WO2019017754A1 - Wind power generator - Google Patents

Wind power generator Download PDF

Info

Publication number
WO2019017754A1
WO2019017754A1 PCT/KR2018/008301 KR2018008301W WO2019017754A1 WO 2019017754 A1 WO2019017754 A1 WO 2019017754A1 KR 2018008301 W KR2018008301 W KR 2018008301W WO 2019017754 A1 WO2019017754 A1 WO 2019017754A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rotor
power
coupled
hollow shaft
Prior art date
Application number
PCT/KR2018/008301
Other languages
French (fr)
Korean (ko)
Inventor
윤진목
Original Assignee
윤진목
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤진목 filed Critical 윤진목
Priority to JP2020502991A priority Critical patent/JP2020528514A/en
Priority to CN201880061744.0A priority patent/CN111133192A/en
Priority claimed from KR1020180085602A external-priority patent/KR102185806B1/en
Publication of WO2019017754A1 publication Critical patent/WO2019017754A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind power generator having a power generating unit coupled to a nacelle assembly installed at a lower portion of a tower for installing a wind turbine generator. More particularly, the present invention relates to a wind turbine generator, To a wind power generator having a reaction torque canceling mechanism for canceling by a mechanism using an electromagnetic force of a power generation unit.
  • a rotor blade type wind turbine generator mainly includes a rotor for converting wind power into mechanical rotational kinetic energy, a nacelle assembly composed of devices for converting rotational kinetic energy of the rotor into electric energy, And a tower (not shown).
  • the horizontal axis wind turbine is influenced by the wind while the vertical axis wind turbine operates regardless of the direction of the wind.
  • the vertical axis wind turbine is divided into the vertical axis wind turbine and the horizontal axis wind turbine depending on whether the direction of the rotation axis of the blade to the ground is horizontal or vertical. There is a disadvantage that the starting is not desirable or the efficiency is low.
  • the rotor of a typical horizontal axis wind power generator includes a hub-nose cone assembly with a plurality of blades radially disposed at equal intervals from each other, and the hub-nose cone assembly is installed in a nacelle assembly
  • the hub-and-nose cone assembly rotates as the blade rotates by the wind while the power generating unit is assembled to the horizontal main shaft, and the rotational force is transmitted to the main shaft to generate power by driving the power generating unit .
  • the conventional horizontal axis wind turbine is constructed in such a structure that heavy equipment such as a heavy power unit is installed inside a nacelle assembly installed at the top of the tower, it is difficult to construct, install, check, maintain and repair, There is a problem that the cost is increased and the importance of seismic design for a heavy weight generator unit and nussel assembly installed in the air is increased and the construction cost is accordingly increased.
  • Korean Patent No. 10-1027055 registered on Mar. 29, 2011
  • the rotational kinetic energy of the rotor is increased at the main shaft in the nacelle assembly
  • the vertical power transmission shaft connected vertically, it transmits the increased rotational force to the ground mounted generator at the bottom of the tower.
  • the reaction generated by the load which operates the generator by the vertical power transmission shaft in the tower
  • the present invention provides a wind turbine generator capable of simplifying the structure of the nacelle assembly and free-yawing by canceling the reaction torque to be turned by the upper and lower yoke portions of the mechanical structure of the mechanical structure, .
  • the wind turbine disclosed in the above-mentioned prior art has a problem in that the weight of the reaction torque canceling mechanism is increased by the yoke mechanism which operates in the reciprocating motion of the mechanical structure. Further, the thrust bearing which enables free-yawing of the nacelle assembly also has a problem of causing up-and-down vibration due to its large weight, which may lead to failure, and the overall structure of the reaction torque canceling mechanism is complicated, And the manufacturing and maintenance costs are also increased.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide a wind power generator that can cancel out a reaction torque only by an electromagnetic force according to the law of HFE Lenz (Heinrich Friedrich Emilentz; .
  • a handling torque such as a vertical power transmission shaft, a power unit, and the like
  • a nacelle assembly in which the main shaft of the rotor is embedded
  • a power transmitting shaft connected vertically by gear engagement with a main shaft of the nacelle assembly to transmit rotational kinetic energy of the rotor;
  • a hollow shaft portion having an upper end coupled to a bottom surface of the nacelle assembly and a lower end extending downwardly and a tower body coupled to an outer circumferential surface of the hollow shaft portion by upper and lower yaw bearings and having a lower end fixed to the support portion, A tower portion in which a power transmission shaft is disposed inside the hollow shaft portion;
  • the housing has a rotator shaft, a multipolar rotor coupled to the rotor shaft, and a stator of a multiple pole disposed at a distance from the rotor.
  • the housing is fixed to a lower end of a hollow shaft portion of the tower portion, A power generating unit installed on the power transmitting shaft, the power generating unit being connected to the power transmitting shaft via a coupling and being generated by the rotational kinetic energy transmitted through the power transmitting shaft; , ≪ / RTI >
  • reaction torque of the nucelle assembly transmitted to the stator of the power generation unit is canceled by a drive torque generated by an electromagnetic force in accordance with a law of a lens Lenz of a rotating magnetic field from a rotor of the power generation unit Lt; / RTI >
  • a turning base mechanism having a structure in which a core shaft coaxially coupled to a rotor shaft of the power generation unit is rotatably supported by an installation place support portion of the power generation unit.
  • a wind turbine according to the present invention, wherein the hollow shaft portion and the power transmission shaft are divided into a plurality of sub-assemblies, and the plurality of hollow shaft sub-assemblies and the power transmission shaft sub- And a power transmitting shaft connecting port of the power transmitting shaft is vertically coupled to form a combined body of the hollow shaft portion and the power transmitting shaft.
  • a reaction torque transmitting mechanism including a reaction torque transmitting shaft rotatably gear-connected between a nacelle ring gear of a hollow shaft portion and a turning base mechanism And the like.
  • a wind turbine generator comprising a housing provided with a bearing support to be fitted to a power transmission shaft and coupled to a lower portion of the hollow shaft, a lower end of the power transmission shaft penetrating the bearing support, A plurality of sub-gears axially coupled to a lower portion of the housing at a predetermined angle so as to be rotatably engaged with and rotatable with respect to the main gear; and a plurality of sub- And a parallel operation mechanism, which is configured to include a unit.
  • a wind turbine generator comprising: a housing provided with a bearing support to be fitted to a power transmission shaft and installed between a lower portion of a hollow shaft portion and a turning base assembly; And a power generation unit having a bevel gear attached to a lower portion of the power transmission shaft and a bevel gear coupled to the bevel gear coupled to an end of the horizontal rotary shaft.
  • a wind turbine comprising: a push rod which is formed by a main spindle of a nacelle assembly as a hollow main shaft and installed in the hollow main shaft; And the connecting rod is connected to a pivot pin joint which is connected to the blade so that the blade center axis and the blade center axis are attached to one end of the hollow main shaft, And a pitch control mechanism configured to include a pivot pin joint installed on the hub in which the pivot pin joint is installed.
  • the power generation load of the power generation unit When the gear coupled to the power transmission shaft receiving the power transmission shaft is rotated by the gear of the main shaft, the power transmitting shaft gear is subjected to the rotating force at the contact point (moment equivalent average point) A rotational moment is generated by the reaction force and the distance between the rotation center axis (AXIS) of the gear coupled to the power transmission shaft in the direction perpendicular to the direction of the force at this point and acts as a reaction torque for rotating the nacelle assembly
  • AXIS rotation center axis
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a wind power generator according to a first embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views taken along the line a-a 'of FIG. 1, respectively, and a conceptual diagram for explaining a reaction torque received by the nacelle assembly.
  • Figs. 3A and 3B are partial detail views showing the internal construction of the power generating unit of Fig. 1 and cross-sectional views taken along line b-b 'of Fig. 1, respectively.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of a wind power generator having a reaction torque canceling mechanism according to a second embodiment of the present invention.
  • 5 to 7 are sectional views taken along line c-c ', line d-d', and line e-e ', respectively, in FIG.
  • FIG. 8A and 8B are a schematic cross-sectional view showing the configuration of a wind power generator according to a third embodiment of the present invention and a cross-sectional view taken along the line f-f 'in FIG. 8A, respectively.
  • FIG. 9A and 9B are a schematic cross-sectional view showing the configuration of a wind power generator according to a fourth embodiment of the present invention and a cross-sectional view taken along the line g-g 'in FIG. 9A.
  • FIGS. 10A and 10B are a schematic cross-sectional view showing the configuration of a wind turbine according to a fifth embodiment of the present invention and a cross-sectional view taken along the line h-h 'of FIG. 10A.
  • Figs. 11A and 11B are a schematic cross-sectional view showing the configuration of a wind power generator according to a sixth embodiment of the present invention and a cross-sectional view taken along the line i-i 'in Fig. 11A.
  • 12A to 12B are schematic diagrams showing the configuration of a pitch control mechanism of a wind power generator having a reaction torque canceling mechanism according to a seventh embodiment of the present invention.
  • FIG. 1 shows a configuration of a wind turbine according to a first embodiment of the present invention.
  • FIG. 2 (a) is a cross-sectional view taken along line aa 'of FIG. 1, FIG.
  • a wind turbine according to a first embodiment of the present invention includes a tower unit 100, a nacelle assembly 200, and a rotor 300 sequentially assembled, 200 and an upper end of the tower unit 100 are coupled to each other, an adapter unit 160 having a bearing assembly for pre-yawing is installed in the hollow shaft unit 120 of the tower unit 100.
  • the wind turbine generator according to the first embodiment of the present invention is constructed such that the nacelle assembly 200 is freely turned by the adapter unit 160 provided in the hollow shaft portion 120 of the tower unit 100, So that the nacelle assembly 200 freely rotates freely by the drag force of the wind received by the blade 310 without the wind direction control motor, thereby realizing free yawing.
  • the nacelle assembly 200 includes a main shaft 220 rotatably supported by a supporting frame 210 having a bearing therein and a bevel gear 230 mounted on the main shaft 220, 300 includes a hub 320 attached to one end of the main shaft 220 of the nacelle assembly 200 and a plurality of blades 310 attached to the hub 320 at a predetermined angle, As the blade 310 rotates, the main shaft 220 also rotates. A brake 240 is attached to the other end of the main shaft 220.
  • the tower unit 100 includes a hollow shaft 120 coupled to a lower portion of the nacelle assembly 200 and a bearing assembly 102 rotatably mounted to the bearing assembly 102 inside the hollow shaft 120, A power transmission shaft 140 attached with a bevel gear 142 at an upper end thereof so as to be coupled with the bevel gear 230 of the hollow shaft portion 120 and an outer surface of the hollow shaft portion 120 so that the hollow shaft portion 120 can be rotated And a tower main body 180 for supporting a lower portion of the adapter unit 160.
  • the adapter unit 160 includes an adapter unit 160,
  • the rotational force of the main shaft 220 is transmitted to the power transmitting shaft 140 as the bevel gear 142 of the power transmitting shaft 140 is coupled to the bevel gear 230 of the main shaft 220.
  • the adapter unit 160 includes inner and outer adapters 164 and 166 each of which is coupled with a yaw bearing 162 to fasten the bearing to the outer surface of the hollow shaft unit 120, 162 may be positioned between the protrusions 122 protruding from the outer surface of the hollow shaft portion 120 and the external adapter 166.
  • the inner adapter 164 is located at the upper portion and the outer adapter 166 is located at the lower portion, but it may be located in the opposite direction.
  • a plate flange 602 is disposed under the hollow shaft portion 120 to attach the power generator unit 600.
  • the power generation unit 600 includes a rotor shaft 610 connected to a lower portion of the tower shaft 140 by a coupling 604 and a rotor 620 coupled to the rotor shaft 610 and a rotor 620 And a pair of stators 630 and 635 attached to the outer surface at a predetermined distance.
  • a housing 640 surrounding the sides of the stators 630 and 635 and having bearings disposed on upper and lower portions of the rotor shaft 610 is attached.
  • the foundation 180 of the tower body is installed in the foundation insert 184 at the foundation site after the foundation insert 182 is installed and then the foundation insert 182 As shown in FIG.
  • Fig. 3A and Fig. 3B respectively show the internal configuration of the power generating unit of Fig. 1 and a section taken along the line b-b 'of Fig.
  • the wind turbine according to the first embodiment of the present invention cancels the reaction torque using the electromagnetic force of the power generation unit.
  • the bevel gear 230 of the bevel gear 230 receives the power generation load and the bevel gear 142 of the power transmission shaft 140 is driven by the arrow torque Fc by the rotation torque H of the main shaft 220,
  • the bevel gear 230 of the bevel gear 230 applies the arrow Fc and at the same time the reaction torque Fd which is generated by the reaction force Fd causes the reaction force D is a housing 640 of the power generation unit 600 coupled to the lower end of the hollow shaft 120 through which the nosepiece assembly 200 is coupled and a stator 630 integrally coupled to the housing 640, (735).
  • the rotational torque H of the main shaft 220 causes the bevel gear 230 of the main shaft 220 to be coupled to the power transmitting shaft 140 coupled to the bevel gear 142 of the power transmitting shaft 140 receiving the power generation load
  • the rotors 620 of the power generating unit 600 are rotated by the magnets of N and S poles on one side and the other side of the rotor 620 of the power generating unit 600 by rotating the rotors 620 of the power generating unit 600
  • the stators 630 and 635 are provided with the power generation coils 632 and 634 on one side and the other side respectively to rotate the rotor 620 in the direction of the arrow C to the rotor shaft 610, 620 generates a rotating magnetic field so that an electromagnetic force based on the principle of the lens Lenz acts on the power generation coils 632 634 of the stator 630 635 and the magnetic poles N pole of the rotor 620 An N pole which interferes with the motion of the rotor 620 is induced in
  • the nacelle assembly (200)
  • the power generation unit 600 at the lower part of the tower is operated without generating any rotation by the power generator.
  • the power generation unit has described the operation of canceling the reaction torque when the rotor 620 has two poles and the stator 630 and 635 have two poles.
  • the rotor 620 is not a two pole but a multi- And the stator 630 and 635 are not two poles but have multiple poles, in the case of using a rotating magnetic field, the result that the two torques cancel each other as described above by the electromagnetic force of the Lenz law is the same .
  • the stator 630, 635 is a magnet and the coil is provided in the rotor 620, the result of canceling the reaction torque is the same.
  • the coupling between the hollow shaft and the tower main body can use other known configurations as long as it allows pre-yawing of the nacelle assembly.
  • the present invention has been made in view of the above-described problems.
  • FIG. 4 shows a configuration of a wind power generator according to a second embodiment of the present invention
  • FIGS. 5 to 7 each show a cross section taken along lines c-c ', d-d' and e-e 'in FIG.
  • the wind turbine generator according to the second embodiment of the present invention is the same as that of the first embodiment except that it further includes a turning base mechanism 700, Only the base mechanism 700 will be described.
  • the turning base mechanism 700 includes a plate 710 attached to the lower portion of the housing 640 of the power generating unit 600 and a receiving portion for receiving the rotor shaft 610 of the power generating unit 600, A turntable 720 attached to the turntable 720 and a base plate 730 installed on the ground or the ground of the insert mounting portion 182 and a thrust bearing (not shown) installed between the turntable 720 and the base plate 730 740).
  • a core shaft 722 coaxial with the rotor shaft 610 is inserted and fastened by a coupling nut 728 into a hollow shaft of the turntable 720 and a shaft supporting portion 732 provided at the center of the base plate 730, And a thrust bearing 724 and a radial bearing 726 are installed on the shaft 722 of the hollow portion.
  • the turning base mechanism 960 is not limited to the structure described above so long as the structure is such that the shaft 722 coaxially coupled to the rotor shaft 610 of the power generator unit 600 is rotatably supported by the support portion of the installation place of the power generator unit 600,
  • the structure can be different from the above.
  • the turning base mechanism 700 in this embodiment can freely turn and support the power generating unit 600 of a considerable weight freely on the thrust bearing 740.
  • Figs. 8A and 8B show the construction of a wind turbine generator according to a third embodiment of the present invention, respectively, taken along the line f-f 'in Fig. 8A.
  • a wind turbine generator includes a power transmission shaft multi-stage connection mechanism 800 in which a plurality of power transmission shaft coupling holes 860 and a plurality of hollow shaft portion sub- Except that the power transmitting shaft 140 and the hollow shaft portion 120 below the yaw bearing 162 are constituted by a plurality of partial bodies, as described above. Therefore, in the present embodiment, (800) will be described.
  • the hollow shaft portion body 820 is divided into upper and lower first and second hollow shaft powder portions 822 and 824 of the power transmission shaft connecting hole 860 at the upper and lower portions thereof.
  • the upper first hollow shaft portion body 822 is engaged with the second hollow shaft powder 824 of the lower end of the hollow shaft portion 120 of the first embodiment or the power transmission shaft connecting portion 860 of the adjacent upper portion, The engagement is achieved by the insertion of the power transmitting shaft 140 of the power transmitting shaft inserting and supporting portion 826 described below and the length of the hollow shaft portions 120 and 820 and the length of the power transmitting shaft 140 In FIG. 8A in order to absorb the amount of change, and other known joining methods such as couplings other than spline coupling may be used.
  • a power transmission shaft insertion portion 826 is formed coaxially with the power transmission shaft 140 so as to be coupled thereto.
  • the power generation unit 600 is attached to the lowermost second connection hollow shaft portion 824.
  • the power transmission shaft coupling hole 860 has an inner bearing support disposed around the power transmission shaft insertion support portion 826 of the first hollow shaft portion 822 and an outer bearing disposed around the inner bearing support 862 Two pairs of bearings 670 disposed on the outer periphery of the outer bearing support 864 between the outer bearing support 864 and the support 864 and between the inner and outer bearing supports 862 and 864, And a circular rim 866 having three protrusions that are equidistantly spaced from the outer periphery of the pair of bearings 870 and attached within the tower main body 180.
  • the protrusion of the rim 866 has been described above as three protrusions. However, the protrusion of the rim 866 is not limited thereto. Four or more protrusions may be used. In order to fix the assembly of the bearing support and the bearing to the inside of the hollow shaft, Can be used.
  • the power transmission shaft multi-stage connection mechanism 800 separates the power transmission shaft 140 into a plurality of sub sorts, and by the upper portion of the yaw bearing 162 of the power transmission shaft 14 and the sub- Vibration during rotation of the power transmission shaft constituted by the sub-bodies can be prevented, and it is possible to perform the assembly mode, thereby shortening the construction period and reducing the construction cost.
  • FIG. 9A and 9B show the construction of the wind power generator according to the fourth embodiment of the present invention, respectively, and show cross sections taken along the line g-g 'in FIG. 9A.
  • the wind turbine according to the fourth embodiment of the present invention further includes a separate reaction torque transmitting mechanism for transmitting a reaction torque between the lower end of the hollow shaft portion and the turning base mechanism at the lower end of the power generation unit.
  • the structure of the second embodiment is the same as that of the second embodiment, and therefore only a separate reaction torque transmitting mechanism 900 will be described for this embodiment.
  • the reaction torque transmission mechanism 900 includes a hollow shaft portion 920 provided with a nussel ring gear 924 on a flange 922 formed at a lower end portion thereof and a tower 942 having a plurality of support portions 942 provided at predetermined intervals on the inner wall surface thereof.
  • a turning base mechanism 960 provided with a main body 940 and a turntable gear 964 attached to the outer surface of the turntable 962 and a nose ring gear 924 meshing with the nocell ring gear 924 of the hollow shaft portion 920 at one end, And a reaction transmission pinion gear 984 engaged with the turntable gear 964 provided on the turning base mechanism 960 is attached to the other end of the pinion gear 982, And a reaction torque transmitting shaft 980 that is rotatably attached to the base member 910.
  • the coupling between the hollow shaft portion 920 of the reaction torque transmitting mechanism 900 and the turning base mechanism 960 may be different from the above structure as long as the rotation thereof is possible.
  • the turning base mechanism 960 also has a structure in which the shaft 722 coaxial with the rotor shaft 6100 of the power generating unit 600 is rotatably supported by the supporting portion of the power generating unit 600 As described above.
  • the flange 922 is integrally formed at the lower end of the hollow shaft portion 120.
  • the flange 922 may be separately formed and attached to the lower end of the hollow shaft portion 120.
  • reaction torque is canceled by the reaction torque transmission shaft 980 provided inside the tower main body 940, handling of the installation and management is improved easily.
  • a rotor 300 provided with a main shaft 220 for converting wind power into mechanical rotational kinetic energy, and installed horizontally with the ground;
  • a power transmitting shaft 140 connected to the main shaft 220 of the nacelle assembly 200 by gear engagement and transmitting rotational kinetic energy of the rotor 300;
  • a hollow shaft portion 920 having an upper end extending downwardly from the bottom of the nacelle assembly 200 and a lower end extending downwardly and having a flange 922 formed at the lower end thereof,
  • a tower main body 940 coupled to the outer circumferential surface of the hollow shaft portion 920 by upper and lower yaw bearings 162 and having a lower end fixed to the installation place support portion, A tower portion 960 extending from the inside of the housing 920;
  • the power transmission shaft 140 is connected to the power transmission shaft 140, (600);
  • reaction torque transmitting shaft 980 rotatably coupled between the nacelle ring gear of the hollow shaft portion 920 and the turning base mechanism 960.
  • FIGS. 10A and 10B show a configuration of a wind power generator according to a fifth embodiment of the present invention, respectively, taken along the line h-h 'of FIG. 10A.
  • the wind turbine generator according to the fifth embodiment of the present invention is the same as that of the second embodiment except for adopting a parallel operation structure of a plurality of small generation units arranged vertically in accordance with the generation capacity, Only the parallel operating mechanism 1000 will be described with respect to this embodiment.
  • the parallel operation mechanism 1000 of the plurality of power generation units is provided with a central bearing support portion 922 for inserting a bearing to which the power transmission shaft 140 is supported and two bearing support portions 925 formed to face the outer peripheral bottom face A main gear 940 attached to a lower end of a power transmission shaft 140 passing through the bearing support 922 and a main gear 940 attached to a lower end of the housing 920, And the power unit 980 is axially coupled to the two bearings 930 and the two sub-teeth 960 which are axially coupled to the bearings 925 and are rotatably engaged with the main gear 940 so as to face each other.
  • Figs. 11A and 11B show the construction of the wind power generator according to the embodiment of Fig. 6 of the present invention, respectively, taken along the line i-i 'in Fig. 11A.
  • the wind turbine generator according to the embodiment of FIG. 6 of the present invention has the same structure as that of the fifth embodiment described above except that the horizontal power generating unit mechanism 1100 is provided between the lower portion of the hollow shaft portion 120 and the turning base mechanism 700. And therefore, only the horizontal power generation unit mechanism 1100 will be described with respect to this embodiment.
  • the horizontal power generating unit mechanism 1100 is formed with a bearing support 922 at the center where a bearing to which the power transmission shaft 140 is to be inserted is formed so that the lower portion of the hollow shaft portion 120 and the turning base assembly 700 A bevel gear 148 attached to a lower portion of the power transmission shaft 140 so as to be exposed through the housing 1120 and a bevel gear 142 coupled to the bevel gear 148, , And the horizontal rotary shaft of the power generation unit 600 is coupled to the bevel gear 142.
  • the power generating unit can be installed horizontally instead of vertically, it is easy to assemble and maintain the generator.
  • FIG. 12 shows a pitch control mechanism of a wind power generator according to a seventh embodiment of the present invention
  • FIG. 12A is a structural explanatory view at a stroke control position
  • FIG. 12B is a partial enlarged view of FIG. 12A.
  • the wind turbine generator according to the seventh embodiment of the present invention can adopt the configurations of the above-described embodiments, except for the configuration of the pitch control mechanism that adjusts the rotation angle of the blades according to the wind speed and the operating conditions. Only the pitch control mechanism 1200 will be described for the embodiment.
  • the pitch control mechanism 1200 includes a push rod 1240 inserted into the hollow spindle 1220 and formed with a hollow spindle 1220 by drilling the spindle 220 of the nacelle assembly 200 into the inside thereof, A connecting rod 1260 and an actuator 1280 attached to one end portion and the other end portion of the push rod rod 1240 and a hub portion 320 attached to one end of the hollow main shaft 1220, And the blade 310 is connected to the connecting rod 1260 such that the blade 310 is at a predetermined angle and is pivotally mounted on the end of the blade 310 disposed at the hub 320 to change to the control position according to the angle. And includes a pin joint 1300. As the blade 310 rotates by the wind, the hollow spindle 1220 also rotates.
  • the other end of the connecting rod 1260 rotatably coupled to the other end of the blade 310 rotates to rotate the blade 310 by operating a pivot pin joint 13 eccentrically provided at the end of the blade 310 to rotate the blade 310 ) To change the angle as needed.
  • the eccentric pivot pin joint 1300 is connected to the connecting rod 1260, the push pull rod 1240, the hollow main shaft 1220, and the actuator 1280 As it works, it eliminates the wear due to wear of the connections, reduces the weight of the rotor, and achieves the balance of the weight of the nacelle assembly.
  • the wind turbine generator according to the present invention transmits the rotational kinetic energy of the rotor to the power generation unit attached to the lower portion through the power transmission shaft vertically installed in the tower, and the drive torque generated in the power transmission shaft
  • the reaction force received from the nacelle assembly that is, the reaction torque
  • the wind power generator according to the present invention is characterized in that the turning base assembly flexibly and pivotally supports the heavy-weight power generation unit attached to the lower portion of the vertical power transmission shaft, And even when the wind direction changes frequently, the response speed is faster than the active yawing, so that the occurrence time of the yawing error can be reduced.
  • the wind turbine according to the present invention further comprises a plurality of power transmission shafts which are separated from each other by a plurality of power transmission shafts which can be connected to each other in a multi-stage manner, It is possible to reduce the height of the unit power transmission shaft and the height of the tower main body, thereby preventing self vibration during rotation, shortening the construction period and reducing the construction cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Provided is a wind power generator comprising: a rotor; a nacelle assembly in which a main shaft for increasing rotational kinetic energy of the rotor is mounted; a power transmission shaft connected perpendicular to the main shaft so as to transmit the rotational kinetic energy of the rotor; a tower part which supports the nacelle assembly and in which the power transmission shaft is installed; and a power generation unit to which the rotational kinetic energy is transmitted through the power transmission shaft. In the wind power generator of the present invention, driving torque of the power transmission shaft and reaction torque of the nacelle assembly are compensated with each other by an electromagnetic force generated according to Lenz's law between a rotor of the power generation unit, which receives the driving torque, and a stator of the power generation unit, which receives the reaction torque.

