WO2019019115A1 - 一种控制干扰的方法及装置 - Google Patents

一种控制干扰的方法及装置 Download PDF

Info

Publication number
WO2019019115A1
WO2019019115A1 PCT/CN2017/094754 CN2017094754W WO2019019115A1 WO 2019019115 A1 WO2019019115 A1 WO 2019019115A1 CN 2017094754 W CN2017094754 W CN 2017094754W WO 2019019115 A1 WO2019019115 A1 WO 2019019115A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
channel
area
base station
channel group
Prior art date
Application number
PCT/CN2017/094754
Other languages
English (en)
French (fr)
Inventor
朱亚军
洪伟
刘春花
李勇
Original Assignee
北京小米移动软件有限公司
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司, 北京邮电大学 filed Critical 北京小米移动软件有限公司
Priority to CN201780000731.8A priority Critical patent/CN109451871B/zh
Priority to PCT/CN2017/094754 priority patent/WO2019019115A1/zh
Priority to ES17918906T priority patent/ES2905440T3/es
Priority to EP17918906.3A priority patent/EP3661273B1/en
Publication of WO2019019115A1 publication Critical patent/WO2019019115A1/zh
Priority to US16/740,394 priority patent/US11218977B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and apparatus for controlling interference.
  • LTE-Advanced Long Term Evolution-Advanced
  • PDCCH Physical Downlink Control Channel
  • Interference Coordination Inter-cell interference coordination
  • the macro base station and the small base station share two downlink CCs (Carrier Component), which are assumed to be CC1 and CC2.
  • the two CCs of the small base station operate at low transmission power
  • the CC1 of the macro base station operates at high transmission power
  • the CC2 operates at low transmission power.
  • the transmission of the macro base station on the CC1 in the range extension area has a large interference to the CC1 of the small base station, and the transmission of the macro base station on the CC2 is transmitted due to the transmission.
  • the power is low and the interference to the small base station is relatively weak.
  • the small base station using the PDCCH on the CC2 to cross-carrier the data on the CC1 can improve the reliability of the downlink control signaling, and the macro base station can also not transmit the PDCCH on the CC2, but use the CC1 cross-carrier scheduling CC2. Data transfer on.
  • the cross-carrier scheduling mode provides the ICIC between the PDCCHs, and the interference cancellation between the PDSCH (Physical Downlink Shared Channel) can continue to adopt the Release 8 ICIC mechanism, such as in the small base station range.
  • the terminal in the extended area needs to receive downlink data on some resource blocks, and the macro base station can avoid high-power PDSCH transmission on these resource blocks.
  • NR New Radio introduces flexible OFDM (Orthogonal Frequency Division Multiplexing) numerology (parameter set) to support different frequency bands/frequency categories and deployment methods. Wherein, when slots corresponding to different numerologies contain the same number of symbols, the subcarrier spacing is inversely proportional to the slot length.
  • the NR supports a variety of different numerologies, and also supports CA (Carrier Aggregation) between different numerologies.
  • the macro base station and the small base station may have different numerology configurations for the carrier, that is, the slot length of the same carrier is different between the macro base station and the small base station. Since the coverage of the macro base station is relatively large, the required CP (Cyclic Prefix) length is long, and the large subcarrier spacing is increased. The overhead of a large CP, therefore, the sub-carrier spacing configured by the same CC on the macro base station is usually smaller than that of the small base station. That is, for the same CC, the slot length of the macro base station is longer than the slot length of the small base station, and the length of the control area of the macro base station is also longer than the length of the control area of the small base station.
  • CA Carrier Aggregation
  • the macro base station has a relatively large transmit power on CC1. Since the PDCCH field of the macro base station is longer than the small base station, the PDCCH on the macro base station CC1 will be on the CC1 of the small base station. The PDCCH and part of the PDSCH generate strong interference.
  • the cross-carrier scheduling method in the related art can only solve the PDCCH interference problem between the macro base station and the small base station, and the ICIC mechanism in Release 8 is only applicable to the interference problem between the PDSCHs that can be dynamically scheduled, and thus cannot The problem of interference of the PDCCH of the macro base station with the PDSCH of the small base station is solved.
  • embodiments of the present disclosure provide a method and apparatus for controlling interference.
  • a method of controlling interference the method being for a macro base station, the method comprising:
  • the dividing the control area in the time domain transmission unit to obtain the first power area and the second power area including:
  • the area corresponding to the preset symbol position in the control area of the time domain transmission unit is used as the first power area;
  • An area other than the first power area in the control area of the time domain transmission unit is used as the second power area.
  • the method further includes:
  • target signaling includes any one of the following:
  • Radio resource control signaling system information, media access control address control unit, and physical layer signaling.
  • the preset symbol position is predefined in a communication protocol.
  • the allocating all the current channels to obtain the first channel group and the second channel group including:
  • Channels other than the channels included in the first channel group in all current channels are divided into second channel groups.
  • the method further includes:
  • Transmitting the ratio to the terminal so that the terminal demodulates the physical downlink control channel PDCCH from the time domain transmission unit that is sent by the macro base station to the terminal according to the ratio and the reference signal.
  • the sending the ratio to the terminal includes:
  • target signaling includes any one of the following:
  • Radio resource control signaling system information, media access control address control unit, and physical layer signaling.
  • an apparatus for controlling interference the apparatus being for a macro base station, the apparatus comprising:
  • the area dividing module is configured to divide the control area in the time domain transmission unit to obtain a first power area and a second power area, where the control area is an area in which control information is mapped in the time domain and the frequency domain;
  • the transmit power of the first power region is higher than the transmit power of the second power region;
  • a channel division module configured to divide all current channels to obtain a first channel group and a second channel group; wherein, a channel quality of any one of the first channel groups is higher than any of the second channel groups Channel quality of a channel;
  • An execution module configured to transmit, by using the first power region, data carried by all channels included in the second channel group, and transmit, by using the second power region, all information included in the first channel group The data carried by the road.
  • the area dividing module includes:
  • the first area dividing sub-module is configured to use, as the first power area, an area corresponding to the preset symbol position in the control area of the time domain transmission unit;
  • the second area dividing submodule is configured to use, as the second power area, an area other than the first power area in a control area of the time domain transmission unit.
  • the device further includes:
  • the first sending module is configured to send the preset symbol location to the terminal by using target signaling, where the target signaling includes any one of the following:
  • Radio resource control signaling system information, media access control address control unit, and physical layer signaling.
  • the preset symbol position is predefined in a communication protocol.
  • the channel division module includes:
  • a detection module configured to detect a signal to noise ratio of all current channels
  • the first channel dividing sub-module is configured to select a preset number of channels according to a high to low signal to noise ratio, to obtain a first channel group;
  • the second channel dividing sub-module is configured to divide channels other than the channels included in the first channel group into the second channel group in all current channels.
  • the device further includes:
  • a determining module configured to determine a ratio between respective transmit power values of the first power region and the second power region
  • a second sending module configured to send the ratio to the terminal, so that the terminal demodulates the physical downlink from the macro base station to the time domain transmission unit of the terminal according to the ratio and the reference signal Control channel PDCCH.
  • the second sending module includes:
  • a sending submodule configured to send the ratio to the terminal by using target signaling, where the target signaling includes any one of the following:
  • Radio resource control signaling system information, media access control address control unit, and physical layer signaling.
  • a computer readable storage medium storing a computer program for performing the method of controlling interference according to the first aspect described above.
  • an apparatus for controlling interference comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the control area in the time domain transmission unit may be divided by the macro base station to obtain the first power region and the second power region.
  • the transmit power of the first power region may be higher than the transmit power of the second power region.
  • the macro base station may also divide all current channels to obtain a first channel group with higher channel quality and a second channel group with lower channel quality. Further, the macro base station may transmit, by using the first power region, data carried by all channels included in the second channel group, and transmit, by using the second power region, all channels included in the first channel group. The data.
  • the macro base station transmits data carried by all channels included in the second channel group with poor channel quality through the first power region of high transmit power, and transmits good channel quality through the second power region with low transmit power.
  • the data carried by all the channels included in the first channel group can greatly alleviate the PDSCH of the macro base station and the small base station when the macro base station and the small base station adopt different parameter sets on the same carrier. Interference, and will not reduce the spectrum utilization of macro base stations and small base stations.
  • the region corresponding to the preset symbol position in the control region of the time domain transmission unit may be used as the first power region, in addition to the control region.
  • An area other than the first power area is referred to as a second power area.
  • the preset symbol position may be set by the macro base station and sent by the macro base station to the terminal through target signaling; or the preset symbol position may be defined in the communication protocol in advance.
