WO2019017533A1 - System for removing vocs using gas distribution plate - Google Patents

System for removing vocs using gas distribution plate Download PDF

Info

Publication number
WO2019017533A1
WO2019017533A1 PCT/KR2017/013281 KR2017013281W WO2019017533A1 WO 2019017533 A1 WO2019017533 A1 WO 2019017533A1 KR 2017013281 W KR2017013281 W KR 2017013281W WO 2019017533 A1 WO2019017533 A1 WO 2019017533A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas distribution
distribution plate
regeneration
vocs
adsorption reactor
Prior art date
Application number
PCT/KR2017/013281
Other languages
French (fr)
Korean (ko)
Inventor
윤성진
민준석
김정연
박상준
한영규
최재영
조남웅
문상길
Original Assignee
주식회사 에코프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170105033A external-priority patent/KR102406023B1/en
Application filed by 주식회사 에코프로 filed Critical 주식회사 에코프로
Priority to JP2019500636A priority Critical patent/JP6808012B2/en
Priority to EP17918554.1A priority patent/EP3656455A4/en
Priority to CN201780043457.2A priority patent/CN109548400B/en
Publication of WO2019017533A1 publication Critical patent/WO2019017533A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a VOCs removal system using a gas distribution plate. More particularly, the present invention relates to a system for removing VOCs using a gas distribution plate that maximizes microwave efficiency and effectively treats a large amount of VOCs gas by simultaneously using a rotatable gas distribution plate and a microwave module during desorption of adsorbed VOCs will be.
  • VOCs Volatile organic compounds
  • VOCs Volatile organic compounds
  • VOCs volatile organic compounds
  • Patent Literature 1 relates to a VOCs degassing system, and proposes a method of directly injecting a microwave into a honeycomb-type VOCs adsorption rotor so as to regenerate an adsorption rotor.
  • it is difficult to block the microwave leakage and the microwave efficiency is lowered, the operation stability is worried, and there is a limitation in the capacity that can be processed by one adsorption rotor, which makes it difficult to utilize in a large workplace such as a shipyard painting factory .
  • the operating cost is continuously increased due to continuous driving of the adsorption rotor, and the regeneration air is partially dispersed before reaching the regeneration area.
  • One aspect of the present invention is to propose a VOCs removal system that can maximize microwave efficiency, simplify facilities, reduce operating costs, and effectively treat large amounts of VOCs gas.
  • an aspect of the present invention is to provide a cylindrical adsorption reactor in a fixed state including an adsorption region in which VOCs are adsorbed and a regeneration region in which adsorbed VOCs are desorbed in the adsorption region; A plurality of microwave modules disposed at regular intervals along the circumference of the cylindrical adsorption reactor; A rotatable upper gas distribution plate having a supply pipe for supplying regeneration air to the regeneration zone and disposed above the cylindrical adsorption reactor; And a rotatable lower gas distribution plate disposed below the cylindrical adsorption reactor and having a discharge tube for discharging reclaimed air containing VOCs desorbed from the regeneration zone, wherein the upper gas distribution plate and the lower gas distribution plate The regeneration air is supplied to the regeneration area while the supply tube and the discharge tube are located at the upper and lower parts of the regeneration area while the plate is rotating, and at the same time, the microwave module arranged on the side of the regeneration area is switched to the regeneration area, wherein the
  • the present invention it is possible to simplify the equipment and to reduce the operation cost by providing the gas distribution plate having a relatively light weight in comparison with the adsorption reactor and the microwave module, and it is easy to control the adsorption and desorption time, It is possible to provide a system for removing VOCs that can effectively treat a large amount of VOCs gas because it is possible to carry out an adsorption and desorption process in the absorption process, thereby saving energy and facility space, maximizing the microwave efficiency and improving the regeneration efficiency.
  • FIG. 1 is a partial cross-sectional view of a system for removing VOCs according to an embodiment of the present invention, in which the outer periphery of a cylindrical adsorption reactor is arranged to surround a microwave module.
  • FIG. 2 is a conceptual diagram of an upper and a lower gas distribution plate installed in a case where one regeneration region of the VOCs removal system according to an embodiment of the present invention is one.
  • FIG. 3 is a conceptual diagram of an upper and a lower gas distribution plate installed in a case where there are two regeneration zones of a VOCs removal system according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a structure in which the upper and lower gas distribution plates are provided in a cylindrical adsorption reactor in the case where one regeneration region of the VOCs removal system according to an embodiment of the present invention is used.
  • FIG. 5 is a conceptual diagram of a configuration in which upper and lower gas distribution plates are provided in a cylindrical adsorption reactor in the case where there are two regeneration zones of a VOCs removal system according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a VOCs removal system in accordance with an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a configuration in which a system for removing VOCs and peripheral equipment according to an embodiment of the present invention are integrated.
  • FIG. 8 is a view of a microwave module having a slotted waveguide installed in a divided region of a cylindrical reactor according to an embodiment of the present invention.
  • the present invention relates to a VOCs removal system, comprising: a fixed-bed cylindrical adsorption reactor (110); A plurality of microwave modules 120 disposed at regular intervals along the circumference of the cylindrical adsorption reactor 110; And rotatable gas distribution plates 130a, 130a ', 130b, and 130b' disposed above and below the cylindrical adsorption reactor 110, respectively.
  • the cylindrical adsorption reactor 110 is filled with an adsorbent 111 such as activated carbon or zeolite to adsorb the VOCs in the gas.
  • the inside of the cylindrical adsorption reactor 110 is filled with the adsorbent 111, and the region is radially divided with respect to the central axis.
  • the divided region includes an adsorption region in which VOCs in the VOC-containing gas supplied from the outside are adsorbed, And a regeneration zone for desorbing the VOCs adsorbed in the adsorption zone through the high temperature regeneration air.
  • it may further comprise a cooling region in which cooling is selectively performed after the VOCs are desorbed.
  • the plurality of microwave modules 120 are arranged at regular intervals along the circumference of the cylindrical adsorption reactor 110.
  • the microwave module 120 may be disposed on each side of the radially divided region of the cylindrical adsorption reactor 110.
  • the plurality of microwave modules 120 may be formed in the form of wrapping a side surface of the cylindrical adsorption reactor 110 or a part of a case 140 surrounding the side of the cylindrical adsorption reactor 110 have.
  • the microwave module 120 or the case 140 including the microwave module 120 can prevent the microwave from leaking from the side of the cylindrical adsorption reactor 110.
  • the microwave module 120 turns on the power when the arranged area is reproduced, heats the microwave to irradiate the reproducing area, and when the reproduction is completed, the power is turned off and the operation is stopped.
  • the side surface of the cylindrical adsorption reactor 110 may be composed of a mica plate 112 so that microwaves can pass therethrough.
  • the microwave module may employ a method of irradiating a microwave to a reproducing region through a waveguide. At this time, a state in which the waveguide is not divided, that is, a passage through which the microwave is irradiated can be made as one.
  • the microwave module 120 may include a plurality of slotted waveguides 170 to uniformly divide a passage through which the microwaves pass, thereby irradiating the regeneration area relatively uniformly. That is, each of the plurality of microwave modules has a waveguide 170 including a plurality of slots along a side periphery of the radially divided region 110 of the cylindrical adsorption reactor, May be uniformly irradiated.
