WO2019019960A1 - 基站、用户设备和相关方法 - Google Patents

基站、用户设备和相关方法 Download PDF

Info

Publication number
WO2019019960A1
WO2019019960A1 PCT/CN2018/096596 CN2018096596W WO2019019960A1 WO 2019019960 A1 WO2019019960 A1 WO 2019019960A1 CN 2018096596 W CN2018096596 W CN 2018096596W WO 2019019960 A1 WO2019019960 A1 WO 2019019960A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical
signaling
subframe
time domain
starting
Prior art date
Application number
PCT/CN2018/096596
Other languages
English (en)
French (fr)
Inventor
刘仁茂
常宁娟
张崇铭
Original Assignee
夏普株式会社
刘仁茂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 刘仁茂 filed Critical 夏普株式会社
Priority to EP18837879.8A priority Critical patent/EP3661094B1/en
Priority to US16/633,089 priority patent/US11272451B2/en
Publication of WO2019019960A1 publication Critical patent/WO2019019960A1/zh
Priority to ZA2020/00771A priority patent/ZA202000771B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and more particularly, to a base station, a user equipment, and a method related to physical wake-up signaling.
  • Non-Patent Document: RP-170852: New WID on Further NB-IoT enhancements NPDCCH
  • NPDSCH Narrowband Physical Downlink Shared Channnel
  • the candidate signaling/channel design schemes are as follows:
  • the present invention primarily addresses the above physical signaling/channel design.
  • a method in a user equipment UE comprising: determining a time domain location of physical wakeup signaling, the physical wakeup signaling being used to wake up a UE to detect subsequent narrowband physics a downlink control channel NPDCCH; and detecting physical wake-up signaling from the base station at the determined time domain location, wherein determining the time domain location comprises determining a start subframe or an end subframe for physical wake-up signaling and for The number of subframes for physical wakeup signaling.
  • the end subframe has a first offset from a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes ending with the end subframe, or There is a second offset between the starting subframe and a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes starting from the starting subframe, or the starting
  • the subframe is determined by a period of physical wakeup signaling and a third offset, the time domain location including the number of consecutive available subframes starting from the starting subframe, wherein the first offset, The second offset, the period, and the third offset are predetermined or configured by the base station by signaling, wherein the number is configured by the base station for the paging carrier by radio resource control RRC signaling, or according to The maximum number of repetitions of the NPDCCH that is scrambled by the paging radio network temporary identifier P-RNTI configured by the paging carrier is derived.
  • determining the time domain location further comprises: determining a starting orthogonal frequency division multiplexing OFDM symbol for physical wakeup signaling in each subframe for physical wakeup signaling, wherein the starting OFDM symbol is Pre-defined or configured by the base station through signaling.
  • detecting physical wake-up signaling includes detecting physical wake-up signaling using an orthogonal sequence associated with a group of users to which the UE belongs, such that the UE decodes only physical wake-up signaling for the group of users to which it belongs.
  • a user equipment UE comprising a transceiver, a processor and a memory, the processor storing instructions executable by the processor such that the UE performs according to the first aspect above The method described.
  • a method in a base station comprising: determining a time domain location of physical wakeup signaling, the physical wakeup signaling being used to wake up a user equipment UE to detect subsequent narrowband physics a downlink control channel NPDCCH; and transmitting physical wakeup signaling to the UE at the determined time domain location, wherein determining the time domain location comprises determining a start subframe or an end subframe for physical wakeup signaling and for physics The number of subframes that wake up signaling.
  • the end subframe has a first offset from a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes ending with the end subframe, or There is a second offset between the starting subframe and a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes starting from the starting subframe, or the starting
  • the subframe is determined by a period of physical wakeup signaling and a third offset, the time domain location including the number of consecutive available subframes starting from the starting subframe, wherein the first offset, The second offset, the period, and the third offset are predetermined or configured to the UE by signaling, wherein the number is configured for the paging carrier to the UE by radio resource control RRC signaling, or according to The maximum number of repetitions of the NPDCCH that is scrambled by the paging radio network temporary identifier P-RNTI configured by the paging carrier is derived.
  • determining the time domain location further comprises: determining a starting orthogonal frequency division multiplexing OFDM symbol for physical wakeup signaling in each subframe for physical wakeup signaling, wherein the starting OFDM symbol is Pre-defined or configured to the UE by signaling.
  • transmitting the physical wake-up signaling includes applying an orthogonal sequence associated with the user group to which the UE belongs to the physical wake-up signaling.
  • a base station comprising a transceiver, a processor and a memory, the processor storing instructions executable by the processor, such that the base station performs the method according to the third aspect above method.
  • FIG. 1 shows a flow chart of NB-IoT UE monitoring and processing physical wake-up signaling/channel
  • FIG. 2 shows a flowchart of a method in a user equipment in accordance with an embodiment of the present disclosure
  • FIG. 3 shows a block diagram of a user equipment according to an embodiment of the present application
  • FIG. 4 shows a flow chart of a method in a base station in accordance with an embodiment of the present disclosure
  • FIG. 5 shows a block diagram of a base station in accordance with one embodiment of the present application.
  • the base station of the present invention is an entity for communicating with a user equipment, and may also be a Node B or an evolved Node B (eNB) or an access point (AP).
  • eNB evolved Node B
  • AP access point
  • the user equipment of the present invention may also refer to a terminal or an access terminal or a station or a mobile station.
  • the user device can be a cellular phone or a personal digital assistant (PDA) or a cordless phone or laptop or a mobile phone or a smartphone or handheld device or a netbook.
  • PDA personal digital assistant
  • the physical downlink control channel may refer to a PDCCH in a 3GPP LTE/LTE-A (Long Term Evolution/Long Term Evolution-Advanced) or an MPDCCH (MTC PDCCH) used for machine type communication or for narrowband IoT communication.
  • NPDCCH or NR New Radio, also referred to as 5G) NR-PDCCH or the like.
  • the physical downlink shared channel may refer to a PDSCH in 3GPP LTE/LTE-A (Long Term Evolution/Long Term Evolution-Advanced) or an NPDSCH or NR-PDSCH for narrowband IoT communication.
  • the physical signaling/channel of the present invention may refer to Wake Up Signaling (WUS)/channel, or Go-To-Sleep Signaling (GTS)/channel.
  • WUS Wake Up Signaling
  • GTS Go-To-Sleep Signaling
  • the physical wake-up signaling/channel refers to a UE in an idle mode or a UE in a discontinuous reception (DRX) state in an RRC connected mode, receiving or detecting or decoding a physical downlink control channel and/or a physical downlink shared channel. Previously, the physical wakeup signaling/channel needs to be detected or decoded. If the physical wake-up signaling is detected or decoded, the subsequent physical downlink control channel and/or physical downlink shared channel is received or detected or decoded.
  • DRX discontinuous reception
  • the physical wake-up signaling/channel refers to a UE in idle mode or a UE in a discontinuous reception (DRX) state in an RRC connected mode, receiving or detecting or decoding a physical downlink control channel and/or Before the physical downlink shared channel, the physical wakeup signaling/channel needs to be detected or decoded. If the physical wake-up signaling/channel is detected or decoded, the subsequent physical downlink control channel and/or physical downlink shared channel is detected or decoded. If the physical wake-up signaling/channel is not detected or decoded, the subsequent physical downlink control channel and/or physical downlink shared channel is not detected or decoded. Or ignore or skip the subsequent physical downlink control channel and/or physical downlink shared channel.
  • DRX discontinuous reception
  • the physical de-sleeping signaling/channel refers to a UE in idle mode or a UE in a discontinuous reception (DRX) state in an RRC connected mode, receiving or detecting or decoding a physical downlink control channel and/or physical downlink sharing. Before the channel, the physical de-sleep signaling/channel needs to be detected or decoded. If the physical de-sleep signaling/channel is detected or decoded, the UE does not detect or decode the subsequent physical downlink control channel and/or the physical downlink shared channel, and directly enters a sleep state.
  • DRX discontinuous reception
  • the physical de-sleeping signaling/channel refers to a UE in an idle mode or a UE in a discontinuous reception (DRX) state in an RRC connected mode, receiving or detecting or decoding a physical downlink control channel and/or
  • the physical de-sleep signaling/channel needs to be detected or decoded before the physical downlink shared channel. If the physical de-sleep signaling/channel is detected or decoded, the subsequent physical downlink control channel and/or physical downlink shared channel is not detected or decoded. If the physical wake-up signaling is not detected or not decoded, then the subsequent physical downlink control channel and/or physical downlink shared channel is received or detected or decoded.
  • a paging occasion is a subframe on which there may be a PDCCH or MPDCCH or NPDCCH that uses P-RNTI scrambling and schedules paging messages.
  • the PO refers to the start subframe in which the MPDCCH is repeatedly transmitted.
  • the PO refers to the initial subframe in which the NPDCCH is repeatedly transmitted unless the subframe determined by the PO is not a valid NB-IoT downlink subframe.
  • the subframe determined by the PO is not a valid NB-IoT downlink subframe, the first valid NB-IoT downlink subframe after the PO is the starting subframe for the NPDCCH repeated transmission.
  • a PF is a radio frame that may contain one or more POs.
  • DRX Transmission Control Function
  • the UE only needs to monitor one PO in each DRX cycle.
  • the PNB Paging Narrowband
  • the UE receives a paging message on the narrowband.
  • PF, PO, and PNB are DRX parameters provided by system information and are determined by the following formula.
  • the PO can be obtained by using the index i_s to look up Table 1, Table 2, Table 3 or Table 4 according to the duplex mode and the system bandwidth.
  • i_s is obtained by the following formula:
  • the paging narrowband PNB is determined by the following formula:
  • the call carrier is determined by the minimum paging carrier n that satisfies the following equation (4):
  • IMSI International Mobile Subscriber Identity
  • USIM Universal Subsriber Identity Module
  • the following parameters are used to calculate the paging carriers for PF, i_s, PNB, and NB-IoT:
  • T The DRX cycle of the UE.
  • T the DRX cycle of the UE.
  • T the DRX cycle of the UE.
  • T the DRX cycle of the UE.
  • the higher layer configures the UE-specific extended DRX value to be 512 radio frames
  • T the DRX cycle of the system information broadcast.
  • the default DRX cycle is adopted. The UE-specific DRX cycle does not apply to NB-IoT.
  • ⁇ Nn number of paging narrowbands provided in the system information
  • IMSI mod 1024 if scrambling on the PDCCH using P-RNTI
  • IMSI mod 4096 if scrambling on NPDCCH using P-RNTI
  • IMSI mod 16384 if scrambling on the MPDCCH using P-RNTI, or scrambling on the NPDCCH using P-RNTI and the UE supports receiving paging messages on non-anchor carriers, and if non-anchor carriers are provided in the system information Configuration information of the paging message.
  • maxPagingCarriers Number of configured paging carriers provided in the system information
  • the paging mechanism can be used to reduce the power loss of the UE.
  • the PDCCH and/or the PDSCH need to be repeatedly transmitted, so that the information can be correctly received from the base station or the information can be correctly sent to the base station.
  • the UE wants to detect the paging message it needs to wake up from the sleep state to detect whether there is its own paging message on each PO. Most of the time, the UE does not have a paging message.
  • the physical signaling/channel is a physical wake-up signaling/channel
  • the UE detects the Physical wake-up signaling/channel, then detecting paging messages on subsequent POs, ie detecting PDCCH (or MPDCCH or NPDCCH) scrambled using P-RNTI and receiving PDSCH (or NPDCCH) scheduled by the PDCCH (or MPDCCH or NPDCCH) ). If the UE does not detect the physical wakeup signaling/channel, it does not detect the paging message on the subsequent PO and directly returns to the sleep state.
  • PDCCH or MPDCCH or NPDCCH
  • the physical signaling/channel of the design is a physical de-sleep signaling/channel. If the UE detects the physical de-sleep signaling/channel, the paging message on the subsequent PO is not detected, ie, the PDCCH (or MPDCCH or NPDCCH) scrambled using the P-RNTI is not detected. If the UE does not detect the physical de-sleep signaling/channel, detecting a paging message on the subsequent PO, ie detecting a PDCCH (or MPDCCH or NPDCCH) scrambled using P-RNTI and receiving by the PDCCH (or MPDCCH or NPDCCH) ) Scheduled PDSCH (or NPDSCH).
  • the PDCCH or MPDCCH or NPDCCH
  • the following takes the physical wake-up signaling/channel as an example.
  • the described techniques can also be applied to physical de-sleep signaling/channels.
  • the description is directed to NB-IoT, which is also applicable to MTC, 3GPP LTE/LTE-A and NR (New Radio, or fifth generation mobile communication technology).
  • step S110 is a process in which an NB-IoT UE monitors and processes a physical wake-up signaling/channel, and the NB-IoT UE receives configuration parameters of a physical wake-up signaling/channel from a base station by using radio resource control signaling in step S110, according to the configuration in step S120.