  • the terminal may receive the preset symbol position sent by the macro base station through the target signaling or directly acquire the preset symbol position by using the communication protocol, thereby determining the power region of the different transmit power used by the macro base station in the control region of the transmitted time domain transmission unit. From which the PDCCH is demodulated based on a ratio between the reference signal and the power values of the different power regions.
  • the macro base station may divide all current channels according to a signal to noise ratio, and divide a channel with good channel quality, that is, a channel with high signal to noise, into a first channel group, and the channel quality is poor, that is, signal to noise.
  • the lower channel is divided into the second channel group. Therefore, the data carried by all the channels included in the channel group with different channel quality can be transmitted through different power regions, which greatly reduces the use of different parameter sets in the heterogeneous network when the macro base station and the small base station use the same carrier.
  • the PDCCH of the macro base station interferes with the PDSCH of the small base station, and does not reduce the spectrum utilization rate of the macro base station and the small base station.
  • the macro base station may send the ratio between the respective transmit power values of the first power region and the second power region to the terminal.
  • the ratio may be sent to the terminal by using target signaling.
  • the terminal may demodulate the PDCCH from the time domain transmission unit that the macro base station sends to the terminal according to the ratio and the reference signal. While reducing the interference of the PDCCH of the macro base station to the PDSCH of the small base station, the terminal can successfully demodulate the PDCCH, and avoid reducing the spectrum utilization of the macro base station and the small base station, and does not affect the normal service of the terminal.
  • FIG. 1 is a schematic diagram of a scenario of a heterogeneous network according to the related art.
  • 2A to 2B are schematic diagrams of scenarios of interference generated by a heterogeneous network in the related art.
  • FIG. 3 is a flow chart of a method for controlling interference according to an exemplary embodiment.
  • FIG. 4 is a schematic diagram of a scenario for controlling interference according to an exemplary embodiment.
  • FIG. 5 is a flow chart of another method of controlling interference according to an exemplary embodiment.
  • 6A-6B are schematic diagrams of scenarios for controlling interference, according to an exemplary embodiment.
  • FIG. 7 is a flow chart showing another method of controlling interference according to an exemplary embodiment.
  • FIG. 8 is a schematic diagram of a scenario for controlling interference according to an exemplary embodiment.
  • FIG. 9 is a flow chart showing another method of controlling interference according to an exemplary embodiment.
  • FIG. 10 is a block diagram of a device for controlling interference according to an exemplary embodiment.
  • 11 is a block diagram of another apparatus for controlling interference, according to an exemplary embodiment.
  • FIG. 12 is a block diagram of another apparatus for controlling interference, according to an exemplary embodiment.
  • FIG. 13 is a block diagram of another apparatus for controlling interference, according to an exemplary embodiment.
  • FIG. 14 is a block diagram of another apparatus for controlling interference, according to an exemplary embodiment.
  • FIG. 15 is a block diagram of another apparatus for controlling interference, according to an exemplary embodiment.
  • FIG. 16 is a schematic structural diagram of an apparatus for controlling interference according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, similarly, without departing from the scope of the present disclosure. It can also be called the first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determination.”
  • the macro base station and the small base station share two downlink CCs.
  • the macro base station can use CC1 to cross-carrier scheduling data transmission on CC2, and the small base station uses CC2.
  • the PDCCH is used to schedule data on CC1 across carriers, as shown in Figure 2A. Because the parameter sets of the macro base station and the small base station are different, the PDCCH of the macro base station is caused to interfere with the PDCCH of the small base station and part of the PDSCH, as shown in FIG. 2B.
  • the location of the time domain resource that is interfered on the small base station may be punctured, so that the small base station discards the signal received on the corresponding time domain and frequency domain resources, but this method may cause time. Fragmentation of domain and frequency domain resources also reduces spectrum utilization.
  • the embodiment of the present disclosure provides the following Method and device for controlling interference.
  • the method and apparatus for controlling interference may be based on the following conditions: First, in a heterogeneous network, the PDCCH interference problem of the macro base station to the small base station is solved by cross-carrier scheduling; in addition, in the NR, the base station supports Different transmit powers are used on different OFDM symbols.
  • FIG. 3 is a flowchart of a method for controlling interference according to an exemplary embodiment, which may be used in a macro base station, including the following steps:
  • step 101 the control area in the time domain transmission unit is divided to obtain a first power region and a second power region, where the control region is an area in which control information is mapped in the time domain and the frequency domain;
  • the transmit power of the power region is higher than the transmit power of the second power region;
  • step 102 all current channels are divided to obtain a first channel group and a second channel group, wherein a channel quality of any one of the first channel groups is higher than any one of the second channel groups Channel quality;
  • step 103 data carried by all channels included in the second channel group is transmitted by the first power region, and all channels included in the first channel group are transmitted through the second power region. The data carried.
  • the control area in the time domain transmission unit may be divided by the macro base station to obtain the first power region and the second power region.
  • the transmit power of the first power region may be higher than the transmit power of the second power region.
  • the macro base station may also divide all current channels to obtain a first channel group with higher channel quality and a second channel group with lower channel quality. Further, the macro base station can pass the first The power region transmits data carried by all channels included in the second channel group, and transmits data carried by all channels included in the first channel group through the second power region.
  • the macro base station transmits data carried by all channels included in the second channel group with poor channel quality through the first power region of high transmit power, and transmits good channel quality through the second power region with low transmit power.
  • the data carried by all the channels included in the first channel group can greatly alleviate the PDSCH of the macro base station and the small base station when the macro base station and the small base station adopt different parameter sets on the same carrier. Interference, and will not reduce the spectrum utilization of macro base stations and small base stations.
  • the time domain transmission unit may be a subframe or a slot, etc.
  • the macro base station may divide the control region in the time domain transmission unit to obtain different power regions.
  • the area in which the control information is mapped in the time domain and the frequency domain is the control area, and the control information may be a PDCCH, a PICH (Paging Indicator Channel), or the like.
  • FIG. 5 is a flowchart of another method for controlling interference according to the embodiment shown in FIG. 3, which may include the following steps:
  • step 101-1 an area corresponding to the preset symbol position in the control area of the time domain transmission unit is used as the first power area;
  • the base station may set an area corresponding to the preset symbol position in the control area of the time domain transmission unit, for example, the preset symbol position is the location where the first time domain symbol is located, and the base station will use the first time domain symbol.
  • the corresponding area serves as the first power area as shown in FIG. 6A.
  • the preset symbol position may be set by the base station. Further, the macro base station may send the preset symbol position to the terminal by using target signaling.
  • the target signaling may be any one of radio resource control signaling, system information, media access control address control unit, and physical layer signaling.
  • the preset symbol position may be predefined in the communication protocol, and the base station does not need to send the preset symbol position to the terminal by using a signaling, and the terminal may directly determine the preset by using content specified by the communication protocol. Symbol location.
  • the terminal After the terminal obtains the preset symbol position, it can learn the power region of the different transmit power used by the macro base station in the control region of the transmitted time domain transmission unit, so that the ratio between the reference signal and the power value of the different power regions is obtained therefrom.
  • the PDCCH is demodulated.
  • the preset symbol position may be set by the macro base station and sent by the macro base station to the terminal through target signaling; or the preset symbol position may be defined in the communication protocol in advance.
  • the terminal may receive the preset symbol position sent by the macro base station through the target signaling or directly acquire the preset symbol position by using the communication protocol, thereby determining the power region of the different transmit power used by the macro base station in the control region of the transmitted time domain transmission unit. From which The PDCCH is demodulated by a ratio between the reference signal and the power values of the different power regions.
  • step 101-2 an area other than the first power area in the control area of the time domain transmission unit is used as the second power area.
  • the base station may divide the area other than the first power area in the control area of the time domain transmission unit into the second power area.
  • the area corresponding to the first time domain symbol is taken as the first power area, and the remaining control area is used as the second power area, as shown in FIG. 6B.
  • the macro base station can quickly divide different power regions, so as to subsequently transmit data carried by all channels included in different channel groups through different power regions.
  • the base station may further divide all the current channels, and divide the channel into the first channel group and the second channel group according to the channel quality.
  • step 102 can be referred to FIG. 7.
  • FIG. 7 is a flowchart of another method for controlling interference according to the embodiment shown in FIG. 3, which may include the following steps:
  • step 102-1 detecting a signal to noise ratio for all current channels
  • the base station can perform signal to noise ratio detection on all current channels according to related technologies.
  • step 102-2 a preset number of channels are selected in order of high to low signal to noise ratio to obtain a first channel group
