WO2019019718A1 - Table de déflexion rapide bidimensionnelle intégrant une unité de détection et un élément de contrainte et procédé - Google Patents

Table de déflexion rapide bidimensionnelle intégrant une unité de détection et un élément de contrainte et procédé Download PDF

Info

Publication number
WO2019019718A1
WO2019019718A1 PCT/CN2018/083990 CN2018083990W WO2019019718A1 WO 2019019718 A1 WO2019019718 A1 WO 2019019718A1 CN 2018083990 W CN2018083990 W CN 2018083990W WO 2019019718 A1 WO2019019718 A1 WO 2019019718A1
Authority
WO
WIPO (PCT)
Prior art keywords
voice coil
coil motor
flexible metal
axis
deflection
Prior art date
Application number
PCT/CN2018/083990
Other languages
English (en)
Chinese (zh)
Inventor
徐明龙
肖瑞江
王源
邵妍
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2019019718A1 publication Critical patent/WO2019019718A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B5/00Adjusting position or attitude, e.g. level, of instruments or other apparatus, or of parts thereof; Compensating for the effects of tilting or acceleration, e.g. for optical apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the invention relates to the technical field of two-dimensional rapid deflection actuation of micro angular displacement, in particular to a two-dimensional fast deflection stage, an operation method and a micro angle sensing measurement method integrating a sensing unit and a constraining component.
  • micro-angle two-dimensional fast deflection tables have been widely used in astronomical telescopes, image stabilization control, spacecraft communication precision pointing, and satellite imaging. And play an increasingly important role.
  • the current piezoelectric driving type micro-angle actuation platform has small volume and high resonance frequency, but has a high driving voltage and a small operating stroke, and the operating mechanism needs to install an additional eddy current displacement sensor to measure. Biaxial deflection angle. Due to the particularity of its application environment, it is often required that the actuation platform have a large angular travel at a lower driving voltage.
  • the voice coil motor has excellent features such as simple structure, small size, high precision, precise force control, rapid response, long life and large drive stroke. Therefore, voice coil motors are widely used in the field of precision actuation.
  • an object of the present invention is to provide a two-dimensional fast deflection stage, an operation method and a micro-angle sensing measurement method, which integrate a sensing unit and a constraining element, and the deflection stage is based on a voice coil.
  • the motor drive has the characteristics of small volume, fast response, high displacement resolution, etc., and can realize large angular stroke at low voltage; and the elastic constraint element not only increases the constraint stiffness of the whole mechanism, but also realizes double Sensing measurement of the shaft deflection angle.
  • a two-dimensional fast deflection stage integrating a sensing unit and a constraining element, comprising a base 2, a rigid support 5 at the center of the base 2, and a micro-angle pendulum connected to the rigid support 5 by a biaxial flexible hinge 10
  • the platform 1 further includes an X-axis angular displacement sensing measuring device 3 and a Y-axis angular displacement sensing measuring device 4 connected to the lower surface of the micro-angle pendulum platform 1 through a biaxial flexible hinge, and distributed in the X-axis angular displacement sensing device.
  • the first voice coil motor 6 includes a first magnetic cylinder 6-2 and a first coil 6-1 disposed in the first magnetic cylinder 6-2; the second voice coil motor 8 and the third voice coil motor 7 And the fourth voice coil motor 9 are both identical in composition and specifications to the first voice coil motor 6; the first voice coil motor 6 and the second voice coil motor 8 are arranged opposite each other to constitute a first actuator group; The triphonic motor 7 and the fourth voice coil motor 9 are vertically staggered with the first actuator group to form a second actuator group.
