WO2019017818A1 - Système de réalité virtuelle basé sur un téléphone intelligent et un miroir incliné - Google Patents
Système de réalité virtuelle basé sur un téléphone intelligent et un miroir incliné Download PDFInfo
- Publication number
- WO2019017818A1 WO2019017818A1 PCT/RU2018/000452 RU2018000452W WO2019017818A1 WO 2019017818 A1 WO2019017818 A1 WO 2019017818A1 RU 2018000452 W RU2018000452 W RU 2018000452W WO 2019017818 A1 WO2019017818 A1 WO 2019017818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- camera
- marker
- smartphone
- user
- virtual reality
- Prior art date
Links
- 239000003550 marker Substances 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 abstract description 6
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 5
- 244000288377 Saxifraga stolonifera Species 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000001876 chaperonelike Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/012—Head tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K1/00—Methods or arrangements for marking the record carrier in digital fashion
- G06K1/12—Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
Definitions
- the invention relates to systems for mobile virtual reality and specifically to systems for mobile virtual reality performing six-degrees-of-freedom tracking of the user position using a smartphone camera as the only imaging device.
- the virtual reality (VR) systems are in the state of active development.
- the VR systems based on smartphones (so called “mobile VR") show particular promise and outnumber all other devices in the market.
- These systems comprise a smartphone and a low-cost headmount into which the smartphone is inserted.
- the headmount itself usually does not have any additional sensors or, in fact, any electronic hardware.
- Mobile VR setups thus enjoy considerably lower cost and complexity compared to standalone systems (as long as the cost of the smartphone is not considered).
- the main downside of mobile VR systems compared to higher-end VR systems is the lack of positional tracking.
- mobile VR systems are usually unable to track the headset absolute position and only estimate the angular orientation of the headmount (which is known as three degrees of freedom (3DoF) tracking).
- 3DoF degrees of freedom
- higher end systems such as HTC Vive or Occulus Rift use external cameras for positional tracking of the headmount and therefore are able to track all six degrees of freedom (6D0F) associated with the motion of a body (i.e. a headmount) in 3D space.
- 6D0F tracking enables much richer and more immersive VR experience, since it allows the user to move naturally in the virtual world.
- the virtual view observed by the user changes with the head absolute motion in a manner anticipated by the user's brain.
- marker-based methods enjoy higher robustness, higher accuracy, lower latency, and lower CPU load. This however comes at the cost of the need to embed markers into the environment so that a sufficient number of those remain in the camera field of view at all time. On top of that a complex calibration procedure is often needed before marker-based tracking is possible. Overall, the need to cover the environment with markers and to calibrate them is regarded as too big of an obstacle, and marker-based positional tracking is generally regarded to be not viable commercially, with most efforts concentrated on developing markerless solutions.
- the system includes a camera mounted on a user and a floor marker.
- the floor marker may be provided on an unreliable carpet.
- the floor marker may denote a safe walkable area for the user.
- a slanted mirror may be mounted in front of the camera so that the view of the camera is redirected downwards.
- the camera may be a smartphone camera.
- the slanted mirror may be attached to a headmount or a smartphone.
- the marker may include a grid of dark square-shaped patterns on white background (or vice versa).
- system is configured to track user hand positions and reproduce the user hand positions in virtual reality. Also, the system is configured to detect gestures using the camera, wherein the detected gestures are used for a gesture-based interface.
- Fig. 1 shows a general view of the mobile VR system in one embodiment.
- Fig. 2 shows a view of a floor marker as seen by the camera of the system of Fig. 1 after reflecting from a slanted mirror.
- the new marker-based positional tracking system claimed herein avoids the major drawbacks of other marker-based solutions by using a single floor marker (that is called a magic carpet).
- the marker can be easily “deployed” by simply unrolling the carpet.
- the smartphone camera is oriented in a horizontal direction that is roughly parallel to the ground, and therefore would not be able to observe the marker (the carpet). Therefore, a slanted mirror may be mounted in front of the smartphone camera so that the view of the camera is redirected downwards. In practice, the mirror can be attached to either the smartphone or to the headmount. After such modification a camera is able to observe parts of the marker as long as the user stays on the carpet and looks roughly horizontally.
- the system has the following hardware components: a floor marker 1 ("magic carpet"), a smartphone 2, a VR headmount 3, into which the smartphone is inserted, and a slanted mirror 4, in this embodiment attached to the smartphone in front of the smartphone camera. While the user is facing in the horizontal direction, the camera observes the marker thanks to the reflection in the attached mirror.
- a floor marker 1 (“magic carpet")
- a smartphone 2 a VR headmount 3 into which the smartphone is inserted
- a slanted mirror 4 in this embodiment attached to the smartphone in front of the smartphone camera. While the user is facing in the horizontal direction, the camera observes the marker thanks to the reflection in the attached mirror.
