WO2019017451A1 - Aluminum nitride powder and production method therefor - Google Patents

Aluminum nitride powder and production method therefor Download PDF

Info

Publication number
WO2019017451A1
WO2019017451A1 PCT/JP2018/027177 JP2018027177W WO2019017451A1 WO 2019017451 A1 WO2019017451 A1 WO 2019017451A1 JP 2018027177 W JP2018027177 W JP 2018027177W WO 2019017451 A1 WO2019017451 A1 WO 2019017451A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
powder
mass
based powder
oxygen
Prior art date
Application number
PCT/JP2018/027177
Other languages
French (fr)
Japanese (ja)
Inventor
橋詰 良樹
祥子 鈴木
健男 杉田
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2019017451A1 publication Critical patent/WO2019017451A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Definitions

  • the present invention relates to an aluminum nitride-based powder and a method for producing the same.
  • aluminum nitride raw material powder is granulated and sintered to a high thermal conductivity resin used for cooling of electronic components with large heat generation such as power semiconductors, LEDs, high frequency devices, etc., and aluminum nitride based powder as a sintered body It is done to mix.
  • Patent Document 1 discloses a method of obtaining a spherical powder having an average particle diameter of 10 ⁇ m or more by granulating an aluminum nitride raw material powder and sintering it in an inert gas atmosphere.
  • this method there is a problem that the powders are fused and aggregated in the sintering step, and it is difficult to obtain a powder having a spherical shape and a good filling property even if the aggregate is crushed.
  • the aggregation of the powder can be prevented by reducing the addition amount of the sintering aid, the high density and high thermal conductivity can be achieved simply by reducing the addition amount of the sintering aid. It is difficult to obtain an aluminum nitride-based powder.
  • Patent Document 2 discloses a method of obtaining an aluminum nitride-based powder obtained by granulating and sintering an aluminum nitride raw material powder, and adjusting the degreasing temperature to maintain the strength of the degreased body and maintain the shape of the powder. It is disclosed. However, even in this method, there is a problem of agglomeration, and agglomeration of the powder occurs in the sintering step, and it is necessary to grind it later, so it is difficult to obtain spherical powder of uniform particle size.
  • Patent Document 3 also discloses a method of obtaining an aluminum nitride-based powder having a small particle diameter by granulating and sintering an aluminum nitride raw material powder.
  • this method it is difficult to obtain spherical powder of uniform particle size because powder aggregation is likely to occur and it is necessary to grind it later.
  • Patent Document 4 and Patent Document 5 disclose a method in which boron nitride powder is added to raw material powder and sintered in order to overcome the problem of the aggregation of the aluminum nitride-based powder described above.
  • such methods require the boron nitride powder to be separated later and can not be completely separated.
  • the viscosity of the resin becomes excessively higher than the appropriate viscosity.
  • Patent Document 6 discloses a spherical aluminum nitride-based powder excellent in filling property by mixing aluminum nitride raw material granules and a small amount of boron nitride powder without using a dispersion medium such as balls and then sintering. Methods of making are described. However, in the case of manufacturing by such a method, there is a problem that the granules are easily broken in the step of mixing the aluminum nitride raw material granules. There is also a problem that the resin viscosity becomes too high when the aluminum nitride powder is blended with the high thermal conductivity resin as described above.
  • Patent Document 7 an alkaline earth metal compound and carbon are added to an aluminous material, and reduction nitriding is performed to produce spherical aluminum nitride powder having an average particle diameter of 3 to 30 ⁇ m and an oxygen content of 1% or less.
  • Methods are disclosed. In this method, since alumina is used as the starting material, the reaction requires a long time, and the subsequent decarburization treatment also requires time. In addition, it is difficult to produce a powder having a large particle size exceeding 30 ⁇ m.
  • Japanese Patent Application Laid-Open Publication No. 2008-112566 manufactures spherical aluminum nitride powder having a particle diameter of 10 to 200 ⁇ m, which contains aluminum oxynitride as a core, by two-stage firing of alumina granules in an atmosphere containing carbon monoxide and nitrogen.
  • a method is disclosed. In this method, solid solution oxygen tends to remain in the aluminum nitride crystal, and as a result, there is a problem that the thermal conductivity as the filler material is lowered. Also, the relative density of the powder particles obtained is as low as 95% or less, and it is difficult to achieve 99% or more.
  • an object of the present invention is to provide an aluminum nitride-based powder which is less likely to cause aggregation in a sintering process without using boron nitride as a raw material.
  • the present inventors have made it possible to obtain an aluminum nitride-based powder containing a rare earth element and oxygen at a predetermined ratio and further having an apparent density of at least a predetermined value. It has been found that the occurrence of aggregation in the sintering process can be suppressed without using boron. The present inventors have conducted further studies based on such findings, and have completed the present invention.
  • the present invention provides the following aluminum nitride-based powder.
  • Item 1 Aluminum nitride powder containing oxygen and rare earth elements, The apparent density of the aluminum nitride powder is 3.2 g / cm 3 or more, The content of the oxygen is 0.01 to 1% by mass in 100% by mass of the aluminum nitride-based powder, Aluminum nitride powder characterized in that a mass ratio (M R / M O 2 ) of the content (M R ) of the rare earth element to the content (M O 2 ) of the oxygen is 0.1 to 1.5. .
  • Item 2. The aluminum nitride-based powder according to Item 1, wherein the rare earth element is yttrium.