  • the X-axis angular displacement sensing device 3 is composed of a rigid support 5 located at the center of the base 2, a first flexible metal beam 3-1 and a second flexible metal beam 3-2 protruding from opposite sides, and respectively with the first flexible The metal beam 3-1 and the first "convex" shaped mass 3-3 and the second "convex” shaped mass 3-4 fixedly connected at the end of the second flexible metal beam 3-2; the first flexible metal beam 3- 1 and the upper and lower surfaces of the root of the second flexible metal beam 3-2 are respectively attached with four strain gauges, and the corresponding external signal processing circuit can be connected to form two full bridge circuits, and the first flexible metal beam 3-1 and The distance between the resistance strain gauges on the same surface of the second flexible metal beam 3-2 is constant; the Y-axis angular displacement sensing device 4 is the same as the X-axis angular displacement sensing device 3.
  • the coil displacement output end of the first voice coil motor 6, the second voice coil motor 8, the third voice coil motor 7 and the fourth voice coil motor 9 and the bottom of the magnetic cylinder are respectively angularly displaced from the X axis by screws
  • the sensation measuring device 3, the Y-axis angular displacement sensing device 4, and the susceptor 2 are fixedly connected.
  • the above-mentioned method for operating a two-dimensional fast deflection stage integrating the sensing unit and the constraining element when working, when working with the first voice coil motor 6 and the second voice coil motor of the first actuator group 8 when a voltage control signal of opposite direction is applied, the first coil 6-1 of the first voice coil motor 6 moves in the positive direction of the Z axis to generate a positive displacement; the second coil 8-1 of the second voice coil motor 8 The Z-axis moves in the negative direction, producing a negative displacement equal to it, thereby pushing the micro-angle pendulum platform 1 to generate a deflection angle around the X-axis centering on the biaxial flexible hinge 10; based on the same control method, the second actuator group can be The micro-angle pendulum platform 1 is driven to generate a deflection angle around the Y-axis centering on the biaxial flexible hinge 10.
  • the first "convex" shaped mass 3-3 and the second "convex” shaped mass 3-4 of the X-axis angular displacement sensing device 3 are driven to generate opposite displacements, thereby driving A flexible metal beam 3-1 and a second flexible metal beam 3-2 produce a certain deflection at the end while generating a large strain at the root; at this time, the first flexible metal beam 3-1 and the second flexible metal are attached.
  • the strain gauges near the root of the beam 3-2 are strained, and the strain generated at the root is linear with the deflection generated at the corresponding end; therefore, by measuring the first flexible metal beam 3-1 and the second flexible metal beam 3-
  • the root strain information of 2 can calculate the corresponding deflection, thereby obtaining the angle of deflection around the X axis.
  • the principle of measuring the angle of deflection around the Y-axis is the same as the principle of measuring the angle of deflection around the X-axis; thereby achieving the function of measuring the biaxial deflection angle by strain feedback while increasing the constraint stiffness of the mechanism.
  • the present invention has the following advantages:
  • the voice coil motor drive has the unique advantages of small drive voltage and large drive stroke, so the present invention can realize a large biaxial deflection angle.
  • the invention adopts a flexible hinge support structure, and the flexible hinge utilizes the micro-deformation of the elastic material and its self-recovering characteristics, thereby eliminating the idle motion and mechanical friction during the transmission process, and the mechanism has the characteristics of high displacement resolution.
  • Figure 1 is a schematic perspective view of the present invention.
  • Figure 2 is a schematic diagram showing the composition of the X-axis deflection mechanism.
  • Figure 3 is a schematic diagram of an angular displacement sensing measuring device.
  • Figure 4 is a schematic diagram of the measurement of the angular displacement sensing measuring device.
  • the present invention is a two-dimensional fast deflection stage integrating a sensing unit and a constraining element, comprising a base 2, a rigid support 5 at the center of the base 2, and a flexible structure with biaxial A micro-angle pendulum platform 1 in which the hinge 10 is coupled to the rigid support 5; and an X-axis angular displacement sensing device 3 and a Y-axis angular displacement sensing device connected to the lower surface of the micro-angle pendulum platform 1 by a biaxial flexible hinge
