WO2019019025A1 - 一种数据包丢弃方法、装置和系统 - Google Patents

一种数据包丢弃方法、装置和系统 Download PDF

Info

Publication number
WO2019019025A1
WO2019019025A1 PCT/CN2017/094359 CN2017094359W WO2019019025A1 WO 2019019025 A1 WO2019019025 A1 WO 2019019025A1 CN 2017094359 W CN2017094359 W CN 2017094359W WO 2019019025 A1 WO2019019025 A1 WO 2019019025A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
data packet
layer
discarding
timer
Prior art date
Application number
PCT/CN2017/094359
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201780000682.8A priority Critical patent/CN108541387B/zh
Priority to PCT/CN2017/094359 priority patent/WO2019019025A1/zh
Priority to EP17919487.3A priority patent/EP3661138A4/en
Priority to US16/618,263 priority patent/US11456963B2/en
Publication of WO2019019025A1 publication Critical patent/WO2019019025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • H04L1/1877Buffer management for semi-reliable protocols, e.g. for less sensitive applications like streaming video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/32Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a packet dropping method, apparatus, and system.
  • the user plane mainly includes three sub-layers, which are a PDCP (Packet Data Convergence Protocol) layer, an RLC (Radio Link Control) layer, and a MAC (Media Access Control). Media access control layer) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • Media access control layer Media access control layer
  • SDAP Service Data Adaptation Protocol
  • an important task to be completed is to perform mapping between a data stream and a Data Radio Bearer (DRB) (that is, to allocate a DRB for the data stream) to be transmitted through the mapped DRB. data flow.
  • DRB Data Radio Bearer
  • the timer is used to monitor whether a data packet can be delivered from the PDCP layer to the RLC layer and then to the MAC layer within the set time, until finally sent from the terminal.
  • the timer is actually managed by the PDCP layer, and whether the data packet has been sent out from the terminal is also monitored by the PDCP layer.
  • the data packet is discarded, that is, the data packet is cleared from the transmission queue to prevent the data packet from occupying communication resources excessively.
  • the SDAP layer is introduced.
  • the data flow can be controlled.
  • a data stream is first loaded into multiple data packets in the SDAP layer, and then processed by the lower layer.
  • the SDAP layer supports data at the data stream level
  • the PDCP layer supports data at the packet level
  • the data at the data stream level supported by the SDAP layer is not visible in the PDCP layer. Therefore, the PDCP layer cannot monitor the data flow of the SDAP layer.
  • the monitoring mechanism in the 4G technology only involves the PDCP layer, the RLC layer, etc., and does not take into account the time that the data stream stays at the SDAP layer. Obviously, the monitoring mechanism used before is no longer applicable.
  • a packet drop method comprising:
  • the packet discarding timer expires and the packet corresponding to the packet discarding timer is not successfully sent from the local device, the packet corresponding to the packet discarding timer is discarded.
  • a packet drop timer corresponding to each data packet in the data stream of the target session is started according to the indication message.
  • the monitoring mechanism may involve the SDAP layer, the PDCP layer, and the RLC layer, and the time for the data stream to stay at the SDAP layer is also taken into consideration, and the packet transmission timeout monitoring is implemented in the 5G technology.
  • the packet discarding timer expires, and the data packet corresponding to the packet discarding timer is not successfully sent from the local device, the packet corresponding to the packet discarding timer is discarded.
  • the data packet corresponding to the packet discarding timer is discarded.
  • the above-mentioned optional solution can locate the data packet corresponding to the packet drop timer and discard the located data packet.
  • the determining the current layer of the data packet corresponding to the packet discarding timer includes:
  • the data packet corresponding to the packet discarding timer is searched in the next layer of the searched layer;
  • the next layer is determined as the current layer.
  • the data packet corresponding to the packet discarding timer can be located, and Bits of packets are dropped. To avoid wasting communication resources due to the transmission timeout packet corresponding to the transport packet drop timer.
  • the method further includes:
  • the data packet discarding information includes an identifier corresponding to the discarded data packet.
  • the base station is notified of which data packets are discarded, so that the base station no longer waits for these data packets, thereby avoiding reducing the efficiency of the processing service of the base station.
  • the method before the sending the data packet discarding information to the base station, the method further includes:
  • the identifier corresponding to the plurality of discarded data packets may be put into one data packet discarding information, and the data packet discarding information may be sent to the base station.
  • the sending the packet discarding information to the base station includes:
  • a packet drop method comprising:
  • the indication message instructing the terminal to start monitoring the timeout of the data packet transmission by the SDAP layer
  • the method further includes:
  • control message includes data packet discarding information, where the data packet discarding information includes an identifier corresponding to the discarded data packet;
  • the lower boundary of the reordering window moves to a position corresponding to the data packet
  • the lower boundary is moved down to a position corresponding to the next data packet of the data packet.
  • the reordering window of the base station is no longer waiting for the data packet that has been discarded, so that unnecessary time resources are no longer wasted, thereby improving the service processing efficiency of the base station.
  • a packet discarding apparatus comprising:
  • a receiving module configured to receive an indication message sent by the base station, where the indication message indicates to start monitoring the timeout of the data packet transmission at the SDAP layer;
  • a startup module configured to: after detecting that the target session is initiated, at the SDAP layer, according to the finger The message starts a packet drop timer corresponding to each data packet in the data flow of the target session;
  • the discarding module is configured to discard the data packet corresponding to the packet discarding timer after the packet discarding timer expires, and the packet corresponding to the packet discarding timer is not successfully sent from the local device.
  • the discarding module includes:
  • a first determining unit configured to: after the packet discarding timer expires, detecting that the data packet corresponding to the packet discarding timer is not successfully sent locally, determining that the current packet of the packet discarding timer is currently located Floor;
  • a discarding unit configured to discard the data packet corresponding to the packet discarding timer in the current layer.
  • the first determining unit includes:
  • a first searching subunit configured to start, by using an SDAP layer, to search for a data packet corresponding to the packet discarding timer;
  • a second search subunit configured to search for a data packet corresponding to the packet discarding timer in a layer below the searched layer when the data packet corresponding to the packet discarding timer is not found in the searched layer;
  • a first determining subunit configured to determine, when the data packet corresponding to the packet discarding timer is found in the searched layer, the layer to be searched as the current layer;
  • a second determining subunit configured to determine, in the next layer, a data packet corresponding to the packet discarding timer, to determine the next layer as the current layer.
  • the device further includes:
  • a first sending module configured to send data packet discarding information to the base station
  • the data packet discarding information includes an identifier corresponding to the discarded data packet.
  • the device further includes:
  • a determining module configured to determine, according to a preset period duration, an identifier corresponding to the discarded data packet in the current period duration
  • a second sending module configured to generate the packet discarding information based on the identifier corresponding to the discarded data packet.
  • the first sending module includes:
  • An adding unit configured to add the packet discarding information to a package of a PDCP layer of the target control message
  • a sending unit configured to send, to the base station, the target control message encapsulated with the packet discarding information.
  • a packet discarding apparatus comprising:
  • a generating module configured to generate an indication message, where the indication message instructs the terminal to start monitoring the timeout of the data packet transmission by the SDAP layer;
  • a sending module configured to send the indication message to the terminal.
  • the device further includes:
  • a receiving module configured to receive a control message sent by the terminal, where the control message includes data packet discarding information, where the data packet discarding information includes an identifier corresponding to the discarded data packet;
  • a downward shifting module configured to move the lower boundary to a position corresponding to a next data packet of the data packet when a lower boundary of the reordering window is moved to a position corresponding to the data packet.
  • a fifth aspect provides a data packet discarding system, where the system includes a terminal and a base station;
  • the terminal is configured to receive an indication message sent by the base station, where the indication message indicates that the monitoring of the data packet transmission timeout is initiated at the SDAP layer; and after detecting that the target session is initiated, the SDAP layer starts according to the indication message.
  • a packet discarding timer corresponding to each data packet in the data stream of the target session; if the packet discarding timer expires after detecting the packet discarding timer expires, and detecting that the packet corresponding to the packet discarding timer is not successfully sent locally, And discarding the data packet corresponding to the packet discarding timer;
  • the base station is configured to generate an indication message, where the indication message indicates that the terminal starts monitoring of a data packet transmission timeout by the SDAP layer, and sends the indication message to the terminal.
  • a terminal including a processor and a memory, where the memory stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, the at least one program, The code set or set of instructions is loaded and executed by the processor to implement the packet drop method described above.
  • a computer readable storage medium stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, the at least one program, and the code set Or the instruction set is loaded and executed by the processor to implement the above packet drop method.
  • a base station in an eighth aspect, includes a processor and a memory, where the memory stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, the at least one program, The code set or set of instructions is loaded and executed by the processor to implement the packet drop method described above.
  • a ninth aspect a computer readable storage medium, wherein the storage medium stores at least one instruction, at least one program, a code set, or a set of instructions, the at least one instruction, the at least one program, and the code set Or the instruction set is loaded and executed by the processor to implement the above packet drop method.
  • a packet drop timer corresponding to each data packet in the data stream of the target session is started according to the indication message.
  • the monitoring mechanism may involve the SDAP layer, the PDCP layer, and the RLC layer, and the time for the data stream to stay at the SDAP layer is also taken into consideration, and the packet transmission timeout monitoring is implemented in the 5G technology.
  • FIG. 1 is a schematic diagram of a communication underlay structure provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data packet discarding method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a data packet discarding method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for discarding a data packet according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for discarding a data packet according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a method for discarding data packets according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a data packet structure provided by an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a data packet discarding method according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a method for discarding data packets according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a data packet discarding method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the embodiment of the invention provides a data packet discarding method, which can be implemented by a terminal and a base station.
  • the terminal can be a mobile phone, a tablet computer, or the like.
  • the terminal can include components such as a transceiver, a processor, a memory, and the like.
  • the transceiver can be used for data transmission with the server. For example, the data packet can be sent to the base station.
  • the transceiver can include a Bluetooth component, a WiFi (Wireless-Fidelity) component, an antenna, a matching circuit, a modem, and the like.
