WO2019019008A1 - 一种信道资源分配方法和装置 - Google Patents

一种信道资源分配方法和装置 Download PDF

Info

Publication number
WO2019019008A1
WO2019019008A1 PCT/CN2017/094278 CN2017094278W WO2019019008A1 WO 2019019008 A1 WO2019019008 A1 WO 2019019008A1 CN 2017094278 W CN2017094278 W CN 2017094278W WO 2019019008 A1 WO2019019008 A1 WO 2019019008A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
link
links
time slot
data transmission
Prior art date
Application number
PCT/CN2017/094278
Other languages
English (en)
French (fr)
Inventor
徐涵
曾焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17919041.8A priority Critical patent/EP3651494B1/en
Priority to CN201780089623.2A priority patent/CN110506437B/zh
Priority to ES17919041T priority patent/ES2928188T3/es
Priority to CN202210569004.6A priority patent/CN114915327A/zh
Priority to PCT/CN2017/094278 priority patent/WO2019019008A1/zh
Publication of WO2019019008A1 publication Critical patent/WO2019019008A1/zh
Priority to US16/773,453 priority patent/US11540292B2/en
Priority to US17/993,560 priority patent/US11800549B2/en
Priority to US18/470,658 priority patent/US20240015774A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of millimeter wave communication technologies, and in particular, to a channel resource allocation method and apparatus.
  • antenna arrays and beamforming in addition to the benefits of high antenna gain, introduce some limitations: for example, the sender and receiver need to concentrate energy in a smaller direction, which must be sent before communication. The square is aligned with the beamforming direction of the receiver. In addition, since beamforming has high directivity, it is necessary to satisfy that the transmission path between the sender and the receiver is not blocked.
  • the transmission path is occluded. If the current transmission path is occluded or fails, the system needs to re-select a path and complete the switching and transmission of data with the path. In the process of this path switching, it may bring catastrophic delay to the upper layer service. The quality of service of the user.
  • the present application provides a channel resource allocation method, which is applied to the field of millimeter wave communication for beamforming, and is used to reduce high delay caused by transmission path switching.
  • the present application provides a channel resource allocation method, the method comprising the steps of: establishing, by a first network device, at least two links with a second network device, each of the links supporting beamforming Data transmission; the first network device acquires a millimeter wave wireless channel resource with the second network device; divides the wireless channel resource into multiple time slots, and each time slot is used for one link Data transmission, two adjacent time slots correspond to two different links; the first network device performs data of the corresponding link on the multiple time slots transmission.
  • the first network device divides the wireless channel resources of the millimeter wave into a plurality of time slots, and the different time slots are used for data transmission on different links, thereby detecting that the link at the current time occurs.
  • the data can be transmitted by using the next time slot, so that the link can be quickly switched to the unfailed link, the process of re-selecting the link and switching and establishing the connection is avoided, and the handover link is reduced. Delay, improve the quality of service for users.
  • the direction of beamforming can be quickly switched by the divided time slots, thereby avoiding the whole
  • the time-frequency resources corresponding to the links are wasted due to the failure. This method saves the time-frequency resources of the system while reducing the delay.
  • the process for the first network device to divide the radio channel resource into multiple time slots includes: the first network device adopts a time division duplex TDD manner The channel resources are divided into a plurality of time slots.
  • the first network device performs data transmission of the corresponding link on the multiple time slots, including: the first network device determines the An optimal link of at least two links; the first network device transmitting first information on a time slot corresponding to the optimal link, the first information being used for the optimal link Channel estimation and data monitoring are performed, and second information is transmitted on a time slot corresponding to other links than the optimal link, the second information being used to maintain a heartbeat.
  • the first network device transmits important data, such as the first information, on the optimal link, and sends the second information on the other sub-optimal links to maintain the transmitability of each link.
  • the optimal link fails, it can link to other links in time.
  • the method further includes: the first network device acquiring reference information of the second network device, where the reference information includes at least one of the following: Specific SNR, packet loss rate, channel state CSI, quality index CQI, data message transmission delay, quality of service QoS of the system layer and the application layer; the first network device adjusts the allocation to each of the pieces according to the reference information The length of the time slot of the link.
  • the first network device dynamically adjusts time-frequency resources of links in different beamforming directions by using reference information, thereby reducing system delay and improving QoS service quality.
  • the acquiring the reference information of the second network device includes: acquiring, by the first network device, the manner negotiated with the second network device Reference information; or, the reference information is obtained by monitoring the quality of each of the links.
  • the reference information may be obtained by other means, which is not limited in this application.
  • the at least two links include a first link and a second link
  • the first network device adjusts allocation to each according to the reference information. Determining the time slot length of the link, the first network device determining, according to the reference information, that when the first link fails, changing the time slot allocated to the first link to the The time slot corresponding to the second link.
  • the first network device establishes at least two links with the second network device, including: the first network device broadcasts the first message, where The first message includes the capability of the multiple beamforming links supported by the first network device; the first network device receives a response message that is sent by the second network device according to the first message; A network device establishes at least two links with the second network device according to the response message.
  • the second network device includes at least two virtual second network devices, and the first network device establishes at least two between the second network device and the second network device.
  • the link includes: establishing, by the first network device, one of the links between each of the virtual second network devices.
  • the second network device forms a plurality of virtual network devices, such as STAs, by expanding a plurality of MAC addresses, and the virtual network devices are different devices for the first network device, such as an AP, for the AP.
  • the AP and the multiple virtual STAs respectively train the link, so there is no need to change the code of the AP link layer, so that the AP can be quickly compatible with the existing standard, and the AP and the virtual STA can be maintained. Communication.
  • the first network device includes at least one set of antennas, and the first network device performs data of a corresponding link on the multiple time slots.
  • the transmitting includes: the first network device uses a set of antenna arrays for data transmission, or uses two or more sets of antenna arrays to perform data transmission with the second network device, wherein the two groups or two groups.
  • the transmission mechanisms between the above antenna arrays include time division multiplexing, frequency division multiplexing, code division multiplexing, and space division multiplexing.
  • a single antenna array and a plurality of antenna array transmissions are combined to perform data transmission in a switched manner, thereby establishing a multi-link redundancy backup between the first network device and the second network device, thereby improving the chain.
  • Road quality such as SNR and robustness.
  • the method further includes: the first network device broadcasts a second message, where the second message includes multiple pieces supported by the first network device The capability of beam tracking; the first network device receives a response message fed back by the second network device according to the second message; the first network device tracks the link according to the response message.
  • the first network device implements dynamic tracking of multiple links by using multiple beam tracking capabilities supported by the first network device, and maintains the transmitability of each link to prepare for fast link switching. .
  • the present application further provides a channel resource allocation apparatus, the apparatus comprising a unit or a module for performing the method steps in the various implementation manners of the foregoing first aspect, further comprising: an acquiring unit, a processing unit And sending units, etc.
  • the device may be configured in a first network device, such as an AP.
  • the present application further provides a channel resource allocation method, where the method is applicable to a second network device, such as an STA.
  • the method includes: the second network device and the first network device establish at least two chains. And wherein each of said links supports beamforming data transmission; and communicating with said first network device in accordance with said established at least two links.
  • the method further includes: the second network device receives information from the first network device; and sends a response message to the first network device according to the information To maintain the transportability of the plurality of links.
  • the maintaining the transmitability of the multiple links includes: the second network device receiving the first information from the first network device, the first information Means for channel estimation and data monitoring of the optimal link, and, on other links, receiving second information from the first network device, the second information including a preamble domain, or for maintaining a heartbeat Heartbeat packet/heartbeat frame, etc.
  • the method further includes: the second network is configured to generate reference information, where the reference information includes at least one of the following: a signal to noise ratio SNR, a packet loss rate, Channel state CSI, quality index CQI, data packet transmission delay, quality of service QoS of the system layer and the application layer; the reference information is sent to the first network device.
  • the reference information includes at least one of the following: a signal to noise ratio SNR, a packet loss rate, Channel state CSI, quality index CQI, data packet transmission delay, quality of service QoS of the system layer and the application layer; the reference information is sent to the first network device.
  • the method further includes: the second network device virtualizing multiple network devices, such as STAs, and simultaneously training/tracking multiple chains through virtualization technology
  • the second network device further expands a plurality of MAC addresses, each of the MAC addresses corresponding to one virtual STA, and each of the virtual STAs can identify different data streams with each other and be externally represented by multiple Different STA devices.
  • the method further includes: the second network device receiving the second message from the first network device, and generating a feedback response message according to the second message, And sending the response message to the first network device, thereby implementing beam tracking and time slot allocation of the first network device to each link.
  • the present application further provides a channel resource allocation apparatus, where the apparatus includes a unit or a module for performing the method steps in various implementation manners of the foregoing third aspect, and further, the apparatus includes: a receiving unit, a processing unit And sending units, etc.
  • the apparatus may be configured in a second network device, such as an STA.
  • the present application further provides a network device, where the network device includes: a processor, a memory, and a transceiver; and the processor can execute a program or an instruction stored in the memory, thereby implementing A channel resource allocation method according to various implementation manners.
  • the present application further provides a computer storage medium, where the computer storage medium can store a program, and the program can implement some or all of the steps in each embodiment of the channel resource allocation method provided by the application.
  • the present application also provides a computer program product comprising instructions when it is shipped on a computer
  • the computer is caused to perform the method steps described in the various aspects above.
  • FIG. 1 is a schematic diagram of a spectrum for unauthorized use according to the present application.
  • FIG. 2 is a schematic diagram of a transmission path not blocked according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a transmission path blocked according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a channel resource allocation method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an AP training multiple links according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of multiple link time slot allocation according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of dividing a time slot for Link1 and Link2 according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of dividing a time slot for a link according to an embodiment of the present disclosure.
  • FIG. 8b is another schematic diagram of dividing a time slot for a link according to an embodiment of the present disclosure.
  • FIG. 8c is still another schematic diagram of dividing a time slot for a link according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an AP and a STA negotiating resource adjustment according to an embodiment of the present disclosure.
  • FIG. 9b is a schematic diagram of determining, by an AP, an adjustment resource according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a single group antenna transmitting multiple groups of antennas according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of multiple groups of antennas transmitting multiple sets of antennas according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a first network device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a network device AP according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a second network device according to an embodiment of the present disclosure.
  • the millimeter The field of wave communication includes the following features: First, the sender and the receiver both need to concentrate the energy in a small direction, and the beamforming directions of the sender and the receiver before the communication are aligned, so that the link transmission has an optical similarity. characteristic. Second, it is necessary to satisfy the unobstructed transmission path between the sender and the receiver, that is, LOS (Line of Sight).
  • the method provided by the embodiments of the present application is applied to a WLAN network.
  • the method may be applied to an LTE (Long Term Evolution) system, or a wireless access technology such as code division multiple access and orthogonal frequency division multiple access.
  • Wireless communication system can also be applied to the subsequent evolution systems using the LTE system, such as 60G WiFi, fifth generation (5G) communication system, NR (new radio) system, and optical system.
  • LTE Long Term Evolution
  • 5G fifth generation
  • NR new radio
  • the system includes at least one wireless device and at least one terminal device.
  • the wireless device is configured to communicate with at least one terminal device, wherein the wireless device, such as an AP (access point), communicates with a terminal device, such as a station (STA).
  • AP access point
  • STA station
  • the wireless device may be an access point (AP), and may also be other network devices, such as a base station, an enhanced base station, or a relay with scheduling function, or a device with base station function.
  • the base station may be an evolved Node B (eNB) in the LTE system, or may be a base station in other systems, which is not limited in this embodiment.
  • eNB evolved Node B
  • the terminal device may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket-sized, handheld, computer-in-built or in-vehicle mobile device that is wireless with The access network exchanges languages and or data.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a subscriber unit (SU), a subscriber station (SS), a mobile station (MS), a remote station (RS), and a remote terminal (RT).
  • the wireless device AP and the terminal device STA have a stable line of sight direction, that is, there is a line of sight (LOS) between the AP and the STA, and as shown in FIG. 3, due to the AP and There is a barrier between the STAs, resulting in no line of sight path between the AP and the STA.