Description

[규칙 제26조에 의한 보정 14.08.2018] 풍력 발전기[Correction according to Rule 26, 14.08.2018] Wind power generator
본 발명은 너셀 조립체에 결합되는 발전 유닛을 풍력발전기 설치 타워의 하부에 설치한 풍력 발전기에 관한 것으로, 더욱 상세하게는 상기 발전 유닛의 구동에 의해 상기 너셀 조립체에 발생하는 반작용 토크(Torque)를 상기 발전 유닛의 전자기력을 이용한 메커니즘에 의해 상쇄하는 반작용 토크 상쇄 기구를 가지는 풍력 발전기에 관한 것이다.The present invention relates to a wind power generator having a power generating unit coupled to a nacelle assembly installed at a lower portion of a tower for installing a wind turbine generator. More particularly, the present invention relates to a wind turbine generator, To a wind power generator having a reaction torque canceling mechanism for canceling by a mechanism using an electromagnetic force of a power generation unit.
일반적으로 로터 블레이드형 풍력 발전기는 크게 풍력을 기계적 회전 운동 에너지로 변환하는 로터와, 상기 로터의 회전 운동 에너지를 전기 에너지로 변환시키는 기기들로 구성되는 너셀(nacelle) 조립체와, 상기 너셀 조립체를 지지하는 타워(tower)를 포함한다. 지면에 대한 블레이드의 회전축 방향이 수평 또는 수직인지에 따라, 수직축 풍력 발전기 및 수평축 풍력 발전기로 구분되며, 수평축 풍력 발전기는 바람의 영향을 받는 반면, 수직축 풍력 발전기는 바람의 방향에 관계없이 작동하지만, 시동이 원할하지 않거나 효율이 낮은 단점이 있다.2. Description of the Related Art Generally, a rotor blade type wind turbine generator mainly includes a rotor for converting wind power into mechanical rotational kinetic energy, a nacelle assembly composed of devices for converting rotational kinetic energy of the rotor into electric energy, And a tower (not shown). The horizontal axis wind turbine is influenced by the wind while the vertical axis wind turbine operates regardless of the direction of the wind. However, the vertical axis wind turbine is divided into the vertical axis wind turbine and the horizontal axis wind turbine depending on whether the direction of the rotation axis of the blade to the ground is horizontal or vertical. There is a disadvantage that the starting is not desirable or the efficiency is low.
전형적인 수평축 풍력 발전기의 로터는 서로 등간격으로 방사 방향으로 배치된 복수개의 블레이드가 조립된 허브-노즈 콘 조립체(hub-nose cone assembly)를 포함하고, 상기 허브-노즈 콘 조립체는 너셀 조립체내에 설치된 수평의 주축에 연결되고, 주축에는 발전 유닛이 조립된 상태에서, 바람에 의해 블레이드가 회전함에 따라 허브-노즈 콘 조립체가 회전하고, 이 회전력이 주축에 전달되어 발전 유닛을 구동함으로써 전력을 생산한다.The rotor of a typical horizontal axis wind power generator includes a hub-nose cone assembly with a plurality of blades radially disposed at equal intervals from each other, and the hub-nose cone assembly is installed in a nacelle assembly The hub-and-nose cone assembly rotates as the blade rotates by the wind while the power generating unit is assembled to the horizontal main shaft, and the rotational force is transmitted to the main shaft to generate power by driving the power generating unit .
종래의 수평축 풍력 발전기는 무거운 발전 유닛을 비롯하여 중요 기기들이 타워 상단에 설치된 너셀 조립체 내부에 설치되는 구조이기 때문에, 그 시공, 설치, 점검, 유지 보수가 어렵고, 제조 코스트가 증가함에 따라, 전력 생산의 단가가 비싸지고, 공중에 설치된 과중한 중량의 발전 유닛과 너셀 조립체에 대한 내진 설계의 중요성이 증가하여, 그에 따른 시공 코스트가 증가되는 문제가 있다.Since the conventional horizontal axis wind turbine is constructed in such a structure that heavy equipment such as a heavy power unit is installed inside a nacelle assembly installed at the top of the tower, it is difficult to construct, install, check, maintain and repair, There is a problem that the cost is increased and the importance of seismic design for a heavy weight generator unit and nussel assembly installed in the air is increased and the construction cost is accordingly increased.
이러한 문제를 해소하고자 창안된 선행 기술인, 본 출원인의 한국 특허 제10-1027055호(2011.03.29. 등록)에는 로터의 회전 운동에너지를 너셀 조립체내의 주축에서 증속시킨 후, 타워내에서 상기 주축과 수직으로 연결된 수직의 동력 전달축을 통해 타워의 하부의 지상에 설치된 발전기로 그 증속된 회전력을 전달하되, 이때 발생되는 타워내 수직의 동력 전달축으로 발전기를 가동하는 부하에 의하여 발생한 반작용으로써 너셀 조립체를 선회시키는 반작용 토크를 기계적 구조의 요크 메커니즘의 상하 요크부로 상쇄시킴에 따라 너셀 조립체의 구조를 단순화하면서도 프리-요잉(free-yawing)를 구현하도록 하여, 전체적인 경량화를 통해 시설비를 감소시킬 수 있는 풍력 발전기를 제안하고 있다.In Korean Patent No. 10-1027055 (registered on Mar. 29, 2011), which is a prior art invented to solve this problem, the rotational kinetic energy of the rotor is increased at the main shaft in the nacelle assembly, Through the vertical power transmission shaft connected vertically, it transmits the increased rotational force to the ground mounted generator at the bottom of the tower. The reaction generated by the load, which operates the generator by the vertical power transmission shaft in the tower, The present invention provides a wind turbine generator capable of simplifying the structure of the nacelle assembly and free-yawing by canceling the reaction torque to be turned by the upper and lower yoke portions of the mechanical structure of the mechanical structure, .
그렇지만, 상기 선행기술에 개시된 풍력 발전기는 기계적인 구조의 상하 왕복 운동으로 작동하는 요크 메카니즘에 의해 그 반작용 토크 상쇄 기구의 중량이 커지는 문제가 있고, 또한 상기 요크 메카니즘과 함께 상하 왕복하면서 회전 작동으로 변환하여 너셀 조립체의 프리-요잉을 가능하게 하는 쓰러스트 베어링 역시 자체 중량이 커서 상하 진동을 일으키는 문제가 있으며, 그에 따라 고장 발생의 염려가 있고, 반작용 토크 상쇄 기구의 전체 구조가 복잡하므로 생산 과정이 복잡하며, 그 제조, 유지 비용 역시 증가하는 문제점이 있다.However, the wind turbine disclosed in the above-mentioned prior art has a problem in that the weight of the reaction torque canceling mechanism is increased by the yoke mechanism which operates in the reciprocating motion of the mechanical structure. Further, The thrust bearing which enables free-yawing of the nacelle assembly also has a problem of causing up-and-down vibration due to its large weight, which may lead to failure, and the overall structure of the reaction torque canceling mechanism is complicated, And the manufacturing and maintenance costs are also increased.
본 발명은 상기의 문제점을 해소하고자 안출된 것으로, 그 목적은 렌츠(H.F.E. Lenz: 하인리히 프리드리히 에밀 렌츠; 발트 독일계 러시아 물리학자)의 법칙에 의한 전자기력만으로 반작용 토크가 상쇄되게 하는 풍력 발전기를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a wind power generator that can cancel out a reaction torque only by an electromagnetic force according to the law of HFE Lenz (Heinrich Friedrich Emilentz; .
본 발명의 다른 목적은 수직 동력 전달축, 발전 유닛 등의 운반 등 취급성이 향상되고, 설치후 발전 작동 중에 진동이 방지되는 반작용 토크 상쇄 기구를 구비하는 풍력 발전기를 제공하는 것이다.It is another object of the present invention to provide a wind power generator having a handling torque, such as a vertical power transmission shaft, a power unit, and the like, which is improved in handleability and has a reaction torque canceling mechanism that prevents vibration during power generation operation after installation.
위와 같은 본 발명의 목적은, 풍력을 기계적 회전 운동 에너지로 변환하는 주축이 구비되고, 지면과 수평을 이루게 설치되는 로터;It is an object of the present invention to provide a rotor having a main shaft for converting wind power into mechanical rotational kinetic energy and installed horizontally to the ground;
상기 로터의 주축이 내장되는 너셀(nacelle) 조립체;A nacelle assembly in which the main shaft of the rotor is embedded;
상기 너셀 조립체의 주축과 기어 결합에 의해 수직으로 연결되어 상기 로터의 회전 운동 에너지가 전달되는 동력 전달축;A power transmitting shaft connected vertically by gear engagement with a main shaft of the nacelle assembly to transmit rotational kinetic energy of the rotor;
상기 너셀 조립체의 저면에 결합되는 상단과 하측으로 연장된 하단을 가지는 중공축부 및 상부가 상하의 요 베어링에 의해 상기 중공축부의 외주면에 결합되고 하단이 지지부에 고정되는 타워 본체를 포함하여 구성되고, 상기 동력 전달축이 상기 중공축부의 내부에 배치되는 타워(tower)부; 및A hollow shaft portion having an upper end coupled to a bottom surface of the nacelle assembly and a lower end extending downwardly and a tower body coupled to an outer circumferential surface of the hollow shaft portion by upper and lower yaw bearings and having a lower end fixed to the support portion, A tower portion in which a power transmission shaft is disposed inside the hollow shaft portion; And
하우징, 회전자축, 상기 회전자축에 결합된 복수극 회전자 및 상기 회전자와 거리를 두고 배치된 복수극의 고정자를 가지며, 상기 하우징이 상기 타워부의 중공축부의 하단에 결합, 고정되어 상기 중공축부에 매달려 설치되고, 상기 회전자축이 커플링을 개재하여 상기 동력 전달축에 결합되어, 상기 동력 전달축을 통해 전달되는 상기 회전 운동 에너지에 의해 발전하는 발전 유닛; 을 포함하여 구성되어, The housing has a rotator shaft, a multipolar rotor coupled to the rotor shaft, and a stator of a multiple pole disposed at a distance from the rotor. The housing is fixed to a lower end of a hollow shaft portion of the tower portion, A power generating unit installed on the power transmitting shaft, the power generating unit being connected to the power transmitting shaft via a coupling and being generated by the rotational kinetic energy transmitted through the power transmitting shaft; , ≪ / RTI >
상기 발전 유닛의 고정자에 전달되는 상기 너셀 조립체의 반작용 토크가, 상기 발전 유닛의 회전자로부터의 회전 자계의 렌즈(Lenz)의 법칙에 따른 전자기력에 의해 발생되는 구동 토크에 의해 상쇄되는, 풍력 발전기에 의해 달성된다.Wherein the reaction torque of the nucelle assembly transmitted to the stator of the power generation unit is canceled by a drive torque generated by an electromagnetic force in accordance with a law of a lens Lenz of a rotating magnetic field from a rotor of the power generation unit Lt; / RTI >
본 발명의 하나의 측면(aspect)에 의하면, 발전 유닛의 회전자축과 동축으로 결합된 심축을 발전 유닛의 설치 장소 지지부에 회전가능하게 지지하는 구조의 터닝 베이스 기구를 더 포함하여 구성될 수 있다.According to one aspect of the present invention, it is possible to further comprise a turning base mechanism having a structure in which a core shaft coaxially coupled to a rotor shaft of the power generation unit is rotatably supported by an installation place support portion of the power generation unit.
본 발명의 다른 하나의 측면에 의하면, 본 발명의 풍력 발전기는 상술한 중공축부 및 동력 전달축을 복수의 부분체로 나누어 구성하고, 그 복수의 중공축부 부분체 및 동력 전달축 부분체가 상하에 결합되는 복수의 동력전달축 연결구를 상하로 결합하여 중공축부 및 동력전달축의 결합체를 구성하는 다단 연결 기구를 채용할 수 있다. According to another aspect of the present invention, there is provided a wind turbine according to the present invention, wherein the hollow shaft portion and the power transmission shaft are divided into a plurality of sub-assemblies, and the plurality of hollow shaft sub-assemblies and the power transmission shaft sub- And a power transmitting shaft connecting port of the power transmitting shaft is vertically coupled to form a combined body of the hollow shaft portion and the power transmitting shaft.
본 발명의 다른 하나의 측면에 의하면, 본 발명의 풍력 발전기는 상기 중공축부의 너셀 링 기어와 터닝 베이스 기구의 사이에 회전가능하게 기어결합된 반작용 토크 전달축을 포함하여 구성되는 반작용 토크 전달 기구를 더 포함하여 구성될 수 있다.According to another aspect of the present invention, there is provided a reaction torque transmitting mechanism including a reaction torque transmitting shaft rotatably gear-connected between a nacelle ring gear of a hollow shaft portion and a turning base mechanism And the like.
본 발명의 또 다른 하나의 측면에 의하면, 본 발명의 풍력 발전기는 동력 전달축에 감합되는 베어링 지지구가 설치되어 중공축부의 하부에 결합되는 하우징과, 상기 베어링 지지구를 관통한 동력 전달축의 하단에 부착된 메인 치차와, 상기 메인 치차에 서로 대향하여 맞물려서 회전되도록 상기 하우징의 하부에 소정 각도로 축결합되는 복수의 서브 치차와, 상기 서브 치차의 각각의 치차축에 각각 축결합되는 복수의 발전 유닛을 포함하여 구성되는, 병렬 운전 기구를 더 포함하여 구성될 수 있다.According to another aspect of the present invention, there is provided a wind turbine generator comprising a housing provided with a bearing support to be fitted to a power transmission shaft and coupled to a lower portion of the hollow shaft, a lower end of the power transmission shaft penetrating the bearing support, A plurality of sub-gears axially coupled to a lower portion of the housing at a predetermined angle so as to be rotatably engaged with and rotatable with respect to the main gear; and a plurality of sub- And a parallel operation mechanism, which is configured to include a unit.