  • the nitriding according to item 1 or 2 wherein the alkaline earth metal element is contained in an amount of 0.01 to 0.05 parts by mass with respect to 100 parts by mass of components other than the alkaline earth metal element contained in the aluminum nitride powder.
  • the aluminum nitride-based powder particles in the aluminum nitride-based powder are A first phase component which is an aluminum nitride crystal grain, And comprising a second phase component which is a composite metal oxide, 95% or more of the entire second phase component has a longest diameter of 1 ⁇ m or less,
  • the aluminum nitride-based powder according to any one of Items 1 to 3. Item 5.
  • the composite metal oxide is The aluminum nitride-based powder according to Item 4, which is a composite metal oxide containing at least aluminum and a rare earth.
  • Item 6 (1) A step of mixing an aluminum nitride raw material powder containing 0.01 to 3% by mass of oxygen and having an average particle diameter of 2 ⁇ m or less, a rare earth compound powder, an organic binder, and a solvent to form a slurry The slurry obtained in step 1 is granulated and dried to obtain a granulated product; and (3) the granulated material obtained in step 2 is degreased to a temperature of 1700 to 1900 ° C. in a reducing atmosphere.
  • Step 3 of sintering at temperature conditions A method for producing an aluminum nitride-based powder, comprising: Item 7. Item 7. The production method according to Item 6, wherein the alkaline earth metal compound powder is further mixed and slurried in the step 1.
  • the aluminum nitride-based powder of the present invention is less likely to cause aggregation in the sintering step without using boron nitride as a raw material.
  • FIG. 2 is a cross-sectional photograph of the aluminum nitride-based powder particles of Example 1. Sectional photograph of aluminum nitride type powder particles of comparative example 1.
  • the aluminum nitride-based powder of the present invention is an aluminum nitride-based powder containing oxygen and a rare earth element, and the apparent density of the aluminum nitride-based powder is 3.2 g / cm 3 or more.
  • the amount is 0.01 to 1% by mass in 100% by mass of the aluminum nitride-based powder, and the mass ratio (M R / of the content of the rare earth element (M R ) to the content of the oxygen (M O ) M O 2 ) is characterized by being 0.1 to 1.5.
  • the aluminum nitride-based powder in the present specification means an aggregate of aluminum nitride-based powder particles obtained by granulating and sintering an aluminum nitride raw material powder to obtain a sintered body.
  • Such an aluminum nitride-based powder can be suitably used, for example, as a filler for resin products that require high thermal conductivity.
  • the apparent density of the aluminum nitride powder is 3.2 g / cm 3 or more.
  • the apparent density of the aluminum nitride-based powder is less than 3.2 g / cm 3 , sufficient sinterability can not be obtained when sintering at the time of production. Moreover, sufficient thermal conductivity can not be provided to the resin obtained by using the manufactured aluminum nitride type powder as a filler.
  • the upper limit of the apparent density of the aluminum nitride powder is not particularly limited, but is preferably 3.32 g / cm 3 from the viewpoint of the theoretical density of the composite of aluminum nitride and rare earth oxide.
  • the apparent density means the volume obtained by removing the gap volume between the powder from the volume of the container when the powder is packed in a container of a fixed volume (however, the volume of the void existing inside the powder is (Not excluded) means the density of the powder mass in the container divided.
  • Apparent density can be measured by a known method, for example, can be measured by the Archimedes method.
  • the aluminum nitride powder of the present invention contains oxygen and a rare earth element.
  • the content of oxygen in the aluminum nitride-based powder is 0.01 to 1% by mass, and more preferably 0.5 to 1% by mass, with respect to 100% by mass of the aluminum nitride-based powder. More preferably, it is 1% by mass. If the content of oxygen is less than 0.01% by mass, there is a problem that the apparent density of the aluminum nitride powder is reduced.
  • the amount of liquid phase generation increases in the sintering step at the time of aluminum nitride-based powder production, and there is a problem that aggregation of aluminum nitride-based powder particles tends to occur. .
  • the amount of oxygen in the aluminum nitride crystal grains is increased, so that excellent thermal conductivity can not be obtained.
  • the content of oxygen in the aluminum nitride powder can be measured by quantitative analysis using, for example, an oxygen / nitrogen analyzer EMGA 920 manufactured by Horiba, Ltd. using an inert gas melting / non-dispersive infrared absorption method. it can.
  • rare earth element examples include known rare earth elements.
  • Such rare earth elements include one or more selected from the group consisting of yttrium (Y), lanthanum (La), neodymium (Nd), gadolinium (Gd), samarium (Sm), dysprosium (Dy), and europium (Eu).
  • Y yttrium
  • La lanthanum
  • Nd neodymium
  • Gd gadolinium
  • Sm samarium
  • Dy dysprosium
  • Eu europium
  • yttrium has excellent properties as a sintering aid, and aluminum nitride powder particles having high density and high thermal conductivity can be obtained.
  • the content of the rare earth element in the aluminum nitride powder is preferably 0.1 to 1.8% by mass, and preferably 0.3 to 1.5% by mass, from the viewpoint of thermal conductivity and aggregation prevention. Is more preferred.
  • the content of the rare earth element in the aluminum nitride-based powder is determined by subjecting the sample to microwave heating in a sulfuric acid / nitric acid solution using an ICP emission spectrophotometer (for example, iCAP6100 manufactured by ThermoFisher Scientific Co., Ltd.) and ICP emission spectral analysis It can measure by doing.