  • the third voice coil motor 7 and the fourth voice coil motor 9 are interposed.
  • the first voice coil motor 6 includes a first magnetic cylinder 6-2 and a first coil 6-1 placed in the first magnetic cylinder 6-2.
  • the second voice coil motor 8, the third voice coil motor 7, and the fourth voice coil motor 9 are all the same in composition and specifications as the first voice coil motor 6.
  • the first voice coil motor 6 and the second voice coil motor 8 are arranged opposite each other to constitute a first actuator group.
  • the third voice coil motor 7 and the fourth voice coil motor 9 are vertically staggered with the first actuator group to form a second actuator group.
  • the X-axis angular displacement sensing device 3 is composed of a rigid support 5 located at the center of the base 2, a first flexible metal beam 3-1 and a second flexible metal beam 3-2 projecting from opposite sides. And a first "convex" shaped mass 3-3 and a second "convex” shaped mass 3-4 that are fixedly coupled to the ends of the first flexible metal beam 3-1 and the second flexible metal beam 3-2, respectively.
  • Four upper and lower resistance surfaces are attached to the upper and lower surfaces of the first flexible metal beam 3-1 and the second flexible metal beam 3-2, and the corresponding external signal processing circuit can be connected to form two full-bridge circuits, and the flexible metal The distance between the resistance strain gauges on the same surface of the beam is constant.
  • the Y-axis angular displacement sensing device 4 is identical in composition to the X-axis angular displacement sensing device 3.
  • the coil displacement output end of the first voice coil motor 6, the second voice coil motor 8, the third voice coil motor 7, and the fourth voice coil motor 9 and the bottom of the magnetic cylinder pass through
  • the screws are fixedly coupled to the X-axis angular displacement sensing device 3, the Y-axis angular displacement sensing device 4, and the base 2, respectively.
  • the operating principle of the two-dimensional fast deflection stage of the present invention is that when a voltage control signal of opposite direction is applied to the first voice coil motor 6 and the second voice coil motor 8 of the first actuator group, the first voice coil motor 6
  • the first coil 6-1 moves in the positive direction of the Z axis to generate a positive displacement
  • the second coil 8-1 in the second voice coil motor 8 moves in the negative direction of the Z axis, generating a negative displacement equal thereto, thereby pushing
  • the micro-angle pendulum platform 1 produces a deflection angle around the X-axis centering on the biaxial flexible hinge 10.
  • the micro-angle pendulum platform 1 can be pushed by the second actuator group to generate a Y-axis deflection angle centering on the biaxial flexible hinge 10.
  • the micro-angle sensing measurement principle of the deflection stage of the present invention is: when the first voice coil motor 6 and the second voice coil motor 8 of the first actuator group operate in a differential manner, push X
  • the first "convex" shaped mass 3-3 and the second “convex” shaped mass 3-4 of the axial angular displacement sensing device 3 produce oppositely displaced displacements, thereby driving the first flexible metal beam 3-1 and
  • the second flexible metal beam 3-2 produces a certain deflection at the end while generating a large strain at the root.
  • the strain gauges attached to the vicinity of the roots of the first flexible metal beam 3-1 and the second flexible metal beam 3-2 generate strain, and the strain generated at the root is linearly related to the deflection generated at the corresponding end. Therefore, by measuring the root strain information of the first flexible metal beam 3-1 and the second flexible metal beam 3-2, the respective deflections ⁇ h 1 and - ⁇ h 2 can be calculated, using the formula The deflection angle of the corresponding axis can be obtained.
  • the principle of measuring the angle of deflection around the Y axis is the same as the principle of measuring the angle of deflection around the X axis.
  • the design of the flexible metal beam not only increases the constraint stiffness of the actuating platform, but also improves the stability of the mechanism. At the same time, it acts as a sensing unit to perform real-time measurement of the biaxial deflection angle by means of strain feedback. Thereby, the integrated actuation structure design of the sensing unit and the constraining element is realized.