본 발명의 또 다른 하나의 측면에 의하면, 본 발명의 풍력 발전기는 동력 전달축에 감합되는 베어링 지지구가 설치되어 중공축부의 하부와 터닝 베이스 조립체의 사이에 설치되는 하우징과, 상기 하우징내에 노출되도록 상기 동력 전달축의 하부에 부착되는 베벨기어와, 상기 베벨기어에 결합되는 베벨기어가 수평 회전자축의 단부에 결합되는 발전 유닛을 포함하여 구성되는 수평형 발전 유닛 기구를 더 포함하여 구성될 수 있다.According to another aspect of the present invention, there is provided a wind turbine generator comprising: a housing provided with a bearing support to be fitted to a power transmission shaft and installed between a lower portion of a hollow shaft portion and a turning base assembly; And a power generation unit having a bevel gear attached to a lower portion of the power transmission shaft and a bevel gear coupled to the bevel gear coupled to an end of the horizontal rotary shaft.
본 발명의 또 다른 하나의 측면에 의하면, 본 발명의 풍력 발전기는 너셀 조립체의 주축을 중공주축으로 형성하고, 상기 중공주축 내에 내삽 설치되는 푸쉬 풀 로드와, 상기 푸쉬 풀 로드의 일단부 및 타단부에 각각 부착되는 커넥팅 로드 및 액츄에이터와, 중공주축의 일단에 부착되는 상기 허브 중심축과 상기 블레이드가 소정의 각도를 이루도록 블레이드에 연결된 피봇핀 죠인트에 상기 커넥팅 로드가 연결되며, 상기 각도에 따른 제어 위치가 변하는 상기 허브에 설치된 피봇핀 죠인트를 포함하여 구성되는 피치 제어 기구를 더 포함하여 구성될 수 있다. According to another aspect of the present invention, there is provided a wind turbine comprising: a push rod which is formed by a main spindle of a nacelle assembly as a hollow main shaft and installed in the hollow main shaft; And the connecting rod is connected to a pivot pin joint which is connected to the blade so that the blade center axis and the blade center axis are attached to one end of the hollow main shaft, And a pitch control mechanism configured to include a pivot pin joint installed on the hub in which the pivot pin joint is installed.
본 발명에 의하면, 로터의 회전 운동 에너지를 타워 내에 수직 설치된 동력 전달축을 통해 너셀 조립체 하부의 중공축부 하단에 부착된 발전 유닛으로 전달함에 있어서, 상기 발전 유닛의 발전 부하(전력 생산에 대하여 발전 유닛이 저항하는 에너지)를 받는 동력 전달축에 결합된 기어를 주축의 기어로 회전시키면, 두 기어의 접촉점(모멘트 등가 평균 점) 즉 힘점에서 동력 전달축 기어는 회전시키는 힘을 받고, 주축 기어는 그에 대한 반작용 힘을 받아 이 힘점에서 힘의 방향에 직각 방향에 있는 동력 전달축에 결합된 기어 의 회전 중심 축(AXIS)과 사이의 거리에 의한 회전 모멘트가 창출되어 너셀조립체를 회전시키는 반작용 토크로 작용함에 따라 이 반작용 토크를 발전 유닛의 전자기력에 의해 상쇄되게 하며 너셀 조립체의 구조를 단순화하면서도 프리-요잉(free-yawing)을 구현하는 동시에, 전체적인 경량화를 통해 시설비를 감소시킬 수 있는 효과가 있다. According to the present invention, in transmitting the rotational kinetic energy of the rotor to the power generation unit attached to the lower end of the hollow shaft portion under the nacelle assembly through the power transmission shaft installed vertically in the tower, the power generation load of the power generation unit When the gear coupled to the power transmission shaft receiving the power transmission shaft is rotated by the gear of the main shaft, the power transmitting shaft gear is subjected to the rotating force at the contact point (moment equivalent average point) A rotational moment is generated by the reaction force and the distance between the rotation center axis (AXIS) of the gear coupled to the power transmission shaft in the direction perpendicular to the direction of the force at this point and acts as a reaction torque for rotating the nacelle assembly This allows the reaction torque to be canceled by the electromagnetic force of the power generating unit, simplifying the structure of the nussel assembly, Free-yawing can be implemented, and at the same time, the facility cost can be reduced by reducing the overall weight.
본 발명의 추가적인 장점은 동일 또는 유사한 참조번호가 동일한 구성요소를 표시하는 첨부 도면을 참조하여 기술된 이하의 설명으로부터 명백히 이해될 수 있다.Additional advantages and features of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, in which like or corresponding reference numerals denote like elements.
도 1은 본 발명의 제 1 실시예에 따른 풍력발전기의 구성을 나타내는 개략 단면도이다.1 is a schematic cross-sectional view showing a configuration of a wind power generator according to a first embodiment of the present invention.
도 2a 및 도 2b는 각각 도 1의 a-a' 선을 따라 취한 단면도 및 너셀 조립체가 받는 반작용 토크를 설명하기 위한 개념도이다.FIGS. 2A and 2B are cross-sectional views taken along the line a-a 'of FIG. 1, respectively, and a conceptual diagram for explaining a reaction torque received by the nacelle assembly.
도 3a 및 도 3b는 각각 도 1의 발전 유닛의 내부 구성을 나타내는 부분 상세도 및 도 1의 b-b' 선을 따라 취한 단면도이다.Figs. 3A and 3B are partial detail views showing the internal construction of the power generating unit of Fig. 1 and cross-sectional views taken along line b-b 'of Fig. 1, respectively.
도 4는 본 발명의 제 2 실시예에 따른 반작용 토크 상쇄 기구를 가지는 풍력 발전기의 구성을 나타내는 요부 개략 단면도이다.4 is a schematic cross-sectional view showing the configuration of a wind power generator having a reaction torque canceling mechanism according to a second embodiment of the present invention.
도 5 내지 도 7은 각각 도 4의 c-c' 선, d-d' 선, 및 e-e' 선을 따라 취한 단면도이다.5 to 7 are sectional views taken along line c-c ', line d-d', and line e-e ', respectively, in FIG.
도 8a 및 도 8b는 각각 본 발명의 제 3 실시예에 따른 풍력 발전기의 구성을 나타내는 요부 개략 단면도 및 도 8a의 f-f'선을 따라 취한 단면도이다.8A and 8B are a schematic cross-sectional view showing the configuration of a wind power generator according to a third embodiment of the present invention and a cross-sectional view taken along the line f-f 'in FIG. 8A, respectively.
도 9a 및 도 9b는 각각 본 발명의 제 4 실시예에 따른 풍력 발전기의 구성을 나타내는 요부 개략 단면도 및 도 9a의 g-g' 선을 따라 취한 단면도이다.9A and 9B are a schematic cross-sectional view showing the configuration of a wind power generator according to a fourth embodiment of the present invention and a cross-sectional view taken along the line g-g 'in FIG. 9A.
도 10a 및 도 10b는 각각 본 발명의 제 5 실시예에 따른 가지는 풍력 발전기의 구성을 나타내는 요부 개략 단면도 및 도 10a의 h-h'의 선을 따라 취한 단면도이다.FIGS. 10A and 10B are a schematic cross-sectional view showing the configuration of a wind turbine according to a fifth embodiment of the present invention and a cross-sectional view taken along the line h-h 'of FIG. 10A.
도 11a 및 도 11b는 각각 본 발명의 제 6 실시예에 따른 풍력 발전기의 구성을 나타내는 요부 개략 단면도 및 도 11a의 i-i'의 선을 따라 취한 단면도이다.Figs. 11A and 11B are a schematic cross-sectional view showing the configuration of a wind power generator according to a sixth embodiment of the present invention and a cross-sectional view taken along the line i-i 'in Fig. 11A.
도 12a 내지 도 12b는 본 발명의 제 7 실시예에 따른 반작용 토크 상쇄 기구를 가지는 풍력 발전기의 피치 제어 기구의 구성을 나타내는 개략도이다.12A to 12B are schematic diagrams showing the configuration of a pitch control mechanism of a wind power generator having a reaction torque canceling mechanism according to a seventh embodiment of the present invention.
이하에서 본 발명의 실시예 및 도면을 참조하여 본 발명을 상세히 설명한다. 전체 도면에서 동일한 참조부호는 동일한 구성요소를 지칭한다.Hereinafter, the present invention will be described in detail with reference to embodiments and drawings of the present invention. Like reference numerals in the drawings denote like elements.
도 1은 본 발명의 제 1 실시예에 따른 풍력발전기의 구성을 나타내고 있고, 도 2a는 도 1의 a-a' 선을 따라 취한 단면을 나타내고 있고, 도 2b는 너셀 조립체가 받는 반작용 토크를 설명하기 위한 도면이다.FIG. 1 shows a configuration of a wind turbine according to a first embodiment of the present invention. FIG. 2 (a) is a cross-sectional view taken along line aa 'of FIG. 1, FIG.
도 1, 도 2a 및 도 2b를 참조하면, 본 발명의 제 1 실시예에 따른 풍력 발전기는 타워부(100), 너셀 조립체(200), 로터(300)가 순차적으로 조립되는 것으로서, 너셀 조립체(200)의 하부와 타워부(100)의 상단이 결합되는 타워부(100)의 중공축부(120)에는 프리-요잉을 위해 베어링 결합체를 가지는 어댑터부(160)가 설치된다. Referring to FIGS. 1, 2A and 2B, a wind turbine according to a first embodiment of the present invention includes a tower unit 100, a nacelle assembly 200, and a rotor 300 sequentially assembled, 200 and an upper end of the tower unit 100 are coupled to each other, an adapter unit 160 having a bearing assembly for pre-yawing is installed in the hollow shaft unit 120 of the tower unit 100.
본 발명의 제 1 실시예에 따른 풍력 발전기는 타워부(100)의 중공축부(120)에 구비되는 어댑터부(160)에 의해 너셀 조립체(200)가 자유로 선회 되어 별도의 요잉(Yawing) 장치 없이 자유롭게 회전함으로서 풍향제어 모터 없이 블레이드(310)가 받는 바람의 항력만으로 너셀 조립체(200)가 자유롭게 선회하는 프리-요잉(Free Yawing)을 실현한다.The wind turbine generator according to the first embodiment of the present invention is constructed such that the nacelle assembly 200 is freely turned by the adapter unit 160 provided in the hollow shaft portion 120 of the tower unit 100, So that the nacelle assembly 200 freely rotates freely by the drag force of the wind received by the blade 310 without the wind direction control motor, thereby realizing free yawing.
너셀 조립체(200)는 내부에 베어링이 개재된 지지프레임(210)에 수평으로 지지되어 회전 가능하게 설치된 주축(220)과 상기 주축(220)에 장착된 베벨기어(230)를 포함하고, 로터(300)는 너셀 조립체(200)의 주축(220)의 일단에 부착되는 허브(320)와, 이 허브(320)에 소정의 각도를 이루도록 부착된 복수의 블레이드(310)를 포함하며, 바람에 의해 블레이드(310)가 회전함에 따라 주축(220)도 회전한다. 주축(220)의 타단에는 브레이크(240)가 부착된다.The nacelle assembly 200 includes a main shaft 220 rotatably supported by a supporting frame 210 having a bearing therein and a bevel gear 230 mounted on the main shaft 220, 300 includes a hub 320 attached to one end of the main shaft 220 of the nacelle assembly 200 and a plurality of blades 310 attached to the hub 320 at a predetermined angle, As the blade 310 rotates, the main shaft 220 also rotates. A brake 240 is attached to the other end of the main shaft 220.
타워부(100)는 너셀 조립체(200)의 하부에 결합되는 중공축부(120)와, 상기 중공축부(120)의 내부의 베어링 조립체(102)에 수직으로 회전 가능하게 설치되고, 너셀 조립체(200)의 베벨기어(230)와 결합되도록 상단에 베벨기어(142)가 부착된 동력 전달축(140)과, 상기 중공축부(120)가 회전될 수 있도록 상기 중공축부(120)의 외면에 감합되어 결합되는 어댑터부(160) 및 상기 어댑터부(160)의 하부를 지지하는 타워본체(180)를 포함한다.The tower unit 100 includes a hollow shaft 120 coupled to a lower portion of the nacelle assembly 200 and a bearing assembly 102 rotatably mounted to the bearing assembly 102 inside the hollow shaft 120, A power transmission shaft 140 attached with a bevel gear 142 at an upper end thereof so as to be coupled with the bevel gear 230 of the hollow shaft portion 120 and an outer surface of the hollow shaft portion 120 so that the hollow shaft portion 120 can be rotated And a tower main body 180 for supporting a lower portion of the adapter unit 160. The adapter unit 160 includes an adapter unit 160,
동력 전달축(140)의 베벨기어(142)가 주축(220)의 베벨기어(230)와 결합됨에 따라, 주축(220)의 회전력이 동력 전달축(140)으로 전달된다.The rotational force of the main shaft 220 is transmitted to the power transmitting shaft 140 as the bevel gear 142 of the power transmitting shaft 140 is coupled to the bevel gear 230 of the main shaft 220. [
어댑터부(160)는 내부에 요 베어링(162)이 결합되어 중공축부(120)의 외면에 베어링을 체결하는 내부 및 외부 어댑터(164)(166)를 각각 포함하고, 상기 한 쌍의 요 베어링(162)은 상기 중공축부(120)의 외면 상부에 돌출 형성된 돌기부(122)와 외부 어댑터(166)의 사이에 위치될 수 있다. 도면에서는 내부 어댑터(164)가 상부에 위치하고, 외부 어댑터(166)가 하부에 위치하지만, 반대로 위치할 수도 있다.The adapter unit 160 includes inner and outer adapters 164 and 166 each of which is coupled with a yaw bearing 162 to fasten the bearing to the outer surface of the hollow shaft unit 120, 162 may be positioned between the protrusions 122 protruding from the outer surface of the hollow shaft portion 120 and the external adapter 166. In the drawing, the inner adapter 164 is located at the upper portion and the outer adapter 166 is located at the lower portion, but it may be located in the opposite direction.
중공축부(120)의 하부에는 플레이트 프랜지(602)가 개재되어 발전 유닛(600)이 부착된다.A plate flange 602 is disposed under the hollow shaft portion 120 to attach the power generator unit 600.
