du concentrât. The unit is equipped with a steam transport and compression system and ancillary equipment, including a raw water supply system, a partial vacuum system and non-condensable gas elimination system. distillate extraction system and a concentrate extraction system.
Alors que les unités actuellement construites mettent en œuvre des compresseurs dont les rendements sont inférieurs ou égaux à environ 70 %, de ré- cents développements permettent maintenant de considérer l'usage de compresseurs présentant une efficacité nettement supérieure. While the units currently built use compressors with efficiencies of less than or equal to about 70%, recent developments now make it possible to consider the use of compressors with significantly higher efficiency.
Quel que soit le procédé de dessalement considéré, Wm est une constante de la salinité de l'eau. Le dessalement visant à séparer une solution saline (solu- tion 0 ou eau brute) en deux solutions de salinités différentes, l'une supérieure (solution 1 ou concentrât) et l'autre inférieure (solution 2, ou distillât dans le cas des procédés thermiques, ou perméat dans le cas de l'osmose inverse), Wm représente l'énergie qui est équivalente à la différence des potentiels énergétiques entre les deux solutions 1 et 2. De ce qui précède, on comprend que Wm correspond à l'énergie d'un système de dessalement à l'équilibre à production nulle, fonction de la différence de salinité entre les solutions 1 et 2, et que tout ajout d'énergie supplémentaire engendrera un début de production d'eau dessalée. Whatever the process of desalination considered, Wm is a constant of the salinity of the water. Desalination to separate a saline solution (solution 0 or raw water) into two solutions of different salinity, one superior (solution 1 or concentrate) and the other lower (solution 2, or distillate in the case of processes thermal, or permeate in the case of reverse osmosis), Wm represents the energy which is equivalent to the difference of the energy potentials between the two solutions 1 and 2. From the foregoing, it is understood that Wm corresponds to the energy of a zero production equilibrium desalination system, a function of the difference in salinity between solutions 1 and 2, and that any additional energy addition will generate a start of production of desalinated water.
Wt est l'énergie, complémentaire de Wm, pour assurer une quantité de production d'eau dessalée. Wt sert à vaincre les pertes d'énergie dans les différents systèmes d'échanges mis en œuvre. Ainsi, dans une unité d'osmose inverse, Wt correspond principalement aux pertes de charges hydrauliques du perméat qui traverse les membranes et, dans une unité de distillation, Wt correspond sensiblement au différentiel thermique nécessaire au transfert de l'énergie latente de condensation au travers de l'échangeur. Wt is the energy, complementary to Wm, to ensure a quantity of desalinated water production. Wt serves to overcome the losses of energy in the different trading systems implemented. Thus, in a reverse osmosis unit, Wt mainly corresponds to the hydraulic pressure losses of the permeate which passes through the membranes and, in a distillation unit, Wt corresponds substantially to the thermal differential necessary for the transfer of the latent condensation energy through of the exchanger.
Wt est donc directement proportionnelle au débit de production requis, à la résistance des échangeurs (pertes de charges des membranes d'osmose inverse ou résistivité thermique du matériau de l'évapo-condenseur), et inversement proportionnelle à la surface d'échangeur mise en œuvre. Wt is therefore directly proportional to the required production flow rate, the resistance of the exchangers (reverse osmosis membrane pressure drop or thermal resistivity of the evapo-condenser material), and inversely proportional to the exchanger surface used. artwork.
Le problème à l'origine de l'invention de la présente demande est donc de diminuer la consommation d'énergie électrique d'une unité de dessalement, ou de déminéralisation, d'eau par compression mécanique de vapeur et de rendre l'unité au moins aussi attractive qu'une unité mettant en œuvre le procédé d'osmose inverse. The problem at the origin of the invention of the present application is therefore to reduce the electrical energy consumption of a desalination unit, or demineralization, of water by mechanical compression of steam and to make the unit less as attractive as a unit implementing the reverse osmosis process.
À cet effet, l'invention de la présente demande concerne une unité, de dessalement d'eau par distillation thermique par compression mécanique de vapeur comprenant : To this end, the invention of the present application relates to a unit for desalinating water by thermal distillation by mechanical vapor compression comprising:
- une enveloppe hermétique sous vide, avec, à l'intérieur,  - a hermetic envelope under vacuum, with, inside,
- un espace de réception d'eau à dessaler,  a space for receiving water to be desalinated,