  • the wireless signal is reflected or scattered by the surrounding obstacles to the AP, and these reflected or scattered paths are Non line of sight (NLOS).
  • the method provided by the present application will train multiple links supporting beamforming data transmission between the same pair of APs and STAs, including LOS and NLOS. This method supports more than two links and is not limited to requiring LOS.
  • the methods provided by the embodiments of the present application may be applicable to device to device (D2D) data transmission.
  • D2D device to device
  • the method will maintain the transportability of multiple links at the same time.
  • the link resource allocation is dynamically adjusted based on real-time monitoring of the channel and the data transmission.
  • the allocated link resources are dynamically adjusted to be time slots (English: slot), and time-frequency resources are allocated by means of Time Division Duplex (TDD).
  • TDD Time Division Duplex
  • the method is equally applicable to frequency (English: frequency) and codeword (English: code).
  • the transmission link sends an abnormality, for example, a link shown in FIG. 3 is blocked, resulting in a degradation of the quality of the transmitted signal.
  • the time-frequency resource is allocated, the time-frequency resource corresponding to the link is allocated as much as possible.
  • the faulty link (such as NLOS) ensures the normal operation of the upper layer service and processes and recovers the faulty link.
  • this embodiment provides a method for allocating time-frequency resources of a millimeter-wave wireless channel, and the method includes the following steps:
  • Step 101 The first network device AP establishes at least two links with the second network device STA, and each of the links supports beamforming data transmission.
  • multiple beamforming links can be established between the AP and the STA through negotiation.
  • a possible implementation manner is: the AP broadcasts a first message, where the first message includes the capability of multiple beamforming links supported by the AP; after receiving the first message, the STA sends a response message to the AP, The AP receives and interprets the response message fed back by the STA according to the first message, and then the AP establishes at least two links with the STA according to the response message.
  • the AP is divided into multiple virtual STAs on one physical STA, and each virtual STA corresponds to one beamforming path.
  • the LOS of the AP and the STA set to Link1
  • NLOS set to Link2
  • Each of the divided virtual STAs is invisible to the AP, that is, the AP considers each virtual STA to be an entity STA, and performs beamforming training with the physical STAs respectively.
  • one physical AP can be divided into multiple virtual APs, and multiple beamforming links between each virtual AP and the physical STA are trained.
  • the STAs described in various embodiments of the present application can achieve the purpose of simultaneously training/tracking multiple links through virtualization technology.
  • the key point of the virtual STA is that the STA device can expand multiple MAC addresses, and the virtual STAs can be identified as different data streams of the same device, and the external devices are represented by multiple different devices.
  • the AP and the multiple virtual STAs respectively train the link, so there is no need to change the code of the AP link layer, so that the AP can be quickly compatible with the existing standard, and the AP can maintain the barrier communication with each virtual STA. .
  • the AP may broadcast the capability of supporting the transmission of the virtual STA, and perform beamforming link training by using the virtual AP and the virtual STA respectively.
  • Step 102 The first network device acquires a millimeter wave wireless channel resource with the second network device.
  • the wireless channel resource of the millimeter wave refers to a resource that the AP can allocate, and the resource that the AP can allocate includes a time domain resource and a frequency domain resource. Further, for the time domain resource, the AP generally divides the time domain resource into multiple beacon intervals by using a beacon (English: beacon), in the time interval of each of the beacon Intervals. It can be considered as a channel resource between the AP and the STA. If the radio channel resource is a frequency domain resource, the available frequency band may be first divided into sub-bands, and then the time domain resources are further divided on each sub-band.
  • Step 103 Divide the radio channel resource into multiple time slots, and each time slot is used for data transmission of one link, and two adjacent time slots correspond to two different links.
  • a possible division method is: the AP divides the radio channel resource into multiple time slots according to a time division duplex TDD. As shown in FIG. 6, the time-frequency resource is divided into a number of time slots, and these time slots are allocated to Link1 and Link2. Further, in the process of dividing a plurality of time slots, the AP may first obtain reference information of the STA, and then determine a time slot length of each link according to the reference information, and divide the total time-frequency resources.
  • the reference information includes at least one of the following: a signal to noise ratio (SNR), a packet loss rate, a channel state information (CSI), a channel quality indicator (CQI), Data packet transmission delay, quality of service (QoS) at the system layer and application layer.
  • SNR signal to noise ratio
  • CSI channel state information
  • CQI channel quality indicator
  • QoS quality of service
  • Step 104 The first network device performs data transmission of the corresponding link on the multiple time slots to maintain the transmitability of multiple beamforming links between the AP and the STA.
  • maintaining the transportability between the multiple links can be understood as: transmitting different data on different time slots divided, that is, allocating time slots to different link intervals. For example, time slot 1 is used to transmit data on Link1 and time slot 2 is used to transmit data on Link2.
  • an implementation manner of maintaining transmission of multiple links is: an AP determines an optimal link among the at least two links, and a time slot corresponding to the optimal link; the AP is at the most Sending first information on a time slot corresponding to the optimal link, where the first information is used for channel estimation and data monitoring on the optimal link, that is, the AP sends necessary information through the optimal link, and Sending second information on a time slot corresponding to the other link except the optimal link, where the second information is used to maintain a heartbeat, for example, the second information includes a preamble of a data packet (English: Preamble) or Heartbeat packet/heartbeat frame, etc.
  • the first network device may transmit the same data on the links through the established multiple links, and may also transmit different data.
  • the first network device performs data transmission on the optimal link, and may transmit data on other links, or may not transmit data.
  • the primary link for example, the optimal link
  • at least one backup link can keep the communication unblocked for switching.
  • the AP may also maintain the transportability of the multiple beamforming links by combining the TTD method with the optimal link transmission necessary data.
  • the data transmitted by the AP on different links may be from the same upper layer service, or may be from different services, or a mixed mode of the two, and specifically, which method may be determined according to actual conditions, this embodiment There are no restrictions.
  • the first network device divides the radio channel resource into multiple time slots, and different time slots are used for data transmission on different links, and then detects the link at the current time.
  • the data can be transmitted by using the next time slot, so that the link can be quickly switched to the link that has not failed, the process of re-selecting the link and switching and establishing the connection is avoided, and the handover link is reduced.
  • the delay has improved the quality of service for users.
  • the method provided in this embodiment can quickly switch the link change beam by dividing the time slot, when the fault occurs, compared to the method of allocating the time-frequency resources of the entire wireless channel to one link for data transmission.
  • the direction of the shaping so as to avoid the time-frequency resources corresponding to the entire link being wasted due to the failure, the method reduces the time delay and saves the time-frequency resources of the system.
  • the foregoing method further includes: dynamically adjusting a process of channel resource allocation.
  • the first network device AP acquires reference information of the second network device STA, where the reference information may be obtained through negotiation between the AP and the STA, or the AP obtains through quality monitoring with each link; The AP then adjusts the length of the time slot allocated to each link based on the reference information.
  • the reference information includes: a signal to noise ratio SNR, a packet loss rate, a channel state information CSI, a channel quality index CQI, a delay, and a quality of service QoS of the system layer and the application layer.
  • SNR signal to noise ratio
  • the process of adjusting the time slot of each link by the AP includes: if the AP detects that the SNR of a certain link increases, correspondingly increasing the time slot/time interval of the link transmission, Conversely, if the SNR is reduced, the time slot/time interval of the link is correspondingly shortened.
  • two beamforming links are established between the AP and the STA, which are Link1 and Link2.
  • a link fails, for example, the AP determines that the established Link1 (LOS) fails according to the reference information.
  • the time slot assigned to Link1 (LOS) is changed to the time slot corresponding to Link 2 (NLOS) which has not failed.
  • time slot 1, time slot 3, and time slot 5 are used to transmit data on Link1
  • time slot 2, time slot 4, and time slot 6 are used to transmit data on Link2, during data transmission, at time t1.
  • Link1 fails or is occluded
  • the time slot corresponding to the subsequent Link1 is allocated to Link2, thereby preventing the subsequent time slot from being wasted due to the Link1 failure.
  • the beamformed link is quickly switched by changing the time slot to avoid Re-select a link and establish a connection to maintain the upper-layer service continuously and without interruption.
  • the time-frequency resources of the links in different beamforming directions are dynamically adjusted by using reference information, which can reduce system delay and improve QoS service quality.
  • the method further includes tracking each beam to maintain the transmitability of each link.
  • a method for implementing beam tracking includes:
  • the AP broadcasts a second message, where the second message includes the capability of multiple beam tracking supported by the first network device, and after receiving the second message, the STA feeds back a response message to the AP, and the AP receives the STA according to the second message.
  • the feedback message is fed back; and at least one beamforming link between the STA and the STA is tracked according to the response message, so as to track and locate the STA location.
  • Or another possible implementation manner is: dividing a physical STA into multiple virtual STAs, each virtual STA corresponding to one beamforming path, as shown in FIG. 4, the LOS of the STA and the NLOS of the STA*,
  • the virtual STAs are invisible with respect to the AP, that is, the AP considers each virtual STA to be an entity STA, and performs beamforming training with the physical STAs respectively.
  • the AP implements beam tracking by broadcasting its support for multiple virtual STAs and establishing a link with the AP by means of virtual STAs.
  • the method for allocating radio channel resources by using one AP for one STA is taken as an example, and a channel resource allocation method provided by the present application is specifically described.
  • the AP broadcasts its own support for multiple links, and trains multiple links with the STA. That is, the AP and the STA know each other's ability to support multiple links and establish an AP and STA. Multiple links and corresponding training for these links. As shown in FIG. 5, the two links trained between the AP and the STA are Link1 (Link 1) and Link2 (Link 2).
  • the AP allocates channel resources for Link1 and Link2.
  • An implementation manner includes: the AP divides channel resources into different time slots by means of TDD, each time slot represents a time interval, and each time or time slot is allocated to a different link, and is allocated. Data transmission is performed on the link to maintain the transportability of multiple links. For example, as shown in FIG. 6, the time slots allocated to Link1 and Link2 are indicated so that the entire time-frequency resource is used alternately on Link1 and Link2.
  • Method 1 Multiple links transmit data at the same time and are summarized at the data level.
  • the data to be sent by the AP to the STA is (1, 2, 3, 4, 5, 6, 7), and is transmitted through two links (Link1 and Link2), and the time-frequency resources available to the AP are available.
  • the AP After dividing a number of time slots, the AP sends data (1, 2) to the STA in the first time slot of Link1, and transmits (4, 5) in the second time slot; likewise, the AP is the first in Link2.
  • the time slots transmit data (3) to STA*, and in the second time slot, STA* is sent (6, 7).
  • the STA and the STA* are actually the same device, so the data can be obtained by summarizing (1, 2, 3, 4, 5, 6, 7).
  • Manner 2 Data transmission is performed only through the optimal link, and other links only transmit necessary information for channel estimation and environment monitoring, such as transmitting the preamble domain Preamble.
  • Link1 is taken as the optimal link and necessary information is transmitted, so the time slot allocated to Link1 is long, and the time slot allocated to other links Link2 is short.
  • Mode 3 Data transmission is performed only through the optimal link, and other links only maintain heartbeat.
  • Link1 is used as the optimal link and the necessary information is sent.
  • Link2 is only used to keep the link unblocked. It can send data on Link2 or not, so the time slot allocated to Link1 is longer. Long, the time slot allocated to the link Link2 for maintaining the heartbeat is short.
  • the channel resources of each link are dynamically adjusted.
  • the AP acquires reference information of the STA, and adjusts the length of the time slot allocated to Link1 and Link2 according to the reference information.
  • the reference information includes but is not limited to the following information: signal to noise ratio SNR, packet loss rate, channel state information CSI, channel quality index CQI, data packet transmission delay, and quality of service QoS at the system layer and the application layer.
  • the resources can be adjusted in various ways to reduce the delay of the system and maintain the continuity and stability of the service.
  • SNR is used as reference information for description.
  • the AP may determine the next time interval according to the result negotiated with the STA, such as the length of the time slots of Link1 and Link2 within one beacon period. Specifically, the AP queries the STA for the required resource size, and the STA performs corresponding feedback, and the AP determines the length of the time slot allocated to each link according to the feedback message of the received STA.
  • Query 1 The AP asks the STA for the resources required by the STA, such as the amount of data to be transmitted, the length of time, and the like.
  • Query 2 The AP asks STA* for the resources required by STA*.
  • STA* feeds back to the AP the resources it needs based on the SNR of the current link.
  • the AP informs the STA and the STA* of the subsequent time slot allocation by broadcast, such as the start time, the end time, and the duration of the time slot corresponding to the STA and the STA*.
  • ACK Acknowledgement, acknowledgment
  • STA and STA* will feed back an ACK response to the AP.
  • the STA device may feed back a single ACK as an entity, or the STA and the STA* each feed back an ACK response message to the AP.
  • the AP determines the length of the time slot allocated to Link1 and Link2 according to the above-mentioned negotiation result with the STA or STA*.
  • the AP may actively determine the length of the time slot allocated to each link.
  • Assignment AP monitors the quality of the current link, such as SNR. It is judged how many resources need to be allocated to the STA and the STA* in the next allocated time slot, and the STA and the STA* are notified in the form of a broadcast.
  • each virtual STA or STA* may feed back a single ACK as an entity, and may also feed back an ACK.
  • the AP negotiates with the STA or the AP actively determines the allocation of the time slot according to the actual technical scenario, and may combine the above two methods to dynamically time-frequency resources of each link. Adjustment, this embodiment does not limit this.
