WO2019020098A1 - 一种燃料电池供电系统及燃料电池系统 - Google Patents
一种燃料电池供电系统及燃料电池系统 Download PDFInfo
- Publication number
- WO2019020098A1 WO2019020098A1 PCT/CN2018/097357 CN2018097357W WO2019020098A1 WO 2019020098 A1 WO2019020098 A1 WO 2019020098A1 CN 2018097357 W CN2018097357 W CN 2018097357W WO 2019020098 A1 WO2019020098 A1 WO 2019020098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- power supply
- converter
- controller
- vehicle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04925—Power, energy, capacity or load
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/30—The power source being a fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the invention relates to a fuel cell power supply system and a fuel cell system, and belongs to the technical field of fuel cell automobile power systems.
- Fuel cell vehicles are considered to be the ultimate development direction of new energy vehicles because of their long cruising range, short hydrogenation time and relatively zero plug-in pollution.
- fuel cell buses are an important application field for fuel cells. It has been strongly supported by national policies and has become an important force driving the development of fuel cells.
- the fuel cell passenger cars used in the market are supplied with low voltage power through the battery of the whole vehicle or by the high voltage of the whole vehicle through 24VDC/DC to the fuel cell system.
- the low-voltage power supply to the fuel cell through the whole vehicle is simple in structure for the fuel cell system, but has the following two disadvantages: 1.
- the current discharge capacity of the vehicle battery cannot meet the increasing fuel cell power, and different fuel cell systems.
- the low voltage demand power causes the whole vehicle to be energy-distributed and cannot be scaled up; 2.
- the whole vehicle supplies power to the fuel cell through 24VDC/DC, and the 24VDC/DC input high-voltage is taken from the booster DC/DC of the fuel cell through the two-stage DC /DC, the power loss is large, and the energy rate is inefficient.
- the Chinese patent document with the publication number CN1663838A discloses a fuel cell vehicle hybrid system in which the power outputted by the fuel cell stack is converted by a 24VDC/DC converter to supply power to the fuel cell controller, thereby solving the problem.
- Excessive low-voltage power demanded by fuel cells leads to problems affecting the energy distribution of the entire vehicle.
- due to fluctuations in the output voltage of 24VDC/DC the life of voltage-sensitive electronic components such as fuel cell controllers is greatly reduced, and the sudden de-energization of the fuel cell system at 24VDC/DC failure will cause a fuel system. Irreversible damage.
- the present invention provides a fuel cell power supply system including a fuel cell stack, a 24 VDC/DC converter, and a fuel cell controller, and a high voltage input terminal of the 24 VDC/DC converter is connected to the fuel cell The stack, the low voltage output of the 24VDC/DC converter is connected to a fuel cell low voltage bus, and the fuel cell low voltage bus is connected to the fuel cell controller and a fuel cell battery.
- the output end of the fuel cell battery is provided with a protection relay, and the fuel cell controller controls the connection of the protection relay.
- the method further includes a step-up DC/DC, wherein the low-voltage input terminal of the step-up DC/DC is connected to the fuel cell stack, and the high-voltage output terminal of the step-up DC/DC is used for supplying power to connect the high-voltage power of the whole vehicle. device.
- a first load relay is further disposed between the fuel cell stack and the 24VDC/DC converter
- a second load relay is further disposed between the fuel cell stack and the step-up DC/DC converter.
- the fuel cell controller controls the connection of the first load relay and the second load relay.
- a CAN bus is disposed between the fuel cell controller and the 24 VDC/DC converter and the fuel cell stack.
- the invention also provides a fuel cell system comprising a vehicle end device, a fuel cell power supply system and a fuel cell accessory system, the fuel cell power supply system comprising a fuel cell stack, a 24 VDC/DC converter, and a fuel cell controller, a high voltage input end of the 24VDC/DC converter is connected to the fuel cell stack, a low voltage output end of the 24VDC/DC converter is connected to a fuel cell low voltage bus, and the fuel cell low voltage bus is connected to the fuel cell control , fuel cell accessory system and a battery for fuel cells.