- un évaporateur-condenseur dans ledit espace de réception présentant des surfaces d'échange d'évaporation et de condensation, - au moins un compresseur avec un moteur et des moyens de transport vers le compresseur de vapeur d'évaporation et, du compresseur, de vapeur compressée à condenser, an evaporator-condenser in said reception space having evaporation and condensation exchange surfaces, at least one compressor with a motor and means of transport to the evaporative vapor compressor and, of the compressor, to compressed steam to be condensed,
l'enveloppe comportant une entrée d'alimentation d'eau salée, des moyens de chauffage de l'eau à dessaler et des sorties d'extraction de distillât, de concentrât et de gaz non condensables ainsi que des moyens de mise sous vide de l'enveloppe, the envelope comprising a salt water supply inlet, means for heating the water to be desalinated and distillate, concentrate and non-condensable gas extraction outlets as well as means for evacuating the water. 'envelope,
caractérisée par le fait que l'évaporateur-condenseur est agencé pour fonctionner à basse température, est en une matière plastique conductrice de cha- leur et ses surfaces d'échange sont déterminées de façon que l'énergie de transfert (Wt) de l'unité est inférieure ou égale au double de l'énergie minimale de dessalement Wm, afin de minimiser l'énergie totale de dessalement W. La solution de l'invention est donc née avec l'apparition sur le marché i) de compresseurs ayant d'excellents rendements, autorisant des températures de fonctionnement basses, ainsi que ii) de polymères conducteurs de chaleur (comportant un certain pourcentage de nano-carbones) qu'on peut donc utiliser du fait du fonctionnement à basse température. characterized by the fact that the evaporator-condenser is arranged to operate at low temperature, is made of a heat conductive plastic and its exchange surfaces are determined so that the transfer energy (Wt) of the unit is less than or equal to twice the minimum desalination energy Wm, in order to minimize the total desalination energy W. The solution of the invention is therefore born with the appearance on the market of i) compressors having excellent yields, allowing low operating temperatures, as well as ii) heat conductive polymers (having a certain percentage of nano-carbons) that can be used because of low temperature operation.
C'est la conjonction de toutes ces considérations qui justifie l'activité inventive de l'invention. It is the conjunction of all these considerations that justifies the inventive step of the invention.
Auparavant, étant donné le faible rendement des compresseurs disponibles sur le marché, personne n'avait osé concevoir une unité avec des surfaces d'échange largement excessives, visant à diminuer significativement la consommation énergétique. En effet, il aurait fallu, afin de réduire significativement cette consommation, construire des unités avec des surfaces d'échange tellement excessives que le coût de ces unités aurait été prohibitif. Previously, given the low efficiency of compressors available on the market, no one had dared to design a unit with excessively large exchange surfaces, aimed at significantly reducing energy consumption. In fact, it would have been necessary, in order to significantly reduce this consumption, to build units with exchange surfaces so excessive that the cost of these units would have been prohibitive.
Grâce au rendement des compresseurs aujourd'hui disponibles, qui peut dépasser 80 %, voire 90 %, le demandeur a osé vouloir augmenter considérablement les surfaces d'échange des évaporateurs-condenseurs mais, grâce aux polymères conducteurs de chaleur, à un coût restant raisonnable. Le vide régnant à l'intérieur de l'enveloppe hermétique est en réalité un vide partiel, qui ne vise qu'à diminuer le point d'ébullition de l'eau à évaporer et à condenser. Thanks to the efficiency of the compressors available today, which can exceed 80% or even 90%, the applicant has dared to significantly increase the exchange surfaces of evaporator-condensers but, thanks to the conductive polymers of heat, at a reasonable cost . The vacuum prevailing inside the hermetic envelope is actually a partial vacuum, which is only intended to reduce the boiling point of the water to be evaporated and condensed.
Il faut entendre par basse température, dans le cadre de la présente invention, une température de vapeur de l'ordre de 20 à 60°C. In the context of the present invention, low temperature is understood to mean a vapor temperature of the order of 20 to 60 ° C.
De préférence, le compresseur ou les compresseurs de l'unité de l'invention ont un rendement supérieur à 78 % et les surfaces d'échange sont déterminées de façon à ce que l'énergie de transfert de dessalement soit supérieure ou égale à l'énergie de transfert minimale Wtm. Preferably, the compressor or the compressors of the unit of the invention have a yield greater than 78% and the exchange surfaces are determined so that the desalination transfer energy is greater than or equal to minimal transfer energy Wtm.