  • the mass ratio (M R / M O ) of the content (M R ) of the rare earth element to the content (M O ) of oxygen in the aluminum nitride powder is 0.1 to 1.5, and 0.2 to More preferably, it is 1.3. If the mass ratio (M R / M 2 O 3 ) is less than 0.1, the density of the aluminum nitride-based powder particles is lowered. On the other hand, if it exceeds 1.5, the aluminum nitride-based powder particles are bound to each other by the liquid phase generated in the sintering process, causing a problem of aggregation, and the density of the powder particles also decreases when the sintering temperature is low. .
  • the mass ratio (M R / M 2 O 3 ) within the above numerical range, the aggregation of the aluminum nitride-based powder can be suppressed. As a result, it is not necessary to add boron nitride to prevent aggregation of the aluminum nitride-based powder, and the process of manufacturing the aluminum nitride-based powder can be simplified.
  • the aluminum nitride-based powder of the present invention may further contain an alkaline earth metal element.
  • an alkaline earth metal element By containing an alkaline earth metal element, it is possible to obtain a dense (without an air gap inside) aluminum nitride-based powder at a lower sintering temperature.
  • an alkaline earth metal one or more selected from the group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra) may be mentioned.
  • Be beryllium
  • Mg magnesium
  • Ca calcium
  • Ba barium
  • Ra radium
  • calcium is preferable because it can impart high thermal conductivity to the aluminum nitride powder.
  • the content of the alkaline earth metal element is 0.01 to 0.05 parts by mass of the alkaline earth metal element with respect to 100 parts by mass of components other than the alkaline earth metal element contained in the aluminum nitride powder Is preferable, and 0.01 to 0.05 parts by mass is more preferable.
  • the sintering temperature in the sintering process of aluminum nitride-type powder manufacture can be made low.
  • the thermal conductivity of the aluminum nitride type powder obtained can be improved by setting it as 0.08 mass part or less.
  • the aluminum nitride-based powder particles in the aluminum nitride-based powder preferably include a first phase component which is aluminum nitride crystal grains and a second phase component which is a composite metal oxide.
  • the second phase component at least 95% of the total second phase component contained in the aluminum nitride-based powder is a grain boundary triple point of crystal grains constituting the first phase component (hereinafter simply referred to as a triple point) It is preferable to intersperse. That is, it is preferable that the second phase components do not exist continuously but are dotted at the triple points of the first phase components.
  • the second phase component is present in the form of a surface continuously in grain boundaries, the liquid phase easily exudes to the surface in the sintering step, and as a result, the aluminum nitride-based powder tends to aggregate. In other words, aggregation of the aluminum nitride-based powder can be suppressed by adopting a configuration in which 95% or more of the second phase component is present at the triple point of the first phase component.
  • 95% or more of the entire second phase component is 1 ⁇ m or less in longest diameter.
  • the longest diameter exceeds 1 ⁇ m, the second phase component may not be accommodated in the above-mentioned triple point, and may spread in a plane.
  • the fact that 95% or more of the entire second phase component has a longest diameter of 1 ⁇ m or less means that the second phase is distributed in the matrix of the first phase component (dark part) by SEM observation of the cross section of the aluminum nitride powder by ion milling or the like. It can be calculated by measuring the size of the component (bright portion) and determining the ratio of the number of second phase components having a size of 1 ⁇ m or less of the longest diameter to the total number.
  • the composite metal oxide in the second phase component is preferably a composite metal oxide containing at least aluminum and a rare earth. Further, it may be a composite metal oxide containing aluminum, rare earths and alkaline earth metals. By having such a configuration, the melting point of the second phase component is lowered, and a high density aluminum nitride-based powder can be obtained even if the sintering step is performed at a low temperature.
  • yttrium is used as the rare earth element, and the mass ratio (M R / M O ) of the content of the rare earth element (M R ) to the content of the oxygen (M O ) is 0.1 to 1.5.
  • the main component of the second phase component is yttrium aluminum garnet (Y 3 Al 5 O 12 ) by producing the aluminum nitride-based powder. Since the main component of the second phase component is yttrium aluminum garnet (Y 3 Al 5 O 12 ), the melting point of the second phase component is lowered, and a high-density aluminum nitride-based material is obtained even if a sintering step is performed at low temperatures. Powder can be obtained.
  • the shape of the aluminum nitride-based powder particles is not particularly limited, but particles having a sphericity of 0.9 or more are preferable.
  • the average particle size is preferably 5 to 200 ⁇ m. When the average particle size exceeds 200 ⁇ m, there is a problem that the powder particles stick out when mixed with a resin and formed into a sheet or the like.
  • the sphericity of the aluminum nitride-based powder particles is determined by determining the area S and peripheral length L of the projected image of the individual particles using an image analysis device (for example, Mophorogi G3 manufactured by Malvern) for the projected image of the powder.
  • the average particle size can be determined by using a general laser diffraction / scattering type particle size distribution measuring apparatus (eg, MT3300 manufactured by Nikkiso Co., Ltd.). It can be calculated by measuring the volume average particle size of the aluminum nitride-based powder ultrasonically dispersed in water to which (for example, Triton X-100 manufactured by Dow Chemical Co., Ltd.) is added.
  • a general laser diffraction / scattering type particle size distribution measuring apparatus eg, MT3300 manufactured by Nikkiso Co., Ltd.
  • It can be calculated by measuring the volume average particle size of the aluminum nitride-based powder ultrasonically dispersed in water to which (for example, Triton X-100 manufactured by Dow Chemical Co., Ltd.) is added.