발전 유닛(600)은 타워축(140)의 하부에 커플링(604)으로 연결된 회전자축(610)과, 상기 회전자축(610)에 결합된 회전자(620) 및 상기 회전자(620)의 외면에 소정 간격으로 이격되어 부착되는 한 쌍의 고정자(630)(635)를 포함한다. 상기 고정자(630)(635)의 측면을 둘러싸고, 상기 회전자축(610)의 상하부에 각각 베어링이 개재된 하우징(640)이 부착되어 있다.The power generation unit 600 includes a rotor shaft 610 connected to a lower portion of the tower shaft 140 by a coupling 604 and a rotor 620 coupled to the rotor shaft 610 and a rotor 620 And a pair of stators 630 and 635 attached to the outer surface at a predetermined distance. A housing 640 surrounding the sides of the stators 630 and 635 and having bearings disposed on upper and lower portions of the rotor shaft 610 is attached.
타워 본체(180)는 파운데이션 인서트(Foundation Insert)(182)를 기초공사가 끝난 현장의 인서트 설치부(184)에 매립 설치한 후, 파운데이션 인서트(182)(이하, 타워부 설치 장소 지지부라고 함)의 상부에 조립하여 완성한다.The foundation 180 of the tower body is installed in the foundation insert 184 at the foundation site after the foundation insert 182 is installed and then the foundation insert 182 As shown in FIG.
이상 도 1 및 도 2를 참조하여 설명한 바와 같이, 프리-요잉하는 본 발명의 제1 실시예의 풍력 발전기는 도 1의 화살표 Z 방향으로 바람이 불면, 그 힘으로 블레이드(310)가 회전함에 따라 바람에 의해 블레이드(310) 및 주축(220)이 회전하고, 주축(220)의 회전력이 동력 전달축(140)으로 전달되며, 동력 전달축(140)으로 전달된 회전력은 발전 유닛(600)의 회전자축(610)으로 전달된다.As described above with reference to FIGS. 1 and 2, when the wind power generator of the first embodiment of the present invention pre-yaws is winded in the direction of arrow Z in FIG. 1, The rotational force of the main shaft 220 is transmitted to the power transmitting shaft 140 and the rotational force transmitted to the power transmitting shaft 140 is transmitted to the rotation of the power generating unit 600 And is transmitted to the magnetic axis 610.
도 3a 및 도 3b는 각각 도 1 발전 유닛의 내부 구성을 나타내고, 도 1의 b-b' 선을 따라 취한 단면을 나타내고 있다.Fig. 3A and Fig. 3B respectively show the internal configuration of the power generating unit of Fig. 1 and a section taken along the line b-b 'of Fig.
도 1, 도 2 및 도 3을 참조하면, 본 발명의 제1 실시예에 따른 풍력 발전기는 발전 유닛의 전자기력을 이용하여 반작용 토크를 상쇄한다.1, 2 and 3, the wind turbine according to the first embodiment of the present invention cancels the reaction torque using the electromagnetic force of the power generation unit.
주축(220)의 회전 토크 H에 의해 베벨기어(230)가 발전 부하를 받고 있는 동력 전달축(140)의 베벨기어(142)를 화살표 힘 Fc로 구동함에 따라, 발전 부하에 의해 주축(220)의 베벨기어(230)가 화살표 힘 Fc를 가함과 동시에 그로 인하여 받는 반작용 힘 Fd가 창출한 동력 전달축의 회전 축(axis)을 중심으로 한 너셀 조립체(200)를 화살표 D 방향으로 회전시키려고 하는 반작용 토크 D는 너셀 조립체(200)에 그 일단이 결합된 중공축부(120)를 통하여 그 하단에 결합된 발전 유닛(600)의 하우징(640)과 상기 하우징(640)에 일체로 결합된 고정자(630)(735)로 전달된다.The bevel gear 230 of the bevel gear 230 receives the power generation load and the bevel gear 142 of the power transmission shaft 140 is driven by the arrow torque Fc by the rotation torque H of the main shaft 220, The bevel gear 230 of the bevel gear 230 applies the arrow Fc and at the same time the reaction torque Fd which is generated by the reaction force Fd causes the reaction force D is a housing 640 of the power generation unit 600 coupled to the lower end of the hollow shaft 120 through which the nosepiece assembly 200 is coupled and a stator 630 integrally coupled to the housing 640, (735).
주축(220)의 회전 토크 H로 주축(220)의 베벨기어(230)가 발전 부하를 받고 있는 동력 전달축(140)의 베벨기어(142)에 결합된 동력 전달축(140)과 커플링(604)과 회전자축(610)으로 발전 유닛(600)의 회전자(620)를 회전시키면, 발전 유닛(600)의 회전자(620)는 그 일측과 타측에 각각 N극과 S극의 자석으로 구성되고, 고정자(630)(635)는 그 일측과 타측에 각각 발전코일(632)(634)을 구비함으로써 회전자(620)를 회전자축(610)으로 화살표 C 방향으로 회전시키면, 회전자(620)의 자석이 회전 자계를 발생시켜서 고정자(630)(635)의 발전코일(632)(634)에 렌즈(Lenz)의 법칙에 의한 전자기력이 작용하여, 회전자(620)의 자극 N극이 진행하는 방향의 고정자(630)와 그 발전코일(632)에는 회전자(620)의 운동을 방해하는 N극이 유도되어 회전자(620)의 N극과는 서로 미는 척력이 작용하고, 그 회전자(620)의 S극과는 인력이 작용하며, 움직이는 자석의 운동을 방해하는 같은 원리로 그 다른 고정자(635)와 그 발전코일(634)에는 S극이 유도되어 회전자(620)의 N극, S극과 각각 인력과 척력의 작용으로 회전자(620)가 고정자(630)(635)로부터 받은 반작용으로서 화살표 T 방향으로 힘을 받음으로써 창출된 화살표 U의 토크는 발전 부하로서 동력 전달축(140)으로 전달되고, 상기 고정자(630)(635)는 상기 하우징(640) 내부에 견고하게 결합되어 하우징(640)과 단일체 구성으로서 중공축부(120)를 통하여 하우징(640)에 전달된 너셀 조립체(200)가 받는 반작용 토크 D를 받게 되고, 또한 고정자(630)(635)는, 상기 회전 자계에서의 렌츠의 법칙에 의한 전자기력에 의하여, 회전자(620)의 척력과 인력으로 회전자(620)와 같은 방향으로 회전하는 화살표 V의 토크를 회전자로부터 받아서 고정자(630)(635)는 단일체 내에 중공축부(120)를 통한 반작용 토크 D와 렌츠(Lenz)의 법칙에 의하여 회전자(620)로부터 받은 구동 토크 V를 받게 됨으로써 크기가 같고 방향이 반대인 두 토크의 벡터(Vector) 합성이 이루어져 두 토크의 합, 즉 U + V = U - U = 0(zero)이 되어, 상기 반작용 토크와 상기 구동 토크는 서로 상쇄되어 소멸됨으로써 너셀 조립체(200)가 반발 토크에 의해 선회함이 없이 타워 하부의 발전 유닛(600)이 작동되어 발전을 하게 된다.The rotational torque H of the main shaft 220 causes the bevel gear 230 of the main shaft 220 to be coupled to the power transmitting shaft 140 coupled to the bevel gear 142 of the power transmitting shaft 140 receiving the power generation load, The rotors 620 of the power generating unit 600 are rotated by the magnets of N and S poles on one side and the other side of the rotor 620 of the power generating unit 600 by rotating the rotors 620 of the power generating unit 600 And the stators 630 and 635 are provided with the power generation coils 632 and 634 on one side and the other side respectively to rotate the rotor 620 in the direction of the arrow C to the rotor shaft 610, 620 generates a rotating magnetic field so that an electromagnetic force based on the principle of the lens Lenz acts on the power generation coils 632 634 of the stator 630 635 and the magnetic poles N pole of the rotor 620 An N pole which interferes with the motion of the rotor 620 is induced in the stator 630 and the generating coil 632 in the advancing direction and a repulsive force which is in contact with the N pole of the rotor 620 acts, The electron (620) The S pole is induced in the other stator 635 and the power generation coil 634 by the same principle as the movement of the moving magnet is interfered with the S pole of the rotor 620, And the torque of the arrow U generated by the action of the attraction force and the repulsion force, respectively, as a reaction received from the stator 630 or 635 by the rotor 620 in the direction of the arrow T, And the stator 630 and 635 are firmly coupled to the housing 640 and connected to the housing 640 and the nacelle assembly 200 that is transmitted to the housing 640 through the hollow shaft 120 as a unitary structure. And the stator 630 or 635 receives the reaction torque D received by the rotor 620 by the repulsive force of the rotor 620 and the attracting force of the rotor 620 by the electromagnetic force according to the Lenz's law in the rotating magnetic field Lt; RTI ID = 0.0 > V < / RTI > The reaction shafts 630 and 635 receive the reaction torque D through the hollow shaft portion 120 and the driving torque V received from the rotor 620 according to the law of Lenz, (U + V = U - U = 0), and the reaction torque and the drive torque are canceled out to cancel each other. As a result, the nacelle assembly (200) The power generation unit 600 at the lower part of the tower is operated without generating any rotation by the power generator.
상기 발전 유닛은 회전자(620)가 2극 이고, 고정자(630)(635)가 2 극인 경우로서 반작용 토크를 상쇄하는 작동을 설명하였으나, 회전자(620)가 2 극이 아니고 다극 회전자인 경우와 고정자(630)(635)가 2 극이 아니고 다극으로 된 다양한 발전 유닛의 경우도 회전 자계를 이용하는 경우는 렌츠(Lenz) 법칙의 전자기력으로 전술한 바와 같이 두 토크가 서로 상쇄되는 결과는 동일하며, 위의 실시예와 반대로, 고정자(630)(635)가 자석이고, 회전자(620)에 코일이 구비된 경우에도 반작용 토크의 상쇄 결과는 동일하다.The power generation unit has described the operation of canceling the reaction torque when the rotor 620 has two poles and the stator 630 and 635 have two poles. However, when the rotor 620 is not a two pole but a multi- And the stator 630 and 635 are not two poles but have multiple poles, in the case of using a rotating magnetic field, the result that the two torques cancel each other as described above by the electromagnetic force of the Lenz law is the same , Contrary to the above embodiment, even if the stator 630, 635 is a magnet and the coil is provided in the rotor 620, the result of canceling the reaction torque is the same.
또한, 중공부축과 타워 본체의 결합은 너셀 조립체의 프리 요잉이 가능한 한 공지의 다른 구성을 사용할 수 있다.Further, the coupling between the hollow shaft and the tower main body can use other known configurations as long as it allows pre-yawing of the nacelle assembly.
또한, 너셀 조립체(200)가 상대적으로 타워 본체(180)에 비해 직경이 작은 중공축부(120)로 지지됨으로써 바람이 로터(300)를 향해 불 때 바람의 투사 면적이 상대적으로 작아서 중공축부(120)와 블레이드(310) 사이에서 발생하는 저주파의 발생을 줄이는 효과를 더 가진다.Since the nacelle assembly 200 is relatively supported by the hollow shaft portion 120 having a diameter smaller than that of the tower body 180, the projected area of the wind when the wind is blown toward the rotor 300 is relatively small, And the blade 310. In addition, the present invention has been made in view of the above-described problems.
도 4는 본 발명의 제 2 실시예에 따른 풍력 발전기의 구성을 나타내고, 도 5 내지 도 7은 각각 도 4의 c-c' 선, d-d' 선, 및 e-e' 선을 따라 취한 단면을 나타내고 있다.FIG. 4 shows a configuration of a wind power generator according to a second embodiment of the present invention, and FIGS. 5 to 7 each show a cross section taken along lines c-c ', d-d' and e-e 'in FIG.
도 4 내지 도 7을 참조하면, 본 발명의 제 2 실시예에 따른 풍력 발전기는 터닝 베이스 기구(700)을 더 포함하는 것 이외에는 상술한 제 1 실시예의 구성과 동일하므로, 본 실시예에 대하여는 터닝 베이스 기구(700)에 대해서만 설명한다.4 to 7, the wind turbine generator according to the second embodiment of the present invention is the same as that of the first embodiment except that it further includes a turning base mechanism 700, Only the base mechanism 700 will be described.
터닝 베이스 기구(700)는 발전 유닛(600)의 하우징(640)의 하부에 부착된 플레이트(710)와, 발전 유닛(600)의 회전자축(610)을 수용하는 수용부가 형성되어, 상기 플레이트(710)에 부착되는 턴테이블(720)과, 인서트 설치부(182)의 기저면이나 지상에 설치된 베이스판(730)과, 상기 턴테이블(720)과 베이스판(730)의 사이에 설치되는 쓰러스트 베어링(740)을 포함 하여 구성된다.The turning base mechanism 700 includes a plate 710 attached to the lower portion of the housing 640 of the power generating unit 600 and a receiving portion for receiving the rotor shaft 610 of the power generating unit 600, A turntable 720 attached to the turntable 720 and a base plate 730 installed on the ground or the ground of the insert mounting portion 182 and a thrust bearing (not shown) installed between the turntable 720 and the base plate 730 740).
턴테이블(720)의 중공부 및 베이스판(730) 중심에 설치된 심축지지부(732)에는 회전자축(610)과 동축인 심축(722)이 체결 너트(728)에 의해 삽입, 체결되어 발전 유닛(600)을 지지하며, 중공부의 심축(722)에는 쓰러스트 베어링(724) 및 레이디얼 베어링(726)이 개재되어 설치된다.A core shaft 722 coaxial with the rotor shaft 610 is inserted and fastened by a coupling nut 728 into a hollow shaft of the turntable 720 and a shaft supporting portion 732 provided at the center of the base plate 730, And a thrust bearing 724 and a radial bearing 726 are installed on the shaft 722 of the hollow portion.
위의 터닝 베이스 기구(960)은 발전 유닛(600)의 회전자축(610)과 동축으로 결합된 심축(722)을 발전 유닛(600)의 설치 장소 지지부에 회전가능하게 지지하는 구조로 하는 한, 위와 다른 구조로 할 수 있다. The turning base mechanism 960 is not limited to the structure described above so long as the structure is such that the shaft 722 coaxially coupled to the rotor shaft 610 of the power generator unit 600 is rotatably supported by the support portion of the installation place of the power generator unit 600, The structure can be different from the above.