  • the processor may be a CPU (Central Processing Unit), etc., and may be configured to detect, after the target session is initiated, start the packet drop corresponding to each data packet in the data stream of the target session according to the indication message at the SDAP layer. Timer, etc. processing.
  • the memory may be a RAM (Random Access Memory), a Flash (flash memory), etc., and may be used to store received data, data required for processing, data generated during processing, and the like, such as a target data stream. Packets, etc.
  • the terminal may also include an input component, a display component, an audio output component, and the like.
  • the input component can be a touch screen, a keyboard, a mouse, or the like.
  • the audio output unit can be a speaker, a headphone, or the like.
  • the layers included in the communication infrastructure include the SDAP layer, the PDCP layer, the RLC layer, and the MAC layer from top to bottom.
  • the terminal establishes a session with the base station, multiple data streams may be transmitted in the process of the session, and each data stream may include multiple data packets, and the data packets are submitted from top to bottom in the communication underlying architecture of the terminal until the The last layer is sent to the base station.
  • These packets exist in the form of data streams before being split into packets, and the SDAP layer can allocate DRBs for these data streams. After the SDAP layer allocates DRBs for these data streams, the data streams are delivered to the lower layers in the form of data packets. At the initial allocation, the DRBs to which the same data stream is allocated are the same.
  • FIG. 2 is a flowchart of a method for discarding data packets according to an embodiment of the present disclosure.
  • the packet drop method includes:
  • Step S210 Receive an indication message sent by the base station, where the indication message indicates to start monitoring the timeout of the data packet transmission at the SDAP layer.
  • Step S220 after detecting that the target session is initiated, at the SDAP layer, start a packet discarding timer corresponding to each data packet in the data stream of the target session according to the indication message.
  • Step S230 If the packet discarding timer expires and the packet corresponding to the packet discarding timer is not successfully sent locally, the packet corresponding to the packet discarding timer is discarded.
  • the function of monitoring the data packet transmission timeout may be enabled in the SDAP layer accordingly. If the timing duration setting information exists in the indication message, the time length of the packet drop timer may be Make settings. The packet discarding timer forwards the data packets in the target data stream from the SDAP layer to the next layer, and finally sends them from the terminal for timing monitoring.
  • the above method can be performed in the terminal.
  • a packet drop timer corresponding to each data packet in the data stream of the target session is started according to the indication message.
  • the monitoring mechanism may involve the SDAP layer, the PDCP layer, and the RLC layer, and the time for the data stream to stay at the SDAP layer is also taken into consideration, and the packet transmission timeout monitoring is implemented in the 5G technology.
  • FIG. 3 is a flowchart of a data packet discarding method according to an embodiment of the present disclosure.
  • the packet drop method includes:
  • Step S310 generating an indication message indicating that the terminal starts monitoring of the data packet transmission timeout by the SDAP layer.
  • the indication message may be an RRC (Radio Resource Control) message.
  • the indication message is used to instruct the terminal to monitor the data packet transmission timeout at the SDAP layer.
  • the RRC message may further include timing duration setting information, configured to indicate a time duration for setting a packet discarding timer for monitoring whether the data packet is timed out.
  • Step S320 sending an indication message to the terminal.
  • the above method can be performed in a base station.
  • the indication message instructs the terminal to initiate monitoring of the packet transmission timeout by the SDAP layer.
  • the monitoring mechanism may involve the SDAP layer, the PDCP layer, and the RLC layer, and the time for the data stream to stay at the SDAP layer is also taken into consideration, and the packet transmission timeout monitoring is implemented in the 5G technology.
  • FIG. 4 is a flowchart of a method for discarding data packets according to an embodiment of the present disclosure.
  • the packet drop method includes:
  • Step S410 The base station generates an indication message indicating that the terminal initiates monitoring of the timeout of the data packet transmission at the SDAP layer.
  • the indication message may be an RRC message.
  • the indication message is used to instruct the terminal to monitor the data packet transmission timeout at the SDAP layer.
  • the RRC message may further include timing duration setting information, configured to indicate a time duration for setting a packet discarding timer for monitoring whether the data packet is timed out.
  • Step S420 the base station sends an indication message to the terminal.
  • the base station may send the generated good indication message to the terminal.
  • Step S430 The terminal receives an indication message sent by the base station, where the indication message indicates to start monitoring the timeout of the data packet transmission at the SDAP layer.
  • the function of monitoring the data packet transmission timeout may be enabled in the SDAP layer accordingly. If the timing duration setting information exists in the indication message, the time length of the packet drop timer may be Make settings. The packet discarding timer forwards the data packets in the target data stream from the SDAP layer to the next layer, and finally sends them from the terminal for timing monitoring.
  • Step S440 after detecting that the target session is initiated, at the SDAP layer, the terminal starts a packet discarding timer corresponding to each data packet in the data stream of the target session according to the indication message.
  • the terminal resets the packet discard timer corresponding to the data packet. If it is detected that the data packet has not been sent out from the terminal after the packet discarding timer corresponding to the data packet expires, the following step S450 is performed.
  • Step S450 If the packet discarding timer expires and the packet corresponding to the packet discarding timer is not successfully sent locally, the terminal discards the packet corresponding to the packet discarding timer.
  • the terminal may discard the packet corresponding to the packet discarding timer that expires in the transmission queue.
  • step S450 may include: step S551, if the packet discarding timer expires, and the packet corresponding to the packet discarding timer is not successfully sent from the local, the terminal determines the packet discarding timing. The current layer of the data packet corresponding to the device; in step S552, in the current layer, the terminal discards the data packet corresponding to the packet discarding timer.
  • step S551 may include: step S5511, starting from the SDAP layer, the terminal searches for a data packet corresponding to the packet discarding timer; and step S5512, if the packet discarding timer is not found in the layer being searched Corresponding data packet, the terminal searches for the data packet corresponding to the packet discarding timer in the next layer of the searched layer; in step S5513, if the data packet corresponding to the packet discarding timer is found in the searched layer, the terminal will be searched.
  • the layer is determined to be the current layer; in step S5514, if the packet corresponding to the packet discarding timer is found in the next layer, the terminal determines the next layer as the current layer.
  • the data packet exists in two layers of each communication underlay layer: one is an SDU (Service Data Unit), and the other is a PDU (Packet Data Unit). Data unit). Encapsulate the SDU and the header (information), and the encapsulated SDU is PDU.
  • SDU Service Data Unit
  • PDU Packet Data Unit
  • the PDUs in each layer are the SDUs of the next layer.
  • the terminal starts from the SDAP layer and finds whether the data packet corresponding to the packet discard timer is in the SDAP layer. If the packet corresponding to the packet discarding timer is in the SDAP layer and the data packet is a SDAP SDU, the SDAP SDU is deleted. If the data packet is encapsulated into a SDAP PDU, the SDAP SDU and its corresponding SDAP PDU are deleted. If the data packet corresponding to the packet discard timer is not in the SDAP layer, the SDAP layer notifies the PDCP layer to delete the data packet corresponding to the packet discard timer. If the packet corresponding to the packet discarding timer is in the PDCP layer and the data packet is a PDCP SDU, the PDCP SDU is deleted.
  • the PDCP SDU and its corresponding PDCP PDU are deleted. If the data packet corresponding to the packet discard timer is not in the PDCP layer, the PDCP layer notifies the RLC layer to delete the data packet corresponding to the packet discard timer. If the data packet corresponding to the packet discarding timer is in the RLC layer and the data packet is an RLC SDU, the RLC SDU is deleted. If the data packet is encapsulated into an RLC PDU, the RLC SDU and its corresponding RLC PDU are deleted.
  • the method provided by the embodiment of the present disclosure further includes: the terminal sends the data packet discarding information to the base station, where the data packet discarding information includes an identifier corresponding to the discarded data packet.
  • the identifier corresponding to the data packet may be an SN (Serial Number).
  • the terminal notifies the base station which packets have been discarded by sending the packet discarding information to the base station.
  • the step of the terminal transmitting the packet discarding information to the base station includes: Step S810, the terminal adds the packet discarding information to the encapsulation of the PDCP layer of the target control message; and in step S820, the terminal sends the packet to the base station.
  • the terminal may add the packet discarding information to the control message in the encapsulation of the PDCP layer, so that the base station side PDCP layer on the base station side can identify the packet discarding information in the control message.
  • the target control message is a message that is different from ordinary data. Ordinary data carries a large amount of substantial information, such as streaming media information.
  • the control message is a message dedicated to controlling the communication process.
  • the terminal may also send the identifier corresponding to the discarded data packet to the base station in an RRC message.
  • the terminal may directly generate a signaling information at the PDCP layer for indicating which data packets are discarded, and send the information to the base station. This is not an example here.
  • the terminal may generate a packet discarding information to be sent to the base station based on the identifiers corresponding to the discarded data packets.
  • the method provided in this embodiment further includes: Step S910: The terminal determines the discarded data in the current period duration when the preset period duration elapses. The identifier corresponding to the packet; in step S920, the terminal generates the packet discarding information based on the identifier corresponding to the discarded data packet.
  • the terminal can be timed by a signaling timer, and each time the signaling timer expires, the packet corresponding to the discarded packet is generated, and a packet discarding information is generated and sent to the base station.
  • the timing of the signaling timer is shorter than the timing of the sequencing timer in the reordering window of the base station.
  • the sort timer in the reordering window is used to time the arrival time of the data packets waiting to be received in the reordering window. When the sorting timer expires, the reordering window does not wait for the packet corresponding to the sorting timer, and instead starts receiving the next packet.
  • the method provided by the embodiment of the present disclosure further includes: Step S1010: The base station receives a control message sent by the terminal, where the control message includes data packet discarding information, and the data packet discarding information includes the data packet that is discarded.
  • the identifier is determined; in step S1020, when the lower boundary of the reordering window is moved to the position corresponding to the data packet, the base station moves the lower boundary down to the position corresponding to the next data packet of the data packet.
  • the base station moves each discarded packet recorded in the packet discarding information to the position corresponding to the discarded packet when the lower boundary of the reordering window is moved.
  • the boundary moves down to the location corresponding to the next packet of the dropped packet.
  • the SN numbers of the data packets corresponding to the sorts in the reordering window are 1, 2, 3, 4, 5, and 6.
  • the SN numbers corresponding to the discarded packets are 3 and 5.
  • the lower boundary of the reordering window is located at a position corresponding to the data packet with the SN number 1.
  • the lower boundary of the reordering window is moved to the data packet corresponding to the SN number 2. s position.
  • the lower boundary of the reordering window is moved to the position corresponding to the data packet with the SN number 3. It is determined that the data packet with the SN number of 3 corresponding to the data packet is discarded, and the lower boundary of the reordering window is moved to the position corresponding to the data packet with the SN number 4.