Abstract

L'invention concerne une table de déflexion rapide bidimensionnelle intégrant une unité de détection et un élément de contrainte, et un procédé. La table de déviation comprend des dispositifs de mesure de détection de déplacement angulaire d'axe X et d'axe Y (3, 4) qui sont situés entre une plateforme de pendule à micro-angle 1 et une base 2, une charnière flexible à double axe 10 étant disposée sur la surface inférieure de la plate-forme oscillante de micro-angle; et la table de déviation comprend également quatre moteurs de bobine acoustique linéaire (6, 7, 8, 9); les dispositifs de mesure de détection de déplacement angulaire d'axe X et d'axe Y (3 4) comprennent chacun une paire de poutres métalliques flexibles (3-1, 3-2) faisant saillie à partir de deux côtés opposés d'un support rigide 5 et de blocs de masse (3-3, 34) qui sont reliés de manière fixe aux extrémités de queue des poutres métalliques flexibles (3-1, 3-2); une jauge de contrainte est fixée à des surfaces supérieure et inférieure à proximité de la racine de chaque faisceau métallique flexible (31, 32); les premier et troisième moteurs à bobine acoustique (6, 7) sont agencés de manière opposée à l'aide des mêmes spécifications et forment un premier ensemble d'actionneurs; les deuxième et quatrième moteurs à bobine acoustique (8, 9) sont agencés de manière opposée en utilisant les mêmes spécifications et sont perpendiculaires au premier ensemble d'actionneurs dans un agencement transversal; avec la présente invention, la rigidité de contrainte de la table de déviation est augmentée au moyen des poutres métalliques flexibles; pendant ce temps, la table de déviation sert d'unité de détection pour effectuer une mesure en temps réel d'angles de déviation à double axe dans un mode de rétroaction de contrainte.
PCT/CN2018/083990 2017-07-25 2018-04-21 Table de déflexion rapide bidimensionnelle intégrant une unité de détection et un élément de contrainte et procédé WO2019019718A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710612943.3 2017-07-25
CN201710612943.3A CN107393599B (zh) 2017-07-25 2017-07-25 集传感单元和约束元件于一体的二维快速偏转台及方法

Publications (1)

Publication Number Publication Date
WO2019019718A1 true WO2019019718A1 (fr) 2019-01-31

Family

ID=60337603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083990 WO2019019718A1 (fr) 2017-07-25 2018-04-21 Table de déflexion rapide bidimensionnelle intégrant une unité de détection et un élément de contrainte et procédé

Country Status (2)

Country Link
CN (1) CN107393599B (fr)
WO (1) WO2019019718A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393599B (zh) * 2017-07-25 2018-07-06 西安交通大学 集传感单元和约束元件于一体的二维快速偏转台及方法
CN107966995B (zh) * 2017-12-01 2021-05-04 西安交通大学 一种法向电磁应力驱动的角度调节平台及调节方法
CN108146647B (zh) * 2017-12-25 2019-02-01 北京航空航天大学 基于反向力矩的光电吊舱稳像控制装置及控制方法
CN108759749A (zh) * 2018-05-31 2018-11-06 上海朗旦制冷技术有限公司 利用应变片检测活塞位移的方法
CN111510019B (zh) * 2020-04-22 2021-03-16 西安交通大学 具备传感信号调平功能的二维快速偏转调节装置及方法
CN113059537B (zh) * 2021-02-26 2022-07-15 佛山市华道超精科技有限公司 柔性铰链机构、超精密直线运动平台及双工件工作台
CN114952744B (zh) * 2022-07-05 2022-12-20 广东工业大学 一种音圈电机直驱式主动隔振调平一体化平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324933B1 (en) * 1999-10-06 2001-12-04 Agere Systems Guardian Corp. Planar movable stage mechanism
CN102323656A (zh) * 2011-09-28 2012-01-18 哈尔滨工业大学 基于双轴柔性铰链的高频响二维微角摆控制反射镜
CN103990998A (zh) * 2014-05-20 2014-08-20 广东工业大学 基于应力刚化原理的刚度频率可调二维微动平台
CN106026763A (zh) * 2016-05-17 2016-10-12 西安交通大学 一种压电陶瓷驱动的三自由度角度调节装置及调节方法
CN107393599A (zh) * 2017-07-25 2017-11-24 西安交通大学 集传感单元和约束元件于一体的二维快速偏转台及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551836B (zh) * 2016-01-18 2018-04-17 北京邮电大学 一种二维微动平台装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324933B1 (en) * 1999-10-06 2001-12-04 Agere Systems Guardian Corp. Planar movable stage mechanism
CN102323656A (zh) * 2011-09-28 2012-01-18 哈尔滨工业大学 基于双轴柔性铰链的高频响二维微角摆控制反射镜
CN103990998A (zh) * 2014-05-20 2014-08-20 广东工业大学 基于应力刚化原理的刚度频率可调二维微动平台
CN106026763A (zh) * 2016-05-17 2016-10-12 西安交通大学 一种压电陶瓷驱动的三自由度角度调节装置及调节方法
CN107393599A (zh) * 2017-07-25 2017-11-24 西安交通大学 集传感单元和约束元件于一体的二维快速偏转台及方法