  • the obtained configuration parameters detect whether there is a physical wake-up signaling/channel. If physical wakeup signaling/channel is detected, step S130 is performed, ie, the NPDCCH and/or NPDSCH of its subsequent paging message is received. If the physical wake-up signaling/channel is not detected, step S140 is performed, ie, the NPDCCH and/or NPDSCH of its subsequent paging message is ignored, and the sleep state is entered.
  • NB-IoT Primary synchronization signal uses a frequency domain Zadoff-Chu sequence of length 11. In the frequency domain, NPSS is mapped to one. NB-IoT narrowband carrier or 11 subcarriers on a physical resource block (PRB). In the time domain, the NPSS occupies the last 11 OFDM symbols on one subframe, and uses a code coverage sequence with the same Zadoff-Chu sequence: [1 1 1 1 -1 -1 1 1 1 -1 1] Map onto 11 OFDM symbols.
  • the NB-IoT secondary synchronization signal (NSSS) is composed of a frequency domain Zadoff-Chu sequence of length 131 and a binary scrambling code sequence.
  • the binary scrambling code sequence adopts a Hadamard sequence.
  • the NSSS is mapped to an NB-IoT narrowband carrier or 12 subcarriers on a physical resource block (PRB).
  • PRB physical resource block
  • the NSSS occupies the last 11 OFDM symbols on one subframe.
  • the existing NB-IoT supports 20 dB coverage enhancement.
  • 20 NPSS or NSSS repeated reception is required to detect NPSS or NSSS.
  • a method of sequence design and/or resource mapping similar to NPSS or NSSS can be applied to the design of physical wake-up signaling/channel. Therefore, for a UE that requires 20 dB coverage enhancement, it takes at least 20 repetitions to receive physical wake-up signaling/channel to detect the physical wake-up signaling/channel.
  • the UEs for different coverage enhancement levels may define a set of repetition number values for the physical wakeup signaling/channel, that is, define different coverage levels for the physical wakeup physical signaling/channel, for example, 6 levels ⁇ r1, r2, r4, r8 , r16, r32 ⁇ , that is, the number of repetitions of 6 values.
  • the base station may configure the repetition number or repetition level of the physical wake-up signaling/channel by system information or UE-specific RRC signaling or MAC signaling or physical layer signaling.
  • the NB IoT carrier is divided into an anchor carrier and a non-anchor carrier.
  • the UE may receive data such as a NB-IoT related physical broadcast channel (NB-PBCH), a primary synchronization signal (NPSS)/secondary synchronization signal (NSSS), a system information block (SIB), and the like from the anchor carrier; Receiving or transmitting data of unicast transmission such as a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), and a physical uplink shared channel (PUSCH) related to the NB-IoT.
  • NB-PBCH NB-IoT related physical broadcast channel
  • NPSS primary synchronization signal
  • NSSS secondary synchronization signal
  • SIB system information block
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the anchor carrier may also be used by the user equipment to receive or transmit data of a unicast transmission such as a PDCCH, a PDSCH, or a PUSCH related to the NB-IoT.
  • the base station may configure the non-anchor carrier for the user equipment by using an RRC connection setup message, an RRC connection reestablishment message, an RRC reconfiguration message, an RRC connection resume message, or the like.
  • NB-IoT supports UE receiving paging information on anchor carriers and/or non-anchor carriers. That is, in addition to the anchor carrier, the base station can configure a plurality of non-anchor carriers that can be used for paging message reception.
  • the carrier or narrowband PNB at which the UE receives the paging message is obtained by the above formula (3).
  • the carrier where the physical wake-up signaling/channel to be detected by the UE is the same as the carrier that the UE receives the paging message, that is, the UE detects the physical wake-up signaling/channel and/or receives on the same carrier. Paging message.
  • the receiving a paging message is to detect an NPDCCH scrambled using a P-RNTI and to receive an NPDSCH carried by the NPD CCD and carrying a paging message.
  • the number of repetitions of physical wake-up signaling/channels can be configured for each carrier (including anchor and non-anchor carriers) that can be used for paging message reception.
  • the configuration information of the physical wake-up signaling/channel added may be configured to configure physical wake-up signaling for the non-anchor carrier of each paging message of the NB-IoT/ The number of repetitions of the channel.
  • the physical wake-up signaling/channel repetition number can be configured for the anchor carrier of the NB-IoT.
  • the number of repetitions of physical wake-up signaling/channel may be uniformly configured for all carriers (including anchor carriers and non-anchor carriers) available for paging message reception.
  • the physical wake-up signaling/channel may be implicitly obtained by the maximum number of repetitions of the NPDCCH of the configured paging message.
  • the NPDCCH with the P-RNTI scrambling on each paging carrier is configured with the maximum number of repetitions of the NPDCCH, and there are ⁇ r1, r2, r4, r8, r16, r32, r64, r128. , r256, r512, r1024, r2048 ⁇ 12 optional values.
  • R1 indicates that the maximum number of repetitions is 1
  • R2 indicates that the maximum number of repetitions is 2, ....
  • a mapping relationship may be established between the number of repetitions of the physical wake-up signaling/channel on each paging carrier and the maximum number of repetitions of the NPDCCH of the paging message, so that the paging configured on each paging carrier can be configured.
  • the maximum number of repetitions of the NPDCCH of the message implicitly obtains the number of repetitions of the physical wake-up signaling/channel on the carrier.
  • the maximum number of repetitions of the NPDCCH of the paging message on each paging carrier is ⁇ r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048 ⁇ 12 configurable values
  • the number of repetitions of the physical wake-up signaling/channel is ⁇ r1, r2, r4, r8, r16, r32 ⁇ 6 configurable values.
  • FIG. 2 shows a flow diagram of a method 200 in a user equipment UE in accordance with an embodiment of the disclosure.
  • Method 200 includes the following steps.
  • a time domain location of physical wakeup signaling is determined, the physical wakeup signaling being used to wake up the UE to detect a subsequent narrowband physical downlink control channel NPDCCH.
  • determining the time domain location includes determining a starting subframe or an ending subframe for physical wakeup signaling and a number of subframes for physical wakeup signaling.
  • step S220 physical wake-up signaling from the base station is detected at the determined time domain location.
  • the end subframe has a first offset from a subsequent paging occasion, the time domain location including the number of consecutive available subframes ending with the end subframe.
  • the first offset may be predetermined or configured by the base station by signaling.
  • the number may be configured by the base station for the paging carrier by radio resource control RRC signaling, or may be derived according to the maximum number of repetitions of the NPDCCH scrambled using the paging radio network temporary identifier P-RNTI configured for the paging carrier. of.
  • the last subframe of the physical wakeup signaling/channel on a certain paging carrier is located on the kth subframe before the paging occasion PO.
  • k may be 1, or may be other fixed values, or may be configured by system information or UE-specific RRC signaling or MAC signaling or physical layer signaling.
  • the kth subframe is a downlink available subframe of the paging message carrier. If the kth subframe is not a downlink available subframe, the current downlink subframe needs to be searched forward.
  • the number of repetitions of the physical wake-up signaling/channel configured on the carrier of the paging message The k-th subframe before the paging opportunity PO is the last subframe of the physical wake-up signaling/channel, looking forward continuously
  • the available downlink subframes are subframes carrying physical wakeup signaling/channels.
  • the starting subframe has a second offset from a subsequent paging occasion, the time domain location including the number of consecutive available subframes starting from the starting subframe .
  • the second offset may be predetermined or configured by the base station via signaling.
  • the number may be configured by the base station for the paging carrier by radio resource control RRC signaling, or may be derived according to the maximum number of repetitions of the NPDCCH scrambled using the paging radio network temporary identifier P-RNTI configured for the paging carrier. of.
  • an offset M is configured for the physical wake-up signaling/channel on each paging carrier.
  • the unit of the offset M is a subframe, and the paging opportunity PO is used as a reference point for a number of M subframes.
  • the offset M subframes may include only available downlink subframes on the paging carrier, and may also include all downlink subframes.
  • the offset M may be configured by system information or UE-specific RRC signaling or MAC signaling or physical layer signaling, or may be implicitly obtained by other parameters.
  • the offset M of the physical wake-up signaling/channel relative paging opportunity PO can be implicitly obtained by the number of repetitions of the physical wake-up signaling/channel configured on the paging carrier.
  • the starting subframe is determined by a period of physical wakeup signaling and a third offset, the time domain location including the number of consecutive available subframes starting from the starting subframe .
  • the third offset may be predetermined or configured by the base station by signaling.
  • the number may be configured by the base station for the paging carrier by radio resource control RRC signaling, or may be derived according to the maximum number of repetitions of the NPDCCH scrambled using the paging radio network temporary identifier P-RNTI configured for the paging carrier. of.
  • a period WUS pd and/or an offset WUS startoffset may be configured for the physical wakeup signaling/channel on each paging carrier, and the units of WUS pd and WUS offset are subframes.
  • the offset WUS offset can take a value of 0.
  • the starting subframe of the physical wake-up signaling/channel is determined by the following formula:
  • n f is the system frame number, and in 3GPP LTE Rel-8, the value is 0 to 1023.
  • n sf is a subframe index number within a radio frame, and its value is 0 to 9.
  • the starting subframe number of the physical wake-up signaling/channel can be obtained from equation (5) according to the configured period and offset of the physical wake-up signaling/channel. Then, according to the configured physical wake-up signaling/channel repetition times, a downlink subframe that specifically carries the physical wake-up signaling/channel can be obtained.
  • a discontinuous transmission (DTX) mode may be configured for the physical wakeup signaling/channel, that is, a non-continuous transmission is separately configured for the physical wakeup signaling/channel configuration on each paging carrier.
  • Cycle P a discontinuous transmission period P can be configured in common for the physical wake-up signaling/channel configuration on all paging carriers.
  • the unit of the discontinuous transmission period P may be a paging period, or may be a subframe or a time slot or the like. If the UE detects physical wakeup signaling/channel at a candidate location of a certain physical wakeup signaling/channel, the UE does not detect the physical in the next P paging periods or P subframes or time slots.
  • Wake up signaling/channel Alternatively, if the UE does not detect physical wakeup signaling/channel at a candidate location of a certain physical wakeup signaling/channel, then the UE is within the next P paging periods or within P subframes or time slots. Physical wake-up signaling/channels are no longer detected.
  • the discontinuous transmission mode and its associated parameters may be configured for the physical wake-up signaling/channel by system information or UE-specific RRC signaling or MAC signaling or physical layer signaling. For example, parameters such as physical wake-up signaling/period of channel discontinuous transmission.
  • the UEs located on the same paging message PO may also be divided into groups, and each group of UEs may be distinguished by an orthogonal sequence.
  • detecting the physical wake-up signaling includes detecting the physical wake-up signaling using an orthogonal sequence associated with the user group to which the UE belongs, such that the UE decodes only the physical wake-up signaling for the user group to which it belongs.
  • the orthogonal sequence may be the base sequence of physical wake-up signaling/channel, that is, the UEs on the same PO are grouped with different physical wake-up signaling/channel base sequences.
  • the orthogonal sequence may also be a binary sequence, and different UE groups on the same PO are distinguished by different binary sequences acting on the same physical wakeup signaling/channel. In this way, the UE only detects or decodes the subsequent paging message by detecting the physical wake-up signaling/channel of its corresponding sequence.
  • the length of the orthogonal sequence depends on the number of available OFDM symbols on the subframe in which the physical wake-up signaling/channel is located.
  • the existing NB-IoT supports three operation modes: stand-alone mode, guard-band mode and in-band mode.
  • the independent mode of operation is to implement NB-IOT in the existing GSM band, that is, the frequency band working with the existing GERAN system and the radio frequency band potentially deployed by the IoT.
  • the guard band mode of operation is to implement NB-IOT on the guard band of an LTE carrier, that is, to use the band used as the guard band in the LTE band.
  • the in-band mode of operation is to implement NB-IOT on the existing LTE band, that is, to utilize the frequency band actually transmitted on the LTE band.
  • the number of available OFDM symbols may be 11, 12 or 13 according to the starting or OFDM symbol of the pre-defined or configured physical wake-up signaling/channel on the subframe in which it is located.