  • the extension of the first embodiment and the second embodiment is extended between the single-send single-receipt in the foregoing embodiment, and the single-send multi-receive, multi-send single-receive, multi-transmission and multi-receive AP and the STA.
  • the capabilities of the AP and the STA may not be completely matched, and multiple sets of antenna arrays need to be configured for the sender AP to improve the stability of the transmission.
  • the sender AP has two sets of transmissions.
  • the receiving STA has only one set of antenna arrays as an example.
  • the AP After the AP trains multiple links, such as LOS and NLOS paths, and the links are transitive, the AP performs data transmission on the corresponding links on multiple divided time slots, including: AP selects one of the antennas.
  • the array communicates with the STA and data is transmitted, or the AP uses two or more sets of antenna arrays to perform data transmission with the second network device.
  • the transmission mechanism between the two or more antenna arrays includes time division multiplexing, frequency division multiplexing, code division multiplexing, and space division multiplexing.
  • a single antenna array and multiple sets of antenna array transmissions may be combined to perform data transmission in a switched manner, thereby establishing a multi-link redundancy backup between the AP and the STA, thereby improving the link.
  • Quality such as SNR and robustness.
  • the method can also be extended to a transmission mechanism of multiple sets of antenna array transmission and multiple sets of antenna array reception.
  • the AP has two sets of transmit antenna arrays (set to A and B), and the STA has two sets of antennas.
  • the array (set to C and D) is an example.
  • the antenna array B of the AP and the antenna array D of the STA are trained with two links supporting beamforming, and LOS and NLOS correspond to the time-frequency resource S1.
  • the other antenna array A of the AP and the antenna array C of the STA are also trained with two links, and the corresponding time-frequency resource is S2.
  • the AP allocates different time slots to each link on time-frequency resources S1 and S2, respectively.
  • slots are allocated to Link1 and Link2 at intervals on the time-frequency resource S1; slots are also allocated for the Link3 and Link4 paths at intervals on the time-frequency resource S2, wherein when the Link3 in S2 is blocked,
  • One time slot allocates the time slot corresponding to the blocked Link3 to the Link4 that is not blocked, thereby ensuring uninterrupted transmission data, and realizing fast switching of the beamforming link, thereby reducing system delay.
  • the antenna group array between the sender and the receiver in this embodiment may be arbitrarily arranged and combined. That is, any group of antenna arrays of the AP can establish communication with the two antenna arrays of the STA, or the two antenna arrays of the AP can also establish communication with a group of antenna arrays of the STA at the same time (as shown in FIG. 10 of the second embodiment). ).
  • any group of antenna arrays of the AP can establish communication with the two antenna arrays of the STA, or the two antenna arrays of the AP can also establish communication with a group of antenna arrays of the STA at the same time (as shown in FIG. 10 of the second embodiment). ).
  • antenna array pairings are a few possible antenna array pairings:
  • the antenna group pairing of the system composed of the AP and the STA can be dynamically adjusted according to actual conditions.
  • the link training in this embodiment, maintaining the transmitability of the multi-link, and the dynamic adjustment method for each link time slot are similar to those in the foregoing embodiment 1, and thus will not be further described in this embodiment.
  • the embodiment of the present application further provides an apparatus embodiment of a corresponding network device, terminal device, and the like.
  • FIG. 12 is a schematic structural diagram of a first network device according to an embodiment of the present invention.
  • the first network device is configured to perform a channel resource allocation method as shown in FIG.
  • the first network device 120 may include an obtaining unit 1201, a processing unit 1202, and a sending unit 1203.
  • the processing unit 1202 is configured to establish at least two links with the second network device, each of the links supporting beamforming data transmission.
  • the obtaining unit 1201 is configured to acquire a wireless channel resource of a millimeter wave with the second network device.
  • the processing unit 1202 is further configured to divide the radio channel resource into multiple time slots, and each time slot is used for data transmission of one link, and two adjacent time slots correspond to two different links.
  • the sending unit 1203 is configured to perform data transmission of the corresponding link on the multiple time slots.
  • the processing unit 1202 is specifically configured to divide the wireless channel resource into multiple time slots according to a time division duplex TDD.
  • the processing unit 1202 is further configured to determine an optimal link among the at least two links.
  • the sending unit 1203 is further configured to send first information on a time slot corresponding to the optimal link, where the first information is used for performing channel estimation and data monitoring on the optimal link, and The second information is sent on a time slot corresponding to the other link except the optimal link, and the second information is used to maintain a heartbeat.
  • the acquiring unit 1201 is further configured to obtain reference information of the second network device, where the reference information includes at least one of the following: a signal to noise ratio SNR, and a packet loss. Rate, channel state CSI, quality index CQI, data message transmission delay, quality of service QoS of the system layer and the application layer; the processing unit 1202 is further configured to adjust the allocation to each of the links according to the reference information The length of the time slot.
  • the acquiring unit 1201 is specifically configured to obtain the reference information by using a manner negotiated with the second network device, or by using each of the chains.
  • the monitoring result of the quality of the road acquires the reference information.
  • the at least two links include a first link and a second link
  • the processing unit 1202 is specifically configured to determine, according to the reference information, When the first link fails, the time slot allocated to the first link is changed to the time slot corresponding to the second link.
  • the sending unit 1203 is specifically configured to broadcast a first message, where the first message includes the capability of multiple beamforming links supported by the device;
  • the obtaining unit 1201 is specifically configured to receive a response message that is sent by the second network device according to the first message, where the processing unit 1202 is further configured to establish at least two with the second network device according to the response message. Strip link.
  • the second network device includes at least two virtual second network devices, and the processing unit 1202 is specifically configured to be associated with each of the virtual second A link is established between network devices.
  • the apparatus includes at least one set of antenna arrays.
  • the sending unit 1203 is specifically configured to perform data transmission by using a set of antenna arrays, or use two or more sets of antenna arrays to perform data transmission with the second network device, where the two or more sets of antennas are used.
  • Transmission mechanisms between arrays include time division multiplexing, frequency division multiplexing, code division multiplexing, and space division multiplexing.
  • the sending unit 1203 is further configured to broadcast a second message, the second message includes the capability of multiple beam tracking supported by the device;
  • the acquiring unit 1201 is further configured to receive a response message that is sent by the second network device according to the second message;
  • the processing unit 1202 is further configured to track the link according to the response message.
  • the apparatus or the first network device provided in this embodiment divides the wireless channel resources of the millimeter wave into a plurality of time slots, and different time slots are used for data transmission on different links, thereby detecting the current time chain.
  • the data can be transmitted by using the next time slot to quickly switch the link to the unfailed link, avoiding the process of reselecting the link and switching and establishing the connection, and reducing the switching link. The resulting delay increases the quality of service for users.
  • the direction of beamforming can be quickly switched by the divided time slots, thereby avoiding the whole
  • the time-frequency resources corresponding to the links are wasted due to the failure, which saves the time-frequency resources of the system while reducing the delay.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device may be an AP in any of the foregoing embodiments for implementing the method steps in the foregoing embodiments.
  • the network device may include a transceiver 131, a processor 132, and a memory 133, and the transceiver 131 may include components such as a receiver 1311, a transmitter 1312, and an antenna 1313.
  • the network device may also include more or less components, or some components in combination, or different component arrangements, which are not limited in this application.
  • the processor 132 is a control center for the network device that connects various portions of the entire network device using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 133, and recalling data stored in the memory 133. To perform various functions of the network device and/or process data.
  • the processor 132 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of a plurality of packaged ICs that have the same function or different functions.
  • the processor 132 may include only a central processing unit (CPU), or may be a GPU, a digital signal processor (DSP), and a control chip (for example, a baseband) in the transceiver module. A combination of chips).
  • the CPU may be a single computing core or may include multiple computing cores.
  • the transceiver module 131 is configured to establish a communication channel, and the network device is connected to a receiving device, such as an STA, through a network channel, thereby implementing data transmission between the network device and the terminal device.
  • the transceiver 131 may include a wireless local area network (WLAN) module, a Bluetooth module, a base band module, and the like, and a radio frequency (RF) circuit corresponding to the communication module.
  • WLAN wireless local area network
  • RF radio frequency
  • WCDMA wideband code division multiple access
  • HSDPA high speed downlink packet access
  • the transceiver module is configured to control communication of components in the terminal device, and can support direct memory access (direct memory access).
  • various transceiver modules in the transceiver 131 generally appear in the form of integrated circuit chips, and can be selectively combined without including all transceiver modules and corresponding Antenna group.
  • the transceiver 131 may include only a baseband chip, a radio frequency chip, and a corresponding antenna to provide communication functionality in a cellular communication system.
  • the terminal device can be connected to a cellular network or the internet via a wireless communication connection established by the transceiver module, such as wireless local area network access or WCDMA access.
  • a communication module such as a baseband module, in the transceiver module may be integrated into the processor, typically an APQ+MDM series platform such as that provided by Qualcomm.
  • the radio frequency circuit is used for receiving and transmitting signals during information transmission and reception or during a call. For example, after the downlink information of the network device is received, it is processed by the processor; in addition, the data designed for the uplink is sent to the network device.
  • the radio frequency circuit includes well-known circuits for performing these functions, including but not limited to an antenna system, a radio frequency transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a codec.
  • the RF circuit can communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to a global system of mobile communication (GSM), a general packet radio service (gprs), and code division multiple access.
  • GSM global system of mobile communication
  • gprs general packet radio service
  • code division multiple access CDMA for short
  • WCDMA wideband code division multiple access
  • HSUPA high speed uplink packet access
  • LTE long-term evolution
  • SMS short messaging service
  • the functions to be implemented by the obtaining unit 1201 and the sending unit 1203 may be implemented by the transceiver 131 of the network device or by the transceiver 131 controlled by the processor 132; the processing unit The functions to be implemented by 1202 can then be implemented by the processor 132.
  • FIG. 14 is a schematic structural diagram of a second network device according to an embodiment of the present application.
  • the second network device may be a terminal in any of the foregoing embodiments, such as a STA, for implementing the method steps in the foregoing embodiments.
  • the second network device 140 includes a receiving unit 1401, a processing unit 1402, and a sending unit 1403.
  • the second network device may further include other unit modules such as a storage unit.
  • the processing unit 1402 is configured to establish at least two links with the first network device, where each of the links supports beamforming data transmission.
  • the receiving unit 1401 is configured to receive information from the first network device.
  • the sending unit 1403 is configured to send a response message to the first network device according to the information, to maintain the transmitability of the multiple links.
  • the maintaining the transmitability of the multiple links includes: the receiving unit 1401 receiving first information from the first network device, where the first information is used for channel estimation and the optimal link Data monitoring. And, on other links, the receiving unit 1401 receives second information from the first network device, the second information including a preamble domain, or a heartbeat packet/heartbeat frame for maintaining a heartbeat.
  • the processing unit 1402 is configured to generate reference information, where the reference information includes at least one of the following: a signal to noise ratio SNR, a packet loss rate, a channel state CSI, Quality index CQI, data message transmission delay, quality of service QoS at the system layer and application layer.
  • the reference information includes at least one of the following: a signal to noise ratio SNR, a packet loss rate, a channel state CSI, Quality index CQI, data message transmission delay, quality of service QoS at the system layer and application layer.
  • the sending unit 1403 is configured to send the reference information to the first network device.
  • the processing unit 1402 is further configured to virtualize multiple STAs, and implement the purpose of simultaneously training/tracking multiple links through a virtualization technology.
  • the processing unit 1402 is specifically configured to expand a plurality of MAC addresses, each of the MAC addresses corresponding to one virtual STA, and each of the virtual STAs can identify different data streams with each other, and externally represent multiple different STAs. device.
  • the receiving unit 1401 is further configured to receive a second message from the first network device, where the processing unit 1402 is further configured to generate according to the second message.
  • the feedback message is fed back, and the response message is sent to the first network device by the sending unit 1403, thereby implementing beam tracking and time slot allocation of the first network device to each link.
  • the second network device includes components such as a transceiver, a processor, and a memory.
  • the functions to be implemented by the receiving unit 1401 and the transmitting unit 1403 may be implemented by a transceiver of the terminal or by a transceiver controlled by the processor; the functions to be implemented by the processing unit 1402 may be processed by the terminal. Implemented.
  • the present application further provides a computer storage medium, wherein the computer storage medium may store a program, and the program may include some or all of the steps in each embodiment of the channel resource allocation method provided by the application.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the technology in the embodiments of the present application can be implemented by means of software plus a necessary general hardware platform.
  • the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM. , a disk, an optical disk, etc., including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or in certain portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道资源分配方法和装置,所述方法包括:第一网络设备建立与第二网络设备之间的至少两条链路,每条所述链路支持波束成型的数据传输;所述第一网络设备获取与所述第二网络设备之间的毫米波的无线信道资源;将所述无线信道资源划分多个时隙,且每个时隙用于一条链路的数据传输,相邻的两个时隙对应两条不同的链路;所述第一网络设备在所述多个时隙上进行对应链路的数据传输。本方法当故障发生时,通过变更时隙来快速地切换波束成型的链路,避免重新选择一条链路再建立连接,可以维持上层业务持续、不中断;另外,通过参考信息动态地调整不同波束成型方向的链路的时频资源,可以减少系统延时,提高QoS服务质量。

