WO2019020048A1 - 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统 - Google Patents

一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统 Download PDF

Info

Publication number
WO2019020048A1
WO2019020048A1 PCT/CN2018/096999 CN2018096999W WO2019020048A1 WO 2019020048 A1 WO2019020048 A1 WO 2019020048A1 CN 2018096999 W CN2018096999 W CN 2018096999W WO 2019020048 A1 WO2019020048 A1 WO 2019020048A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ultrasound
patient
spinal
ultrasonic
Prior art date
Application number
PCT/CN2018/096999
Other languages
English (en)
French (fr)
Inventor
刘天健
朱永坚
陈高
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2020504215A priority Critical patent/JP7162793B2/ja
Publication of WO2019020048A1 publication Critical patent/WO2019020048A1/zh
Priority to US16/752,633 priority patent/US11304680B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/367Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone
    • G06T2207/30012Spine; Backbone

Definitions

  • the invention relates to the field of medicine, in particular to a spinal image generation system, a spinal image generation method, a spinal surgery navigation and positioning system, and a spinal surgery navigation and positioning method.
  • Ultrasound scanning of human bone structure is characterized by: 1) Ultrasound can not penetrate the bone structure, so the ultrasound image can only show the linear strong echo of the bone surface, the information obtained is less, the clinical application range is limited, the linear Strong echo is a medical ultrasound concept, which refers to the characteristic description of ultrasound images, which is characterized by linear high-brightness images. 2) When ultrasound scans the bone structure, it is easy to cause diffraction to bring noise, resulting in the bone structure being displayed in the ultrasound image. Deviation occurs.
  • the noise is a medical ultrasound concept, which refers to blurry, burr-like, unclear image features appearing in ultrasound images.
  • the noise of bone structure is fuzzy, burr-like, unclear linear or high-profile. Bright images; currently used in clinical ultrasound scanning technology (including ultrasound scanning equipment and ultrasound processing technology) can not solve the above problems, therefore, the current ultrasound scanning technology in the diagnosis and treatment of bone structure related diseases is very limited.
  • the human spine is a long and narrow bony structure area, which is the main body of the body, divided into five sections: neck, chest, waist, ankle and tail. It consists of 33 vertebrae (7 cervical vertebrae, thoracic vertebra 12) Block, 5 lumbar vertebrae, 9 humerus and coccyx) are connected by ligaments, joints and intervertebral discs. Inside the spine, a longitudinal ridge is formed from top to bottom with a spinal cord inside.
  • the spine consists of transverse processes, spinous processes, articular processes, lamina, lamina, intervertebral foramen, and other bone components that make up the spine.
  • the special features of ultrasound scan of the spine are: 1) less information on the vertebral bone obtained by ultrasound scan, the spine as a long and narrow bony structure composed of multiple vertebrae, the vertebral segments presented in an ultrasound scan image is limited, information Less and only bone surface echo information; 2) Compared with other bone structures, the ultrasound information obtained by ultrasound scanning has larger and more deviations, as shown in Figures 6(2) and 6(3).
  • the spine has many bony prominences such as spinous processes, transverse processes, articular processes, etc., and the bone echoes in the ultrasound image are strong, and the ultrasound images presented are often bright and noisy images of the bone structure.
  • the diffraction and noise caused by the echo will cause the anatomy of the spine (including transverse processes, spinous processes, articular processes, lamina, and other bone components that make up the spine) to show large deviations in the ultrasound image.
  • the anatomy of a lumbar vertebra includes transverse processes, spinous processes, articular processes, lamina, lamina, intervertebral
  • the pores and other bone components that make up the spine, the different anatomical structures are significantly different in the ultrasound image, including: 1) the spinous process is the bone structure of the vertebral body extending to the dorsal side of the human body due to its narrow structure and thin bone.
  • the thinner bone refers to a spine process parallel to the cross section of the human body, and the thickness of the left bone surface to the right bone surface is thin
  • the spinous process The anatomical structure of the spinous process is that the root of the spinous process away from the spine is a sharp-like structure, which is the end of the spinous process, making the spinous process the most characteristic anatomy in the spine is easy to complete in the ultrasound image. Display; 2) the appearance of transverse process and articular process in the ultrasound image is worse than that of the spinous process, which includes the fact that the two do not have a larger angle with the vertebral body than the dorsal process of the spinous process.
  • the limitation of the body position and the scanning angle means that in the process of acquiring the bone echo information of the transverse process and the articular process, other structures of the spine are inevitably scanned,
  • the organ adjacent to the spine causes the other structures of the spine and the image of the organ adjacent to the spine to interfere with the bone echo information of the transverse process and the articular process, resulting in incomplete information of the bone echo of the transverse process and the facet process.
  • lamina, interlaminar space, intervertebral foramen and other bone components that make up the spine are limited by the many defects of the above-mentioned ultrasound scan bone structure and the special anatomical positional relationship of these structures, resulting in ultrasound not being scanned
  • the bone echo information of these structures cannot be displayed in these structures, or in ultrasound images. Even if some information about these structures can be scanned, there are problems with insufficient information accuracy and deviations, including: articular processes, lamina, laminar space, intervertebral foramen, and anatomical structures of other bone components that make up the spine.
  • a certain point in the specific image may appear as a face in the ultrasound image due to diffraction; a certain surface of the anatomical structure and the corresponding surface size and ratio in the ultrasound image are inaccurate; the joint portion in the anatomical structure,
  • the root of the transverse process connected to the vertebral body shows a blurred planar structure in the ultrasound image, and the joint is not clear and cannot be accurately identified.
  • the clinical minimally invasive surgery of the spine is as follows: 1) CT scan of the patient before surgery; 2) Surgical positioning: obtaining the intraoperative position of the patient under current surgical conditions, such as X-ray fluoroscopy; 3) After the surgical positioning is completed, Surgical procedures are performed, including minimally invasive surgery or open surgery.
  • X-ray fluoroscopy technology can only generate a single static image for each irradiation, the surgical positioning can only obtain the intraoperative position of the patient at a certain moment.
  • the normal human spine has a certain degree of activity, but the mobility of each part is different.
  • the lumbar segment has a large degree of activity
  • the thoracic segment has a very small activity
  • the crotch segment has almost no activity.
  • the natural activity of the spine is combined with the normal respiratory movement, so that the position and curvature of the spine are displaced during the operation, and the single static
  • the image does not accurately reflect the patient's real-time position.
  • the doctor needs the real-time intraoperative position in the patient's operation.
  • the current situation can only be based on the doctor's experience, the subjective factors such as the experience of the doctor and the doctor's state at the time of surgery. The degree of controllability is poor.
  • ultrasound scan bone structure can be summarized as follows: 1) problems with ultrasound scan of bone structure; 2) ultrasound scan of the spine is more difficult than other bone structures; 3) clinical existing ultrasound scanning technology (including Ultrasound scanning equipment and ultrasonic processing technology have defects such as incomplete scanning information, low definition and low accuracy, which can not meet the clinical application of spinal surgery. Image problems have become the biggest obstacle to the development of minimally invasive surgery.
  • the operation mode of the technology can be summarized as shown in FIG. 1 , that is, “puncture-irradiation-evaluation-adjustment-irradiation verification”.
  • the specific procedure is: inserting a puncture needle at the position of the patient's surgical department before the operation, after the first X-ray irradiation After knowing the depth and angle of the needle in the patient's body and adjusting it, the second X-ray irradiation is performed, and the depth and angle of the needle in the patient's body are again known.
  • the C-arm perspective positioning technology ensures accurate positioning, but it has the following disadvantages:
  • the operator should perform X-ray irradiation every time after inserting the puncture needle into the surgical site of the patient, and know the depth and angle of the needle in the patient's body and adjust it, then X-ray irradiation again, and again know that the puncture needle is The depth and angle of the needle in the patient's body until the depth and angle of the needle reach the predetermined position, the positioning is completed.
  • X-ray fluoroscopy is required during the positioning process, and the X-ray radiation is very damaging, causing potential radiation damage to the patient and the operator.
  • the positioning technique relies heavily on the experience of the operator. Because the minimally invasive technique requires high positioning accuracy of the lesion, the operator's experience is positively correlated with the number of punctures and irradiations in the operation. At present, in clinical work, usually, an operator with a surgical experience of about ten years still needs a needle for 6-10 times during surgery, and an operator with less experience needs more repeated puncture and positioning, not only efficiency. Low, and bring more X-ray radiation to patients and surgical operators, and greater puncture damage to patients, which is not conducive to the promotion and application of this technology.
  • the static image obtained by the C-arm perspective technology cannot be used to navigate the subsequent surgery.
  • the image obtained by the C-arm perspective positioning technology is the intraoperative position of the patient under the current surgical condition, which is a static X-ray image, which cannot correctly reflect the changes caused by the spinal activity during the operation, and cannot guide the subsequent operation in real time.
  • the C-arm fluoroscopy technology is only used for preoperative positioning to determine the surgical approach. Once the surgery is determined, it will not be able to present the intraoperative position of the patient at any time during the operation. The operator will rely entirely on experience. Surgical operation.
  • the electromagnetic tracking system is used (the distance between the electromagnetic tracker and the ultrasonic probe is ⁇ 80 cm, and the position of the tracker is kept constant throughout the test), and the professional operator of the ultrasound assists the spine surgery operator to find the lesion in the real-time image.
  • the specific process is: pre-operative CT scan and three-dimensional reconstruction, the three-dimensional CT data is imported into the ultrasound system, and the image registration is performed by the three-point method.
  • the CT image and the ultrasound image are displayed on the same screen, and 3 points (3 points are not on the same line) are selected among the 4 points of the patient's body surface, and the CT images and the ultrasound images of 3 points are accurately searched and locked in turn, respectively.
  • the outer marked points need to be cut or puncture the skin and set the outer marking points by means of equipment such as metal nails.
  • the registration of the external marker points is completed, the registration of the internal marker points is performed, and the vertices of any vertebral body spinous processes are searched on the CT map and locked, and then the corresponding points are searched and locked in the ultrasound image in real time, and the registration error is measured. If the error is >5 mm, then the spinous process apex of the other vertebral bodies is selected as another internal marker point for correction.
  • the image registration error is reduced to less than 5 mm, and image fusion is completed.
  • the CT image is used to lock the lowest edge of the intervertebral foramen of the lesion segment as the needle insertion point.
  • the ultrasound image is used to display the point in real time, and the point is accurately searched and locked.
  • the ultrasound instrument is used to guide the needle in the plane of the lesion segment.
  • Ultrasound volume navigation technology enables the operator to perform puncture and surgical operations based on the registration image. Compared with the C-arm perspective technology, the X-ray radiation damage is greatly reduced, but the following disadvantages exist:
  • This positioning technique relies heavily on the experience of spine surgery operators. Because the navigation image obtained by the positioning technology is not high in precision, and the minimally invasive technique requires high positioning accuracy of the lesion, the operator still needs certain operational experience to ensure accurate operation, so the technology relies less on experience.
  • the arm machine is fluoroscopy, but it cannot get rid of the dependence on the operator.
  • the navigation image is not accurate.
  • the fused image obtained by the ultrasonic navigation volume technology has its image accuracy mainly depends on three aspects during navigation and positioning. The first is that the point registration mode has low precision, and the ultrasound image and CT or MRI image are rich in a large amount of information. Selecting a few feature points for registration will not guarantee accuracy and adversely affect the operation. Second, the selection of the above several feature points depends on the ultrasonic professional operator, subject to subjective factors, which adversely affects image accuracy. The third is that the ultrasound image has low precision, the spine is a long and narrow bony structure area, and the bone echo in the ultrasound image is strong, and the ultrasound image presented is often a bright and noisy image of the bone structure.
  • the diffraction and noise caused by bone echo will cause the anatomical structure to show deviation in the ultrasound image.
  • Common deviations include: the specific points in the anatomical structure are displayed as faces in the ultrasound image; the surface in the anatomical structure and the ultrasound image The size of the face is not accurate; the clear adjacent and anatomical structures in the anatomy, such as the joints, the transverse processes and the roots of the vertebral body Etc., is shown as a planar structure blurred, the connection is not clear in the ultrasound image.
  • the above deviation causes the conventional ultrasound scanning method to not solve the ultrasound image sharpness problem of the bone structure, which results in it is much lower than the corresponding CT or MRI image, and the selected marker points in the ultrasound image are selected in the CT or MRI image. Marking points do not correspond exactly one-to-one, resulting in low navigation image accuracy.
  • the operator can only use the surgical instruments according to clinical experience. Operate until the arrival and removal of the protruding nucleus pulposus or annulus fibrosus to complete the relevant surgical content.
  • the existing spinal navigation and positioning technology mainly uses the C-arm perspective positioning technology to provide high-precision puncture positioning, but there are multiple X-ray irradiation, large radiation damage, multiple punctures, large puncture wounds, and positioning technology.
  • the operator's experience depends on the large, the operation time is prolonged, time-consuming and laborious, and the obtained static images can not help the subsequent surgical navigation; although the ultrasonic volume navigation technology greatly reduces the X-ray radiation damage, there are also multiple punctures.
  • the puncture trauma is large, and the professional operator of the ultrasound is required to assist, and the accuracy of the navigation image is low.
  • the prior art is unable to comprehensively and accurately obtain accurate spatial position information of relevant parts (including necessary parts and specific parts) required for spinal surgery. Therefore, accurate treatment of spinal surgery needs to meet two levels: the information necessary to meet the necessary parts of the operation is accurate, and the information of the necessary parts is accurate to ensure the accuracy of the precise operation of the spinal surgery; to meet the specific parts required for the operation. Accurate spatial location information, the more information of the specific site, the more accurate the accuracy of the spine surgery precision treatment operation. The prior art has not been able to obtain sufficient spatial position information of a specific part required for surgery to achieve precise treatment operation for guiding spinal surgery through navigation technology.
  • the technical problem to be solved by the present invention is to provide a spinal image generation system and method based on ultrasonic rubbing technology, which creatively obtains a real-time intraoperative position corresponding to a two-dimensional vertebra surface in a patient's surgical condition.
  • the ultrasonic image of the structure is processed to form an ultrasound rubbing piece, and the ultrasonic rubbing piece is a personalized three-dimensional ultrasonic bone image with real-time dynamic update information of the patient with spatial positioning information, and the ultrasound rubbing film and the digital medical image are performed.
  • the personalized topographic topographic map updated in real time with the patient's intraoperative position is further obtained, thereby completely solving the problem that the related parts (including necessary parts and specific parts) required for the spinal surgery cannot be obtained in the prior art.
  • the invention also provides a spinal surgery navigation positioning system and method based on the ultrasound rubbing technology, and the customized spinal surface topography obtained by the spinal image generation system based on the ultrasound rubbing technology and real-time updated with the intraoperative posture of the patient
  • the map enables real-time intraoperative navigation, so that the surgeon does not need to rely on experience, without the assistance of an ultrasound professional operator, without multiple punctures on the patient's body, resulting in multiple traumas, minimizing X-ray radiation to the patient and In the case of operator's injury, accurate and rapid access to the target target through one puncture enables accurate treatment of spinal surgery guided by navigation techniques.
  • the spinal surgery navigation and positioning system provided by the invention can also guide the operator to complete the follow-up related surgical content, and continue to navigate for the subsequent operation, which is simple in operation, saves time and labor.
  • the use of spinal endoscopy for posterior nucleus pulposus removal for the treatment of lumbar disc herniation is an example.
  • the surgical navigation and positioning system guides the spine endoscopic layer by layer to distinguish the spinous process, the ligamentum flavum, The anatomical structure of the lamina, nerve roots, intervertebral discs, etc., until the arrival and removal of the prominent nucleus pulposus or fiber ring to complete the relevant surgical content, overcoming the prior art X-ray, puncture injury, high operational experience, navigation images are difficult to accurately Real-time display and many other deficiencies.
  • a spinal image generation system based on an ultrasound rubbing technique, wherein the spinal image generation system generates an ultrasound image based on a two-dimensional ultrasound structure of a spine surface structure, and performs contour matching with the digital medical image to obtain a real-time update consistent with the patient's intraoperative position.
  • a personalized topographic map of the spine surface the system comprising an acquisition unit and a processing unit, wherein:
  • the collecting unit is configured to acquire a two-dimensional vertebra surface structure ultrasonic image corresponding to the real-time intraoperative position in the surgical condition of the patient, and the processing unit is configured to use the real-time intraoperative position corresponding to the patient's surgical condition acquired by the collecting unit.
  • Ultrasound image processing of the spine surface structure forms an ultrasound rubbing sheet, and then contour matching with the digital medical image, obtaining a real-time updated personalized spinal surface topographic map consistent with the patient's intraoperative position;
  • the ultrasound image consists of a deep layer containing the spinal region All echo information of the muscle tissue and the surface of the spine; the surface of the spine including the transverse process and the spinous process;
  • the ultrasound rubbing is a personalized three-dimensional ultrasound skeleton with real-time dynamic update of the patient's spatial location information and changes with the patient's position image.
  • the present invention also provides a spinal image generation method based on an ultrasound rubbing technique, which comprises the following steps:
  • step 2) generating an ultrasound rubbing piece: the ultrasonic image processing of the two-dimensional spinal surface structure corresponding to the real-time intraoperative position in the patient's surgical condition obtained in step 1) is generated, and the ultrasonic rubbing piece has the patient spatial positioning information and the patient position A personalized, three-dimensional ultrasound skeletal image that is dynamically updated in real time;
  • a spinal image generation system based on an ultrasound rubbing technique also provides a spinal surgery navigation and positioning system based on an ultrasound rubbing technique, the spinal surgery navigation and positioning system comprising a navigation module and an ultrasound-based technique A spine image generating system, wherein the spinal surgery navigation positioning system can obtain a real-time updated personalized topographic map of the spine consistent with the patient's intraoperative position, and perform real-time intraoperative navigation based on the topographic map of the spine surface, wherein:
  • the spinal image generation system based on the ultrasound rubbing technology forms an ultrasound rubbing film based on the real-time intraoperative intraoperative position corresponding to the two-dimensional spinal surface structure ultrasonic image processing, and then contours the ultrasonic rubbing sheet and the digital medical image.
  • the ultrasound rubbing is a personalized three-dimensional ultrasound bone image with patient spatial location information and dynamically updated in real time as the patient position changes;
  • the digital medical image is a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR, and a digitized computer radiography DR.
  • the present invention also provides a spinal surgery navigation and positioning method based on an ultrasound rubbing technique, which is characterized in that it comprises the following steps:
  • step 3 Display the surface model of the surgical instrument obtained in step 1) in the unified coordinate system formed in step 2), and realize the surgical instrument and the real-time updated personalized topographical topographic map consistent with the patient's intraoperative position in a unified coordinate system. In-process real-time navigation.
  • the present invention also provides a spinal surgery operating system comprising any form of spine image generation system based on ultrasound rubbing technology as described above and/or based on any of the forms described above Ultrasound rubbing technology for spinal surgery navigation and positioning system.