  • the following is an example in which a 12-length binary orthogonal sequence is taken as an example. If it is necessary to divide different UEs on the same PO into a number of N group groups, for example, 4 groups, the sequence as shown in Table 5 may be used to distinguish the UEs.
  • user grouping can be performed in a FDM or TDM manner.
  • FDM 12 subcarriers on one carrier can be divided into several N group groups, and each group of different subcarriers represents a different user group.
  • MTC six physical resource blocks (PRBs) on one narrowband can be divided into a number of N group groups, and each group of different PRBs represents different user groups.
  • PRBs physical resource blocks
  • TDM the available OFDM symbols on one subframe may be divided into a number of N group groups, each group of different OFDM symbols representing different user groups; or the subframes of a certain area in the time domain are divided into a number of N group groups, Each group of different subframes represents a different group of users.
  • Group number or sequence index number UE_ID mod N group (6)
  • the grouping of the UE may be performed according to the coverage enhancement level of the UE, and the number of repetitions of the physical wakeup signaling/channel is separately configured for each coverage enhancement level UE.
  • the configuration may be uniformly configured based on all carriers (anchor carrier and non-anchor carrier) carrying paging messages, or may be separately configured for each carrier (an anchor carrier and a non-anchor carrier) carrying paging messages.
  • the division of the coverage enhancement level of the UE may be performed based on the reference signal received power (RSRP) of the UE, or may be the coverage enhancement level used when the UE communicates with the base station last time, or may be successfully received by the last UE.
  • the number of NPDCCH repetitions used in the call message is determined.
  • the UE may inform the base station of the coverage enhancement level of the UE.
  • the base station notifies the UE network side, for example, the coverage enhancement level of the UE saved by the Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • information may be added on the physical wake-up signaling/channel to indicate whether its subsequent NPDCCH is direct indication information.
  • the direct indication information indicates update of system information, as described in detail in Non-Patent Document 3GPP TS 36.212 V14.3.0 (2017-06).
  • Direct indication information if it is direct indication information, the UE will not accept the subsequent paging message and enter the sleep state or receive the update of the system information.
  • Determining, in step S210, the time domain location further comprises: determining a starting orthogonal frequency division multiplexing OFDM symbol for physical wakeup signaling in each subframe for physical wakeup signaling, wherein the starting OFDM symbol is Pre-defined or configured by the base station through signaling.
  • the starting OFDM symbol of the physical wakeup signaling/channel on the subframe where the physical wakeup signaling/channel is located may be determined in the following manner.
  • the starting OFDM symbol l WUSStart of the physical wake-up signaling/channel on the subframe where the physical wake-up signaling/channel is located is predefined.
  • the in-band mode NB-IoT that is, the operation mode InfoModeInfo configured by the upper layer is '00' or '01'
  • its initial OFDM symbol l WUSStart is 2.
  • the start OFDM symbol l WUSStart is 0.
  • the starting OFDM symbol l WUSStart of the physical wake-up signaling/channel on the subframe where the physical wake-up signaling/channel is located is configured by system information or UE-specific RRC signaling or MAC signaling or physical layer signaling.
  • the starting OFDM symbol l WUSStart of the physical wake-up signaling/channel on the subframe in which the physical wake-up signaling/channel is located is determined by the control region size eutraControlRegionSize value configured on the subframe.
  • FIG. 3 shows a block diagram of a UE 300 in accordance with an embodiment of the disclosure.
  • the UE 300 includes a transceiver 310, a processor 320, and a memory 330, the processor 330 storing instructions executable by the processor 320 such that the user equipment 300 performs the method described above in connection with FIG. 200.
  • the processor 330 stores instructions executable by the processor 320, such that the user equipment 300 determines a time domain location of physical wakeup signaling, and the physical wakeup signaling is used to wake up the UE to detect a subsequent narrowband.
  • a physical downlink control channel NPDCCH a physical downlink control channel
  • determining the time domain location comprises: determining a starting subframe or an ending subframe for physical wakeup signaling and a number of subframes for physical wakeup signaling.
  • the end subframe has a first offset from a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes ending with the end subframe, or There is a second offset between the starting subframe and a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes starting from the starting subframe, or the starting
  • the subframe is determined by a period of physical wakeup signaling and a third offset, the time domain location including the number of consecutive available subframes starting from the starting subframe, wherein the first offset, The second offset, the period, and the third offset are predetermined or configured by the base station by signaling, wherein the number is configured by the base station for the paging carrier by radio resource control RRC signaling, or according to The maximum number of repetitions of the NPDCCH that is scrambled by the paging radio network temporary identifier P-RNTI configured by the paging carrier is derived.
  • determining the time domain location further comprises: determining a starting orthogonal frequency division multiplexing OFDM symbol for physical wakeup signaling in each subframe for physical wakeup signaling, wherein the starting OFDM symbol is Pre-defined or configured by the base station through signaling.
  • detecting physical wake-up signaling includes detecting physical wake-up signaling using an orthogonal sequence associated with the user group to which the UE belongs, such that the UE decodes only physical wake-up signaling for the group of users to which it belongs.
  • the present disclosure also provides a method in a base station.
  • 4 is a flow chart showing a method 400 in a base station in accordance with an embodiment of the disclosure. As shown, method 400 includes the following steps.
  • a time domain location of physical wakeup signaling is determined, and the physical wakeup signaling is used to wake up the user equipment UE to detect a subsequent narrowband physical downlink control channel NPDCCH.
  • determining the time domain location comprises: determining a starting subframe or an ending subframe for physical wakeup signaling and a number of subframes for physical wakeup signaling.
  • step S420 physical wake-up signaling is sent to the UE at the determined time domain location.
  • the end subframe has a first offset from a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes ending with the end subframe, or There is a second offset between the starting subframe and a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes starting from the starting subframe, or the starting
  • the subframe is determined by a period of physical wakeup signaling and a third offset, the time domain location including the number of consecutive available subframes starting from the starting subframe, wherein the first offset, The second offset, the period, and the third offset are predetermined or configured to the UE by signaling, wherein the number is configured for the paging carrier to the UE by radio resource control RRC signaling, or according to The maximum number of repetitions of the NPDCCH that is scrambled by the paging radio network temporary identifier P-RNTI configured by the paging carrier is derived.
  • determining the time domain location further comprises: determining a starting orthogonal frequency division multiplexing OFDM symbol for physical wakeup signaling in each subframe for physical wakeup signaling, wherein the starting OFDM symbol is Pre-defined or configured to the UE by signaling.
  • transmitting the physical wake-up signaling includes applying an orthogonal sequence associated with the user group to which the UE belongs to the physical wake-up signaling.
  • FIG. 5 shows a block diagram of a base station 500 in accordance with an embodiment of the present disclosure.
  • base station 500 includes a transceiver 510, a processor 520, and a memory 530 that stores instructions executable by the processor 520 such that the base station 500 performs the method 400 described above in connection with FIG. .
  • the processor 530 stores instructions executable by the processor 520 such that the base station 500 determines a time domain location of the physical wakeup signaling, the physical wakeup signaling is used to wake up the user equipment UE to detect subsequent narrowband physics.
  • a downlink control channel NPDCCH a downlink control channel NPDCCH; and transmitting physical wakeup signaling to the UE at the determined time domain location, wherein determining the time domain location comprises determining a start subframe or an end subframe for physical wakeup signaling and for physics The number of subframes that wake up signaling.
  • the end subframe has a first offset from a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes ending with the end subframe, or There is a second offset between the starting subframe and a subsequent paging occasion, the time domain location comprising the number of consecutive available subframes starting from the starting subframe, or the starting
  • the subframe is determined by a period of physical wakeup signaling and a third offset, the time domain location including the number of consecutive available subframes starting from the starting subframe, wherein the first offset, The second offset, the period, and the third offset are predetermined or configured to the UE by signaling, wherein the number is configured for the paging carrier to the UE by radio resource control RRC signaling, or according to The maximum number of repetitions of the NPDCCH that is scrambled by the paging radio network temporary identifier P-RNTI configured by the paging carrier is derived.
  • determining the time domain location further comprises: determining a starting orthogonal frequency division multiplexing OFDM symbol for physical wakeup signaling in each subframe for physical wakeup signaling, wherein the starting OFDM symbol is Pre-defined or configured to the UE by signaling.
  • transmitting the physical wake-up signaling includes applying an orthogonal sequence associated with the user group to which the UE belongs to the physical wake-up signaling.
  • the method of the present application and the apparatus involved have been described above in connection with the preferred embodiments. Those skilled in the art will appreciate that the methods shown above are merely exemplary. The methods of the present application are not limited to the steps and sequences shown above.
  • the network nodes and user equipment shown above may include more modules, for example, may also include modules that may be developed or developed in the future for base stations, or UEs, and the like.
  • the various logos shown above are merely exemplary and not limiting, and the application is not limited to specific cells as examples of such identifications. Many variations and modifications can be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above-described embodiments of the present application can be implemented by software, hardware, or a combination of both software and hardware.
  • the base station and various components within the user equipment in the above embodiments may be implemented by various devices including, but not limited to, analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, and programmable processing. , Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), and more.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • base station refers to a mobile communication data and control switching center having a large transmission power and a relatively large coverage area, including resource allocation scheduling, data reception and transmission, and the like.
  • User equipment refers to a user mobile terminal, for example, a terminal device including a mobile phone, a notebook, etc., which can perform wireless communication with a base station or a micro base station.
  • the computer program product is a product having a computer readable medium encoded with computer program logic that, when executed on a computing device, provides related operations to implement The above technical solution of the present application.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in this application.
  • Such an arrangement of the present application is typically provided as software, code, and/or other data structures, such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (eg, CD-ROM), floppy disk, or hard disk.
  • Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present application.
  • each functional module or individual feature of the base station device and the terminal device used in each of the above embodiments may be implemented or executed by circuitry, typically one or more integrated circuits.
  • Circuitry designed to perform the various functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs) or general purpose integrated circuits, field programmable gate arrays (FPGAs), or others.
  • a general purpose processor may be a microprocessor, or the processor may be an existing processor, controller, microcontroller, or state machine.
  • the above general purpose processor or each circuit may be configured by a digital circuit or may be configured by a logic circuit.
  • the present application can also use integrated circuits obtained using the advanced technology.
  • the program running on the device according to the present invention may be a program that causes a computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a program for realizing the functions of the embodiments of the present invention can be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, the present invention can also be implemented using these new integrated circuit technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用户设备UE中的方法,所述方法包括:确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒UE以检测随后的窄带物理下行控制信道NPDCCH;以及在所确定的时域位置处检测来自基站的物理唤醒信令,其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。