L'énergie totale de dessalement minimale (Wm+Wtm) est l'énergie dont le compresseur a besoin afin de vaincre l'écart ébullioscopique de la solution à sa salinité maximale, à savoir celle du concentrât. Si cette limite basse Wtm n'était pas respectée, la partie de l'évaporateur-condenseur, en contact avec une solution dont l'écart ébullioscopique est supérieur à l'écart qui définit la limite Wtm, ne serait pas opérationnelle et le taux de conversion τ de l'unité ne serait pas atteint. Par taux de conversion, il faut entendre le rapport entre le débit de distillât et le débit d'eau brute, faisant intervenir la notion de renouvellement d'eau en continu. Le procédé de l'invention, tout comme d'ailleurs le procédé par osmose inverse, met en œuvre des réservoirs dont l'eau est renouvelée pour éviter un accroissement infini de salinité du concen- trat. On notera que l'écart ébullioscopique est la différence entre la température d'ébullition de l'eau pure et la température d'ébullition d'une solution saline, toutes autres conditions restant égales. Pour une eau salée de salinité de 35 g/l et une pression égale à la pression atmosphérique, cet écart est de 0,54°C. L'écart ébullioscopique varie également avec la température d'ébullition. Ainsi, sous une pression de O. lbarA, soit une température d'ébullition de l'eau pure de environ 46°C, l'écart ébullioscopique avec une solution d'eau salée de salinité de 35 g/l sera de environ 0,37°C. L'invention sera mieux comprise à l'aide de la description suivante de plusieurs unités de dessalement d'eau par CMV et du procédé de dessalement qui y est mis en œuvre, en référence au dessin en annexe sur lequel The total minimum desalination energy (Wm + Wtm) is the energy that the compressor needs in order to overcome the solution's ebullioscopic difference to its maximum salinity, ie that of the concentrate. If this low limit Wtm was not respected, the part of the evaporator-condenser, in contact with a solution whose ebullioscopic difference is greater than the gap which defines the limit Wtm, would not be operational and the rate of τ conversion of the unit would not be achieved. Conversion rate refers to the ratio of distillate flow to raw water flow, involving the concept of continuous water renewal. The process of the invention, as well as the reverse osmosis process, uses reservoirs whose water is renewed to avoid an infinite increase in concentration salinity. It should be noted that the ebullioscopic difference is the difference between the boiling point of pure water and the boiling temperature of a saline solution, all other conditions being equal. For a salt water with a salinity of 35 g / l and a pressure equal to atmospheric pressure, this difference is 0.54 ° C. The ebullioscopic difference also varies with the boiling temperature. Thus, under a pressure of 0.1 bar, ie a boiling point of pure water of about 46 ° C., the ebullioscopic difference with a saline solution of salinity of 35 g / l will be about 0, 37 ° C. The invention will be better understood with the aid of the following description of several CMV water desalination units and of the desalination process that is implemented therein, with reference to the drawing in the appendix on which
- la figure 1 est une représentation schématique de la forme de réalisation préférée de l'unité de l'invention et  FIG. 1 is a schematic representation of the preferred embodiment of the unit of the invention and
- la figure 2 est une représentation encore plus schématique d'une unité de l'invention à plusieurs effets.  FIG. 2 is an even more schematic representation of a unit of the invention with several effects.
Le schéma de l'unité de la figure 1 est celui d'une forme de réalisation préférée, mais qui ne doit pas être considérée comme limitative de l'invention. D'autres formes de réalisation sont parfaitement envisageables et on pourra donc avantageusement se référer à celles présentées dans le document WO 2015/014840. The diagram of the unit of FIG. 1 is that of a preferred embodiment, but which should not be considered as limiting of the invention. Other embodiments are perfectly conceivable and can therefore advantageously refer to those presented in WO 2015/014840.
En référence donc à la figure 1, l'unité comporte une enveloppe hermétique 1 sous vide partiel comportant deux compartiments 2 et 3. Le premier compartiment 2 comporte une enceinte 4 dans laquelle est disposé un serpentin d'échange 5 traversé par des gaz non condensables provenant du deuxième compartiment 3, s'échappant hors de l'enceinte 4 et du compartiment 2, et réchauffant l'eau à dessaler entrante provenant d'une source d'alimentation 6. L'eau à dessaler et réchauffée ressort de l'enceinte 4 et du compartiment 2 par une tubulure 7. With reference therefore to FIG. 1, the unit comprises a hermetic envelope 1 under partial vacuum comprising two compartments 2 and 3. The first compartment 2 comprises an enclosure 4 in which is disposed an exchange coil 5 traversed by non-condensable gases. from the second compartment 3, escaping from the enclosure 4 and the compartment 2, and heating the incoming desalination water from a supply source 6. The water to be desalinated and reheated spring enclosure 4 and compartment 2 by a tubing 7.
Le deuxième compartiment 3, dans lequel règne le vide partiel, ménage un espace de réception de l'eau à dessaler dans lequel est disposé un évapora- teur-condenseur 8 comportant ici une pluralité de tubes d'évaporation 9 et formant deux à deux des conduits de condensation 10 débouchant dans le premier compartiment 2. L'entrée des tubes de condensations de The second compartment 3, in which the partial vacuum prevails, provides a space for receiving the water to be desalinated, in which an evaporator-condenser 8 is disposed, which in this case comprises a plurality of evaporation tubes 9 and which form two-by-two Condensation ducts 10 opening into the first compartment 2. The inlet of the condensation tubes of