  • the lower boundary of the reordering window is moved to the position corresponding to the data packet with the SN number 5. It is determined that the data packet with the SN number of 5 corresponding to the data packet is discarded, and the lower boundary of the reordering window is moved to the position corresponding to the data packet with the SN number 6. It should be noted that the above operation is performed in the PDCP layer of the base station. Of course, the above operation may be performed on the RLC layer of the base station, but only the packet discarding information sent by the terminal needs to be adjusted accordingly.
  • a packet drop timer corresponding to each data packet in the data stream of the target session is started according to the indication message.
  • the monitoring mechanism may involve the SDAP layer, the PDCP layer, and the RLC layer, and the time for the data stream to stay at the SDAP layer is also taken into consideration, and the packet transmission timeout monitoring is implemented in the 5G technology.
  • FIG. 11 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • the apparatus includes:
  • the receiving module 1110 is configured to receive an indication message sent by the base station, where the indication message indicates to start monitoring the timeout of the data packet transmission at the SDAP layer;
  • the initiating module 1120 is configured to: after detecting that the target session is initiated, start, at the SDAP layer, a packet discarding timer corresponding to each data packet in the data stream of the target session according to the indication message;
  • the discarding module 1130 is configured to: after the packet discarding timer expires, and detecting that the packet corresponding to the packet discarding timer is not successfully sent locally, discarding the packet corresponding to the packet discarding timer.
  • the discarding module 1130 includes:
  • the first determining unit 1231 is configured to: after the packet discarding timer expires, detect that the data packet corresponding to the packet discarding timer is not successfully sent locally, and determine the current layer of the data packet corresponding to the packet discarding timer;
  • the discarding unit 1232 is configured to discard the data packet corresponding to the packet discarding timer in the current layer.
  • the first determining unit 1231 includes:
  • a first searching subunit configured to start, by using an SDAP layer, to find a data packet corresponding to a packet discarding timer
  • a second search sub-unit configured to: when the data packet corresponding to the packet discarding timer is not found in the searched layer, find a data packet corresponding to the packet discarding timer in a layer below the searched layer;
  • a first determining sub-unit configured to determine, by the search layer, a data packet corresponding to the packet discarding timer, to be determined by the search layer as a current layer;
  • the second determining sub-unit is configured to determine, in the next layer, a data packet corresponding to the packet discarding timer, and determine the next layer as the current layer.
  • the device further includes:
  • a first sending module configured to send data packet discarding information to the base station
  • the packet discarding information includes an identifier corresponding to the discarded packet.
  • the apparatus further includes:
  • the determining module 1310 is configured to determine, according to the preset period duration, an identifier corresponding to the discarded data packet in the current period duration;
  • the second sending module 1320 is configured to generate data packet discarding information based on the identifier corresponding to the discarded data packet.
  • the first sending module includes:
  • the adding unit 1410 is configured to add the packet discarding information to the encapsulation of the PDCP layer of the target control message
  • the sending unit 1420 is configured to send, to the base station, a target control message encapsulated with the packet discarding information.
  • FIG. 15 is a schematic structural diagram of a packet discarding apparatus according to an embodiment of the present disclosure.
  • the apparatus includes:
  • the generating module 1510 is configured to generate an indication message, where the indication message instructs the terminal to start monitoring the timeout of the data packet transmission by the SDAP layer;
  • the sending module 1520 is configured to send an indication message to the terminal.
  • the apparatus further includes:
  • the receiving module 1610 is configured to receive a control message sent by the terminal, where the control message includes data packet discarding information, where the data packet discarding information includes an identifier corresponding to the discarded data packet.
  • the downward shifting module 1620 is configured to move the lower boundary to a position corresponding to a next data packet of the data packet when the lower boundary of the reordering window is moved to a position corresponding to the data packet.
  • the monitoring mechanism may involve the SDAP layer, the PDCP layer, and the RLC layer, and the time for the data stream to stay at the SDAP layer is also taken into consideration, and the packet transmission timeout monitoring is implemented in the 5G technology.
  • the packet discarding apparatus when the packet discarding apparatus provided by the foregoing embodiment performs packet discarding, only the partitioning of the foregoing functional modules is illustrated. In actual applications, the foregoing functions may be allocated by different functional modules as needed. Upon completion, the internal structure of the device is divided into different functional modules to perform all or part of the functions described above.
  • the data packet discarding apparatus and the data packet discarding method are provided in the same embodiment, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • Yet another exemplary embodiment of the present disclosure shows a packet discarding system including a terminal and a base station.
  • the terminal is configured to receive an indication message sent by the base station, where the indication message indicates that the monitoring of the data packet transmission timeout is initiated at the SDAP layer; and when the detection of the target session is initiated, at the SDAP layer, each of the data flows initiated with the target session is started according to the indication message.
  • Packet drop timer corresponding to the data packet if the packet discard timer expires after the packet discard timer expires, and the packet corresponding to the packet discard timer is not successfully sent locally, the packet is The packet corresponding to the drop timer is discarded.
  • the base station is configured to generate an indication message, the indication message instructs the terminal to start monitoring of the data packet transmission timeout by the SDAP layer, and send an indication message to the terminal.
  • terminal 1700 can include one or more of the following components: processing component 1702, memory 1704, power component 1706, multimedia component 1708, audio component 1710, input/output (I/O) interface 1712, sensor component 1714, And a communication component 1716.
  • Processing component 1702 typically controls the overall operations of terminal 1700, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1702 can include one or more processors 1720 to execute instructions to perform all or part of the steps described above.
  • processing component 1702 can include one or more modules to facilitate interaction between component 1702 and other components.
  • processing component 1702 can include a multimedia module to facilitate interaction between multimedia component 1708 and processing component 1702.
  • Memory 1704 is configured to store various types of data to support operation at terminal 1700. Examples of such data include instructions for any application or method operating on terminal 1700, contact data, phone book data, messages, pictures, videos, and the like. Memory 1704 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Communication component 1716 is configured to facilitate wired or wireless communication between terminal 1700 and other devices.
  • the terminal 1700 can access a wireless network based on a communication standard such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1716 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1716 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • Power component 1706 provides power to various components of terminal 1700.
  • Power component 1706 can be packaged A power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the audio output device 1700.
  • the multimedia component 1708 includes a screen between the terminal 1700 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1708 includes a front camera and/or a rear camera. When the terminal 1700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1710 is configured to output and/or input an audio signal.
  • the audio component 1710 includes a microphone (MIC) that is configured to receive an external audio signal when the audio output device 1700 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1704 or transmitted via communication component 1716.
  • the I/O interface 1712 provides an interface between the processing component 1702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor component 1714 includes one or more sensors for providing terminal 1700 with various aspects of state assessment.
  • the sensor component 1714 can detect an open/closed state of the terminal 1700, the relative positioning of the components, such as a display and a keypad of the terminal 1700, and the sensor component 1714 can also detect a change in position of a component of the terminal 1700 or the terminal 1700, the user The presence or absence of contact with the terminal 1700, the orientation or acceleration/deceleration of the terminal 1700 and the temperature change of the terminal 1700.
  • Sensor assembly 1714 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1714 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • terminal 1700 can be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic A device (PLD), field programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLD programmable logic A device
  • FPGA field programmable gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • a computer readable storage medium comprising instructions, such as a memory 1704 comprising instructions executable by the processor 1720 of the terminal 1700 to perform the above method.
  • the computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • Yet another embodiment of the present disclosure provides a computer readable storage medium that, when executed by a processor of a terminal, enables a terminal to execute:
  • the packet discard timer expires and the packet corresponding to the packet discard timer is not successfully sent locally, the packet corresponding to the packet discard timer is discarded.
  • the packet discarding timer expires, and the packet corresponding to the packet discarding timer is not successfully sent from the local device, the packet corresponding to the packet discarding timer is discarded, including:
  • the packet corresponding to the packet discard timer is discarded.
  • determining the current layer of the data packet corresponding to the packet drop timer including:
  • the data packet corresponding to the packet discarding timer is searched in the next layer of the searched layer;
  • the search layer is determined to be the current layer
  • the next layer is determined to be the current layer.
  • the method further includes:
  • the packet discarding information includes an identifier corresponding to the discarded packet.
  • the method before sending the packet discarding information to the base station, the method further includes:
  • the packet discarding information is generated based on the identifier corresponding to the discarded data packet.
  • sending the packet discarding information to the base station including:
  • a target control message encapsulated with packet drop information is sent to the base station.
  • FIG. 18 is a block diagram of a base station 1900, shown according to an exemplary embodiment.
  • base station 1900 includes a processing component 1922 that further includes one or more processors, and memory resources represented by memory 1932 for storing instructions executable by processing component 1922, such as an application.
  • An application stored in memory 1932 can include one or more modules each corresponding to a set of instructions.
  • processing component 1922 is configured to execute instructions to perform the packet drop method described above.
  • Base station 1900 can also include a power component 1926 configured to perform power management of base station 1900, an antenna 1950 configured to connect base station 1900 to a communication network, and an input/output (I/O) interface 1958.
  • a power component 1926 configured to perform power management of base station 1900
  • an antenna 1950 configured to connect base station 1900 to a communication network
  • an input/output (I/O) interface 1958 configured to communicate with base station 1900.
  • Base station 1900 can include a memory, and one or more programs, wherein one or more programs are stored in the memory, and are configured to be executed by one or more processors.
  • One or more programs are included for performing the following operations instruction:
  • the method further includes:
  • control message includes packet discarding information, where the packet discarding information includes an identifier corresponding to the discarded data packet;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种数据丢弃方法、装置和系统,属于通信技术领域。该方法包括:接收基站发送的指示消息,指示消息指示启动在SDAP层对数据包发送超时的监测;当检测到目标会话发起后,在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器;如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,则将包丢弃定时器对应的数据包丢弃。通过本公开提供的方法,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。