- the output end of the fuel cell battery is provided with a protection relay, and the fuel cell controller controls the connection of the protection relay.
- the fuel cell power supply system further includes a step-up DC/DC
- the whole vehicle end device includes a whole vehicle high-voltage electric device
- the step-up DC/DC high-voltage output terminal is connected to the whole vehicle high-voltage device. Electrical equipment.
- a first load relay is further disposed between the fuel cell stack and the 24VDC/DC converter
- a second load relay is further disposed between the fuel cell stack and the step-up DC/DC converter.
- the fuel cell controller controls the connection of the first load relay and the second load relay.
- the vehicle end device further includes a vehicle controller and a vehicle low voltage power supply device, wherein the vehicle controller is communicably connected to the fuel cell controller, and the whole vehicle low voltage power supply device is electrically connected to the fuel cell Controller.
- the low-voltage output terminal of the 24VDC/DC converter and the output end of the fuel cell battery are connected to a low-voltage busbar for a fuel cell, and the fuel cell controller and the fuel cell accessory system are powered by the low-voltage busbar of the fuel cell.
- Connecting a fuel cell battery with a low voltage bus has two functions: (1) stable voltage, due to fluctuations in the DC/DC output voltage, increasing the fuel cell battery can eliminate voltage fluctuations as much as possible for the fuel cell controller And the impact of the power supply of the fuel cell system electrical accessories; (2) can avoid the impact of the 24VDC / DC failure mode on the low-voltage power supply system, even if the 24VDC / DC suddenly fails, the fuel cell battery can still be used to ensure the fuel cell system Security.
- the fuel cell controller protects the fuel cell battery from loss of power by controlling the opening and closing of the protection relay.
- Figure 1 is a schematic view showing the structure of a fuel cell system of the present invention.
- the fuel cell system of the present invention includes a vehicle end device, a fuel cell power supply system, and a fuel cell accessory system (ie, an electrical accessory in the figure), and the fuel cell power supply system is connected to the vehicle end device and the fuel cell accessory system.
- the fuel cell accessory system includes pumps, fans, solenoid valves and other low-voltage equipment.
- the vehicle-end equipment includes the vehicle controller, the vehicle high-voltage power equipment, the vehicle low-voltage power supply equipment and other vehicle equipment.
- Fuel cell power supply systems include fuel cell stacks, 24 VDC/DC converters, fuel cell batteries, fuel cell controllers, and other fuel cell devices such as step-up DC/DC.
- the high voltage input end of the 24VDC/DC converter is connected to the fuel cell stack, and the low voltage output end of the 24VDC/DC converter is connected to a fuel cell low voltage bus, and the fuel cell low voltage bus is connected to the fuel cell controller and the fuel cell accessory system. And a battery for fuel cells.
- the fuel cell stack is also connected to the low-voltage input terminal of the step-up DC/DC, and the high-voltage output terminal of the step-up DC/DC is connected to the high-voltage power supply device of the whole vehicle.
- the vehicle low-voltage power supply equipment is also connected to the fuel cell controller, and the vehicle controller is connected to the fuel cell controller through the CAN bus.
- a protective relay is further provided at the output end of the fuel cell battery, and the protective relay is controlled and connected by the fuel cell controller, and the fuel cell controller protects the fuel cell battery from loss of power by controlling the opening and closing of the protective relay.
- a first load relay is further disposed between the fuel cell stack and the 24VDC/DC converter, and a second load relay is further disposed between the fuel cell stack and the step-up DC/DC converter, and the fuel cell controller controls the connection.
- a CAN bus is provided between the fuel cell controller and the 24VDC/DC converter and the fuel cell stack, and the fuel cell controller communicates with the 24VDC/DC converter and the fuel cell stack via the CAN bus.