  • This operating system is suitable for open and minimally invasive surgery on the spine. It can be performed not only for the removal of the disc herniation, tumor resection, nerve release, hematoma removal and many other surgical operations.
  • the beneficial effects of the present invention are: the spinal image generation system and method based on the ultrasound rubbing technology provided by the present invention, which solves the problem that the prior art cannot acquire the relevant parts (including necessary parts and specific parts) required for spinal surgery.
  • the spinal surgery navigation positioning system and method based on the ultrasonic rubbing technology provided by the invention can realize real-time intraoperative navigation, so that the operator does not need to rely on experience, without the assistance of an ultrasonic professional operator, and does not need to puncture the patient body multiple times. In the case of multiple traumas, accurate and rapid access to the target target through one puncture in the case of minimizing the damage of X-ray radiation to the patient and the operator, the precise treatment operation of the spinal surgery guided by the navigation technique is realized.
  • the spinal surgery navigation and positioning system can guide the operator to complete the follow-up related surgical content, and continue to navigate for the subsequent operation, which is simple in operation, saves time and labor.
  • the use of spinal endoscopy for posterior nucleus pulposus removal for the treatment of lumbar disc herniation is an example.
  • the surgical navigation and positioning system guides the spine endoscopic layer by layer to distinguish the spinous process, the ligamentum flavum, Anatomical structures such as lamina, nerve roots, and intervertebral discs, until the arrival and removal of the prominent nucleus pulposus or annulus fibrosus to complete the relevant surgical content.
  • the specific performance is:
  • the spine image generation system provides a personalized topographic map of the spine that is updated in real time as the patient's position changes, and the navigation of the spine based on the topographic map of the spine for real-time intraoperative navigation.
  • the system will enable the surgeon to contribute to the promotion and application of spinal surgery without relying on experience and without the assistance of an ultrasound professional operator.
  • the operation is simple, time-saving and labor-saving.
  • the navigation image has high precision and can be consistent with the patient's real-time intraoperative position.
  • the spinal image generation system and the spinal surgery navigation and positioning system provided by the present invention make the positioning technology have no problem of real-time lag and dynamic display. Relative to the C-arm machine can achieve a certain degree of real-time, real-time lag, there will be problems, and can not achieve dynamic, there are problems.
  • the subsequent related surgical contents can be further guided.
  • the operator operates the endoscope to penetrate layer by layer, according to Clinical experience
  • the spine surgery navigation and positioning system can guide the operator to use surgical instruments to operate according to the correct angle and distance until the arrival and removal of the prominent pulp
  • the relevant surgical contents are completed by nuclear or fibrous rings.
  • the advantages of the present invention are as follows: firstly, there is no need to set external marking points, which greatly reduces trauma; secondly, the accuracy of the ultrasonic image is improved, thereby improving the real-time update consistent with the position of the patient during surgery. The accuracy of the personalized topographic map of the spine surface; third, to reduce the dependence on clinical experience, navigation images will greatly reduce the difficulty of surgery, reduce the operator's operating experience and dependence on ultrasound professionals. Fourth, overcoming the deficiencies of the prior art, the system of the present invention not only enables accurate positioning puncture, but also provides real-time navigation for subsequent operations of spinal surgery.
  • the application of the spinal image generation system and the spinal surgery navigation and positioning system provided by the present invention will greatly promote the rapid development and short-term popularization of spinal surgery represented by spinal endoscopy, benefiting patients and suffering from spinal diseases.
  • the invention is applicable to the minimally invasive technique of the spine represented by the spinal endoscope, but is not limited to the spinal endoscope, as long as the ultrasound rubbing is obtained, and the contour matching with the digital medical image is used to obtain the real-time update consistent with the patient's intraoperative position.
  • a personalized topographic map of the spine that is equally suitable for minimally invasive and open surgery that guides spinal-related diseases.
  • FIG. 1 is a schematic flow chart showing the operation of the C-arm perspective positioning technology
  • FIG. 2 is a schematic diagram of an operation flow of an ultrasonic volume navigation technology
  • FIG. 3 is a schematic diagram of the composition of a spinal image generation system based on the ultrasound rubbing technique of the present invention
  • FIG. 4 is a schematic diagram showing the operation flow of the spinal surgery navigation and positioning system based on the ultrasound rubbing technique of the present invention
  • FIG. 5 is a flow chart of a method for positioning and positioning a spine surgery based on the ultrasound rubbing technique of the present invention
  • Figure 6 is a schematic view of the human spine and spine, wherein: Figure 6 (1) is a schematic view of the comprehensive view of the spine, shown in the figure: A, front view, B, back view, C, side view; Figure 6 (2) for the lumbar spine Anatomical schematic diagram, shown in the figure: A, right side view, B, top view; Figure 6 (3) is the top view of the cervical vertebra.
  • Fig. 7 is a schematic diagram showing the basic principle of the shear deformation method in volume rendering.
  • the invention provides a spinal image generation system based on an ultrasound rubbing technique, wherein the spinal image generation system generates an ultrasound rubbing image based on a two-dimensional spinal surface structure ultrasonic image, and performs contour matching with the digital medical image to obtain a posture consistent with the patient's intraoperative position.
  • a personalized, updated topographic map of the spine surface the system comprising an acquisition unit and a processing unit, wherein:
  • the collecting unit is configured to acquire a two-dimensional vertebra surface structure ultrasonic image corresponding to the real-time intraoperative position in the surgical condition of the patient, and the processing unit is configured to use the real-time intraoperative position corresponding to the patient's surgical condition acquired by the collecting unit.
  • Ultrasound image processing of the spine surface structure forms an ultrasound rubbing sheet, and then contour matching with the digital medical image, obtaining a real-time updated personalized spinal surface topographic map consistent with the patient's intraoperative position;
  • the ultrasound image consists of a deep layer containing the spinal region All echo information of the muscle tissue and the surface of the spine; the surface of the spine including the transverse process and the spinous process;
  • the ultrasound rubbing is a personalized three-dimensional ultrasound skeleton with real-time dynamic update of the patient's spatial location information and changes with the patient's position image;
  • the ultrasound image includes a contour edge of the ultrasound image, information inside the contour; preferably, the spinal surface further includes an articular process, a lamina, a lamina gap, an intervertebral foramen, and other components that make up the spine Any one or any of a variety of bone components;
  • the ultrasonic image is obtained by repeatedly scanning the surface of the patient through an ultrasonic scanning device with patient spatial positioning information until the musculoskeletal interface is identified, and extracting all the bone surface of the spine including the intraoperative two-dimensional spatial position parameter.
  • the mass echo information constitutes a two-dimensional vertebra surface structure ultrasound image corresponding to the intraoperative body position in the real-time intraoperative position of the patient, and the intraoperative two-dimensional spatial position parameter refers to a real-time two-dimensional spatial position parameter of the spine under the surgical condition of the patient;
  • the ultrasound scanning device with patient spatial positioning information is an ultrasound probe with a positioning tag;
  • the method for obtaining the ultrasound rubbing is: optimizing and superimposing the ultrasonic image of the two-dimensional vertebra surface structure corresponding to the intraoperative body position in the surgical condition of the patient, and further processing to generate the ultrasound rubbing sheet;
  • the contour matching is obtained by: matching all the bone echo information of the spine surface included in the ultrasound rubbing piece with the contour of the digital medical image point by point, and obtaining a real-time updated personality consistent with the patient's intraoperative position. Topographic map of the spine surface;
  • the topographical map of the spine surface is a stereoscopic surface view formed by real-time dynamic spatial information possessed by the ultrasound rubbing sheet to the digital medical image; preferably, the real-time dynamic spatial information of the ultrasonic rubbing sheet refers to the surface of the spine And spatial information formed by the musculoskeletal interface, the spatial information includes ultrasonic image information and spatial position information of the spinal surface, deep muscles and adipose tissue obtained by ultrasonic scanning, and can be dynamically displayed in real time; preferably, the stereoscopic surface The view is an apparent three-dimensional image formed based on the spatial information of the spine surface, and the groove in the apparent three-dimensional image refers to the texture of the surface of the spine included in all the ultrasonic image information;
  • the digital medical image may be a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR or a digitized computed radiography DR.
  • the collecting unit includes an ultrasonic image scanning module and an ultrasonic image information extracting module, wherein:
  • the ultrasound image scanning module is configured to repeatedly scan the patient's body surface until the musculoskeletal interface is identified, and the original data is acquired, and the ultrasound image information extraction module is configured to extract the original data to obtain the intraoperative two-dimensional space.
  • All the bone echo information of the spine surface of the positional parameter constitutes a real-time ultrasonic image of the two-dimensional vertebra surface structure corresponding to the intraoperative position of the patient under the surgical condition, and the intraoperative two-dimensional spatial position parameter refers to the real-time spine of the patient under the surgical condition.
  • the raw data refers to a radio frequency signal emitted by an ultrasonic scanning device with patient spatial positioning information, the scanning is allowed to be performed in various angles and directions, including up and down, Front and rear, left and right, oblique, the angle includes a vertical or arbitrary tilt angle with respect to the body surface of the patient, and is independent of the scanning sequence;
  • the ultrasonic scanning device with patient spatial positioning information is an ultrasonic probe with a positioning tag
  • the raw data refers to a radio frequency signal emitted by the ultrasonic probe.
  • the processing unit includes an ultrasound image optimization module, an ultrasound image overlay module, an ultrasound image generation module, and an image contour matching module, wherein:
  • the ultrasound image optimization module is configured to optimize a two-dimensional spinal surface structure ultrasound image corresponding to a real-time intraoperative position in a patient's surgical condition obtained by the acquisition unit, to obtain an ultrasound optimized image for eliminating interference noise; preferably, the The ultrasonic image optimization module optimizes the ultrasonic image acquired by the acquisition unit by using an ultrasonic filtering enhancement technique to obtain an ultrasonic optimized image for eliminating interference noise, and the ultrasonic filtering enhancement technique preferably adopts adaptive median filtering and mathematical morphology filtering.
  • the ultrasonic image superimposing module is configured to superimpose the ultrasonic optimized image obtained by the ultrasonic image optimization module, so that the difference between the strong echo and the weak echo of the ultrasonic bone echo information is greater, and the ultrasonic superimposed image with enhanced image effect is obtained.
  • the ultrasound image is superimposed into a single mode registration method;
  • the ultrasonic image forming module is configured to process the ultrasonic superimposed image obtained by the ultrasonic image superimposing module to form an ultrasonic rubbing piece; preferably, the processing method is three-dimensional reconstruction, and more preferably, the three-dimensional reconstruction method is a volume rendering method, preferably a volume rendering acceleration technique;
  • the image contour matching module is configured to perform contour matching between the ultrasound rubbing obtained by the ultrasonic rubbing generating module and the digital medical image to form a real-time updated personalized spinal surface topographic map consistent with the intraoperative posture of the patient, the contour matching
  • the method is preferably based on a multi-modal registration method of a mutual information algorithm in a pixel gray scale algorithm, the multi-modal registration method including spatial transformation of images, gray interpolation, similarity measurement, search optimization; preferably,
  • the digital medical image is selected from the group consisting of a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR, and a digitized computer radiography DR.
  • the present invention also provides a spinal image generation method based on an ultrasound rubbing technique, which comprises the following steps:
  • step 2) generating an ultrasound rubbing piece: the ultrasonic image processing of the two-dimensional spinal surface structure corresponding to the real-time intraoperative position in the patient's surgical condition obtained in step 1) is generated, and the ultrasonic rubbing piece has the patient spatial positioning information and the patient position A personalized, three-dimensional ultrasound skeletal image that is dynamically updated in real time;
  • 3) generating a topographic map of the spine surface: matching the ultrasonic rubbing obtained in step 2) with the digital medical image to obtain a personalized updated topographical topographic map consistent with the patient's intraoperative position;
  • the ultrasound image includes a contour edge of the ultrasound image, information inside the contour; preferably, the spinal surface further includes an articular process, a lamina, a lamina gap, an intervertebral foramen, and other components that make up the spine Any one or any of a variety of bone components;
  • the ultrasonic image is obtained by repeatedly scanning the surface of the patient through an ultrasonic scanning device with patient spatial positioning information until the musculoskeletal interface is identified, and extracting all the bone surface of the spine including the intraoperative two-dimensional spatial position parameter.
  • the mass echo information constitutes a two-dimensional vertebra surface structure ultrasound image corresponding to the intraoperative body position in the real-time intraoperative position of the patient, and the intraoperative two-dimensional spatial position parameter refers to a real-time two-dimensional spatial position parameter of the spine under the surgical condition of the patient;
  • the ultrasound scanning device with patient spatial positioning information is an ultrasound probe with a positioning tag;
  • the method for generating the ultrasound rubbing is: optimizing, superimposing, and superimposing the ultrasonic image of the two-dimensional vertebra surface structure corresponding to the intraoperative body position in the surgical condition of the patient, and further processing to generate the ultrasound rubbing sheet;
  • the topography of the spine surface is generated by matching the bone echo information of the spine surface and the contour of the digital medical image point by point to obtain a real-time update consistent with the patient's intraoperative position.
  • the topographical map of the spine surface is a stereoscopic surface view formed by real-time dynamic spatial information possessed by the ultrasound rubbing sheet to the digital medical image; preferably, the real-time dynamic spatial information of the ultrasonic rubbing sheet refers to the surface of the spine And spatial information formed by the musculoskeletal interface, the spatial information includes ultrasonic image information and spatial position information of the spinal surface, deep muscles and adipose tissue obtained by ultrasonic scanning, and can be dynamically displayed in real time; preferably, the stereoscopic surface The view is an apparent three-dimensional image formed based on the spatial information of the spine surface, and the groove in the apparent three-dimensional image refers to the texture of the surface of the spine included in all the ultrasonic image information;
  • the digital medical image may be a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR or a digitized computed radiography DR.
  • step 1) described includes the following steps:
  • Ultrasound image scanning the ultrasound scanning device with patient spatial positioning information is repeatedly scanned on the patient's body surface until the musculoskeletal interface is identified, and the raw data is obtained, and the raw data refers to an ultrasonic scanning device with patient spatial positioning information.
  • RF signal said scanning is allowed to be performed in a variety of different angles and directions, including up and down, front and back, left and right, oblique, said angle including a vertical or arbitrary tilt angle relative to the patient's body surface, and Independent of the scanning sequence;
  • the raw data is obtained by scanning with an ultrasonic probe with a positioning tag, which is the radio frequency signal emitted by the ultrasonic probe;
  • Ultrasound image information extraction extracting the raw data obtained from the ultrasound image scanning module, and obtaining all the bone echo information of the spine surface including the intraoperative two-dimensional spatial position parameters, which constitutes the real-time intraoperative position corresponding to the patient's surgical condition.
  • the intraoperative two-dimensional spatial position parameter refers to the real-time two-dimensional spatial position parameter of the spine under the surgical condition of the patient.
  • step 2) described includes the following steps:
  • Ultrasound image optimization Step 1) Obtain the ultrasound image of the two-dimensional spinal surface structure corresponding to the real-time intraoperative position in the patient's surgical condition, and obtain the ultrasound optimized image to eliminate the interference noise.
  • the ultrasound image is optimized by ultrasonic filtering.
  • the ultrasonic filtering enhancement technique may be a combination of median filtering and mathematical morphology filtering;
  • Ultrasound image superposition superimposing the ultrasound-optimized images optimized by the ultrasound image, so that the difference between the strong echo and the weak echo of the ultrasonic bone echo information is greater, and an ultrasound superimposed image with enhanced image effect is obtained; preferably, the The ultrasound image is superimposed into a single mode registration method;
  • Ultrasound rubbing generation The ultrasonic superimposed image is superimposed to form an ultrasonic rubbing image, and the preferred processing method is three-dimensional reconstruction; more preferably, the three-dimensional reconstruction method is a volume rendering method, preferably a volume rendering acceleration technique.
  • the contour matching method described in the step 3) is preferably based on a multi-modal registration method of a mutual information algorithm in a pixel gray scale algorithm, where the multi-modal registration method includes spatial transformation of an image, gray Degree interpolation, similarity measurement, search optimization.
  • a spinal image generation system based on an ultrasound rubbing technique also provides a spinal surgery navigation and positioning system based on an ultrasound rubbing technique, the spinal surgery navigation and positioning system comprising a navigation module and an ultrasound-based technique A spine image generating system, wherein the spinal surgery navigation positioning system can obtain a real-time updated personalized topographic map of the spine consistent with the patient's intraoperative position, and perform real-time intraoperative navigation based on the topographic map of the spine surface, wherein:
  • the spinal image generation system based on the ultrasound rubbing technology forms an ultrasound rubbing film based on the real-time intraoperative intraoperative position corresponding to the two-dimensional spinal surface structure ultrasonic image processing, and then contours the ultrasonic rubbing sheet and the digital medical image.
  • the ultrasound rubbing is a personalized three-dimensional ultrasound bone image with patient spatial location information and dynamically updated in real time as the patient position changes;
  • the digital medical image is a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR, and a digitized computer radiography DR.
  • the navigation module establishes a topographic map coordinate system based on the spatial position information contained in the real-time updated personalized spine surface topography consistent with the intraoperative position of the patient, and transforms the physical geometric model of the surgical instrument with the positioning function into the surface model. And presenting in the spine image generation system, a real-time updated personalized spine surface topography consistent with the patient's intraoperative position; establishing a patient coordinate system with the spatial position information of the patient's intraoperative position, determining the topographic map coordinate system and The relationship between the corresponding points in the patient coordinate system forms a unified coordinate system; the surface model of the surgical instrument obtained by the transformation is integrated into the unified coordinate system to realize real-time navigation during operation and guide the operator to perform the operation.
  • the surgical instrument with positioning function is a surgical instrument with a spatial magnetic positioning mark.
  • the present invention also provides a spinal surgery navigation and positioning method based on an ultrasound rubbing technique, which is characterized in that it comprises the following steps:
  • step 3 Display the surface model of the surgical instrument obtained in step 1) in the unified coordinate system formed in step 2), and realize the surgical instrument and the real-time updated personalized topographical topographic map consistent with the patient's intraoperative position in a unified coordinate system. In-process real-time navigation.
  • the present invention also provides a spinal surgery operating system comprising any form of spine image generation system based on ultrasound rubbing technology as described above and/or based on any of the forms described above Ultrasound rubbing technology for spinal surgery navigation and positioning system.
  • This operating system is suitable for open and minimally invasive surgery on the spine. It can be performed not only for the removal of the disc herniation, tumor resection, nerve release, hematoma removal and many other surgical operations.