  • FIG. 8 shows a microwave module 120 'having a slot waveguide 170 installed around a divided one side region of the cylindrical reactor 110. 8, the microwave may be irradiated at one side of the waveguide, or the microwave may be irradiated at the center of the waveguide.
  • the rotatable gas distribution plate is arranged on the upper and lower portions of the cylindrical adsorption reactor 110, respectively.
  • the upper gas distribution plates 130a and 130a 'disposed on the upper portion of the cylindrical adsorption reactor 110 are provided with supply pipes 133a and 133a' for supplying regeneration air to the regeneration region of the cylindrical adsorption reactor 110 .
  • the regeneration air is supplied to the supply pipes 133a and 133a 'through the regeneration air inlets 132a and 132a'.
  • the lower gas distribution plates 130b and 130b 'disposed at the lower portion of the cylindrical adsorption reactor 110 are connected to a discharge tube 133b for discharging the regeneration air containing VOCs desorbed from the regeneration region of the cylindrical adsorption reactor 110 And 133b '.
  • the regeneration air outlets 132b and 132b ' may be connected to the discharge tubes 133b and 133b'.
  • the supply pipes 133a and 133a 'of the upper gas distribution plates 130a and 130a' and the discharge pipes 133b and 133b 'of the lower gas distribution plates 130b and 130b' Is located in the projected portion of the regeneration region of the cylindrical adsorption reactor 110 just above or below the regeneration zone.
  • the regions where the regeneration region of the cylindrical adsorption reactor 110 is projected onto the upper gas distribution plates 130a and 130a ' are referred to as upper regeneration regions 131a and 131a', and the lower gas distribution plates 130b and 130b ' Is referred to as a lower reproduction area 131b or 131b '.
  • the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' have the same rotation period at the upper and lower portions of the cylindrical adsorption reactor 110 and are configured to periodically rotate in the same direction do.
  • the upper and lower gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b are rotated so that the upper and lower regeneration zones 131a and 131b and the lower regeneration zone 131b and 131b' While the supply pipes 133a and 133a 'and the discharge pipes 133b and 133b' are located on the upper and lower sides of the regeneration area of the reactor 110,
  • the regeneration air is supplied to the upper part of the regeneration zone of the cylindrical adsorption reactor 110 through the adsorption units 133a and 133a '.
  • the microwave module 120 disposed on the side of the regeneration area is switched from the operation stop state to the operating state to heat the regeneration area.
  • the adsorbed VOCs components are desorbed.
  • the regeneration air containing the desorbed VOCs is discharged through the discharge pipes 133b and 133b 'disposed at the lower part of the regeneration area.
  • the rotation period and the playback time can be adjusted by presetting them through a timer or a program. That is, the rotation period of the upper and lower gas distribution plates 130a, 130a ', 130b, and 130b', the rotation stop time during reproduction, and the operation time of the microwave module 120 can be preset through a timer or a program have. This makes it easy to control the adsorption and desorption time.
  • the area to be reproduced at the same time may be one divided reproduction area or a plurality of reproduction areas radially arranged at regular intervals.
  • FIGS. 2 and 4 show a case in which there is one regeneration zone
  • FIGS. 3 and 5 show a conceptual diagram in which upper and lower gas distribution plates are combined with a cylindrical reactor when there are two regeneration zones.
  • the number of the discharge pipes 133b and 133b 'in the radial direction may be one or plural radially arranged at regular intervals.
  • the plurality of supply pipes 133a and 133a 'and the discharge pipes 133b and 133b' are radially arranged at regular intervals about the rotation axis of the upper and lower gas distribution plates 130a, 130a ', 130b and 130b' do.
  • the adsorption zone can also consist of several zones at the same time. In this way, the adsorption and desorption process can be carried out in various areas at the same time, thus saving energy and facility space.
  • the VOCs removal system of the present invention includes an additional case (not shown) surrounding the upper gas distribution plate 130a, 130a 'and the lower gas distribution plate 130b, 130b' and the microwave module 120 150, and may further include a compressed air inlet 160 provided in the additional case 150.
  • the degree of contact between the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' and the cylindrical adsorption reactor 110 is increased by injecting or discharging compressed air through the compressed air inlet 160 Can be adjusted.
  • the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' are in close contact with the adsorption reactor 110.
  • 130b ' may be configured to be away from the cylindrical adsorption reactor 110.
  • Sectional area of the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' may be set to be equal to the cross-sectional area of the cylindrical adsorption reactor 110 in order to enhance the effect.
  • FIG. 7 is a conceptual diagram of a configuration in which a cylindrical adsorption reactor 110 of the present invention, a catalyst system, and a heat exchanger are integrated.
  • VOC-containing gas is supplied to the adsorption region from the outside, and VOCs in the VOC-containing gas are adsorbed. Fresh air with adsorbed VOCs is discharged to the outside air.
  • the regeneration air containing VOCs discharged from the regeneration zone is oxidatively decomposed into carbon dioxide and water by the VOCs desorbed in the regeneration zone through the catalytic reactor. That is, in the catalytic reactor, VOCs are oxidized to carbon dioxide (CO 2 ) and water (H 2 O) under a warming condition of about 200 to 350 ° C., and a Pd catalyst, a Pt catalyst, a Ru catalyst, Can be used.
  • the catalytic reactor of the present invention may further include a separate microwave module to utilize it as a heat source.
  • the hot gas containing VOCs desorbed into the reactor body flows into the reactor body, absorbs microwaves, and is used as a heat source to accelerate the decomposition of VOCs to be removed and treated.
  • the hot air containing CO 2 / H 2 O that has passed through the catalytic reactor can be recycled as energy for the desorption reaction of the regeneration zone, and the waste heat is heat-exchanged in the heat exchanger and supplied to the regeneration air.
  • the VOCs are desorbed from the cooling zone, and the adsorption reactor having a surface temperature increased by microwaves is cooled.
  • cooling air is supplied to the cooling zone, .
  • the injected cooling air is converted into hot air of about 50 to 100 DEG C while passing through the cooling region, and the hot air passing through the cooling region, similar to the hot air containing CO 2 / H 2 O passing through the catalytic reactor,
  • the waste heat can also be heat-exchanged in the heat exchanger and supplied to the regeneration air to be recycled as energy for the desorption reaction of the regeneration zone.
  • the cooled air and CO 2 / H 2 O pass through the heat exchanger and are discharged to the outside air.
  • the adsorption reactor and the microwave module which occupy a large volume and weight in the VOCs removal system, are fixed and a relatively lightweight gas distribution plate is provided in a rotary manner, And the adsorption and desorption time can be easily controlled. At the same time, the adsorption and desorption process can be performed in various regions, and the effect of several adsorption reactors can be seen with one adsorption reactor.
  • microwave leakage can be prevented on the side of the adsorption reactor since the structured microwave module is attached and fixed to the adsorption reactor, and furthermore, while the microwave is irradiated on the upper and lower gas distribution plates 130b and 130b ' It is possible to maximize the microwave efficiency by blocking the microwave leakage even in the upper region below the adsorption reactor and to prevent the regeneration gas from being dispersed in the adjacent adsorption region or the cooling region, thereby improving the regeneration efficiency.