Description

基站、用户设备和相关方法 技术领域
本申请涉及无线通信技术领域,更具体地,本申请涉及基站、用户设备和其中与物理唤醒信令相关的方法。
背景技术
2017年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#75次全会上,一个关于窄带物联网(Narrowband Internet of Things,NB-IoT)进一步增强的新的工作项目(参见非专利文献:RP-170852:New WID on Further NB-IoT enhancements)获得批准。该研究项目的目标之一是为空闲状态的寻呼消息或连接状态的非连续接收设计物理信令/信道,在解码窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)和/或窄带物理下行共享信道(Narrowband Physical Downlink Shared Channnel,NPDSCH)之前,可以高效地解码或检测该物理信令/信道。而在2017年5月举行的3GPP RAN1#89次会议上,就该物理信令/信道的设计达成以下共识:至少为空闲状态的寻呼消息设计一物理信令/信道,以指示用户设备是否需要解码其随后的物理信道。候选的信令/信道设计方案有如下几种:
-唤醒(Wake-up)信令或非连续发送;
-去睡眠(Go-to-sleep)信令或非连续发送;
-唤醒(Wake-up)信令但没有非连续发送;
-下行控制信息(Downlink control information)。
详细设计方案有待进一步的研究。
本发明主要解决上述物理信令/信道的设计。
发明内容
根据本发明的第一方面,提供了一种用户设备UE中的方法,所述方法包括:确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒 UE以检测随后的窄带物理下行控制信道NPDCCH;以及在所确定的时域位置处检测来自基站的物理唤醒信令,其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
在实施例中,所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧,或所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或由基站通过信令配置的,其中,所述数目是由基站通过无线资源控制RRC信令针对寻呼载波配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
在实施例中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者由基站通过信令配置的。
在实施例中,检测物理唤醒信令包括:使用与UE所属的用户组相关联的正交序列来检测物理唤醒信令,使得UE仅解码针对其所属的用户组的物理唤醒信令。
根据本发明的第二方面,提供了一种用户设备UE,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述UE执行根据以上第一方面所述的方法。
根据本发明的第三方面,提供了一种基站中的方法,所述方法包括:确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒用户设备UE以检测随后的窄带物理下行控制信道NPDCCH;以及在所确定的时域位置处向UE发送物理唤醒信令,其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
在实施例中,所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子 帧,或所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或通过信令向UE配置的,其中,所述数目是通过无线资源控制RRC信令针对寻呼载波向UE配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
在实施例中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者通过信令向UE配置的。
在实施例中,发送物理唤醒信令包括:将与UE所属的用户组相关联的正交序列应用于物理唤醒信令。
根据本发明的第四方面,提供了一种基站,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述基站执行根据以上第三方面所述的方法。
附图说明
通过下文结合附图的详细描述,本申请的上述和其它特征将会变得更加明显,其中:
图1示出了NB-IoT UE监测和处理物理唤醒信令/信道的流程图;
图2示出了根据本公开实施例的用户设备中的方法的流程图;
图3示出了根据本申请一个实施例的用户设备的框图;
图4示出了根据本公开实施例的基站中的方法的流程图;
图5示出了根据本申请一个实施例的基站的框图。
具体实施方式
下面结合附图和具体实施方式对本申请进行详细阐述。应当注意,本申请不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本申请没有直接关联的公知技术的详细描述,以防止对本申请的理解造成混淆。
本发明所述的基站是用于与用户设备通信的一个实体,也可以指Node B或演进的Node B(Evolved Node B,eNB)或接入点(Access Point,AP)。
本发明所述的用户设备也可以指终端或接入终端或站点或移动站点等。用户设备可以是蜂窝电话或掌上电脑(Personal Digital Assistant,PDA)或无绳电话或笔记本电脑或移动电话或智能手机或手持设备或上网本等。
本发明所述的物理下行控制信道可以指3GPP LTE/LTE-A(Long Term Evolution/Long Term Evolution-Advanced)中的PDCCH或用于机器类通信的MPDCCH(MTC PDCCH)或用于窄带物联网通信的NPDCCH或NR(New Radio,也可称为5G)的NR-PDCCH等。所述物理下行共享信道可以指3GPP LTE/LTE-A(Long Term Evolution/Long Term Evolution-Advanced)中的PDSCH或用于窄带物联网通信的NPDSCH或NR-PDSCH等。
本发明所述物理信令/信道可以指物理唤醒信令(Wake Up Signaling,WUS)/信道,或物理去睡眠信令(Go-To-Sleep Signaling,GTS)/信道等。
所述物理唤醒信令/信道指处于空闲模式的UE或处于RRC连接模式的非连续接收(Discontinuous Reception,DRX)状态的UE,在接收或检测或解码物理下行控制信道和/或物理下行共享信道之前,需要检测或解码该物理唤醒信令/信道。如果所述的物理唤醒信令被检测或解码到,则接收或检测或解码随后的物理下行控制信道和/或物理下行共享信道。备选地,所述物理唤醒信令/信道指处于空闲模式的UE或处于RRC连接模式的非连续接收(Discontinuous Reception,DRX)状态的UE,在接收或检测或解码物理下行控制信道和/或物理下行共享信道之前,需要检测或解码该物理唤醒信令/信道。如果所述的物理唤醒信令/信道被检测或解码到,则检测或解码随后的物理下行控制信道和/或物理下行共享信道。如果所述的物理唤醒信令/信道没有被检测或解码到,则不检测或不解码随后的物理下行控制信道和/或物理下行共享信道。或者说忽略或跳过随后的物理下行控制信道和/或物理下行共享信道。
所述物理去睡眠信令/信道指处于空闲模式的UE或处于RRC连接模式的非连续接收(Discontinuous Reception,DRX)状态的UE,在接收或检测或解码物理下行控制信道和/或物理下行共享信道之前,需要检测或解码该物理去睡眠信令/信道。如果所述的物理去睡眠信令/信道被检测或解码到,则UE不检测或不解码随后的物理下行控制信道和/或物理下行共享信道,而直接进入睡眠状况。备选地,所述物理去睡眠信令/信道指处于空闲模式的UE或处于RRC连接模式的非连续接收(Discontinuous Reception,DRX)状态的UE,在接收或检测或解码物理下行控制信道和/或物理下行共享信道之前,需要检测或解码该物理去睡眠信令/信道。如果所述的物理去睡眠信令/信道被检测或解码到,则不检测或不解码随后的物理下行控制信道和/或物理下行共享信道。如果所述的物理唤醒信令没有被检测或没有解码到,则接收或检测或解码随后的物理下行控制信道和/或物理下行共享信道。
在现有的3GPP LTE/LTE-A中,处于空闲模式下的UE可以采用非连续接收来减少功率损耗。一个寻呼时机(Paging Occasion,PO)是一个子帧,在该子帧上可能会有使用P-RNTI加扰,并调度寻呼消息的PDCCH或MPDCCH或NPDCCH。在使用P-RNTI加扰的MPDCCH的情况下,PO指MPDCCH重复发送的起始子帧。在使用P-RNTI加扰的NPDCCH的情况下,PO指NPDCCH重复发送的起始子帧,除非由PO所决定的子帧不是一个有效的NB-IoT下行子帧。当由PO所决定的子帧不是一个有效的NB-IoT下行子帧时,则PO后的第一个有效的NB-IoT下行子帧即为NPDCCH重复发送的起始子帧。
PF(Paging Frame)是一个无线帧,该帧可能包含一个或多个PO。当DRX被采用时,UE只需在每一个DRX循环周期内监测一个PO。
PNB(Paging Narrowband)是一个窄带,UE在该窄带上接收寻呼消息。
PF、PO和PNB是用系统信息所提供的DRX参数,采用以下公式来决定的。
PF由以下公式给出:
SFN mod T=(T div N)*(UE_ID mod N)     (1)
使用索引i_s根据双工模式和系统带宽查表1、表2、表3或表4,可得到PO。其中,i_s通过以下公式得到:
i_s=floor(UE_ID/N)mod Ns     (2)
对于FDD:
表1 (PDCCH或NPDCCH由P-RNTI加扰,或MPDCCH由P-RNTI加扰且系统带宽大于3MHz时)
Ns PO,i_s=0 PO,i_s=1 PO,i_s=2 PO,i_s=3
1 9 N/A N/A N/A
2 4 9 N/A N/A
4 0 4 5 9
表2 (MPDCCH由P-RNTI加扰且系统带宽为1.4MHz和3MHz)
Ns PO,i_s=0 PO,i_s=1 PO,i_s=2 PO,i_s=3
1 5 N/A N/A N/A
2 5 5 N/A N/A
4 5 5 5 5
对于TDD(所有的上/下行配置):
表3 (PDCCH由P-RNTI加扰,或MPDCCH由P-RNTI加扰且系统带宽大于3MHz时)
Ns PO,i_s=0 PO,i_s=1 PO,i_s=2 PO,i_s=3
1 0 N/A N/A N/A
2 0 5 N/A N/A
4 0 1 5 6
表4 (MPDCCH由P-RNTI加扰且系统带宽为1.4MHz和3MHz)
Ns PO,i_s=0 PO,i_s=1 PO,i_s=2 PO,i_s=3
1 1 N/A N/A N/A
2 1 6 N/A N/A
4 1 1 6 6
如果所检测到的MPDCCH是由P-RNTI加扰的,则寻呼窄带PNB由以下公式所决定:
PNB=floor(UE_ID/(N*Ns))mod Nn     (3)
如果所检测到的NPDCCH是由P-RNTI加扰的,并且UE支持在非锚载波上接收寻呼消息,而且,如果在系统信息中为非锚载波提供了寻呼消息的配置信息,则寻呼载波由满足以下公式(4)的最小寻呼载波n所决定:
Figure PCTCN2018096596-appb-000001
每当系统信息中的DRX参数发生改变时,存储在UE中的系统信息DRX参数需要在UE中进行本地更新。如果UE没有国际移动用户识别码(International Mobile Subscriber Identity,IMSI),例如UE没有通用用户标识模块(Universal Subsriber Identity Module,USIM)而需要发起紧急呼叫时,UE需要在以上PF、i_s和PNB公式中使用缺省标识UE_ID=0。
以下参数用于计算PF、i_s、PNB和NB-IoT的寻呼载波:
·T:UE的DRX周期。除了NB-IoT之外,如果高层配置了UE特定的扩展的DRX值为512个无线帧,则T=512。否则,T由UE特定的DRX周期(如果高层已配置)和系统信息广播的缺省DRX周期二者中的最短DRX周期所决定。如果高层没有配置UE特定的DRX周期,则采用缺省的DRX周期。UE特定的DRX周期不适用于NB-IoT。
·N:min(T,nB)
·Ns:max(1,nB/T)
·Nn:系统信息中所提供的寻呼窄带的数目
·UE_ID:
IMSI mod 1024,如果使用P-RNTI加扰在PDCCH上
IMSI mod 4096,如果使用P-RNTI加扰在NPDCCH上
IMSI mod 16384,如果使用P-RNTI加扰在MPDCCH上,或使用P-RNTI加扰在NPDCCH上且UE支持在非锚载波上接收寻呼消息,并且如果在系统信息中为非锚载波提供了寻呼消息的配置信息。
·maxPagingCarriers:系统信息中提供的已配寻呼载波数
·Weight(i):NB-IoT第i个寻呼载波的权重
IMSI是一连串的10进制数字(0..9),IMSI在公式中被解释成10进制整数,其中第1位为最高位,以此类推。例如:IMSI=12(digit 1=1,digit 2=2),计算时该IMSI被解释成10进制数“12”,而不是“1*16+2=18”。
在现有3GPP LTE/LTE-A中,对于处于空闲模式的UE,采用寻呼机制可以减少UE的功率损耗。而当UE信道状态不好,需要采用覆盖增强时,PDCCH和/或PDSCH需要重复发送,才能从基站正确接收到信息或正确发送信息到基站。当UE要检测寻呼消息前,需要从睡眠状态中唤醒以在每一PO上检测是否有自己的寻呼消息。而在大多时候,UE都不会有寻呼消息。这样,当UE处于覆盖增强状态时,需要多次重复地接收PDCCH或PDSCH才能检测到是否有自己的寻呼消息,而大多数时候是没有自己的寻呼消息。因此,会大量损耗UE的功率。而对于MTC或NB-IoT用户而言,降低UE的功率损耗极为重要。所以,对于处于空闲状态的UE,可以在每一PO上检测寻呼消息前,设计一物理信令/信道,例如,该物理信令/信道为物理唤醒信令/信道,如果UE检测到该物理唤醒信令/信道,则检测随后PO上的寻呼消息,即检测使用P-RNTI加扰的PDCCH(或MPDCCH或NPDCCH)以及接收由该PDCCH(或MPDCCH或NPDCCH)调度的PDSCH(或NPDCCH)。如果UE没有检测到该物理唤醒信令/信道,则不检测随后PO上的寻呼消息,直接回到睡眠状态。
备选地,所述设计的物理信令/信道为物理去睡眠信令/信道。如果UE检测到该物理去睡眠信令/信道,则不检测随后PO上的寻呼消息,即不检测使用P-RNTI加扰的PDCCH(或MPDCCH或NPDCCH)。如果UE没有检测到该物理去睡眠信令/信道,则检测随后PO上的寻呼消息,即检测使用P-RNTI加扰的PDCCH(或MPDCCH或NPDCCH)以及接收由该PDCCH(或MPDCCH或NPDCCH)调度的PDSCH(或NPDSCH)。
以下以物理唤醒信令/信道为例进行叙述。所述的技术也可以适用于物理去睡眠信令/信道。而且以NB-IoT为对象进行叙述,所述的技术同 样适用于MTC、3GPP LTE/LTE-A和NR(New Radio,或称为第五代移动通信技术)。
图1为NB-IoT UE监测和处理物理唤醒信令/信道的过程,NB-IoT UE在步骤S110通过无线资源控制信令从基站接收物理唤醒信令/信道的配置参数,在步骤S120根据所获得的配置参数检测是否存在物理唤醒信令/信道。如果检测到物理唤醒信令/信道,则执行步骤S130,即接收其随后的寻呼消息的NPDCCH和/或NPDSCH。如果没有检测到物理唤醒信令/信道,则执行步骤S140,即忽略其随后的寻呼消息的NPDCCH和/或NPDSCH,进入睡眠状态。
在Rel-13NB-IoT的规范中,NB-IoT的主同步信令(NB-IoT Primary synchronization signal,NPSS)采用了长度为11的频域Zadoff-Chu序列,在频域上,NPSS映射到一个NB-IoT窄带载波或一个物理资源块(Physical Resource Block,PRB)上的11子载波上。在时域上,NPSS占有一个子帧上的后11个OFDM符号,而且是用同一Zadoff-Chu序列采用一个码覆盖(Code Cover)序列:[1 1 1 1 -1 -1 1 1 1 -1 1]映射到11个OFDM符号上。NB-IoT的辅同步信令(NB-IoT secondary synchronization signal,NSSS)是由一个长度为131的频域Zadoff-Chu序列和一个二进制扰码序列组成。其中,二进制扰码序列采用哈德码(Hadamard)序列。在频域上,NSSS映射到一个NB-IoT窄带载波或一个物理资源块(Physical Resource Block,PRB)上的12子载波上。在时域上,NSSS占有一个子帧上的后11个OFDM符号。有关NPSS和NSSS的具体细节见非专利文献3GPP TS 36.211V14.3.0(2017-06)。
现有的NB-IoT支持20dB的覆盖增强,对于需要20dB覆盖增强的UE而言,需要约20次的NPSS或NSSS重复接收才能检测到NPSS或NSSS。类似于NPSS或NSSS的序列设计和/或资源映射的方法可应用于物理唤醒信令/信道的设计。因此,对于需要20dB覆盖增强的UE而言,至少需要20次的重复接收物理唤醒信令/信道才能检测出所述物理唤醒信令/信道。针对不同覆盖增强等级的UE可以为物理唤醒信令/信道定义一组重复次数的数值,即为物理唤醒物理信令/信道定义不同的覆盖等级,例如6个等级{r1,r2,r4,r8,r16,r32},即有6个数值的重复次数。基站可以通过系统信息或UE特定的RRC信令或MAC信令或物理层信令 配置物理唤醒信令/信道的重复次数或重复等级。
在3GPP Rel-14的NB-IoT规范中,NB IoT载波分为锚载波(anchor carrier)和非锚载波(non-anchor carrier)。UE可以从锚载波接收NB-IoT相关的物理广播信道(NB-PBCH)、主同步信号(NPSS)/辅同步信号(NSSS)、系统信息块(SIB)等数据;而仅可以从非锚载波接收或发送NB-IoT相关的物理下行控制信道(PDCCH)、物理下行共享信道(PDSCH)、物理上行共享信道(PUSCH)等单播传输的数据。当基站没有为UE配置非锚载波时,锚载波也可以用于用户设备接收或发送NB-IoT相关的PDCCH、PDSCH、PUSCH等单播传输的数据。基站可以通过RRC连接建立消息、RRC连接重建消息、RRC重配置消息,RRC连接恢复消息(RRC resume message)等为用户设备配置非锚载波。
在3GPP Rel-14中,NB-IoT支持UE在锚载波和/或非锚载波上接收寻呼信息。即除了锚载波之外,基站可以配置多个可用于寻呼消息接收的非锚载波。UE接收寻呼消息的载波或窄带PNB由上述公式(3)得到。对于物理唤醒信令/信道而言,UE所要检测的物理唤醒信令/信道所在的载波与UE接收寻呼消息的载波相同,即UE在同一载波上检测物理唤醒信令/信道和/或接收寻呼消息。所述接收寻呼消息即为检测使用P-RNTI加扰的NPDCCH以及接收由该NPDCCD调度的承载有寻呼消息的NPDSCH。可以为每一可用于寻呼消息接收的载波(包括锚载波和非锚载波)配置物理唤醒信令/信道的重复次数。例如,在3GPP TS 36.331的NB-IoT系统信息块类型22中,增加如下的物理唤醒信令/信道的配置信息可以为NB-IoT的每一寻呼消息的非锚载波配置物理唤醒信令/信道的重复次数。
SystemInformationBlockType22-NB information element
Figure PCTCN2018096596-appb-000002
Figure PCTCN2018096596-appb-000003
而在NB-IoT的系统信息类型2中可以为NB-IoT的锚载波配置物理唤醒信令/信道的重复次数。备选地,可以为所有可用于寻呼消息接收的载波(包括锚载波和非锚载波)统一配置物理唤醒信令/信道的重复次数。
备选地,物理唤醒信令/信道可以由配置的寻呼消息的NPDCCH的最大重复次数隐式地获得。在现有的NB-IoT中,为每一寻呼载波上的使用P-RNTI加扰的NPDCCH配置有NPDCCH的最大重复次数,有{r1,r2,r4,r8,r16,r32,r64,r128,r256,r512,r1024,r2048}12个可选值。其中,R1表示最大重复次数为1,R2表示最大重复次数为2,...。可以在每一寻呼载波上的物理唤醒信令/信道的重复次数与寻呼消息的NPDCCH的最大重复次数之间建立对应的映射关系,从而可以由每一寻呼载波上所配置的寻呼消息的NPDCCH的最大重复次数隐式地得到该载波上的物理唤醒信令/信道的重复次数。例如,每一寻呼载波上的寻呼消息的NPDCCH的最大重复次数有{r1,r2,r4,r8,r16,r32,r64,r128,r256,r512,r1024,r2048}12个可配值,而物理唤醒信令/信道的重复次数有{r1,r2,r4,r8,r16,r32}6个可配值。可以建立如下的映射关系:
·寻呼消息的NPDCCH的r1,r2→物理唤醒信令/信道的r1
·寻呼消息的NPDCCH的r4,r8→物理唤醒信令/信道的r2
·寻呼消息的NPDCCH的r16,r32→物理唤醒信令/信道的r4
·寻呼消息的NPDCCH的r64,r128→物理唤醒信令/信道的r8
·寻呼消息的NPDCCH的r256,r512→物理唤醒信令/信道的r16
·寻呼消息的NPDCCH的r1024,r2048→物理唤醒信令/信道的r32
以下参照附图来描述本公开的实施例。
图2示出了根据本公开实施例的用户设备UE中的方法200的流程图。方法200包括以下步骤。
在步骤S210,确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒UE以检测随后的窄带物理下行控制信道NPDCCH。在步骤S210中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
在步骤S220,在所确定的时域位置处检测来自基站的物理唤醒信令。