  • the present invention provides a spinal image generating system based on an ultrasound rubbing technique, wherein the spinal image generating system generates an ultrasound rubbing image based on a two-dimensional spinal surface structure ultrasonic image, and performs contour matching with the digital medical image to obtain A personalized, updated, superficial topographic map of the real-time update consistent with the patient's intraoperative position, the system including an acquisition unit and a processing unit.
  • the collecting unit is configured to acquire a two-dimensional vertebra surface structure ultrasonic image corresponding to the real-time intraoperative position in the surgical condition of the patient, and the processing unit is configured to use the real-time intraoperative position corresponding to the patient's surgical condition acquired by the collecting unit.
  • Ultrasound image processing of the spine surface structure is performed to form an ultrasound rubbing sheet, and then contour matching with the digital medical image is performed to obtain a personalized updated topographic map of the spine surface in real time consistent with the patient's intraoperative position.
  • the ultrasound radiograph is a personalized three-dimensional ultrasound bone image with patient spatial positioning information and dynamically updated in real time as the patient position changes.
  • the ultrasound image consists of all echo information including deep musculature in the spinal region and the surface of the spine.
  • the ultrasound image includes contour edges of the ultrasound image, information inside the contour.
  • the vertebral surface includes transverse processes and spinous processes, and may further include any one or any of a variety of articular processes, lamina, lamina, intervertebral foramen, and other bones that make up the spine.
  • the topographical map of the spine surface is a stereoscopic surface view formed by real-time dynamic spatial information possessed by the ultrasound rubbing sheet to the digital medical image.
  • the real-time dynamic spatial information of the ultrasound rubbing refers to spatial information composed of a spine surface and a musculoskeletal interface, and the spatial information includes ultrasonic image information and spatial position information of the spine surface, deep muscle and adipose tissue obtained by ultrasonic scanning.
  • the stereoscopic surface view is an apparent three-dimensional image formed based on the spatial information of the spine surface, and the groove in the apparent three-dimensional image refers to the texture of the spine surface contained in all of the ultrasonic image information.
  • the digital medical image refers to image information that can be expressed by numerical values, and the image is stored, reconstructed, measured, identified, and processed by a computer.
  • the digital medical image may be a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR, or a digitized computed radiography DR.
  • the intraoperative position is the position of the patient during the operation, mainly one of a supine position, a prone position or a lateral position, and there is also a special position placed to meet the surgical needs.
  • the deep muscle tissue in the spinal region is a medical anatomical concept, specifically refers to the human erector spinae and its deep structure.
  • the vertebral surface refers to the surface of the bone of the human spine near the side of the body surface.
  • the spinous process, the transverse process, the articular process, the lamina, the interlaminar space, and the intervertebral foramen are medical concepts, and specifically refer to an anatomically significant bony structure on each segment of the vertebral body constituting the human spine.
  • the acquiring unit includes an ultrasonic image scanning module and an ultrasonic image information extracting module, wherein the ultrasonic image scanning module is configured to scan and acquire original data, and the ultrasonic image information extracting module is configured to extract the original scanned by the ultrasonic image scanning module.
  • All the bone echo information of the spine surface of the intraoperative two-dimensional spatial position parameter included in the data constitutes a two-dimensional vertebra surface structure ultrasound image corresponding to the real-time intraoperative position in the patient's surgical condition, and the intraoperative two-dimensional spatial position The parameter refers to the real-time two-dimensional spatial position parameter of the spine in the patient's surgical condition.
  • the raw data refers to a radio frequency signal emitted by an ultrasonic scanning device with patient spatial positioning information, and the scanning is allowed to be performed in various angles and directions, including up and down, front and rear, left and right, and oblique directions.
  • the angle includes a vertical or arbitrary tilt angle relative to the patient's body surface and is independent of the scanning sequence.
  • the ultrasonic image acquisition method may be repeated scanning on the patient's body surface through an ultrasonic scanning device with patient spatial positioning information until the musculoskeletal interface is identified, and all bone echo information including the intraoperative two-dimensional spatial position parameter is extracted,
  • the two-dimensional spatial structure parameters corresponding to the intraoperative position in the real-time intraoperative position of the patient are referred to, and the intraoperative two-dimensional spatial position parameter refers to a real-time two-dimensional spatial position parameter of the spine under the surgical condition of the patient.
  • the ultrasonic scanning device with patient spatial positioning information is an ultrasonic probe with a positioning tag, and the raw data refers to a radio frequency signal emitted by the ultrasonic probe.
  • the processing unit includes an ultrasound image optimization module, an ultrasound image overlay module, an ultrasound image generation module, and an image contour matching module.
  • the ultrasound image optimization module is configured to optimize a two-dimensional spinal surface structure ultrasound image corresponding to the intraoperative body position in the real-time intraoperative position of the patient obtained by the acquisition unit, to obtain an ultrasound optimized image for eliminating interference noise.
  • the ultrasonic image superimposing module is configured to superimpose the ultrasonic optimized image obtained by the ultrasonic image optimization module, so that the difference between the strong echo and the weak echo of the ultrasonic bone echo information is greater, and the ultrasonic superimposed image with enhanced image effect is obtained.
  • the ultrasound rubbing generating module is configured to process the ultrasonic superimposed image obtained by the ultrasonic image superimposing module to form an ultrasonic rubbing sheet.
  • the method for obtaining the ultrasound rubbing piece may be: optimizing and superimposing the ultrasonic image of the two-dimensional vertebra surface structure corresponding to the intraoperative body position in the surgical condition of the patient, and further processing to generate the ultrasound rubbing piece.
  • the ultrasonic image optimization module optimizes the ultrasonic image acquired by the acquisition unit by using an ultrasonic filtering enhancement technology to obtain an ultrasonic optimized image for eliminating interference noise
  • the filtering enhancement is an operation of filtering out a specific band frequency in the signal, An important measure to suppress and prevent interference.
  • the ultrasonic filtering enhancement technology may be a combination of adaptive median filtering and mathematical morphology filtering, and specifically includes: first adopting adaptive median filtering to preprocess the image, suppress speckle noise and retain necessary details; and then adopt mathematics
  • the morphological method sub-filters the image and enhances contrast to further filter out noise and preserve boundary details.
  • the median filtering is a kind of non-linear filtering, which can remove the impulse noise and the salt and pepper noise in the image, and can better protect the image edges from being blurred, and can be used for binary image and gray image processing.
  • the basic principle is to replace the value of a point in the digital image with the median value of each point value in a neighborhood of the point.
  • the basic technical idea is to sort all the gray levels of the pixels in the window, and take the median value of the sorting result as the original.
  • the main function of the median filtering is to change the value of the difference between the surrounding pixel values to a value close to the surrounding pixel value, that is, the median value, thereby eliminating the singular noise point.
  • the adaptive median filtering can suppress the speckle noise in the ultrasonic image, and can better preserve the boundary details, but the calculation amount is large, the algorithm is not parallel, the speed is slow, and it is difficult to meet the real-time requirement, and the application is limited to the ultrasonic image.
  • the adaptive median filter is an improvement of the median filtering based on the statistical characteristics of the image in a certain area.
  • the filtering method is to use the window, and the filter window is automatically changed according to the local statistical features of the image during the filtering process. Size and shape, when it is judged that the center pixel of the filter window is noise, its value is replaced by the median value, otherwise the current pixel value is not changed.
  • the weight of each pixel in the window can be adjusted.
  • the window selection can be obtained by splitting, merging, etc., and the shape is not limited.
  • the design technical idea of the adaptive filter is:
  • ⁇ 2 be the noise variance and replace it with the mean of the estimated variance of all local regions.
  • the estimation formula of the adaptive filter is:
  • is a rectangular local area of M and N pixels in the image, M and N are the number of rows and columns of the neighborhood pixel matrix respectively; n 1 , n 2 are pixel coordinates; a(n 1 , n 2 ) The gray value of the (n 1 , n 2 ) pixel in the original image; b(n 1 , n 2 ) is the gray value of the (n 1 , n 2 ) pixel after image adaptive filtering.
  • the mathematical morphology filtering realizes the regional filtering of the geometric structure, that is, as long as a certain noise condition is satisfied, the noise of the entire area can be completely removed. Therefore, this method guarantees the quality of morphological filtering, and the noise removal is relatively clean, which can preserve good image details, but it is necessary to select appropriate structural elements to achieve satisfactory filtering effects, which can meet the higher real-time requirements.
  • Mathematical Morphology Filtering is a new kind of nonlinear filter based on geometry, focusing on the geometry of the image. The basic idea is to treat the image as a collection, use a predefined structural element to detect an image, observe whether the structural elements can be well placed inside the image, and verify that the method of filling the structural elements is correct.
  • the structural element is a background image having a certain size, carrying information such as size, shape, gradation, chromaticity, etc., the size of which is much smaller than the target studied, and the transformation in the image is similar to the filtering window, and the selection of structural elements is appropriate. Whether or not will directly affect the processing results of the input image; morphological transformation is the basis of constructing morphological filters, including basic expansion, corrosion, opening and closing, which are defined as follows:
  • f represents an input image
  • b is a structural element
  • the structural element refers to a “probe” for collecting information for detecting an image, by continuously moving structural elements in the image, according to structural elements and The interaction of image objects, the relationship between the various parts of the image is examined, and the geometric parameters required for image processing are determined.
  • D f and D b are the domains of f and b, respectively.
  • the open operation has a smoothing effect on the input image, which can eliminate burrs and isolated spots on the edge of the input image, that is, positive impulse noise in the filtered signal;
  • the closed operation has a filtering effect on the input image, which can fill the input image. Cracks and holes, that is, the noise of negative pulses in the filtered signal.
  • the ultrasonic image of the two-dimensional vertebra surface structure corresponding to the real-time intraoperative position of the patient obtained by the acquisition unit is input, and enhanced by ultrasonic filtering.
  • the ultrasonic image superimposing module is configured to superimpose the ultrasonic optimized image obtained by the ultrasonic image optimization module, so that the difference between the strong echo and the weak echo of the ultrasonic bone echo information is greater, and the enhanced image effect is achieved.
  • the ultrasound image overlay may be a single mode registration method.
  • Image registration is to seek one or a series of spatial transformations for a medical image so that it is spatially consistent with the corresponding point on another medical image.
  • the result of the registration should be to make all the anatomical points on the two images. , or at least all points of diagnostic significance and points of interest for the surgery are matched, said spatial agreement being that the same anatomical point on the human body has the same spatial position on the two matched images.
  • the same object causes imaging differences due to differences in image acquisition conditions or spatial position changes of the object itself.
  • the pixel gray distribution between the images to be registered often satisfies a certain linear relationship, and is suitable for registration by a correlation coefficient method
  • the correlation coefficient (CC) is an amount describing the linear correlation between the two variables
  • the correlation coefficient method is applicable to the registration of single-modal medical images.
  • the ultrasonic optimized image obtained by the ultrasonic image optimization module to cancel the interference noise is input and superimposed, and as the multiple images are continuously superimposed, the superimposed bone is amplified in the image generated by the superimposition.
  • the linear strong echo is a medical ultrasound concept and refers to a characteristic description of an ultrasound image, which is a linear highlight image.
  • the ultrasound rubbing generating module is configured to process the ultrasonic superimposed image obtained by the ultrasonic image superimposing module to form an ultrasonic rubbing sheet.
  • the ultrasonic rubbing piece is obtained by the three-dimensional reconstruction process of the ultrasonic image obtained by the ultrasonic image superimposing module, and is a personalized three-dimensional ultrasonic bone image with real-time dynamic updating of the patient's spatial positioning information and changing with the position of the patient.
  • the three-dimensional reconstruction of ultrasound images can be a process of converting a two-dimensional image obtained by ultrasound probe scanning into a three-dimensional image through a certain data processing method, and is a technique for reconstructing a three-dimensional image model and performing qualitative and quantitative analysis using a series of two-dimensional images.
  • the data description methods mainly include surface painting method, volume rendering method and hybrid drawing method.
  • the ultrasonic rubbing generation module can perform three-dimensional reconstruction of the image obtained by superimposing the vertebral echo by using the volume rendering method and the volume rendering acceleration technology, thereby realizing the conversion of the ultrasonic image of the two-dimensional vertebra surface structure to the ultrasonic rubbing, achieving accuracy and low cost.
  • the volume rendering method directly studies the interaction of light through a three-dimensional volume data field with voxels, and focuses on displaying material information such as skin, bones, muscles, etc. without extracting contour contours.
  • Volume rendering can display both surface and internal information of volume data, including major steps such as projection, blanking, rendering, and compositing.
  • the volume rendering method can be used as the shear deformation method, which decomposes the projection transformation of the two-dimensional discrete data field into two-dimensional data field shear transformation and two-dimensional image deformation, thereby realizing the weight of the two-dimensional space.
  • the sampling process is converted into a two-dimensional planar resampling process, which greatly reduces the amount of calculation.
  • the shear deformation method enables volume rendering of a two-dimensional data field to be achieved at near real-time speeds on a graphics workstation without significantly degrading the quality of the resulting image.
  • volume rendering acceleration techniques include: image space based volume rendering algorithm acceleration, object space reconstruction algorithm acceleration and hardware acceleration.
  • the image space based volume rendering algorithm acceleration refers to, firstly, reducing the number of rays using the correlation of the image space. Adjacent pixels have a correlation and have similar colors, so that it is not necessary for all pixels in the image plane to transmit light, but to project light at intervals. Second, the use of object space correlation reduces the number of unnecessary sample points. There are a large number of empty voxels, ie, transparent voxels, in the volume data.
  • the acceleration based on the object space reconstruction algorithm means that the currently mature algorithms include a voxel projection method, a sub-region projection method, etc., and can also be accelerated by establishing a special volume data structure, such as ordered volume data and run length coding. Traversing the volume data.
  • the hardware acceleration means that since the imaging range of the ultrasound rubbing is limited to the full spine segment and belongs to the medium-sized volume data field, the hardware-accelerated texture rendering algorithm is superior based on comprehensive considerations, and the algorithm can provide more than other acceleration algorithms. Fast volume rendering. In the future, if the volume data field needs to be rapidly expanded, a parallel computing related algorithm can be introduced to further accelerate.
  • the main idea of the shear deformation method is to decompose the direct projection of the three-dimensional discrete data field into the shear transformation of the three-dimensional data field and the deformation of the two-dimensional image.
  • a middle plane is determined, which plane is perpendicular to an axial direction of the object space, and the object space is transformed into a space, and then the object space is vertically projected.
  • the intermediate image A'B' is obtained. Because it is a vertical projection, its calculation amount is inevitably much lower than the oblique projection.
  • the obtained intermediate image A'B' is transformed into a final image AB.
  • the apparent transformation M view of the original projection transformation is decomposed into two matrices, a miscut matrix M shear and a deformed M warp matrix.
  • M view M shear ⁇ M warp .
  • parallel projection if a horizontal line of a three-dimensional discrete data field is represented by a set of horizontal lines, the observation direction is parallel to an axis of the coordinate system, perpendicular to each data plane of the three-dimensional data field, and each data is in the shear transformation.
  • the plane will move in parallel by a distance that is not only proportional to the coordinate value of each data plane, but also depends on the definition of the initial viewing direction; for perspective projection, when the three-dimensional discrete data field is transformed into the cropping object space, Each data plane not only needs to be translated, but also needs to be scaled. Therefore, the image obtained by projecting the transformed transformed data field is not the final image, but only the intermediate image, and an image distortion is still needed.
  • P is a coordinate transformation matrix, which makes the Z axis of the coordinate system coincide with the main observation direction of the three-dimensional discrete data field, S transforms the three-dimensional data field into the clipping object space, and M warp transforms the object space into the image. space.
  • the shearing is done in a direction perpendicular to the Z axis, so:
  • M warp is a matrix that transforms the space of the cut object into the image space. which is:
  • the ultrasonic image obtained by the ultrasonic image superimposing module is processed, and the main observation direction of the three-dimensional discrete data field is selected in the Z-axis direction, so that the axis of the coordinate system coincides with it, and parallel projection is performed on the parallel portion thereof.
  • Only the translation of all bone echo information on the surface of the spine is performed; for perspective projection, after the above translation is completed, the scale transformation is performed; the transformation is to transform all the bone surfaces of the spine surface in the shear object space.
  • the information is cut, it is projected onto the intermediate image plane of the cut object space to form an intermediate image, and the image on the intermediate image plane is transformed into the image space by the two-dimensional image deformation M warp to obtain a final image.
  • the ultrasound superimposed image is generated as an ultrasound rubbing piece by the volume rendering method and the acceleration technique, and is used as a personalized three-dimensional ultrasonic bone image with the patient spatial positioning information and dynamically updated in real time as the patient position changes, and will be used for the next processing.
  • the image contour matching module is configured to perform contour matching between the ultrasound rubbing obtained by the ultrasonic rubbing generating module and the digital medical image to form a personalized updated vertebra topographic map consistent with the intraoperative position of the patient.
  • the real-time dynamic spatial information of the ultrasound rubbing refers to spatial information composed of a spine surface and a musculoskeletal interface, and the spatial information includes ultrasonic image information and spatial position information of the spine surface and deep muscle tissue, and can be dynamically displayed in real time. .
  • the topographical view of the spine surface is a stereoscopic surface view formed by real-time dynamic spatial information possessed by the ultrasonic rubbing sheet, and the stereoscopic surface view is an apparent three-dimensional image formed based on spatial information of the spine surface,
  • the groove in the apparent three-dimensional image refers to the texture of the surface of the spine contained in all of the ultrasonic image information.
  • the contour matching means that all the echogenic information of the spine surface included in the ultrasound rubbing is matched point by point with the contour of the digital medical image.
  • the CT volume roaming reconstruction image is taken as an example to illustrate the contour matching process.
  • the real-time dynamic spatial position information included on the contour of the ultrasound rubbing and the CT volume roaming reconstructed image contour include spatial position information, and the corresponding points are matched one by one to complete the matching of the image contours, thereby realizing the matching of the three-dimensional level.
  • the method for obtaining the contour matching may be to point-by-point matching all the bone echo information of the spine surface included in the ultrasound rubbing surface with the contour of the digital medical image to obtain a personalized updated spine that is consistent with the intraoperative position of the patient.
  • the surface topographic map, the method of contour matching is preferably based on a multi-modal registration method of a mutual information algorithm in a pixel gray scale algorithm, the multi-modal registration method including spatial transformation of images, gray interpolation, similarity Measurement, search optimization.
  • the contour matching used in this embodiment is preferably based on a multi-modal registration method of a mutual information algorithm in a pixel gray scale algorithm, and the multi-modal registration method includes spatial transformation of the spine image, gray interpolation, and similarity measurement. , search optimization.