  • the base station may divide the preset number of channels arranged in front into the first channel group in order of high to low signal to noise ratio, that is, use multiple channels with good channel quality as the first channel group.
  • step 102-3 channels other than the channels included in the first channel group in all current channels are divided into second channel groups.
  • the channel that does not belong to the first channel group is automatically divided into the second channel group.
  • the base station may transmit data carried by all channels included in the second channel group with poor channel quality through the first power region with high transmit power, and transmit channel quality through the second power region with low transmit power. Good data carried by all channels included in the first channel group.
  • the macro base station can divide all current channels according to the signal-to-noise ratio, and divide the channel with good channel quality, that is, the channel with high signal-to-noise ratio into the first channel group, and the channel quality is poor, that is, the channel division with low signal-to-noise ratio. Is the second channel group. Therefore, the data carried by all the channels included in the channel group with different channel quality can be transmitted through different power regions, which greatly reduces the use of the macro base station and the small base station on the same carrier in the heterogeneous network.
  • the PDCCH of the macro base station interferes with the PDSCH of the small base station, and the spectrum utilization of the macro base station and the small base station is not reduced.
  • FIG. 9 is implemented according to FIG. Another method for controlling interference is illustrated, and the method for controlling interference may further include the following steps:
  • step 104 determining a ratio between respective transmit power values of the first power region and the second power region;
  • the base station can calculate a ratio between power values of different power regions, for example, ⁇ .
  • step 105 the ratio is sent to the terminal, so that the terminal demodulates the physical downlink control channel PDCCH from the time domain transmission unit sent by the macro base station to the terminal according to the ratio and the reference signal.
  • the base station may send the ratio ⁇ to the terminal by using target signaling, and the terminal may calculate the transmit power corresponding to the different power regions after receiving, and further, according to the reference symbol and the transmit power corresponding to the different power regions,
  • a PDCCH is demodulated from a time domain transmission unit that the macro base station transmits to the terminal. While reducing the interference of the PDCCH of the macro base station to the PDSCH of the small base station, the terminal can successfully demodulate the PDCCH, and avoid reducing the spectrum utilization of the macro base station and the small base station, and does not affect the normal service of the terminal.
  • the target signaling may be any one of radio resource control signaling, system information, media access control address control unit, and physical layer signaling.
  • the ratio ⁇ can also be defined as a fixed value in the communication protocol in advance, and the base station does not need to send the ratio to the terminal, and the terminal can demodulate the PDCCH according to the ratio and the reference signal specified by the communication protocol.
  • the present disclosure also provides an application function implementation apparatus and corresponding embodiments.
  • FIG. 10 is a block diagram of a device for controlling interference according to an exemplary embodiment, where the device is used for a macro base station, and the device includes:
  • the area dividing module 210 is configured to divide the control area in the time domain transmission unit to obtain the first a power region and a second power region, wherein the control region is an area in which control information is mapped in a time domain and a frequency domain; a transmit power of the first power region is higher than a transmit power of the second power region;
  • the channel dividing module 220 is configured to divide all current channels to obtain a first channel group and a second channel group, where a channel quality of any one of the first channel groups is higher than that of the second channel group Channel quality of any one channel;
  • the executing module 230 is configured to transmit, by using the first power region, data carried by all channels included in the second channel group, and transmit, by using the second power region, all included in the first channel group The data carried by the channel.
  • the macro base station transmits data carried by all channels included in the second channel group with poor channel quality through the first power region of high transmit power, and transmits the first channel with better channel quality through the second power region with low transmit power
  • the data carried by all the channels included in the group can greatly reduce the interference of the PDCCH of the macro base station to the PDSCH of the small base station when the macro base station and the small base station adopt different parameter sets on the same carrier in the heterogeneous network, and The spectrum utilization of the macro base station and the small base station is not reduced.
  • FIG. 11 is a block diagram of another apparatus for controlling interference according to the embodiment shown in FIG. 10.
  • the area dividing module 210 includes:
  • the first area dividing sub-module 211 is configured to use, as the first power area, an area corresponding to the preset symbol position in the control area of the time domain transmission unit;
  • the second area dividing sub-module 212 is configured to use an area other than the first power area in the control area of the time domain transmission unit as the second power area.
  • the macro base station can quickly divide different power regions so as to subsequently transmit data carried by all channels included in different channel groups through different power regions.
  • FIG. 12 is a block diagram of another apparatus for controlling interference according to the embodiment shown in FIG. 11, the apparatus further comprising:
  • the first sending module 240 is configured to send the preset symbol location to the terminal by using target signaling, where the target signaling includes any one of the following:
  • Radio resource control signaling system information, media access control address control unit, and physical layer signaling.
  • the preset symbol position is predefined in a communication protocol.
  • the preset symbol position may be set by the macro base station and sent by the macro base station to the terminal through target signaling; or the preset symbol position may be defined in advance in the communication protocol.
  • the terminal may receive the preset symbol position sent by the macro base station through the target signaling or directly acquire the preset symbol position by using the communication protocol, thereby determining the power region of the different transmit power used by the macro base station in the control region of the transmitted time domain transmission unit. From which reference signals and The ratio between the power values of the different power regions demodulates the PDCCH.
  • FIG. 13 is a block diagram of another apparatus for controlling interference according to the embodiment shown in FIG. 10.
  • the channel dividing module 220 includes:
  • the detecting module 221 is configured to perform signal to noise ratio detection on all current channels
  • the first channel dividing sub-module 222 is configured to select a preset number of channels in order of high to low signal to noise ratio to obtain a first channel group;
  • the second channel dividing sub-module 223 is configured to divide channels other than the channels included in the first channel group into the second channel group in all current channels.
  • the macro base station can divide all current channels according to the signal-to-noise ratio, and divide the channel with good channel quality, that is, the channel with high signal-to-noise ratio into the first channel group, and the channel quality is poor, that is, the channel division with low signal-to-noise ratio. Is the second channel group. Therefore, the data carried by all the channels included in the channel group with different channel quality can be transmitted through different power regions, which greatly reduces the use of different parameter sets in the heterogeneous network when the macro base station and the small base station use the same carrier.
  • the PDCCH of the macro base station interferes with the PDSCH of the small base station, and does not reduce the spectrum utilization rate of the macro base station and the small base station.
  • FIG. 14 is a block diagram of another apparatus for controlling interference according to the embodiment shown in FIG. 10, the apparatus further comprising:
  • a determining module 250 configured to determine a ratio between respective transmit power values of the first power region and the second power region
  • the second sending module 260 is configured to send the ratio to the terminal, so that the terminal demodulates the physics from the macro base station to the time domain transmission unit of the terminal according to the ratio and the reference signal.
  • Downlink control channel PDCCH Downlink control channel
  • FIG. 15 is a block diagram of another apparatus for controlling interference according to the embodiment shown in FIG. 14.
  • the second transmitting module 260 includes:
  • the sending submodule 261 is configured to send the ratio to the terminal by using target signaling, where the target signaling includes any one of the following:
  • Radio resource control signaling system information, media access control address control unit, and physical layer signaling.
  • the macro base station may send the ratio between the respective transmit power values of the first power region and the second power region to the terminal.
  • the ratio may be sent to the terminal by using target signaling.
  • the terminal may demodulate the PDCCH from the time domain transmission unit that the macro base station sends to the terminal according to the ratio and the reference signal. While reducing the interference of the PDCCH of the macro base station to the PDSCH of the small base station, the terminal can successfully demodulate the PDCCH, and avoid reducing the spectrum utilization of the macro base station and the small base station, and does not affect the normal service of the terminal.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the present disclosure also provides a computer readable storage medium storing a computer program for performing the method of controlling interference as described above.
  • the present disclosure also provides an apparatus for controlling interference, the apparatus being used for a macro base station, including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • FIG. 16 is a schematic structural diagram of a feedback device 1600 for mixing automatic retransmission request results according to an exemplary embodiment.
  • Apparatus 1600 can be provided as a macro base station.
  • apparatus 1600 includes a processing component 1622, a wireless transmit/receive component 1624, an antenna component 1626, and a signal processing portion specific to the wireless interface.
  • Processing component 1622 can further include one or more processors.
  • One of the processing components 1622 can be configured to:

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种控制干扰的方法及装置,其中,所述方法包括:对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;对当前所有信道进行划分,获得第一信道组和第二信道组;通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。本公开中,可以极大的减轻异构网络中,宏基站和小基站在相同载波上采用不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。

Description

一种控制干扰的方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种控制干扰的方法及装置。
背景技术
在LTE-Advanced(Long Term Evolution-Advanced,长期演进技术升级版)中,跨载波调度的主要作用是在异构网络中为PDCCH(Physical Downlink Control Channel,物理下行控制信道)提供ICIC(Inter-Cell Interference Coordination,小区间干扰协作)支持。
在异构网络中,如图1所示,宏基站和小基站共享两个下行CC(Carrier Component,载波单元),假设为CC1和CC2。小基站的2个CC都在低传输功率下工作,宏基站的CC1在高传输功率工作,CC2在低传输功率工作。特别是当小基站上使用了范围扩展(Range Extension)技术时,在范围扩展区域内宏基站在CC1上的传输对小基站的CC1有很大的干扰,而宏基站在CC2上的传输由于传输功率较低因此对小基站的干扰也相对较弱。因此,在小基站上,使用CC2上的PDCCH来跨载波调度在CC1上的数据可以提高下行控制信令的可靠性,而宏基站也可以不在CC2上发送PDCCH,而是使用CC1跨载波调度CC2上的数据传输。
这种跨载波调度方式提供了PDCCH之间的ICIC,而对于PDSCH(Physical Downlink Shared Channel,物理下行共享信道)之间的干扰消除可以继续采用Release(版本)8的ICIC机制,如位于小基站范围扩展区域内的终端在某些资源块上要接收下行数据,宏基站可以避免在这些资源块上进行大功率的PDSCH传输等。
NR(New Radio,新空口)中引入了灵活可扩展OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)numerology(参数集),用以支持不同的频带/频率类别以及部署方式。其中,当不同numerology对应的slot(时隙)包含相同个数的符号时,子载波间隔和slot长度成反比。
NR支持各种不同的numerology,也支持不同numerology间的CA(Carrier Aggregation,载波聚合)。针对同一个CC,宏基站和小基站对载波的numerology配置可能不同,即相同载波的slot长度在宏基站和小基站上有差别。由于宏基站的覆盖范围比较大,需要的CP(Cyclic Prefix,循环前缀)长度较长,大的子载波间隔将会增 大CP的开销,因此通常情况下,同一个CC在宏基站上配置的子载波间隔会比小基站小。即针对同一个CC,宏基站的slot长度比小基站的slot长度要长,且宏基站的控制区域的长度也会长于小基站的控制区域的长度。
如果宏基站和小基站均配置了CC1和CC2,宏基站在CC1上的发射功率比较大,由于宏基站的PDCCH域长于小基站,因此宏基站CC1上的PDCCH将会对小基站的CC1上的PDCCH和部分PDSCH产生强烈的干扰。但是,采用相关技术中的跨载波调度方式只能解决宏基站与小基站之间的PDCCH干扰问题,而Release 8中的ICIC机制也只适用于可以动态调度的PDSCH之间的干扰问题,因此无法解决宏基站的PDCCH对小基站的PDSCH的干扰问题。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种控制干扰的方法及装置。
根据本公开实施例的第一方面,提供一种控制干扰的方法,所述方法用于宏基站,所述方法包括:
对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
可选地,所述对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,包括:
将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域;
将时域传输单元的控制区域中除了所述第一功率区域之外的区域作为所述第二功率区域。
可选地,所述方法还包括:
通过目标信令将所述预设符号位置发送给所述终端,其中,所述目标信令包括以下任一项:
无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
可选地,所述预设符号位置是通信协议中预先定义的。
可选地,所述对当前所有信道进行划分,获得第一信道组和第二信道组,包括:
对当前所有信道进行信噪比的检测;
按照所述信噪比由高到低的顺序,选取预设数目的信道,获得第一信道组;
将当前所有信道中除了所述第一信道组所包括的信道之外的信道划分为第二信道组。
可选地,所述方法还包括:
确定所述第一功率区域和所述第二功率区域各自对应的发射功率值之间的比值;
将所述比值发送给终端,以使所述终端根据所述比值和参考信号,从所述宏基站发送给所述终端的时域传输单元中解调出物理下行控制信道PDCCH。
可选地,所述将所述比值发送给终端,包括:
通过目标信令将所述比值发送给终端,其中,所述目标信令包括以下任一个:
无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
根据本公开实施例的第二方面,提供一种控制干扰的装置,所述装置用于宏基站,所述装置包括:
区域划分模块,被配置为对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
信道划分模块,被配置为对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
执行模块,被配置为通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信 道所承载的数据。
可选地,所述区域划分模块包括:
第一区域划分子模块,被配置为将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域;
第二区域划分子模块,被配置为将时域传输单元的控制区域中除了所述第一功率区域之外的区域作为所述第二功率区域。
可选地,所述装置还包括:
第一发送模块,被配置为通过目标信令将所述预设符号位置发送给所述终端,其中,所述目标信令包括以下任一项:
无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
可选地,所述预设符号位置是通信协议中预先定义的。
可选地,所述信道划分模块包括:
检测模块,被配置为对当前所有信道进行信噪比的检测;
第一信道划分子模块,被配置为按照所述信噪比由高到低的顺序,选取预设数目的信道,获得第一信道组;
第二信道划分子模块,被配置为将当前所有信道中除了所述第一信道组所包括的信道之外的信道划分为第二信道组。
可选地,所述装置还包括:
确定模块,被配置为确定所述第一功率区域和所述第二功率区域各自对应的发射功率值之间的比值;
第二发送模块,被配置为将所述比值发送给终端,以使所述终端根据所述比值和参考信号,从所述宏基站发送给所述终端的时域传输单元中解调出物理下行控制信道PDCCH。
可选地,所述第二发送模块包括:
发送子模块,被配置为通过目标信令将所述比值发送给终端,其中,所述目标信令包括以下任一个:
无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
根据本公开实施例的第三方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面所述的控制干扰的方法。