Description

一种数据包丢弃方法、装置和系统 技术领域
本公开涉及通讯技术领域,特别涉及一种数据包丢弃方法、装置和系统。
背景技术
随着科技的发展,5G(5th-Generation,第五代移动通信)技术的应用和普及已经是拨开云雾越见清晰了。在5G技术中,依然延续之前的4G(4h-Generation,第四代移动通信)技术:将通信过程分为用户面以及控制面。其中,用户面中主要包括三个子层,由上至下依次是PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层、RLC(Radio Link Control,无线链路控制)层以及MAC(Media Access Control,媒体接入控制层)层。随着对5G技术的深入研究,除了上述三个子层之外,又在PDCP层之上引入了一个新的子层,即SDAP(Service Data Adaptation Protocol,服务数据同化协议)层。在SDAP层中,要完成的一个重要任务是,进行数据流与DRB(Data Radio Bearer,数据承载)间的映射(即为数据流分配发送该数据包的DRB),以通过映射后的DRB发送数据流。
在4G技术中,存在一个监测机制:通过定时器来计时,监测在设定时间内,一个数据包是否能从PDCP层递交到RLC层,再递交到MAC层,直至最后从终端发出。该定时器实际是由PDCP层管理的,并且数据包是否已从终端发送出去也是由PDCP层进行监测的。此外,如果在设定时间内,一个数据包未被从终端发出,则丢弃该数据包,即将该数据包从传输队列中清除,以避免该数据包过多占用通信资源。
在5G技术中,在PDCP层之上,又引入了SDAP层。在SDAP层可以做到对数据流的管控,一段数据流首先是在SDAP层被装载成多个数据包,再交由下层处理的。SDAP层支持的是数据流级别的数据,PDCP层支持的是数据包级别的数据,在PDCP层已经不可见SDAP层所支持的数据流级别的数据了。因此,PDCP层无法对SDAP层的数据流进行监测。再者,4G技术中的监测机制只涉及PDCP层、RLC层等,并未将数据流在SDAP层停留的时间也考虑进去。显然,之前使用的监测机制就不再适用了。
发明内容
本公开实施例提供的技术方案如下:
第一方面,提供了一种数据包丢弃方法,所述方法包括:
接收基站发送的指示消息,所述指示消息指示启动在SDAP层对数据包发送超时的监测;
当检测到目标会话发起后,在所述SDAP层,根据所述指示消息启动与所述目标会话的数据流中每个数据包对应的包丢弃定时器;
如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则将所述包丢弃定时器对应的数据包丢弃。
在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。通过本公开提供的方法,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。
可选地,所述如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则将所述包丢弃定时器对应的数据包丢弃,包括:
如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则确定所述包丢弃定时器对应的数据包的当前所处层;
在所述当前所处层中,将所述包丢弃定时器对应的数据包丢弃。
通过上述可选方案,可以对包丢弃定时器对应的数据包进行定位,并将定位的数据包丢弃。
可选地,所述确定所述包丢弃定时器对应的数据包当前所处层,包括:
从SDAP层开始,查找所述包丢弃定时器对应的数据包;
如果未在被查找层中查找到所述包丢弃定时器对应的数据包,则在所述被查找层的下一层查找所述包丢弃定时器对应的数据包;
如果在所述被查找层中查找到所述包丢弃定时器对应的数据包,则将所述被查找层确定为所述当前所处层;
如果在所述下一层中查找到所述包丢弃定时器对应的数据包,则将所述下一层确定为所述当前所处层。
通过上述可选方案,可以对包丢弃定时器对应的数据包进行定位,并将定 位的数据包丢弃。以避免因传输包丢弃定时器对应的发送超时的数据包而浪费通信资源。
可选地,所述方法还包括:
向所述基站发送数据包丢弃信息;
其中,所述数据包丢弃信息包括被丢弃的数据包对应的标识。
通知基站都有哪些数据包被丢弃了,以使得基站不再等待这些数据包,避免降低基站的处理业务的效率。
可选地,在所述向所述基站发送数据包丢弃信息之前,所述方法还包括:
每当经过预设的周期时长时,确定当前的周期时长中被丢弃的数据包对应的标识;
基于所述被丢弃的数据包对应的标识生成所述数据包丢弃信息。
为了减小信令开销,可以将多个被丢弃的数据包对应的标识放到一个数据包丢弃信息中,向基站发送一次数据包丢弃信息。
可选地,所述向基站发送数据包丢弃信息,包括:
将所述数据包丢弃信息添加到目标控制消息的PDCP层的封装中;
向所述基站发送封装有所述数据包丢弃信息的所述目标控制消息。
第二方面,提供了一种数据包丢弃方法,所述方法包括:
生成指示消息,所述指示消息指示终端启动SDAP层对数据包发送超时的监测;
向所述终端发送所述指示消息。
可选地,所述方法还包括:
接收所述终端发送的控制消息,所述控制消息包括数据包丢弃信息,所述数据包丢弃信息包括被丢弃的数据包对应的标识;
当重排序窗口的下边界移至所述数据包对应的位置时,将所述下边界下移至所述数据包的下一个数据包对应的位置。
通过上述可选方案,可以使得基站的重排序窗口不再等待已被丢弃的数据包,从而不再浪费不必要使用的时间资源,进而提高基站业务处理效率。
第三方面,提供了一种数据包丢弃装置,所述装置包括:
接收模块,用于接收基站发送的指示消息,所述指示消息指示启动在SDAP层对数据包发送超时的监测;
启动模块,用于当检测到目标会话发起后,在所述SDAP层,根据所述指 示消息启动与所述目标会话的数据流中每个数据包对应的包丢弃定时器;
丢弃模块,用于在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,将所述包丢弃定时器对应的数据包丢弃。
可选地,所述丢弃模块包括:
第一确定单元,用于在所述包丢弃定时器超时后,检测到所述包丢弃定时器对应的数据包未成功从本地发出,确定所述包丢弃定时器对应的数据包的当前所处层;
丢弃单元,用于在所述当前所处层中,将所述包丢弃定时器对应的数据包丢弃。
可选地,所述第一确定单元包括:
第一查找子单元,用于从SDAP层开始,查找所述包丢弃定时器对应的数据包;
第二查找子单元,用于未在被查找层中查找到所述包丢弃定时器对应的数据包时,在所述被查找层的下一层查找所述包丢弃定时器对应的数据包;
第一确定子单元,用于在所述被查找层中查找到所述包丢弃定时器对应的数据包时,将所述被查找层确定为所述当前所处层;
第二确定子单元,用于在所述下一层中查找到所述包丢弃定时器对应的数据包时,将所述下一层确定为所述当前所处层。
可选地,所述装置还包括:
第一发送模块,用于向所述基站发送数据包丢弃信息;
其中,所述数据包丢弃信息包括被丢弃的数据包对应的标识。
可选地,所述装置还包括:
确定模块,用于每当经过预设的周期时长时,确定当前的周期时长中被丢弃的数据包对应的标识;
第二发送模块,用于基于所述被丢弃的数据包对应的标识生成所述数据包丢弃信息。
可选地,所述第一发送模块包括:
添加单元,用于将所述数据包丢弃信息添加到目标控制消息的PDCP层的封装中;
发送单元,用于向所述基站发送封装有所述数据包丢弃信息的所述目标控制消息。
第四方面,提供了一种数据包丢弃装置,所述装置包括:
生成模块,用于生成指示消息,所述指示消息指示终端启动SDAP层对数据包发送超时的监测;
发送模块,用于向所述终端发送所述指示消息。
可选地,所述装置还包括:
接收模块,用于接收所述终端发送的控制消息,所述控制消息包括数据包丢弃信息,所述数据包丢弃信息包括被丢弃的数据包对应的标识;
下移模块,用于当重排序窗口的下边界移至所述数据包对应的位置时,将所述下边界下移至所述数据包的下一个数据包对应的位置。
第五方面,提供一种数据包丢弃系统,所述系统包括终端和基站;
所述终端,用于接收基站发送的指示消息,所述指示消息指示启动在SDAP层对数据包发送超时的监测;当检测到目标会话发起后,在所述SDAP层,根据所述指示消息启动与所述目标会话的数据流中每个数据包对应的包丢弃定时器;如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则将所述包丢弃定时器对应的数据包丢弃;
所述基站,用于生成指示消息,所述指示消息指示终端启动SDAP层对数据包发送超时的监测;向所述终端发送所述指示消息。
第六方面,提供一种终端,所述终端包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述数据包丢弃方法。
第七方面,提供一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述数据包丢弃方法。
第八方面,提供一种基站,所述基站包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述数据包丢弃方法。
第九方面,提供一种计算机可读存储介质,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述数据包丢弃方法。
本公开实施例提供的技术方案带来的有益效果是:
在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。通过本公开提供的方法,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的通信底层架构的示意图;
图2是本公开实施例提供的一种数据包丢弃方法的流程图;
图3是本公开实施例提供的一种数据包丢弃方法的流程图;
图4是本公开实施例提供的一种数据包丢弃方法的流程图;
图5是本公开实施例提供的一种数据包丢弃方法的流程图;
图6是本公开实施例提供的一种数据包丢弃方法的流程图;
图7是本公开实施例提供的数据包结构的示意图;
图8是本公开实施例提供的一种数据包丢弃方法的流程图;
图9是本公开实施例提供的一种数据包丢弃方法的流程图;
图10是本公开实施例提供的一种数据包丢弃方法的流程图;
图11是本公开实施例提供的一种数据包丢弃装置的结构示意图;
图12是本公开实施例提供的一种数据包丢弃装置的结构示意图;
图13是本公开实施例提供的一种数据包丢弃装置的结构示意图;
图14是本公开实施例提供的一种数据包丢弃装置的结构示意图;
图15是本公开实施例提供的一种数据包丢弃装置的结构示意图;
图16是本公开实施例提供的一种数据包丢弃装置的结构示意图;
图17是本公开实施例提供的一种终端的结构示意图;
图18是本公开实施例提供的一种基站的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