在一个示例中,所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧。第一偏移可以是预定的或由基站通过信令配置的。所述数目可以是由基站通过无线资源控制RRC信令针对寻呼载波配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
具体地,某一寻呼载波上的物理唤醒信令/信道的最后一个子帧位于寻呼时机PO前的第k个子帧上。k可以为1,也可以为其它的固定数值,也可以由系统信息或UE特定的RRC信令或MAC信令或物理层信令所配置。所述第k个子帧是该寻呼消息载波的下行可用的子帧,如果所述第k个子帧不是下行可用的子帧,则需要往前寻找可用的下行子帧。根据该寻呼消息载波上所配置的物理唤醒信令/信道的重复次数
Figure PCTCN2018096596-appb-000004
以寻呼时机PO前的第k个子帧为物理唤醒信令/信道的最后一个子帧,向前寻找连续
Figure PCTCN2018096596-appb-000005
可用的下行子帧为承载物理唤醒信令/信道的子帧。
这里应注意,在本公开的上下文中,“连续”可用子帧之间可以存在 或不存在不可用子帧。
在另一示例中,所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧。第二偏移可以是预定的或由基站通过信令配置的。所述数目可以是由基站通过无线资源控制RRC信令针对寻呼载波配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
具体地,为每一寻呼载波上的物理唤醒信令/信道配置一个偏移量M。该偏移量M的单位为子帧,并以寻呼时机PO为参照点向前数M个子帧。所述偏移量M个子帧可以只包含该寻呼载波上的可用的下行子帧,也可以包含所有下行子帧。该偏移量M可以由系统信息或UE特定的RRC信令或MAC信令或物理层信令所配置,也可以由其它的参数隐式地得到。例如,可以通过该寻呼载波上所配置的物理唤醒信令/信道的重复次数隐式地得到物理唤醒信令/信道相对寻呼时机PO的偏移量M。
在另一示例中,所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧。第三偏移可以是预定的或由基站通过信令配置的。所述数目可以是由基站通过无线资源控制RRC信令针对寻呼载波配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
具体地,可以为每一寻呼载波上的物理唤醒信令/信道配置一个周期WUS pd和/或一个偏移量WUS startoffset,WUS pd和WUS offset的单位为子帧。其中,偏移量WUS offset可以取值为0。物理唤醒信令/信道的起始子帧由以下公式决定:
(10*n f+n sf-WUS offset)mod(WUS pd)=0     (5)
其中,n f为系统帧号,在3GPP LTE Rel-8中,其取值为0至1023。n sf为一个无线帧内的子帧索引号,其取值为0至9。根据所配置的物理唤醒信令/信道所配置的周期和偏移量,由公式(5)就可以得到物理唤醒信令/信道的起始子帧号。再根据所配置的物理唤醒信令/信道的重复次数就可以得到具体承载物理唤醒信令/信道的下行子帧。
为了进一步减少UE的功率损耗,可以为物理唤醒信令/信道配置非 连续发送(Discontinuous Transmission,DTX)方式,即为每一寻呼载波上的物理唤醒信令/信道配置单独配置一个非连续发送周期P。备选地,可以为所有寻呼载波上的物理唤醒信令/信道配置共同配置一个非连续发送周期P。非连续发送周期P的单位可以是寻呼周期,也可以是子帧或时隙等。如果UE在某一物理唤醒信令/信道的候选位置上检测到有物理唤醒信令/信道,则在接下来的P个寻呼周期内或P个子帧或时隙内UE都不再检测物理唤醒信令/信道。备选地,如果UE在某一物理唤醒信令/信道的候选位置上没有检测到有物理唤醒信令/信道,则在接下来的P个寻呼周期内或P个子帧或时隙内UE都不再检测物理唤醒信令/信道。可以由系统信息或UE特定的RRC信令或MAC信令或物理层信令为物理唤醒信令/信道配置非连续发送方式和其相关的参数。例如,物理唤醒信令/信道非连续发送的周期等参数。
为了进一步减少UE的功率损耗,还可以将位于同一寻呼消息PO上的UE分成若干组,每一组UE可以用一正交序列来区分。在步骤S220中,检测物理唤醒信令包括:使用与UE所属的用户组相关联的正交序列来检测物理唤醒信令,使得UE仅解码针对其所属的用户组的物理唤醒信令。该正交序列可以是物理唤醒信令/信道的基础序列,也就是用不同的物理唤醒信令/信道的基础序列将处于同一PO上的UE进行分组。备选地,该正交序列也可以是二进制序列,通过不同的二进制序列作用于同一物理唤醒信令/信道上来区分同一PO上的不同UE组。这样,UE只有检测到其对应序列的物理唤醒信令/信道才会去检测或解码随后的寻呼消息。正交序列的长度取决于物理唤醒信令/信道所在子帧上的可用OFDM符号数。
现有的NB-IoT支持3种操作模式(Operation mode):独立操作模式(stand-alone)、保护带操作模式(guard-band)和带内操作模式(in-band)。独立操作模式是在现有的GSM频段上实现NB-IOT,即利用现有的GERAN系统工作的频段及IoT潜在部署的射频频段。保护带操作模式是在一个LTE载波的保护频段上实现NB-IOT,即利用LTE频段上用作保护频带的频段。带内操作模式是在现有的LTE频段上实现NB-IOT,即利用LTE频段上实际传输的频段。
对于独立操模式和保护带模式的NB-IoT,物理唤醒信令/信道所在 子帧上的14个OFDM符号都可以用于物理唤醒信令/信道的发送。而对于带内模式的NB-IoT,根据预定义的或所配置的物理唤醒信令/信道在其所在子帧上的起始OFDM符号,其可用的OFDM符号数可以是11、12或13。以下以12长的二进制正交序列为例进行说明。如果需要将同一PO上的不同UE分成若干N group组,例如4组,则可以采用如表5所示的序列来区分UE。
表5
序列索引 正交序列
0 [+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 1]
1 [+1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1]
2 [+1 +1 +1 -1 -1 -1 +1 +1 +1 -1 -1 -1]
3 [-1 -1 -1 +1 +1 +1 -1 -1 -1 +1 +1 +1]
备选地,可以采用FDM或TDM的方式进行用户分组。例如,对于FDM而言,可以将一个载波上的12个子载波分成若干N group组,每组不同的子载波代表不同的用户组。对于MTC,可以将一个窄带上的6个物理资源块(Physical Resource Block,PRB)分成若干N group组,每组不同的PRB代表不同的用户组。对于TDM而言,可以将一个子帧上的可用OFDM符号分成若干N group组,每组不同的OFDM符号代表不同的用户组;或者将时域上某一区域的子帧分成若干N group组,每组不同的子帧代表不同的用户组。
处于同一PO的不同UE的分组号或序列的索引号可以由公式(6)得到:
组号或序列索引号=UE_ID mod N group     (6)
备选地,可以根据UE的覆盖增强等级进行UE的分组,并且为每一覆盖增强等级的UE单独配置物理唤醒信令/信道的重复次数。所述配置可以基于所有承载寻呼消息的载波(锚载波和非锚载波)统一配置,也可以为每一承载寻呼消息的载波(锚载波和非锚载波)单独配置。UE的覆盖增强等级的划分可以基于UE的参考信号接收功率(Reference  Signal Received Power,RSRP)进行,也可以是上次UE与基站通信时所用的覆盖增强等级,也可以由上次UE成功接收寻呼消息时所用的NPDCCH重复次数所决定。为保证UE与基站间对UE的覆盖增强等级具有相同的认知,UE可以告知基站本UE的覆盖增强等级。或者基站通知UE网络侧,例如移动性管理实体(Mobility Management Entity,MME)所保存的该UE的覆盖增强等级。备选地,可以在物理唤醒信令/信道上增加信息以指示其随后的NPDCCH是否为直接指示信息。所述直接指示信息指示系统信息的更新,详细情况参见非专利文献3GPP TS 36.212V14.3.0(2017-06)。例如,由不同的序列,和/或时域资源(例如,同一子帧中的不同OFDM符号),和/或频域资源(例如,不同的子载波或PRB)来指示其随后的NPDCCH是否为直接指示信息,如果是直接指示信息,则UE不会接受其后的寻呼消息而进入睡眠状态或接收系统信息的更新。
在步骤S210中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者由基站通过信令配置的。
具体地,在物理唤醒信令/信道所在子帧上的物理唤醒信令/信道的起始OFDM符号可以由以下方式来确定。
例如,在物理唤醒信令/信道所在子帧上的物理唤醒信令/信道的起始OFDM符号l WUSStart是预先定义的。例如,对于带内模式的NB-IoT,即高层所配置的操作模式operationModeInfo为‘00’或‘01’时,其起始OFDM符号l WUSStart为2。而对于独立模式和保护带模式的NB-IoT,即高层所配置操作模式operationModeInfo为‘10’或‘11’时,其起始OFDM符号l WUSStart为0。
备选地,在物理唤醒信令/信道所在子帧上的物理唤醒信令/信道的起始OFDM符号l WUSStart由系统信息或UE特定的RRC信令或MAC信令或物理层信令所配置。例如,在物理唤醒信令/信道所在子帧上的物理唤醒信令/信道的起始OFDM符号l WUSStart由该子帧上所配置的控制区域 大小eutraControlRegionSize值所确定。如果配置了控制区域大小eutraControlRegionSize值,则l WUSStart由eutraControlRegionSize决定,否则在物理唤醒信令/信道所在子帧上的物理唤醒信令/信道的起始OFDM符号l WUSStart=0。
与上述方法200相对应,本公开提供了一种用户设备UE。图3示出了根据本公开实施例的UE 300的框图。如图所示,UE 300包括:收发机310、处理器320和存储器330,所述处理器330存储所述处理器320可执行的指令,使得所述用户设备300执行以上结合图2描述的方法200。
具体地,所述处理器330存储所述处理器320可执行的指令,使得所述用户设备300确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒UE以检测随后的窄带物理下行控制信道NPDCCH;以及在所确定的时域位置处检测来自基站的物理唤醒信令。其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
在实施例中,所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧,或所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或由基站通过信令配置的,其中,所述数目是由基站通过无线资源控制RRC信令针对寻呼载波配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