본 실시예에서의 터닝 베이스 기구(700)은 쓰러스트 베어링(740) 상에서 상당한 중량의 발전 유닛(600)을 자유자재로 용이하게 선회하여 지지할 수 있다.The turning base mechanism 700 in this embodiment can freely turn and support the power generating unit 600 of a considerable weight freely on the thrust bearing 740. [
도 8a 및 도 8b는 각각 본 발명의 제 3 실시예에 따른 풍력 발전기의 구성을 나타내고, 도 8a의 f-f'선을 따라 취한 단면을 나타내고 있다.Figs. 8A and 8B show the construction of a wind turbine generator according to a third embodiment of the present invention, respectively, taken along the line f-f 'in Fig. 8A.
도 8을 참조하면, 본 발명의 제 3 실시예에 따른 풍력 발전기는 복수의 동력 전달축 연결구(860)와 복수의 중공축부 부분체(820)를 상하로 결합한 동력 전달축 다단 연결 기구(800)에 의해 요 베어링(162) 하부의 동력 전달축(140)과 중공축부(120)를 복수의 부분체로 구성하는 것 이 외에는 상술한 제1 실시예의 구성과 동일하므로, 본 실시예에 대하여는 다단 연결 기구(800)에 대해서만 설명한다.8, a wind turbine generator according to a third embodiment of the present invention includes a power transmission shaft multi-stage connection mechanism 800 in which a plurality of power transmission shaft coupling holes 860 and a plurality of hollow shaft portion sub- Except that the power transmitting shaft 140 and the hollow shaft portion 120 below the yaw bearing 162 are constituted by a plurality of partial bodies, as described above. Therefore, in the present embodiment, (800) will be described.
중공축부 부분체(820)는 그 상하를 동력 전달축 연결구(860)의 상하의 제 1 및 제 2 중공축부부분체( 822)(824)로 나뉜다. 상부의 제 1 중공축부 부분체(822)는 상술한 제 1 실시예의 중공축부(120)의 하단 또는 인접한 상부의 동력 전달축 연결구(860)의 제 2 중공축부부분체(824)와 결합되며, 그 결합은, 아래에 설명하는 동력 전달축 삽입지지부(826)의 동력 전달축(140)의 삽입 결합과 함께, 중공축부(120)(820) 및 동력 전달축(140)의 온도 변화에 따른 길이의 변화량을 흡수하도록 하기 위해 도 8a에서는 스플라인 결합되는 것으로 나타낸 것이고, 스플라인 결합외의 카플링 등 다른 공지의 결합 방법을 사용할 수도 있다. 도면 부호 826은 결합되도록 동력 전달축(140)과 동축으로 중앙에 형성되는 동력 전달축 삽입부를 나타내고, 최하단의 제 2 연결 중공축부(824)에는 발전 유닛(600)이 부착된다.The hollow shaft portion body 820 is divided into upper and lower first and second hollow shaft powder portions 822 and 824 of the power transmission shaft connecting hole 860 at the upper and lower portions thereof. The upper first hollow shaft portion body 822 is engaged with the second hollow shaft powder 824 of the lower end of the hollow shaft portion 120 of the first embodiment or the power transmission shaft connecting portion 860 of the adjacent upper portion, The engagement is achieved by the insertion of the power transmitting shaft 140 of the power transmitting shaft inserting and supporting portion 826 described below and the length of the hollow shaft portions 120 and 820 and the length of the power transmitting shaft 140 In FIG. 8A in order to absorb the amount of change, and other known joining methods such as couplings other than spline coupling may be used. A power transmission shaft insertion portion 826 is formed coaxially with the power transmission shaft 140 so as to be coupled thereto. The power generation unit 600 is attached to the lowermost second connection hollow shaft portion 824.
동력 전달축 연결구(860)는 제 1 중공축부( 822)의 동력 전달축 삽입지지부(826)를 축중심으로 배치된 된 내부 베어링 지지체 와, 상기 내부 베어링 지지체(862)를 둘러싸도록 배치된 외부 베어링 지지체(864), 내, 외부 베어링 지지체(862)864)의 사이 및 외부 베어링 지지체(864)의 외주에 배치된 상하 2 쌍의 베어링(670) 및 상기 외부 베어어링 지지체(864)의 외주의 한 쌍의 베어링(870)의 외주와 등간격으로 이격되어 타워 본체(180)내에 부착된 3개의 돌기를 갖는 원형 림 (866)을 포함하여 구성된다. The power transmission shaft coupling hole 860 has an inner bearing support disposed around the power transmission shaft insertion support portion 826 of the first hollow shaft portion 822 and an outer bearing disposed around the inner bearing support 862 Two pairs of bearings 670 disposed on the outer periphery of the outer bearing support 864 between the outer bearing support 864 and the support 864 and between the inner and outer bearing supports 862 and 864, And a circular rim 866 having three protrusions that are equidistantly spaced from the outer periphery of the pair of bearings 870 and attached within the tower main body 180.
위에서 림(866)의 돌기를 3개로 예를 들어 설명하였으나 그에 한정되지 않고 4개 이상으로 할 수 있으며, 베어링 지지체와 베어링의 결합체를 중공축부의 내측에 고정하기 위해 림이 아닌 공지의 기계 요소를 사용할 수 있다.The protrusion of the rim 866 has been described above as three protrusions. However, the protrusion of the rim 866 is not limited thereto. Four or more protrusions may be used. In order to fix the assembly of the bearing support and the bearing to the inside of the hollow shaft, Can be used.
동력 전달축 다단 연결 기구(800)에 의해 동력 전달축(140)을 복수의 부분체로 분리하여, 동력 전달축(14)의 요 베어링(162) 상부 부분 및 그 길이가 짧아진 부분체들로 인해 그 부분체들로 구성된 동력전달 축의 회전시의 진동이 방지되고, 조립식으로 할 수 있어, 시공 기간을 단축할 수 있고, 시공비를 절감할 수 있다.The power transmission shaft multi-stage connection mechanism 800 separates the power transmission shaft 140 into a plurality of sub sorts, and by the upper portion of the yaw bearing 162 of the power transmission shaft 14 and the sub- Vibration during rotation of the power transmission shaft constituted by the sub-bodies can be prevented, and it is possible to perform the assembly mode, thereby shortening the construction period and reducing the construction cost.
도 9a 및 도 9b는 각각 본 발명의 제 4 실시예에 따른 풍력 발전기의 구성을 나타내고, 도 9a의 g-g' 선을 따라 취한 단면을 나타내고 있다.9A and 9B show the construction of the wind power generator according to the fourth embodiment of the present invention, respectively, and show cross sections taken along the line g-g 'in FIG. 9A.
도 9를 참조하면, 본 발명의 제 4 실시예에 따른 풍력 발전기는 중공축부 하단과 발전 유닛 하단의 터닝 베이스 기구 사이에 반작용 토크를 전달하는 별도의 반작용 토크 전달 기구를 더 포함하는 것 이 외에는 상술한 제 2 실시예의 구성과 동일하므로, 본 실시예에 대하여는 별도의 반작용 토크 전달 기구(900)에 대해서만 설명한다.9, the wind turbine according to the fourth embodiment of the present invention further includes a separate reaction torque transmitting mechanism for transmitting a reaction torque between the lower end of the hollow shaft portion and the turning base mechanism at the lower end of the power generation unit. The structure of the second embodiment is the same as that of the second embodiment, and therefore only a separate reaction torque transmitting mechanism 900 will be described for this embodiment.
반작용 토크 전달 기구(900)는 하부 단부에 형성된 플랜지(922)에 너셀 링기어(924)가 설치된 중공축부(920)와, 내측 벽면에 소정의 간격으로 설치된 복수의 지지구(942)를 가지는 타워본체(940)와, 턴테이블(962)의 외면에 부착된 턴테이블 링기어(964)가 설치된 터닝 베이스 기구(960)과, 일단에 상기 중공축부(920)의 너셀 링기어(924)에 맞물리는 너셀 피니언 기어(982)가 부착되고, 타단에 상기 터닝 베이스 기구(960)에 설치된 턴테이블 링기어(964)에 맞물리는 반작용 전달 피니언 기어(984)가 부착되어 상기 타워본체(940)내의 지지구(942)들에 회전가능하게 부착되는 반작용 토크 전달축(980)을 포함한다. The reaction torque transmission mechanism 900 includes a hollow shaft portion 920 provided with a nussel ring gear 924 on a flange 922 formed at a lower end portion thereof and a tower 942 having a plurality of support portions 942 provided at predetermined intervals on the inner wall surface thereof. A turning base mechanism 960 provided with a main body 940 and a turntable gear 964 attached to the outer surface of the turntable 962 and a nose ring gear 924 meshing with the nocell ring gear 924 of the hollow shaft portion 920 at one end, And a reaction transmission pinion gear 984 engaged with the turntable gear 964 provided on the turning base mechanism 960 is attached to the other end of the pinion gear 982, And a reaction torque transmitting shaft 980 that is rotatably attached to the base member 910. [
위의 반작용 토크 전달 기구(900)의 중공축부(920)와 터닝 베이스 기구(960)과의 결합은 그 회전이 가능한 한 위의 구조와 달리할 수 있다. 또한, 위의 터닝 베이스 기구(960)도 발전 유닛(600)의 회전자축(6100과 동축인 심축(722)을 발전 유닛(600)의 설치 장소 지지부에 회전가능하게 지지하는 구조로 하면 위와 다른 구조로 할 수 있음은 위에서 설명한 바와 같다.The coupling between the hollow shaft portion 920 of the reaction torque transmitting mechanism 900 and the turning base mechanism 960 may be different from the above structure as long as the rotation thereof is possible. The turning base mechanism 960 also has a structure in which the shaft 722 coaxial with the rotor shaft 6100 of the power generating unit 600 is rotatably supported by the supporting portion of the power generating unit 600 As described above.
위에서는, 중공축부(120)의 하부 단부에 플랜지(922)가 일체로 형성된 것으로 도시, 설명하였으나, 플랜지(922)를 별도로 만들어 중공축부(120)의 하부 단부에 부착할 수도 있다. The flange 922 is integrally formed at the lower end of the hollow shaft portion 120. The flange 922 may be separately formed and attached to the lower end of the hollow shaft portion 120. [
본 실시예에 의하면, 타워본체(940) 내측에 설치되는 반작용 토크 전달축(980)에 의해 반작용 토크를 상쇄하므로, 설치, 관리의 취급이 편리하게 개선된다. According to the present embodiment, since the reaction torque is canceled by the reaction torque transmission shaft 980 provided inside the tower main body 940, handling of the installation and management is improved easily.
위의 내용을 정리하면, 본 실시예의 풍력 발전기는, To summarize the above, in the wind turbine of this embodiment,
풍력을 기계적 회전 운동 에너지로 변환하는 주축(220)이 구비되고, 지면과 수평을 이루게 설치되는 로터(300);A rotor 300 provided with a main shaft 220 for converting wind power into mechanical rotational kinetic energy, and installed horizontally with the ground;
상기 로터(300)의 주축(220)이 내장되는 너셀(nacelle) 조립체(200); A nacelle assembly 200 in which the main shaft 220 of the rotor 300 is embedded;
상기 너셀 조립체(200)의 주축(220)과 기어 결합에 의해 수직으로 연결되어 상기 로터(300)의 회전 운동 에너지가 전달되는 동력 전달축(140);A power transmitting shaft 140 connected to the main shaft 220 of the nacelle assembly 200 by gear engagement and transmitting rotational kinetic energy of the rotor 300;
상기 너셀 조립체(200)의 저면에 결합되는 상단 및 하측으로 연장된 하단을 가지며, 하단에 형성된 플랜지(922)에 너셀 링기어(924)가 설치되는 중공축부(920); 및 A hollow shaft portion 920 having an upper end extending downwardly from the bottom of the nacelle assembly 200 and a lower end extending downwardly and having a flange 922 formed at the lower end thereof, And
상부가 상하의 요 베어링162)에 의해 상기 중공축부(920)의 외주면에 결합되고 하단이 설치 장소 지지부에 고정되는 타워 본체(940)를 포함하여 구성되고, 상기 동력 전달축(140)이 상기 중공축부(920)의 내부로부터 연장되어 설치되는 타워(tower)부(960); And a tower main body 940 coupled to the outer circumferential surface of the hollow shaft portion 920 by upper and lower yaw bearings 162 and having a lower end fixed to the installation place support portion, A tower portion 960 extending from the inside of the housing 920;
하우징(640), 회전자축(610), 상기 회전자축(610)에 결합된 다극 회전자(620) 및 상기 회전자(620)와 거리를 두고 설치된 다극의 고정자(635)를 가지며, 상기 하우징(640)이 상기 동력 전달축(140)에 결합되도록 배치되어, 상기 동력전달축(140)에 연결되어 설치되고, 상기 동력 전달축(140)을 통해 전달되는 상기 회전 운동 에너지에 의해 발전하는 발전 유닛(600); And has a housing 640, a rotor shaft 610, a multipolar rotor 620 coupled to the rotor shaft 610, and a multipolar stator 635 installed at a distance from the rotor 620, 640 are connected to the power transmission shaft 140 and connected to the power transmission shaft 140 and connected to the power transmission shaft 140. The power transmission shaft 140 is connected to the power transmission shaft 140, (600);
발전 유닛(600)의 회전자축(610)과 동축으로 결합된 심축(722)을 타워부(960)의 설치 장소 지지부에 회전가능하게 지지하는 베이스 기구(700): 및A base mechanism 700 for rotatably supporting a shaft 722 coaxially coupled to the rotor shaft 610 of the power generating unit 600 to a mounting place support portion of the tower portion 960;