l'évaporateur-condenseur se prolongent, du côté opposé au premier compartiment 2, par une tuyère 11 de réception d'un compresseur 12 et, en partie, d'une enceinte 13 dans laquelle sont disposés le moteur 14 d'entraînement du compresseur et un serpentin d'échange 15. Le serpentin 15, parcouru par l'eau à dessaler comme exposé ci-après, est raccordé ici à une rampe 16 d 'arrosage de l'eau à dessaler sur l'évaporateu r-condenseur 8, l'arrosage s'effectuant par des pommes 17. the evaporator-condenser extend, on the opposite side to the first compartment 2, by a nozzle 11 for receiving a compressor 12 and, in part, an enclosure 13 in which the compressor drive motor 14 and an exchange coil 15. The coil 15, traversed by the water to be desalted as described below, is connected here to a ramp 16 watering the water to be desalinated on the evaporator r-condenser 8, the watering being carried out by apples 17.
Les deux compartiments 2, 3 sont séparés par une cloison 18 traversée par les conduits de condensation 10. Le deuxième compartiment 3, q ui est le compartiment de dessalement, comporte une cloison 19 de retenue d'une eau de plus g rande sal inité, ici d 'un concentrât 20, alors que l'eau dessalée, c'est-à-d ire le d istillât 21 provenant des conduits de condensation 10, est retenue dans le premier compartiment 2. The two compartments 2, 3 are separated by a partition 18 through which the condensation ducts 10 pass. The second compartment 3, which is the desalination compartment, has a partition 19 for retaining a water of greater salinity. here a concentrate 20, while the desalinated water, that is to say the distillate 21 from the condensation ducts 10, is retained in the first compartment 2.
Ne sont pas représentés sur la figure, car parfaitement conn us de l'homme d u métier, l 'éq uipement d'al imentation en eau à dessaler du compartiment 2 et de l'enceinte 4, les pompes d'extraction du d istillât 21 et d u concentrât 20, ni les moyens de mise sous vide du compartiment de dessalement 3. Are not shown in the figure, because perfectly familiar to the skilled person, the water supply ing of desalination water of the compartment 2 and the chamber 4, the extraction pumps of the distil 21 and the concentrate 20, nor the means of evacuation of the desalination compartment 3.
On notera encore ici q ue l 'unité de l'invention pourrait comporter plusieurs compresseurs. It should also be noted here that the unit of the invention could comprise several compressors.
En fonctionnement, l'eau à dessaler s'écoulant par la tu bul ure 7 traverse d 'abord deux échangeurs 22, 23 où elle est réchauffée g râce à deux serpen¬ tins 24, 25 parcourus respectivement par le d istillât 21 et le concentrât 20, les deux courants issus des deux échangeurs 22, 23 étant réunis pour traverser un troisième échangeur 26 alimenté par un l iq uide de chauffage d 'un équipe¬ ment de chauffage 27. In operation, the flowing water to be desalinated by the you bul ure 7 passes through first two exchangers 22, 23 where it is reheated g ith serpen ¬ two tins 24, 25 respectively driven by the d 21 and the concentrate istillât 20, the two currents from the two heat exchangers 22, 23 being joined to pass through a third heat exchanger 26 fed by a heating iq uide of a heating ¬ team 27.
À la sortie de ce troisième échangeur 26, extérieur, comme les deux premiers 22, 23, à l'enceinte, l 'eau à dessaler, par une tubulure 28, pénètre dans l'échangeur 13, intérieur à l 'enceinte. At the outlet of this third exchanger 26, outside, like the first two 22, 23, to the enclosure, the water to be desalinated, through a pipe 28, enters the exchanger 13, inside the enclosure.
Dans l 'exemple il l ustré sur la fig ure, l 'eau à dessaler parvient donc sur l 'évaporateur-condenseur par un film tombant des pommes d'arrosage 17 qui répartissent l 'eau su r la surface d'échange de tous les tubes d 'évaporation 9. La tuyère 11 est ici conformée pour transporter la vapeur évaporée des tubes 9 vers le compresseur 12 et la vapeur compressée à condenser dans les conduits 10. In the example shown in FIG. 1, the water to be desalinated thus reaches the evaporator-condenser by a film falling from the watering heads 17 which distribute the water on the exchange surface of all the water. evaporation tubes 9. The nozzle 11 is here shaped to transport evaporated steam tubes 9 to the compressor 12 and the compressed steam to be condensed in the ducts 10.
Le compresseur 12 est encore, ici, un compresseur à flux axial, d'un excellent rendement, en l'espèce, ici, supérieur à 78 %. Les tubes d'évaporation- condensation 9 sont en un polymère conducteur de chaleur, l'unité fonctionnant à basse température. The compressor 12 is again, here, an axial flow compressor, of excellent performance, in this case, here, greater than 78%. The evaporation-condensation tubes 9 are made of a heat conducting polymer, the unit operating at a low temperature.