Abstract

Provided is a system for removing VOCs using a gas distribution plate, comprising: a cylindrical adsorption reactor, in a fixed state, including an adsorption region in which VOCs are adsorbed and a recycling region in which the VOCs adsorbed in the adsorption region are desorbed; a plurality of microwave modules disposed at regular intervals along the periphery of the cylindrical adsorption reactor; a rotatable upper gas distribution plate which has a supply pipe for supplying recycled air to the recycling region, and which is disposed above the cylindrical adsorption reactor; and a rotatable lower gas distribution plate disposed below the cylindrical adsorption reactor and having a discharge pipe for discharging the recycled air containing the VOCs desorbed from the recycling region, wherein the recycled air is supplied to the recycling region while the supply pipe and the discharge pipe are located at the upper and lower portions of the recycling area during the rotation of the upper gas distribution plate and the lower gas distribution plate, and at the same time, microwave modules disposed on a side of the recycling region are switched on so as to heat the recycling region.

Description

가스 분배판을 이용한 VOCS 제거 시스템VOCS removal system using gas distribution plate
본 발명은 가스 분배판을 이용한 VOCs 제거 시스템에 관한 것이다. 보다 상세하게는, 흡착된 VOCs를 탈착시에 회전형 가스 분배판과 마이크로웨이브 모듈을 동시에 이용함으로써 마이크로웨이브 효율을 극대화하고 효과적으로 대량의 VOCs 가스 처리가 가능한, 가스 분배판을 이용한 VOCs 제거 시스템에 관한 것이다.The present invention relates to a VOCs removal system using a gas distribution plate. More particularly, the present invention relates to a system for removing VOCs using a gas distribution plate that maximizes microwave efficiency and effectively treats a large amount of VOCs gas by simultaneously using a rotatable gas distribution plate and a microwave module during desorption of adsorbed VOCs will be.
휘발성 유기화합물(VOCs)은 증기압이 매우 높기 때문에 대기 중에서 쉽게 증발됨과 동시에 질소산화물과 공존시 태양광을 받아 광화학반응을 일으켜 오존 및 광화학 산화성 물질을 생성시켜 광화학 스모그를 유발하는 대표적인 물질이다. 이러한 문제들로 인해 현재 국내/외로 엄격한 규제들이 시행되고 있으며, 시급히 해결해야 할 국가적 최우선 과제로 남아있다.Volatile organic compounds (VOCs) are highly volatile organic compounds (VOCs) that are easily evaporated in the air and coexist with nitrogen oxides to generate photochemical reactions that generate ozone and photochemical oxidants, leading to photochemical smog. Due to these problems, strict domestic and foreign regulations are currently being implemented and remain a national priority to be urgently addressed.
한편, 조선소 도장공장에서는 휘발성 유기화합물(VOCs) 배출규제에 있어 예외였기 때문에 공장을 대형화하는 방법으로 VOCs 제거 설비에 대한 법적 규제를 만족시켜왔으나 환경규제가 강화되면서 효과적인 VOCs 제거 설비의 설치가 요구되고 있다. 기존의 축열식 연소설비인 RTO(Regenerative Thermal Oxidizer)의 경우는 고농축으로 만들지 않은 공기를 연소시킴으로써 운전비용이 증가하고 대형화된 장비로 인해 설치 공간이 부족하다는 문제가 있다. On the other hand, since the shipyard's paint factory was an exception in the regulation of volatile organic compounds (VOCs) emission, it has met legal regulations on VOCs removal facilities as a way to enlarge factories. However, as environmental regulations are strengthened, effective VOCs removal facilities are required have. Regenerative thermal oxidizer (RTO), which is a conventional regenerative combustion system, has a problem that operation cost is increased by burning air not made with high concentration and installation space is insufficient due to large sized equipment.
VOCs 제거에 있어 운전비용과 설치공간을 줄일 수 있는 방안으로 마이크로웨이브를 이용하는 기술도 개발되고 있다.Techniques using microwaves have also been developed to reduce operating costs and installation space in removing VOCs.
특허문헌 1은 VOCs가스 제거 시스템에 관한 것으로, 허니컴형 VOCs 흡착 로터에 마이크로웨이브를 직접 수형방향으로 분사하여 흡착로터를 재생하도록 하는 방법을 제시하고 있다. 이 경우에는 마이크로웨이브 누설을 차단하는 것이 어려워 마이크로웨이브 효율이 떨어지고 작업안정성이 우려되며, 하나의 흡착로터에서 처리할 수 있는 용량에 한계가 있어 조선소 도장공장과 같은 대형 사업장에서 활용하기에는 어렵다는 문제점이 있다. 또한, 지속적인 흡착로터 구동에 따른 운전비 상승, 재생공기가 재생영역에 도달하기 전에 일부 분산되는 문제 등이 있다.Patent Literature 1 relates to a VOCs degassing system, and proposes a method of directly injecting a microwave into a honeycomb-type VOCs adsorption rotor so as to regenerate an adsorption rotor. In this case, it is difficult to block the microwave leakage and the microwave efficiency is lowered, the operation stability is worried, and there is a limitation in the capacity that can be processed by one adsorption rotor, which makes it difficult to utilize in a large workplace such as a shipyard painting factory . Further, there is a problem that the operating cost is continuously increased due to continuous driving of the adsorption rotor, and the regeneration air is partially dispersed before reaching the regeneration area.
따라서, 별도의 마이크로웨이브 차단 시설 부담을 줄이면서도 에너지효율을 극대화할 수 있는 VOCs 제거 시스템의 개발이 필요하다.Therefore, it is necessary to develop a VOC removal system that can maximize energy efficiency while reducing the burden on the separate microwave shielding facility.
본 발명의 일 측면은 마이크로웨이브 효율을 극대화하고 설비 간소화 및 운전비용 절감이 가능하며 대용량의 VOCs 가스를 효과적으로 처리할 수 있는 VOCs 제거 시스템을 제시하고자 한다.One aspect of the present invention is to propose a VOCs removal system that can maximize microwave efficiency, simplify facilities, reduce operating costs, and effectively treat large amounts of VOCs gas.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, VOCs가 흡착되는 흡착영역 및 상기 흡착영역에서 흡착된 VOCs를 탈착시키는 재생영역을 포함하는 고정 상태의 원통형 흡착반응기; 상기 원통형 흡착반응기의 둘레를 따라 일정 간격으로 배치된 복수의 마이크로웨이브 모듈; 상기 재생영역에 재생공기를 공급하는 공급관을 구비하고 상기 원통형 흡착반응기의 상부에 배치되는 회전형 상부 가스 분배판; 및 상기 재생영역으로부터 탈착된 VOCs를 함유하는 재생공기를 토출하는 토출관을 구비하고 상기 원통형 흡착반응기의 하부에 배치되는 회전형 하부 가스 분배판;을 포함하며, 상기 상부 가스 분배판 및 하부 가스 분배판이 회전하다가 상기 공급관 및 토출관이 상기 재생영역의 상부 및 하부에 위치하는 동안 상기 재생영역에 재생공기가 공급되고 동시에 상기 재생영역의 측면에 배치된 마이크로웨이브 모듈이 작동상태로 전환되어 상기 재생영역을 가열하는 것을 특징으로 하는, 가스 분배판을 이용한 VOCs 제거 시스템을 제공한다.In order to achieve the above object, an aspect of the present invention is to provide a cylindrical adsorption reactor in a fixed state including an adsorption region in which VOCs are adsorbed and a regeneration region in which adsorbed VOCs are desorbed in the adsorption region; A plurality of microwave modules disposed at regular intervals along the circumference of the cylindrical adsorption reactor; A rotatable upper gas distribution plate having a supply pipe for supplying regeneration air to the regeneration zone and disposed above the cylindrical adsorption reactor; And a rotatable lower gas distribution plate disposed below the cylindrical adsorption reactor and having a discharge tube for discharging reclaimed air containing VOCs desorbed from the regeneration zone, wherein the upper gas distribution plate and the lower gas distribution plate The regeneration air is supplied to the regeneration area while the supply tube and the discharge tube are located at the upper and lower parts of the regeneration area while the plate is rotating, and at the same time, the microwave module arranged on the side of the regeneration area is switched to the regeneration area, Wherein the VOCs are removed from the gas distribution plate.
본 발명에 의하면, 흡착반응기와 마이크로웨이브 모듈에 비해 상대적으로 경량인 가스 분배판을 회전식으로 구비함으로써 설비의 간소화 및 운전비용 절감을 도모할 수 있고, 흡착 및 탈착 시간 제어가 용이하며, 동시에 여러 영역에서 흡착과 탈착 프로세스를 진행할 수 있어 에너지 및 설비 공간을 절약할 수 있으며, 마이크로웨이브 효율을 극대화하고 재생효율을 높일 수 있어 대용량의 VOCs 가스를 효과적으로 처리할 수 있는 VOCs 제거 시스템을 제공할 수 있다.According to the present invention, it is possible to simplify the equipment and to reduce the operation cost by providing the gas distribution plate having a relatively light weight in comparison with the adsorption reactor and the microwave module, and it is easy to control the adsorption and desorption time, It is possible to provide a system for removing VOCs that can effectively treat a large amount of VOCs gas because it is possible to carry out an adsorption and desorption process in the absorption process, thereby saving energy and facility space, maximizing the microwave efficiency and improving the regeneration efficiency.