本发明实施例提供了一种数据包丢弃方法,该方法可以由终端和基站配合实现。其中,终端可以是手机、平板电脑等。终端可以包括收发器、处理器、存储器等部件。收发器,可以用于与服务器进行数据传输,例如,可以向基站发送数据包,收发器可以包括蓝牙部件、WiFi(Wireless-Fidelity,无线高保真技术)部件、天线、匹配电路、调制解调器等。处理器,可以为CPU(Central Processing Unit,中央处理单元)等,可以用于检测到目标会话发起后,在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器,等处理。存储器,可以为RAM(Random Access Memory,随机存取存储器),Flash(闪存)等,可以用于存储接收到的数据、处理过程所需的数据、处理过程中生成的数据等,如目标数据流的数据包等。
终端还可以包括输入部件、显示部件、音频输出部件等。输入部件可以是触摸屏、键盘、鼠标等。音频输出部件可以是音箱、耳机等。
需要说明的是,如图1所示,在5G技术中,通信底层架构中包括的层由上至下依次是SDAP层、PDCP层、RLC层、MAC层。当终端建立与基站的会话时,可以在会话的过程中传输多条数据流,各数据流中可以包含多个数据包,数据包在终端的通信底层架构中从上至下依次递交,直至通过最后一层向基站发出。这些数据包在被切分成数据包之前是以数据流的形式存在于终端中,SDAP层可以为这些数据流分配传输这些数据流的DRB。当SDAP层为这些数据流分配好DRB之后,数据流就会以数据包的形式往下层递交。在初始分配时,同一数据流被分配的DRB是相同的。
图2是本公开实施例提供的一种数据包丢弃方法的流程图。参见图2,数据包丢弃方法包括:
步骤S210,接收基站发送的指示消息,指示消息指示启动在SDAP层对数据包发送超时的监测。
步骤S220,当检测到目标会话发起后,在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。
步骤S230,如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,则将包丢弃定时器对应的数据包丢弃。
在实施中,当终端接收到基站发送的指示消息时,相应地可以在SDAP层开启监测数据包发送超时的功能,如果在指示消息中存在计时时长设置信息,可以对包丢弃定时器的计时时长进行设置。该包丢弃定时器会对目标数据流中的数据包从SDAP层,至其往下一层递交,到最后从终端发出,进行计时监测。
上述方法可以在终端中执行。在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。通过本公开提供的方法,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。
图3是本公开实施例提供的一种数据包丢弃方法的流程图。参见图3,数据包丢弃方法包括:
步骤S310,生成指示消息,指示消息指示终端启动SDAP层对数据包发送超时的监测。
其中,指示消息可以是RRC(Radio Resource Control,无线资源控制)消息。指示消息用于指示终端在SDAP层监测数据包发送超时。可选地,RRC消息中还可以包括计时时长设置信息,用于指示对监测数据包是否发送超时的包丢弃定时器设置计时时长。
步骤S320,向终端发送指示消息。
上述方法可以在基站中执行。指示消息指示终端启动SDAP层对数据包发送超时的监测。通过本公开提供的方法,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。
图4是本公开实施例提供的一种数据包丢弃方法的流程图。参见图4,数据包丢弃方法包括:
步骤S410,基站生成指示消息,指示消息指示终端启动在SDAP层对数据包发送超时的监测。
其中,指示消息可以是RRC消息。指示消息用于指示终端在SDAP层监测数据包发送超时。可选地,RRC消息中还可以包括计时时长设置信息,用于指示对监测数据包是否发送超时的包丢弃定时器设置计时时长。
步骤S420,基站向终端发送指示消息。
在实施中,基站可以向终端发送生成好的指示消息。
步骤S430,终端接收基站发送的指示消息,指示消息指示启动在SDAP层对数据包发送超时的监测。
在实施中,当终端接收到基站发送的指示消息时,相应地可以在SDAP层开启监测数据包发送超时的功能,如果在指示消息中存在计时时长设置信息,可以对包丢弃定时器的计时时长进行设置。该包丢弃定时器会对目标数据流中的数据包从SDAP层,至其往下一层递交,到最后从终端发出,进行计时监测。
步骤S440,当检测到目标会话发起后,在SDAP层,终端根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。
在实施中,存在多个包丢弃定时器,每个包丢弃定时器为目标数据流中的每个数据包的发送过程进行计时。如果数据包已成功从终端发送出,终端则将该数据包对应的包丢弃定时器重置。如果监测到数据包在该数据包对应的包丢弃定时器超时后,还未从终端中发送出,则执行下述步骤S450。
步骤S450,如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,终端则将包丢弃定时器对应的数据包丢弃。
在实施中,如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,终端可以在传输队列中将超时的包丢弃定时器对应的数据包丢弃。
可选地,如图5所示,步骤S450可以包括:步骤S551,如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,终端则确定包丢弃定时器对应的数据包的当前所处层;步骤S552,在当前所处层中,终端将包丢弃定时器对应的数据包丢弃。
可选地,如图6所示,步骤S551可以包括:步骤S5511,从SDAP层开始,终端查找包丢弃定时器对应的数据包;步骤S5512,如果未在被查找层中查找到包丢弃定时器对应的数据包,终端则在被查找层的下一层查找包丢弃定时器对应的数据包;步骤S5513,如果在被查找层中查找到包丢弃定时器对应的数据包,终端则将被查找层确定为当前所处层;步骤S5514,如果在下一层中查找到包丢弃定时器对应的数据包,终端则将下一层确定为当前所处层。
在实施中,如图7所示,数据包在各通信底层架构的层中存在两种形式:一种是SDU(Service Data Unit,服务数据单元),另外一种是PDU(Packet Data Unit,包数据单元)。将SDU和头部(信息)进行封装,封装后的SDU就是 PDU。而对于通信底层架构的层,每一层中的PDU都是下一层的SDU。
在本实施例中,终端从SDAP层开始,查找包丢弃定时器对应的数据包是否处于SDAP层。若包丢弃定时器对应的数据包处于SDAP层,数据包是SDAP SDU,就将SDAP SDU删除,数据包若已封装成SDAP PDU,就将SDAP SDU及其对应的SDAP PDU删除。若包丢弃定时器对应的数据包不处于SDAP层,则SDAP层通知PDCP层将包丢弃定时器对应的数据包删除。若包丢弃定时器对应的数据包处于PDCP层,数据包是PDCP SDU,就将PDCP SDU删除,数据包若已封装成PDCP PDU,就将PDCP SDU及其对应的PDCP PDU删除。若包丢弃定时器对应的数据包不处于PDCP层,则PDCP层通知RLC层将包丢弃定时器对应的数据包删除。若包丢弃定时器对应的数据包处于RLC层,数据包是RLC SDU,就将RLC SDU删除,数据包若已封装成RLC PDU,就将RLC SDU及其对应的RLC PDU删除。
可选地,本公开实施例提供的方法还包括:终端向基站发送数据包丢弃信息,其中,数据包丢弃信息包括被丢弃的数据包对应的标识。
其中,数据包对应的标识可以是SN(Serial Number,序列号)。终端通过将数据包丢弃信息发送到基站的方式,来通知基站都有哪些数据包已被丢弃。
可选地,如图8所示,终端向基站发送数据包丢弃信息的步骤包括:步骤S810,终端将数据包丢弃信息添加到目标控制消息的PDCP层的封装中;步骤S820,终端向基站发送封装有数据包丢弃信息的目标控制消息。
通过上述方式,终端可以将数据包丢弃信息添加到控制消息在PDCP层的封装中,以使得基站在基站侧的PDCP层能够识别出控制消息中的数据包丢弃信息。其中,目标控制消息是区别于普通数据的消息。普通数据中携带大量的实质信息,如流媒体信息。而控制消息则是专用于控制通信过程的消息。
除此之外,终端还可以将被丢弃的数据包对应的标识放在RRC消息中发送到基站。或者,终端可以直接在PDCP层生成一个用于指示都有哪些数据包被丢弃的信令信息发送到基站。在此不再一一举例。
可选地,为了节省信令开销,终端可以基于几个被丢弃的数据包对应的标识生成一个数据包丢弃信息发送到基站。如图9所示,在终端向基站发送数据包丢弃信息之前,本实施例提供的方法还包括:步骤S910,每当经过预设的周期时长时,终端确定当前的周期时长中被丢弃的数据包对应的标识;步骤S920,终端基于被丢弃的数据包对应的标识生成数据包丢弃信息。
如果按照等待基于预设数量的被丢弃的数据包对应的标识生成一条数据包丢弃信息,则在某些情况下,可能出现等待时间过长的局面。因此,终端可以通过一个信令定时器来计时,每当信令定时器计时结束后,就将已出现的被丢弃的数据包对应的标识生成一条数据包丢弃信息,并发送到基站。需要说明的是,信令计时器的计时时长要比基站的重排序窗口中排序定时器的计时时长要短。重排序窗口中排序定时器,是用于对于重排序窗口中等待接收的数据包的到达时间计时的。当排序定时器超时时,重排序窗口不在等待排序定时器对应的数据包,转而开始接收下一个数据包。
可选地,如图10所示,本公开实施例提供的方法还包括:步骤S1010,基站接收终端发送的控制消息,控制消息包括数据包丢弃信息,数据包丢弃信息包括被丢弃的数据包对应的标识;步骤S1020,当重排序窗口的下边界移至数据包对应的位置时,基站将下边界下移至数据包的下一个数据包对应的位置。
基站在接收到终端发送的数据包丢弃信息时,对于数据包丢弃信息中记录的每个被丢弃的数据包,在重排序窗口的下边界移至被丢弃的数据包对应的位置时,将下边界下移至被丢弃的数据包的下一个数据包对应的位置。例如,重排序窗口中对应着需要排序的数据包的SN号为1、2、3、4、5、6。被丢弃的数据包对应的SN号为3和5。首先,将重排序窗口的下边界处于SN号为1的数据包对应的位置,当接收到SN号为1的数据包时,将重排序窗口的下边界移动到SN号为2的数据包对应的位置。当接收到SN号为2的数据包时,将重排序窗口的下边界移动到SN号为3的数据包对应的位置。确定数据包对应的SN号为3的数据包被丢弃,将重排序窗口的下边界移动到SN号为4的数据包对应的位置。当接收到SN号为4的数据包时,将重排序窗口的下边界移动到SN号为5的数据包对应的位置。确定数据包对应的SN号为5的数据包被丢弃,将重排序窗口的下边界移动到SN号为6的数据包对应的位置。需要说明的是,上述操作是在基站的PDCP层完成的,当然,在基站的RLC层也可以执行上述操作,只是需要对终端发送的数据包丢弃信息进行相应地调整即可。
在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。通过本公开提供的方法,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。