- Computer vision algorithms can then be used to estimate the position of the camera with respect to the marker. This can be done efficiently (quickly and in robust way) as long as the appearance of the marker is optimized for part localization and identification. Marker-based pose estimation is a well researched area, and popular marker families along with associated tracking algorithms are available (e.g. AprilTags or ArucoMarkers).
- the camera of the smartphone can see the floor marker 1 reflected from the slanted mirror.
- the floor marker may be composed of square- shaped distinguishable parts. Learnable marker technology described in Grinchuk et al. NIPS2016 may be used to design aesthetically-pleasant and distinguishable grid elements.
- the frame from the smartphone camera is matched to the marker by detecting dark quadrangles and matching them to the marker parts.
- adaptive thresholding followed by connected component analysis identifies quadrangular-shaped dark regions. Each quadrangular region is then transformed geometrically into a square and its appearance is then matched against the square patterns that are known to be on the marker using a simple pixel-based matching measure. This allows to establish correspondences between detected regions and parts of the marker.
- a standard pose estimation algorithms are then used to estimate the location of the camera with reference to the magic carpet.
- a pose estimation algorithm would estimate the 6DoF position of the virtual camera that is obtained by reflecting the position of the real smartphone camera in the mounted mirror.
- the virtual camera can be reflected back and the position of the real camera with respect to the marker (carpet) can be estimated, thus accomplishing positional tracking.
- the camera view also clearly shows the pose of the user hands, which can be reproduced in virtual reality or to design gesture-based interfaces. As the camera in the proposed system observes the user hands most of the time, the reflected view can be used to track the user hand positions and to reproduce them in virtual reality.
- the image stream from the camera can be used to detect certain gestures, which can be used for gesture-based interfaces.
- gesture-based interfaces No known systems that can perform hand tracking without the use of external imaging devices have been suggested previously. Note that such interfaces can be devised even in the absence of the floor marker (carpet).
- the proposed system comprises the following hardware components: a smartphone, a headset with the slanted mirror (alternatively the mirror can be attached to the smartphone directly), and a marker in the form of a floor carpet.
- the system includes a pose estimation method that is able to detect and match parts of the marker in the reflected image, and then use pose estimation to estimate six-DoF camera position.
- the system according to the invention enjoys the benefits of the marker-based solutions. Knowing the marker in advance allows us to use simpler, more efficient, more precise, more robust algorithms for position estimation compared to markerless technologies that have to build a map of the environment on the fly (using so-called simultaneous localization and mapping (SLAM) algorithms).
- SLAM simultaneous localization and mapping
- the system enables positional tracking as long as the user walks over the carpet.
- a standard VR interface (chaperoning) can then signal to the user as he/she is leaving the carpet as is done in the high-end VR systems that allow the user to walk.
- the system according to the invention allows to observe the body of the user using the smartphone camera. This can be used to augment the VR experience with a coarse representation of the user body thus improving the sense of perception. Furthermore this can enable gesture- based interfaces without additional controllers. • The system is completely inside the headset and does not need any wired connection to other devices, so the user can safely move around a carpet.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- User Interface Of Digital Computer (AREA)
- Position Input By Displaying (AREA)
- Studio Devices (AREA)
Abstract
L'invention concerne des systèmes de réalité virtuelle mobiles et spécifiquement des systèmes de réalité virtuelle mobiles effectuant un suivi à six degrés de liberté de la position de l'utilisateur à l'aide d'une caméra de téléphone intelligent en tant que seul dispositif d'imagerie. L'invention concerne un système de VR à base marquée dans lequel des marqueurs peuvent être facilement déployés et une procédure d'étalonnage peut être effectuée d'une manière moins complexe. L'invention concerne également un système de suivi de position basé sur un marqueur pour réalité virtuelle. Le système comprend une caméra montée sur un utilisateur; et un marqueur de sol. Le marqueur de sol peut être fourni sur un tapis non enroulable et désigner une zone sans danger pour l'utilisateur. Un miroir incliné peut être monté devant la caméra de sorte que la vue de la caméra soit redirigée vers le bas. En outre, la caméra peut être une caméra de téléphone intelligent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA201992443A EA038022B1 (ru) | 2017-07-19 | 2018-07-10 | Система виртуальной реальности на основе смартфона и наклонного зеркала |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017125876 | 2017-07-19 | ||