La surface d'échange totale des tubes 9 est très grande et telle que l'énergie de transfert Wt de l'unité soit inférieure, éventuellement égale, au double de l'énergie minimale de dessalement Wm et telle que, dans l'exemple considéré, cette énergie de transfert Wt soit comprise entre l'énergie de transfert minimale Wtm et le double 2 Wm de l'énergie minimale de dessalement. The total exchange surface of the tubes 9 is very large and such that the transfer energy Wt of the unit is lower, possibly equal to twice the minimum desalination energy Wm and such that, in the example considered , this transfer energy Wt is between the minimum transfer energy Wtm and the double 2 Wm of the minimum desalination energy.
On notera que l'équipement de chauffage alimentant l'échangeur 27 peut être une résistance électrique, une pompe à chaleur ou un échangeur alimenté en énergie thermique auxiliaire par de la vapeur ou de l'eau chaude. Le liquide de chauffage de cet échangeur 27 réchauffe l'eau à dessaler qui va pénétrer dans l'enveloppe 1 par la tubulure 28, alors que dans les échangeurs 22, 23, l'eau à dessaler est réchauffée par récupération de l'énergie calorifique des flux sortants du distillât et du concentrât. It will be noted that the heating equipment supplying the exchanger 27 may be an electrical resistance, a heat pump or an exchanger supplied with auxiliary thermal energy by steam or hot water. The heating liquid of this exchanger 27 warms the water to be desalinated which will enter the casing 1 through the tubing 28, whereas in the exchangers 22, 23, the water to be desalinated is heated by recovery of the heat energy. outflows of distillate and concentrate.
L'unité représentée à la figure comporte des tubes d'évaporation. Une autre unité de dessalement d'eau par CMV pourrait être équipée, non pas de tubes, mais de plaques, dans le même matériau que les tubes. The unit shown in the figure comprises evaporation tubes. Another CMV water desalination unit could be equipped, not with tubes, but with plates, in the same material as the tubes.
L'équipement d'alimentation de l'unité en eau à dessaler comporte généralement des réservoirs dont l'eau est renouvelée afin d'éviter un accroissement de salinité infini du concentrât. Ce renouvellement d'eau caractérise le taux de conversion τ de l'unité. The equipment for supplying the water desalination unit generally comprises reservoirs whose water is renewed in order to avoid an infinite increase in salinity of the concentrate. This renewal of water characterizes the conversion rate τ of the unit.
À salinité d'eau brute constante, plus le taux de conversion est élevé, plus la salinité moyenne du concentrât est élevée et donc plus Wm est élevée. Wm dépend donc de la salinité de l'eau brute et du taux de conversion appliqué à l'unité de dessalement. At constant raw water salinity, the higher the conversion rate, the higher the average salinity of the concentrate and thus the higher the Wm. Wm therefore depends on the salinity of the raw water and the conversion rate applied to the desalination unit.
Exemple de calcul des paramètres d'une unité de dessalement d'eau par CMV Soit une unité opérant sur une eau brute d'une salinité égale à 35 g/1, avec un évaporateur-condenseur sous vide partiel opérant à une température de vapeur de 50°C, un taux de conversion τ de 33 %, ici un seul compresseur d'un rendement de 90 % et celui de son moteur de 95 %, et une définition de la surface d'échange telle que Wt = 2.Wm. Example of calculating the parameters of a CMV water desalination unit Let a unit operate on raw water with a salinity equal to 35 g / l, with a partial vacuum evaporator-condenser operating at a steam temperature of 50 ° C, a conversion rate τ of 33%, here a single compressor with a yield of 90% and that of its motor of 95%, and a definition of the exchange surface such that Wt = 2.Wm.
Calcul de Wm Wm calculation
τ : 33 % τ: 33%
T° : 50°C (323°K)  T °: 50 ° C (323 ° K)
Salinité maximale du concentrât : 35/(1-0,33)= 52,2g/kg  Maximum salinity of the concentrate: 35 / (1-0.33) = 52.2g / kg
Salinité moyenne du concentrât : 43,6g/kg  Average salinity of the concentrate: 43.6g / kg
Pression de vapeur du concentrât PI : 12,058kPa  Concentrate PI vapor pressure: 12,058kPa
Salinité du distillât : Og/kg (approximation théorique) Distillate salinity: Og / kg (theoretical approximation)
Pression de vapeur du distillât P2 : 12,350kPa Vapor pressure of P2 distillate: 12.350kPa
P2/P1 : 1,024  P2 / P1: 1,024
Wm : R.T.In(P2/Pl)= 17,85 10"6kWh/mole ou 0,99kWh/m3 (m3 de distillât), In étant le logarithme népérien. Wm: rtin (P2 / Pl) = 17.85 10 "6 kWh / mole or 0,99kWh / m 3 (m 3 of distillate), where In is the natural logarithm.
Calcul de Wtm Wtm calculation
Salinité maximale du concentrât : 35/(1-0,33)= 52,2g/kg  Maximum salinity of the concentrate: 35 / (1-0.33) = 52.2g / kg
Pression de vapeur Pc (≠ Pl)du  Vapor pressure Pc (≠ Pl) of the
concentrât : l l,991kPa concentrate: l, 991kPa
Salinité du distillât : Og/kg (approximation théorique) Distillate salinity: Og / kg (theoretical approximation)
Pression de vapeur du distillât P2 : 12,350kPa Vapor pressure of P2 distillate: 12.350kPa
P2/Pc : 1,030  P2 / Pc: 1.030
Résultat* 1 : R.T.In(P2/Pc)= 22,05 10"6kWh/mole ou l,23kWh/m3 (m3 de distillât)Result * 1: RTIn (P2 / Pc) = 22.05 10 "6 kWh / mole or 1.23kWh / m 3 (m 3 distillate)
Wtm : Résultat# l-Wm = 0,24kWh/m3 Calcul de Wt Wtm: Result # l-Wm = 0.24kWh / m 3 Wt calculation
Wt 2.Wm= l,98kWh/m3 Wt 2.Wm = 1.98kWh / m 3