  • the proportion of aluminum nitride powder particles having a particle diameter of 2 ⁇ m or less in 100 mass% of the aluminum nitride powder is desirably 0.01 to 10 mass%. If the amount is more than 10% by mass, the packing density when the aluminum nitride powder is compounded with the resin is low. In addition, since the viscosity when mixing the aluminum nitride powder and the resin becomes high, the filling amount can not be increased, and it becomes difficult to obtain a high thermal conductivity.
  • the shape is preferably spherical particles having a sphericity of 0.9 or more in principle, but it may be adjusted to be flat or block depending on the application.
  • the method for producing an aluminum nitride-based powder of the present invention is (1) A step of mixing an aluminum nitride raw material powder containing 0.01 to 3% by mass of oxygen and having an average particle diameter of 2 ⁇ m or less, a rare earth compound powder, an organic binder, and a solvent to form a slurry
  • the slurry obtained in step 1 is granulated and dried to obtain a granulated product; and (3) the granulated material obtained in step 2 is degreased to a temperature of 1700 to 1900 ° C. in a reducing atmosphere. And Sintering at a temperature condition.
  • Step 1 The aluminum nitride raw material powder used in step 1 contains 0.01 to 3% by mass of oxygen in 100% by mass of the aluminum nitride raw material powder. When the oxygen content exceeds 3% by mass, it is difficult to obtain an aluminum nitride-based powder having a high thermal conductivity.
  • the aluminum nitride raw material powder as long as the content of oxygen described above is contained, there is no particular limitation on the contained aspect.
  • an embodiment in which 2% by mass or more of oxygen is present as a surface oxide film (hydrated film) on the surface of aluminum nitride can be mentioned.
  • an average particle diameter of 2 micrometers or less is used as an aluminum nitride raw material powder used at the process 1.
  • the lower limit value of the average particle diameter of the aluminum nitride raw material powder is not particularly limited, but for example, 0.1 ⁇ m or more is preferable.
  • the aluminum nitride raw material powder is preferably added at a content of 20 to 60% by mass in 100% by mass of the slurry obtained in step 1 from the viewpoint of easiness of dispersion and easiness of granulation.
  • rare earth compound powders can be used. Although there is no particular limitation, specifically, Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , CeO 2 , Dy 2 O 3 , Sm 2 O 3 , Sc 2 O 3 and the like can be mentioned. These may be used alone or in combination of two or more. As the particle diameter, it is preferable to use one having an average particle diameter of 0.1 to 2 ⁇ m.
  • the amount of the rare earth compound powder added is 0.1 parts by mass with respect to 100 parts by mass of the aluminum nitride raw material powder.
  • the amount is preferably 10 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.3 to 3 parts by mass.
  • organic binder it is possible to use widely the well-known organic binder used for manufacture of aluminum nitride type powder. Specifically, acrylic resins, waxes, polyvinyl butyral resins, polyester resins and the like can be mentioned, and of course are not limited thereto. These may be used alone or in combination of two or more.
  • the addition amount of the organic binder may be appropriately adjusted according to the kind and addition amount of the aluminum nitride raw material powder and the rare earth compound powder to be used, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the aluminum nitride raw material powder Is preferred.
  • solvent it is possible to widely use known solvents used for producing aluminum nitride powders. Specific examples thereof include ester solvents, ketone solvents, aromatic solvents, ether solvents and the like, and of course are not limited thereto. These may be used alone or in combination of two or more.
  • the addition amount of the solvent may be appropriately adjusted according to the kind and addition amount of the aluminum nitride raw material powder and the rare earth compound powder used, for example, 50 to 300 parts by mass with respect to 100 parts by mass of the aluminum nitride raw material powder preferable.
  • alkaline earth metal compound powder may be added to make a slurry of step 1.
  • alkaline earth metal compound powder BeO
  • particle diameter it is preferable to use one having an average particle diameter of 0.1 to 2 ⁇ m.
  • the addition amount of the alkaline earth metal compound powder is 0 with respect to 100 parts by mass of the aluminum nitride raw material powder.
  • the content is preferably from 0.1 to 0.1 parts by mass, and more preferably from 0.01 to 0.08 parts by mass.
  • a dispersing agent when the slurry is obtained in Step 1, a dispersing agent, a thixo agent, a plasticizer, an antifoaming agent, and the like may be further added as necessary.
  • the method for forming a slurry is not particularly limited, and examples thereof include a method of mixing the various materials described above and dispersing them using a ball mill, a bead mill, a stirrer or the like.
  • Step 2 the slurry obtained in step 1 is granulated and dried.
  • the method for granulation and drying is not particularly limited, and it is possible to adopt widely known methods. Specifically, methods such as spray drying and rolling granulation can be mentioned.
  • Step 3 the granulated product obtained in step 2 is degreased and sintered under temperature conditions of 1700 to 1900 ° C. in a reducing atmosphere.
  • a method of heating to 400 to 600 ° C. in air or in an inert atmosphere is preferable.
  • the amount of remaining carbon derived from the organic binder in the resulting degreased body is 0. It can be reduced to 1 to 0.5% by mass.
  • the amount of residual carbon derived from the organic binder in the defatted body becomes 0.1% by mass or more, the defatted body of the granulated product obtained becomes difficult to be broken, and the amount of remaining carbon becomes 0.5% by mass or less Thereby, the density of the obtained aluminum nitride-based powder is sufficient.
  • the obtained degreased body is sintered at a temperature of 1700 to 1900 ° C. in a reducing atmosphere.