图11是本公开实施例提供的一种数据包丢弃装置的结构示意图。参见图11,该装置包括:
接收模块1110,用于接收基站发送的指示消息,指示消息指示启动在SDAP层对数据包发送超时的监测;
启动模块1120,用于当检测到目标会话发起后,在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器;
丢弃模块1130,用于在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,将包丢弃定时器对应的数据包丢弃。
可选地,如图12所示,丢弃模块1130包括:
第一确定单元1231,用于在包丢弃定时器超时后,检测到包丢弃定时器对应的数据包未成功从本地发出,确定包丢弃定时器对应的数据包的当前所处层;
丢弃单元1232,用于在当前所处层中,将包丢弃定时器对应的数据包丢弃。
可选地,第一确定单元1231包括:
第一查找子单元,用于从SDAP层开始,查找包丢弃定时器对应的数据包;
第二查找子单元,用于未在被查找层中查找到包丢弃定时器对应的数据包时,在被查找层的下一层查找包丢弃定时器对应的数据包;
第一确定子单元,用于在被查找层中查找到包丢弃定时器对应的数据包时,将被查找层确定为当前所处层;
第二确定子单元,用于在下一层中查找到包丢弃定时器对应的数据包时,将下一层确定为当前所处层。
可选地,该装置还包括:
第一发送模块,用于向基站发送数据包丢弃信息;
其中,数据包丢弃信息包括被丢弃的数据包对应的标识。
可选地,如图13所示,该装置还包括:
确定模块1310,用于每当经过预设的周期时长时,确定当前的周期时长中被丢弃的数据包对应的标识;
第二发送模块1320,用于基于被丢弃的数据包对应的标识生成数据包丢弃信息。
可选地,如图14所示,第一发送模块包括:
添加单元1410,用于将数据包丢弃信息添加到目标控制消息的PDCP层的封装中;
发送单元1420,用于向基站发送封装有数据包丢弃信息的目标控制消息。
图15是本公开实施例提供的一种数据包丢弃装置的结构示意图。参见图15,该装置包括:
生成模块1510,用于生成指示消息,指示消息指示终端启动SDAP层对数据包发送超时的监测;
发送模块1520,用于向终端发送指示消息。
可选地,如图16所示,装置还包括:
接收模块1610,用于接收终端发送的控制消息,控制消息包括数据包丢弃信息,数据包丢弃信息包括被丢弃的数据包对应的标识;
下移模块1620,用于当重排序窗口的下边界移至数据包对应的位置时,将下边界下移至数据包的下一个数据包对应的位置。
在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器。通过本公开提供的装置,使得监测机制可以涉及SDAP层、PDCP层、RLC层,将数据流在SDAP层停留的时间也考虑进去,在5G技术中实现了数据包发送超时监控。
需要说明的是:上述实施例提供的数据包丢弃装置在进行数据包丢弃时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的数据包丢弃装置与数据包丢弃方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开再一示例性实施例示出了一种数据包丢弃系统,该系统包括终端和基站。
终端,用于接收基站发送的指示消息,指示消息指示启动在SDAP层对数据包发送超时的监测;当检测到目标会话发起后,在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器;如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,则将包 丢弃定时器对应的数据包丢弃。
基站,用于生成指示消息,指示消息指示终端启动SDAP层对数据包发送超时的监测;向终端发送指示消息。
需要说明的是:上述实施例提供的数据包丢弃系统与数据包丢弃方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开再一示例性实施例示出了一种终端的结构示意图。参照图17,终端1700可以包括以下一个或多个组件:处理组件1702,存储器1704,电源组件1706,多媒体组件1708,音频组件1710,输入/输出(I/O)的接口1712,传感器组件1714,以及通信组件1716。
处理组件1702通常控制终端1700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件1702可以包括一个或多个处理器1720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1702可以包括一个或多个模块,便于处理组件1702和其他组件之间的交互。例如,处理部件1702可以包括多媒体模块,以方便多媒体组件1708和处理组件1702之间的交互。
存储器1704被配置为存储各种类型的数据以支持在终端1700的操作。这些数据的示例包括用于在终端1700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
通信组件1716被配置为便于终端1700和其他设备之间有线或无线方式的通信。终端1700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件1716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
电力组件1706为终端1700的各种组件提供电力。电力组件1706可以包 括电源管理系统,一个或多个电源,及其他与为音频输出设备1700生成、管理和分配电力相关联的组件。
多媒体组件1708包括在终端1700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1708包括一个前置摄像头和/或后置摄像头。当终端1700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1710被配置为输出和/或输入音频信号。例如,音频组件1710包括一个麦克风(MIC),当音频输出设备1700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1704或经由通信组件1716发送。
I/O接口1712为处理组件1702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1714包括一个或多个传感器,用于为终端1700提供各个方面的状态评估。例如,传感器组件1714可以检测到终端1700的打开/关闭状态,组件的相对定位,例如组件为终端1700的显示器和小键盘,传感器组件1714还可以检测终端1700或终端1700一个组件的位置改变,用户与终端1700接触的存在或不存在,终端1700方位或加速/减速和终端1700的温度变化。传感器组件1714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
在示例性实施例中,终端1700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑 器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的计算机可读存储介质,例如包括指令的存储器1704,上述指令可由终端1700的处理器1720执行以完成上述方法。例如,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开的又一实施例提供了一种计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行:
接收基站发送的指示消息,指示消息指示启动在SDAP层对数据包发送超时的监测;
当检测到目标会话发起后,在SDAP层,根据指示消息启动与目标会话的数据流中每个数据包对应的包丢弃定时器;
如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,则将包丢弃定时器对应的数据包丢弃。
可选地,如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,则将包丢弃定时器对应的数据包丢弃,包括:
如果在包丢弃定时器超时后,且检测到包丢弃定时器对应的数据包未成功从本地发出,则确定包丢弃定时器对应的数据包的当前所处层;
在当前所处层中,将包丢弃定时器对应的数据包丢弃。
可选地,确定包丢弃定时器对应的数据包当前所处层,包括:
从SDAP层开始,查找包丢弃定时器对应的数据包;
如果未在被查找层中查找到包丢弃定时器对应的数据包,则在被查找层的下一层查找包丢弃定时器对应的数据包;
如果在被查找层中查找到包丢弃定时器对应的数据包,则将被查找层确定为当前所处层;
如果在下一层中查找到包丢弃定时器对应的数据包,则将下一层确定为当前所处层。
可选地,该方法还包括:
向基站发送数据包丢弃信息;
其中,数据包丢弃信息包括被丢弃的数据包对应的标识。
可选地,在向基站发送数据包丢弃信息之前,该方法还包括:
每当经过预设的周期时长时,确定当前的周期时长中被丢弃的数据包对应的标识;
基于被丢弃的数据包对应的标识生成数据包丢弃信息。
可选地,向基站发送数据包丢弃信息,包括:
将数据包丢弃信息添加到目标控制消息的PDCP层的封装中;
向基站发送封装有数据包丢弃信息的目标控制消息。
图18是根据一示例性实施例示出的基站1900的框图。参照图10,基站1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理部件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述数据包丢弃方法。
基站1900还可以包括一个电源组件1926被配置为执行基站1900的电源管理,一个天线1950被配置为将基站1900连接到通信网络,和一个输入输出(I/O)接口1958。
基站1900可以包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行一个或者一个以上程序包含用于进行以下操作的指令:
生成指示消息,指示消息指示终端启动SDAP层对数据包发送超时的监测;
向终端发送指示消息。
可选地,该方法还包括:
接收终端发送的控制消息,控制消息包括数据包丢弃信息,数据包丢弃信息包括被丢弃的数据包对应的标识;
当重排序窗口的下边界移至数据包对应的位置时,将下边界下移至数据包的下一个数据包对应的位置。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,上述程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或 光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (21)