/ [kWhTonr / [k W h Ton r
CE 0,9 . 0,95= 0,855 CE 0.9. 0.95 = 0.855
W (Wm+Wt)/CE= 3,49kWh/m3 W (Wm + Wt) / CE = 3.49kWh / m 3
Calcul de la surface d'échange de l'échangeur Calculation of the exchange surface of the heat exchanger
P3 est la pression de fonctionnement de l'unité de dessalement  P3 is the operating pressure of the desalination unit
P3/P1 e((Wm+Wt)/(R.T))  P3 / P1 e ((Wm + Wt) / (Rt))
T° vapeur avant le compresseur (T 50°C  T ° steam before the compressor (T 50 ° C
T° ébullition (Tevap) 50,48°C  T boiling point (Tevap) 50.48 ° C
T° condensation (Tcond) 51,45°C  T ° condensation (Tcond) 51.45 ° C
dT de l'évaporateur-condenseur 0,97°C dT evaporator-condenser 0.97 ° C
Hec 6kW/(m2.°C) Hec 6kW / (m 2 ° C)
Hec est le coefficient d'échange de chaleur de l'évaporateur-condenseur, déterminé de manière empirique et fixé, ici, arbitrairement  Hec is the heat exchange coefficient of the evaporator-condenser, determined empirically and fixed, here, arbitrarily
Chaleur latente (approximation) : 635kWh/Tonne Latent heat (approximation): 635kWh / Ton
Surface de l'échangeur S : 635/(6. 0,97)= 109,lm2/Tonne.hSurface of the exchanger S: 635 / (6, 0.97) = 109, lm 2 / Ton.h
(Tonne/h de distillât) (Ton / h distillate)
Selon les mêmes hypothèses gue dans l'exemple ci-dessus, en faisant mainte nant varier Wt sur l'intervalle [Wtm, 2.Wm], on obtient les résultats suivants According to the same hypotheses as in the example above, by now varying Wt over the interval [Wtm, 2.Wm], the following results are obtained:
Wm Wm
Figure imgf000012_0001
Figure imgf000012_0001
0,99 0,240 0,855 1,439 1,024 1,030 50 50,48 50,60 0,12 6 878 0.99 0.240 0.855 1.439 1.024 1.030 50 50.48 50.60 0.12 6 878
0,99 0,495 0,855 1,737 1,024 1,036 50 50,48 50,72 0,25 6 4320.99 0.495 0.855 1.737 1.024 1.036 50 50.48 50.72 0.25 6 432
0,99 0,990 0,855 2,316 1,024 1,049 50 50,48 50,97 0,49 6 2170.99 0.990 0.855 2.316 1.024 1.049 50 50.48 50.97 0.49 6 217
0,99 1,485 0,855 2,895 1,024 1,062 50 50,48 51,21 0,73 6 1450.99 1,485 0.855 2,895 1,024 1,062 50 50.48 51.21 0.73 6 145
0,99 1,980 0,855 3,474 1,024 1,074 50 50,48 51,45 0,97 6 109 0.99 1,980 0.855 3,474 1,024 1,074 50 50.48 51.45 0.97 6,109
Ces résultats démontrent gue la combinaison des caractéristigues de l'invention est nécessaire à la conception d'une unité de dessalement par CMV qui offre des consommations en énergie électrique compétitives avec le dessalement par osmose inverse. En effet, l'application d'un rendement CE usuel, avec 70 % pour le rendement du compresseur et 95 % pour celui de son moteur, engendrerait soit des consommations en énergie électrique trop élevées pour concurrencer le procédé par osmose inverse, soit des surfaces These results demonstrate that the combination of features of the invention is necessary for the design of a CMV desalination unit. which offers competitive energy consumption with reverse osmosis desalination. Indeed, the application of a standard CE efficiency, with 70% for the efficiency of the compressor and 95% for that of its engine, would generate either electrical energy consumption too high to compete with the reverse osmosis process, or surfaces
d'échanges d'une ampleur telle que le coût de l'unité serait également non concurrentiel. of such a magnitude that the cost of the unit would also be non-competitive.
On notera enfin que l'unité de dessalement peut comporter plusieurs effets d'évaporation-condensation 31, 32, 33. Dans ce cas, et de façon parfaitement connue de l'homme du métier, la vapeur 34 créée sur la surface d'évaporation 35 du premier effet 31 est canalisée vers la surface de condensation 36 de l'effet suivant 32 et ainsi de suite jusqu'au dernier effet 33 où la vapeur 37 est alors transportée et compressée dans le compresseur 38 à nouveau avant d'être recyclée en tête du premier effet 31. Finally, it should be noted that the desalination unit may have several evaporation-condensation effects 31, 32, 33. In this case, and in a manner perfectly known to those skilled in the art, the vapor 34 created on the evaporation surface The first effect 31 is channeled to the condensing surface 36 of the following effect 32 and so on until the last effect 33 where the vapor 37 is then transported and compressed in the compressor 38 again before being recycled to head of the first effect 31.
Les températures de vapeur respectives dans les compartiments des trois effets 31, 32, 33 sont différentes et baissent de quelques degrés d'un compartiment à l'autre, ici, avec des températures respectives de 50°C, 49°C et 48°C. The respective vapor temperatures in the compartments of the three effects 31, 32, 33 are different and drop by a few degrees from one compartment to another, here with temperatures of 50 ° C., 49 ° C. and 48 ° C. respectively. .
Les concentrais et distillais issus des trois compartiments 31, 32, 33 sont regroupés respectivement par deux tubulures 39, 40. Quant à l'eau à dessaler, elle parvient dans les compartiments des trois effets 31, 32, 33 par une tubulure 41 et trois groupes de pommes d'arrosoir 42-44. The concentrates and distillates from the three compartments 31, 32, 33 are grouped respectively by two pipes 39, 40. As for the water to be desalinated, it arrives in the compartments of the three effects 31, 32, 33 by a pipe 41 and three groups of apples of watering can 42-44.