  • the method of setting it as a reducing atmosphere can be mentioned, for example.
  • a method of forming a weakly reducing atmosphere by adding carbon or carbide or an organic substance to granulated powder and vaporizing carbon at the time of sintering there is also mentioned a method of forming a weakly reducing atmosphere by adding carbon or carbide or an organic substance to granulated powder and vaporizing carbon at the time of sintering.
  • the amount of carbon to be added is preferably 70 parts by mass or less with respect to 100 parts by mass of the oxygen content of the raw material aluminum nitride-based powder at the stage of the degreased body.
  • the method of performing sintering in the mixed atmosphere of nitrogen and hydrocarbon can also be mentioned as another specific aspect for setting it as a reducing nitrogen atmosphere.
  • the atmosphere reductive, preferably weakly reductive the amount of oxygen contained in the sintered aluminum nitride powder can be reduced to 1% by mass or less, thereby preventing aggregation due to excessive liquid phase formation, and firing It is possible to increase the thermal conductivity of the sintered powder.
  • the hydrocarbon concentration in nitrogen is preferably 5% by volume or less.
  • the sintering temperature is less than 1700 ° C.
  • the density of the obtained aluminum nitride-based powder particles may be insufficient.
  • the sintering temperature exceeds 1900 ° C., the aluminum nitride-based powder particles are easily aggregated. In view of such circumstances, the sintering temperature is more preferably 1750 to 1850 ° C.
  • Examples 1 to 7 and Comparative Examples 1 to 5 A slurry was produced by mixing in a ball mill for 24 hours with the composition of Table 1 below. Thereafter, the obtained slurry was granulated and dried by a spray dry method (apparatus: CDL 20 manufactured by Ogawara Kakohki Co., Ltd.) to obtain a granulated powder having a volume average particle size of 70 ⁇ m. The granulated powder was degreased at 400 ° C. in air for 1 hour, then filled in a carbon container equipped with a BN plate on the inner surface, and sintered in nitrogen for 3 hours. The apparent density of the obtained aluminum nitride powder was measured by the Archimedes method.
  • the amount of oxygen contained in the aluminum nitride powder was measured by an inert gas melting / non-dispersive infrared absorption oxygen nitrogen analyzer (manufactured by Horiba, Ltd., ENGA-920).
  • the amount of yttrium contained in aluminum nitride was measured by microwave heating a sample in a sulfuric acid / nitric acid solution using an ICP (high frequency inductively coupled plasma) emission spectrophotometer (iCAP 6100 manufactured by Thermo Fisher Scientific) to measure the dissolved sample.
  • ICP high frequency inductively coupled plasma emission spectrophotometer
  • Example 7 and Comparative Example 4 the detail regarding the material used in each Example and a comparative example is as Table 2.
  • the aluminum nitride raw material powder of Example 7 and Comparative Example 4 although it does not display in Table 2, when manufacturing Toyo Aluminum Co., Ltd. product JD, a particle size is adjusted by adjusting the grade of grinding. What was changed was used as an aluminum nitride raw material powder.
  • Example 1 When the aluminum nitride powder of Example 1 was observed by a scanning electron microscope, it could be confirmed that the powder was composed of substantially spherical aluminum nitride powder particles as shown in FIG.
  • the presence or absence of aggregation of the aluminum nitride-based powder of each Example and each Comparative Example was evaluated by measuring the particle size. Specifically, the particles were crushed into primary particles, and the particle size of the powder after crushing was measured by a laser diffraction method, and it was judged that no aggregation was observed when the volume average particle diameter was 80 ⁇ m or less.
  • Thermal conductivity evaluation test After mixing the aluminum nitride-based powder of each Example and each Comparative Example with a silicone resin (KE-1013 manufactured by Shin-Etsu Chemical Co., Ltd.) at 65% by volume and performing mixing stirring and defoaming, A sheet having a thickness of 3 mm was produced, and the thermal conductivity was measured by a thermal conductivity measuring device (TCi manufactured by C-THERMTECHNOLOGIES).
  • a thermal conductivity measuring device TCi manufactured by C-THERMTECHNOLOGIES

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Ceramic Products (AREA)

Abstract

Provided is an aluminum nitride powder which is less likely to aggregate in a sintering step even without using boron nitride as a raw material. This aluminum nitride powder contains oxygen and a rare-earth element, and is characterized in that the aluminum nitride powder has an apparent density of 3.2 g/cm3 or higher, the contained amount of the oxygen is 0.01-1 mass% with respect to 100 mass% of the aluminum nitride powder, and the mass ratio (MR/MO) of the contained amount (MR) of the rare-earth element to the contained amount (MO) of the oxygen is 0.1-1.5.

Description

窒化アルミニウム系粉末及びその製造方法Aluminum nitride powder and method for producing the same
 本発明は、窒化アルミニウム系粉末及びその製造方法に関する。 The present invention relates to an aluminum nitride-based powder and a method for producing the same.
 従来より、パワー半導体、LED、高周波デバイスなど、発熱の大きい電子部品の冷却に用いられる高熱伝導性樹脂に、窒化アルミニウム原料粉末を造粒し、焼結して焼結体とした窒化アルミニウム系粉末を配合することが行われている。 Conventionally, aluminum nitride raw material powder is granulated and sintered to a high thermal conductivity resin used for cooling of electronic components with large heat generation such as power semiconductors, LEDs, high frequency devices, etc., and aluminum nitride based powder as a sintered body It is done to mix.