상기 중공축부(920)의 너셀 링 기어와 터닝 베이스 기구(960)의 사이에 회전가능하게 결합된 반작용 토크 전달축(980)을 포함하여 구성된다.And a reaction torque transmitting shaft 980 rotatably coupled between the nacelle ring gear of the hollow shaft portion 920 and the turning base mechanism 960.
도 10a 및 도 10b는 각각 본 발명의 제 5 실시예에 따른 풍력 발전기의 구성을 나타내고, 도 10a의 h-h'의 선을 따라 취한 단면을 나타내고 있다.FIGS. 10A and 10B show a configuration of a wind power generator according to a fifth embodiment of the present invention, respectively, taken along the line h-h 'of FIG. 10A.
도 10을 참조하면, 본 발명의 제 5 실시예에 따른 풍력 발전기는 발전 용량에 따라 수직으로 배치되는 복수의 소형 발전 유닛의 병렬 운전 구조를 채택한 구성 이외에는 상술한 제 2 실시예의 구성과 동일하므로, 본 실시예에 대하여는 병렬 운전 기구(1000)에 대해서만 설명한다.10, the wind turbine generator according to the fifth embodiment of the present invention is the same as that of the second embodiment except for adopting a parallel operation structure of a plurality of small generation units arranged vertically in accordance with the generation capacity, Only the parallel operating mechanism 1000 will be described with respect to this embodiment.
복수의 발전 유닛의 병렬 운전 기구(1000)는, 동력 전달축(140)이 지지되는 베어링이 삽입되는 중앙의 베어링 지지부(922) 및 외주 저면에 마주보게 형성된 2개의 베어링 지지부(925)가 구비되어 중공축부(120)의 하부에 결합되는 하우징(920)과, 상기 베어링 지지부(922)를 관통한 동력 전달축(140)의 하단에 부착된 메인 치차(940)와, 상기 하우징(920)의 2개의 베어링 지지부(925)에 배치된 베어링에 축결합되어 상기 메인 치차(940)에 서로 대향하여 맞물려서 회전되는 2개의 서브치차(960)로 발전 유닛(980)이 축결합된다. The parallel operation mechanism 1000 of the plurality of power generation units is provided with a central bearing support portion 922 for inserting a bearing to which the power transmission shaft 140 is supported and two bearing support portions 925 formed to face the outer peripheral bottom face A main gear 940 attached to a lower end of a power transmission shaft 140 passing through the bearing support 922 and a main gear 940 attached to a lower end of the housing 920, And the power unit 980 is axially coupled to the two bearings 930 and the two sub-teeth 960 which are axially coupled to the bearings 925 and are rotatably engaged with the main gear 940 so as to face each other.
위에서는 2개의 소형 발전 유닛(980)을 배치하는 것으로 도시, 설명하였으나,베어링 지지부(925) 및 서브 치차(960)를 3개이상으로 하여 각각 소형 발전 유닛을 병렬 연결함으로서, 발전 유닛의 취급 및 운반이 용이한 효과를 가진다.However, it is also possible to connect the small power generation units in parallel with each other by using three or more bearing support portions 925 and nine sub-teeth 960, It has an easy transportation effect.
도 11a 및 도 11b는 각각 본 발명의 도 6 실시예에 따른 풍력 발전기의 구성을 나타내고, 도 11a의 i-i'의 선을 따라 취한 단면을 나타내고 있다.Figs. 11A and 11B show the construction of the wind power generator according to the embodiment of Fig. 6 of the present invention, respectively, taken along the line i-i 'in Fig. 11A.
도 11을 참조하면, 본 발명의 도 6 실시예에 따른 풍력 발전기는 수평형 발전 유닛 기구(1100)가 중공축부(120) 하부와 터닝 베이스 기구(700)의 사이에 설치된 것 이외에는 상술한 제 5 실시예의 구성과 동일하므로, 본 실시예에 대하여는 수평형 발전 유닛 기구(1100)에 대해서만 설명한다.Referring to FIG. 11, the wind turbine generator according to the embodiment of FIG. 6 of the present invention has the same structure as that of the fifth embodiment described above except that the horizontal power generating unit mechanism 1100 is provided between the lower portion of the hollow shaft portion 120 and the turning base mechanism 700. And therefore, only the horizontal power generation unit mechanism 1100 will be described with respect to this embodiment.
수평형 발전 유닛 기구(1100)는 동력 전달축(140)이 지지되는 베어링이 삽입되는 중앙의 베어링 지지구(922)가 형성되어 중공축부(120)의 하부와 터닝 베이스 조립체(700)의 사이에 배치되는 하우징(1120)과, 상기 하우징(1120)을 관통하여 노출되도록 상기 동력전달축(140)의 하부에 부착되는 베벨기어(148)와, 상기 베벨기어(148)에 결합되는 베벨기어(142)로 구성되고, 위의 베벨 기어(142)에 발전 유닛(600)의 수평 회전자축이 결합된다. 본 실시예에 의하면, 발전 유닛을 수직이 아닌 수평으로도 설치할 수 있으므로 발전기의 조립과 유지 보수가 편리한 효과를 가진다.The horizontal power generating unit mechanism 1100 is formed with a bearing support 922 at the center where a bearing to which the power transmission shaft 140 is to be inserted is formed so that the lower portion of the hollow shaft portion 120 and the turning base assembly 700 A bevel gear 148 attached to a lower portion of the power transmission shaft 140 so as to be exposed through the housing 1120 and a bevel gear 142 coupled to the bevel gear 148, , And the horizontal rotary shaft of the power generation unit 600 is coupled to the bevel gear 142. According to this embodiment, since the power generating unit can be installed horizontally instead of vertically, it is easy to assemble and maintain the generator.
도 12는 본 발명의 제 7 실시예에 따른 풍력 발전기의 피치 제어 기구를 나타내고 있고, 도 12a는 스트롤(Stroll) 제어 위치에서의 구조 설명도이고, 도 12b는 도 12a의 부분확대도이다.FIG. 12 shows a pitch control mechanism of a wind power generator according to a seventh embodiment of the present invention, FIG. 12A is a structural explanatory view at a stroke control position, and FIG. 12B is a partial enlarged view of FIG. 12A.
도 12를 참조하면, 본 발명의 제 7 실시예에 따른 풍력 발전기는 풍속과 운전 상황에 따라 블레이드의 자전 각도를 조정하는 피치 제어 기구의 구성 이외에는 상술한 실시예들의 구성을 채택할 수 있으므로, 본 실시예에 대하여는 피치 제어 기구(1200)에 대해서만 설명한다.12, the wind turbine generator according to the seventh embodiment of the present invention can adopt the configurations of the above-described embodiments, except for the configuration of the pitch control mechanism that adjusts the rotation angle of the blades according to the wind speed and the operating conditions. Only the pitch control mechanism 1200 will be described for the embodiment.
피치 제어 기구(1200)는 너셀 조립체(200)의 주축(220)을 그 내부를 천공하여 중공주축(1220)으로 형성하고, 상기 중공주축(1220)내에 삽입되어 설치되는 푸쉬 풀 로드(1240)와, 상기 푸쉬 풀 로드(1240)의 일단부 및 타단부에 각각 부착되는 커넥팅 로드(1260) 및 액츄에이터(1280)와, 중공주축(1220)의 일단에 부착되는 허브(320) 의 회전 중심축(axis)과 상기 블레이드(310)가 소정의 각도를 이루도록 커넥팅 로드(1260)와 연결되며, 상기 각도에 따른 제어 위치로 변하도록 상기 허브(320)에 배치된 블레이드(310)의 단부에 편심되게 설치된 피봇핀 죠인트(1300)를 포함한다. 바람에 의해 블레이드(310)가 회전함에 따라 중공주축(1220)도 회전하고, 바람의 속도에 따라 액츄에이터(1280)의 작동으로 그 일단이 결합된 푸쉬풀로드(1240)가 길항 작용을 함에 따라 그 타단에 회전가능하게 결합된 커넥팅로드(1260)의 타단이 상기 블레이드(310)의 단부에 편심되게 설치된 피봇핀 죠인트(1300)를 작동시켜 블레이드(310)를 선회시킴으로써 각도를 변경하여 필요한 블레이드(310)의 바람을 맞이 각도를 필요에 따라 변경한다.The pitch control mechanism 1200 includes a push rod 1240 inserted into the hollow spindle 1220 and formed with a hollow spindle 1220 by drilling the spindle 220 of the nacelle assembly 200 into the inside thereof, A connecting rod 1260 and an actuator 1280 attached to one end portion and the other end portion of the push rod rod 1240 and a hub portion 320 attached to one end of the hollow main shaft 1220, And the blade 310 is connected to the connecting rod 1260 such that the blade 310 is at a predetermined angle and is pivotally mounted on the end of the blade 310 disposed at the hub 320 to change to the control position according to the angle. And includes a pin joint 1300. As the blade 310 rotates by the wind, the hollow spindle 1220 also rotates. As the push-pull rod 1240, whose one end is coupled by the operation of the actuator 1280 according to the speed of the wind, The other end of the connecting rod 1260 rotatably coupled to the other end of the blade 310 rotates to rotate the blade 310 by operating a pivot pin joint 13 eccentrically provided at the end of the blade 310 to rotate the blade 310 ) To change the angle as needed.
따라서, 공지의 편심 피봇형 블레이드 피치 제어 기구에 있어서, 편심된 피봇핀 죠인트(1300)에 결합되어, 커넥팅 로드(1260), 푸쉬 풀 로드(1240), 중공 주축(1220), 액츄에이터(1280)로 작동함에 따라 연결부의 마모에 의한 틈새를 없애고, 로터의 무게를 줄이며, 너셀 조립체의 무게의 발란스를 달성한다.Therefore, in the known eccentric pivot type blade pitch control mechanism, the eccentric pivot pin joint 1300 is connected to the connecting rod 1260, the push pull rod 1240, the hollow main shaft 1220, and the actuator 1280 As it works, it eliminates the wear due to wear of the connections, reduces the weight of the rotor, and achieves the balance of the weight of the nacelle assembly.
상술한 바와 같이, 본 발명에 따른 풍력 발전기는, 로터의 회전 운동 에너지를 타워 내에 수직 설치된 동력 전달축을 통해 하부에 부착된 발전 유닛으로 전달하되, 발전 부하로 인해 동력 전달축에서 발생되는 구동 토크를 너셀 조립체에서 받는 반발력, 즉 반작용 토크를 발전 유닛의 전자기력을 이용하여 상쇄시킴에 따라 반작용 토크 상쇄 기구와 너셀 조립체의 구조를 단순화하면서도 프리 요잉(free-yawing)를 구현하는 동시에, 전체적인 경량화를 통해 시설비를 감소할 수 있다.As described above, the wind turbine generator according to the present invention transmits the rotational kinetic energy of the rotor to the power generation unit attached to the lower portion through the power transmission shaft vertically installed in the tower, and the drive torque generated in the power transmission shaft The reaction force received from the nacelle assembly, that is, the reaction torque, is canceled by using the electromagnetic force of the power generation unit, thereby simplifying the structure of the reaction torque canceling mechanism and the nacelle assembly while realizing free-yawing, Can be reduced.
또한 본 발명에 따른 풍력 발전기는, 터닝 베이스 조립체에 의해 수직의 동력 전달축의 하부에 부착된 무거운 중량의 발전 유닛을 유연하고 선회가능하게 지지함에 따라, 바람이 부는 방향을 향하여 너셀 조립체의 프리-요잉을 구현할 수 있고, 풍향이 수시로 변하는 경우에도 액티브 요잉보다 응답 속도가 빠르므로, 요잉 에러(yawing error)의 발생 시간을 줄일 수 있다.Further, the wind power generator according to the present invention is characterized in that the turning base assembly flexibly and pivotally supports the heavy-weight power generation unit attached to the lower portion of the vertical power transmission shaft, And even when the wind direction changes frequently, the response speed is faster than the active yawing, so that the occurrence time of the yawing error can be reduced.
또한 본 발명에 따른 풍력 발전기는, 긴 길이의 수직의 동력 전달축을 다단으로 연결가능한 복수의 동력 전달축으로 분리하고, 또한 발전 유닛으로 동력이 전달될 수 있도록 상기 복수의 동력 전달축 부분을 타워내에 지지하도록 구현함으로써, 단위 동력 전달축의 높이와 타워 본체의 높이를 줄일 수 있어 회전 시에 자체 진동을 방지할 수 있고, 시공 기간의 단축과 시공비 절감이 가능하다.The wind turbine according to the present invention further comprises a plurality of power transmission shafts which are separated from each other by a plurality of power transmission shafts which can be connected to each other in a multi-stage manner, It is possible to reduce the height of the unit power transmission shaft and the height of the tower main body, thereby preventing self vibration during rotation, shortening the construction period and reducing the construction cost.
위에서 본 발명을 비-한정적인 실시예에 의해 예를 들어 설명하는 방법으로 설명하였으나, 이러한 실시예와 설명은 본 발명의 주제와 범위를 제한하려는 것이 아니며, 본 발명의 기술적 사상의 범위내에서 다양한 변형, 변경 및 수정이 가능한 것으로 의도된 것이다. 상기 상세한 설명에 포함되거나 첨부 도면에 도시된 모든 사항은 예시적인 것으로 본 발명을 제한하기 위한 것이 아니다. 따라서, 본 발명의 범위는 상술한 예시적인 실시예에 의해 제한되지 않으며, 이하의 청구범위에 의해 정해지고 그 균등물을 포함하는 것으로 이해되어야 한다.While the present invention has been described above by way of non-limiting examples, such embodiments and description are not intended to limit the scope and spirit of the present invention, Variations, and / or modifications may be made without departing from the scope of the present invention. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Accordingly, it is to be understood that the scope of the present invention is not limited by the above-described exemplary embodiments, but is defined by the following claims and includes equivalents thereof.