Description

一种信道资源分配方法和装置 技术领域
本申请涉及毫米波通信技术领域,尤其涉及一种信道资源分配方法和装置。
背景技术
随着VR(virtual reality,虚拟现实)、高清视频等新兴业务的发展和接入设备数量的增加,现有的无线通信技术已渐渐不能满足高带宽的需求,于是业界将目光投向了毫米波通信,因为在毫米波通信领域中有高达十几GHz的无需授权频谱。并且,在美国、欧盟和日本,都已将57GHz至66GHz频段划分为连续的无需授权频谱,如图1所示。然而毫米波由于自身的物理性质,在路径传输过程的损耗极大。例如60GHz毫米波较5GHz频段在自由空间中的路径损耗多了21dB,而且受限于很短的波长,毫米波在实践中受阻挡的影响极大。
为了弥补毫米波在传输过程中的大量损耗,业界在毫米波通信领域的解决方案中大多设计了发送/接收的天线阵列。通过天线阵列的波束成型,将能量集中在特定的方向,以通过较高的天线增益来弥补传输损耗。但是,天线阵列与波束成型在带来高天线增益的好处之外,也引入了一些限制条件:例如,发送方和接收方需要将能量集中在了一个较小的方向,通信前必须先将发送方和接收方的波束成型方向进行对齐。另外,由于波束成型具有高定向性,所以需要满足发送方和接收方之间传输路径不被阻挡。
然而在实践中,传输路径被遮挡往往是不可避免的。如果当前传输路径被遮挡或者发生故障,那么系统就需要重新选择一条路径,并完成与该路径的切换和传输数据,在这个路径切换的过程中可能为上层业务带来灾难性的延时,影响用户的服务质量。
发明内容
本申请提供了一种信道资源分配方法,应用于实现波束成型的毫米波通信领域,用于降低传输路径切换导致的高时延。
第一方面,本申请提供了一种信道资源分配方法,该方法包括以下步骤:第一网络设备建立与第二网络设备之间的至少两条链路,每条所述链路支持波束成型的数据传输;所述第一网络设备获取与所述第二网络设备之间的毫米波的无线信道资源;将所述无线信道资源划分多个时隙,且每个时隙用于一条链路的数据传输,相邻的两个时隙对应两条不同的链路;所述第一网络设备在所述多个时隙上进行对应链路的数据 传输。
本方面提供的方法,第一网络设备通过将毫米波的无线信道资源划分多个时隙,且不同的时隙用于在不同链路上的数据传输,进而在检测到当前时刻的链路发生故障的情况下,可以通过使用下一个时隙传输数据,实现快速地将链路切换到未发生故障的链路,避免重新选择链路并切换和建立连接的过程,降低了切换链路导致的时延,提高了用户的服务质量。
另外,当故障发生时,相比于将整个无线信道的时频资源都分配给一条链路进行数据传输的方式,通过划分的时隙,能够快速切换链路改变波束成型的方向,从而避免整条链路所对应的时频资源由于发生故障都被浪费掉,本方法在降低时延的同时还节约了系统的时频资源。
结合第一方面,在第一方面的一种实现方式中,第一网络设备将所述无线信道资源划分多个时隙的过程包括:所述第一网络设备按照时分双工TDD的方式将所述信道资源划分为多个时隙。
结合第一方面,在第一方面的另一种实现方式中,所述第一网络设备在所述多个时隙上进行对应链路的数据传输,包括:所述第一网络设备确定所述至少两条链路中的最优链路;所述第一网络设备在所述最优链路所对应的时隙上发送第一信息,所述第一信息用于对所述最优链路进行信道估计和数据监控,以及,在所述最优链路之外的其它链路对应的时隙上发送第二信息,所述第二信息用于维持心跳。
本实现方式中,第一网络设备在最优的链路上传输重要数据,例如第一信息,在次优的其它链路上发送第二信息,以维持各个链路的可传输性,为后续当所述最优链路发生故障时,能够及时地链路到其它的链路。
结合第一方面,在第一方面的又一种实现方式中,所述方法还包括:所述第一网络设备获取第二网络设备的参考信息,所述参考信息包括如下至少一种:信噪比SNR,丢包率,信道状态CSI、质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS;所述第一网络设备根据所述参考信息调整分配给每条所述链路的时隙长短。
本实现方式中,当故障发生时,通过变更时隙来快速地切换波束成型的链路,避免重新选择一条链路再建立连接,可以维持上层业务持续、不中断。另外,第一网络设备通过参考信息动态地调整不同波束成型方向的链路的时频资源,可以减少系统延时,提高QoS服务质量。
结合第一方面,在第一方面的又一种实现方式中,所述获取第二网络设备的参考信息,包括:所述第一网络设备通过与所述第二网络设备协商的方式获取所述参考信息;或者,通过对每条所述链路的质量的监控结果获取所述参考信息。此外,还可以通过其它方式获取所述参考信息,本申请对此不予限定。
结合第一方面,在第一方面的又一种实现方式中,所述至少两条链路包括第一链路和第二链路,所述第一网络设备根据所述参考信息调整分配给每条所述链路的时隙长短,包括:所述第一网络设备根据所述参考信息确定当所述第一链路发生故障时,将分配给所述第一链路的时隙变更到所述第二链路所对应的时隙。
结合第一方面,在第一方面的又一种实现方式中,第一网络设备建立与第二网络设备之间的至少两条链路,包括:所述第一网络设备广播第一消息,所述第一消息中包括所述第一网络设备支持的多条波束成型链路的能力;所述第一网络设备接收所述第二网络设备根据所述第一消息反馈的应答消息;所述第一网络设备根据所述应答消息与所述第二网络设备建立至少两条链路。
结合第一方面,在第一方面的又一种实现方式中,所述第二网络设备包括至少两个虚拟的第二网络设备,第一网络设备建立与第二网络设备之间的至少两条链路,包括:所述第一网络设备与每个所述虚拟的第二网络设备之间建立一条所述链路。
本实现方式中,第二网络设备通过拓展多个MAC地址形成多个虚拟的网络设备比如STA,这些虚拟的网络设备对所述第一网络设备比如AP而言,表现为不同的设备,对于AP的链路层而言,该AP与多个虚拟STA分别训练链路,因此不需要改动AP链路层的代码,进而能够快速地与现有标准兼容,保持AP与各个虚拟STA间的无障碍通信。
结合第一方面,在第一方面的又一种实现方式中,所述第一网络设备包括至少一组天线阵列,所述第一网络设备在所述多个时隙上进行对应链路的数据传输,包括:所述第一网络设备使用一组天线阵列进行数据传输,或者,使用两组或两组以上天线阵列与所述第二网络设备进行数据传输,其中,所述两组或两组以上天线阵列之间的传输机制包括时分复用、频分复用、码分复用和空分复用。
本实现方式中,将单天线阵列和多组天线阵列传输相结合,切换地进行数据传输,进而为第一网络设备和第二网络设备之间建立多链路的冗余备份,进而提高了链路质量,比如SNR和鲁棒性等。
结合第一方面,在第一方面的又一种实现方式中,上述方法还包括:所述第一网络设备广播第二消息,所述第二消息中包括所述第一网络设备支持的多条波束追踪的能力;所述第一网络设备接收所述第二网络设备根据所述第二消息反馈的应答消息;所述第一网络设备根据所述应答消息追踪所述链路。
本实现方式中,第一网络设备通过自己所支持的多条波束追踪的能力,实现了对多条链路的动态追踪,并保持各个链路的可传输性,为链路的快速切换做准备。
第二方面,本申请还提供了一种信道资源分配装置,该装置包括用于执行上述第一方面各种实现方式中方法步骤的单元或模块,进一步地,该装置包括:获取单元、处理单元和发送单元等。具体地,所述装置可以配置在第一网络设备例如AP中。
第三方面,本申请还提供了一种信道资源分配方法,该方法可应用于第二网络设备例如STA中,具体地,该方法包括:第二网络设备与第一网络设备建立至少两条链路,其中,每条所述链路支持波束成型的数据传输;并根据所述建立的至少两条链路与所述第一网络设备通信。
结合第三方面,在第三方面的另一种实现方式中,所述方法还包括:第二网络设备接收来自第一网络设备的信息;根据所述信息向所述第一网络设备发送应答消息,以保持所述多条链路的可传输性。
结合第三方面,在第三方面的又一种实现方式中,所述维持多条链路的可传输性包括:第二网络设备接收来自第一网络设备的第一信息,所述第一信息用于对所述最优链路进行信道估计和数据监控,以及,在其它链路上,接收来自第一网络设备的第二信息,所述第二信息包括前导域,或者用于维持心跳的心跳包/心跳帧等。
结合第三方面,在第三方面的又一种实现方式中,所述方法还包括:第二网络设生成参考信息,所述参考信息包括如下至少一种:信噪比SNR,丢包率,信道状态CSI、质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS;将所述参考信息发送给所述第一网络设备。
结合第三方面,在第三方面的又一种实现方式中,所述方法还包括:第二网络设备虚拟化多个网络设备,例如STA,并通过虚拟化技术实现同时训练/追踪多条链路的目的,进一步地,所述第二网络设备拓展出多个MAC地址,每个所述MAC地址对应一个虚拟STA,每个所述虚拟STA能够互相识别不同数据流,并且对外表现为多个不同的STA设备。
结合第三方面,在第三方面的又一种实现方式中,所述方法还包括:第二网络设备接收来自第一网络设备的第二消息,根据所述第二消息生成反馈的应答消息,并将所述应答消息发送给第一网络设备,从而实现第一网络设备对各个链路的波束追踪和时隙分配。
第四方面,本申请还提供了一种信道资源分配装置,该装置包括用于执行上述第三方面各种实现方式中方法步骤的单元或模块,进一步地,该装置包括:接收单元、处理单元和发送单元等。具体地,所述装置可以配置在第二网络设备例如STA中。
第五方面,本申请还提供了一种网络设备,该网络设备包括:处理器、存储器及收发器等部件;所述处理器可以执行所述存储器中所存储的程序或指令,从而实现以第一方面各种实现方式所述信道资源分配方法。
第六方面,本申请还提供了一种计算机存储介质,该计算机存储介质可存储有程序,该程序执行时可实现包括本申请提供的信道资源分配方法各实施例中的部分或全部步骤。
第七方面,本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运 行时,使得所述计算机执行上述各方面所述的方法步骤。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种无需授权使用的频谱的示意图;
图2为本申请实施例提供的一种传输路径未被阻挡的示意图;
图3为本申请实施例提供的一种传输路径被阻挡的示意图;
图4为本申请实施例提供的一种信道资源分配方法的流程示意图;
图5为本申请实施例提供的一种AP训练多条链路的示意图;
图6为本申请实施例提供的一种多条链路时隙分配的示意图;
图7为本申请实施例提供的一种为Link1和Link2划分时隙的示意图;
图8a为本申请实施例提供的一种为链路划分时隙的示意图;
图8b为本申请实施例提供的另一种为链路划分时隙的示意图;
图8c为本申请实施例提供的又一种为链路划分时隙的示意图;
图9a为本申请实施例提供的一种AP与STA协商资源调整的示意图;
图9b为本申请实施例提供的一种AP确定调整资源的示意图;
图10为本申请实施例提供的一种单组天线发送多组天线接收的示意图;
图11为本申请实施例提供的一种多组天线发送多组天线接收的示意图;
图12为本申请实施例提供的一种第一网络设备的结构示意图;
图13为本申请实施例提供的一种网络设备AP的示意图;
图14为本申请实施例提供的一种第二网络设备的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中的技术方案作进一步详细的说明。
在对本发明实施例的技术方案说明之前,首先结合附图对本发明实施例的应用场景进行说明。本申请各个实施例所提供的技术方案应用于毫米波通信领域,所述毫米 波通信领域包括以下特征:第一、发送方和接收方都需要将能量集中在一个较小的方向,且通信前发送方和接收方的波束成型方向对齐,使得链路传输具有类似于光学的特性。第二、需要满足发送方和接收方之间的传输路径未被遮挡,即是LOS(Line of Sight,视距路径)。
本申请各实施例提供的方法应用于WLAN网络,具体地,该方法可以适用于LTE(Long Term Evolution,长期演进)系统,或采用码分多址、正交频分多址等无线接入技术的无线通信系统。此外,还可以适用于使用LTE系统后续的演进系统,如60G WiFi、第五代(5G)通信系统、NR(new radio,新空口)系统和光系统等。
所述系统包括至少一个无线设备和至少一个终端设备。如图2所示,所述无线设备用于与至少一个终端设备进行通信,其中,所述无线设备,例如AP(access point,接入点)通过与一个终端设备,例如站(station,STA)建立多条可传输链路,并保持不同链路的可传输性,用以为后续当某个链路发生故障时,实现与其它链路的快速切换,进而降低时延。
进一步地,所述无线设备可以是接入点(access point,AP),还可以是其它网络设备,例如基站、增强型基站、或具有调度功能的中继、或具有基站功能的设备等。其中,基站可以是LTE系统中的演进型基站(evolved Node B,eNB),也可以其它系统中的基站,本申请实施例并不限定。
终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或车载的移动装置,它们与无线接入网交换语言和或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。终端设备也可以为订户单元(subscriber unit,SU)、订户站(subscriber station,SS),移动站(mobile station,MS)、远程站(remote station,RS)、远端设备(remote terminal,RT)、接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、用户设备、或用户装备(user equipment,UE)。
如图2所示,无线设备AP与终端设备STA之间具有稳定的视距方向,即AP与STA之间存在视距路径(line of sight,LOS),而如图3所示,由于AP和STA之间有阻挡物,导致AP和STA之间不存在视距路径。无线信号通过周围的阻挡物经过反射或散射到达AP,这些反射或散射的路径为非视距路径(Non line of sight,NLOS)。