在实施例中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者由基站通过信令配置的。
在实施例中,检测物理唤醒信令包括:使用与UE所属的用户组相 关联的正交序列来检测物理唤醒信令,使得UE仅解码针对其所属的用户组的物理唤醒信令。
本公开还提供了一种基站中的方法。图4是示出了根据本公开实施例的基站中的方法400的流程图。如图所示,方法400包括以下步骤。
在步骤S410,确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒用户设备UE以检测随后的窄带物理下行控制信道NPDCCH。其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
在步骤S420,在所确定的时域位置处向UE发送物理唤醒信令。
在实施例中,所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧,或所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或通过信令向UE配置的,其中,所述数目是通过无线资源控制RRC信令针对寻呼载波向UE配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
在实施例中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者通过信令向UE配置的。
在实施例中,发送物理唤醒信令包括:将与UE所属的用户组相关联的正交序列应用于物理唤醒信令。
与上述方法400相对应,本公开提供了一种基站。图5示出了根据本公开实施例的基站500的框图。如图所示,基站500包括:收发机510、处理器520和存储器530,所述处理器530存储所述处理器520可执行的指令,使得所述基站500执行以上结合图4描述的方法400。
具体地,所述处理器530存储所述处理器520可执行的指令,使得 基站500确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒用户设备UE以检测随后的窄带物理下行控制信道NPDCCH;以及在所确定的时域位置处向UE发送物理唤醒信令,其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
在实施例中,所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧,或所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或通过信令向UE配置的,其中,所述数目是通过无线资源控制RRC信令针对寻呼载波向UE配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
在实施例中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者通过信令向UE配置的。
在实施例中,发送物理唤醒信令包括:将与UE所属的用户组相关联的正交序列应用于物理唤醒信令。
相应地,以上关于方法200所描述的所有示例、特征及其任意组合也适用于UE 300,方法400和基站500。
上文已经结合优选实施例对本申请的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本申请的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本申请并不局限于作为这些标识的示例的具体信元。 本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本申请的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”是指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”是指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
此外,这里所公开的本申请的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本申请的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本申请实施例所述的操作(方法)。本申请的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本申请实施例所描述的技术方案。
此外,上述每个实施例中所使用的基站设备和终端设备的每个功能模块或各个特征可以由电路实现或执行,所述电路通常为一个或多个集成电路。设计用于执行本说明书中所描述的各个功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)或通用集成电路、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、或分立的硬件组件、或以上器件的任意组合。通用处理器可以是微处理器,或者所述处理器可以是现有的处理器、控制器、微控制器或状态机。上述通用处理器或每个电路可以由数字电路配置, 或者可以由逻辑电路配置。此外,当由于半导体技术的进步,出现了能够替代目前的集成电路的先进技术时,本申请也可以使用利用该先进技术得到的集成电路。
尽管以上已经结合本申请的优选实施例示出了本申请,但是本领域的技术人员将会理解,在不脱离本申请的精神和范围的情况下,可以对本申请进行各种修改、替换和改变。因此,本申请不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明也可以使用这些新的集成电路技术来实现。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在 本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种用户设备UE中的方法,所述方法包括:
    确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒UE以检测随后的窄带物理下行控制信道NPDCCH;以及
    在所确定的时域位置处检测来自基站的物理唤醒信令,
    其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
  2. 根据权利要求1所述的方法,其中,
    所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧,或
    所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或
    所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,
    其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或由基站通过信令配置的,
    其中,所述数目是由基站通过无线资源控制RRC信令针对寻呼载波配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
  3. 根据权利要求1或2所述的方法,其中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者由基站通过信令配置的。
  4. 根据权利要求1或2所述的方法,其中,检测物理唤醒信令包括:使用与UE所属的用户组相关联的正交序列来检测物理唤醒信令,使得UE仅解码针对其所属的用户组的物理唤醒信令。
  5. 一种用户设备UE,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述UE执行根据权利要求1-4中任一项所述的方法。
  6. 一种基站中的方法,所述方法包括:
    确定物理唤醒信令的时域位置,所述物理唤醒信令用于唤醒用户设备UE以检测随后的窄带物理下行控制信道NPDCCH;以及
    在所确定的时域位置处向UE发送物理唤醒信令,
    其中,确定时域位置包括:确定用于物理唤醒信令的起始子帧或结束子帧以及用于物理唤醒信令的子帧的数目。
  7. 根据权利要求6所述的方法,其中,
    所述结束子帧与随后的寻呼时机之间具有第一偏移,所述时域位置包括以所述结束子帧为结尾的所述数目的连续的可用子帧,或
    所述起始子帧与随后的寻呼时机之间具有第二偏移,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,或
    所述起始子帧由物理唤醒信令的周期和第三偏移决定,所述时域位置包括从所述起始子帧开始的所述数目的连续的可用子帧,
    其中,所述第一偏移、第二偏移、周期和第三偏移是预定的或通过信令向UE配置的,
    其中,所述数目是通过无线资源控制RRC信令针对寻呼载波向UE配置的,或者是根据针对寻呼载波所配置的使用寻呼无线网络临时标识P-RNTI加扰的NPDCCH的最大重复次数导出的。
  8. 根据权利要求6或7所述的方法,其中,确定时域位置还包括:确定用于物理唤醒信令的每个子帧中用于物理唤醒信令的起始正交频分复用OFDM符号,其中所述起始OFDM符号是预定义的或者通过信令向UE配置的。
  9. 根据权利要求6或7所述的方法,其中,发送物理唤醒信令包括:将与UE所属的用户组相关联的正交序列应用于物理唤醒信令。
  10. 一种基站,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述基站执行根据权利要求6-9中任一项所述的方法。
PCT/CN2018/096596 2017-07-27 2018-07-23 基站、用户设备和相关方法 WO2019019960A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18837879.8A EP3661094B1 (en) 2017-07-27 2018-07-23 Base station, user equipment, and related method
US16/633,089 US11272451B2 (en) 2017-07-27 2018-07-23 Base station, user equipment, and related methods
ZA2020/00771A ZA202000771B (en) 2017-07-27 2020-02-05 Base station, user equipment, and related method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710626984.8A CN109309555B (zh) 2017-07-27 2017-07-27 基站、用户设备和相关方法
CN201710626984.8 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019019960A1 true WO2019019960A1 (zh) 2019-01-31