  • the mutual information algorithm obtains the mutual information value by calculating the independent entropy and the joint entropy of the image to be registered, and then determines the image registration effect by mutual information value: when the two images have the highest coincidence degree, the joint entropy is the smallest, mutual information The value is the largest and the optimal registration effect is achieved; the mutual information algorithm uses the statistical information of the gray level in the image, which is less interfered by noise and has better robustness.
  • the robustness means that the control system is certain. Under the perturbation of structure and size, some performance characteristics are maintained.
  • the imaging principle of ultrasound and CT volume roaming imaging is different, the gray level distribution of corresponding positions in the image is similar, and the density of different modal images changes.
  • the spine image matching belongs to rigid body registration, and the rigid body is not easy to produce deformation characteristics, so that the mutual information algorithm has more effect in rigid body registration. it is good.
  • the image matching process mainly includes: spatial transformation of image, gray interpolation, similarity measurement, and search optimization.
  • spatial transformation strategy In this process, spatial transformation strategy, gray interpolation algorithm, similarity measurement method and optimization algorithm are needed.
  • the spatial transformation of the image refers to transforming a pixel in the image f(x, y) to a new position by a certain law, thereby obtaining a new image, f(x', y'), ie According to the different degrees of freedom of image space transformation, it can be divided into rigid body transformation, affine transformation and nonlinear transformation.
  • rigid body transformation includes images Translation and rotation, only change the position and direction of the object in the image, the length, angle, area and volume of all objects are unchanged; such transformation can be represented by a 3x3 matrix, that is, by transforming the matrix T, the image is in the original
  • the point with the coordinate (x, y) is transformed to the new coordinate, and the rigid body transformation expression is as follows:
  • is the image rotation angle
  • dy and dx are the translation amounts of the image in the z-axis direction and the y-axis direction.
  • the affine transformation is a spatial transformation that maintains the flatness and parallelism of the graphic; the straightness means that the straight line does not bend in the transformed image, and the circular arc does not change; the parallelism It refers to the spatial transformation in which the parallel relationship between objects in the image does not change, but the size of the object and the angle between the objects may change; the affine transformation means that the degree of freedom of transformation is increased relative to the rigid body transformation.
  • uniform affine transformation that is, the scaling factor in each coordinate direction, wherein when the scaling ratios in all directions are the same, it is called uniform affine transformation, otherwise it is non-uniform affine transformation or shear transformation; uniform affine transformation is often used in lens imaging system.
  • the image size obtained by the system is closely related to the distance between the object and the camera in the shooting, and the shear transformation is often used to correct the image distortion caused by the instrument.
  • the affine transformation expression is as follows:
  • affine transformation can be used to: first, correct the inconsistency of the proportion of objects in the image due to different imaging methods; second, correct the image distortion caused by human factors; third, can be used to solve Images that differ in imaging angles behave differently.
  • the non-linear transformation means that for human soft tissue images, the tissue photographed at different angles at different times tends to be distorted, and nonlinear transformation is often used in registration; due to the ultrasonic contact, the human body in contact with the probe portion The tissue will produce a small scale local deformation, so it is suitable for the elastic model;
  • the elastic model means that the transformation from the floating image to the template image can be regarded as the process of elastic material stretching, and the external force applied to the material during the whole process And the internal force of the internal rebound of the material, wherein the external force causes the material to deform, and the internal force is the feedback of the external force of the material during the external force.
  • ⁇ (x, y) represents the deformation of the object in the x and y directions
  • ⁇ and ⁇ The Lame elastic constant, which describes the elastic properties of an object, represents the external force acting in both directions of the object.
  • the elastic force changes proportionally with the magnitude of the deformation, and the larger the local deformation, the greater the elastic force.
  • the gray-scale interpolation algorithm is in the process of completing the matching, and after the spatial transformation of the floating image, the coordinates of the pixel originally located in the integer coordinate may become non-integer in the new image, so as to solve the problem that the pixel point is not in the integer coordinate,
  • the registration process needs to transform the floating image to a certain extent, so that it is similar to the template image.
  • the integer in the new image is generally
  • the coordinate point is inversely transformed to obtain the corresponding coordinates of the point in the original image, and the obtained point is the interpolation point;
  • the gray interpolation algorithm can calculate the gray of the coordinates in the new image by calculating the gray value of the interpolation point and its surrounding points.
  • the degree value is used to maintain the original information in the image to the greatest extent; in the algorithm using the mutual information for registration, in order to fully retain the gray scale distribution information of the image, the PV interpolation algorithm is often used.
  • the PV interpolation algorithm directly obtains the gray distribution of the new image by interpolation, because each pixel in the floating image before the spatial transformation has a certain contribution to the gray distribution of the image, so the PV interpolation considers all the interpolation points.
  • the gray value of the pixels in and around the neighborhood Generally, in the calculation of the gray histogram, every time the gray value n 0 is counted, the value corresponding to the gamma in the histogram is increased by l. Similar to bilinear interpolation, each pixel (x, y) in the new image corresponds to an interpolation point (x', y') in the original image, and the four integer points around the interpolation point are gray.
  • the PV interpolation algorithm uses direct change of the grayscale statistical information of the image instead of direct interpolation to generate a new image, which is more suitable for registration algorithms that are sensitive to grayscale distribution such as mutual information.
  • the similarity measure means that in the registration of medical image registration, especially multimodal medical images, it is necessary to define a standard for measuring the similarity between two images, when the similarity of the two images reaches a maximum, That is to say, the two images achieve the best registration effect; as a result, after the above image space transformation and gray interpolation algorithm are completed, we will select the mutual information algorithm based on the pixel gray algorithm to complete the similarity measurement. Based on the gray value, the two images A and B to be registered, the gray value features of the corresponding points are combined into a gray pair, and the calculation of the mutual information is to calculate how much information the image B contains in the image A. When the two images are optimally matched, their grayscale distribution will have the greatest correlation.
  • the classical mutual information algorithm has obvious defects in image registration—ignoring the spatial information existing in the image, when using the mutual information to measure the similarity of the two images, some spatial relationships that may be shared between the two images are ignored. This leads to registration errors in some cases.
  • the improvement based on the classical algorithm can not avoid the calculation time extension caused by the huge calculation amount.
  • conditional mutual information divides the image to be registered into Different small areas, by integrating the registration effect between all corresponding small areas between the two images to obtain the registration effect of the overall image, taking into account the spatial information in the image without increasing the amount of computation; conditional mutual information CMI It is obtained by combining the spatial distribution of small areas in the image with the gray distribution by extending the joint histogram:
  • p(s) represents the probability that the region s in the image is selected for registration during the registration process. If the image to be registered is divided into regions of the same size, the probability is the same.
  • pixels with a gray value of i may be distributed over different areas of the entire image.
  • the contribution of the pixel points whose gray value is i distributed in different regions to the overall mutual information amount is related to the spatial position of the point.
  • the conditional mutual information indicates the amount of information of the image B contained in the image A in the region s, and the weighted average of the information amounts of all the regions is used as the final measure of the image similarity.
  • the ultrasound rubbing obtained by the ultrasonic rubbing generating module is input, the contour matching of the ultrasonic rubbing film and the digital medical image is completed, and the personalized updated spine surface topography which is updated in real time with the patient's intraoperative position is output.
  • this image will help the operator to observe and analyze the patient's positional relationship with the surgically related anatomy under the intraoperative position, and guide the puncture positioning and subsequent surgical operations.
  • the present invention provides a spinal surgery navigation and positioning system based on an ultrasound rubbing technique, wherein the spinal surgery navigation positioning system can obtain a personalized updated topographic topographic map consistent with a patient's intraoperative position. And performing real-time intraoperative navigation based on the topographic map of the spine surface, the spine surgery navigation positioning system comprising a navigation module and a spinal image generation system based on ultrasound rubbing technology, wherein:
  • the spine image generation system based on the ultrasonic rubbing technology is formed by forming an ultrasonic rubbing film based on a real-time intraoperative intraoperative position corresponding to a two-dimensional spinal surface structure ultrasonic image processing, and then performing the ultrasonic rubbing sheet and the digital medical image.
  • the contour is matched to form a real-time updated personalized spinal surface topographic map consistent with the patient's intraoperative position
  • the ultrasound rubbing is a personalized three-dimensional ultrasound bone image with patient spatial positioning information and dynamically updated in real time as the patient position changes.
  • the digital medical image may be selected from the group consisting of a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR, and a digitized computed radiography DR.
  • the navigation module establishes a topographic map coordinate system based on spatial position information contained in the real-time updated personalized spine surface topography consistent with the intraoperative position of the patient, and establishes a physical geometric model of the surgical instrument with the positioning function and a surface model. Transforming and presenting a personalized updated spine surface topographic map obtained in the spine image generation system in real time with the patient's intraoperative position; establishing a patient coordinate system with the spatial position information of the patient's intraoperative position, and determining the topographic map coordinate system The relationship between the corresponding points in the patient coordinate system forms a unified coordinate system; the surface model of the surgical instrument obtained by the transformation is integrated into the unified coordinate system to realize real-time navigation during operation and guide the operation of the operator.
  • the surgical instrument with positioning function is a surgical instrument with a spatial magnetic positioning mark.
  • the present invention provides a method for guiding and positioning a spinal surgery based on an ultrasound rubbing technique, and the steps are as follows:
  • the operator selects a patient who meets the indication for surgery to prepare for surgery.
  • the surgical indications include spine-related diseases such as spinal tumors, disc herniation, in accordance with the standards prescribed by the routine of treatment, non-surgical treatment can not cure the disease, surgery should be used to help the treatment of the disease, the surgery should be used the way.
  • a preoperative CT scan is performed on the patient to be surgically treated, and the scanned image is subjected to volume roaming reconstruction to obtain a digital medical image of the patient.
  • the position selected by the patient should be consistent with the position to be used for the operation. For example, patients who are operated in the prone position should also be scanned in the prone position during the preoperative CT scan.
  • the patient's CT scan and volume roaming reconstruct the image, and the operator team performs preoperative analysis to determine the surgical target.
  • the surgical target refers to the anatomical position of the vertebrae to be reached during surgery.
  • the surgical treatment of posterior nucleus pulposus removal by spinal endoscopy is used to treat lumbar disc herniation.
  • the target of the target is the lumbar vertebrae. Laminar structure.
  • the fourth step after routine surgical preparation and anesthesia, the operator performs an ultrasound scan on the target area of the operation, and repeatedly scans the surface of the patient through an ultrasonic scanning device with spatial positioning information of the patient until the musculoskeletal interface is identified, and the extraction includes intraoperative two.
  • All the bone echo information of the vertebral surface of the dimensional spatial position parameter constitutes a real-time ultrasonic image of the two-dimensional vertebral surface structure corresponding to the intraoperative position under the surgical condition of the patient, and the intraoperative two-dimensional spatial position parameter refers to the patient's surgical condition.
  • the real-time two-dimensional spatial position parameter of the spine may be an ultrasound probe with a positioning tag.
  • the surgical target area refers to a relevant area for performing surgery, including a specific part for performing surgery and an adjacent structure thereof, for example, using a spinal endoscope for lumbar disc herniation, the target area is a lumbar vertebral body in which the nucleus pulposus is located, adjacent The upper and lower vertebral bodies and the paravertebral area of the corresponding lumbar vertebrae.
  • the ultrasound image consists of all echo information comprising deep musculature of the spinal region and the surface of the spine, the ultrasound image comprising information of the ultrasound image contour and the edge of the ultrasound image.
  • the vertebral surface includes transverse processes and spinous processes, and may also include any one or any of a variety of articular processes, lamina, lamina, intervertebral foramen, and other bone components that make up the spine.
  • Step 4 may include the following steps:
  • Ultrasound image scanning the ultrasound scanning device with patient spatial positioning information is repeatedly scanned on the patient's body surface until the musculoskeletal interface is identified, and the raw data is obtained, and the raw data refers to an ultrasonic scanning device with patient spatial positioning information.
  • RF signal said scanning is allowed to be performed in a variety of different angles and directions, including up and down, front and back, left and right, oblique, said angle including a vertical or arbitrary tilt angle relative to the patient's body surface, and It has nothing to do with the scanning order.
  • the ultrasonic scanning device with the patient spatial positioning information may be an ultrasonic probe with a positioning tag to scan the original data, and the raw data refers to the radio frequency signal emitted by the ultrasonic probe;
  • Ultrasound image information extraction extracting all bone echo information of the spine surface including intraoperative two-dimensional spatial position parameters from the original data acquired by ultrasound image scanning, and forming a two-dimensional spinal surface structure corresponding to the intraoperative position in real time under the surgical condition of the patient.
  • the ultrasound image, the intraoperative two-dimensional spatial position parameter refers to a real-time two-dimensional spatial position parameter of the spine under the surgical condition of the patient.
  • the ultrasonic image of the two-dimensional spinal surface structure corresponding to the intraoperative body position in the surgical condition of the patient is optimized, superimposed, and further processed to generate an ultrasound rubbing piece.
  • Step 5 may include the following steps:
  • Ultrasound image optimization Optimize the ultrasound image of the two-dimensional spinal surface structure corresponding to the real-time intraoperative position in the patient's surgical condition obtained in step 4, and obtain an ultrasound-optimized image to eliminate interference noise; preferably, the ultrasound image is optimized by ultrasonic filtering. Obtaining an ultrasound optimized image that cancels the interference noise; more preferably, the ultrasonic filtering enhancement technique may be a combination of median filtering and mathematical morphology filtering.
  • Ultrasound image superposition superimposing the ultrasonic image optimized by the ultrasonic image, so that the difference between the strong echo and the weak echo of the ultrasonic bone echo information is greater, and the enhanced image effect is achieved, and the ultrasonic image superimposition may be single Modal registration method.
  • Ultrasound rubbing generation the ultrasonic image obtained by optimizing and superimposing the ultrasonic image is subjected to three-dimensional reconstruction processing to generate an ultrasonic rubbing piece, and the three-dimensional reconstruction method may be a volume rendering method and a volume rendering acceleration technique.
  • the ultrasound rubbing obtained in step 5 is contour-matched with the digital medical image, and the bone echo information of the spine surface included in the ultrasonic rubbing is matched with the contour of the digital medical image point by point, and the patient is obtained.
  • the contour matching method is preferably a multi-modal registration method based on a mutual information algorithm in a pixel gray scale algorithm, and the multi-modal registration method includes spatial transformation of an image, gray interpolation, similarity measurement, Search optimization.
  • the contour matching means that all the bone echo information of the spine surface included in the ultrasound rubbing is matched point by point with the contour of the digital medical image, and the topographic map of the spine surface is given by the real-time dynamic spatial information of the ultrasonic rubbing sheet.
  • the stereoscopic surface view formed by the digital medical image, the real-time dynamic spatial information of the ultrasonic rubbing refers to the spatial information formed by the spine surface and the musculoskeletal interface, and the spatial information includes ultrasonic image information and space of the spine surface and the deep muscle Position information, which can be dynamically displayed in real time, the stereoscopic surface view is an apparent three-dimensional image formed based on the spatial information of the spine surface, and the groove in the apparent three-dimensional image means that all the ultrasonic image information is included The texture of the spine surface.
  • the real-time dynamic spatial information includes ultrasonic image information and spatial position information of the spinal surface, deep muscles, and adipose tissue obtained by ultrasonic scanning, and can be dynamically displayed in real time as the ultrasonic probe with the positioning label moves.
  • the digital medical image is a CT volume roaming reconstructed image, a magnetic resonance MR, a computed radiography CR, and a digitized computer radiography DR.
  • the seventh step is to establish a physical geometric model of the surgical instrument, and realize the transformation of the physical geometric model of the surgical instrument to the surface model, so that the personalized spine obtained in the spinal image generating system and consistent with the intraoperative position of the patient is updated in real time.
  • the surface topographic map is presented to enable real-time tracking of surgical instruments.
  • the method of converting the solid geometric model to the surface model is preferably a three-dimensional CAD modeling method.
  • the topographic map coordinate system is established according to the spatial position information included in the real-time updated personalized spinal topographic map consistent with the intraoperative position of the patient, and the patient coordinate system is established by the spatial position information of the patient's intraoperative position, and the topographic map is determined.
  • the relationship between the coordinate system and the corresponding points in the patient coordinate system and forms a unified coordinate system.
  • the method of determining the relationship between the topographic map coordinate system and the corresponding point relationship in the patient coordinate system is preferably a nearest point iterative algorithm.
  • the surface model of the surgical instrument obtained by the transformation is displayed in a unified coordinate system, and the surgical instrument and the personalized topographical topographic map updated in real time with the patient's intraoperative position are in a unified coordinate system, thereby realizing the operation. Live navigation.
  • the operator will perform subsequent operations in the unified coordinate system according to the positional relationship between the surgical instrument displayed on the coordinate system and the anatomy of the patient's spine.
  • the operator continues to rely on the surgical instrument with the positioning marker for the positioning of the puncture with the aid of the surgical instrument with the positioning marker based on the real-time updated personalized spinal surface topographic map consistent with the patient's intraoperative position.
  • the navigation image according to the positional relationship between the surgical instrument and the position of the bone structure of the spine, combined with the anatomical structure seen by the operator, completes the subsequent surgical operation under mutual proof.
  • spinal endoscopy for posterior nucleus pulposus removal for lumbar disc herniation is an example.
  • the follow-up operation is based on clinical experience to identify spinous processes, ligamentum flavum, lamina, nerve roots, intervertebral discs, etc. Structure, under the guidance of the spinal surgery navigation and positioning system, the operator uses the surgical instruments to operate according to the correct angle and distance until the arrival of the protruding nucleus pulposus or fiber ring to complete the relevant surgical content.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供一种基于超声拓片技术的脊椎图像生成系统,包括采集单元和处理单元,该系统基于二维脊椎表面结构特征性轮廓的超声图像生成超声拓片,并与数字医学影像轮廓匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图。基于该脊椎图像生成系统的脊柱手术导航定位系统,该系统包括导航模块和基于上述超声拓片技术的脊椎图像生成系统,该脊柱手术导航定位系统能够获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,并基于该脊椎表面地形图进行实时术中导航。本发明将极大降低脊柱手术难度,实现精准无辐射引导穿刺、实时导航、简便可靠的手术辅助目标,尤其有利于以脊柱内镜为代表的脊柱微创手术技术向基层医疗机构推广和应用。