도 1은 본 발명의 일 실시예에 따른 VOCs 제거 시스템의 일부 구성도로써, 원통형 흡착반응기의 외부 둘레를 마이크로웨이브 모듈이 감싸도록 배치된 구성의 단면도이다.FIG. 1 is a partial cross-sectional view of a system for removing VOCs according to an embodiment of the present invention, in which the outer periphery of a cylindrical adsorption reactor is arranged to surround a microwave module.
도 2는 본 발명의 일 실시예에 따른 VOCs 제거 시스템의 재생영역이 하나인 경우에 설치되는 상부 및 하부 가스 분배판의 개념도이다.2 is a conceptual diagram of an upper and a lower gas distribution plate installed in a case where one regeneration region of the VOCs removal system according to an embodiment of the present invention is one.
도 3은 본 발명의 일 실시예에 따른 VOCs 제거 시스템의 재생영역이 둘인 경우에 설치되는 상부 및 하부 가스 분배판의 개념도이다.3 is a conceptual diagram of an upper and a lower gas distribution plate installed in a case where there are two regeneration zones of a VOCs removal system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 VOCs 제거 시스템의 재생영역이 하나인 경우 원통형 흡착반응기에 상하부 가스 분배판이 구비된 구성의 개념도이다. FIG. 4 is a conceptual diagram illustrating a structure in which the upper and lower gas distribution plates are provided in a cylindrical adsorption reactor in the case where one regeneration region of the VOCs removal system according to an embodiment of the present invention is used.
도 5는 본 발명의 일 실시예에 따른 VOCs 제거 시스템의 재생영역이 둘인 경우 원통형 흡착반응기에 상하부 가스 분배판이 구비된 구성의 개념도이다.FIG. 5 is a conceptual diagram of a configuration in which upper and lower gas distribution plates are provided in a cylindrical adsorption reactor in the case where there are two regeneration zones of a VOCs removal system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 VOCs 제거 시스템의 단면도이다.6 is a cross-sectional view of a VOCs removal system in accordance with an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 VOCs 제거 시스템과 주변 설비가 통합된 구성의 개념도이다.FIG. 7 is a conceptual diagram of a configuration in which a system for removing VOCs and peripheral equipment according to an embodiment of the present invention are integrated.
도 8은 본 발명의 일 실시예에 따른 원통형 반응기의 분할된 일영역에 설치된 슬롯형 도파관을 구비한 마이크로웨이브 모듈의 구성도이다.FIG. 8 is a view of a microwave module having a slotted waveguide installed in a divided region of a cylindrical reactor according to an embodiment of the present invention. Referring to FIG.
이하, 첨부된 도면을 참조하면서 본 발명의 VOCs 제거 시스템을 상세하게 설명하고자 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a system for removing VOCs according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 VOCs 제거 시스템에 관한 것으로, 고정 상태의 원통형 흡착반응기(110); 상기 원통형 흡착반응기(110)의 둘레를 따라 일정 간격으로 배치된 복수의 마이크로웨이브 모듈(120); 및 상기 원통형 흡착반응기(110)의 상부 및 하부에 각각 배치되는 회전형 가스 분배판(130a, 130a', 130b, 130b')을 포함한다. The present invention relates to a VOCs removal system, comprising: a fixed-bed cylindrical adsorption reactor (110); A plurality of microwave modules 120 disposed at regular intervals along the circumference of the cylindrical adsorption reactor 110; And rotatable gas distribution plates 130a, 130a ', 130b, and 130b' disposed above and below the cylindrical adsorption reactor 110, respectively.
흡착반응기와 마이크로웨이브 모듈에 비해 상대적으로 경량인 가스 분배판을 회전식으로 구비함으로써 설비의 간소화 및 운전비용 절감을 도모하고자 한다.In order to simplify the equipment and reduce the operating cost by providing a relatively lightweight gas distribution plate in a rotary manner as compared with the adsorption reactor and the microwave module.
상기 원통형 흡착반응기(110)에는 가스 중의 VOCs 성분이 흡착되도록 활성탄이나 제올라이트 등을 포함하는 흡착제(111)가 충진되어 있다. 또한, 상기 원통형 흡착반응기(110)의 흡착제(111)가 충진된 내부는 중심축을 기준으로 방사상으로 영역이 분할되며, 그 분할된 영역은 외부로부터 공급된 VOCs 함유 가스 중의 VOCs가 흡착되는 흡착영역, 및 고온의 재생공기를 통하여 상기 흡착영역에서 흡착된 VOCs를 탈착시키는 재생영역을 포함한다. 또한, 선택적으로 상기 VOCs가 탈착된 후 냉각이 진행되는 냉각영역을 더 포함할 수도 있다.The cylindrical adsorption reactor 110 is filled with an adsorbent 111 such as activated carbon or zeolite to adsorb the VOCs in the gas. In addition, the inside of the cylindrical adsorption reactor 110 is filled with the adsorbent 111, and the region is radially divided with respect to the central axis. The divided region includes an adsorption region in which VOCs in the VOC-containing gas supplied from the outside are adsorbed, And a regeneration zone for desorbing the VOCs adsorbed in the adsorption zone through the high temperature regeneration air. In addition, it may further comprise a cooling region in which cooling is selectively performed after the VOCs are desorbed.
상기 복수의 마이크로웨이브 모듈(120)은 상기 원통형 흡착반응기(110)의 둘레를 따라 일정 간격으로 배치된다. 바람직하게는 상기 원통형 흡착반응기(110)의 방사상으로 분할된 영역의 측면 각각에 마이크로웨이브 모듈(120)이 배치될 수 있다. The plurality of microwave modules 120 are arranged at regular intervals along the circumference of the cylindrical adsorption reactor 110. Preferably, the microwave module 120 may be disposed on each side of the radially divided region of the cylindrical adsorption reactor 110.
상기 복수의 마이크로웨이브 모듈(120)은 상기 원통형 흡착반응기(110)의 측면을 감싸는 형태로 제작되거나, 상기 원통형 흡착반응기(110)의 측면을 감싸는 케이스(140)의 일부로 포함되는 형태로 제작될 수도 있다. 이로써 마이크로웨이브 모듈(120) 혹은 이를 포함하는 케이스(140)가 상기 원통형 흡착반응기(110)의 측면으로부터 마이크로웨이브가 누출되는 것을 차단할 수 있다. 상기 마이크로웨이브 모듈(120)은 배치된 영역이 재생될 때 전원 ON 상태로 되어 마이크로웨이브를 조사하여 재생영역을 가열하며, 재생이 완료되면 전원 OFF 상태로 되어 작동이 중지된다. 상기 원통형 흡착반응기(110)의 측면은 운모판(112)으로 구성하여 마이크로웨이브가 통과할 수 있도록 할 수 있다.The plurality of microwave modules 120 may be formed in the form of wrapping a side surface of the cylindrical adsorption reactor 110 or a part of a case 140 surrounding the side of the cylindrical adsorption reactor 110 have. Thus, the microwave module 120 or the case 140 including the microwave module 120 can prevent the microwave from leaking from the side of the cylindrical adsorption reactor 110. The microwave module 120 turns on the power when the arranged area is reproduced, heats the microwave to irradiate the reproducing area, and when the reproduction is completed, the power is turned off and the operation is stopped. The side surface of the cylindrical adsorption reactor 110 may be composed of a mica plate 112 so that microwaves can pass therethrough.
상기 마이크로웨이브 모듈은 도파관을 통해 재생영역에 마이크로웨이브를 조사하는 방식을 채용할 수 있다. 이때, 도파관이 분할되지 않은 상태, 즉, 마이크로웨이브가 조사되는 통로가 하나로 이루어질 수 있다. The microwave module may employ a method of irradiating a microwave to a reproducing region through a waveguide. At this time, a state in which the waveguide is not divided, that is, a passage through which the microwave is irradiated can be made as one.
혹은, 상기 마이크로웨이브 모듈(120')은 다수의 슬롯 형태로 도파관(170)을 구비하여 마이크로웨이브가 통과하는 통로를 균일하게 분할하여 비교적 균일하게 상기 재생영역에 조사되도록 할 수 있다. 즉, 상기 복수의 마이크로웨이브 모듈 각각은 상기 원통형 흡착반응기의 방사상으로 분할된 영역(110)의 측면 둘레를 따라 다수의 슬롯을 포함하는 도파관(170)을 구비하며, 상기 다수의 슬롯을 통하여 마이크로웨이브가 균일하게 조사되도록 구성할 수 있다.Alternatively, the microwave module 120 'may include a plurality of slotted waveguides 170 to uniformly divide a passage through which the microwaves pass, thereby irradiating the regeneration area relatively uniformly. That is, each of the plurality of microwave modules has a waveguide 170 including a plurality of slots along a side periphery of the radially divided region 110 of the cylindrical adsorption reactor, May be uniformly irradiated.