在数据传输前,本申请提供的方法将在同一对AP和STA之间训练多条支持波束成型数据传输的链路,包括LOS与NLOS。本方法支持超过两条链路,并且不限于需要LOS。此外,本申请各实施例所提供的方法可以适用于设备到设备(device to device,D2D)的数据传输。例如AP与AP,STA与STA,STA与AP之间,本发明 的实施例对此不做限定。
在数据传输的过程中,本方法将同时维持多条链路的可传输性。并根据对信道和对数据传输的实时监控,动态地调整链路资源分配。本申请的各个实施例中,动态调整分配的链路资源为时隙(英文:slot),并通过时分双工(Time Division Duplex,TDD)的方式来分配时频资源。可选的,本方法同样可以适用于频率(英文:frequency)和码字(英文:code)。
在故障发生或者传输链路发送异常时,例如图3所示一条链路被阻挡,导致传输的信号质量下降,分配时频资源时将该链路所对应的时频资源尽可能地分配给未发生故障的链路(例如NLOS),从而保障上层业务的正常进行,同时对发生故障的链路进行处理和恢复。
实施例一
具体地,如图4所示,本实施例提供了一种毫米波无线信道的时频资源的分配方法,该方法包括如下步骤:
步骤101:第一网络设备AP建立与第二网络设备STA之间的至少两条链路,每条所述链路支持波束成型的数据传输。
其中,AP与STA之间可通过协商来建立多条波束成型链路。具体地,一种可能的实现方式是:AP广播第一消息,所述第一消息中包括AP支持的多条波束成型链路的能力;STA接收到该第一消息之后向AP反馈应答消息,AP接收并解读所述STA根据第一消息反馈的应答消息,然后,AP根据所述应答消息与STA建立至少两条链路。
另一种可能的实现方式是:AP在一个物理的STA上划分为多个虚拟STA,每个虚拟STA对应于一条波束成型路径,如图5所示,AP与STA的LOS(设为Link1)以及AP与STA*的NLOS(设为Link2)。其中,每个划分的虚拟STA对AP不可见,即AP认为每个虚拟STA就是一个实体STA,并分别与这些实体STA进行波束成型训练。类似地,可以将一个物理AP划分为多个虚拟AP,并且训练每个虚拟AP与实体STA之间的多条波束成型链路。
本申请各个实施例所述的STA可以通过虚拟化技术来达到同时训练/追踪多条链路的目的。其中,所述虚拟STA关键点在于:STA设备能够拓展出多个MAC地址,对于虚拟的各个STA之间能够识别为同一个设备的不同数据流,且对外表现为多个不同的设备,对于AP的链路层而言,该AP与多个虚拟STA分别训练链路,因此不需要改动AP链路层的代码,进而能够快速地与现有标准兼容,保持AP与各个虚拟STA的无障碍通信。
需要说明的是,本实施例中还可以将上述两种方式结合起来,即AP可以广播对虚拟STA的支持链路传输的能力,并通过虚拟AP和虚拟STA的方式分别进行波束成型链路训练。
步骤102:第一网络设备获取与所述第二网络设备之间的毫米波的无线信道资源。
其中,所述毫米波的无线信道资源是指AP自己所能分配的资源,所述AP能够分配的资源包括时域资源和频域资源。进一步地,对于时域资源,一般地,AP通过发送信标(英文:beacon)把时域资源分割成多个信标间隔(英文:beacon Interval),在每个所述beacon Interval的时间间隔内可认为是AP与STA之间的信道资源。如果所述无线信道资源是频域资源,则可以先将可用的频段分成一个个子频段,然后在每个子频段上进一步地划分时域资源。
步骤103:将所述无线信道资源划分多个时隙,且每个时隙用于一条链路的数据传输,相邻的两个时隙对应两条不同的链路。
其中,一种可能的划分方法是:AP按照时分双工TDD的方式将所述无线信道资源划分为多个时隙。如图6所示,将时频资源分成若干个时隙,并将这些时隙分配给Link1和Link2。进一步地,在划分多个时隙的过程中,AP可以先获取STA的参考信息,然后根据所述参考信息确定每条链路的时隙长短,并对总的时频资源进行划分。
其中,所述参考信息包括如下至少一种:信噪比(signal to noise ratio,SNR),丢包率,信道状态信息(channel state Information,CSI)、信道质量指数(channel quality indicator,CQI)、数据报文传输延时,系统层与应用层的服务质量(Quality of Service,QoS)。
步骤104:所述第一网络设备在所述多个时隙上进行对应链路的数据传输,以维持AP与STA之间多条波束成型链路的可传输性。
其中,维持多条链路之间的可传输性可理解为:在划分的不同的时隙上传输不同的数据,即将时隙分配给不同的链路间隔地使用。例如,时隙1用于在Link1上发送数据,时隙2用于在Link2上发送数据。
进一步地,一种维持多条链路可传输性的实现方式是:AP确定所述至少两条链路中的最优链路,以及该最优链路所对应的时隙;AP在该最优链路所对应的时隙上发送第一信息,所述第一信息用于对该最优链路进行信道估计和数据监控,即AP通过该最优链路发送必要的信息,以及,在该最优链路之外的其它链路对应的时隙上发送第二信息,所述第二信息用于维持心跳,例如,所述第二信息包括数据包的前导域(英文:Preamble)或者心跳包/心跳帧等。
需要说明的是,在所述维持各个链路可传输性的过程中,第一网络设备可以通过建立的多条链路,在这些链路上传输相同的数据,也可以传输不同的数据。另外,在 对无线信道的时频资源划分完多个时隙后,第一网络设备在所述最优链路上进行数据传输,在其它链路可以传输数据,也可以不传输数据,本实施例对此不予限制,但需要保证的是,在主链路(例如最优链路)发生故障或者被遮挡时,至少有一条备用链路能够保持通信畅通,以备切换。
另外,步骤104中,AP还可以通过结合TTD方式和最优链路传输必要数据相结合的方式维持所述多条波束成型链路的可传输性。此外,AP在不同链路上传输的数据可以来自于同一个上层业务,也可以是来自不同的业务,或是二者的混合模式,具体地采用哪种方式可以根据实际情况确定,本实施例中不予限制。
本实施例提供的信道资源分配方法,第一网络设备通过将无线信道资源划分多个时隙,且不同的时隙用于在不同链路上的数据传输,进而在检测到当前时刻的链路发生故障的情况下,可以通过使用下一个时隙传输数据,实现快速地将链路切换到未发生故障的链路,避免重新选择链路并切换和建立连接的过程,降低了切换链路导致的时延,提高了用户的服务质量。
另外,本实施例提供的方法,当故障发生时,相比于将整个无线信道的时频资源都分配给一条链路进行数据传输的方式,通过划分的时隙,能够快速切换链路改变波束成型的方向,从而避免整条链路所对应的时频资源由于发生故障都被浪费掉,本方法在降低时延的同时还节约了系统的时频资源。
可选的,在本实施例中,上述方法还包括:动态调整信道资源分配的过程。具体地,还包括:第一网络设备AP获取第二网络设备STA的参考信息,所述参考信息可以通过AP与STA之间的协商获得,或者,AP通过与每条链路的质量监控获得;然后AP根据所述参考信息调整分配给每条链路的时隙长短。
其中,所述参考信息包括:信噪比SNR,丢包率,信道状态信息CSI、信道质量指数CQI、延时,系统层与应用层的服务质量QoS等。例如,当所述参考信息为SNR时,AP调整各个链路的时隙的过程包括:如果AP检测到某一条链路的SNR增加,则相应地增加该链路传输的时隙/时间间隔,反之,如果SNR减少,则对应地缩短该链路的时隙/时间间隔。
如图7所示,AP与STA之间建立了两条波束成型链路,分别是Link1和Link2,当某一条链路发生故障,例如AP根据参考信息确定建立的Link1(LOS)发生故障,将分配给Link1(LOS)的时隙变更到未发生故障的Link2(NLOS)所对应的时隙上。例如,时隙1、时隙3和时隙5用于在Link1上传输数据,时隙2、时隙4和时隙6用于在Link2上传输数据,当在数据传输过程中,t1时刻检测到Link1发生故障或者被遮挡时,将该后续的Link1所对应的时隙都分配给Link2,进而防止后面的时隙由于Link1故障而被浪费掉。
本实施例中,当故障发生时,通过变更时隙来快速地切换波束成型的链路,避免 重新选择一条链路再建立连接,可以维持上层业务持续、不中断。
另外,本实施例中通过参考信息动态地调整不同波束成型方向的链路的时频资源,可以减少系统延时,提高QoS服务质量。
可选的,在上述实施例提供的方法中,还包括对各个波束进行追踪,以维持各个链路的可传输性。以AP与STA之间进行多波束方向的追踪为例,一种实现波束追踪的方式包括:
AP广播第二消息,所述第二消息中包括所述第一网络设备支持的多条波束追踪的能力,STA接收该第二消息之后向AP反馈应答消息,AP接收STA根据所述第二消息反馈的应答消息;并根据所述应答消息追踪其与STA之间的至少一条波束成型链路,实现对STA位置的跟踪和定位。
或者,另一种可能的实现方式是:将在一个物理STA上划分为多个虚拟STA,每个虚拟STA对应于一条波束成型路径,如图4所示STA的LOS与STA*的NLOS,每个虚拟STA相对于AP不可见,即AP认为每个虚拟STA就是一个实体STA,并分别与这些实体STA进行波束成型训练。
或者,将上述两种方式相结合,即AP通过广播其对多个虚拟STA的支持,并通过虚拟STA的方式分别与AP建立一条链路,来实现波束追踪。
需要说明的是,本实施例中仅例举了三种波束追踪的方式,还可以包括其它方式实现波束追踪,具体地可根据实际的技术场景选择合适的方式来实现对波束的追踪,本申请不予限制。
实施例二
在一个具体的实施例中,以1个AP为1个STA分配无线信道资源为例,对本申请提供信道资源分配方法进行具体地说明。
训练多条支持波束成型传输的链路。AP广播自己对多条链路的支持能力,并与STA分别训练多条链路,即AP与STA之间彼此都获知对方能够支持多条链路传输的能力,并建立AP与STA之间的多条链路,以及对这些链路进行相应的训练。如图5所示,AP与STA之间训练的两条链路分别是Link1(链路1)和Link2(链路2)。
AP为Link1和Link2分配信道资源。一种实现方式包括:AP通过TDD的方式,将信道资源划分成为不同的时隙,每个时隙表示一段时间间隔,将每个时间间或者/时隙分配给不同的链路,并在分配的链路上进行数据传输,以维持多条链路的可传输性。例如图6所示,表示分配给Link1和Link2的时隙,以使整个时频资源在Link1和Link2上间隔使用。
维持Link1和Link2的可传输性,具体包括如下三种方式:
方式一、多条链路同时传输数据,并在数据层面进行汇总。如图8a所示,AP要发送给STA的数据为(1,2,3,4,5,6,7),并通过两条链路(Link1和Link2)发送,对AP可用的时频资源划分完若干个时隙之后,在Link1的第一个时隙AP发送数据(1,2)给STA,在第二个时隙发送(4,5);同理地,AP在Link2的第一个时隙发送数据(3)给STA*,和在第二个时隙给STA*发送了(6,7)。对于接收端而言,STA与STA*其实是同一个设备,所以汇总可得到数据(1,2,3,4,5,6,7)。
方式二、仅通过最优链路进行数据传输,其它链路仅发送必要信息进行信道估计和环境监控,比如发送前导域Preamble。如图8b所示,将Link1作为最优链路,并发送必要信息,所以分配给Link1的时隙长度较长,分配给其它的链路Link2的时隙长度较短。
方式三、仅通过最优链路进行数据传输,其它链路仅维持心跳。如图8c所示,将Link1作为最优链路,并发送必要信息,Link2仅用于保持链路畅通,可以在Link2上发送数据,也可以不发送数据,所以分配给Link1的时隙长度较长,分配给用于维持心跳的链路Link2的时隙长度较短。
动态地调整各个链路的信道资源。AP获取STA的参考信息,并根据该参考信息调整分配给Link1和Link2的时隙长短。其中,所述参考信息包括但不限于以下信息:信噪比SNR,丢包率,信道状态信息CSI、信道质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS。
当AP或STA监控到参考信息发生了变化时,可以采用多种方式来调整资源,进而减少系统的延时,保持业务的连续性和稳定性。本实施例中以SNR作为参考信息进行说明。
AP可根据与STA协商的结果确定下一个时间间隔,例如一个beacon周期内的Link1和Link2的时隙长短。具体地,AP询问STA所需要资源大小,STA进行相应地反馈,AP根据收到的STA的反馈消息确定分配给各个链路的时隙长短。
例如,Query(提问)1:AP向STA询问STA所需要的资源,如需要传输的数据量、时间长度等。
Response(应答)1:STA根据当前链路检测的SNR,向AP反馈自己所需要的资源。
Query(提问)2:AP向STA*询问STA*所需要的资源。
Response(应答)2:STA*根据当前链路的SNR,向AP反馈自己所需要的资源。
Assignment(分配):AP通过广播告知STA与STA*后续的时隙分配情况,如STA与STA*对应的时隙起始时刻、终止时刻、持续时长。
ACK(Acknowledgement,确认)(s):STA与STA*会向AP反馈ACK应答。可 选的,STA设备可以作为一个实体反馈一个单一的ACK,也可以是STA与STA*各自向AP都反馈一个ACK应答消息。
AP根据上述与STA或STA*的协商结果确定分配给Link1和Link2的时隙长短。
另外,可选的,还可以由AP主动地决定分配给每条链路的时隙长短。
例如图9b所示,Assignment:AP根据对当前链路的质量进行监控,如SNR。判断需要在接下来分配的时隙中给STA与STA*分配多少资源,并以广播的形式告知STA和STA*。
ACK(s):为了确保STA或STA*接收到AP广播的消息,STA与STA*需要向AP反馈ACK,以表示自己知道与AP通信的时刻和时长。可选的,在向AP反馈ACK的过程中,各个虚拟STA或STA*可作为一个实体反馈一个单一的ACK,也可能各自反馈ACK。
以上两种时隙分配的方式:AP根据与STA协商或者AP主动确定时隙的分配可根据实际的技术场景来确定,还可以将上述两种方式结合起来对各个链路的时频资源进行动态调整,本实施例对此不予限定。
实施例三