Description

一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统 技术领域:
本发明涉及医学领域,具体涉及一种脊椎图像生成系统、脊椎图像生成方法以及脊柱手术导航定位系统、脊柱手术导航定位方法。
背景技术:
当前,脊柱退变相关性疾病的发病率和患者数量与日俱增,严重影响人民的身体健康和劳动能力。脊柱手术是治疗椎间盘突出、肿瘤等脊柱疾病的主要手段,其中,以脊柱内镜为代表的微创手术技术因科技进步推进的手术器械设备升级,正越来越趋于成熟,加之创伤小、恢复快的优势,获得越来越多领域的认可和接受。然而这些微创技术对病变的定位精度要求高,加之人体脊柱的特殊性,即骨性结构组成、解剖区域狭长、富含重要的血管神经等复杂性,使得掌握微创技术的门槛较高,主要体现在手术难度及风险较大,操作者培训学习曲线长,难以短期内推广。导航定位技术能降低微创手术技术的门槛,有助于增加手术的操作简便性及保障手术的安全性。
超声扫描人体骨质结构的特点在于:1)超声波不能穿透骨质结构,故超声图像中只能显示骨质表面的线性强回声,获得的信息较少,临床应用范围受限,所述线性强回声为医学超声学概念,是指对超声图像的特征性描述,表现为线性高亮图像;2)超声扫描骨质结构时,容易发生衍射带来噪声,导致骨质结构在超声图像中显示出现偏差,所述噪声为医学超声学概念,是指超声图像中出现的模糊、毛刺状、不清晰的图像特征,骨质结构的噪声表现为模糊、毛刺状、不清晰的线性或片状高亮图像;目前临床中应用的超声扫描技术(包括超声扫描设备和超声处理技术)无法解决上述问题,因此,目前超声扫描技术在骨质结构相关疾病的诊治中应用非常有限。
上述超声扫描骨质结构的特点,在超声扫描脊椎时同样存在,除此之外,不同于人体其他骨质结构如肱骨、股骨等,超声扫描脊椎质结构时存在如下特殊性。如附图6(1)所示,人体脊柱是一个狭长的骨性结构区域,是身体的支柱,分颈、胸、腰、骶及尾五段,由33块椎骨(颈椎7块,胸椎12块,腰椎5块,骶骨、尾骨共9块)由韧带、关节及椎间盘连接而成。脊柱内部自上而下形成一条纵行的脊管,内有脊髓。脊椎由横突、棘突、关节突、椎板、椎板间隙、椎间孔及组成脊椎的其他骨骼成分组成。超声扫描脊椎的特殊性在于:1)超声扫描获得的脊椎骨质信息较少,脊柱作为狭长的骨性结构,由多节椎骨组成,一幅超声扫描图像中所呈现的椎骨节段有限,信息少且仅为骨质表面回波信息;2)相比其他的骨质结构,超声扫描获得的脊椎骨质信息存在更大、更多的偏差,如附图6(2)、6(3)脊椎具有众多骨性突起如棘突、横突、关节突等,而超声图像中骨质回波强,所呈现的超声图像往往为骨质结构特有的光亮而富有噪声的不清晰图像,骨质回波带来的衍射和噪声,将导致脊椎的解剖结构(包括横突、棘突、关节突、椎板及组成脊椎的其他骨骼成分)在超声图像中显示出现较大偏差,常见偏差包括:所述解剖结构中具体的某一点由于发生衍射,在超声图像中可能显示为一个面;所述解剖结构中的某一个面与超声图像中的面大小、比例不准确;所述解剖结构中清晰的毗邻和连接结构,如关节突关节、横突与椎体连接的根部等,在超声图像中显示为模糊的面状结构,连接处不清晰。上述偏差导致常规超声扫描方式无法解 决脊椎的骨质结构的超声图像清晰度问题,在超声扫描骨质结构的诸多问题基础之上,超声扫描脊椎骨质信息存在的更多、更大的问题。
针对某一具体节段的脊椎而言,例如附图6(2)所示的腰椎,一节腰椎所具有的解剖结构包括横突、棘突、关节突、椎板、椎板间隙、椎间孔及组成脊椎的其他骨骼成分,不同解剖结构在超声图像中显示情况存在显著差异,包括:1)棘突为椎体延伸向人体背侧的骨质结构,因其结构狭长、骨质较薄、存在棘突尖这一易辨识特征,所述骨质较薄是指棘突平行于人体横截面的方向上,左侧骨质表面到右侧骨质表面的厚度较薄,所述棘突尖为棘突的解剖学结构,是指棘突远离脊柱方向的根部为一尖样结构,是棘突的末端,使得棘突作为脊椎中最具特征的解剖结构很容易在超声图像中较完全显示;2)横突、关节突结构在超声图像中的显示情况相较棘突为差,原因包括此二者不像棘突延伸像背侧而与椎体有较大夹角,此二者与椎体夹角较小、无类似棘突尖的易辨识特征,且受限于体位及扫描角度,常常导致二者与相邻骨质结构如椎体难以清晰分辨,加之上述超声扫描骨质结构的偏差,使得二者在超声扫描下获得的骨质回波信息不全、并且不够清晰和准确,所述受限于体位及扫描角度是指,在获取横突、关节突的骨质回波信息的过程中,不可避免地会扫描到脊椎的其它结构、与脊椎相邻的器官,使得脊椎的其它结构、与脊椎相邻的器官的图像会对横突、关节突的骨质回波信息产生干扰,导致横突、关节突的骨质回波信息不全,不够清晰和准确;3)椎板、椎板间隙、椎间孔及组成脊椎的其他骨骼成分受限于上述超声扫描骨质结构的诸多缺陷以及这些结构特殊的解剖位置关系,导致超声不能扫描到这些结构,或者超声图像中不能显示出这些结构全部的骨质回波信息。即使能扫描到这些结构的部分信息,但是也存在着信息准确度不够,存在偏差的问题,具体包括:关节突、椎板、椎板间隙、椎间孔及组成脊椎的其他骨骼成分的解剖结构中具体的某一点由于发生衍射,在超声图像中可能显示为一个面;所述解剖结构中的某一个面与超声图像中相应的面大小、比例不准确;所述解剖结构中的连接部位,例如,横突与椎体连接的根部(参见图6(2)15),在超声图像中显示为模糊的面状结构,连接处不清晰,无法准确识别。
目前,临床上脊柱微创手术过程如下:1)术前对患者进行CT扫描;2)手术定位:获得患者当前手术状况下的术中体位,例如X射线透视技术;3)手术定位完成后,进行手术操作,手术操作包括微创手术或开放手术。其中,由于X射线透视技术每次照射仅能生成单幅静态图像,手术定位只能获得患者在某一时刻的术中体位,正常人脊柱有一定的活动度,但各部位活动度不同,颈、腰段活动度较大,胸段活动度极小,骶段几乎无活动性,脊柱天然的活动度加之正常呼吸运动,使得脊柱的位置和弯曲度在手术操作过程中存在位移,单幅静态图像不能准确反映患者实时体位。医生在手术时需要的是患者手术状况下实时的术中体位,目前的情况,只能是医生凭借经验实施手术,导致手术对医生的经验、以及医生在手术时的状态等主观因素依赖程度大,可控程度差。
可见,超声扫描骨质结构总体特点可以概括为:1)超声扫描骨质结构存在问题;2)相比其他骨质结构,超声扫描脊椎难度尤甚;3)临床现有的超声扫描技术(包括超声扫描设备和超声处理技术)存在扫描信息不全、清晰度、准确度不高等缺陷,无法适应脊柱手术的临床应用,图像问题成为脊柱微创手术治疗发展的最大障碍。
目前临床上脊柱手术定位其中最具代表性的是C臂机透视定位技术。该技 术的操作模式可以概括为图1所示,即“穿刺-照射-评估-调整-照射验证”,具体流程为:手术前在患者手术部位置入穿刺针,进行第一次X射线照射后,获知穿刺针在患者体内的进针深度和角度并进行调整后,进行第二次X射线照射,再次获知穿刺针在患者体内的进针深度和角度,若进针深度和角度达到预定部位,则定位完成,进行手术操作,反之则重复“评估-调整-照射验证”步骤,直到完成穿刺定位。C臂机透视定位技术确保了定位的准确,但存在如下不足:
1)手术操作者需依赖经验判断多次反复在患者体表穿刺,对患者造成较大创伤。在定位过程中,需要在患者手术部位置入穿刺针,穿刺针要直达脊椎表面,为达到理想的穿刺深度和角度,往往需要多次调整,在患者体内反复穿刺,手术体验很差。
2)手术操作者每次在患者手术部位插入穿刺针后都要进行X射线照射,获知穿刺针在患者体内的进针深度和角度并进行调整后,再次进行X射线照射,再次获知穿刺针在患者体内的进针深度和角度,直至进针深度和角度达到预定部位,则定位完成。在定位过程中需要X线透视,X线辐射非常损伤大,对患者和手术操作者造成潜在辐射损伤。
3)该定位技术对手术操作者的经验依赖非常大。由于微创技术对病变的定位精度要求高,操作者的经验与操作中穿刺、照射的次数成正相关。目前在临床工作中,通常情况下,十年左右手术经验的操作者在手术中尚且需要穿刺针6-10次,经验不丰富的手术操作者则需要更多次的反复穿刺和定位,不仅效率低,而且给患者和手术操作者带来更多的X射线辐射,对患者更大的穿刺损伤,不利于该技术的推广应用。
4)C臂机透视定位技术得到的静态图像不能对后续手术实现导航。C臂机透视定位技术所获得的图像为患者当前手术状况下的术中体位,为静态X线图像,不能正确反应手术进行中脊柱活动度带来的改变,不能实时地指导后续手术操作,因此C臂机透视定位技术只用于术前定位,确定手术的入路点,一经确定开始手术,将无法呈现患者在手术中任一时刻手术状况下的术中体位,操作者将完全依靠经验进行手术操作。
鉴于C臂机透视定位技术的优势和不足,近年来有人提出利用多种模式图像形成融合图像(刘彦斌等在,超声容积导航技术引导腰椎经皮后外侧入路完全内镜下微创手术椎间孔穿刺的应用研究,硕士学位论文,第二军医大学,2015年5月),进而指导定位的方法,其中具有代表性的是超声容积导航技术。该技术的操作模式可以概括为附图2所示,通过超声扫描获得超声图像,将其与术前采集的CT或MRI三维数据进行图像融合。完成图像融合后,利用电磁跟踪系统(电磁追踪器与超声探头距离<80cm,试验全过程保持追踪器位置不变),由超声专业操作者协助脊柱手术操作者在实时图像中找到病变部位。具体流程为:术前进行CT扫描并进行三维重建,将三维CT数据导入超声仪,以三点法进行影像配准。同屏显示CT图像和超声图像,在患者体表4个标记点中任取3点(3点不在同一条直线上),依次分别对3点的CT图像及超声图像进行精确寻找并锁定,完成外标记点的配准,外标记点需要切开或穿刺皮肤并借助金属钉等器材进行设置外标记点。完成外标记点的配准后再进行内标记点的配准,在CT图上寻找任意椎体棘突顶点并锁定,然后在超声图像中实时寻找相应点并锁定,测量配准误差。如误差>5mm,则再选择其他椎体的棘突顶点作为另一个内标记点进行修正。通过内、外标记点的双重配准,将图像配准的误差缩至5mm以内,完成图像融合。 图像融合后,保证电磁追踪器及患者的相对位置不变,以腹腔镜消毒隔离套包裹探头,实时引导穿刺。在CT图像上锁定病变节段椎间孔最下缘作为进针点,利用超声图像实时显示该点,准确寻找并锁定,应用超声仪导航实时引导穿刺针在病变节段平面内穿刺。穿刺前定位及穿刺过程中穿刺方向的确认可辅以C臂机透视。若穿刺过程中患者出现下肢放射痛,需行C臂机透视,若穿刺方向存在偏差,根据标记点再次进行图像配准及融合,直至穿刺导针顺利到位。穿刺成功后行C臂机透视进一步确认穿刺针位置。
超声容积导航技术使手术操作者可以根据的配准图像进行穿刺和手术操作,相比C臂机透视定位技术,极大减少了X线辐射损伤,但存在如下不足:
1)需多次反复在患者体表穿刺,对患者造成较大创伤,操作复杂,过程冗长,步骤繁琐,消耗时间。CT图像及超声图像配准融合过程中,需要设置3个标记点,需要切开或穿刺皮肤并借助针头、螺钉、金属钉等器材设置外标记点。内标记点直接在图像上看图像选取的。进行外标记点和内标记点配准并修正后,完成图像融合。融合后的图像引导穿刺针穿刺到达目标靶点,若穿刺方向存在偏差,根据外标记点和内标记点再次进行图像配准及融合,直至穿刺针顺利到位。
2)手术全程需要超声专业操作者协助。从超声图像中的解剖部位识别,配准融合所需超声图像及CT图像的选取,再到图像融合后定位病变位置,整个过程均需要手术操作者与超声专业操作者密切配合,导致手术操作者无法快速、独立完成手术。
3)该定位技术对脊柱手术操作者的经验依赖较大。由于该定位技术所获得的导航图像精度不高,而微创技术对病变的定位精度要求高,因此仍需操作者的具备一定的操作经验以保证操作准确,故该技术对经验依赖度小于C臂机透视定位技术,但无法摆脱对手术操作者的依赖性。
4)导航图像精度不高。由超声导航容积技术得到的融合图像,在导航定位时,其图像精度主要取决于三个方面,第一是点配准模式的精度低,超声图像与CT或MRI图像均富含大量信息,仅选取少数几个特征点进行配准将不能保证精度,对手术带来不利影响;第二是以上几个特征点的选取依赖于超声专业操作者,受主观因素的影响,对图像精度产生不利影响;第三是超声图像的精度低,脊柱是一个狭长的骨性结构区域,而超声图像中骨质回波强,所呈现的超声图像往往为骨质结构特有的光亮而富有噪声的不清晰图像,骨质回波带来的衍射和噪声,将导致解剖结构在超声图像中显示出现偏差,常见偏差包括:解剖结构中具体的点在超声图像中显示为面;解剖结构中的面与超声图像中的面大小比例不准确;解剖结构中清晰的毗邻和连接结构,如关节突关节、横突与椎体连接的根部等,在超声图像中显示为模糊的面状结构,连接处不清晰。上述偏差导致常规超声扫描方式无法解决骨质结构的超声图像清晰度问题,导致其远低于相应的CT或MRI图像,在超声图像中所选取的标记点与在CT或MRI图像中所选取的标记点并不能完全准确地一一对应,导致导航图像精度不高。
5)超声容积导航的定位技术操作繁琐,费时费力。以采用脊柱内镜进行经椎板后路髓核摘除术治疗腰椎间盘突出症为例,在开始穿刺直至到达目标靶点的过程中,需行C臂机透视,若穿刺方向存在偏差,需根据标记点再次进行图像配准及融合,直至穿刺导针顺利到位。穿刺成功后仍需行C臂机透视进一步确认穿刺针位置。完成上述定位穿刺后,置入脊柱内镜并逐层深入,操作者根据临床经验辨别棘突、黄韧带、椎板、神经根、椎间盘等解剖结构后,操作者只能根据临 床经验运用手术器械进行操作,直至抵达并摘除突出的髓核或纤维环等完成相关手术内容。
综上,现有的脊柱导航定位技术主要以C臂机透视定位技术虽然提供了高精度的穿刺定位,但存在X线多次照射、辐射损伤大、多次穿刺、穿刺创伤大、定位技术对操作者的经验依赖大、手术时间延长费时费力等不足,且所获得的静态图像不能对后续手术导航提供帮助;超声容积导航技术虽然极大减少了X线辐射损伤,但同样存在多次穿刺、穿刺创伤较大、需要超声专业操作者协助、导航图像精度低的缺点。故这两种技术共同的缺点是:操作复杂,对手术操作者的经验依赖程度大;多次反复在患者体表穿刺,损伤大;X线辐射对手术操作者和患者的辐射损伤大;定位操作繁琐、费时费力;仅能完成体表穿刺定位,无法为后续的相关手术操作实现导航(导航图像精度有限且无导航系统支持)。
因此,临床上亟待一种准确快速而又无辐射、无创伤的实时导航定位方案指导脊柱手术,可以实现脊柱手术精准治疗操作,至少需要获取必要部位(横突和棘突)的准确空间位置信息,但是现有技术只能获得棘突的准确空间位置信息,无法获取横突的准确空间位置信息,导致脊柱手术精准治疗的准确度不高。进一步地,脊柱手术还需要获取特定部位的准确空间位置信息,所述的特定部位是指关节突、椎板、椎板间隙、椎间孔的任意一种或任意多种。总而言之,现有技术无法全面并且准确获取脊柱手术所需要的相关部位(包括必要部位和特定部位)的准确空间位置信息。因此要实现脊柱手术精准治疗操作需满足两个层面:满足手术所需必要部位的信息准确,所述必要部位的信息准确才能确保脊柱手术精准治疗操作的准确性;满足手术所需的特定部位的准确空间位置信息,所述特定部位的信息越多越准才能提高脊柱手术精准治疗操作的准确性。现有技术尚不能获得足够的手术所需特定部位的准确空间位置信息,以实现通过导航技术指导脊柱手术的精准治疗操作。
发明内容
针对现有的不足,本发明所要解决的技术问题是,提供一种基于超声拓片技术的脊椎图像生成系统和方法,创造性地通过获取的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,经处理后形成超声拓片,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像,将所述超声拓片与数字医学影像进行轮廓匹配后,进一步获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,从而彻底解决了现有技术无法获取脊柱手术所需要的相关部位(包括必要部位和特定部位)的准确空间位置信息的问题,以及现有技术实时滞后和不能实时动态显示的问题,实现通过导航技术指导脊柱手术的精准治疗操作。本发明还提供了一种基于超声拓片技术的脊柱手术导航定位系统和方法,利用所述基于超声拓片技术的脊椎图像生成系统获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图,能够实现实时的术中导航,使手术操作者无需依赖经验、无需超声专业操作者的协助、无需对病患身体进行多次穿刺造成多次创伤,在最大限度减少X线辐射对患者和操作者的损伤的情况下,准确快速通过一次穿刺到达目标靶点,实现了通过导航技术指导脊柱手术的精准治疗操作。
在完成穿刺到达目标靶点后,本发明提供的脊柱手术导航定位系统还可以指导操作者完成后续相关手术内容,持续为后续手术导航,操作简单,省时省力。以采用脊柱内镜进行经椎板后路髓核摘除术治疗腰椎间盘突出症为例,完成穿刺 到达目标靶点后,手术导航定位系统指导脊柱内镜逐层深入,辨别棘突、黄韧带、椎板、神经根、椎间盘等解剖结构,直至抵达并摘除突出的髓核或纤维环等完成相关手术内容,克服了现有技术X线、穿刺损伤大,操作经验依赖度高,导航图像难以准确实时显示等诸多不足。
本发明采用如下的技术方案:
一种基于超声拓片技术的脊椎图像生成系统,所述的脊椎图像生成系统基于二维脊椎表面结构超声图像生成超声拓片,与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的系统包括采集单元和处理单元,其中:
所述的采集单元用于获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述的处理单元用于将采集单元获取的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,再与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图;所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成;所述脊椎表面包括横突和棘突;所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像。
基于本发明的一种基于超声拓片技术的脊椎图像生成系统,本发明还提供了一种基于超声拓片技术的脊椎图像生成方法,所述的脊椎图像生成方法包括如下步骤:
1)获取超声图像:获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成,所述脊椎表面包括横突和棘突;
2)生成超声拓片:将步骤1)获取的患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像处理生成超声拓片,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;
3)生成脊椎表面地形图:将步骤2)获得的所述超声拓片与数字医学影像进行轮廓匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图。
基于本发明的一种基于超声拓片技术的脊椎图像生成系统,本发明还提供了一种基于超声拓片技术的脊柱手术导航定位系统,所述脊柱手术导航定位系统包括导航模块和基于超声拓片技术的脊椎图像生成系统,所述的脊柱手术导航定位系统能够获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,并基于该脊椎表面地形图进行实时的术中导航,其中:
所述的基于超声拓片技术的脊椎图像生成系统,基于患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,然后将所述超声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;优选的,所述的数字医学影像是CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
基于本发明的一种超声拓片技术的脊柱手术导航定位系统,本发明还提供了一种基于超声拓片技术的脊柱手术导航定位方法,其特征在于包括如下步骤:
1)建立手术器械的实体几何模型,实现手术器械的实体几何模型向表面模型的 转化,使其在脊椎图像生成系统中所获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上呈现出来,实现对手术器械的实时跟踪,所述实体几何模型向表面模型转化的方法优选为三维CAD造型法;
2)根据与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,并形成统一坐标系,所述确定地形图坐标系和患者坐标系中对应点关系的方法优选为最近点迭代算法;
3)将步骤1)获得的手术器械的表面模型在步骤2)形成的统一坐标系显示出来,实现手术器械和与患者术中体位一致的实时更新的个性化的脊椎表面地形图处于统一坐标系中,实现术中实时导航。
本发明还提供一种脊柱手术操作系统,所述的脊柱手术操作系统包含如前所述任何一种形式的基于超声拓片技术的脊椎图像生成系统和/或如前所述任何一种形式的基于超声拓片技术的脊柱手术导航定位系统。此操作系统适用于脊柱部位的开放和微创手术,可进行并不仅限于椎间盘突出部分的摘除、肿瘤切除、神经松解、血肿清除等诸多手术操作。
与现有技术相比,本发明的有益效果为:本发明提供的基于超声拓片技术的脊椎图像生成系统和方法,解决了现有技术无法获取脊柱手术所需要的相关部位(包括必要部位和特定部位)的准确空间位置信息的问题,以及现有技术实时滞后和不能实时动态显示的问题,为实现通过导航技术指导脊柱手术的精准治疗操作。本发明提供的基于超声拓片技术的脊柱手术导航定位系统和方法,能够实现实时的术中导航,使手术操作者无需依赖经验、无需超声专业操作者的协助、无需对病患身体进行多次穿刺造成多次创伤,在最大限度减少X线辐射对患者和操作者的损伤的情况下,准确快速通过一次穿刺到达目标靶点,实现了通过导航技术指导脊柱手术的精准治疗操作。
在完成穿刺到达目标靶点后,该脊柱手术导航定位系统可以指导操作者完成后续相关手术内容,持续为后续手术导航,操作简单,省时省力。以采用脊柱内镜进行经椎板后路髓核摘除术治疗腰椎间盘突出症为例,完成穿刺到达目标靶点后,手术导航定位系统指导脊柱内镜逐层深入,辨别棘突、黄韧带、椎板、神经根、椎间盘等解剖结构,直至抵达并摘除突出的髓核或纤维环等完成相关手术内容。具体表现为:
1)最大限度减少X线对患者和手术操作者的辐射损伤。
2)仅需在患者体表穿刺1次,最大限度减少穿刺对患者造成的创伤。
3)对手术操作者的经验依赖非常小,脊椎图像生成系统提供随患者体位变动而实时更新的个性化的脊椎表面地形图,以及基于该脊椎表面地形图进行实时术中导航的脊柱手术导航定位系统,将使手术操作者无需依赖经验、无需超声专业操作者的协助,有助于脊柱手术的推广应用。
4)患者体位变动而实时更新的个性化的脊椎表面地形图将对后续手术导航提供极大帮助。
5)基于本发明提供的脊椎图像生成系统以及脊柱手术导航定位系统,将使操作简单,省时省力。
6)导航图像精度高且能与患者实时术中体位一致。
7)本发明提供的脊椎图像生成系统以及脊柱手术导航定位系统,使得定位技术不存在实时滞后和不能动态显示的问题。相对于C臂机能够实现一定程度的实时,实时有滞后,会存在问题,也不能实现动态,存在问题。
8)完成体表穿刺定位后,可进一步指导后续相关手术内容。以采用脊柱内镜进行经椎板后路髓核摘除术治疗腰椎间盘突出症为例,在完成穿刺到达目标靶点后(该过程为定位穿刺过程),操作者操作内镜逐层深入,根据临床经验辨别棘突、黄韧带、椎板、神经根、椎间盘等解剖结构后,脊柱手术导航定位系统可以指导操作者运用手术器械,按照正确的角度和距离进行操作,直至抵达并摘除突出的髓核或纤维环等完成相关手术内容。
相对于现有技术,本发明的优越性体现在:第一,不需设置外标记点,极大减少创伤;第二,提高超声图像精度,进而提升了与患者术中体位一致的实时更新的个性化的脊椎表面地形图这一导航图像的精度;第三,减少对临床经验的依赖,导航图像将极大降低手术难度,减少对操作者操作经验和超声专业者的依赖。第四,克服了现有技术的不足,本发明的系统不仅能够实现准确的定位穿刺,还能为脊柱手术的后续操作提供实时导航。