도 8은 원통형 반응기(110)의 분할된 일영역 측면 둘레에 설치된 슬롯 도파관(170)을 구비한 마이크로웨이브 모듈(120')을 나타내고 있다. 도 8에서와 같이 도파관의 일측부에서 마이크로웨이브가 조사되도록 구성할 수도 있고, 도파관의 중앙부분에서 마이크로웨이브가 조사되도록 구성할 수도 있다.FIG. 8 shows a microwave module 120 'having a slot waveguide 170 installed around a divided one side region of the cylindrical reactor 110. 8, the microwave may be irradiated at one side of the waveguide, or the microwave may be irradiated at the center of the waveguide.
상기 회전형 가스 분배판은 상기 원통형 흡착반응기(110)의 상부와 하부에 각각 배치되도록 구성한다. 상기 원통형 흡착반응기(110)의 상부에 배치되는 상부 가스 분배판(130a, 130a’)은 상기 원통형 흡착반응기(110)의 재생영역에 재생공기를 공급하는 공급관(133a, 133a’)을 구비하고 있다. 재생공기는 재생공기 주입구(132a, 132a')를 통하여 공급관(133a, 133a’)으로 공급된다. 한편 상기 원통형 흡착반응기(110)의 하부에 배치되는 하부 가스 분배판(130b, 130b’)은 상기 원통형 흡착반응기(110)의 재생영역으로부터 탈착된 VOCs를 함유하는 재생공기를 토출하는 토출관(133b, 133b’)을 구비하고 있다. 상기 토출관(133b, 133b’)에는 재생공기 배출구(132b, 132b')가 연결될 수 있다. 상기 상부 가스 분배판(130a, 130a’)의 공급관(133a, 133a’)과 상기 하부 가스 분배판(130b, 130b’)의 토출관(133b, 133b’)은 각각 상기 원통형 흡착반응기(110)의 재생영역의 바로 위 또는 바로 아래에서 상기 원통형 흡착반응기(110)의 재생영역이 투영된 부분에 위치한다. 편의상, 상기 원통형 흡착반응기(110)의 재생영역이 상부 가스 분배판(130a, 130a’)에 투영된 영역을 상부 재생영역(131a, 131a’)이라 칭하고, 하부 가스 분배판(130b, 130b’)에 투영된 영역을 하부 재생영역(131b, 131b’)이라 칭하기로 한다. The rotatable gas distribution plate is arranged on the upper and lower portions of the cylindrical adsorption reactor 110, respectively. The upper gas distribution plates 130a and 130a 'disposed on the upper portion of the cylindrical adsorption reactor 110 are provided with supply pipes 133a and 133a' for supplying regeneration air to the regeneration region of the cylindrical adsorption reactor 110 . The regeneration air is supplied to the supply pipes 133a and 133a 'through the regeneration air inlets 132a and 132a'. The lower gas distribution plates 130b and 130b 'disposed at the lower portion of the cylindrical adsorption reactor 110 are connected to a discharge tube 133b for discharging the regeneration air containing VOCs desorbed from the regeneration region of the cylindrical adsorption reactor 110 And 133b '. The regeneration air outlets 132b and 132b 'may be connected to the discharge tubes 133b and 133b'. The supply pipes 133a and 133a 'of the upper gas distribution plates 130a and 130a' and the discharge pipes 133b and 133b 'of the lower gas distribution plates 130b and 130b' Is located in the projected portion of the regeneration region of the cylindrical adsorption reactor 110 just above or below the regeneration zone. For the sake of convenience, the regions where the regeneration region of the cylindrical adsorption reactor 110 is projected onto the upper gas distribution plates 130a and 130a 'are referred to as upper regeneration regions 131a and 131a', and the lower gas distribution plates 130b and 130b ' Is referred to as a lower reproduction area 131b or 131b '.
상기 상부 가스 분배판(130a, 130a’)과 상기 하부 가스 분배판(130b, 130b’)은 상기 원통형 흡착반응기(110)의 상부 및 하부에서 동일한 회전주기를 가지고, 동일한 방향으로 주기적으로 회전하도록 구성된다. The upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' have the same rotation period at the upper and lower portions of the cylindrical adsorption reactor 110 and are configured to periodically rotate in the same direction do.
상기 상부 가스 분배판(130a, 130a’) 및 하부 가스 분배판(130b, 130b’)이 회전하다가 상기 상부 재생영역(131a, 131a’)과 상기 하부 재생영역(131b, 131b’)이 상기 원통형 흡착반응기(110)의 재생영역과 수직선상에 위치하는 경우, 즉, 상기 공급관(133a, 133a’) 및 토출관(133b, 133b’)이 상기 재생영역의 상부 및 하부에 위치하는 동안, 상기 공급관(133a, 133a’)을 통하여 상기 원통형 흡착반응기(110)의 재생영역 상부에 재생공기가 공급된다. 동시에 상기 재생영역의 측면에 배치된 마이크로웨이브 모듈(120)이 작동정지상태에서 작동상태로 전환되어 상기 재생영역을 가열하게 된다. 이로써, 흡착되어 있던 VOCs 성분이 탈착하게 된다. 탈착된 VOCs가 함유된 재생공기는 상기 재생영역의 하부에 배치된 토출관(133b, 133b’)을 통하여 토출된다. The upper and lower gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b are rotated so that the upper and lower regeneration zones 131a and 131b and the lower regeneration zone 131b and 131b' While the supply pipes 133a and 133a 'and the discharge pipes 133b and 133b' are located on the upper and lower sides of the regeneration area of the reactor 110, The regeneration air is supplied to the upper part of the regeneration zone of the cylindrical adsorption reactor 110 through the adsorption units 133a and 133a '. At the same time, the microwave module 120 disposed on the side of the regeneration area is switched from the operation stop state to the operating state to heat the regeneration area. As a result, the adsorbed VOCs components are desorbed. The regeneration air containing the desorbed VOCs is discharged through the discharge pipes 133b and 133b 'disposed at the lower part of the regeneration area.
회전주기와 재생시간은 타이머 또는 프로그램을 통해 미리 설정함으로써 조절할 수 있다. 즉, 상기 상부 및 하부 가스 분배판(130a, 130a', 130b, 130b’)의 회전주기 및 재생 동안의 회전 정지 시간, 마이크로웨이브 모듈(120)이 작동하는 시간을 타이머 또는 프로그램을 통해 미리 설정할 수 있다. 이를 통해 흡착 및 탈착 시간 제어가 용이하다. The rotation period and the playback time can be adjusted by presetting them through a timer or a program. That is, the rotation period of the upper and lower gas distribution plates 130a, 130a ', 130b, and 130b', the rotation stop time during reproduction, and the operation time of the microwave module 120 can be preset through a timer or a program have. This makes it easy to control the adsorption and desorption time.
또는 센서를 구비하여 상기 상부 재생영역(131a, 131a’)과 상기 하부 재생영역(131b, 131b’)이 원통형 흡착반응기(110)의 재생영역과 수직선상에 위치함을 감지하고 상부 및 하부 가스 분배판(130a, 130a', 130b, 130b’)의 회전을 정지시킴과 동시에 재생공기 주입과 마이크로웨이브 모듈(120)의 작동이 이루어지도록 할 수 있다.Or sensor to detect that the upper regeneration zone 131a or 131a 'and the lower regeneration zone 131b or 131b' are located on a vertical line to the regeneration zone of the cylindrical adsorption reactor 110, It is possible to stop the rotation of the plates 130a, 130a ', 130b, and 130b', to simultaneously inject the regeneration air and operate the microwave module 120.
동시에 재생되는 영역은 하나의 분할된 재생영역 또는 일정한 간격으로 방사상으로 배치된 복수의 재생영역일 수 있다. 도 2와 도 4는 재생영역이 하나인 경우이고, 도 3과 도 5는 재생영역이 둘인 경우의 상하부 가스 분배판이 원통형 반응기와 결합된 개념도를 나타낸다. The area to be reproduced at the same time may be one divided reproduction area or a plurality of reproduction areas radially arranged at regular intervals. FIGS. 2 and 4 show a case in which there is one regeneration zone, and FIGS. 3 and 5 show a conceptual diagram in which upper and lower gas distribution plates are combined with a cylindrical reactor when there are two regeneration zones.
이와 같이 원통형 흡착반응기(110)에 단일 또는 복수의 재생영역을 실현하기 위하여, 상기 상부 가스 분배판(130a, 130a’)의 공급관(133a, 133a’) 및 상기 하부 가스 분배판(130b, 130b’)의 토출관(133b, 133b’)의 수를 하나 또는 일정한 간격으로 방사상으로 배치된 복수로 구비할 수 있다. 이때 상기 복수의 공급관(133a, 133a’) 및 토출관(133b, 133b’)은 상기 상부 및 하부 가스 분배판(130a, 130a', 130b, 130b’)의 회전축을 중심으로 방사상으로 일정 간격으로 배치된다.The supply pipes 133a and 133a 'of the upper gas distribution plates 130a and 130a' and the lower gas distribution plates 130b and 130b 'of the upper gas distribution plates 130a and 130a' The number of the discharge pipes 133b and 133b 'in the radial direction may be one or plural radially arranged at regular intervals. At this time, the plurality of supply pipes 133a and 133a 'and the discharge pipes 133b and 133b' are radially arranged at regular intervals about the rotation axis of the upper and lower gas distribution plates 130a, 130a ', 130b and 130b' do.
재생영역과 마찬가지로 흡착영역 역시 동시에 여러 영역으로 구성할 수 있다. 이와 같이 동시에 여러 영역에서 흡착과 탈착 프로세스를 진행할 수 있어 에너지 및 설비 공간을 절약할 수 있다.Like the regeneration zone, the adsorption zone can also consist of several zones at the same time. In this way, the adsorption and desorption process can be carried out in various areas at the same time, thus saving energy and facility space.