根据本公开实施例的第四方面,提供一种控制干扰的装置,所述装置用于宏基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,在异构网络中,可以由宏基站对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域。其中,第一功率区域的发射功率可以高于第二功率区域的发射功率。宏基站还可以对当前所有信道进行划分,获得信道质量较高的第一信道组,和信道质量较差的第二信道组。进一步地,宏基站可以通过第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。上述过程中,宏基站通过高发射功率的第一功率区域发射信道质量较差的第二信道组所包括的所有信道所承载的数据,并通过低发射功率的第二功率区域发射信道质量较好的第一信道组所包括的所有信道所承载的数据,可以极大的减轻异构网络中,宏基站和小基站在相同载波上采用不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。
本公开实施例中,宏基站在划分不同的功率区域时,可以将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域,在所述控制区域中除了所 述第一功率区域之外的区域作为第二功率区域。通过上述过程,宏基站可以快速划分出不同的功率区域,以便后续通过不同的功率区域发射不同信道组所包括的所有信道所承载的数据。
本公开实施例中,预设符号位置可以由宏基站设置,并由宏基站通过目标信令发送给终端;或者预设符号位置可以预先在通信协议中定义。终端可以接收宏基站通过目标信令发送的预设符号位置或通过通信协议直接获取预设符号位置,从而确定宏基站在传输的时域传输单元的控制区域中所采用的不同发射功率的功率区域,从中根据参考信号和不同功率区域的功率值之间的比值解调PDCCH。
本公开实施例中,宏基站可以将当前所有信道根据信噪比进行划分,将信道质量好,也就是信噪比较高的信道划分为第一信道组,信道质量较差,也就是信噪比较低的信道划分为第二信道组。以便后续可以通过不同的功率区域来发射信道质量不同的信道组所包括的所有信道所承载的数据,极大的减轻异构网络中,宏基站和小基站在相同载波上采用不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。
本公开实施例中,宏基站可以将第一功率区域和第二功率区域各自对应的发射功率值之间的比值发送给终端,可选地,可以通过目标信令发送所述比值给终端。终端在接收到所述比值之后,就可以根据所述比值以及参考信号,从宏基站发送给终端的时域传输单元中解调出PDCCH。在减少了宏基站的PDCCH对小基站的PDSCH的干扰的同时,使得终端可以成功解调出PDCCH,避免降低宏基站和小基站的频谱利用率,且不会影响终端正常业务。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据相关技术中的一种异构网络的场景示意图。
图2A至图2B是相关技术中的异构网络产生的干扰的场景示意图。
图3是根据一示例性实施例示出的一种控制干扰的方法流程图。
图4是根据一示例性实施例示出的一种控制干扰的场景示意图。
图5是根据一示例性实施例示出的另一种控制干扰的方法流程图。
图6A至图6B是是根据一示例性实施例示出的控制干扰的场景示意图。
图7是根据一示例性实施例示出的另一种控制干扰的方法流程图。
图8是根据一示例性实施例示出的一种控制干扰的场景示意图。
图9是根据一示例性实施例示出的另一种控制干扰的方法流程图。
图10是根据一示例性实施例示出的一种控制干扰的装置框图。
图11是根据一示例性实施例示出的另一种控制干扰的装置框图。
图12是根据一示例性实施例示出的另一种控制干扰的装置框图。
图13是根据一示例性实施例示出的另一种控制干扰的装置框图。
图14是根据一示例性实施例示出的另一种控制干扰的装置框图。
图15是根据一示例性实施例示出的另一种控制干扰的装置框图。
图16是本公开根据一示例性实施例示出的一种用于控制干扰的装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息 也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在图1所示的异构网络中,宏基站和小基站共享两个下行CC,在进行跨载波调度时,宏基站可以使用CC1跨载波调度CC2上的数据传输,而小基站通过使用CC2上的PDCCH来跨载波调度在CC1上的数据,如图2A所示。由于宏基站和小基站的参数集不同,会使得宏基站的PDCCH干扰到小基站的PDCCH以及部分的PDSCH,如图2B所示。
相关技术中,可以通过在小基站上被干扰的时域资源所在的位置进行打孔,从而使得小基站丢弃在相应时域和频域资源上接收到的信号,但是通过这一方式会造成时域和频域资源碎片化,也降低了频谱的利用率。
为了解决异构网络中,相同载波上宏基站配置的子载波间隔比小基站上的子载波间隔小时,宏基站的PDCCH对相同载波上小基站的PDSCH的干扰问题,本公开实施例提供了以下控制干扰的方法及装置。
在本公开实施例中,控制干扰的方法及装置可以基于以下条件:首先,在异构网络中,通过跨载波调度解决了宏基站对小基站的PDCCH干扰问题;另外,在NR中,基站支持在不同的OFDM符号上采用不同的发射功率。
参照3所示,图3是根据一示例性实施例示出的一种控制干扰的方法流程图,可以用于宏基站,包括以下步骤:
在步骤101中,对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
在步骤102中,对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
在步骤103中,通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
上述实施例中,在异构网络中,可以由宏基站对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域。其中,第一功率区域的发射功率可以高于第二功率区域的发射功率。宏基站还可以对当前所有信道进行划分,获得信道质量较高的第一信道组,和信道质量较差的第二信道组。进一步地,宏基站可以通过第一 功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。上述过程中,宏基站通过高发射功率的第一功率区域发射信道质量较差的第二信道组所包括的所有信道所承载的数据,并通过低发射功率的第二功率区域发射信道质量较好的第一信道组所包括的所有信道所承载的数据,可以极大的减轻异构网络中,宏基站和小基站在相同载波上采用不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。
针对上述步骤101,时域传输单元可以是子帧或slot等,宏基站可以对时域传输单元中的控制区域进行划分,得到不同的功率区域。其中,控制信息映射在时域和频域上的区域就是控制区域,所述控制信息可以是PDCCH、PICH(Paging Indicator Channel,寻呼指示信道)等。
可选地,步骤101可以参照图5所示,图5是根据图3所示实施例示出的另一种控制干扰的方法流程图,可以包括以下步骤:
在步骤101-1中,将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域;
本步骤中,基站可以将时域传输单元的控制区域中与预设符号位置所对应的区域,例如预设符号位置为第一个时域符号所在的位置,基站将第一个时域符号所对应的区域作为第一功率区域,如图6A所示。
其中,所述预设符号位置可以是由基站设置的,进一步地,所述宏基站可以通过目标信令将所述预设符号位置发送给终端。可选地,所述目标信令可以是无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令中的任一个。
或者所述预设符号位置可以是通信协议中预先定义好的,则基站无需再通过信令将所述预设符号位置发送给终端,终端可以直接通过通信协议规定的内容,确定所述预设符号位置。
终端获得预设符号位置之后,就可以得知宏基站在传输的时域传输单元的控制区域中所采用的不同发射功率的功率区域,从而从中根据参考信号和不同功率区域的功率值之间的比值解调PDCCH。
上述实施例中,预设符号位置可以由宏基站设置,并由宏基站通过目标信令发送给终端;或者预设符号位置可以预先在通信协议中定义。终端可以接收宏基站通过目标信令发送的预设符号位置或通过通信协议直接获取预设符号位置,从而确定宏基站在传输的时域传输单元的控制区域中所采用的不同发射功率的功率区域,从中根据 参考信号和不同功率区域的功率值之间的比值解调PDCCH。
在步骤101-2中,将时域传输单元的控制区域中除了所述第一功率区域之外的区域作为所述第二功率区域。