Claims

REVENDICATIONS
1. Unité, de dessalement d'eau par distillation thermique par compression mécanique de vapeur comprenant : 1. Unit for desalinating water by thermal distillation by mechanical vapor compression, comprising:
- une enveloppe hermétique sous vide ( 1), avec, à l'intérieur,  a hermetic envelope under vacuum (1), with, inside,
- un espace (3) de réception d'eau à dessaler,  a space (3) for receiving water to be desalinated,
- un évaporateur-condenseur (8) dans ledit espace de réception (3) présentant des surfaces d'échange (9) d'évaporation et de condensation, an evaporator-condenser (8) in said receiving space (3) having evaporation and condensation exchange surfaces (9),
- au moins un compresseur ( 12) avec un moteur ( 14) et des moyens ( 11) de transport vers le compresseur de vapeur d'évaporation et, du compresseur, de vapeur compressée à condenser, at least one compressor (12) with a motor (14) and means (11) for conveying to the evaporative steam compressor and, of the compressor, compressed steam to be condensed,
l'enveloppe (1 ) comportant une entrée d'alimentation d'eau salée (4), des moyens (27, 4, 22, 23, 13) de chauffage de l'eau à dessaler et des sorties d'extraction de distillât (22), de concentrât (23) et de gaz non condensables (4) ainsi que des moyens de mise sous vide de l'enveloppe, the casing (1) comprising a salt water supply inlet (4), means (27, 4, 22, 23, 13) for heating the water to be desalinated and distillate extraction outlets ( 22), concentrate (23) and non-condensable gases (4) as well as means for evacuation of the envelope,
caractérisée par le fait que l'évaporateur-condenseur (8) est agencé pour fonctionner à basse température, est en une matière plastique conductrice de chaleur et ses surfaces d'échange (9) sont déterminées de façon que l'énergie de transfert (Wt) de l'unité est inférieure ou égale au double de l'énergie minimale de dessalement Wm, afin de minimiser l'énergie totale de dessalement W. characterized in that the evaporator-condenser (8) is arranged to operate at low temperature, is made of a heat conductive plastic material and its exchange surfaces (9) are determined so that the transfer energy (Wt ) of the unit is less than or equal to twice the minimum desalination energy Wm, in order to minimize the total desalination energy W.
2. Unité selon la revendication 1, dans laquelle l'espace de réception d'eau à dessaler comporte un premier compartiment (2) comportant une enceinte (4) de réchauffement de l'eau à dessaler entrante par les gaz non condensables. 2. Unit according to claim 1, wherein the water receiving space desalination comprises a first compartment (2) comprising an enclosure (4) for heating the incoming desalination water by non-condensable gases.
3. Unité selon l'une des revendications 1 et 2, dans laquelle l'espace de réception d'eau à dessaler comporte un deuxième compartiment (3) sous vide dans lequel est disposé l'évaporateur-condenseur (8) comportant des conduits de condensation (10) débouchant dans le premier compartiment (2) . 3. Unit according to one of claims 1 and 2, wherein the water receiving space desalination comprises a second compartment (3) under vacuum in which is disposed the evaporator-condenser (8) having ducts of condensation (10) opening into the first compartment (2).
4. Unité selon la revendication 3, dans lequel il est prévu, dans le deuxième compartiment (3), une rampe ( 16) d'arrosage d'eau à dessaler. 4. Unit according to claim 3, wherein there is provided in the second compartment (3), a ramp (16) watering water desalination.
5. Unité selon l'une des revendications 3 et 4, dans laquelle la sortie (22) d'extraction du distillât est ménagée dans le premier compartiment (2) et, la sortie (23) d'extraction du concentrât, dans le deuxième compartiment (3). 5. Unit according to one of claims 3 and 4, wherein the outlet (22) for extracting the distillate is formed in the first compartment (2) and the outlet (23) extraction of the concentrate in the second compartment (3).
5 6. Unité selon l'une des revendications 1 à 5, comportant plusieurs effets d'évaporation-condensation (31, 32, 33). 6. Unit according to one of claims 1 to 5, comprising several evaporation-condensation effects (31, 32, 33).
7. Unité selon l'une des revendications 1 à 6, dans laquelle le compresseur (12) a un rendement supérieur à 78 %. 7. Unit according to one of claims 1 to 6, wherein the compressor (12) has a yield greater than 78%.
o o
8. Unité selon l'une des revendications 1 à 7, dans laquelle les surfaces d'échange (9) sont déterminées de façon à ce que l'énergie de transfert Wt soit égale ou supérieure à l'énergie de transfert minimale Wtm.  8. Unit according to one of claims 1 to 7, wherein the exchange surfaces (9) are determined so that the transfer energy Wt is equal to or greater than the minimum transfer energy Wtm.
PCT/EP2018/070000 2017-07-27 2018-07-24 Unit for desalination of water by mechanical steam compression WO2019020605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MA52673A MA52673B1 (en) 2017-07-27 2018-07-24 Water desalination unit by mechanical vapor compression
EP18745906.0A EP3658509A1 (en) 2017-07-27 2018-07-24 Unit for desalination of water by mechanical steam compression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BEBE2017/5530 2017-07-27
BE20175530A BE1024466B1 (en) 2017-07-27 2017-07-27 Mechanical water vapor desalination unit

Publications (1)

Publication Number Publication Date
WO2019020605A1 true WO2019020605A1 (en) 2019-01-31

Family

ID=59686699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/070000 WO2019020605A1 (en) 2017-07-27 2018-07-24 Unit for desalination of water by mechanical steam compression

Country Status (4)