Family

ID=65039999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096596 WO2019019960A1 (zh) 2017-07-27 2018-07-23 基站、用户设备和相关方法

Country Status (6)

Country Link
US (1) US11272451B2 (zh)
EP (1) EP3661094B1 (zh)
CN (1) CN109309555B (zh)
TW (1) TWI734007B (zh)
WO (1) WO2019019960A1 (zh)
ZA (1) ZA202000771B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536416A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 信号发送、接收方法、装置、第一节点、第二节点及介质
CN111586812A (zh) * 2019-02-15 2020-08-25 海信集团有限公司 一种终端接收节能信号的方法及终端
EP3927021A4 (en) * 2019-02-15 2022-03-30 Datang Mobile Communications Equipment Co., Ltd. SIGNAL PROCESSING METHOD AND DEVICE AND APPARATUS
EP3920612A4 (en) * 2019-02-19 2022-04-20 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR RECEIVING AND TRANSMITTING REFERENCE SIGNALS
CN114651484A (zh) * 2019-11-07 2022-06-21 中兴通讯股份有限公司 用于确定用于唤醒信号传输的资源的方法、装置和系统
EP4090085A4 (en) * 2020-04-29 2023-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. COMMUNICATION METHOD AND DEVICE
EP4013132A4 (en) * 2019-08-09 2023-09-13 ZTE Corporation METHOD AND DEVICE FOR TRANSMITTING WAKE-UP SIGNALS AND STORAGE MEDIUM
EP4373165A3 (en) * 2020-05-20 2024-08-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving paging and dedicated system information in a wireless communication system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3706498B1 (en) * 2017-11-17 2024-09-11 Huawei Technologies Co., Ltd. Indication signal configuration method and device
US11432242B2 (en) 2018-02-01 2022-08-30 Huawei Technologies Co., Ltd. System information updating method, apparatus, and system
WO2019158446A1 (en) * 2018-02-15 2019-08-22 Sony Corporation Wake_up signal candidate indicator
US11653306B2 (en) * 2018-08-10 2023-05-16 Apple Inc. Wake-up signal sub-grouping for enhanced machine type communication (EMTC) and narrowband internet of things (NB-IoT)
CN113228765B (zh) * 2018-11-12 2022-11-01 联想(北京)有限公司 用于唤醒信号的方法和装置
CN111757434A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 通信方法和装置
CN111757437B (zh) * 2019-03-29 2022-04-01 大唐移动通信设备有限公司 一种节能信号传输的方法、网络侧设备及终端
WO2020206632A1 (en) * 2019-04-10 2020-10-15 Lenovo (Beijing) Limited Methods and apparatuses for ue grouping
WO2020220354A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 一种通信方法及装置
WO2020223939A1 (zh) * 2019-05-09 2020-11-12 Oppo广东移动通信有限公司 检测控制信道的方法和终端设备
CN111294902B (zh) * 2019-07-05 2021-06-18 展讯通信(上海)有限公司 唤醒方法及装置、存储介质、终端
EP3797553A4 (en) * 2019-07-12 2021-11-10 Nokia Technologies Oy MECHANISM FOR INTERACTIONS TO SWITCH TO SLEEP MODE
CN115767693A (zh) * 2019-08-15 2023-03-07 华为技术有限公司 一种通信方法及相关设备
CN114342495B (zh) * 2019-09-11 2024-07-09 联想(北京)有限公司 用于nr-light系统的唤醒信号传输
EP4037397A4 (en) * 2019-09-25 2023-09-27 Ntt Docomo, Inc. TERMINAL DEVICE AND COMMUNICATION METHOD
CN114365562A (zh) * 2019-09-29 2022-04-15 华为技术有限公司 一种唤醒信号序列发送方法以及相关装置
CN114731579A (zh) * 2019-11-22 2022-07-08 联想(北京)有限公司 用于唤醒信号的配置
CN111200870A (zh) * 2020-01-07 2020-05-26 展讯通信(上海)有限公司 通信方法及装置
WO2022007844A1 (en) * 2020-07-08 2022-01-13 Mediatek Inc. Power efficient paging mechanism with sequence-based paging early indicator (pei)
CN113163476B (zh) * 2021-01-15 2024-09-24 中兴通讯股份有限公司 信号发送和接收方法、装置、设备和存储介质
CN115715012A (zh) * 2021-08-20 2023-02-24 维沃移动通信有限公司 传输处理方法、装置、终端、网络侧设备及存储介质
CN118250776A (zh) * 2022-12-23 2024-06-25 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036346A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种调度信息传输的方法及系统
CN103220690A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送、下行控制信道的检测方法及装置
CN104244380A (zh) * 2013-06-09 2014-12-24 华为技术有限公司 一种确定ue激活时间的方法及装置
WO2015190883A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for performing blind detection in wireless communication system
CN106792792A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 基站、用户终端及其下行数据控制方法及装置
US20170202054A1 (en) * 2016-01-11 2017-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling connected mode drx operations

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060130356A (ko) 2005-06-14 2006-12-19 삼성전자주식회사 휴대통신장치의 절전방법
US8064932B2 (en) * 2008-04-11 2011-11-22 Mediatek Inc. Methods for scheduling a receiving process and communication apparatuses utilizing the same
US8527017B2 (en) * 2010-04-14 2013-09-03 Qualcomm Incorporated Power savings through cooperative operation of multiradio devices
US8964672B2 (en) * 2011-11-04 2015-02-24 Blackberry Limited Paging in heterogeneous networks with discontinuous reception
KR101579030B1 (ko) * 2012-04-05 2015-12-18 옵티스 셀룰러 테크놀로지, 엘엘씨 페이징 구성정보의 수신을 위한 어드밴스드 웨이크업
US9295044B2 (en) * 2012-12-21 2016-03-22 Blackberry Limited Resource scheduling in direct device to device communications systems
US9351250B2 (en) * 2013-01-31 2016-05-24 Qualcomm Incorporated Methods and apparatus for low power wake up signal and operations for WLAN
US9781639B2 (en) * 2013-04-03 2017-10-03 Google Technology Holdings LLC Methods and devices for cell discovery
US20160057738A1 (en) 2013-05-09 2016-02-25 Lg Electronics Inc. Method for monitoring paging occasions in a wireless communication system and device therefor
WO2015180085A1 (en) * 2014-05-29 2015-12-03 Qualcomm Incorporated Methods and apparatuses for paging monitoring management for multi-rat devices
US20170347335A1 (en) * 2014-11-05 2017-11-30 Lg Electronics Inc. Method and apparatus for transmitting paging for machine type communication user equipment in wireless communication system
US10609644B2 (en) * 2016-05-10 2020-03-31 Zte Corporation Low power receiver for wireless communication
CN110463285B (zh) * 2017-03-24 2023-07-14 苹果公司 用于机器类型通信和窄带物联网设备的唤醒信号
CN110754120B (zh) * 2017-05-04 2022-05-03 索尼公司 传输包括同步信令的唤醒信号的电信装置和方法
JP7150747B2 (ja) * 2017-05-04 2022-10-11 アイピーエルエー ホールディングス インコーポレイテッド ウェイクアップ信号動作

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036346A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种调度信息传输的方法及系统
CN103220690A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送、下行控制信道的检测方法及装置
CN104244380A (zh) * 2013-06-09 2014-12-24 华为技术有限公司 一种确定ue激活时间的方法及装置
WO2015190883A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for performing blind detection in wireless communication system
US20170202054A1 (en) * 2016-01-11 2017-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling connected mode drx operations
CN106792792A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 基站、用户终端及其下行数据控制方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.211, June 2017 (2017-06-01)
3GPP TS 36.212, June 2017 (2017-06-01)
See also references of EP3661094A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586812B (zh) * 2019-02-15 2023-08-25 海信集团有限公司 一种终端接收节能信号的方法及终端
CN111586812A (zh) * 2019-02-15 2020-08-25 海信集团有限公司 一种终端接收节能信号的方法及终端
EP3927021A4 (en) * 2019-02-15 2022-03-30 Datang Mobile Communications Equipment Co., Ltd. SIGNAL PROCESSING METHOD AND DEVICE AND APPARATUS
US12052666B2 (en) 2019-02-15 2024-07-30 Datang Mobile Communications Equipment Co., Ltd. Signal processing method and apparatus, and device with time-domain position for monitoring power-saving signal
EP3920612A4 (en) * 2019-02-19 2022-04-20 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR RECEIVING AND TRANSMITTING REFERENCE SIGNALS
US11895618B2 (en) 2019-02-19 2024-02-06 Huawei Technologies Co., Ltd. Reference signal receiving and sending method, device, and system
EP4013132A4 (en) * 2019-08-09 2023-09-13 ZTE Corporation METHOD AND DEVICE FOR TRANSMITTING WAKE-UP SIGNALS AND STORAGE MEDIUM
US12010621B2 (en) 2019-08-09 2024-06-11 Zte Corporation Method and device for transmitting a wake up signal, and storage medium
CN110536416A (zh) * 2019-08-16 2019-12-03 中兴通讯股份有限公司 信号发送、接收方法、装置、第一节点、第二节点及介质
CN110536416B (zh) * 2019-08-16 2024-04-30 中兴通讯股份有限公司 信号发送、接收方法、装置、第一节点、第二节点及介质
CN114651484A (zh) * 2019-11-07 2022-06-21 中兴通讯股份有限公司 用于确定用于唤醒信号传输的资源的方法、装置和系统
CN115884377A (zh) * 2020-04-29 2023-03-31 Oppo广东移动通信有限公司 通信方法及装置
EP4090085A4 (en) * 2020-04-29 2023-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. COMMUNICATION METHOD AND DEVICE
CN115884377B (zh) * 2020-04-29 2024-08-23 Oppo广东移动通信有限公司 通信方法及装置
EP4408092A3 (en) * 2020-04-29 2024-09-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, apparatus and chip
EP4373165A3 (en) * 2020-05-20 2024-08-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving paging and dedicated system information in a wireless communication system

Also Published As

Publication number Publication date
TWI734007B (zh) 2021-07-21
CN109309555B (zh) 2022-07-12
EP3661094A1 (en) 2020-06-03
US11272451B2 (en) 2022-03-08
EP3661094A4 (en) 2021-04-14
EP3661094B1 (en) 2023-07-12
TW201911909A (zh) 2019-03-16
ZA202000771B (en) 2021-08-25
US20210136687A1 (en) 2021-05-06
CN109309555A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
TWI734007B (zh) 基站、使用者設備和相關方法
CN113906795B (zh) 用于监视寻呼的方法和使用该方法的设备
US11937221B2 (en) System and method for multi-carrier network operation
US11184852B2 (en) Wake-up signal with reconfigurable sequence design
AU2015301147B2 (en) Ran procedures for Extended Discontinuous Reception (DRX)
WO2020114483A1 (zh) 用户设备、基站及其方法
US20180220465A1 (en) Method for reporting transmission mode and ue
EP3531766B1 (en) Control information detection method and transmission method, and device
US20230276362A1 (en) Ssb-aligned transmission of paging-related signals
CN110830225B (zh) 辅wus参数的配置方法及装置、存储介质、服务基站、终端
EP3474621A1 (en) System and method for multi-carrier network operation
CN111510998B (zh) 由用户设备执行的方法以及用户设备
CN111132328A (zh) 用户设备和用户设备执行的方法
WO2019196038A1 (zh) 节能信号的传输方法和设备
CN118201046A (zh) 非连续接收的方法、终端设备和网络设备
WO2022151255A1 (en) 5g mr trs/csi~rs signaling aspects for enhanced ue power saving
CN113316236B (zh) 寻呼处理方法、装置、设备及存储介质
WO2022141009A1 (zh) 寻呼消息发送的方法和装置
US20230072047A1 (en) Communications devices, infrastructure equipment and methods
WO2020200119A1 (zh) 一种信号检测方法及设备
WO2020221253A1 (zh) 由用户设备执行的方法以及用户设备
WO2020200063A1 (zh) 一种唤醒方法以及相关装置
WO2023078394A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018837879

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018837879

Country of ref document: EP

Effective date: 20200227