RU2017125876A RU2686029C2 (ru) | 2017-07-19 | 2017-07-19 | Система виртуальной реальности на основе смартфона и наклонного зеркала |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019017818A1 true WO2019017818A1 (fr) | 2019-01-24 |
Family
ID=63490656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2018/000452 WO2019017818A1 (fr) | 2017-07-19 | 2018-07-10 | Système de réalité virtuelle basé sur un téléphone intelligent et un miroir incliné |
Country Status (3)
Country | Link |
---|---|
EA (1) | EA038022B1 (fr) |
RU (1) | RU2686029C2 (fr) |
WO (1) | WO2019017818A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2955610A1 (fr) * | 2014-06-11 | 2015-12-16 | Samsung Electronics Co., Ltd | Procédé de contrôle de fonctionnement avec un visiocasque |
WO2016187474A1 (fr) * | 2015-05-20 | 2016-11-24 | Daqri, Llc | Dispositif d'affichage acoustico-optique pour réalité augmentée |
WO2017014733A1 (fr) * | 2015-07-17 | 2017-01-26 | Ivd Mining | Apprentissage de réalité virtuelle |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080252746A1 (en) * | 2007-04-13 | 2008-10-16 | Newton Eliot Mack | Method and apparatus for a hybrid wide area tracking system |
GB0804274D0 (en) * | 2008-03-07 | 2008-04-16 | Virtually Live Ltd | A media sysyem and method |
US8923622B2 (en) * | 2012-12-10 | 2014-12-30 | Symbol Technologies, Inc. | Orientation compensation using a mobile device camera and a reference marker |
JP6641122B2 (ja) * | 2015-08-27 | 2020-02-05 | キヤノン株式会社 | 表示装置及び情報処理装置及びその制御方法 |
RU2617557C1 (ru) * | 2015-11-18 | 2017-04-25 | Виталий Витальевич Аверьянов | Способ воздействия на виртуальные объекты дополненной реальности |
-
2017
- 2017-07-19 RU RU2017125876A patent/RU2686029C2/ru active
-
2018
- 2018-07-10 EA EA201992443A patent/EA038022B1/ru unknown
- 2018-07-10 WO PCT/RU2018/000452 patent/WO2019017818A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2955610A1 (fr) * | 2014-06-11 | 2015-12-16 | Samsung Electronics Co., Ltd | Procédé de contrôle de fonctionnement avec un visiocasque |
WO2016187474A1 (fr) * | 2015-05-20 | 2016-11-24 | Daqri, Llc | Dispositif d'affichage acoustico-optique pour réalité augmentée |
WO2017014733A1 (fr) * | 2015-07-17 | 2017-01-26 | Ivd Mining | Apprentissage de réalité virtuelle |
Also Published As
Publication number | Publication date |
---|---|
RU2017125876A (ru) | 2019-01-22 |
RU2686029C2 (ru) | 2019-04-23 |
EA201992443A1 (ru) | 2020-02-18 |
EA038022B1 (ru) | 2021-06-24 |
RU2017125876A3 (fr) | 2019-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11796309B2 (en) | Information processing apparatus, information processing method, and recording medium | |
CN111465886B (zh) | 头戴式显示器的选择性跟踪 | |
JP6110573B2 (ja) | 仮想現実システムの較正 | |
US9524021B2 (en) | Imaging surround system for touch-free display control | |
US9625994B2 (en) | Multi-camera depth imaging | |
WO2017172984A3 (fr) | Casque de réalité virtuelle avec dispositif de suivi de tête à mouvement relatif | |
WO2014156706A1 (fr) | Dispositif et méthode de traitement d'image, et programme | |
WO2014071254A4 (fr) | Dispositif informatique et de commande de type montre sans fil et procédé pour imagerie en 3d, cartographie, réseau social et interfaçage | |
KR20160003233A (ko) | 컴퓨터 비전 애플리케이션 초기화를 용이하게 하는 방법들 | |
US10140507B2 (en) | Apparatus and method for recognizing hand gestures in a virtual reality headset | |
US20170206666A1 (en) | Information processing apparatus, information processing method, and program | |
EP3188075B1 (fr) | Appareil et procédé permettant de reconnaître les gestes de la main dans un casque de réalité virtuelle | |
JP2015536507A (ja) | 対象とのオブジェクトの関連付け | |
JP2011189066A (ja) | ゲーム装置、ゲーム装置の制御方法、及びプログラム | |
JP2021060627A (ja) | 情報処理装置、情報処理方法、およびプログラム | |
US10859831B1 (en) | Systems and methods for safely operating a mobile virtual reality system | |
US20240054780A1 (en) | Object detections for virtual reality | |
US9773350B1 (en) | Systems and methods for greater than 360 degree capture for virtual reality | |
JP2023502239A (ja) | 広視野角のステレオカメラ装置およびこれを利用した深度画像処理方法 | |
KR20140009900A (ko) | 로봇 제어 시스템 및 그 동작 방법 | |
US11073902B1 (en) | Using skeletal position to predict virtual boundary activation | |
US20210134039A1 (en) | Using a handheld device to recreate a human pose or align an object in an augmented reality or virtual reality environment | |
WO2019017818A1 (fr) | Système de réalité virtuelle basé sur un téléphone intelligent et un miroir incliné | |
US20140043327A1 (en) | Method and system for superimposing content to have a fixed pose | |
Carozza et al. | Robust 6-DOF immersive navigation using commodity hardware |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18765210 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18765210 Country of ref document: EP Kind code of ref document: A1 |