 例えば、特許文献1には、窒化アルミニウム原料粉末を造粒し、不活性ガス雰囲気中で焼結することにより平均粒径10μm以上の球状粉末を得る方法が開示されている。この方法では焼結工程で粉末同士が融着し凝集するという問題が有り、凝集物を粉砕しても球状で充填性の良い粉末を得ることは困難である。同文献には焼結助剤の添加量を減らす事により、粉末の凝集が防止できる事も開示されているが、単に焼結助剤の添加量を減らすだけでは高密度で熱伝導率の高い窒化アルミニウム系粉末を得ることは困難である。 For example, Patent Document 1 discloses a method of obtaining a spherical powder having an average particle diameter of 10 μm or more by granulating an aluminum nitride raw material powder and sintering it in an inert gas atmosphere. In this method, there is a problem that the powders are fused and aggregated in the sintering step, and it is difficult to obtain a powder having a spherical shape and a good filling property even if the aggregate is crushed. Although it is also disclosed in the same document that the aggregation of the powder can be prevented by reducing the addition amount of the sintering aid, the high density and high thermal conductivity can be achieved simply by reducing the addition amount of the sintering aid. It is difficult to obtain an aluminum nitride-based powder.
 特許文献2には、窒化アルミニウム原料粉末を造粒・焼結した窒化アルミニウム系粉末を得る方法であって、脱脂温度を調整することにより脱脂体の強度を維持し、粉末の形状を保つ方法が開示されている。しかしながら、この方法でも凝集の問題が存在しており、焼結工程で粉末の凝集が発生し、後で粉砕する必要が生じるため、均一な粒径の球状粉末を得ることが難しい。 Patent Document 2 discloses a method of obtaining an aluminum nitride-based powder obtained by granulating and sintering an aluminum nitride raw material powder, and adjusting the degreasing temperature to maintain the strength of the degreased body and maintain the shape of the powder. It is disclosed. However, even in this method, there is a problem of agglomeration, and agglomeration of the powder occurs in the sintering step, and it is necessary to grind it later, so it is difficult to obtain spherical powder of uniform particle size.
 特許文献3にも、窒化アルミニウム原料粉末を造粒・焼結することにより、粒径の小さい窒化アルミニウム系粉末を得る方法が開示されている。しかしながら、この方法でも粉末の凝集が起こりやすく、後に粉砕する必要が生じるため、均一な粒径の球状粉末を得ることは難しい。 Patent Document 3 also discloses a method of obtaining an aluminum nitride-based powder having a small particle diameter by granulating and sintering an aluminum nitride raw material powder. However, even with this method, it is difficult to obtain spherical powder of uniform particle size because powder aggregation is likely to occur and it is necessary to grind it later.
 一方、特許文献4と特許文献5には、上記した窒化アルミニウム系粉末の凝集という課題を克服するために、窒化ホウ素粉末を原料粉末に添加し、焼結する方法が開示されている。しかしながら、かかる方法では窒化ホウ素粉末を後で分離する必要があり、且つ、完全には分離できない。その結果、高熱伝導性樹脂に窒化アルミニウム系粉末を配合した時に、樹脂の粘度が適正な粘度よりも高くなり過ぎてしまうという問題が生じる。 On the other hand, Patent Document 4 and Patent Document 5 disclose a method in which boron nitride powder is added to raw material powder and sintered in order to overcome the problem of the aggregation of the aluminum nitride-based powder described above. However, such methods require the boron nitride powder to be separated later and can not be completely separated. As a result, when the aluminum nitride powder is blended with the high thermal conductivity resin, there arises a problem that the viscosity of the resin becomes excessively higher than the appropriate viscosity.
 また、特許文献6には、窒化アルミニウム原料顆粒と少量の窒化ホウ素粉末を、ボールなどの分散媒体を使用することなく混合し、その後焼結することにより充填性に優れた球状窒化アルミニウム系粉末を製造する方法が、記載されている。しかしながら、かかる方法で製造する場合、窒化アルミニウム原料顆粒を混合する工程で、顆粒が崩壊しやすいという課題がある。また上述したような、高熱伝導性樹脂に窒化アルミニウム系粉末を配合した際の、樹脂粘度が高くなり過ぎるという問題もある。 Further, Patent Document 6 discloses a spherical aluminum nitride-based powder excellent in filling property by mixing aluminum nitride raw material granules and a small amount of boron nitride powder without using a dispersion medium such as balls and then sintering. Methods of making are described. However, in the case of manufacturing by such a method, there is a problem that the granules are easily broken in the step of mixing the aluminum nitride raw material granules. There is also a problem that the resin viscosity becomes too high when the aluminum nitride powder is blended with the high thermal conductivity resin as described above.
 一方、特許文献7には、アルミナ質原料に、アルカリ土類金属化合物及びカーボンを添加し、還元窒化することにより、平均粒径3~30μm、酸素量1%以下の球状窒化アルミニウム系粉末を製造する方法が開示されている。かかる方法では、アルミナを出発原料としているため、反応に長時間を要する上、その後の脱炭処理に時間を要する。また、30μmを超えるような粒径の大きい粉末を製造することは、困難である。 On the other hand, in Patent Document 7, an alkaline earth metal compound and carbon are added to an aluminous material, and reduction nitriding is performed to produce spherical aluminum nitride powder having an average particle diameter of 3 to 30 μm and an oxygen content of 1% or less. Methods are disclosed. In this method, since alumina is used as the starting material, the reaction requires a long time, and the subsequent decarburization treatment also requires time. In addition, it is difficult to produce a powder having a large particle size exceeding 30 μm.