本实施例对上述实施例一和实施例二的拓展,将上述实施例中的单发送单接收拓展为单发送多接收、多发送单接收、多发送多接收的AP和STA之间。
具体地,对于实际情况AP与STA的能力可能不会完全匹配,则需要为发送方AP配置多组天线阵列,以提高传输的稳定性,如图10所示,以发送方AP具有两组发送的天线阵列,接收方STA只有一组天线阵列为例。
在AP训练完多条链路,例如LOS和NLOS路径,且这些链路具有可传输性,则AP在划分的多个时隙上进行对应链路的数据传输,包括:AP选择其中一组天线阵列与STA进行通信和数据传输,或者,AP使用两组或两组以上天线阵列与所述第二网络设备进行数据传输。
其中,所述两组或两组以上天线阵列之间的传输机制包括时分复用、频分复用、码分复用和空分复用。
需要说明的是,本实施例中还可以将单天线阵列和多组天线阵列传输相结合,切换地进行数据传输,进而为AP和STA之间建立多链路的冗余备份,进而提高链路的质量,比如SNR和鲁棒性。
同理地,本方法还可以拓展到多组天线阵列发送和多组天线阵列接收的传输机制。如图11所示,以AP具备两组发送天线阵列(设为A和B),STA具备两组天线 阵列(设为C和D)为例。
其中,AP的天线阵列B与STA的天线阵列D之间训练有两条支持波束成型的链路,LOS和NLOS,对应于时频资源S1。同理地,AP的另一组天线阵列A与STA的天线阵列C之间也训练有两条链路,对应的时频资源为S2。
AP分别在时频资源S1和S2上分配不同的时隙给每个链路。可选的,在时频资源S1上间隔地划分时隙给Link1和Link2;在时频资源S2上也间隔地为Link3和Link4路径划分时隙,其中,当S2中的Link3发生阻挡时,在下一个时隙,将发生阻挡的Link3所对应的时隙都分配给未发生阻挡的Link4,进而保证传输数据不中断,并且实现波束成型链路的快速切换,降低了系统延时。
进一步地,本实施例中的发送方和接收方之间的天线组阵列可以任意排列组合。即AP的任一组天线阵列都可以与STA的两组天线阵列建立通信,或者,AP的两组天线阵列也可以同时与STA的一组天线阵列建立通信(如实施例二的图10所示)。下面列举几种可行的天线阵列配对情况:
1.A-C、B-D或者A-D、B-C;
2.AB-C、AB-D;
3.A-CD、B-CD;
4.A-C、AB-D或者A-D、AB-C或者B-C、AB-D或者B-D、AB-C;
5.A-C、B-CD或者A-D、B-CD或者B-C、A-CD或者B-D、A-CD;
6.A-CD、B-CD。
需要说明的是,对于AP与STA组成的系统的天线组配对情况可以根据实际情况动态的调整。本实施例中的链路训练,维持多链路的可传输性,以及对各个链路时隙的动态调整方法均与上述实施例一相似,因此本实施例不再赘述。
相对于上面的方法实施例,本申请实施例还提供了相应的网络设备、终端设备等装置实施例。
参见图12,为本发明实施例提供的一种第一网络设备的结构示意图。该第一网络设备用于执行如图4所示的信道资源分配方法。其中,该第一网络设备120可以包括获取单元1201、处理单元1202和发送单元1203。
处理单元1202,用于建立与第二网络设备之间的至少两条链路,每条所述链路支持波束成型的数据传输。
获取单元1201,用于获取与所述第二网络设备之间的毫米波的无线信道资源。
处理单元1202,还用于将所述无线信道资源划分多个时隙,且每个时隙用于一条链路的数据传输,相邻的两个时隙对应两条不同的链路。
发送单元1203,用于在所述多个时隙上进行对应链路的数据传输。
可选的,在本实施例的一种具体实现方式中,所述处理单元1202具体用于按照时分双工TDD的方式将所述无线信道资源划分为多个时隙。
可选的,在本实施例的一种具体实现方式中,所述处理单元1202还用于确定所述至少两条链路中的最优链路。所述发送单元1203还用于在所述最优链路所对应的时隙上发送第一信息,所述第一信息用于对所述最优链路进行信道估计和数据监控,以及,在所述最优链路之外的其它链路对应的时隙上发送第二信息,所述第二信息用于维持心跳。
可选的,在本实施例的一种具体实现方式中,所述获取单元1201还用于获取第二网络设备的参考信息,所述参考信息包括如下至少一种:信噪比SNR,丢包率,信道状态CSI、质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS;所述处理单元1202还用于根据所述参考信息调整分配给每条所述链路的时隙长短。
可选的,在本实施例的一种具体实现方式中,所述获取单元1201具体用于通过与所述第二网络设备协商的方式获取所述参考信息,或者,通过对每条所述链路的质量的监控结果获取所述参考信息。
可选的,在本实施例的一种具体实现方式中,所述至少两条链路包括第一链路和第二链路,所述处理单元1202具体用于根据所述参考信息确定当所述第一链路发生故障时,将分配给所述第一链路的时隙变更到所述第二链路所对应的时隙。
可选的,在本实施例的一种具体实现方式中,所述发送单元1203具体用于广播第一消息,所述第一消息中包括所述装置支持的多条波束成型链路的能力;所述获取单元1201具体用于接收所述第二网络设备根据所述第一消息反馈的应答消息;所述处理单元1202具体还用于根据所述应答消息与所述第二网络设备建立至少两条链路。
可选的,在本实施例的一种具体实现方式中,所述第二网络设备包括至少两个虚拟的第二网络设备,所述处理单元1202具体用于与每个所述虚拟的第二网络设备之间建立一条所述链路。
可选的,在本实施例的一种具体实现方式中,所述装置包括至少一组天线阵列。
所述发送单元1203具体用于使用一组天线阵列进行数据传输,或者,使用两组或两组以上天线阵列与所述第二网络设备进行数据传输,其中,所述两组或两组以上天线阵列之间的传输机制包括时分复用、频分复用、码分复用和空分复用。
可选的,在本实施例的一种具体实现方式中,所述发送单元1203还用于广播第 二消息,所述第二消息中包括所述装置支持的多条波束追踪的能力;所述获取单元1201还用于接收所述第二网络设备根据所述第二消息反馈的应答消息;所述处理单元1202还用于根据所述应答消息追踪所述链路。
本实施例提供的装置或者第一网络设备,通过将毫米波的无线信道资源划分多个时隙,且不同的时隙用于在不同链路上的数据传输,进而在检测到当前时刻的链路发生故障的情况下,可以通过使用下一个时隙传输数据,实现快速地将链路切换到未发生故障的链路,避免重新选择链路并切换和建立连接的过程,降低了切换链路导致的时延,提高了用户的服务质量。
另外,当故障发生时,相比于将整个无线信道的时频资源都分配给一条链路进行数据传输的方式,通过划分的时隙,能够快速切换链路改变波束成型的方向,从而避免整条链路所对应的时频资源由于发生故障都被浪费掉,实现了在降低时延的同时还节约了系统的时频资源。
参见图13,为本申请实施例提供的一种网络设备的结构示意图。所述网络设备可以是前述任意实施例中的AP,用于实现前述实施例中的方法步骤。
如图13所示,所述网络设备可以包括收发器131、处理器132和存储器133,所述收发器131可以包括接收机1311、发射机1312与天线1313等部件。所述网络设备还可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置,本申请对此不进行限定。
处理器132为网络设备的控制中心,利用各种接口和线路连接整个网络设备的各个部分,通过运行或执行存储在存储器133内的软件程序和/或模块,以及调用存储在存储器133内的数据,以执行网络设备的各种功能和/或处理数据。所述处理器132可以由集成电路(integrated circuit,简称IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器132可以仅包括中央处理器(central processing unit,简称CPU),也可以是GPU、数字信号处理器(digital signal processor,简称DSP)、及收发模块中的控制芯片(例如基带芯片)的组合。在本发明的各种实施方式中,CPU可以是单运算核心,也可以包括多运算核心。
所述收发模块131用于建立通信信道,使网络设备通过网络信道以连接至接收设备,例如STA,从而实现网络设备与终端设备之间的数据传输。所述收发器131可以包括无线局域网(wireless local area network,简称WLAN)模块、蓝牙模块、基带(base band)模块等通信模块,以及所述通信模块对应的射频(radio frequency,简称RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信系统通信,例如宽带码分多重接入(wideband code division multiple access,简称WCDMA)及/或高速下行封包存取(high speed downlink packet access,简称HSDPA)。所述收发模块用于控制终端设备中的各组件的通信,并且可以支持直接内存存取 (direct memory access)。
在本申请的不同实施方式中,所述收发器131中的各种收发模块一般以集成电路芯片(integrated circuit chip)的形式出现,并可进行选择性组合,而不必包括所有收发模块及对应的天线组。例如,所述收发器131可以仅包括基带芯片、射频芯片以及相应的天线以在一个蜂窝通信系统中提供通信功能。经由所述收发模块建立的无线通信连接,例如无线局域网接入或WCDMA接入,所述终端设备可以连接至蜂窝网(cellular network)或因特网(internet)。在本申请的一些可选实施方式中,所述收发模块中的通信模块,例如基带模块可以集成到处理器中,典型的如高通(Qualcomm)公司提供的APQ+MDM系列平台。射频电路用于信息收发或通话过程中接收和发送信号。例如,将网络设备的下行信息接收后,给处理器处理;另外,将设计上行的数据发送给网络设备。通常,所述射频电路包括用于执行这些功能的公知电路,包括但不限于天线系统、射频收发机、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、编解码(codec)芯片组、用户身份模块(SIM)卡、存储器等等。此外,射频电路还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,简称GSM)、通用分组无线服务(general packet radio service,简称gprs)、码分多址(code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、高速上行行链路分组接入技术(high speed uplink packet access,简称HSUPA)、长期演进(long term evolution,简称LTE)、电子邮件、短消息服务(short messaging service,简称SMS)等。
在本申请的装置实施例中,所述获取单元1201和发送单元1203所要实现的功能可以由所述网络设备的收发器131实现,或者由处理器132控制的收发器131实现;所述处理单元1202所要实现的功能则可以由所述处理器132实现。
参见图14,为本申请实施例提供的一种第二网络设备的结构示意图。所述第二网络设备可以是前述任意实施例中的终端,例如STA,用于实现前述实施例中的方法步骤。
如图14所示,该第二网络设备140包括接收单元1401、处理单元1402和发送单元1403,此外,第二网络设备还可以包括存储单元等其他单元模块。
所述处理单元1402,用于与第一网络设备建立至少两条链路,其中,每条所述链路支持波束成型的数据传输。
所述接收单元1401,用于接收来自第一网络设备的信息。
所述发送单元1403,用于根据所述信息向所述第一网络设备发送应答消息,以保持所述多条链路的可传输性。
进一步地,所述维持多条链路的可传输性包括:所述接收单元1401接收来自第一网络设备的第一信息,所述第一信息用于对所述最优链路进行信道估计和数据监控。以及,在其它链路上,接收单元1401接收来自第一网络设备的第二信息,所述第二信息包括前导域,或者用于维持心跳的心跳包/心跳帧。
可选的,在本实施例的一种具体实现方式中,所述处理单元1402用于生成参考信息,所述参考信息包括如下至少一种:信噪比SNR,丢包率,信道状态CSI、质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS。
发送单元1403用于将所述参考信息发送给所述第一网络设备。
可选的,在本实施例的一种具体实现方式中,所述处理单元1402还用于虚拟化多个STA,并通过虚拟化技术实现同时训练/追踪多条链路的目的。其中,所述处理单元1402具体用于拓展出多个MAC地址,每个所述MAC地址对应一个虚拟STA,每个所述虚拟STA能够互相识别不同数据流,并且对外表现为多个不同的STA设备。
可选的,在本实施例的一种具体实现方式中,所述接收单元1401还用于接收来自第一网络设备的第二消息,所述处理单元1402还用于根据所述第二消息生成反馈的应答消息,并通过所述发送单元1403将所述应答消息发送给第一网络设备,从而实现第一网络设备对各个链路的波束追踪和时隙分配。
在具体的硬件实现中,所述第二网络设备包括收发器、处理器和存储器等部件。所述接收单元1401和发送单元1403所要实现的功能可以由所述终端的收发器实现,或者由处理器控制的收发器实现;所述处理单元1402所要实现的功能则可以由所述终端的处理器实现。
具体实现中,本申请还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的信道资源分配方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(read-only memory,简称ROM)或随机存储记忆体(random access memory,简称RAM)等。
本领域的技术人员可以清楚地了解到本申请实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于以上各个实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本申请实施方式并不构成对本发明保护范围的限定。