- the core part of the fuel cell controller is powered by the low-voltage power supply of the vehicle, and the fuel cell controller performs system self-test. After the self-test passes, the fuel cell controller begins to receive the control command of the vehicle controller normally. In the process, the vehicle still needs to provide the necessary low voltage power supply.
- the fuel cell controller determines the current working state of the fuel cell stack, and then the fuel cell controller controls the closed stack load relay, that is, the stack to 24VDC.
- the first load relay of /DC and the second load relay of the stack to the step-up DC/DC.
- the fuel cell controller calculates the target current according to the power required by the system electrical accessory, sends the target current command to the 24VDC/DC through the CAN line, and the current of the 24VDC/DC pull carrier is converted by the voltage. It is used for fuel cell systems with 24V low voltage power.
- the 24VDC/DC power supply to the fuel cell controller and fuel cell accessory system, and the 24V fuel cell battery at the 24VDC/DC output are used to ensure the stability of the low voltage power supply and enable 24VD/CDC failure.
- the short-term power supply ensures the safety of the fuel cell system.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种燃料电池供电系统,包括燃料电池电堆、24VDC/DC变换器以及燃料电池控制器,24VDC/DC变换器的高压输入端连接燃料电池电堆,24VDC/DC变换器的低压输出端连接一个燃料电池低压母线,燃料电池低压母线供电连接燃料电池控制器以及一个燃料电池用蓄电池。其优点在于可以尽可能的消除电压波动对燃料电池控制器及燃料电池系统电附件的供电影响,且在24VDC/DC突然失效时,依然可以由燃料电池用蓄电池供电保证燃料电池系统的安全。还涉及一种燃料电池系统。
Description
本发明涉及一种燃料电池供电系统及燃料电池系统,属于燃料电池汽车动力系统技术领域。
燃料电池汽车因其相对纯电动汽车具有续航里程长、加氢时间短以及相对插电式零污染的特性被认为是新能源汽车的终极发展方向,而燃料电池客车作为燃料电池的重要应用领域,受到国家政策的大力扶持,并成为推动燃料电池发展的重要力量。
目前,市场上应用的燃料电池客车通过整车的蓄电瓶或者由整车高压经过24VDC/DC给燃料电池系统低压供电。通过整车给燃料电池进行低压供电对燃料电池系统来说结构简单,但存在以下两个缺点:1.目前整车蓄电瓶的放电能力不能满足日益增长的燃料电池功率,而不同的燃料电池系统低压需求功率不同导致整车做能量分配无法做到规模化;2.整车通过24VDC/DC给燃料电池供电,而24VDC/DC输入端高压取自燃料电池的升压DC/DC经过两级DC/DC,功率损耗较大,能量利率效率低。
公开号为CN1663838A的中国专利文件公开了一种燃料电池汽车混合动力系统,在该动力系统中,燃料电池电堆输出的电能通过24VDC/DC变换器进行变换后给燃料电池控制器供电,解决了燃料电池需求的低压功率过大导致影响整车能量分配的问题。但是由于24VDC/DC的输出电压存在波动,会大大减少燃料电池控制器等对电压敏感的电子元器件的寿命,并且在24VDC/DC失效时会导致燃料电池系统突然断电,会对燃料系统造成不可逆转的伤害。