 また、引用文献8には、アルミナ顆粒を、一酸化炭素及び窒素を含む雰囲気で二段階焼成することにより、酸窒化アルミニウムをコアとして含む、粒径10~200μmの球状窒化アルミニウム系粉末を製造する方法が、開示されている。かかる方法では、窒化アルミニウムの結晶内に固溶酸素が残存しやすくなり、その結果、フィラー材としての熱伝導率が低下するという問題がある。また、得られる粉体粒子の相対密度も95%以下と低く、99%以上にすることは困難である。 Further, Japanese Patent Application Laid-Open Publication No. 2008-112566 manufactures spherical aluminum nitride powder having a particle diameter of 10 to 200 μm, which contains aluminum oxynitride as a core, by two-stage firing of alumina granules in an atmosphere containing carbon monoxide and nitrogen. A method is disclosed. In this method, solid solution oxygen tends to remain in the aluminum nitride crystal, and as a result, there is a problem that the thermal conductivity as the filler material is lowered. Also, the relative density of the powder particles obtained is as low as 95% or less, and it is difficult to achieve 99% or more.
日本国 特開平3-295863号公報Japan Japanese Patent Laid-Open No. 3-295863 日本国 特開2003-267708号公報Japan Patent Publication 2003-267708 日本国 特開2006-206393号公報Japan Patent Publication 2006-206393 日本国 特開平4-124006号公報Japan JP-A-4-124006 日本国 特開平11-269302号公報Japan JP-A-11-269302 日本国 特開2017-036183号公報Japan JP 2017-036183 gazette 日本国 特開2012-056774号公報Japan JP 2012-056774 日本国 特開2016-037438号公報Japan Patent Publication No. 2016-037438
 上記のような事情に鑑み、本発明の目的とするところは、原料として窒化ホウ素を使用せずとも、焼結工程での凝集が生じにくい窒化アルミニウム系粉末を提供することにある。 In view of the above-mentioned circumstances, an object of the present invention is to provide an aluminum nitride-based powder which is less likely to cause aggregation in a sintering process without using boron nitride as a raw material.
 本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、希土類元素と酸素とを所定の比率で含有し、さらには所定以上の見掛け密度を有する窒化アルミニウム系粉末とすることで、窒化ホウ素を使用せずとも焼結工程での凝集発生を抑制できることを見出した。本発明者らは、かかる知見に基づきさらに研究を重ね、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have made it possible to obtain an aluminum nitride-based powder containing a rare earth element and oxygen at a predetermined ratio and further having an apparent density of at least a predetermined value. It has been found that the occurrence of aggregation in the sintering process can be suppressed without using boron. The present inventors have conducted further studies based on such findings, and have completed the present invention.
 即ち、本発明は、以下の窒化アルミニウム系粉末を提供する。
項1.
 酸素及び希土類元素を含む窒化アルミニウム系粉末であって、
 該窒化アルミニウム系粉末の見掛け密度は3.2g/cm以上であり、
 前記酸素の含有量は、前記窒化アルミニウム系粉末100質量%中に0.01~1質量%であり、
 前記希土類元素の含有量(M)と前記酸素の含有量(M)の質量比(M/M)は0.1~1.5であることを特徴とする、窒化アルミニウム系粉末。
項2.
 前記希土類元素はイットリウムである、項1に記載の窒化アルミニウム系粉末。
項3.
 さらにアルカリ土類金属元素を、前記窒化アルミニウム系粉末に含まれる前記アルカリ土類金属元素以外の成分100質量部に対して0.01~0.05質量部含む、項1又は2に記載の窒化アルミニウム系粉末。
項4.
 窒化アルミニウム系粉末における窒化アルミニウム系粉末粒子は、
 窒化アルミニウム結晶粒である第1相成分と、
 複合金属酸化物である第2相成分とを含んで構成され、
 前記第2相成分全体の95%以上が最長径1μm以下である、 
 項1~3の何れかに記載の窒化アルミニウム系粉末。
項5.
 前記複合金属酸化物は、
 少なくともアルミニウム及び希土類を含む複合金属酸化物である、項4に記載の窒化アルミニウム系粉末。
項6.
(1)酸素を0.01~3質量%含有し、平均粒径が2μm以下の窒化アルミニウム原料粉末、希土類化合物粉末、有機バインダー、及び溶剤を混合してスラリー化する工程1、(2)前記工程1で得られたスラリーを造粒及び乾燥し、造粒物を得る工程2、及び
(3)前記工程2で得られた造粒物を脱脂し、還元性雰囲気中で1700~1900℃の温度条件で焼結する工程3、
 を有することを特徴とする窒化アルミニウム系粉末の製造方法。
項7.
 前記工程1において、さらにアルカリ土類金属化合物粉末を混合してスラリー化する、項6に記載の製造方法。
That is, the present invention provides the following aluminum nitride-based powder.
Item 1.
Aluminum nitride powder containing oxygen and rare earth elements,
The apparent density of the aluminum nitride powder is 3.2 g / cm 3 or more,
The content of the oxygen is 0.01 to 1% by mass in 100% by mass of the aluminum nitride-based powder,
Aluminum nitride powder characterized in that a mass ratio (M R / M O 2 ) of the content (M R ) of the rare earth element to the content (M O 2 ) of the oxygen is 0.1 to 1.5. .
Item 2.
The aluminum nitride-based powder according to Item 1, wherein the rare earth element is yttrium.