Claims (9)

  1. 풍력을 기계적 회전 운동 에너지로 변환하는 주축이 구비되고, 지면과 수평을 이루게 설치되는 로터;A rotor provided with a main shaft for converting the wind force into mechanical rotational kinetic energy, and installed horizontally with the ground;
    상기 로터의 주축이 내장되는 너셀(nacelle) 조립체;A nacelle assembly in which the main shaft of the rotor is embedded;
    상기 너셀 조립체의 주축과 기어 결합에 의해 수직으로 연결되어 상기 로터의 회전 운동 에너지가 전달되는 동력 전달축;A power transmitting shaft connected vertically by gear engagement with a main shaft of the nacelle assembly to transmit rotational kinetic energy of the rotor;
    상기 너셀 조립체의 저면에 결합되는 상단과 하측으로 연장된 하단을 가지는 중공축부;A hollow shaft portion having an upper end coupled to a bottom surface of the nacelle assembly and a lower end extending downward;
    상부가 상기 중공축부에 결합되고 하단이 설치 장소 지지부에 고정되는 타워 본체를 포함하여 구성되고, 상기 동력 전달축이 상기 중공축부의 내부에 배치되는 타워(tower)부; 및 And a tower main body having an upper portion coupled to the hollow shaft portion and a lower end portion fixed to the installation place support portion, wherein the power transmission shaft is disposed inside the hollow shaft portion; And
    하우징, 회전자축, 상기 회전자축에 결합된 복수극 회전자 및 상기 회전자와 거리를 두고 배치된 복수극의 고정자를 가지며, 상기 하우징이 상기 타워부의 중공축부의 하단에 결합, 고정되어 상기 중공축부에 매달려 설치되고, 상기 회전자축이 커플링을 개재하여 상기 동력 전달축에 결합되어, 상기 동력 전달축을 통해 전달되는 상기 회전 운동 에너지에 의해 발전하는 발전 유닛; 을 포함하여 구성되어,The housing has a rotator shaft, a multipolar rotor coupled to the rotor shaft, and a stator of a multiple pole disposed at a distance from the rotor. The housing is fixed to a lower end of a hollow shaft portion of the tower portion, A power generating unit installed on the power transmitting shaft, the power generating unit being connected to the power transmitting shaft via a coupling and being generated by the rotational kinetic energy transmitted through the power transmitting shaft; , ≪ / RTI >
    상기 발전 유닛의 고정자에 전달되는 상기 너셀 조립체의 반작용 토크가, 상기 발전 유닛의 회전자로부터의 회전 자계의 렌즈(Lenz)의 법칙에 따른 전자기력에 의해 발생되는 구동 토크에 의해 상쇄되는, 풍력 발전기Wherein a reaction torque of the nacelle assembly transmitted to a stator of the power generation unit is canceled by a drive torque generated by an electromagnetic force in accordance with a law of a rotating magnetic field lens from a rotor of the power generation unit,
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 타워부는,The tower unit includes:
    프리-요잉을 위해 상기 중공축부가 회전될 수 있도록 상기 중공축부의 외면에 끼워져 결합되고, 타워 본체에 의해 지지되는 어댑터부를 포함하여 구성되고, ,And an adapter portion which is fitted to the outer surface of the hollow shaft portion so that the hollow shaft portion can be rotated for pre-yawing and is supported by the tower body,
    상기 어댑터부는 각각 내부에 한 쌍의 요 베어링이 결합되어 상기 중공축부의 외면에 부착되는 내부 및 외부 어댑터를 포함하고,The adapter unit includes an inner and an outer adapter each having a pair of yaw bearings coupled to the outer surface of the hollow shaft,
    상기 한 쌍의 요 베어링은 상기 중공축부의 외면 상하에 돌출 설치된 돌기부의 사이에 위치되는 것을 특징으로 하는, 풍력 발전기.And the pair of yaw bearings are positioned between protrusions protruding above and below the outer surface of the hollow shaft portion.
  3. 제 1 항 또는 제2항에 있어서,3. The method according to claim 1 or 2,
    발전 유닛(600)의 회전자축(610)과 동축으로 결합된 심축(722)을 발전 유닛(600)의 설치 장소 지지부에 회전가능하게 지지하는 터닝 베이스 기구를 더 포함하여 구성되는 것을 특징으로 하는, 풍력 발전기.Further comprising a turning base mechanism for rotatably supporting a shaft 722 coaxially coupled to the rotor shaft 610 of the power generating unit 600 to a mounting place support portion of the power generating unit 600. [ Wind power generator.
  4. 제 1 항 또는 제2항 에 있어서,3. The method according to claim 1 or 2,
    상기 발전 유닛이 부착되는 상기 동력 전달축과 중공축부가 각각 복수의 부분체로 구성되고, 그 부분체가 결합되는 동력 전달축 연결구를 포함하여 구성되는 것을 특징으로 하는, 풍력 발전기.Wherein the power transmission shaft and the hollow shaft portion to which the power generating unit is attached are each formed of a plurality of sub members, and a power transmission shaft coupling hole to which the sub member is coupled.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 동력 전달축 연결구는,Wherein the power transmission shaft connector has:
    상기 중공축부 부분체의 동력 전달축 삽입부를 중앙에 가지는 내부 베어링 지지체, 상기 내부 베어링 지지체를 둘러싸도록 배치된 외부 베어링 지지체 및 상기 외부 베어링 지지체의 외면에서 등간격으로 복수개 이격되어 상기 타워 본체내에 부착된 림을 포함하고, 상기 내부 베어링 지지체 및 외부 베어링 지지체에는 각각 상하 2단으로 이루어진 베어링 조립체가 배치되는 것을 특징으로 하는, 풍력 발전기.An inner bearing support body having a central portion of a power transmission shaft insertion portion of the hollow shaft portion body, an outer bearing support body disposed to surround the inner bearing support body, and a plurality of outer bearing support bodies spaced equidistantly from the outer surface of the outer bearing support body, Wherein the inner bearing support and the outer bearing support are each provided with a bearing assembly comprising two upper and lower stages, respectively.
  6. 제 1 항 또는 제2항에 있어서,3. The method according to claim 1 or 2,
    상기 동력 전달축에 감합되는 베어링 지지구가 설치되어 상기 너셀 조립체를 지지하는 중공축부의 하부에 결합되는 하우징과,A housing coupled to the lower portion of the hollow shaft portion for supporting the nacelle assembly and having a bearing support portion fitted to the power transmission shaft;
    상기 베어링 지지구를 관통한 상기 동력 전달축의 하단에 부착된 메인치차와,A main gear attached to a lower end of the power transmission shaft passing through the bearing support,
    상기 메인치차에 서로 대향하여 맞물려서 회전되도록 상기 하우징의 하부에 소정 각도로 축결합되는 복수의 서브치차와,A plurality of sub-teeth axially coupled to a lower portion of the housing at a predetermined angle so as to be engaged with the main gear,
    상기 서브치차의 각각의 치차축에 각각 회전자축이 축결합되는 복수의 발전 유닛으로 이루어진 병렬 운전 기구를 더 포함하는 것을 특징으로 하는, 풍력 발전기.Further comprising a parallel operation mechanism including a plurality of power generation units each of which is rotatably coupled to a shaft of each tooth of the sub-gear.
  7. 제 5 항에 있어서,6. The method of claim 5,
    상기 너셀 조립체를 지지하는 중공축부의 하부와 상기 터닝 베이스 조립체의 사이에 설치되는 수평형 발전 유닛 기구를 더 포함하고, Further comprising a horizontal power generating unit mechanism installed between a lower portion of the hollow shaft portion supporting the nacelle assembly and the turning base assembly,
    상기 수평형 발전 유닛 기구는.The horizontal power generation unit mechanism comprises:
    상기 동력 전달축에 감합되는 베어링 지지구가 설치되어 상기 중공축부의 하부와 상기 터닝 베이스 조립체의 사이에 설치되는 하우징과,A housing provided with a bearing support to be fitted to the power transmission shaft and installed between a lower portion of the hollow shaft portion and the turning base assembly;
    상기 하우징내에 노출되도록 상기 동력 전달축의 하부에 부착되는 베벨기어와,A bevel gear attached to a lower portion of the power transmitting shaft to be exposed in the housing,
    상기 베벨기어에 결합되는 베벨기어가 수평 회전자축의 단부에 결합되는 발전 유닛을 더 포함하는 포함하는 것을 특징으로 하는, 풍력 발전기.Further comprising a power generating unit, wherein a bevel gear coupled to the bevel gear is coupled to an end of a horizontal rotator shaft.
  8. 제 1 항 또는 제2항에 있어서,3. The method according to claim 1 or 2,
    상기 로터의 블레이드의 바람 맞이 각도를 조정하는 피치 제어 기구를 더 포함하고, Further comprising a pitch control mechanism for adjusting an angle of wind of the blades of the rotor,
    상기 피치 제어 기구는,The pitch control mechanism includes:
    상기 너셀 조립체의 주축의 중심을 천공하여 중공주축으로 형성하고, 상기 중공주축내에 수평으로 설치되는 푸쉬 풀 로드와,A push pull rod horizontally installed in the hollow spindle to form a hollow spindle by drilling the center of the spindle of the nacelle assembly;
    상기 푸쉬 풀 로드의 일단부 및 타단부에 각각 부착되는 커넥팅 로드 및 리니어 액츄에이터와,A connecting rod and a linear actuator attached to one end and the other end of the push rod,
    상기 중공주축의 일단에 부착되는 상기 로터의 회전 중심축과,A rotation center axis of the rotor attached to one end of the hollow main shaft,
    상기 블레이드가 소정의 각도를 이루도록 커넥팅 로드와 연결되며, 상기 각도에 따른 제어 위치로 변하도록 상기 허브에 배치된 블레이드의 단부에 편심되게 설치된 피봇핀 죠인트를 포함하는 것을 특징으로 하는, 풍력 발전기.And a pivot pin joint that is connected to the connecting rod such that the blade is at an angle and eccentrically installed at an end of the blade disposed at the hub to change to the control position according to the angle.
  9. 풍력을 기계적 회전 운동 에너지로 변환하는 주축이 구비되고, 지면과 수평을 이루게 설치되는 로터;A rotor provided with a main shaft for converting the wind force into mechanical rotational kinetic energy, and installed horizontally with the ground;
    상기 로터의 주축이 내장되는 너셀 조립체;A nacelle assembly in which the main shaft of the rotor is embedded;
    상기 너셀 조립체의 주축과 기어 결합에 의해 수직으로 연결되어 상기 로터의 회전 운동 에너지가 전달되는 동력 전달축;A power transmitting shaft connected vertically by gear engagement with a main shaft of the nacelle assembly to transmit rotational kinetic energy of the rotor;
    상기 너셀 조립체의 저면에 결합되는 상단과 하측으로 연장된 하단을 가지는 중공축부,A hollow shaft portion having an upper end coupled to a bottom surface of the nacelle assembly and a lower end extending downwardly,
    상부가 상기 중공축부에 결합되고 하단이 설치 장소 지지부에 고정되는 타워 본체를 포함하여 구성되고, 상기 동력 전달축이 상기 중공축부의 내부로부터 연장되어 설치되는 타워부;  And a tower main body having an upper portion coupled to the hollow shaft portion and a lower end fixed to the support portion of the installation place, wherein the power transmission shaft extends from the inside of the hollow shaft portion;
    하우징, 회전자축, 상기 회전자축에 결합된 다극 회전자 및 상기 회전자 와 거리를 두고 설치된 다극의 고정자를 가지며, 상기 하우징이 상기 동력 전달축에 결합되도록 배치되고, 상기 동력 전달축을 통해 전달되는 상기 회전 운동 에너지에 의해 발전하는 발전 유닛; A housing having a rotor, a rotor shaft, a multipolar rotor coupled to the rotor shaft, and a multi-pole stator disposed at a distance from the rotor, the housing being disposed to be coupled to the power transmission shaft, A power generation unit that is generated by rotational kinetic energy;
    상기 발전 유닛의 회전자축과 동축으로 결합된 심축을 발전 유닛의 설치 장소 지지부에 회전가능하게 지지하는 터닝 베이스 기구: 및A turning base mechanism rotatably supporting a shaft coaxially coupled to a rotor shaft of the power generating unit to a mounting place support portion of the power generating unit; and
    상기 중공축부의 너셀 링 기어와 터닝 베이스 기구의 사이에 회전가능하게 기어 결합된 반작용 토크 전달축을 포함하여 구성되는, 풍력 발전기.And a reaction torque transmitting shaft rotatably geared between the nacelle ring gear of the hollow shaft portion and the turning base mechanism.
PCT/KR2018/008301 2017-07-21 2018-07-23 Wind power generator WO2019017754A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020502991A JP2020528514A (en) 2017-07-21 2018-07-23 Wind power generator
CN201880061744.0A CN111133192A (en) 2017-07-21 2018-07-23 Wind turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0092926 2017-07-21
KR20170092926 2017-07-21
KR10-2018-0085602 2018-07-23
KR1020180085602A KR102185806B1 (en) 2017-07-21 2018-07-23 horizontal-axis type wind turbine