应用本发明提供的脊椎图像生成系统以及脊柱手术导航定位系统,将极大推动以脊柱内镜技术为代表的脊柱手术微创技术的迅速发展和短期内的推广普及,造福患者和受脊柱相关疾病困扰的广大人民。本发明适用于以脊柱内镜为代表的脊柱微创技术,但不限于脊柱内镜,只要获取了超声拓片,并通过与数字医学影像进行轮廓匹配后获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,该地形图同样适用于指导脊柱相关疾病的微创和开放手术。
附图说明
图1是C臂机透视定位技术的操作流程示意图;
图2是超声容积导航技术的操作流程示意图;
图3是本发明的基于超声拓片技术的脊椎图像生成系统组成示意图;
图4是本发明的基于超声拓片技术的脊柱手术导航定位系统操作流程示意图;
图5是本发明的基于超声拓片技术的脊柱手术导航定位方法流程图;
图6是人体脊柱及脊椎解剖示意图,其中:图6(1)为脊柱全面观示意图,图中所示:A、前面观,B、后面观,C、侧面观;图6(2)为腰椎解剖示意图,图中所示:A、右侧面观,B、上面观;图6(3)为颈椎上面观。
1、颈椎,2、胸椎,3、腰椎,4、骶骨,5、尾骨,6、上关节突,7、棘突,8、下关节突,9、横突,10、椎体,11、乳突,12、椎孔,13、横突孔,14、椎板,15、横突与椎体连接的根部;
图7是体绘制中剪切变形法的基本原理示意图。
具体实施方式
下面结合附图和实施例进一步阐述本发明。应该理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明的讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明提供一种基于超声拓片技术的脊椎图像生成系统,所述的脊椎图像生成系统基于二维脊椎表面结构超声图像生成超声拓片,与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的系统包括采集单元和处理单元,其中:
所述的采集单元用于获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述的处理单元用于将采集单元获取的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,再与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图;所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成;所述脊椎表面包括横突和棘突;所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;
优选的,所述的超声图像包括所述超声图像的轮廓边缘、轮廓内部的信息;优选的,所述脊椎表面还进一步包括关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼成分的任意一种或任意多种;
优选的,所述超声图像的获取方法为:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数;更优选的,所述带有患者空间定位信息的超声扫描设备是带有定位标签的超声探头;
优选的,所述超声拓片的获取方法为:将所述患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化、叠加后,进一步处理生成超声拓片;
优选的,所述轮廓匹配的获取方法为:将所述超声拓片包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图;
优选的,所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观;优选的,所述超声拓片所具有的实时动态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含超声扫描所获得的脊椎表面、深层肌肉和脂肪组织的超声图像信息和空间位置信息,并能实时动态地显示;优选的,所述立体表面观是基于脊椎表面空间信息形成的表观三维图像,所述的表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理;
优选的,所述的数字医学影像可以是CT容积漫游重建图像、磁共振MR、计算机X线摄影CR或者数字化计算机X线摄影DR。
进一步的,所述的采集单元包括超声图像扫描模块和超声图像信息提取模块,其中:
所述超声图像扫描模块用于在患者体表反复扫描,直到识别肌骨界面,获取原始数据,所述超声图像信息提取模块用于将所述的原始数据进行提取,获得包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数;所述的原始数据是指带有患者空间定位信息的超声扫描设备发出的射频信号,所述的扫描允许以各种不同角度和方向进行,所述的方向包括上下、前后、左右、斜向,所述的角度包括相对于患者体表的垂直或任意倾斜角,并且与扫描先后顺序无关;
优选的,所述的带有患者空间定位信息的超声扫描设备是带有定位标签的超声探头,所述的原始数据是指超声探头发出的射频信号。
进一步的,所述的处理单元包括超声图像优化模块、超声图像叠加模块、超声拓片生成模块和图像轮廓匹配模块,其中:
所述超声图像优化模块用于将所述采集单元获得的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化,获得消除干扰噪声的超声优化图像;优选的,所述的超声图像优化模块采用超声滤波增强技术对所述采集单元获取的超声图像进行优化,获得消除干扰噪声的超声优化图像,所述的超声滤波增强技术优选自适应中值滤波和数学形态学滤波相结合的方法;
所述超声图像叠加模块用于将所述超声图像优化模块获得的超声优化图像进行叠加,使超声骨质回波信息强回声与弱回声之间的差别更大,获得图像效果增强的超声叠加图像;优选的,所述的超声图像叠加为单模态配准方法;
所述超声拓片生成模块用于将所述超声图像叠加模块获得的超声叠加图像处理后形成超声拓片;优选的,所述处理的方法为三维重建,更优选的,所述的三维重建的方法为体绘制方法,优选为体绘制加速技术;
所述图像轮廓匹配模块用于将所述超声拓片生成模块获得的超声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述轮廓匹配的方法优选基于像素灰度算法中的互信息算法的多模态配准方法,所述的多模态配准方法包括图像的空间变换、灰度插值、相似度衡量、搜索优化;优选的,所述的数字医学影像选自CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
基于本发明的一种基于超声拓片技术的脊椎图像生成系统,本发明还提供了一种基于超声拓片技术的脊椎图像生成方法,所述的脊椎图像生成方法包括如下步骤:
1)获取超声图像:获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成,所述脊椎表面包括横突和棘突;
2)生成超声拓片:将步骤1)获取的患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像处理生成超声拓片,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;
3)生成脊椎表面地形图:将步骤2)获得的所述超声拓片与数字医学影像进行轮廓匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图;
优选的,所述的超声图像包括所述超声图像的轮廓边缘、轮廓内部的信息;优选的,所述脊椎表面还进一步包括关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼成分的任意一种或任意多种;
优选的,所述超声图像的获取方法为:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数;更优选的,所述带有患者空间定位信息的超声扫描设备是带有定位标签的超声探头;
优选的,所述超声拓片的生成方法为:将所述患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化、叠加后,进一步处理生成超声拓片;
优选的,所述脊椎表面地形图的生成方法为:将所述超声拓片包含的脊椎表 面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图;
优选的,所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观;优选的,所述超声拓片所具有的实时动态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含超声扫描所获得的脊椎表面、深层肌肉和脂肪组织的超声图像信息和空间位置信息,并能实时动态地显示;优选的,所述立体表面观是基于脊椎表面空间信息形成的表观三维图像,所述的表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理;
优选的,所述的数字医学影像可以是CT容积漫游重建图像、磁共振MR、计算机X线摄影CR或者数字化计算机X线摄影DR。
进一步的,所述的步骤1)包括如下步骤:
超声图像扫描:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,获取原始数据,所述的原始数据是指带有患者空间定位信息的超声扫描设备发出的射频信号,所述的扫描允许以各种不同角度和方向进行,所述的方向包括上下、前后、左右、斜向,所述的角度包括相对于患者体表的垂直或任意倾斜角,并且与扫描先后顺序无关;优选的是,通过带有定位标签的超声探头扫描获取原始数据,所述的原始数据是指超声探头发出的射频信号;
超声图像信息提取:从超声图像扫描模块所获取的原始数据进行提取,获得包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
进一步的,所述的步骤2)包括如下步骤:
超声图像优化:将步骤1)获得患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化,获得消除干扰噪声的超声优化图像;优选的,超声图像优化采用超声滤波增强技术,获得消除干扰噪声的超声优化图像;更优选的,所述的超声滤波增强技术可以是中值滤波和数学形态学滤波相结合的方法;
超声图像叠加:将超声图像优化后的超声优化图像进行叠加,使超声骨质回波信息强回声与弱回声之间的差别更大,获得图像效果增强的超声叠加图像;优选的,所述的超声图像叠加为单模态配准方法;
超声拓片生成:将超声图像叠加后的超声叠加图像处理后形成超声拓片,优选的处理的方法为三维重建;更优选的所述三维重建的方法为体绘制方法,优选为体绘制加速技术。
进一步的,所述的步骤3)所述的轮廓匹配方法优选基于像素灰度算法中的互信息算法的多模态配准方法,所述的多模态配准方法包括图像的空间变换、灰度插值、相似度衡量、搜索优化。
基于本发明的一种基于超声拓片技术的脊椎图像生成系统,本发明还提供了一种基于超声拓片技术的脊柱手术导航定位系统,所述脊柱手术导航定位系统包括导航模块和基于超声拓片技术的脊椎图像生成系统,所述的脊柱手术导航定位系统能够获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,并基于该脊椎表面地形图进行实时的术中导航,其中:
所述的基于超声拓片技术的脊椎图像生成系统,基于患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,然后将所述超 声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;优选的,所述的数字医学影像是CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
所述的导航模块基于与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,将带有定位功能的手术器械的实体几何模型向表面模型转化,并呈现在脊椎图像生成系统中获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上;以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,形成统一坐标系;将转化获得的手术器械的表面模型融入统一坐标系,实现术中实时导航,指导操作者进行手术操作。
进一步的,所述的带有定位功能的手术器械为带有空间磁定位标记的手术器械。
基于本发明的一种超声拓片技术的脊柱手术导航定位系统,本发明还提供了一种基于超声拓片技术的脊柱手术导航定位方法,其特征在于包括如下步骤:
1)建立手术器械的实体几何模型,实现手术器械的实体几何模型向表面模型的转化,使其在脊椎图像生成系统中所获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上呈现出来,实现对手术器械的实时跟踪,所述实体几何模型向表面模型转化的方法优选为三维CAD造型法;
2)根据与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,并形成统一坐标系,所述确定地形图坐标系和患者坐标系中对应点关系的方法优选为最近点迭代算法;
3)将步骤1)获得的手术器械的表面模型在步骤2)形成的统一坐标系显示出来,实现手术器械和与患者术中体位一致的实时更新的个性化的脊椎表面地形图处于统一坐标系中,实现术中实时导航。
本发明还提供一种脊柱手术操作系统,所述的脊柱手术操作系统包含如前所述任何一种形式的基于超声拓片技术的脊椎图像生成系统和/或如前所述任何一种形式的基于超声拓片技术的脊柱手术导航定位系统。此操作系统适用于脊柱部位的开放和微创手术,可进行并不仅限于椎间盘突出部分的摘除、肿瘤切除、神经松解、血肿清除等诸多手术操作。
如图3所示,本发明提供一种基于超声拓片技术的脊椎图像生成系统,所述的脊椎图像生成系统基于二维脊椎表面结构超声图像生成超声拓片,与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的系统包括采集单元和处理单元。
所述的采集单元用于获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述的处理单元用于将采集单元获取的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,再与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图。所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态 更新的个性化三维超声骨骼图像。所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成。所述的超声图像包括所述超声图像的轮廓边缘、轮廓内部的信息。所述脊椎表面包括横突和棘突,还可以进一步包括关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼的任意一种或任意多种。所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观。所述超声拓片所具有的实时动态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含超声扫描所获得的脊椎表面、深层肌肉和脂肪组织的超声图像信息和空间位置信息,并能实时动态地显示。所述立体表面观是基于脊椎表面空间信息形成的表观三维图像,所述的表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理。
所述的数字医学影像是指能够用数值表达的图像信息,通过计算机来完成图像的存储、重建、测量、识别、处理。所述的数字医学影像可以是CT容积漫游重建图像、磁共振MR、计算机X线摄影CR或者数字化计算机X线摄影DR。
所述的术中体位为患者在手术中所处的体位,主要为仰卧位、俯卧位或侧卧位中的一种,同样存在为满足手术需要所摆放的特殊体位。所述脊柱区深层肌肉组织为医学解剖学概念,具体是指人体背部竖脊肌及其深层结构。所述脊椎表面指人体脊椎靠近体表一侧的骨表面。所述棘突、横突、关节突、椎板、椎板间隙、椎间孔为医学概念,具体指构成人体脊柱的各节椎体上具有解剖学意义的骨性结构。根据背景技术所述,现有超声扫描设备和处理技术难以获得或难以准确获得关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼成分全部超声图像信息,根据本发明的系统,能够获取脊柱手术所需要的相关部位的准确空间位置信息。
所述的采集单元包括超声图像扫描模块和超声图像信息提取模块,所述超声图像扫描模块用于扫描获取原始数据,所述超声图像信息提取模块用于提取所述超声图像扫描模块扫描获取的原始数据中包含的术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。所述的原始数据是指带有患者空间定位信息的超声扫描设备发出的射频信号,所述的扫描允许以各种不同角度和方向进行,所述的方向包括上下、前后、左右、斜向,所述的角度包括相对于患者体表的垂直或任意倾斜角,并且与扫描先后顺序无关。
超声图像的获取方法可以是通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
所述的带有患者空间定位信息的超声扫描设备是带有定位标签的超声探头,所述的原始数据是指超声探头发出的射频信号。
所述的处理单元包括超声图像优化模块、超声图像叠加模块、超声拓片生成模块和图像轮廓匹配模块。所述超声图像优化模块用于将所述采集单元获得的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化,获得消除干扰噪声的超声优化图像。所述超声图像叠加模块用于将所述超声图像优化模块获得的超声优化图像进行叠加,使超声骨质回波信息强回声与弱回声之间的 差别更大,获得图像效果增强的超声叠加图像。所述超声拓片生成模块用于将所述超声图像叠加模块获得的超声叠加图像处理后形成超声拓片。
超声拓片的获取方法可以是将所述患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化、叠加后,进一步处理生成超声拓片。
所述的超声图像优化模块采用超声滤波增强技术对所述采集单元获取的超声图像进行优化,获得消除干扰噪声的超声优化图像,所述滤波增强是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。
所述的超声滤波增强技术可以是自适应中值滤波和数学形态学滤波相结合的方法,具体包括:首先采用自适应中值滤波对图像预处理,抑制斑点噪声并保留必要细节;然后采用数学形态学方法对图像进行二次滤波和增强对比度,进一步滤除噪声和保留边界细节。
所述中值滤波是一种非线性滤波,它可以去除图像中的脉冲噪声和椒盐噪声,而且能比较好地保护图像边缘不被模糊,可用于二值图象和灰度图像处理。其基本原理是把数字图像中一点的值用该点的一个邻域内各点值的中值代替,其基本技术思路是对窗口内的所有像素灰度进行排序,取排序结果的中值作为原窗口中心点处像素的灰度,中值滤波的主要功能是把周围像素值差异较大的值改为与周围像素值接近的值,即中值,从而消除奇异的噪声点。所述自适应中值滤波能抑制超声图像中的斑点噪声,同时能较好的保留边界细节,但计算量大,算法不具并行性,速度慢,难以满足实时性的要求,应用限于超声图像的后期处理。自适应中值滤波器是在考虑一定区域内图像的统计特性基础上对中值滤波的改进,其滤波方式为使用窗口,在滤波过程中根据图象的局部统计特征来自动地改变滤窗的大小和形状,当判断滤窗中心像素是噪声时,其值用中值代,否则不改变当前像素值。窗内各点像素的权值可以调节,窗口选择可以通过分裂、合并等方法来获得,形状不受限制,自适应滤波器的设计技术思路为:
每个像素的局部区域的均值μ和估计方差σ 2
Figure PCTCN2018096999-appb-000001
Figure PCTCN2018096999-appb-000002
设υ 2为噪声方差,以所有局部区域估计方差的均值替代,则自适应滤波器的估计式为:
Figure PCTCN2018096999-appb-000003
式中η为图像中一个M、N像素的矩形局部区域,M、N分别为该邻域像素矩阵的行数和列数;n 1,n 2为像素坐标;a(n 1,n 2)为原始图像中(n 1,n 2)像素的灰度值;b(n 1,n 2)为图像自适应滤波后(n 1,n 2)像素的灰度值。
所述数学形态学滤波,实现的是几何结构的区域滤波,即一个噪声块只要有一点判定条件满足,整个区域噪声就可以全部去掉。因此,此方法对形态学滤波 质量有保证,噪声去除较干净,可以保留很好的图像细节,但需要选择合适的结构元素才能达到满意的滤波效果,可满足较高要求的实时性。数学形态学滤波是一种新的非线性滤波器,它以几何学为基础,着重研究图像的几何结构。其基本思想是将图像看成集合,利用预先定义的结构元素探测一幅图像,观察是否能将结构元素很好地填放在图像的内部,同时验证填放结构元素的方法是否正确。通过对图内适合放入结构元素的位置作标记,便可得到关于图像的结构信息,对图像结构信息进行分析可确定下一步应选用的结构元素,以便更有效地进一步滤出感兴趣的信息,如此不断地找出最合适的结构元素来抽取当前最希望得到的信息,抑制不感兴趣的信息,直到滤除全部噪声保留有用信息为止。所述结构元素是具有一定尺寸的背景图像,携带大小,形状,灰度,色度等信息,其尺寸远小于所研究的目标,它在图像中作变换类似于滤波窗口,结构元素的选择恰当与否,将直接影响对输入图像的处理结果;形态变换是构造形态滤波器的基础,基本形态变换包括膨胀、腐蚀、开启和闭合,其定义分别如下:
(1)膨胀
Figure PCTCN2018096999-appb-000004
(2)腐蚀
Figure PCTCN2018096999-appb-000005
(3)开启
Figure PCTCN2018096999-appb-000006
(4)闭合
Figure PCTCN2018096999-appb-000007
上式中,f代表输入图像,b为结构元素,所述结构元素是指一种收集信息的“探针”,用于探测图像,通过在图像中不断地移动结构元素,可根据结构元素与图像对象的相互作用,考察图像各部分间的关系,进而确定图像处理所需几何参数。D f和D b分别是f和b的定义域。在实际应用中,开运算具有对输入图像的平滑作用,可以消除输入图像边缘的毛刺及孤立斑点,即过滤信号中的正脉冲噪声;闭运算具有对输入图像的过滤作用,可以填补输入图像的裂缝及破洞,即过滤信号中负脉冲的噪声。
经过上述自适应中值滤波和数学形态学滤波相结合的方法,在本模块下,输入由采集单元获得的患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,通过超声滤波增强进行优化,最终输出消除干扰噪声的超声优化图像。所述超声图像叠加模块用于将所述超声图像优化模块获得的超声优化图像进行叠加,使超声骨质回波信息强回声与弱回声之间的差别更大,达到增强图像效果。所述的超声图像叠加可以是单模态配准方法。图像配准是对于一幅医学图像寻求一种或一系列空间变换,使它与另一幅医学图像上的对应点达到空间上的一致,配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点 及手术感兴趣的点都达到匹配,所述空间上的一致是指人体上的同一解剖点在两张匹配图像上有相同的空间位置。在单模态配准中,同一物体由于图像获取条件的差异或物体自身发生的空间位置改变而导致成像差异。此时待配准图像之间的像素灰度分布常常满足一定的线性关系,适合采用相关系数法来进行配准,所述相关系数(CC)为描述两个变量线性相关密切程度的量,其定义如下:
Figure PCTCN2018096999-appb-000008
其中
Figure PCTCN2018096999-appb-000009
为f(x n)、g(x n)的平均值,在单模态医学图像配准中,用同一成像方式(超声)对同一组织成像,不会导致在计算相关性的过程中出现错误,因此相关系数法适用于单模态医学图像的配准。
通过上述处理,在本模块下,输入由超声图像优化模块所获得的消除干扰噪声的超声优化图像,进行叠加,随着多幅图像的不断叠加,使得叠加生成的图像中,放大了超声骨质回波信息强回声与弱回声之间差异,输出效果增强、差异明显的消除干扰噪声的超声叠加图像。所述线性强回声为医学超声学概念,是指超声图像的特征性描述,为线性高亮图像。
所述超声拓片生成模块用于将所述超声图像叠加模块获得的超声叠加图像处理后形成超声拓片。所述的超声拓片是由超声图像叠加模块获得的超声图像经过三维重建处理后所得到的,是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像。超声图像的三维重建可以是通过一定的数据处理方法,将超声探头扫描获得的二维图像转换为三维图像的过程,是利用一系列的二维图像重建三维图像模型并进行定性和定量分析的技术,可以实现二维图像中三维结构信息的提取。在三维重建的绘制过程中,数据描述方法主要有表面绘制方法、体绘制方法和混合绘制方法三大类。所述超声拓片生成模块可以采用体绘制方法及体绘制加速技术将脊椎质回波叠加所获得图像进行三维重建,实现二维脊椎表面结构的超声图像向超声拓片的转换,达到准确性与低成本的要求。体绘制方法是直接研究光线通过三维体数据场与体素的相互作用,集中显示皮肤、骨骼、肌肉等物质信息,而无需提取等值面轮廓的方法。体绘制既可以显示体数据的表面信息也可以显示内部信息,其过程包括投射、消隐、渲染和合成等主要步骤。本实施例可以采用体绘制方法为剪切变形法,它将二维离散数据场的投影变换分解为二维数据场剪切变换和二维图像变形两步来实现,从而将二维空间的重采样过程转换成二维平面的重采样过程,极大减少计算量。剪切变形法实现了二维数据场的体绘制可以在图形工作站上以接近实时的速度实现,而不显著降低结果图像的质量。当然体绘制方法仍存在硬件配置要求高、内存需求大、计算量巨大的局限性,基于如上问题,也可以采用体绘制加速技术予以解决。体绘制加速技术包括:基于图像空间的体绘制算法加速、基于物体空间重建算法加速和硬件加速。所述基于图像空间的体绘制算法加速是指,第一,利用图像空间的相关性减少射线的数目。相邻象素存在着相关性,具有相似的颜色,因此并不需图像平面中的所有象素都透射出光线,而是可以间隔地投射出光线。第二,利用对象空间的相关性减少不必要的采样点数目。体数据中会有大量空体元即透明体素存在,这些空体元对体绘制后所产生的最终图像无任何影响,通过构造体数据的存 储结构,可以跳过空体元,从而减少采样点数目。所述基于物体空间重建算法加速是指,目前较成熟的算法包括体元投射法、子区域投射法等,此外通过建立特殊的体数据结构,如有序体数据、游程编码等,也可加快对体数据的遍历。所述硬件加速是指,由于超声拓片成像范围仅限全脊柱节段,属于中等规模体数据场,因此基于综合考量,给予硬件加速的纹理绘制算法较优,此算法可提供比其他加速算法更快速的体绘制。未来若需要体数据场的急速扩大,还可引入并行计算的相关算法,进一步实现加速。
下面以剪切变形法为例(图7),阐述其基本原理。剪切变形法的主要思想是把三维离散数据场的直接投影分解为三维数据场的剪切变换和二维图像的变形。如附图7所示,首先,根据视线方向(投影方向),决定一个中间平面,此平面垂直于物空间的某个轴方向,并将物体空间做一个剪切变换,再将物空间垂直投影到中间平面,获得中间图像A’B’。由于是垂直投影,其计算量必然大大低于斜向投影。最后,将得到的中间图像A’B’做一个变形变换,得到最终图像AB。原投影变换的视变换M view被分解为两个矩阵,即错切矩阵M shear和变形M warp矩阵。因而M view=M shear×M warp。进一步,对于平行投影,若以一组水平线表示三维离散数据场的一个横切面,使观察方向和坐标系的一个轴平行,垂直于三维数据场的各数据平面,在剪切变换中,各数据平面将平行移动一个距离,该距离不仅与各数据平面所在处的坐标值成正比,而且还决定于对初始观察方向的定义;对于透视投影,当三维离散数据场变换到剪切物体空间时,每一个数据平面不仅要作平移变换,而且还需要作比例变换,因此,由剪切变换后的数据场作投影所得到的图像并非最终图像,而只是中间图像,仍需进行一次图像变形。
上述三维离散数据场的剪切变换及二维图像变形可合成为如下的观察变换矩阵:
M view=P·S·M warp
式中P是一个坐标变换阵,它使得坐标系的Z轴与三维离散数据场的主要观察方向相重合,S将三维数据场变换到剪切物体空间,M warp将剪切物体空间变换到图像空间。对于平行投影而言,剪切是在垂直于Z轴的方向上进行的,故有:
Figure PCTCN2018096999-appb-000010
其中S xS y可由M view的参数求得。对于透视透影,则有:
Figure PCTCN2018096999-appb-000011
上式表明,当我们将z=z 0的数据平面由物体空间变换到剪切物体空间时,该数据平面应平移(z 0s x,z 0s y)距离,并按系数1/(1+z 0s w)作比例变换。上式中的 最后一项M warp则是将剪切物体空间变换到图像空间的矩阵。即:
M warp=S -1·P -1·M view
根据上述算法,将所述超声图像叠加模块获得的超声图像进行处理,选定Z轴方向为三维离散数据场的主要观察方向,使坐标系的轴与其相重合,对于与其平行的部分进行平行投影,只进行脊椎表面全部骨质回波信息的平移;对于透视投影,则在完成上述平移后,再进行比例变换;所述变换是,在剪切物体空间中,将脊椎表面全部骨质回波信息剪切后投射到剪切物体空间的中间图像平面,形成中间图像,将中间图像平面上的图像通过二维图像变形M warp变换到图像空间,得到最终图像。
通过上述过程,将超声叠加图像通过体绘制方法及加速技术生成为超声拓片,作为带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像,将用于下一步处理。
所述图像轮廓匹配模块用于将所述超声拓片生成模块获得的超声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图。所述超声拓片所具有的实时动态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含脊椎表面和深层肌肉组织的超声图像信息和空间位置信息,并能实时动态地显示。所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观,所述立体表面观是基于脊椎表面空间信息形成的表观三维图像,所述的表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理。所述轮廓匹配是指所述超声拓片包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配。现以CT容积漫游重建图像为例,阐述轮廓匹配过程。将超声拓片轮廓上所包括的实时动态空间位置信息与CT容积漫游重建图像轮廓上包括空间位置信息,进行对应点的逐一匹配,完成图像轮廓的匹配,进而实现三维层面的匹配。
所述轮廓匹配的获取方法可以是将所述超声拓片包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述轮廓匹配的方法优选基于像素灰度算法中的互信息算法的多模态配准方法,所述的多模态配准方法包括图像的空间变换、灰度插值、相似度衡量、搜索优化。本实施例中采用的轮廓匹配优选基于像素灰度算法中的互信息算法的多模态配准方法,所述的多模态配准方法包括脊椎图像的空间变换、灰度插值、相似度衡量、搜索优化。所述互信息算法是通过计算待配准图像的独立熵及联合熵,得到互信息值,进而通过互信息值判断图像配准效果:当两个图像重合度最高时,联合熵最小,互信息值最大,达到最佳配准效果;互信息算法利用的是图像中灰度的统计信息,受到噪声的干扰较少,具有较好的鲁棒性,所述鲁棒性是指控制系统在一定结构、大小的参数摄动下,维持某些性能的特性,尽管超声与CT容积漫游成像的成像方式原理不同,但是在图像中相应位置的灰度分布是类似的,不同模态图像的密度变化是否成线性关系与求解互信息无关,此外,因脊柱各椎体可以看作近似刚体,故脊椎图像匹配属于刚体配准,刚体不易产生形变的特性使得互信息算法在刚体配准中的效果更好。
图像匹配过程主要包括:图像的空间变换、灰度插值、相似度衡量、搜索优化,在此过程中,需要选择空间变换策略、灰度插值算法、相似性测度方法和优化算法。所述图像的空间变换是指通过一定的规律将图像f(x,y)中的像素点变换到新 的位置,从而得到一幅新的图像,f(x′,y′),即
Figure PCTCN2018096999-appb-000012
根据图像空间变换方式的自由度不同,可以分为刚体变换、仿射变换和非线性变换三种方式。作为优选,我们将根据图像的特征选择不同方式,采用多种结合的方法共同完成整体图像变换;对脊柱椎体的骨质表面,采用刚体变换与仿射变换相结合的方案,刚体变换包含图像的平移和旋转,只改变图像中物体的位置和方向,所有物体的长度、角度、面积和体积都不变;此类变换可以用一个3x3的矩阵来表示,即通过变换矩阵T,将图像中原坐标为(x,y)的点变换至新坐标,刚体变换表达式如下:
Figure PCTCN2018096999-appb-000013
其中θ为图像旋转角度,dy、dx为图像在z轴方向和y轴方向的平移量。在刚体变换中,图像中物体的相对位置没有发生变化。所述仿射变换是一种保持图形的平直性和平行性的空间变换;所述平直性是指变换后图像中直线不会发生弯曲,圆弧弧度也不会改变;所述平行性是指图像中物体间的平行关系不会发生变换的空间变换,但是物体的大小、物体之间的角度可能会发生变化;所述仿射变换是指,相对刚体变换,增加了变换的自由度,即在各坐标方向上的缩放系数,其中当各方向缩放比例一致时,称为均匀仿射变换,否则为非均匀仿射变换或称为剪切变换;均匀仿射变换常用于透镜成像系统,该系统所得到的图像大小与拍摄中物体与摄像头的距离有密切关系,剪切变换常常用于矫正由于仪器原因造成的图像畸变。仿射变换表达式如下:
Figure PCTCN2018096999-appb-000014
在多模态图像配准中,仿射变换可用于:第一,纠正由于成像方法不同导致的图像中物体比例的不一致;第二,纠正人为操作因素导致的图像畸变;第三,可用于解决成像角度不同导致的图像表现不同。
所述非线性变换是指,对于人体软组织图像,由于不同时刻不同角度拍摄到的组织往往会发生扭曲形变,在配准中常常采用非线性变换;由于超声扫描过程中,与探头部位接触的人体组织会产生较小尺度的局部形变,因此适用于弹性模型;所述弹性模型是指,可将浮动图像到模板图像的变换视为弹性材料伸缩的过程,整个过程中有外部对材料施加的外力和材料内部反弹的内力,其中外力导致材料发生形变,而内力是材料在受外力过程中对外力的反馈,当内力和外力达到平衡时配准结束;其形变可以通过下面的Navier偏微分方程来描述:
Figure PCTCN2018096999-appb-000015
其中μ(x,y)表示物体在x和y方向上的形变,λ和
Figure PCTCN2018096999-appb-000016
为描述物体弹性性质的Lame弹性常数,表示作用在物体两个方向上的外力。在弹性模型中,弹力会随着形变的大小成比例变化,局部形变越大,弹力越大。
所述灰度插值算法是在完成匹配过程,对浮动图像进行空间变换后,原来位于整数坐标的像素在新图像中的坐标可能会变为非整数,为解决像素点不在整数 坐标的问题,更好的描述形变后的图像,我们采用灰度插值算法;配准过程需要对浮动图像进行一定的空间变换,使其尽量的与模板图像相似,浮动图像进行变换后,一般将新图像中的整数坐标点进行反变换,得到该点在原图像中的对应坐标,则所得该点为即为插值点;灰度插值算法可通过插值点及其周围点的灰度值计算得到新图像中坐标的灰度值,从而最大程度的保持图像中原有的信息;在利用互信息进行配准的算法中,为了充分保留图像的灰度分布信息,常使用PV插值算法。所述PV插值算法是通过在插值直接得到新图像的灰度分布,因为进行空间变换前的浮动图像中每个像素都对图像的灰度分布有一定的贡献,因此PV插值考虑了所有插值点及其周围邻域像素的灰度值。一般在灰度直方图的计算当中,每统计到灰度值n 0出现一次,那么直方图中对应着伽的数值便要加l。与双线性插值类似,新图像中每个像素点(x,y)都对应着原图像中一个插值点(x′,y′),设插值点周围的四个整数点灰度值为n 11、n 12、n 21、n 22,,并根据插值点到这些点的距离求得每个点的权重w ij。那么新图像的灰度直方图h(a)中,灰度值n ij的出现次数要相应的加上w ij,即:
h(n ij)=h(n ij)+w ij
设模板图像中灰度为m,那么插值点在联合灰度直方图H(a,b)中的计算为:
H(m,n ij)=H(m,n ij)+w ij
当计算完所有插值点后便得到新的灰度直方图,从而得到浮动图像变换后的边际灰度分布和联合灰度分布。PV插值算法利用直接改变图像的灰度统计信息来代替直接插值产生新的图像,比较适合像互信息之类对灰度分布十分敏感的配准算法。
所述相似度衡量是指,在医学图像配准,特别是多模态医学图像的配准中,需要定义一个衡量两幅图像之间相似度的标准,当两幅图像相似度达到最大时,即认为两幅图像达到最佳的配准效果;作为优选,完成上述图像空间变换和灰度插值算法后,我们将选择基于像素灰度算法中的互信息算法完成相似度测量。以灰度值为基础,待配准的两幅图像A和B,其对应点的灰度值特征组合为灰度对,互信息的计算就是计算图像A中包含图像B多少信息。当两幅图像达到最佳匹配时,他们的灰度分布将具有最大相关性。
由于经典互信息算法在图像配准中具有明显缺陷——忽略了图像中存在的空间信息,因此在用互信息来衡量两幅图像相似度时会忽略两幅图像间可能共有的一些空间关系,导致在某些情况下出现配准错误。而基于经典算法进行改进又不能避免巨大计算量带来的计算时间延长,因而我们选择将空间信息引入互信息计算的方法——条件互信息;所述条件互信息是将待配准图片划分为不同的小区域,通过整合两幅图像之间所有对应小区域之间的配准效果来得到整体图像的配准效果,在不增加运算量的同时考虑到了图像中的空间信息;条件互信息CMI是通过扩展联合直方图,将图像中小区域的空间分布与灰度分布相结合而得到的:
Figure PCTCN2018096999-appb-000017
其中p(s)表示在配准过程中,选取到图像中的区域s进行配准的概率,若将待配准图像划分为相同大小的区域,该概率是相同的。在一幅图像,中灰度值为i的 像素点可能分布在整幅图像的不同区域。在条件互信息的计算时,分布在不同区域的灰度值为i的像素点对整体互信息量的贡献与该点空间位置有关。条件互信息表示的是,在区域s中,图像A包含的图像B的信息量,把所有区域的信息量的加权平均值作为最终衡量图像相似度的标准。
通过上述过程,在本模块下,输入由超声拓片生成模块获得的超声拓片,完成所述超声拓片与数字医学影像的轮廓匹配,输出与患者术中体位一致的实时更新的个性化的脊椎表面地形图,此图像将帮助操作者观察分析患者在术中体位下,与手术相关解剖结构的位置关系,指导穿刺定位及后续手术操作。
如图4所示,本发明提供的一种基于超声拓片技术的脊柱手术导航定位系统,所述的脊柱手术导航定位系统能够获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,并基于该脊椎表面地形图进行实时的术中导航,所述脊柱手术导航定位系统包括导航模块和基于超声拓片技术的脊椎图像生成系统,其中:
所述的基于超声拓片技术的脊椎图像生成系统,是基于患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,然后将所述超声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像。所述的数字医学影像可以选自CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
所述的导航模块基于与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,建立带有定位功能的手术器械的实体几何模型并向表面模型转化,并呈现在脊椎图像生成系统中获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上;以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,形成统一坐标系;将转化获得的手术器械的表面模型融入统一坐标系,实现术中实时导航,指导手术操作者进行操作。所述带有定位功能的手术器械为带有空间磁定位标记的手术器械。
如图5所示,本发明提供的一种基于超声拓片技术的脊柱手术导航定位方法,步骤如下:
第一步,操作者选择符合手术适应症的患者准备手术。所述手术适应症包括脊柱相关疾病如脊柱肿瘤、椎间盘突出,符合诊疗常规所规定的标准,采用非手术治疗方式无法治愈疾病,采用手术方式将有助于疾病的治疗时,所应采用的手术方式。
第二步,对拟进行手术治疗的患者进行术前CT扫描,并将扫描所得图像进行容积漫游重建,获得该患者的数字医学影像。此处在进行CT扫描时,患者所选择的体位应与手术拟采用的体位一致,例如,采用拟俯卧位进行手术的患者,在术前CT扫描时也采用俯卧位进行扫描。
第三步,根据患者的CT扫描和容积漫游重建图像,操作者团队进行术前分析,确定手术靶点。所述手术靶点是指手术时拟抵达的脊椎骨性解剖位置,例如,采用脊柱内镜进行经椎板后路髓核摘除术这一手术方式治疗腰椎间盘突出症,手术靶点为目标腰椎的椎板结构。
第四步,常规手术准备及麻醉后,操作者对手术目标区域进行超声扫描,通 过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。所述带有患者空间定位信息的超声扫描设备可以是带有定位标签的超声探头。所述手术目标区域指进行手术的相关区域,包括进行手术的具体部位及其毗邻结构,例如,采用脊柱内镜进行腰椎间盘突出症手术,目标区域为病变髓核所在的腰椎椎体、相邻上下位的椎体以及相应腰椎的椎旁区域。所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成,所述的超声图像包括所述超声图像轮廓和超声图像边缘的信息。所述脊椎表面包括横突和棘突,还可以包括关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼成分的任意一种或任意多种。
步骤四可以包括如下步骤:
超声图像扫描:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,获取原始数据,所述的原始数据是指带有患者空间定位信息的超声扫描设备发出的射频信号,所述的扫描允许以各种不同角度和方向进行,所述的方向包括上下、前后、左右、斜向,所述的角度包括相对于患者体表的垂直或任意倾斜角,并且与扫描先后顺序无关。带有患者空间定位信息的超声扫描设备可以是带有定位标签的超声探头扫描获取原始数据,所述的原始数据是指超声探头发出的射频信号;
超声图像信息提取:从超声图像扫描获取的原始数据中提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
第五步,将所述患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化、叠加后,进一步处理生成超声拓片。
步骤五可以包括如下步骤:
超声图像优化:将步骤四获得的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化,获得消除干扰噪声的超声优化图像;优选的,超声图像优化采用超声滤波增强技术,获得消除干扰噪声的超声优化图像;更优选的,所述的超声滤波增强技术可以是中值滤波和数学形态学滤波相结合的方法。
超声图像叠加:将所述超声图像优化后的超声图像进行叠加,使超声骨质回波信息强回声与弱回声之间的差别更大,达到增强图像效果,所述的超声图像叠加可以是单模态配准方法。
超声拓片生成:将所述超声图像优化、叠加后获得的超声图像进行三维重建处理,生成超声拓片,所述的三维重建的方法可以是体绘制方法以及体绘制加速技术。
第六步,将步骤五获得的所述超声拓片与数字医学影像进行轮廓匹配,通过超声拓片中包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,得到与患者术中体位一致的实时更新的个性化的脊椎表面地形图。所述的轮廓匹配的方法优是基于像素灰度算法中的互信息算法的多模态配准方法,所述的多模态配准方法包括图像的空间变换、灰度插值、相似度衡量、搜索优化。所述轮廓匹配是指所述超声拓片包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观,所述超声拓片所具有的实时动 态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含脊椎表面和深层肌肉的超声图像信息和空间位置信息,并能实时动态地显示,所述立体表面观是基于脊椎表面空间信息形成的表观三维图像,所述的表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理。所述实时动态空间信息包含超声扫描所获得的脊椎表面、深层肌肉和脂肪组织的超声图像信息和空间位置信息,并能随带有定位标签的超声探头的移动而动态地实时显示。所述的数字医学影像是CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
第七步,建立手术器械的实体几何模型,实现手术器械的实体几何模型向表面模型的转化,使其在脊椎图像生成系统中所获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上呈现出来,实现对手术器械的实时跟踪。所述实体几何模型向表面模型转化的方法优选为三维CAD造型法。
第八步,根据与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,并形成统一坐标系。所述确定地形图坐标系和患者坐标系中对应点关系的方法优选为最近点迭代算法。
第九步,将转化获得的手术器械的表面模型在统一坐标系显示出来,实现手术器械和与患者术中体位一致的实时更新的个性化的脊椎表面地形图处于统一坐标系中,实现术中实时导航。
第十步,基于导航图像,操作者将在统一坐标系中,根据坐标系所显示的手术器械与患者脊柱解剖结构间的位置关系,进行后续操作。在此步骤中,操作者基于与患者术中体位一致的实时更新的个性化的脊椎表面地形图的指引,利用带有定位标记的手术器械进行徒手或机械臂辅助下定位穿刺成功后,继续依靠导航图像,根据图像所示手术器械与脊柱骨性结构位置间的位置关系,结合操作者所见的解剖结构,在二者相互印证下,完成后续手术操作。以采用脊柱内镜进行经椎板后路髓核摘除术治疗腰椎间盘突出症为例,其后续手术操作为,操作者根据临床经验辨别棘突、黄韧带、椎板、神经根、椎间盘等解剖结构,在脊柱手术导航定位系统指导下,操作者运用手术器械,按照正确的角度和距离进行操作,直至抵达并摘除突出的髓核或纤维环等完成相关手术内容。