Claims (20)

  1. 一种信道资源分配方法,其特征在于,方法包括:
    第一网络设备建立与第二网络设备之间的至少两条链路,每条所述链路支持波束成型的数据传输;
    所述第一网络设备获取与所述第二网络设备之间的毫米波的无线信道资源;
    将所述无线信道资源划分多个时隙,且每个时隙用于一条链路的数据传输,相邻的两个时隙对应两条不同的链路;
    所述第一网络设备在所述多个时隙上进行对应链路的数据传输。
  2. 根据权利要求1所述的方法,其特征在于,将所述无线信道资源划分多个时隙,包括:
    所述第一网络设备按照时分双工TDD的方式将所述无线信道资源划分为多个时隙。
  3. 根据权利要求1所述的方法,其特征在于,所述第一网络设备在所述多个时隙上进行对应链路的数据传输,包括:
    所述第一网络设备确定所述至少两条链路中的最优链路;
    所述第一网络设备在所述最优链路所对应的时隙上发送第一信息,所述第一信息用于对所述最优链路进行信道估计和数据监控,以及,在所述最优链路之外的其它链路对应的时隙上发送第二信息,所述第二信息用于维持心跳。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备获取第二网络设备的参考信息,所述参考信息包括如下至少一种:信噪比SNR,丢包率,信道状态CSI、质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS;
    所述第一网络设备根据所述参考信息调整分配给每条所述链路的时隙长短。
  5. 根据权利要求4所述的方法,其特征在于,所述获取第二网络设备的参考信息,包括:
    所述第一网络设备通过与所述第二网络设备协商的方式获取所述参考信息;
    或者,通过对每条所述链路的质量的监控结果获取所述参考信息。
  6. 根据权利要求4所述的方法,其特征在于,所述至少两条链路包括第一链路和第二链路,
    所述第一网络设备根据所述参考信息调整分配给每条所述链路的时隙长短,包括:
    所述第一网络设备根据所述参考信息确定当所述第一链路发生故障时,将分配给所述第一链路的时隙变更到所述第二链路所对应的时隙。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,第一网络设备建立与第二网络设备之间的至少两条链路,包括:
    所述第一网络设备广播第一消息,所述第一消息中包括所述第一网络设备支持的多条波束成型链路的能力;
    所述第一网络设备接收所述第二网络设备根据所述第一消息反馈的应答消息;
    所述第一网络设备根据所述应答消息与所述第二网络设备建立至少两条链路。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述第二网络设备包括至少两个虚拟的第二网络设备,
    第一网络设备建立与第二网络设备之间的至少两条链路,包括:
    所述第一网络设备与每个所述虚拟的第二网络设备之间建立一条所述链路。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一网络设备包括至少一组天线阵列,
    所述第一网络设备在所述多个时隙上进行对应链路的数据传输,包括:
    所述第一网络设备使用一组天线阵列进行数据传输,或者,使用两组或两组以上天线阵列与所述第二网络设备进行数据传输,其中,所述两组或两组以上天线阵列之间的传输机制包括时分复用、频分复用、码分复用和空分复用。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备广播第二消息,所述第二消息中包括所述第一网络设备支持的多条波束追踪的能力;
    所述第一网络设备接收所述第二网络设备根据所述第二消息反馈的应答消息;
    所述第一网络设备根据所述应答消息追踪所述链路。
  11. 一种信道资源分配装置,其特征在于,装置包括:
    处理单元,用于建立与第二网络设备之间的至少两条链路,每条所述链路支 持波束成型的数据传输;
    获取单元,用于获取与所述第二网络设备之间的毫米波的无线信道资源;
    所述处理单元,还用于将所述无线信道资源划分多个时隙,且每个时隙用于一条链路的数据传输,相邻的两个时隙对应两条不同的链路;
    发送单元,用于在所述多个时隙上进行对应链路的数据传输。
  12. 根据权利要求11所述的装置,其特征在于,
    所述处理单元,具体用于按照时分双工TDD的方式将所述无线信道资源划分为多个时隙。
  13. 根据权利要求11所述的装置,其特征在于,
    所述处理单元,还用于确定所述至少两条链路中的最优链路;
    所述发送单元,还用于在所述最优链路所对应的时隙上发送第一信息,所述第一信息用于对所述最优链路进行信道估计和数据监控,以及,在所述最优链路之外的其它链路对应的时隙上发送第二信息,所述第二信息用于维持心跳。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,
    所述获取单元,还用于获取第二网络设备的参考信息,所述参考信息包括如下至少一种:信噪比SNR,丢包率,信道状态CSI、质量指数CQI、数据报文传输延时,系统层与应用层的服务质量QoS;
    所述处理单元,还用于根据所述参考信息调整分配给每条所述链路的时隙长短。
  15. 根据权利要求14所述的装置,其特征在于,
    所述获取单元,具体用于通过与所述第二网络设备协商的方式获取所述参考信息,或者,通过对每条所述链路的质量的监控结果获取所述参考信息。
  16. 根据权利要求14所述的装置,其特征在于,所述至少两条链路包括第一链路和第二链路,
    所述处理单元,具体用于根据所述参考信息确定当所述第一链路发生故障时,将分配给所述第一链路的时隙变更到所述第二链路所对应的时隙。
  17. 根据权利要求11-16任一项所述的装置,其特征在于,
    所述发送单元,具体用于广播第一消息,所述第一消息中包括所述装置支持的多条波束成型链路的能力;
    所述获取单元,具体用于接收所述第二网络设备根据所述第一消息反馈的应答消息;
    所述处理单元,具体还用于根据所述应答消息与所述第二网络设备建立至少两条链路。
  18. 根据权利要求11-16任一项所述的装置,其特征在于,所述第二网络设备包括至少两个虚拟的第二网络设备,
    所述处理单元,具体用于与每个所述虚拟的第二网络设备之间建立一条所述链路。
  19. 根据权利要求11-18任一项所述的装置,其特征在于,所述装置包括至少一组天线阵列,
    所述发送单元,具体用于使用一组天线阵列进行数据传输,或者,使用两组或两组以上天线阵列与所述第二网络设备进行数据传输,其中,所述两组或两组以上天线阵列之间的传输机制包括时分复用、频分复用、码分复用和空分复用。
  20. 根据权利要求11-19任一项所述的装置,其特征在于,
    所述发送单元,还用于广播第二消息,所述第二消息中包括所述装置支持的多条波束追踪的能力;
    所述获取单元,还用于接收所述第二网络设备根据所述第二消息反馈的应答消息;
    所述处理单元,还用于根据所述应答消息追踪所述链路。
PCT/CN2017/094278 2017-07-25 2017-07-25 一种信道资源分配方法和装置 WO2019019008A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17919041.8A EP3651494B1 (en) 2017-07-25 2017-07-25 Channel resource allocation method and device
CN201780089623.2A CN110506437B (zh) 2017-07-25 2017-07-25 一种信道资源分配方法和装置
ES17919041T ES2928188T3 (es) 2017-07-25 2017-07-25 Dispositivo y método de asignación de recursos del canal
CN202210569004.6A CN114915327A (zh) 2017-07-25 2017-07-25 一种信道资源分配方法和装置
PCT/CN2017/094278 WO2019019008A1 (zh) 2017-07-25 2017-07-25 一种信道资源分配方法和装置
US16/773,453 US11540292B2 (en) 2017-07-25 2020-01-27 Channel resource allocation method and apparatus
US17/993,560 US11800549B2 (en) 2017-07-25 2022-11-23 Channel resource allocation method and apparatus
US18/470,658 US20240015774A1 (en) 2017-07-25 2023-09-20 Channel Resource Allocation Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094278 WO2019019008A1 (zh) 2017-07-25 2017-07-25 一种信道资源分配方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/773,453 Continuation US11540292B2 (en) 2017-07-25 2020-01-27 Channel resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2019019008A1 true WO2019019008A1 (zh) 2019-01-31