도 6에 도시한 바와 같이, 본 발명의 VOCs 제거 시스템은 상기 상부 가스 분배판(130a, 130a’) 및 하부 가스 분배판(130b, 130b’)과 상기 마이크로웨이브 모듈(120)을 감싸는 추가적인 케이스(150)를 구비할 수 있으며, 상기 추가적인 케이스(150)에 구비된 압축공기 주입구(160)를 더 포함할 수 있다. 상기 압축공기 주입구(160)를 통해 압축공기를 주입 또는 배출시킴으로써 상기 상부 가스 분배판(130a, 130a’) 및 하부 가스 분배판(130b, 130b’)과 상기 원통형 흡착반응기(110)의 밀착 정도를 조절할 수 있다. 6, the VOCs removal system of the present invention includes an additional case (not shown) surrounding the upper gas distribution plate 130a, 130a 'and the lower gas distribution plate 130b, 130b' and the microwave module 120 150, and may further include a compressed air inlet 160 provided in the additional case 150. The degree of contact between the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' and the cylindrical adsorption reactor 110 is increased by injecting or discharging compressed air through the compressed air inlet 160 Can be adjusted.
즉, 상기 재생영역에 재생공기가 공급되고 상기 마이크로웨이브 모듈(120)이 작동상태를 유지하는 동안 상기 상부 가스 분배판(130a, 130a’) 및 하부 가스 분배판(130b, 130b’)은 상기 원통형 흡착반응기(110)에 밀착하며, 상기 재생영역에 재생공기 공급이 중단되고 마이크로웨이브 모듈(120)이 작동상태를 멈추면 상기 상부 가스 분배판(130a, 130a’) 및 하부 가스 분배판(130b, 130b’)은 상기 원통형 흡착반응기(110)로부터 멀어지도록 구성할 수 있다. 이와 같이 압축공기를 주입하고 빼냄으로써 상하부 가스 분배판(130b, 130b’)과 원통형 흡착반응기(110)의 밀착 정도를 조절할 수 있다. 이와 같은 구성을 통해 공급되는 재생공기가 인접하는 흡착영역 또는 냉각영역으로 분산되는 것을 방지하여 공급된 재생공기가 온전히 재생작업에 활용될 수 있도록 한다. That is, while the regeneration air is supplied to the regeneration zone and the microwave module 120 is maintained in an operating state, the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' The upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b are in close contact with the adsorption reactor 110. When the supply of the regeneration air is stopped and the microwave module 120 stops operating, 130b 'may be configured to be away from the cylindrical adsorption reactor 110. [ By thus injecting and removing the compressed air, the degree of contact between the upper and lower gas distribution plates 130b and 130b 'and the cylindrical adsorption reactor 110 can be adjusted. The regeneration air supplied through the above structure is prevented from being dispersed to the adjacent adsorption region or the cooling region, so that the supplied regeneration air can be fully utilized in the regeneration operation.
보다 효과를 높이기 위해서는, 상기 상부 가스 분배판(130a, 130a’)과 상기 하부 가스 분배판(130b, 130b’)의 단면적을 상기 원통형 흡착반응기(110)의 단면적과 일치되도록 구성하는 것이 바람직하다.Sectional area of the upper gas distribution plates 130a and 130a 'and the lower gas distribution plates 130b and 130b' may be set to be equal to the cross-sectional area of the cylindrical adsorption reactor 110 in order to enhance the effect.
도 7은 본 발명의 원통형 흡착반응기(110)와 촉매 시스템, 열교환기가 통합된 구성의 개념도이다.FIG. 7 is a conceptual diagram of a configuration in which a cylindrical adsorption reactor 110 of the present invention, a catalyst system, and a heat exchanger are integrated.
상기 흡착영역으로는 외부로부터 VOCs함유 가스가 공급되며, 상기 VOCs함유 가스 중의 VOCs가 흡착된다. VOCs가 흡착제거된 신선한 공기는 외기로 배출된다.VOC-containing gas is supplied to the adsorption region from the outside, and VOCs in the VOC-containing gas are adsorbed. Fresh air with adsorbed VOCs is discharged to the outside air.
재생영역에서 토출된 VOCs 함유 재생공기는 촉매 반응기를 거치면서 재생영역에서 탈착된 VOCs를 이산화탄소와 물로 산화 분해된다. 즉, 상기 촉매 반응기에서는 대략 200~350℃의 가온조건 하에서 VOCs를 이산화탄소(CO2) 및 물(H2O)로 산화시키는 것으로, 산화촉매로는 Pd촉매, Pt촉매, Ru촉매 또는 Rh촉매 등이 이용될 수 있다. The regeneration air containing VOCs discharged from the regeneration zone is oxidatively decomposed into carbon dioxide and water by the VOCs desorbed in the regeneration zone through the catalytic reactor. That is, in the catalytic reactor, VOCs are oxidized to carbon dioxide (CO 2 ) and water (H 2 O) under a warming condition of about 200 to 350 ° C., and a Pd catalyst, a Pt catalyst, a Ru catalyst, Can be used.
본 발명의 촉매 반응기는 별도의 마이크로웨이브 모듈을 추가로 구비하여 열원으로 활용할 수도 있다. 반응기 본체의 내부에 탈착된 VOCs 함유 더운 가스가 유입되고, 마이크로웨이브를 흡수하여 열원으로 사용하여 VOCs의 분해를 촉진시켜 제거 및 처리한다. The catalytic reactor of the present invention may further include a separate microwave module to utilize it as a heat source. The hot gas containing VOCs desorbed into the reactor body flows into the reactor body, absorbs microwaves, and is used as a heat source to accelerate the decomposition of VOCs to be removed and treated.
상기 촉매 반응기를 통과한 CO2/H2O 함유 더운 공기는 폐열이 열교환기에서 열교환되어 재생공기에 공급되고, 재생영역의 탈착 반응을 위한 에너지로 재활용될 수 있다. The hot air containing CO 2 / H 2 O that has passed through the catalytic reactor can be recycled as energy for the desorption reaction of the regeneration zone, and the waste heat is heat-exchanged in the heat exchanger and supplied to the regeneration air.
본 발명의 흡착반응기가 냉각영역을 구비하는 경우에는 상기 냉각영역에서 상기 VOCs가 탈착된 후 마이크로웨이브에 의하여 표면온도가 높아진 흡착반응기의 냉각이 진행되는데, 이때, 냉각영역으로 냉각공기를 공급하여 상온까지 냉각시킬 수 있다. 상기 주입된 냉각공기는 냉각영역을 통과하면서 약 50~100℃ 정도의 열풍으로 전환되며, 촉매 반응기를 통과한 CO2/H2O 함유 더운 공기와 유사하게, 상기 냉각영역을 통과한 더운 공기의 폐열 또한, 열교환기에서 열교환되어 상기 재생공기에 공급되어 재생영역의 탈착 반응을 위한 에너지로 재활용될 수 있다.In the case where the adsorption reactor of the present invention has a cooling zone, the VOCs are desorbed from the cooling zone, and the adsorption reactor having a surface temperature increased by microwaves is cooled. At this time, cooling air is supplied to the cooling zone, . The injected cooling air is converted into hot air of about 50 to 100 DEG C while passing through the cooling region, and the hot air passing through the cooling region, similar to the hot air containing CO 2 / H 2 O passing through the catalytic reactor, The waste heat can also be heat-exchanged in the heat exchanger and supplied to the regeneration air to be recycled as energy for the desorption reaction of the regeneration zone.
한편, 열교환기를 통과하면서 냉각된 공기와 CO2/H2O는 외기로 배출된다.On the other hand, the cooled air and CO 2 / H 2 O pass through the heat exchanger and are discharged to the outside air.
이상에서 살펴본 바와 같이, 본 발명에서는 VOCs 제거 시스템에서 부피와 중량 면에서 큰 부분을 차지하는 흡착반응기와 마이크로웨이브 모듈을 고정시키고, 상대적으로 경량의 가스 분배판을 회전식으로 구비함으로써 설비의 간소화 및 운전비용 절감을 도모하였고, 흡착 및 탈착 시간 제어가 용이하며, 동시에 여러 영역에서 흡착과 탈착 프로세스를 진행할 수 있게 하여, 하나의 흡착반응기로 흡착반응기 여러 대의 효과를 볼 수 있도록 하였다. 또한, 구조상 마이크로웨이브 모듈이 흡착반응기에 부착되어 고정된 상태이므로 흡착반응기 측면에서의 마이크로웨이브 누설을 방지할 수 있고, 더구나 상하부 가스 분배판(130b, 130b’)이 마이크로웨이브가 조사되는 동안 흡착반응기에 밀착하는 구성이므로 흡착반응기 아래 위 영역에서도 마이크로웨이브 누설을 차단하여 마이크로웨이브 효율을 극대화할 수 있고, 재생가스가 인접하는 흡착영역이나 냉각영역으로 분산되는 것을 방지하여 재생효율 또한 높일 수 있다.As described above, in the present invention, the adsorption reactor and the microwave module, which occupy a large volume and weight in the VOCs removal system, are fixed and a relatively lightweight gas distribution plate is provided in a rotary manner, And the adsorption and desorption time can be easily controlled. At the same time, the adsorption and desorption process can be performed in various regions, and the effect of several adsorption reactors can be seen with one adsorption reactor. Further, microwave leakage can be prevented on the side of the adsorption reactor since the structured microwave module is attached and fixed to the adsorption reactor, and furthermore, while the microwave is irradiated on the upper and lower gas distribution plates 130b and 130b ' It is possible to maximize the microwave efficiency by blocking the microwave leakage even in the upper region below the adsorption reactor and to prevent the regeneration gas from being dispersed in the adjacent adsorption region or the cooling region, thereby improving the regeneration efficiency.