本步骤中,基站可以将时域传输单元的控制区域中除了所述第一功率区域之外的区域,划分为所述第二功率区域。例如图6A中,第一个时域符号对应的区域作为第一功率区域之后,剩下的控制区域作为第二功率区域,如图6B所示。
通过上述过程,宏基站可以快速划分出不同的功率区域,以便后续通过不同的功率区域发射不同信道组所包括的所有信道所承载的数据。
针对上述步骤102,基站在划分获得了不同的功率区域之后,还可以对当前所有信道进行划分,按照信道质量划分为第一信道组和第二信道组。
可选地,步骤102可以参照图7所示,图7是根据图3所示实施例示出的另一种控制干扰的方法流程图,可以包括以下步骤:
在步骤102-1中,对当前所有信道进行信噪比的检测;
本步骤中,基站可以对当前所有信道按照相关技术,进行信噪比的检测。
在步骤102-2中,按照所述信噪比由高到低的顺序,选取预设数目的信道,获得第一信道组;
本步骤中,基站可以按照信噪比由高到低的顺序,将排列在前面的预设数目的信道划分为第一信道组,即将信道质量好的多个信道作为第一信道组。
在步骤102-3中,将当前所有信道中除了所述第一信道组所包括的信道之外的信道划分为第二信道组。
本步骤中,基站在划分出第一信道组之后,不属于第一信道组的信道自动划分为第二信道组。
针对上述步骤103,基站可以通过发射功率高的第一功率区域发射信道质量差的第二信道组所包括的所有信道所承载的数据,以及通过发射功率低的所述第二功率区域发射信道质量好的所述第一信道组所包括的所有信道所承载的数据。
通过上述过程,可以有效减轻异构网络中,宏基站和小基站在相同载波上采用不同参数集时,宏基站的PDCCH对小基站的PDSCH的干扰问题,如图8所示。
宏基站可以将当前所有信道根据信噪比进行划分,将信道质量好,也就是信噪比较高的信道划分为第一信道组,信道质量较差,也就是信噪比较低的信道划分为第二信道组。以便后续可以通过不同的功率区域来发射信道质量不同的信道组所包括的所有信道所承载的数据,极大的减轻异构网络中,宏基站和小基站在相同载波上采用 不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。
在一实施例中,为了让终端可以从所述宏基站发送给所述终端的时域传输单元中解调出PDCCH,可选地,参照图9所示,图9是根据图3所示实施例示出的另一种控制干扰的方法流程图,上述控制干扰的方法还可以包括以下步骤:
在步骤104中,确定所述第一功率区域和所述第二功率区域各自对应的发射功率值之间的比值;
本步骤中,基站可以计算不同功率区域的功率值之间的比值,例如为α。
在步骤105中,将所述比值发送给终端,以使所述终端根据所述比值和参考信号,从所述宏基站发送给所述终端的时域传输单元中解调出物理下行控制信道PDCCH。
本步骤中,基站可以通过目标信令将所述比值α发送给终端,终端接收后可以计算出不同功率区域所对应的发射功率,进一步地,根据参考符号和不同功率区域对应的发射功率就可以按照相关技术,从所述宏基站发送给所述终端的时域传输单元中解调出PDCCH。在减少了宏基站的PDCCH对小基站的PDSCH的干扰的同时,使得终端可以成功解调出PDCCH,避免降低宏基站和小基站的频谱利用率,且不会影响终端正常业务。
本公开实施例中,可选地,所述目标信令可以是无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令中的任一个。
当然,所述比值α也可以预先在通信协议中定义为固定值,则基站无需再将所述比值发送给终端,终端直接按照通信协议规定的比值和参考信号,就可以解调出PDCCH。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。
其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置及相应的实施例。
参照图10根据一示例性实施例示出的一种控制干扰的装置框图,所述装置用于宏基站,所述装置包括:
区域划分模块210,被配置为对时域传输单元中的控制区域进行划分,获得第 一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
信道划分模块220,被配置为对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
执行模块230,被配置为通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
宏基站通过高发射功率的第一功率区域发射信道质量较差的第二信道组所包括的所有信道所承载的数据,并通过低发射功率的第二功率区域发射信道质量较好的第一信道组所包括的所有信道所承载的数据,可以极大的减轻异构网络中,宏基站和小基站在相同载波上采用不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。
参照图11,图11是根据图10所示实施例的基础上示出的另一种控制干扰的装置框图,所述区域划分模块210包括:
第一区域划分子模块211,被配置为将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域;
第二区域划分子模块212,被配置为将时域传输单元的控制区域中除了所述第一功率区域之外的区域作为所述第二功率区域。
宏基站可以快速划分出不同的功率区域,以便后续通过不同的功率区域发射不同信道组所包括的所有信道所承载的数据。
参照图12,图12是根据图11所示实施例的基础上示出的另一种控制干扰的装置框图,所述装置还包括:
第一发送模块240,被配置为通过目标信令将所述预设符号位置发送给所述终端,其中,所述目标信令包括以下任一项:
无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
可选地,所述预设符号位置是通信协议中预先定义的。
预设符号位置可以由宏基站设置,并由宏基站通过目标信令发送给终端;或者预设符号位置可以预先在通信协议中定义。终端可以接收宏基站通过目标信令发送的预设符号位置或通过通信协议直接获取预设符号位置,从而确定宏基站在传输的时域传输单元的控制区域中所采用的不同发射功率的功率区域,从而从中根据参考信号和 不同功率区域的功率值之间的比值解调PDCCH。参照图13,图13是根据图10所示实施例的基础上示出的另一种控制干扰的装置框图,所述信道划分模块220包括:
检测模块221,被配置为对当前所有信道进行信噪比的检测;
第一信道划分子模块222,被配置为按照所述信噪比由高到低的顺序,选取预设数目的信道,获得第一信道组;
第二信道划分子模块223,被配置为将当前所有信道中除了所述第一信道组所包括的信道之外的信道划分为第二信道组。
宏基站可以将当前所有信道根据信噪比进行划分,将信道质量好,也就是信噪比较高的信道划分为第一信道组,信道质量较差,也就是信噪比较低的信道划分为第二信道组。以便后续可以通过不同的功率区域来发射信道质量不同的信道组所包括的所有信道所承载的数据,极大的减轻异构网络中,宏基站和小基站在相同载波上采用不同的参数集时,宏基站的PDCCH对小基站的PDSCH的干扰,且不会降低宏基站和小基站的频谱利用率。
参照图14,图14是根据图10所示实施例的基础上示出的另一种控制干扰的装置框图,所述装置还包括:
确定模块250,被配置为确定所述第一功率区域和所述第二功率区域各自对应的发射功率值之间的比值;
第二发送模块260,被配置为将所述比值发送给终端,以使所述终端根据所述比值和参考信号,从所述宏基站发送给所述终端的时域传输单元中解调出物理下行控制信道PDCCH。
参照图15,图15是根据图14所示实施例的基础上示出的另一种控制干扰的装置框图,所述第二发送模块260包括:
发送子模块261,被配置为通过目标信令将所述比值发送给终端,其中,所述目标信令包括以下任一个:
无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
宏基站可以将第一功率区域和第二功率区域各自对应的发射功率值之间的比值发送给终端,可选地,可以通过目标信令发送所述比值给终端。终端在接收到所述比值之后,就可以根据所述比值以及参考信号,从宏基站发送给终端的时域传输单元中解调出PDCCH。在减少了宏基站的PDCCH对小基站的PDSCH的干扰的同时,使得终端可以成功解调出PDCCH,避免降低宏基站和小基站的频谱利用率,且不会影响终端正常业务。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一所述的控制干扰的方法。