  1. 一种数据包丢弃方法,其特征在于,所述方法包括:
    接收基站发送的指示消息,所述指示消息指示启动在服务数据同化协议SDAP层对数据包发送超时的监测;
    当检测到目标会话发起后,在所述SDAP层,根据所述指示消息启动与所述目标会话的数据流中每个数据包对应的包丢弃定时器;
    如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则将所述包丢弃定时器对应的数据包丢弃。
  2. 根据权利要求1所述的方法,其特征在于,所述如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则将所述包丢弃定时器对应的数据包丢弃,包括:
    如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则确定所述包丢弃定时器对应的数据包的当前所处层;
    在所述当前所处层中,将所述包丢弃定时器对应的数据包丢弃。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述包丢弃定时器对应的数据包当前所处层,包括:
    从SDAP层开始,查找所述包丢弃定时器对应的数据包;
    如果未在被查找层中查找到所述包丢弃定时器对应的数据包,则在所述被查找层的下一层查找所述包丢弃定时器对应的数据包;
    如果在所述被查找层中查找到所述包丢弃定时器对应的数据包,则将所述被查找层确定为所述当前所处层;
    如果在所述下一层中查找到所述包丢弃定时器对应的数据包,则将所述下一层确定为所述当前所处层。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述基站发送数据包丢弃信息;
    其中,所述数据包丢弃信息包括被丢弃的数据包对应的标识。
  5. 根据权利要求4所述的方法,其特征在于,在所述向所述基站发送数据包丢弃信息之前,所述方法还包括:
    每当经过预设的周期时长时,确定当前的周期时长中被丢弃的数据包对应的标识;
    基于所述被丢弃的数据包对应的标识生成所述数据包丢弃信息。
  6. 根据权利要求4所述的方法,其特征在于,所述向所述基站发送数据包丢弃信息,包括:
    将所述数据包丢弃信息添加到目标控制消息的PDCP层的封装中;
    向所述基站发送封装有所述数据包丢弃信息的所述目标控制消息。
  7. 一种数据包丢弃方法,其特征在于,所述方法包括:
    生成指示消息,所述指示消息指示终端启动SDAP层对数据包发送超时的监测;
    向所述终端发送所述指示消息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的控制消息,所述控制消息包括数据包丢弃信息,所述数据包丢弃信息包括被丢弃的数据包对应的标识;
    当重排序窗口的下边界移至所述数据包对应的位置时,将所述下边界下移至所述数据包的下一个数据包对应的位置。
  9. 一种数据包丢弃装置,其特征在于,所述装置包括:
    接收模块,用于接收基站发送的指示消息,所述指示消息指示启动在SDAP层对数据包发送超时的监测;
    启动模块,用于当检测到目标会话发起后,在所述SDAP层,根据所述指示消息启动与所述目标会话的数据流中每个数据包对应的包丢弃定时器;
    丢弃模块,用于在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,将所述包丢弃定时器对应的数据包丢弃。
  10. 根据权利要求9所述的装置,其特征在于,所述丢弃模块包括:
    第一确定单元,用于在所述包丢弃定时器超时后,检测到所述包丢弃定时器对应的数据包未成功从本地发出,确定所述包丢弃定时器对应的数据包的当前所处层;
    丢弃单元,用于在所述当前所处层中,将所述包丢弃定时器对应的数据包丢弃。
  11. 根据权利要求10所述的装置,其特征在于,所述第一确定单元包括:
    第一查找子单元,用于从SDAP层开始,查找所述包丢弃定时器对应的数据包;
    第二查找子单元,用于未在被查找层中查找到所述包丢弃定时器对应的数据包时,在所述被查找层的下一层查找所述包丢弃定时器对应的数据包;
    第一确定子单元,用于在所述被查找层中查找到所述包丢弃定时器对应的数据包时,将所述被查找层确定为所述当前所处层;
    第二确定子单元,用于在所述下一层中查找到所述包丢弃定时器对应的数据包时,将所述下一层确定为所述当前所处层。
  12. 根据权利要求9所述的装置,其特征在于,所述装置还包括:
    第一发送模块,用于向所述基站发送数据包丢弃信息;
    其中,所述数据包丢弃信息包括被丢弃的数据包对应的标识。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    确定模块,用于每当经过预设的周期时长时,确定当前的周期时长中被丢弃的数据包对应的标识;
    第二发送模块,用于基于所述被丢弃的数据包对应的标识生成所述数据包丢弃信息。
  14. 根据权利要求12所述的装置,其特征在于,所述第一发送模块包括:
    添加单元,用于将所述数据包丢弃信息添加到目标控制消息的PDCP层的封装中;
    发送单元,用于向所述基站发送封装有所述数据包丢弃信息的所述目标控制消息。
  15. 一种数据包丢弃装置,其特征在于,所述装置包括:
    生成模块,用于生成指示消息,所述指示消息指示终端启动SDAP层对数据包发送超时的监测;
    发送模块,用于向所述终端发送所述指示消息。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述终端发送的控制消息,所述控制消息包括数据包丢弃信息,所述数据包丢弃信息包括被丢弃的数据包对应的标识;
    下移模块,用于当重排序窗口的下边界移至所述数据包对应的位置时,将所述下边界下移至所述数据包的下一个数据包对应的位置。
  17. 一种数据包丢弃系统,其特征在于,所述系统包括终端和基站;
    所述终端,用于接收基站发送的指示消息,所述指示消息指示启动在SDAP层对数据包发送超时的监测;当检测到目标会话发起后,在所述SDAP层,根据所述指示消息启动与所述目标会话的数据流中每个数据包对应的包丢弃定时器;如果在所述包丢弃定时器超时后,且检测到所述包丢弃定时器对应的数据包未成功从本地发出,则将所述包丢弃定时器对应的数据包丢弃;
    所述基站,用于生成指示消息,所述指示消息指示终端启动SDAP层对数据包发送超时的监测;向所述终端发送所述指示消息。
  18. 一种终端,其特征在于,所述终端包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1-6任一所述的数据包丢弃方法。
  19. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1-6任一所述的数据包丢弃方法。
  20. 一种基站,其特征在于,所述基站包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求7-8任一所述的数据包丢弃方法。
  21. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求7-8任一所述的数据包丢弃方法。
PCT/CN2017/094359 2017-07-25 2017-07-25 一种数据包丢弃方法、装置和系统 WO2019019025A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780000682.8A CN108541387B (zh) 2017-07-25 2017-07-25 一种数据包丢弃方法、装置和系统
PCT/CN2017/094359 WO2019019025A1 (zh) 2017-07-25 2017-07-25 一种数据包丢弃方法、装置和系统
EP17919487.3A EP3661138A4 (en) 2017-07-25 2017-07-25 METHOD, DEVICE AND SYSTEM FOR DISCARDING A DATA PACKAGE
US16/618,263 US11456963B2 (en) 2017-07-25 2017-07-25 Method, device and system for discarding data packet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094359 WO2019019025A1 (zh) 2017-07-25 2017-07-25 一种数据包丢弃方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2019019025A1 true WO2019019025A1 (zh) 2019-01-31