发明内容
本发明的目的是提供一种燃料电池供电系统及燃料电池系统,用于解决燃料电池电堆不能为燃料电池系统提供稳定可靠的低压电源这一技术问题。
为解决上述技术问题,本发明提供了一种燃料电池供电系统,包括燃料电池电堆、24VDC/DC变换器以及燃料电池控制器,所述24VDC/DC变换器的高压输入端连接所述燃料电池电堆,所述24VDC/DC变换器的低压输出端连接一个燃料电池低压母线,所述燃料电池低压母线供电连接所述燃料电池控制器以及一个燃料电池用蓄电池。
进一步的,所述燃料电池用蓄电池的输出端设置有保护继电器,所述燃料电池控制器控制连接所述保护继电器。
进一步的,还包括升压DC/DC,所述升压DC/DC的低压输入端连接所述燃料电池电堆,所述升压DC/DC的高压输出端用于供电连接整车高压用电设备。
进一步的,所述燃料电池电堆和24VDC/DC变换器之间还设置有第一负载继电器,所述燃料电池电堆和升压DC/DC变换器之间还设置有第二负载继电器,所述燃料电池控制器控制连接所述第一负载继电器和第二负载继电器。
进一步的,所述燃料电池控制器与24VDC/DC变换器和燃料电池电堆之间均设置有CAN总线。
本发明还提供了一种燃料电池系统,包括整车端设备、燃料电池供电系统以及燃料电池附件系统,所述燃料电池供电系统包括燃料电池电堆、24VDC/DC变换器以及燃料电池控制器,所述24VDC/DC变换器的高压输入端连接所述燃料电池电堆,所述24VDC/DC变换器的低压输出端连接一个燃料电池低压母线,所述燃料电池低压母线供电连接所述燃料电池控制器、燃料电池附件系统以及一个燃料电池用蓄电池。
进一步的,所述燃料电池用蓄电池的输出端设置有保护继电器,所述燃料电 池控制器控制连接所述保护继电器。
进一步的,所述燃料电池供电系统还包括升压DC/DC,所述整车端设备包括整车高压用电设备,所述升压DC/DC的高压输出端供电连接所述整车高压用电设备。
进一步的,所述燃料电池电堆和24VDC/DC变换器之间还设置有第一负载继电器,所述燃料电池电堆和升压DC/DC变换器之间还设置有第二负载继电器,所述燃料电池控制器控制连接所述第一负载继电器和第二负载继电器。
进一步的,所述整车端设备还包括整车控制器和整车低压供电设备,所述整车控制器通信连接所述燃料电池控制器,所述整车低压供电设备供电连接所述燃料电池控制器。
本发明的有益效果是:
将24VDC/DC变换器的低压输出端和燃料电池用蓄电池的输出端均与一个燃料电池用低压母线相连,采用该燃料电池用低压母线给燃料电池控制器以及燃料电池附件系统供电,在燃料电池用低压母线上连接一个燃料电池用蓄电池有两个作用:(1)能够稳定电压,由于DC/DC输出端电压存在波动,增加该燃料电池用蓄电池可以尽可能的消除电压波动对燃料电池控制器及燃料电池系统电附件的供电的影响;(2)可避免24VDC/DC的失效模式下对低压供电系统造成的影响,即使24VDC/DC突然失效,依然可以由燃料电池用蓄电池供电保证燃料电池系统的安全。
进一步的,通过在燃料电池用蓄电池的输出端设置保护继电器,燃料电池控制器通过控制该保护继电器的通断来保护燃料电池用蓄电池避免亏电。
图1是本发明燃料电池系统的结构示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例对本发明进行进一步详细说明。
如图1所示,本发明的燃料电池系统包括整车端设备、燃料电池供电系统以及燃料电池附件系统(即图中电附件),燃料电池供电系统供电连接整车端设备和燃料电池附件系统。其中,燃料电池附件系统包括水泵、风扇、电磁阀等其他低压设备,整车端设备包括整车控制器、整车高压用电设备、整车低压供电设备以及其他整车设备。燃料电池供电系统包括燃料电池电堆、24VDC/DC变换器、燃料电池用蓄电池、燃料电池控制器以及升压DC/DC等其他燃料电池设备。
具体的,24VDC/DC变换器的高压输入端连接燃料电池电堆,24VDC/DC变换器的低压输出端连接一个燃料电池低压母线,该燃料电池低压母线供电连接燃料电池控制器、燃料电池附件系统以及燃料电池用蓄电池。燃料电池电堆还连接升压DC/DC的低压输入端,升压DC/DC的高压输出端供电连接整车高压用电设备。整车低压供电设备也供电连接燃料电池控制器,整车控制器通过CAN总线控制连接燃料电池控制器。
另外,在燃料电池用蓄电池的输出端还设置有保护继电器,该保护继电器由燃料电池控制器控制连接,燃料电池控制器通过控制该保护继电器的通断来保护燃料电池用蓄电池避免亏电。燃料电池电堆和24VDC/DC变换器之间还设置有第一负载继电器,在燃料电池电堆和升压DC/DC变换器之间还设置有第二负载继电器,燃料电池控制器控制连接第一负载继电器和第二负载继电器。燃料电池控制器与24VDC/DC变换器和燃料电池电堆之间均设置有CAN总线,燃料电池控制器通过CAN总线与24VDC/DC变换器和燃料电池电堆进行通信。