相应地,本公开还提供了一种控制干扰的装置,所述装置用于宏基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
如图16所示,图16是根据一示例性实施例示出的一种混合自动重传请求结果的反馈装置1600的一结构示意图。装置1600可以被提供为一宏基站。参照图16,装置1600包括处理组件1622、无线发射/接收组件1624、天线组件1626、以及无线接口特有的信号处理部分,处理组件1622可进一步包括一个或多个处理器。
处理组件1622中的其中一个处理器可以被配置为:
对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据, 以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种控制干扰的方法,其特征在于,所述方法用于宏基站,所述方法包括:
    对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
    对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
    通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,包括:
    将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域;
    将时域传输单元的控制区域中除了所述第一功率区域之外的区域作为所述第二功率区域。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    通过目标信令将所述预设符号位置发送给所述终端,其中,所述目标信令包括以下任一项:
    无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
  4. 根据权利要求2所述的方法,其特征在于,所述预设符号位置是通信协议中预先定义的。
  5. 根据权利要求1所述的方法,其特征在于,所述对当前所有信道进行划分,获得第一信道组和第二信道组,包括:
    对当前所有信道进行信噪比的检测;
    按照所述信噪比由高到低的顺序,选取预设数目的信道,获得第一信道组;
    将当前所有信道中除了所述第一信道组所包括的信道之外的信道划分为第二信道组。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述第一功率区域和所述第二功率区域各自对应的发射功率值之间的比值;
    将所述比值发送给终端,以使所述终端根据所述比值和参考信号,从所述宏基站发送给所述终端的时域传输单元中解调出物理下行控制信道PDCCH。
  7. 根据权利要求6所述的方法,其特征在于,所述将所述比值发送给终端,包括:
    通过目标信令将所述比值发送给终端,其中,所述目标信令包括以下任一个:
    无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
  8. 一种控制干扰的装置,其特征在于,所述装置用于宏基站,所述装置包括:
    区域划分模块,被配置为对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
    信道划分模块,被配置为对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
    执行模块,被配置为通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
  9. 根据权利要求8所述的装置,其特征在于,所述区域划分模块包括:
    第一区域划分子模块,被配置为将时域传输单元的控制区域中与预设符号位置所对应的区域作为第一功率区域;
    第二区域划分子模块,被配置为将时域传输单元的控制区域中除了所述第一功率区域之外的区域作为所述第二功率区域。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括:
    第一发送模块,被配置为通过目标信令将所述预设符号位置发送给所述终端,其中,所述目标信令包括以下任一项:
    无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
  11. 根据权利要求9所述的装置,其特征在于,所述预设符号位置是通信协议中预先定义的。
  12. 根据权利要求8所述的装置,其特征在于,所述信道划分模块包括:
    检测模块,被配置为对当前所有信道进行信噪比的检测;
    第一信道划分子模块,被配置为按照所述信噪比由高到低的顺序,选取预设数目的信道,获得第一信道组;
    第二信道划分子模块,被配置为将当前所有信道中除了所述第一信道组所包括的信道之外的信道划分为第二信道组。
  13. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    确定模块,被配置为确定所述第一功率区域和所述第二功率区域各自对应的发射 功率值之间的比值;
    第二发送模块,被配置为将所述比值发送给终端,以使所述终端根据所述比值和参考信号,从所述宏基站发送给所述终端的时域传输单元中解调出物理下行控制信道PDCCH。
  14. 根据权利要求13所述的装置,其特征在于,所述第二发送模块包括:
    发送子模块,被配置为通过目标信令将所述比值发送给终端,其中,所述目标信令包括以下任一个:
    无线资源控制信令、系统信息、媒体访问控制地址控制单元和物理层信令。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-7任一所述的控制干扰的方法。
  16. 一种控制干扰的装置,其特征在于,所述装置用于宏基站,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    对时域传输单元中的控制区域进行划分,获得第一功率区域和第二功率区域,其中,所述控制区域是控制信息映射在时域和频域上的区域;第一功率区域的发射功率高于所述第二功率区域的发射功率;
    对当前所有信道进行划分,获得第一信道组和第二信道组;其中,所述第一信道组中任意一个信道的信道质量高于所述第二信道组中任意一个信道的信道质量;
    通过所述第一功率区域发射所述第二信道组所包括的所有信道所承载的数据,以及通过所述第二功率区域发射所述第一信道组所包括的所有信道所承载的数据。
PCT/CN2017/094754 2017-07-27 2017-07-27 一种控制干扰的方法及装置 WO2019019115A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780000731.8A CN109451871B (zh) 2017-07-27 2017-07-27 一种控制干扰的方法及装置
PCT/CN2017/094754 WO2019019115A1 (zh) 2017-07-27 2017-07-27 一种控制干扰的方法及装置
ES17918906T ES2905440T3 (es) 2017-07-27 2017-07-27 Método y dispositivo para controlar interferencias
EP17918906.3A EP3661273B1 (en) 2017-07-27 2017-07-27 Method and device for controlling interference
US16/740,394 US11218977B2 (en) 2017-07-27 2020-01-11 Method and device for controlling interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094754 WO2019019115A1 (zh) 2017-07-27 2017-07-27 一种控制干扰的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/740,394 Continuation US11218977B2 (en) 2017-07-27 2020-01-11 Method and device for controlling interference