Family

ID=65039224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094278 WO2019019008A1 (zh) 2017-07-25 2017-07-25 一种信道资源分配方法和装置

Country Status (5)

Country Link
US (3) US11540292B2 (zh)
EP (1) EP3651494B1 (zh)
CN (2) CN110506437B (zh)
ES (1) ES2928188T3 (zh)
WO (1) WO2019019008A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097221A1 (en) * 2017-11-14 2019-05-23 Cambium Networks Ltd Fault tolerant transmission for a wireless link
CN110268778A (zh) * 2019-04-29 2019-09-20 北京小米移动软件有限公司 下行数据传输方法、装置及存储介质
CN114745760A (zh) * 2022-05-09 2022-07-12 北京华信傲天网络技术有限公司 一种无线快速漫游的系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11770732B2 (en) * 2019-09-06 2023-09-26 Mediatek Inc. Link condition announcement method employed by wireless fidelity multi-link device and associated apparatus
CN111405524B (zh) * 2020-03-25 2022-07-12 卡斯柯信号有限公司 一种多重车地无线通信系统及其通信方法
CN113507333B (zh) * 2021-06-22 2022-03-25 深圳大学 波束追踪方法和相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788432A (zh) * 2003-03-27 2006-06-14 哈里公司 包括数据优先化和分组接收差错确定特征的无线通信网络及相关方法
US20080268862A1 (en) * 2007-04-30 2008-10-30 Mark Kent Method and system for best-m cqi feedback together with pmi feedback
CN101753274A (zh) * 2008-12-19 2010-06-23 中国移动通信集团设计院有限公司 Tdd hsdpa系统中的资源调度方法、系统及设备
CN104618964A (zh) * 2015-01-15 2015-05-13 青岛科技大学 一种基于切换波束成形的毫米波协作通信方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003799A1 (en) * 2007-06-12 2008-12-17 Sony Deutschland Gmbh Adaptive history aware beam steering
US9232472B2 (en) 2010-12-23 2016-01-05 Stmicroelectronics, Inc. Multiple MAC addresses in a device
US9112648B2 (en) * 2011-10-17 2015-08-18 Golba Llc Method and system for centralized distributed transceiver management
EP2882110B1 (en) * 2012-07-31 2020-05-06 Samsung Electronics Co., Ltd. Communication method and device using beamforming in wireless communication system
US9497047B2 (en) * 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems
CN108777589B (zh) * 2013-09-09 2021-08-13 华为技术有限公司 一种波束追踪的方法、装置和系统
CN104753627A (zh) 2013-12-26 2015-07-01 中兴通讯股份有限公司 多路径传输方法、系统及数据发送装置和数据接收装置
US9276803B2 (en) * 2014-04-02 2016-03-01 Ca, Inc. Role based translation of data
US9414285B2 (en) * 2014-06-30 2016-08-09 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks
US9887907B2 (en) * 2014-09-18 2018-02-06 Qualcomm Incorporated Base station initiated control mechanism for supporting supplemental link
CN107005858B (zh) 2015-02-13 2020-09-29 联发科技(新加坡)私人有限公司 波束追踪以及恢复的方法以及用户设备
CN106465375B (zh) 2015-04-28 2020-02-18 寰发股份有限公司 波束成形的通信系统中空间分集的方法及用户设备
US9762301B2 (en) * 2015-07-24 2017-09-12 Electronics And Telecommunications Research Institute Base station and terminal for distributed array massive multiple-input and multiple-output (MIMO) communication antenna system
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2017058568A1 (en) * 2015-09-28 2017-04-06 Commscope Technologies Llc Directional wireless drop systems for broadband networks and related methods
CN106712914B (zh) * 2015-11-13 2021-06-04 北京三星通信技术研究有限公司 一种双工通信方法、基站及终端
WO2017123862A1 (en) * 2016-01-14 2017-07-20 Interdigital Patent Holdings, Inc. Control and operation in wireless local area network
US10616869B2 (en) * 2016-02-12 2020-04-07 Qualcomm Incorporated Uplink channel design for slot-based transmission time interval (TTI)
KR102658049B1 (ko) * 2016-02-25 2024-04-17 한국전자통신연구원 무선 센서 네트워크에서 자원 할당 방법 및 노드 장치
US10547417B2 (en) * 2016-09-27 2020-01-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in communication system using scalable frame structure
US10595283B2 (en) * 2016-11-22 2020-03-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data of terminal
US10211955B2 (en) * 2017-02-02 2019-02-19 Qualcomm Incorporated Half-duplex operation in new radio systems
US10631341B2 (en) * 2017-05-03 2020-04-21 Lg Electronics Inc. Method and user equipment for transmitting random access channel signal, and method and base station for receiving random access channel signal
US11290986B2 (en) * 2017-07-10 2022-03-29 Qualcomm Incorporated Dynamic resource allocation in wireless network
US10644765B2 (en) * 2017-10-24 2020-05-05 Intel Corporation Enhanced acknowledgment and power saving for wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788432A (zh) * 2003-03-27 2006-06-14 哈里公司 包括数据优先化和分组接收差错确定特征的无线通信网络及相关方法
US20080268862A1 (en) * 2007-04-30 2008-10-30 Mark Kent Method and system for best-m cqi feedback together with pmi feedback
CN101753274A (zh) * 2008-12-19 2010-06-23 中国移动通信集团设计院有限公司 Tdd hsdpa系统中的资源调度方法、系统及设备
CN104618964A (zh) * 2015-01-15 2015-05-13 青岛科技大学 一种基于切换波束成形的毫米波协作通信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097221A1 (en) * 2017-11-14 2019-05-23 Cambium Networks Ltd Fault tolerant transmission for a wireless link
US11943651B2 (en) 2017-11-14 2024-03-26 Cambium Networks Ltd Fault tolerant transmission for a wireless link
CN110268778A (zh) * 2019-04-29 2019-09-20 北京小米移动软件有限公司 下行数据传输方法、装置及存储介质
US11991725B2 (en) 2019-04-29 2024-05-21 Beijing Xiaomi Mobile Software Co., Ltd. Downlink data transmission method and device, and storage medium
CN114745760A (zh) * 2022-05-09 2022-07-12 北京华信傲天网络技术有限公司 一种无线快速漫游的系统及方法
CN114745760B (zh) * 2022-05-09 2024-04-02 北京华信傲天网络技术有限公司 一种无线快速漫游的系统及方法

Also Published As

Publication number Publication date
CN110506437A (zh) 2019-11-26
US20240015774A1 (en) 2024-01-11
CN114915327A (zh) 2022-08-16
US11800549B2 (en) 2023-10-24
US11540292B2 (en) 2022-12-27
CN110506437B (zh) 2022-05-24
ES2928188T3 (es) 2022-11-16
US20200163089A1 (en) 2020-05-21
EP3651494A1 (en) 2020-05-13
US20230164823A1 (en) 2023-05-25
EP3651494B1 (en) 2022-09-07
EP3651494A4 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US11540292B2 (en) Channel resource allocation method and apparatus
US20220046735A1 (en) Secondary cell activation method and apparatus
AU2021200786B2 (en) Method and apparatus for regulating communication parameters
WO2020088571A1 (zh) 一种信息传输方法、装置和设备
WO2019214382A1 (zh) 通信的方法和通信装置
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
US10218824B2 (en) Apparatus, system and method of communicating via a plurality of sectorized antennas
US20170339533A1 (en) Apparatus, system and method of terminating a neighbor awareness networking (nan) path
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2021217668A1 (zh) 多载波通信方法、终端设备和网络设备
TW202015450A (zh) 通訊方法、終端設備和網路設備
WO2019195047A1 (en) Method and apparatus for millimeter-wave mimo mode selection
US20130107831A1 (en) Apparatus and method for transmitting and receiving signal in a near field communication system
US20220377583A1 (en) Measurement method and apparatus, and terminal device
WO2023115354A1 (zh) 通信方法及装置
JP2022528328A (ja) ぺージング機会の構成方法および装置、端末、ネットワーク機器
US20190208564A1 (en) Base station device, terminal device, control method, and computer-readable storage medium
TW201927043A (zh) 信號傳輸方法及裝置
WO2021223599A1 (zh) 一种上行数据传输方法及装置
US20220337306A1 (en) Method for beam selection, terminal device, and network device
US20220201626A1 (en) Information reporting method and apparatus, and user equipment
US20230025172A1 (en) Apparatus, system, and method of communicating a millimeterwave (mmwave) physical layer (phy) protocol data unit (ppdu) over an mmwave wireless communication channel
US20190261241A1 (en) Network access method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919041

Country of ref document: EP

Effective date: 20200203