上述燃料电池系统的工作过程如下:
(1)在车辆上电之后,由整车低压电源给燃料电池控制器核心部分供电, 燃料电池控制器做系统自检,自检通过之后燃料电池控制器开始正常接收整车控制器的控制命令,在这一过程中仍然需要整车提供必要的低压供电。
(2)当燃料电池控制器能够正常接收整车控制器命令后,燃料电池控制器判断燃料电池电堆目前的工作状态,然后燃料电池控制器控制闭合电堆端负载继电器,即电堆到24VDC/DC的第一负载继电器以及电堆到升压DC/DC的第二负载继电器。
(3)当负载继电器吸合之后,燃料电池控制器根据系统电附件所需功率计算出目标电流,通过CAN线发送目标电流命令给24VDC/DC,24VDC/DC拉载电堆的电流经过电压转换为24V的低压电供给燃料电池系统使用。
正常运行状态下,由24VDC/DC给燃料电池控制器和燃料电池附件系统供电,在24VDC/DC输出端的24V燃料电池用蓄电池,用来保证低压供电源的稳定,并能够在24VD/CDC失效情况下保证短时供电确保燃料电池系统的安全。
Claims (10)
- 一种燃料电池供电系统,包括燃料电池电堆、24VDC/DC变换器以及燃料电池控制器,所述24VDC/DC变换器的高压输入端连接所述燃料电池电堆,其特征在于,所述24VDC/DC变换器的低压输出端连接一个燃料电池低压母线,所述燃料电池低压母线供电连接所述燃料电池控制器以及一个燃料电池用蓄电池。
- 根据权利要求1所述的燃料电池供电系统,其特征在于,所述燃料电池用蓄电池的输出端设置有保护继电器,所述燃料电池控制器控制连接所述保护继电器。
- 根据权利要求1或2所述的燃料电池供电系统,其特征在于,还包括升压DC/DC,所述升压DC/DC的低压输入端连接所述燃料电池电堆,所述升压DC/DC的高压输出端用于供电连接整车高压用电设备。
- 根据权利要求3所述的燃料电池供电系统,其特征在于,所述燃料电池电堆和24VDC/DC变换器之间还设置有第一负载继电器,所述燃料电池电堆和升压DC/DC变换器之间还设置有第二负载继电器,所述燃料电池控制器控制连接所述第一负载继电器和第二负载继电器。
- 根据权利要求1或2所述的燃料电池供电系统,其特征在于,所述燃料电池控制器与24VDC/DC变换器和燃料电池电堆之间均设置有CAN总线。
- 一种燃料电池系统,包括整车端设备、燃料电池供电系统以及燃料电池附件系统,所述燃料电池供电系统包括燃料电池电堆、24VDC/DC变换器以及燃料电池控制器,所述24VDC/DC变换器的高压输入端连接所述燃料电池电堆,其特征在于,所述24VDC/DC变换器的低压输出端连接一个燃料电池低压母线,所述燃料电池低压母线供电连接所述燃料电池控制器、燃料电池附件系统以及一个燃料电池用蓄电池。
- 根据权利要求6所述的燃料电池系统,其特征在于,所述燃料电池用蓄电 池的输出端设置有保护继电器,所述燃料电池控制器控制连接所述保护继电器。
- 根据权利要求6或7所述的燃料电池系统,其特征在于,所述燃料电池供电系统还包括升压DC/DC,所述整车端设备包括整车高压用电设备,所述升压DC/DC的高压输出端供电连接所述整车高压用电设备。
- 根据权利要求8所述的燃料电池系统,其特征在于,所述燃料电池电堆和24VDC/DC变换器之间还设置有第一负载继电器,所述燃料电池电堆和升压DC/DC变换器之间还设置有第二负载继电器,所述燃料电池控制器控制连接所述第一负载继电器和第二负载继电器。
- 根据权利要求6或7所述的燃料电池系统,其特征在于,所述整车端设备包括还包括整车控制器和整车低压供电设备,所述整车控制器通信连接所述燃料电池控制器,所述整车低压供电设备供电连接所述燃料电池控制器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18837414.4A EP3659853B1 (en) | 2017-07-28 | 2018-07-27 | Power supply system for fuel cell and fuel cell system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710631930.0 | 2017-07-28 | ||
CN201710631930.0A CN110015204B (zh) | 2017-07-28 | 2017-07-28 | 一种燃料电池供电系统及燃料电池系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019020098A1 true WO2019020098A1 (zh) | 2019-01-31 |
Family
ID=65039387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/097357 WO2019020098A1 (zh) | 2017-07-28 | 2018-07-27 | 一种燃料电池供电系统及燃料电池系统 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3659853B1 (zh) |