Country Link
EP (1) EP3658509A1 (en)
BE (1) BE1024466B1 (en)
MA (1) MA52673B1 (en)
WO (1) WO2019020605A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759011A (en) * 2020-12-31 2021-05-07 中谷宏(海南)实业有限公司 Low-temperature evaporation seawater desalination device without vacuum pump
EP3932509A1 (en) 2020-06-30 2022-01-05 Aquafair AB Mechanical vapor recompression (mvr) liquid purification system
EP4091687A1 (en) 2021-05-19 2022-11-23 Aquafair AB Compound turbine system
WO2022248425A1 (en) * 2021-05-25 2022-12-01 Industrial Advanced Services Fze Heat exchanger with vapour extractors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096244A1 (en) * 2000-06-13 2001-12-20 Third Millenium Water Company Distillation method and appliances for fresh water production
EP1798202A1 (en) * 2004-09-02 2007-06-20 Aquasystems Inc. Evaporation chamber used for single stage flush evaporation method seawater desalination apparatus by mechanical vapor compression method
WO2008058242A2 (en) * 2006-11-08 2008-05-15 Hydrologic Industries, Inc. Methods and apparatus for distillation
WO2015014387A1 (en) * 2013-07-29 2015-02-05 Francois-Mathieu Winandy Water desalination methods and facilities using mechanical vapour compression distillation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096244A1 (en) * 2000-06-13 2001-12-20 Third Millenium Water Company Distillation method and appliances for fresh water production
EP1798202A1 (en) * 2004-09-02 2007-06-20 Aquasystems Inc. Evaporation chamber used for single stage flush evaporation method seawater desalination apparatus by mechanical vapor compression method
WO2008058242A2 (en) * 2006-11-08 2008-05-15 Hydrologic Industries, Inc. Methods and apparatus for distillation
WO2015014387A1 (en) * 2013-07-29 2015-02-05 Francois-Mathieu Winandy Water desalination methods and facilities using mechanical vapour compression distillation
WO2015014840A2 (en) 2013-07-29 2015-02-05 François-Mathieu Winandy Methods and facilities for thermal distillation with mechanical vapour compression

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3932509A1 (en) 2020-06-30 2022-01-05 Aquafair AB Mechanical vapor recompression (mvr) liquid purification system
WO2022002708A1 (en) 2020-06-30 2022-01-06 Aquafair Ab Mechanical vapor recompression (mvr) liquid purification system
CN112759011A (en) * 2020-12-31 2021-05-07 中谷宏(海南)实业有限公司 Low-temperature evaporation seawater desalination device without vacuum pump
EP4091687A1 (en) 2021-05-19 2022-11-23 Aquafair AB Compound turbine system
WO2022243287A1 (en) 2021-05-19 2022-11-24 Aquafair Ab Mechanical vapor recompression arrangement
WO2022248425A1 (en) * 2021-05-25 2022-12-01 Industrial Advanced Services Fze Heat exchanger with vapour extractors
BE1029506B1 (en) * 2021-05-25 2023-01-23 Ind Advanced Services Fze Heat exchanger with vapor extractors

Also Published As

Publication number Publication date
EP3658509A1 (en) 2020-06-03
BE1024466B1 (en) 2018-02-28
MA52673A1 (en) 2021-06-30
MA52673B1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
WO2019020605A1 (en) Unit for desalination of water by mechanical steam compression
EP1750823B1 (en) Sea-water desanilation method and facility using multiple effect distillation with mechanical and thermal vapour compression
EP3027288B1 (en) Facilities for thermal distillation with mechanical vapour compression
CN101302048B (en) Film distilling seawater desalination system using economical energy resources
WO2001096244A1 (en) Distillation method and appliances for fresh water production
FR2975479B1 (en) DEVICE FOR EVAPORATION / CONDENSATION
WO2005100252A1 (en) Method and plant for desalinating sea water by multi-effect distillation with thermo-vapor compression operating with different live stream pressures
EP3003984A1 (en) Water treatment assembly comprising a solar evaporator
US4664751A (en) De-salinator for brackish salt water
WO2011124806A1 (en) Seawater desalination plant operating by multiple-effect distillation
FR2659727A1 (en) Geothermal installation for supplying heat and water
CN102134138B (en) Solar multi-effect utilization seawater desalting method and device
CN202016925U (en) Solar multiple-effect utilization seawater desalinization device
FR2665245A1 (en) Unit for concentrating a heat-sensitive solution, in particular grape must
BE888555A (en) DISTILLATION APPARATUS,
FR3029907B1 (en) PROCESS FOR PURIFYING WATER BY REVERSE OSMOSIS AND INSTALLATION USING SUCH A METHOD
CN116655037B (en) Sea water desalination treatment system of small-sized mobile operation platform
EP0265300A1 (en) Distillation apparatus for vacuum distillation
Curcino et al. EXPERIMENTAL EVALUATION OF SOLAR DESALINATION SYSTEM WITH VACUUM-ENHANCED AIR GAP MEMBRANE DISTILLATION
CN110756053B (en) Reel type air direct cooling film distillation device
US20080179175A1 (en) Desalination process
WO2022112814A1 (en) Device for desalinating sea water by distillation at ambient temperature
AU549841B2 (en) De-salinator for brackish -or salt-water
FR2867770A1 (en) Sea water desalination plant using multiple effect distillation (MED) includes two or more ejection compressors for thermo-compression stage
WO2023222971A1 (en) System for generating cold and for supplying electrical power from seawater and the sun

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018745906

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018745906

Country of ref document: EP

Effective date: 20200227