Publications (1)

Publication Number Publication Date
WO2019019115A1 true WO2019019115A1 (zh) 2019-01-31

Family

ID=65039466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094754 WO2019019115A1 (zh) 2017-07-27 2017-07-27 一种控制干扰的方法及装置

Country Status (5)

Country Link
US (1) US11218977B2 (zh)
EP (1) EP3661273B1 (zh)
CN (1) CN109451871B (zh)
ES (1) ES2905440T3 (zh)
WO (1) WO2019019115A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779500A (zh) * 2007-08-10 2010-07-14 高通股份有限公司 针对相邻节点的发射功率自适应
CN102474829A (zh) * 2009-08-11 2012-05-23 高通股份有限公司 通过对干扰小区的传输进行打孔来减轻干扰
US20150319710A1 (en) * 2014-04-30 2015-11-05 Alcatel-Lucent Usa Inc. Method And Apparatus For Reducing Interference In A Heterogeneous Network
WO2016130175A1 (en) * 2015-02-11 2016-08-18 Intel IP Corporation Device, system and method employing unified flexible 5g air interface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691245B2 (ja) * 2010-05-27 2015-04-01 富士通株式会社 受信装置、及び受信方法
BR112015010147A2 (pt) * 2012-11-15 2017-07-11 Ericsson Telefon Ab L M nó de rede e método no mesmo e estação rádio base e método na mesma para proteger os canais de controle de estação rádio base vizinha
US10841822B2 (en) * 2015-10-02 2020-11-17 Intel IP Corporation Transport format selection method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101779500A (zh) * 2007-08-10 2010-07-14 高通股份有限公司 针对相邻节点的发射功率自适应
CN102474829A (zh) * 2009-08-11 2012-05-23 高通股份有限公司 通过对干扰小区的传输进行打孔来减轻干扰
US20150319710A1 (en) * 2014-04-30 2015-11-05 Alcatel-Lucent Usa Inc. Method And Apparatus For Reducing Interference In A Heterogeneous Network
WO2016130175A1 (en) * 2015-02-11 2016-08-18 Intel IP Corporation Device, system and method employing unified flexible 5g air interface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661273A4 *

Also Published As

Publication number Publication date
CN109451871B (zh) 2020-03-06
EP3661273A4 (en) 2021-03-17
EP3661273A1 (en) 2020-06-03
EP3661273B1 (en) 2022-01-26
US11218977B2 (en) 2022-01-04
ES2905440T3 (es) 2022-04-08
US20200154367A1 (en) 2020-05-14
CN109451871A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
US11489709B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US10609702B2 (en) Base station apparatus, terminal apparatus, and communication method
US10542531B2 (en) Method and apparatus for transmitting and receiving downlink control channel in wireless communication system
US11323917B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US11343852B2 (en) Method and apparatus for setting downlink control channel reception time in wireless communication system
US20180324786A1 (en) Resource determination for uplink control channel for wireless networks
US10172130B2 (en) Wideband low latency communication
US10581573B2 (en) Apparatus, terminal and signal transmitting and receiving method thereof in a wireless communication system
US11329761B2 (en) Base station apparatus, terminal apparatus, and communication method
CN114174981A (zh) 用于改进的资源利用的控制信令的方法和装置
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
JP2017533679A (ja) 無認可スペクトル上におけるセル検出、同期化及び測定のための方法及び装置
US20170006525A1 (en) Terminal apparatus, base station apparatus, communication system, communication method, and integrated circuit
JPWO2016147994A1 (ja) 端末装置および通信方法
US9668267B2 (en) Method and apparatus for controlling interference in wireless communication system
EP3570616A1 (en) Terminal device, base station device, and communication method
WO2016070675A1 (zh) 下行信息发送、下行信息接收方法及装置
US20200382967A1 (en) Base station apparatus and communication method
WO2019242028A1 (en) Method, apparatus and computer readable media for control signal transmission and reception
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
JP6169796B2 (ja) キャリア設定方法、基地局、及びユーザ装置
JP2022547227A (ja) フレキシブルデュプレックス通信システムに対するレイテンシ減少を行うための方法及び装置
US20230371113A1 (en) Energy saving method and device in sidelink system
US20180234971A1 (en) Terminal device, base station apparatus, and communication method
CN116746105A (zh) 调度能够通过多个天线面板进行接收的ue的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017918906

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017918906

Country of ref document: EP

Effective date: 20200227