CN (1) | CN110015204B (zh) |
WO (1) | WO2019020098A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112659980A (zh) * | 2020-12-31 | 2021-04-16 | 大运汽车股份有限公司 | 一种适用于新能源氢燃料电池汽车的氢系统控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1663838A (zh) | 2004-12-24 | 2005-09-07 | 清华大学 | 一种燃料电池汽车混合动力系统 |
CN101291074A (zh) * | 2007-04-18 | 2008-10-22 | 思柏科技股份有限公司 | 整合充电电池的燃料电池供电系统 |
US20140239712A1 (en) * | 2013-02-22 | 2014-08-28 | Kia Motors Corporation | Integrated electronic power control unit of vehicle |
CN106019168A (zh) * | 2016-05-10 | 2016-10-12 | 清华大学 | 一种燃料电池汽车dc-dc变换器的试验系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6787259B2 (en) * | 2002-09-12 | 2004-09-07 | Metallic Power, Inc. | Secondary power source for use in a back-up power system |
JP2004193063A (ja) * | 2002-12-13 | 2004-07-08 | Nissan Motor Co Ltd | 燃料電池システム |
CN100404306C (zh) * | 2006-03-24 | 2008-07-23 | 清华大学 | 一种燃料电池汽车的能量混合型动力系统 |
JP5194425B2 (ja) * | 2006-10-24 | 2013-05-08 | トヨタ自動車株式会社 | 燃料電池システム |
AU2009257199A1 (en) * | 2008-06-13 | 2009-12-17 | Ceramic Fuel Cells Limited | Fuel cell stabilisation system and method |
CN101503062A (zh) * | 2008-11-28 | 2009-08-12 | 清华大学 | 一种燃料电池汽车的车载电气系统 |
CN103231662B (zh) * | 2013-04-18 | 2015-10-21 | 同济大学 | 一种燃料电池轿车动力系统控制方法 |
KR101551086B1 (ko) * | 2014-05-02 | 2015-09-08 | 현대자동차주식회사 | 연료전지 비상전원 공급시스템 |
CN204161142U (zh) * | 2014-07-14 | 2015-02-18 | 郑州宇通客车股份有限公司 | 一种基于燃料电池的客车及其动力系统 |
CN207190818U (zh) * | 2017-07-28 | 2018-04-06 | 郑州宇通客车股份有限公司 | 燃料电池供电系统及燃料电池系统 |
-
2017
- 2017-07-28 CN CN201710631930.0A patent/CN110015204B/zh active Active
-
2018
- 2018-07-27 WO PCT/CN2018/097357 patent/WO2019020098A1/zh active Application Filing
- 2018-07-27 EP EP18837414.4A patent/EP3659853B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1663838A (zh) | 2004-12-24 | 2005-09-07 | 清华大学 | 一种燃料电池汽车混合动力系统 |
CN101291074A (zh) * | 2007-04-18 | 2008-10-22 | 思柏科技股份有限公司 | 整合充电电池的燃料电池供电系统 |
US20140239712A1 (en) * | 2013-02-22 | 2014-08-28 | Kia Motors Corporation | Integrated electronic power control unit of vehicle |