Publications (1)

Publication Number Publication Date
WO2019017754A1 true WO2019017754A1 (en) 2019-01-24

Family

ID=65015589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008301 WO2019017754A1 (en) 2017-07-21 2018-07-23 Wind power generator

Country Status (1)

Country Link
WO (1) WO2019017754A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820921A (en) * 2021-10-04 2021-12-21 强一半导体(苏州)有限公司 Automatic gluing and glue throwing device for semiconductor silicon wafer and key structure thereof
GB2618204A (en) * 2023-03-09 2023-11-01 Ian Johnston James Lenz effect braking equaliser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074344A (en) * 1993-06-16 1995-01-10 Mitsubishi Heavy Ind Ltd Variable pitch mechanism for wing of windmill
CN101526069A (en) * 2009-04-17 2009-09-09 邓允河 Vertical aerogenerator
KR101027055B1 (en) * 2009-12-30 2011-04-11 윤진목 Wind power generator
KR101377818B1 (en) * 2012-04-23 2014-03-26 조황 Novel architecture for Horizontal-axis wind turbine system and operation methods thereof
KR101720522B1 (en) * 2016-03-31 2017-03-28 이종배 Wind power apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074344A (en) * 1993-06-16 1995-01-10 Mitsubishi Heavy Ind Ltd Variable pitch mechanism for wing of windmill
CN101526069A (en) * 2009-04-17 2009-09-09 邓允河 Vertical aerogenerator
KR101027055B1 (en) * 2009-12-30 2011-04-11 윤진목 Wind power generator
KR101377818B1 (en) * 2012-04-23 2014-03-26 조황 Novel architecture for Horizontal-axis wind turbine system and operation methods thereof
KR101720522B1 (en) * 2016-03-31 2017-03-28 이종배 Wind power apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820921A (en) * 2021-10-04 2021-12-21 强一半导体(苏州)有限公司 Automatic gluing and glue throwing device for semiconductor silicon wafer and key structure thereof
GB2618204A (en) * 2023-03-09 2023-11-01 Ian Johnston James Lenz effect braking equaliser

Similar Documents

Publication Publication Date Title
WO2011059129A1 (en) Energy harvesting device employing a piezoelectric ceramic and magnets
CN101446268B (en) Wind turbine
CN101459354B (en) Direct drive generator and wind turbine
EP2630369B1 (en) Wind turbine power transmission system
US7719129B2 (en) Electric generator for wind and water turbines
EP2102496B1 (en) Multiple generator wind turbine
US8669672B2 (en) Wind turbine
US10491075B2 (en) Stator assembly for an electric generator with accommodation space
US8008798B2 (en) Wind turbine drivetrain system
WO2011055962A2 (en) Wind power generating apparatus
WO2013073799A1 (en) Multi-type wind turbine
JP5306458B2 (en) Windmill
EP2273652A1 (en) Generator, stator module for a generator and use of the generator in a windmill
CN102037239A (en) Direct drive generator and wind turbine
WO2019017754A1 (en) Wind power generator
WO2020197081A1 (en) Generator and generator control method
KR20190010505A (en) wind turbine
WO2022124697A1 (en) Dual-axis hybrid wind power generator
WO2010140842A2 (en) Wind turbine with generator disposed at front thereof
WO2021060705A1 (en) Wind power generation device for streetlamp
WO2016085065A1 (en) Floating-type offshore wind power generation facility
KR101988163B1 (en) Wind turbine, apparatus and mehtod for installing the same
CN202250619U (en) Direct-driven wind generating set
US11873795B2 (en) Wind turbine main rotor turning systems
WO2012141469A2 (en) Tidal current generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18836163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18836163

Country of ref document: EP

Kind code of ref document: A1