Also Published As

Publication number Publication date
CN107393599A (zh) 2017-11-24
CN107393599B (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2019019718A1 (fr) Table de déflexion rapide bidimensionnelle intégrant une unité de détection et un élément de contrainte et procédé
Xu et al. Development of a nonresonant piezoelectric motor with nanometer resolution driving ability
Ling et al. Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms
Zhang et al. Development of a novel two-DOF pointing mechanism using a bending–bending hybrid piezoelectric actuator
Scire et al. Piezodriven 50‐μm range stage with subnanometer resolution
US10239167B2 (en) Stiffness-frequency adjustable XY micromotion stage based on stress stiffening
CN103913838B (zh) 二维快速偏转反射镜作动机构及其作动方法
Gao et al. A compact 2-DOF micro/nano manipulator using single miniature piezoelectric tube actuator
Lu et al. Novel inertial piezoelectric actuator with high precision and stability based on a two fixed-end beam structure
Deng et al. Development and experiment evaluation of an inertial piezoelectric actuator using bending-bending hybrid modes
CN103309009B (zh) 应用于光学系统的压电陶瓷直线电机调焦装置
Zhang et al. Development of a low capacitance two-axis piezoelectric tilting mirror used for optical assisted micromanipulation
CN103023374A (zh) 惯性式压电直线电机
CN107834895B (zh) 压电-电磁混合驱动的XYθz三自由度柔性作动器及方法
Xu et al. A stick-slip piezoelectric actuator with high assembly interchangeability
Wei et al. Design and experimental evaluation of a compliant mechanism-based stepping-motion actuator with multi-mode
Wang et al. Design of a linear-rotary ultrasonic motor for optical focusing inspired by the bionic motion principles of the earthworms
Liu et al. A novel plate type linear piezoelectric actuator using dual-frequency drive
CN110065926B (zh) 二自由度scott-russell柔性微纳定位平台
Pan et al. Design, simulation, and motion characteristics of a novel impact piezoelectric actuator using double stators
CN114812368A (zh) 一种高带宽大行程空间三自由度并联柔顺精密定位平台
Deng et al. An inertial bipedal piezoelectric actuator with integration of triple actuation modes
Zhu et al. Design and investigation of a new piezoelectric beam transportation device based on two-mode excitation
Xu et al. A four-foot walking-type stepping piezoelectric actuator: driving principle, simulation and experimental evaluation
US7994688B2 (en) Mechanical design of laminar weak-link mechanisms with centimeter-level travel range and sub-nanometer positioning resolution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838516

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18838516

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.07.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18838516

Country of ref document: EP

Kind code of ref document: A1