CN106019168A (zh) * | 2016-05-10 | 2016-10-12 | 清华大学 | 一种燃料电池汽车dc-dc变换器的试验系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3659853A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112659980A (zh) * | 2020-12-31 | 2021-04-16 | 大运汽车股份有限公司 | 一种适用于新能源氢燃料电池汽车的氢系统控制方法 |
CN112659980B (zh) * | 2020-12-31 | 2022-10-04 | 大运汽车股份有限公司 | 一种适用于新能源氢燃料电池汽车的氢系统控制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3659853A4 (en) | 2020-08-19 |
CN110015204B (zh) | 2024-04-05 |
EP3659853A1 (en) | 2020-06-03 |
EP3659853C0 (en) | 2023-06-07 |
EP3659853B1 (en) | 2023-06-07 |
CN110015204A (zh) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9780577B2 (en) | Electric power supply control device and electric power supply control method | |
US9502725B2 (en) | Fuel cell system with connector welding prevention | |
US10862148B2 (en) | Vehicle power source system | |
CN109774540B (zh) | 燃料电池车辆的动力系统控制方法、计算机设备和存储介质 | |
CN108340856A (zh) | 一种取消低压电池的新能源汽车供电系统 | |
JP2020036465A (ja) | 車両用電源システム | |
US20140021916A1 (en) | Low Cost Charger Circuit with Precharge | |
CN106274519B (zh) | 燃料电池车辆的电网系统及其控制方法 | |
EP1591299B1 (en) | Auxiliary power supply for vehicle | |
CN207190818U (zh) | 燃料电池供电系统及燃料电池系统 | |
US20150112530A1 (en) | Method and system for controlling a fuel cell vehicle | |
CN110165654A (zh) | 轨道交通用氢燃料电池电气系统架构 | |
EP3670238A1 (en) | Power supply system and operation method thereof | |
CN112104037B (zh) | 电源系统及其控制方法、自动驾驶车辆和电源管理装置 | |
KR20220153129A (ko) | 차량용 전력 시스템 | |
CN214396436U (zh) | 一种燃料电池车用高压拓扑结构 | |
CN111216556A (zh) | 一种低压蓄电单元充电控制方法、控制系统及无人车 | |
WO2019020098A1 (zh) | 一种燃料电池供电系统及燃料电池系统 | |
JP2020187845A (ja) | 燃料電池システム | |
US20230010979A1 (en) | Method and a master control unit for controlling an electrical system of an electric vehicle | |
CN109318980A (zh) | 一种双源转向控制系统及设有该系统的车辆 | |
EP3858652B1 (en) | Sistema de alimentación para un tren eléctrico, y tren eléctrico | |
CN109927573B (zh) | 新能源公交车高压集成控制系统及其方法 | |
JP7155622B2 (ja) | 電力供給システム | |
US10916957B2 (en) | Power control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018837414 Country of ref document: EP |