Claims (10)

  1. VOCs가 흡착되는 흡착영역 및 상기 흡착영역에서 흡착된 VOCs를 탈착시키는 재생영역을 포함하는 고정 상태의 원통형 흡착반응기;A cylindrical adsorption reactor in a fixed state including an adsorption region in which VOCs are adsorbed and a regeneration region in which adsorbed VOCs are desorbed from the adsorption region;
    상기 원통형 흡착반응기의 둘레를 따라 일정 간격으로 배치된 복수의 마이크로웨이브 모듈; A plurality of microwave modules disposed at regular intervals along the circumference of the cylindrical adsorption reactor;
    상기 재생영역에 재생공기를 공급하는 공급관을 구비하고 상기 원통형 흡착반응기의 상부에 배치되는 회전형 상부 가스 분배판; 및 A rotatable upper gas distribution plate having a supply pipe for supplying regeneration air to the regeneration zone and disposed above the cylindrical adsorption reactor; And
    상기 재생영역으로부터 탈착된 VOCs를 함유하는 재생공기를 토출하는 토출관을 구비하고 상기 원통형 흡착반응기의 하부에 배치되는 회전형 하부 가스 분배판;A rotatable lower gas distribution plate having a discharge tube for discharging recycled air containing VOCs desorbed from the regeneration zone and disposed below the cylindrical adsorption reactor;
    을 포함하며,/ RTI >
    상기 상부 가스 분배판 및 하부 가스 분배판이 회전하다가 상기 공급관 및 토출관이 상기 재생영역의 상부 및 하부에 위치하는 동안 상기 재생영역에 재생공기가 공급되고 동시에 상기 재생영역의 측면에 배치된 마이크로웨이브 모듈이 작동상태로 전환되어 상기 재생영역을 가열하는 것을 특징으로 하는, 가스 분배판을 이용한 VOCs 제거 시스템.The regeneration air is supplied to the regeneration area while the upper gas distribution plate and the lower gas distribution plate rotate and the supply pipe and the discharge pipe are located at the upper and lower parts of the regeneration area, Wherein the regeneration zone is switched to the operating state to heat the regeneration zone.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 원통형 흡착반응기와 상기 상부 가스 분배판 및 하부 가스 분배판의 단면적이 일치하는 것인, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein the cylindrical adsorption reactor and the upper gas distribution plate and the lower gas distribution plate coincide in cross sectional area.
  3. 제 1항에 있어서,The method according to claim 1,
    상기 상부 가스 분배판 및 하부 가스 분배판은 주기적으로 동일한 방향으로 회전하며, 회전주기가 동일한 것인, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein the upper gas distribution plate and the lower gas distribution plate periodically rotate in the same direction and have the same rotation period.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 재생영역에 재생공기가 공급되고 상기 마이크로웨이브 모듈이 작동상태를 유지하는 동안 상기 상부 가스 분배판 및 하부 가스 분배판은 상기 원통형 흡착반응기에 밀착되며; The upper gas distribution plate and the lower gas distribution plate are in close contact with the cylindrical adsorption reactor while the regeneration air is supplied to the regeneration zone and the microwave module is maintained in an operating state;
    상기 재생영역에 재생공기 공급이 중단되고 마이크로웨이브 모듈이 작동상태를 멈추면 상기 상부 가스 분배판 및 하부 가스 분배판은 상기 원통형 흡착반응기로부터 멀어지도록 구성된, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein the upper gas distribution plate and the lower gas distribution plate are configured to move away from the cylindrical adsorption reactor when the regeneration air supply to the regeneration zone is stopped and the microwave module stops operating.
  5. 제 1항에 있어서,The method according to claim 1,
    상기 복수의 마이크로웨이브 모듈은 상기 원통형 흡착반응기의 측면을 감싸는 케이스의 일부로 포함되는 것인, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein the plurality of microwave modules are included as part of a casing surrounding the side of the cylindrical adsorption reactor.
  6. 제 1항에 있어서,The method according to claim 1,
    상기 상부 가스 분배판 및 하부 가스 분배판, 그리고 상기 마이크로웨이브 모듈을 감싸는 추가적인 케이스; 및An upper gas distribution plate and a lower gas distribution plate, and an additional case surrounding the microwave module; And
    상기 추가적인 케이스에 구비된 압축공기 주입구를 더 포함하며,Further comprising a compressed air inlet provided in said additional case,
    상기 압축공기 주입구를 통해 압축공기를 주입 또는 배출시킴으로써 상기 상부 가스 분배판 및 하부 가스 분배판과 상기 원통형 흡착반응기의 밀착 정도를 조절하는 것인, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein the degree of contact between the upper gas distribution plate and the lower gas distribution plate and the cylindrical adsorption reactor is controlled by injecting or discharging compressed air through the compressed air inlet.
  7. 제 1항에 있어서,The method according to claim 1,
    상기 상부 및 하부 가스 분배판의 회전축을 중심으로 복수의 공급관 및 토출관이 방사상으로 일정 간격으로 배치되어 상기 원통형 흡착반응기에 복수의 재생영역을 실현하는 것을 특징으로 하는, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein a plurality of supply pipes and discharge pipes are radially arranged at regular intervals around the rotation axis of the upper and lower gas distribution plates to realize a plurality of regeneration areas in the cylindrical adsorption reactor, system.
  8. 제 1항에 있어서,The method according to claim 1,
    상기 재생영역에서 탈착된 VOCs를 산화시키는 촉매 반응기를 추가로 구비하는, 가스 분배판을 이용한 VOCs 제거 시스템.Further comprising a catalytic reactor for oxidizing the VOCs desorbed in the regeneration zone.
  9. 제 8항에 있어서,9. The method of claim 8,
    상기 촉매 반응기에서 발생하는 폐열을 열교환하여 상기 재생공기에 공급하는 열교환기를 추가로 구비하는, 가스 분배판을 이용한 VOCs 제거 시스템.Further comprising a heat exchanger for heat-exchanging waste heat generated in the catalytic reactor and supplying the heat to the regeneration air.
  10. 제 1항에 있어서,The method according to claim 1,
    상기 복수의 마이크로웨이브 모듈 각각은 상기 원통형 흡착반응기의 둘레를 따라 다수의 슬롯을 포함하는 도파관을 구비하며, 상기 다수의 슬롯을 통하여 마이크로웨이브가 균일하게 조사되는 것인, 가스 분배판을 이용한 VOCs 제거 시스템.Wherein each of the plurality of microwave modules includes a waveguide including a plurality of slots along a circumference of the cylindrical adsorption reactor, wherein the microwave is uniformly irradiated through the plurality of slots, removing the VOCs using the gas distribution plate system.
PCT/KR2017/013281 2017-07-21 2017-11-21 System for removing vocs using gas distribution plate WO2019017533A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019500636A JP6808012B2 (en) 2017-07-21 2017-11-21 VOCs removal system using gas distribution plate
EP17918554.1A EP3656455A4 (en) 2017-07-21 2017-11-21 System for removing vocs using gas distribution plate
CN201780043457.2A CN109548400B (en) 2017-07-21 2017-11-21 VOCS removal system utilizing gas distribution plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170092815 2017-07-21
KR10-2017-0092815 2017-07-21
KR10-2017-0105033 2017-08-18
KR1020170105033A KR102406023B1 (en) 2017-07-21 2017-08-18 SYSTEM FOR REMOVING VOCs USING GAS DISTRIBUTION PLATE