Family

ID=63489809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094359 WO2019019025A1 (zh) 2017-07-25 2017-07-25 一种数据包丢弃方法、装置和系统

Country Status (4)

Country Link
US (1) US11456963B2 (zh)
EP (1) EP3661138A4 (zh)
CN (1) CN108541387B (zh)
WO (1) WO2019019025A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565474B (zh) * 2017-07-25 2022-05-06 北京小米移动软件有限公司 数据传输方法及装置、电子设备和计算机可读存储介质
US10764118B1 (en) 2018-01-05 2020-09-01 Open Invention Network Llc EMS resolution of split-brain virtual network function components
WO2020062126A1 (zh) * 2018-09-29 2020-04-02 Oppo广东移动通信有限公司 一种数据包处理方法、实体及存储介质
CN109121163B (zh) * 2018-10-11 2021-06-01 中国电子科技集团公司第三十六研究所 一种基于sdap pdu长度的sdap层重映射方法
CN109526026B (zh) * 2018-10-29 2021-11-23 中国电子科技集团公司第三十六研究所 一种基于End/Start Mark的上行SDAP重映射方法和装置
CN113709804A (zh) * 2020-05-22 2021-11-26 维沃移动通信有限公司 数据传输方法、终端设备和网络设备
CN117157921A (zh) * 2021-06-24 2023-12-01 Oppo广东移动通信有限公司 基于低功耗蓝牙的数据传输方法、装置、设备及存储介质
CN115834742A (zh) * 2021-09-16 2023-03-21 大唐移动通信设备有限公司 定时器处理方法、装置及存储介质
CN115996420A (zh) * 2021-10-19 2023-04-21 维沃移动通信有限公司 数据处理方法、装置及终端
CN116233921A (zh) * 2021-12-03 2023-06-06 维沃移动通信有限公司 数据包的处理方法、装置及终端
WO2023197227A1 (zh) * 2022-04-13 2023-10-19 北京小米移动软件有限公司 一种上行传输方法/装置/设备及存储介质
WO2023206133A1 (en) * 2022-04-27 2023-11-02 Lenovo (Beijing) Limited Methods and apparatuses for enhancements of a data discarding operation
CN117640531A (zh) * 2022-08-16 2024-03-01 中国电信股份有限公司 数据传输方法、装置、pdcp、基站以及存储介质
WO2024055334A1 (zh) * 2022-09-16 2024-03-21 北京小米移动软件有限公司 丢包处理方法、装置、通信设备及存储介质
WO2024092749A1 (en) * 2022-11-04 2024-05-10 Apple Inc. Pdcp reordering enhancements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086679A1 (zh) * 2007-12-29 2009-07-16 Zte Corporation 无线链路控制实体的复位控制方法
CN103167553A (zh) * 2011-12-13 2013-06-19 华为技术有限公司 用于无线通信的方法和装置以及基站
CN103503511A (zh) * 2011-05-25 2014-01-08 华为技术有限公司 监测被丢弃数据包的系统和方法
CN103826260A (zh) * 2008-08-07 2014-05-28 高通股份有限公司 在无线通信系统中用于基于定时器的丢弃的高效分组处理
EP2999296A1 (en) * 2014-09-18 2016-03-23 BlackBerry Limited Configuring a discard timer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513033B1 (ko) 2007-09-18 2015-04-17 엘지전자 주식회사 다중 계층 구조에서 QoS를 보장하기 위한 방법
AU2008308944B2 (en) * 2007-10-01 2012-07-26 Interdigital Patent Holdings, Inc. Method and apparatus for PCDP discard
EP3603178A4 (en) * 2017-03-23 2021-01-13 Nokia Technologies Oy RELOCATION OF QUALITY OF SERVICE FLOWS
CN106921996B (zh) * 2017-05-12 2019-07-26 电信科学技术研究院 一种层2统计量的统计方法、cu及du

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086679A1 (zh) * 2007-12-29 2009-07-16 Zte Corporation 无线链路控制实体的复位控制方法
CN103826260A (zh) * 2008-08-07 2014-05-28 高通股份有限公司 在无线通信系统中用于基于定时器的丢弃的高效分组处理
CN103503511A (zh) * 2011-05-25 2014-01-08 华为技术有限公司 监测被丢弃数据包的系统和方法
CN103167553A (zh) * 2011-12-13 2013-06-19 华为技术有限公司 用于无线通信的方法和装置以及基站
EP2999296A1 (en) * 2014-09-18 2016-03-23 BlackBerry Limited Configuring a discard timer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661138A4 *

Also Published As

Publication number Publication date
EP3661138A1 (en) 2020-06-03
CN108541387B (zh) 2021-11-09
CN108541387A (zh) 2018-09-14
US11456963B2 (en) 2022-09-27
US20200153746A1 (en) 2020-05-14
EP3661138A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2019019025A1 (zh) 一种数据包丢弃方法、装置和系统
US11343704B2 (en) Method and apparatus for assigning identifier, base station and user equipment
US10694572B2 (en) Methods and devices for controlling states of user equipment
WO2021026824A1 (zh) 非活动定时器的控制方法和装置
US20240007919A1 (en) Frequency priority determination method and apparatus, information issuing method and apparatus, and device and medium
EP3672319B1 (en) Data sending methods, apparatus, and system
WO2021026696A1 (zh) 终端监听的方法及装置、通信设备及存储介质
US11395175B2 (en) Method, device and system of processing data packet in data bearer remapping process
WO2019019032A1 (zh) 下行数据包配置方法及装置
US20210144712A1 (en) Method and apparatus for reporting buffer status report
WO2018176230A1 (zh) 通知区域的更新方法及装置
WO2020047696A1 (zh) 小区切换方法及装置
US20220303841A1 (en) Handover processing method and apparatus
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
WO2018166042A1 (zh) 数据单元传输方法及装置
WO2023221794A1 (zh) 控制方法、通信设备及存储介质
US11044738B2 (en) Method and device for sending control protocol data unit (PDU)
CN108702333B (zh) 一种数据传输方法和装置
US20200029244A1 (en) Method and apparatus for data transmission, electronic device and computer readable storage medium
CN109451788B (zh) 一种数据传输方法和装置
CN110521226A (zh) 一种通信方法及装置
CN114650616A (zh) 网络模式的控制方法及装置
WO2020082278A1 (zh) 网络参数配置方法、装置及计算机可读存储介质
WO2024031400A1 (zh) 确定激活或去激活辅小区的方法、装置及存储介质
WO2023065081A1 (zh) 边缘服务器的路由选择方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919487

Country of ref document: EP

Effective date: 20200225