Claims (47)

  1. 一种基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的脊椎图像生成系统基于二维脊椎表面结构超声图像生成超声拓片,与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的系统包括采集单元和处理单元,其中:
    所述的采集单元用于获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述的处理单元用于将采集单元获取的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,再与数字医学影像进行轮廓匹配后,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图;所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成;所述脊椎表面包括横突和棘突;所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像。
  2. 根据权利要求1所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:
    所述的超声图像包括所述超声图像的轮廓边缘、轮廓内部的信息。
  3. 根据权利要求1所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述脊椎表面还进一步包括关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼成分的任意一种或任意多种。
  4. 根据权利要求1-3任一项所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述超声图像的获取方法为:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
  5. 根据权利要求4所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述带有患者空间定位信息的超声扫描设备是带有定位标签的超声探头。
  6. 根据权利要求1-5任一项所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述超声拓片的获取方法为:将所述患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化、叠加后,进一步处理生成超声拓片。
  7. 根据权利要求1-5任一项所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述轮廓匹配的获取方法为:将所述超声拓片包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观,所述立体表面观是基于脊椎表面空间信息形成的表观三维图像。
  8. 根据权利要求7所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理。
  9. 根据权利要求7所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述超声拓片所具有的实时动态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含超声扫描所获得的脊椎表面、深层肌肉和脂肪组织的超声图像信息和空间位置信息,并能实时动态地显示。
  10. 根据权利要求1-9任一项所述的基于超声拓片技术的脊椎图像生成系统,其特征在于: 所述的采集单元包括超声图像扫描模块和超声图像信息提取模块,其中:
    所述超声图像扫描模块用于在患者体表反复扫描,直到识别肌骨界面,获取原始数据,所述超声图像信息提取模块用于将所述的原始数据进行提取,获得包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
  11. 根据权利要求10所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的原始数据是指带有患者空间定位信息的超声扫描设备发出的射频信号,所述的扫描允许以各种不同角度和方向进行,所述的方向包括上下、前后、左右、斜向,所述的角度包括相对于患者体表的垂直或任意倾斜角,并且与扫描先后顺序无关。
  12. 根据权利要求10所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的带有患者空间定位信息的超声扫描设备是带有定位标签的超声探头,所述的原始数据是指超声探头发出的射频信号。
  13. 根据权利要求1-12任一项所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的处理单元包括超声图像优化模块、超声图像叠加模块、超声拓片生成模块和图像轮廓匹配模块,其中:
    所述超声图像优化模块用于将所述采集单元获得的患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化,获得消除干扰噪声的超声优化图像;
    所述超声图像叠加模块用于将所述超声图像优化模块获得的超声优化图像进行叠加,使超声骨质回波信息强回声与弱回声之间的差别更大,获得图像效果增强的超声叠加图像;
    所述超声拓片生成模块用于将所述超声图像叠加模块获得的超声叠加图像处理后形成超声拓片;
    所述图像轮廓匹配模块用于将所述超声拓片生成模块获得的超声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图。
  14. 根据权利要求13所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的超声图像优化模块采用超声滤波增强技术对所述采集单元获取的超声图像进行优化,获得消除干扰噪声的超声优化图像。
  15. 根据权利要求14所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的超声滤波增强技术优选自适应中值滤波和数学形态学滤波相结合的方法。
  16. 根据权利要求13所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的超声图像叠加为单模态配准方法。
  17. 根据权利要求13所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述处理的方法为三维重建。
  18. 根据权利要求17所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的三维重建的方法为体绘制方法,优选为体绘制加速技术。
  19. 根据权利要求13所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述轮廓匹配的方法为基于像素灰度算法中的互信息算法的多模态配准方法。
  20. 根据权利要求19所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的多模态配准方法包括图像的空间变换、灰度插值、相似度衡量、搜索优化。
  21. 根据权利要求1-20任一项所述的基于超声拓片技术的脊椎图像生成系统,其特征在于:所述的数字医学影像选自CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
  22. 一种基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的方法包括如下步骤:
    1)获取超声图像:获取患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像,所述超声图像由包含脊柱区深层肌肉组织和脊椎表面的全部回波信息构成,所述脊椎表面包括横突和棘突;
    2)生成超声拓片:将步骤1)获取的患者手术状况下实时术中体位对应的二维脊椎表面结构超声图像处理生成超声拓片,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;
    3)生成脊椎表面地形图:将步骤2)获得的所述超声拓片与数字医学影像进行轮廓匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图。
  23. 根据权利要求22所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的超声图像包括所述超声图像的轮廓边缘、轮廓内部的信息。
  24. 根据权利要求22所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述脊椎表面还进一步包括关节突、椎板、椎板间隙、椎间孔以及组成脊椎的其他骨骼成分的任意一种或任意多种。
  25. 根据权利要求22-24任一项所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述超声图像的获取方法为:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,提取包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
  26. 根据权利要求22所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述超声拓片的生成方法为:将所述患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化、叠加后,进一步处理生成超声拓片。
  27. 根据权利要求22-26任一项所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述脊椎表面地形图的生成方法为:将所述超声拓片包含的脊椎表面全部骨质回波信息与数字医学影像的轮廓进行逐点匹配,获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述脊椎表面地形图是由超声拓片所具有的实时动态空间信息赋予到数字医学影像而形成的立体表面观,所述立体表面观是基于脊椎表面空间信息形成的表观三维图像。
  28. 根据权利要求27所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述超声拓片所具有的实时动态空间信息是指脊椎表面和肌骨界面共同构成的空间信息,该空间信息包含超声扫描所获得的脊椎表面、深层肌肉和脂肪组织的超声图像信息和空间位置信息,并能实时动态地显示。
  29. 根据权利要求27所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的 表观三维图像中的沟纹是指所述的全部超声图像信息中包含的脊椎表面的纹理。
  30. 根据权利要求22-29任一项所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的步骤1)包括如下步骤:
    超声图像扫描:通过带有患者空间定位信息的超声扫描设备在患者体表反复扫描,直到识别肌骨界面,获取原始数据,所述的原始数据是指带有患者空间定位信息的超声扫描设备发出的射频信号;
    超声图像信息提取:从超声图像扫描模块所获取的原始数据进行提取,获得包含术中二维空间位置参数的脊椎表面全部骨质回波信息,构成患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像,所述的术中二维空间位置参数是指患者手术状况下脊椎实时的二维空间位置参数。
  31. 根据权利要求30所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的扫描允许以各种不同角度和方向进行,所述的方向包括上下、前后、左右、斜向,所述的角度包括相对于患者体表的垂直或任意倾斜角,并且与扫描先后顺序无关。
  32. 根据权利要求30所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:通过带有定位标签的超声探头扫描获取原始数据,所述的原始数据是指超声探头发出的射频信号。
  33. 根据权利要求22-29任一项所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的步骤2)包括如下步骤:
    超声图像优化:将步骤1)获得患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像进行优化,获得消除干扰噪声的超声优化图像;
    超声图像叠加:将超声图像优化后的超声优化图像进行叠加,使超声骨质回波信息强回声与弱回声之间的差别更大,获得图像效果增强的超声叠加图像;
    超声拓片生成:将超声图像叠加后的超声叠加图像处理后形成超声拓片。
  34. 根据权利要求33所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:超声图像优化采用超声滤波增强技术,获得消除干扰噪声的超声优化图像。
  35. 根据权利要求34所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的超声滤波增强技术可以是中值滤波和数学形态学滤波相结合的方法。
  36. 根据权利要求33所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的超声图像叠加为单模态配准方法。
  37. 根据权利要求33所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的处理的方法为三维重建。
  38. 根据权利要求37所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述三维重建的方法为体绘制方法,优选为体绘制加速技术。
  39. 根据权利要求22-29任一项所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:步骤3)所述的轮廓匹配方法优选基于像素灰度算法中的互信息算法的多模态配准方法。
  40. 根据权利要求39所述的基于超声拓片技术的脊椎图像生成方法,其特征在于:所述的多模态配准方法包括图像的空间变换、灰度插值、相似度衡量、搜索优化。
  41. 根据权利要求22-40任一项所述的基于超声拓片技术的脊椎图像生成方法,其特征在 于:所述的数字医学影像选自CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
  42. 一种基于超声拓片技术的脊柱手术导航定位系统,其特征在于:所述脊柱手术导航定位系统包括导航模块和权利要求1-21任一项所述的基于超声拓片技术的脊椎图像生成系统,所述的脊柱手术导航定位系统能够获得与患者术中体位一致的实时更新的个性化的脊椎表面地形图,并基于该脊椎表面地形图进行实时术中导航,其中:
    所述的基于超声拓片技术的脊椎图像生成系统,基于患者手术状况下实时的术中体位对应的二维脊椎表面结构超声图像处理后形成超声拓片,然后将所述超声拓片与数字医学影像进行轮廓匹配,形成与患者术中体位一致的实时更新的个性化的脊椎表面地形图,所述的超声拓片是带有患者空间定位信息并随患者位置变动而实时动态更新的个性化三维超声骨骼图像;所述的导航模块基于与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,将带有定位功能的手术器械的实体几何模型向表面模型转化,并呈现在脊椎图像生成系统中获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上;以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,形成统一坐标系;将转化获得的手术器械的表面模型融入统一坐标系,实现术中实时导航,指导操作者进行手术操作。
  43. 根据权利要求42所述的基于超声拓片技术的脊柱手术导航定位系统,其特征在于:所述的数字医学影像选自CT容积漫游重建图像、磁共振MR、计算机X线摄影CR、数字化计算机X线摄影DR。
  44. 根据权利要求42所述的基于超声拓片技术的脊柱手术导航定位系统,其特征在于:所述带有定位功能的手术器械为带有空间磁定位标记的手术器械。
  45. 一种基于超声拓片技术的脊柱手术导航定位方法,其特征在于包括如下步骤:
    1)建立手术器械的实体几何模型,实现手术器械的实体几何模型向表面模型的转化,使其在权利要求1-21任一项所述的基于超声拓片技术的脊椎图像生成系统中所获得的与患者术中体位一致的实时更新的个性化的脊椎表面地形图上呈现出来,实现对手术器械的实时跟踪;
    2)根据与患者术中体位一致的实时更新的个性化的脊椎表面地形图包含的空间位置信息建立地形图坐标系,以患者术中体位的空间位置信息建立患者坐标系,确定地形图坐标系和患者坐标系中对应点的关系,并形成统一坐标系,所述确定地形图坐标系和患者坐标系中对应点关系的方法优选为最近点迭代算法;
    3)将步骤1)获得的手术器械的表面模型在步骤2)形成的统一坐标系显示出来,实现手术器械和与患者术中体位一致的实时更新的个性化的脊椎表面地形图处于统一坐标系中,实现术中实时导航。
  46. 根据权利要求45所述的基于超声拓片技术的脊柱手术导航定位方法,其特征在于:所述实体几何模型向表面模型转化的方法为三维CAD造型法。
  47. 一种脊柱手术操作系统,其特征在于:所述的脊柱手术操作系统包含权利要求1-21任一项所述的基于超声拓片技术的脊椎图像生成系统和/或权利要求42-44任一项所述的基于超声拓片技术的脊柱手术导航定位系统。
PCT/CN2018/096999 2017-07-28 2018-07-25 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统 WO2019020048A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020504215A JP7162793B2 (ja) 2017-07-28 2018-07-25 超音波拓本技術に基づく脊椎画像生成システム及び脊柱手術用のナビゲーション・位置確認システム
US16/752,633 US11304680B2 (en) 2017-07-28 2020-01-25 Spinal image generation system based on ultrasonic rubbing technique and navigation positioning system for spinal surgery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710630811.3A CN107595387B (zh) 2017-07-28 2017-07-28 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统
CN201710630811.3 2017-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/752,633 Continuation US11304680B2 (en) 2017-07-28 2020-01-25 Spinal image generation system based on ultrasonic rubbing technique and navigation positioning system for spinal surgery

Publications (1)

Publication Number Publication Date
WO2019020048A1 true WO2019020048A1 (zh) 2019-01-31

Family

ID=61059985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096999 WO2019020048A1 (zh) 2017-07-28 2018-07-25 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统

Country Status (4)

Country Link
US (1) US11304680B2 (zh)
JP (1) JP7162793B2 (zh)
CN (1) CN107595387B (zh)
WO (1) WO2019020048A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789634A (zh) * 2020-06-09 2020-10-20 浙江大学 一种人体脊柱自动化超声扫查的路径规划方法
CN111938819A (zh) * 2020-08-15 2020-11-17 山东大学齐鲁医院 一种脊柱外科微创手术导航系统
CN114224485A (zh) * 2021-11-01 2022-03-25 中国医学科学院北京协和医院 用于开放式脊柱椎板减压手术导航系统及控制方法
WO2024104388A1 (zh) * 2022-11-18 2024-05-23 杭州海康慧影科技有限公司 一种超声图像处理方法、装置、电子设备及存储介质

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107595387B (zh) * 2017-07-28 2020-08-07 浙江大学 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统
CN108335326B (zh) * 2018-01-31 2022-07-26 上海联影医疗科技股份有限公司 穿刺系统的校正方法、装置及系统
CN110368026B (zh) * 2018-04-13 2021-03-12 北京柏惠维康医疗机器人科技有限公司 一种手术辅助装置及系统
CN108765473B (zh) * 2018-05-24 2021-12-17 常州市速瑞医疗科技有限公司 全高清3d电子腹腔镜系统的图像配准方法
CN108670301B (zh) * 2018-06-06 2020-11-06 西北工业大学 一种基于超声影像的脊柱横突定位方法
CN108711187B (zh) * 2018-08-03 2021-12-31 华侨大学 配准融合ct和mri信号建立人体腰椎三维仿真模型的方法
CN109646089B (zh) * 2019-01-15 2021-04-13 浙江大学 一种基于多模式医学融合图像的脊柱脊髓体表穿刺入路点智能定位系统及方法
CN111821032B (zh) * 2019-04-16 2022-06-07 上银科技股份有限公司 医疗影像对位方法
TWI715075B (zh) 2019-06-24 2021-01-01 瑞昱半導體股份有限公司 膚色影像的色域權重偵測方法及其裝置
CN110464460B (zh) * 2019-07-16 2020-11-17 江苏霆升科技有限公司 一种心脏介入手术的方法及系统
CN110505383B (zh) * 2019-08-29 2021-07-23 重庆金山医疗技术研究院有限公司 一种图像获取方法、图像获取装置及内窥镜系统
US20210100530A1 (en) * 2019-10-04 2021-04-08 GE Precision Healthcare LLC Methods and systems for diagnosing tendon damage via ultrasound imaging
US11282218B2 (en) * 2019-11-25 2022-03-22 Shanghai United Imaging Intelligence Co., Ltd. Systems and methods for providing medical guidance using a patient depth image
CN110974299A (zh) * 2019-12-31 2020-04-10 上海杏脉信息科技有限公司 超声扫查机器人系统、超声扫查方法及介质
US11701176B2 (en) * 2020-05-06 2023-07-18 Warsaw Orthopedic, Inc. Spinal surgery system and methods of use
CN111627560B (zh) * 2020-05-27 2022-03-22 四川大学华西医院 基于有限元和机器学习的脊柱近端交界角的手术优化方法
CN111631817A (zh) * 2020-06-05 2020-09-08 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 脊柱内镜下实时超声影像系统及其使用方法
CN111784664B (zh) * 2020-06-30 2021-07-20 广州柏视医疗科技有限公司 肿瘤淋巴结分布图谱生成方法
CN113516614A (zh) * 2020-07-06 2021-10-19 阿里巴巴集团控股有限公司 脊柱影像的处理方法、模型训练方法、装置及存储介质
CN112085833B (zh) * 2020-08-24 2022-09-06 南昌大学第一附属医院 一种锥束ct与影像融合结合的颈椎在体三维运动的分析方法
CN112581606B (zh) * 2020-12-25 2024-03-12 江苏集萃复合材料装备研究所有限公司 一种脊柱椎弓根螺钉植入手术导航方法
CN113469935B (zh) * 2021-04-15 2023-06-13 卡本(深圳)医疗器械有限公司 一种基于ct图像的髂后上棘自动检测与定位方法
WO2022226126A1 (en) * 2021-04-21 2022-10-27 Polarisar, Inc. Surgical navigation systems and methods including matching of model to anatomy within boundaries
CN113724301B (zh) * 2021-04-23 2023-09-08 天津师范大学 一种基于互卷积的生物组织透射图像配准系统
CN113813005B (zh) * 2021-08-20 2023-01-24 中国科学院深圳先进技术研究院 一种用于切除脊柱椎板的机器人
CN114128741B (zh) * 2021-09-16 2024-02-13 广东春浩食品集团有限公司 三点式心脑麻电机智能操控平台
CN114451992B (zh) * 2021-10-11 2023-08-15 佗道医疗科技有限公司 一种术后置钉精度评价方法
CN114698595A (zh) * 2022-02-15 2022-07-05 浙江大学 肿瘤原位瘤动物模型的造模方法及肿瘤原位瘤动物模型
CN114903518A (zh) * 2022-04-14 2022-08-16 深圳市第二人民医院(深圳市转化医学研究院) 一种基于三维超声的智能化脊柱侧弯Cobb角测量方法
CN115393338A (zh) * 2022-09-02 2022-11-25 复旦大学附属中山医院 一种生物组织识别模型构建方法、装置及电子设备
CN116492052B (zh) * 2023-04-24 2024-04-23 中科智博(珠海)科技有限公司 一种基于混合现实脊柱三维可视化手术导航系统
CN116570370B (zh) * 2023-04-24 2024-01-30 中山大学附属第五医院 一种脊柱针刀穿刺导航系统
CN116549800A (zh) * 2023-06-27 2023-08-08 中国人民解放军海军第九七一医院 一种椎管内麻醉实时三维模拟图像导航系统及方法
CN116563379B (zh) * 2023-07-06 2023-09-29 湖南卓世创思科技有限公司 一种基于模型融合的标志物定位方法、装置及系统
CN117853570B (zh) * 2024-03-08 2024-05-10 科普云医疗软件(深圳)有限公司 一种麻醉穿刺辅助定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090018445A1 (en) * 2007-06-20 2009-01-15 Perception Raisonnement Action En Medecine Ultrasonic bone motion tracking system
CN105078577A (zh) * 2014-05-14 2015-11-25 斯瑞克欧洲控股I公司 用于追踪工作目标的位置的导航系统和方法
CN106456271A (zh) * 2014-03-28 2017-02-22 直观外科手术操作公司 手术植入物的定量三维成像和打印
US9675321B2 (en) * 2012-04-30 2017-06-13 Christopher Schlenger Ultrasonographic systems and methods for examining and treating spinal conditions
CN106960439A (zh) * 2017-03-28 2017-07-18 安徽医科大学第二附属医院 一种脊椎骨识别装置及方法
CN107595387A (zh) * 2017-07-28 2018-01-19 浙江大学 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0991015B1 (fr) 1998-09-29 2004-12-01 Koninklijke Philips Electronics N.V. Procédé de traitement d'images médicales d'ultrasons de structures osseuses et dispositif pour chirurgie assistée par ordinateur
US8900146B2 (en) * 2009-07-27 2014-12-02 The Hong Kong Polytechnic University Three-dimensional (3D) ultrasound imaging system for assessing scoliosis
CN103417243B (zh) * 2012-05-24 2015-05-27 中慧医学成像有限公司 一种三维超声成像装置、系统和方法
WO2015092667A1 (en) 2013-12-20 2015-06-25 Koninklijke Philips N.V. System and method for tracking a penetrating instrument
US10105120B2 (en) * 2014-02-11 2018-10-23 The University Of British Columbia Methods of, and apparatuses for, producing augmented images of a spine
US10154239B2 (en) * 2014-12-30 2018-12-11 Onpoint Medical, Inc. Image-guided surgery with surface reconstruction and augmented reality visualization
NL2014772B1 (en) 2015-05-06 2017-01-26 Univ Erasmus Med Ct Rotterdam A lumbar navigation method, a lumbar navigation system and a computer program product.
EP3184071A1 (de) * 2015-12-22 2017-06-28 SpineMind AG Vorrichtung für die intraoperative bildgesteuerte navigation bei chirurgischen eingriffen im bereich der wirbelsäule und im daran angrenzenden thorax-, becken- oder kopfbereich
EP3429475B1 (en) * 2016-03-13 2021-12-15 Vuze Medical Ltd. Apparatus for use with skeletal procedures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090018445A1 (en) * 2007-06-20 2009-01-15 Perception Raisonnement Action En Medecine Ultrasonic bone motion tracking system
US9675321B2 (en) * 2012-04-30 2017-06-13 Christopher Schlenger Ultrasonographic systems and methods for examining and treating spinal conditions
CN106456271A (zh) * 2014-03-28 2017-02-22 直观外科手术操作公司 手术植入物的定量三维成像和打印
CN105078577A (zh) * 2014-05-14 2015-11-25 斯瑞克欧洲控股I公司 用于追踪工作目标的位置的导航系统和方法
CN106960439A (zh) * 2017-03-28 2017-07-18 安徽医科大学第二附属医院 一种脊椎骨识别装置及方法
CN107595387A (zh) * 2017-07-28 2018-01-19 浙江大学 一种基于超声拓片技术的脊椎图像生成系统以及脊柱手术导航定位系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111789634A (zh) * 2020-06-09 2020-10-20 浙江大学 一种人体脊柱自动化超声扫查的路径规划方法
CN111789634B (zh) * 2020-06-09 2021-04-20 浙江大学 一种人体脊柱自动化超声扫查的路径规划方法
CN111938819A (zh) * 2020-08-15 2020-11-17 山东大学齐鲁医院 一种脊柱外科微创手术导航系统
CN114224485A (zh) * 2021-11-01 2022-03-25 中国医学科学院北京协和医院 用于开放式脊柱椎板减压手术导航系统及控制方法
CN114224485B (zh) * 2021-11-01 2024-03-26 中国医学科学院北京协和医院 用于开放式脊柱椎板减压手术导航系统及控制方法
WO2024104388A1 (zh) * 2022-11-18 2024-05-23 杭州海康慧影科技有限公司 一种超声图像处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN107595387B (zh) 2020-08-07
US11304680B2 (en) 2022-04-19
US20200178937A1 (en) 2020-06-11
JP7162793B2 (ja) 2022-10-31
CN107595387A (zh) 2018-01-19
JP2020527087A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
JP7162793B2 (ja) 超音波拓本技術に基づく脊椎画像生成システム及び脊柱手術用のナビゲーション・位置確認システム
US8787648B2 (en) CT surrogate by auto-segmentation of magnetic resonance images
US8897514B2 (en) Imaging method for motion analysis
CN109152566B (zh) 校正超声融合成像系统中的探头引起的变形
Baka et al. Statistical shape model-based femur kinematics from biplane fluoroscopy
WO2006092594A2 (en) 3d ultrasound registration
CN113870098A (zh) 一种基于脊柱分层重建的Cobb角自动测量方法
Hacihaliloglu et al. Statistical shape model to 3D ultrasound registration for spine interventions using enhanced local phase features
JP2006139782A (ja) 画像を重ね合わせる方法
CN113469935B (zh) 一种基于ct图像的髂后上棘自动检测与定位方法
CN109350059B (zh) 用于肘部自动对准的组合的转向引擎和界标引擎
Li et al. A framework of real-time freehand ultrasound reconstruction based on deep learning for spine surgery
US11406471B1 (en) Hand-held stereovision system for image updating in surgery
Cresson et al. Coupling 2D/3D registration method and statistical model to perform 3D reconstruction from partial X-rays images data
Al-Shayea et al. An efficient approach to 3d image reconstruction
KR100399051B1 (ko) 흉부 단순 엑스선 영상에서 늑골의 경계를 자동으로추출하는 방법
US11776154B2 (en) Method and device for medical imaging for representing a 3D volume containing at least one introduced foreign object
Huang et al. Multi-modality registration of preoperative MR and intraoperative long-length tomosynthesis using GAN synthesis and 3D-2D registration
Nithiananthan et al. Demons deformable registration for cone-beam CT guidance: registration of pre-and intra-operative images
KR102367095B1 (ko) 타겟 뼈의 2d 이미지가 반영된 3d 뼈 모형 제조 방법 및 상기 방법에 따라 제조된 3d 뼈 모형
Fakhfakh et al. Automatic registration of pre-and intraoperative data for long bones in Minimally Invasive Surgery
CN110428483B (zh) 一种图像处理方法及计算设备
Song et al. A novel iterative matching scheme based on homography method for X-ray image
MONTEIRO DEEP LEARNING APPROACH FOR THE SEGMENTATION OF SPINAL STRUCTURES IN ULTRASOUND IMAGES
TW202333629A (zh) 註冊二維影像資料組與感興趣部位的三維影像資料組的方法及導航系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839431

Country of ref document: EP

Kind code of ref document: A1