Publications (1)

Publication Number Publication Date
WO2019017533A1 true WO2019017533A1 (en) 2019-01-24

Family

ID=65016655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013281 WO2019017533A1 (en) 2017-07-21 2017-11-21 System for removing vocs using gas distribution plate

Country Status (1)

Country Link
WO (1) WO2019017533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244771A (en) * 2021-03-31 2021-08-13 大连亚泰科技新材料股份有限公司 Regenerating unit of sterilization inactivation air purification agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253653A (en) * 2010-05-31 2011-12-15 Daikin Ind Ltd Microwave heating device, microwave heating device using multiple wave guides and adsorption regeneration device
KR101132597B1 (en) * 2010-03-19 2012-04-06 주식회사 엠투 Heat decomposition filtration system
US8187368B2 (en) * 2009-01-12 2012-05-29 Industrial Technology Research Institute Low power consuming desorption apparatus and dehumidifier using the same
KR101323108B1 (en) 2013-03-18 2013-10-30 주식회사 에코프로 Honeycomb rotor type vocs removal system with horizontally polarized microwave radiation
KR20160136988A (en) * 2015-05-22 2016-11-30 주식회사 에코프로 SYSTEM FOR REMOVING VOCs USING MICROWAVE
KR20160137699A (en) * 2015-05-20 2016-12-01 주식회사 라이트브릿지 Rotation regeneration type deodorization system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187368B2 (en) * 2009-01-12 2012-05-29 Industrial Technology Research Institute Low power consuming desorption apparatus and dehumidifier using the same
KR101132597B1 (en) * 2010-03-19 2012-04-06 주식회사 엠투 Heat decomposition filtration system
JP2011253653A (en) * 2010-05-31 2011-12-15 Daikin Ind Ltd Microwave heating device, microwave heating device using multiple wave guides and adsorption regeneration device
KR101323108B1 (en) 2013-03-18 2013-10-30 주식회사 에코프로 Honeycomb rotor type vocs removal system with horizontally polarized microwave radiation
KR20160137699A (en) * 2015-05-20 2016-12-01 주식회사 라이트브릿지 Rotation regeneration type deodorization system
KR20160136988A (en) * 2015-05-22 2016-11-30 주식회사 에코프로 SYSTEM FOR REMOVING VOCs USING MICROWAVE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656455A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244771A (en) * 2021-03-31 2021-08-13 大连亚泰科技新材料股份有限公司 Regenerating unit of sterilization inactivation air purification agent

Similar Documents

Publication Publication Date Title
KR20190010856A (en) SYSTEM FOR REMOVING VOCs USING GAS DISTRIBUTION PLATE
KR101143278B1 (en) Air cleaner having regenerative filter, and method for regenerative of air cleaner filter
JP2009063210A (en) Treatment device of volatile organic compound
WO2018062968A1 (en) Indoor concentration and combustion system having electric combustor and energy recycling means
KR20160136988A (en) SYSTEM FOR REMOVING VOCs USING MICROWAVE
KR102254518B1 (en) Modularized VOCs removal system using adsorption rotor, oxidation catalyst, heat exchanger
KR102404373B1 (en) SYSTEM FOR REMOVING VOCs USING SLOTTED WAVEGUIDE
KR100690441B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Concentrating Bank Therefor
CN108443894A (en) The method and system of catalysis burning processing VOCs exhaust gas
WO2019017533A1 (en) System for removing vocs using gas distribution plate
KR102325207B1 (en) Vehicle body painting booth with efficient treatment of volatile organic compounds
WO2020116670A1 (en) Vocs removal system using slotted waveguides
CN106000098A (en) Intelligent auto-regeneration gas treatment system for VOCs (volatile organic chemicals)
CN210522252U (en) VOCs removing system using groove type wave guide tube
KR102370243B1 (en) VOCs removal system and large scaled painting shop having the same
KR102106894B1 (en) APPARATUS FOR ABSORPTING VOCs USING RAIL ABSORPTION CARTRIDGE AND THE METHOD THEREOF
JP2997134B2 (en) Exhaust treatment device
KR102162173B1 (en) VOCs removal system and large scaled painting shop having the same
JPH06134241A (en) Adsorption processing
KR102175735B1 (en) VOCs removal system and large scaled painting shop having the same
KR102162172B1 (en) VOCs removal system and large scaled painting shop having the same
KR102161897B1 (en) VOCs removal system and large scaled painting shop having the same
KR102214274B1 (en) VOCs removal system and large scaled painting shop having the same
CN210964640U (en) Get rid of VOCs's rotary drum formula and adsorb photocatalytic reaction device
JPH0684141U (en) Deodorizer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019500636

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017918554

Country of ref document: EP

Effective date: 20200221