Item 3.
Furthermore, the nitriding according to item 1 or 2, wherein the alkaline earth metal element is contained in an amount of 0.01 to 0.05 parts by mass with respect to 100 parts by mass of components other than the alkaline earth metal element contained in the aluminum nitride powder. Aluminum-based powder.
Item 4.
The aluminum nitride-based powder particles in the aluminum nitride-based powder are
A first phase component which is an aluminum nitride crystal grain,
And comprising a second phase component which is a composite metal oxide,
95% or more of the entire second phase component has a longest diameter of 1 μm or less,
The aluminum nitride-based powder according to any one of Items 1 to 3.
Item 5.
The composite metal oxide is
The aluminum nitride-based powder according to Item 4, which is a composite metal oxide containing at least aluminum and a rare earth.
Item 6.
(1) A step of mixing an aluminum nitride raw material powder containing 0.01 to 3% by mass of oxygen and having an average particle diameter of 2 μm or less, a rare earth compound powder, an organic binder, and a solvent to form a slurry The slurry obtained in step 1 is granulated and dried to obtain a granulated product; and (3) the granulated material obtained in step 2 is degreased to a temperature of 1700 to 1900 ° C. in a reducing atmosphere. Step 3 of sintering at temperature conditions
A method for producing an aluminum nitride-based powder, comprising:
Item 7.
Item 7. The production method according to Item 6, wherein the alkaline earth metal compound powder is further mixed and slurried in the step 1.
 本発明の窒化アルミニウム系粉末は、原料として窒化ホウ素を使用せずとも、焼結工程での凝集が生じにくい。 The aluminum nitride-based powder of the present invention is less likely to cause aggregation in the sintering step without using boron nitride as a raw material.
実施例1の窒化アルミニウム系粉末の外観写真。The external appearance photograph of the aluminum nitride type powder of Example 1. FIG. 実施例1の窒化アルミニウム系粉末粒子の断面写真。2 is a cross-sectional photograph of the aluminum nitride-based powder particles of Example 1. 比較例1の窒化アルミニウム系粉末粒子の断面写真。Sectional photograph of aluminum nitride type powder particles of comparative example 1.
窒化アルミニウム系粉末
 本発明の窒化アルミニウム系粉末は、酸素及び希土類元素を含む窒化アルミニウム系粉末であって、該窒化アルミニウム系粉末の見掛け密度は3.2g/cm以上であり、前記酸素の含有量は、前記窒化アルミニウム系粉末100質量%中に0.01~1質量%であり、前記希土類元素の含有量(M)と前記酸素の含有量(M)の質量比(M/M)は0.1~1.5であることを特徴とする。
Aluminum Nitride-Based Powder The aluminum nitride-based powder of the present invention is an aluminum nitride-based powder containing oxygen and a rare earth element, and the apparent density of the aluminum nitride-based powder is 3.2 g / cm 3 or more. The amount is 0.01 to 1% by mass in 100% by mass of the aluminum nitride-based powder, and the mass ratio (M R / of the content of the rare earth element (M R ) to the content of the oxygen (M O ) M O 2 ) is characterized by being 0.1 to 1.5.
 本明細書における窒化アルミニウム系粉末は、窒化アルミニウム原料粉末を造粒、焼結して焼結体とされた窒化アルミニウム系粉末粒子の集合体を、意味する。かかる窒化アルミニウム系粉末は、例えば高い熱伝導性が要求される樹脂製品の充填剤として好適に使用することができる。 The aluminum nitride-based powder in the present specification means an aggregate of aluminum nitride-based powder particles obtained by granulating and sintering an aluminum nitride raw material powder to obtain a sintered body. Such an aluminum nitride-based powder can be suitably used, for example, as a filler for resin products that require high thermal conductivity.
 窒化アルミニウム系粉末の見掛け密度は、3.2g/cm以上である。窒化アルミニウム系粉末の見掛け密度が3.2g/cm未満であると、製造時に焼結する際に、十分な焼結性を得ることができない。また、製造した窒化アルミニウム系粉末を充填材として得られる樹脂に、十分な熱伝導性を付与することができない。一方、窒化アルミニウム系粉末の見掛け密度の上限としては、特に限定はないが、窒化アルミニウムと希土類酸化物の複合体の理論密度という観点から、3.32g/cmとすることが好ましい。 The apparent density of the aluminum nitride powder is 3.2 g / cm 3 or more. When the apparent density of the aluminum nitride-based powder is less than 3.2 g / cm 3 , sufficient sinterability can not be obtained when sintering at the time of production. Moreover, sufficient thermal conductivity can not be provided to the resin obtained by using the manufactured aluminum nitride type powder as a filler. On the other hand, the upper limit of the apparent density of the aluminum nitride powder is not particularly limited, but is preferably 3.32 g / cm 3 from the viewpoint of the theoretical density of the composite of aluminum nitride and rare earth oxide.
 本明細書において見掛け密度とは、粉体を一定容積の容器に充填した場合の、容器の体積から、粉体間の隙間体積を除いた体積(但し、粉体内部に存在する空隙の体積は、除かない。)により、容器内の粉体の質量を除した密度を意味する。見掛け密度は、公知の方法で測定することができ、例えば、アルキメデス法により測定することができる。 In the present specification, the apparent density means the volume obtained by removing the gap volume between the powder from the volume of the container when the powder is packed in a container of a fixed volume (however, the volume of the void existing inside the powder is (Not excluded) means the density of the powder mass in the container divided. Apparent density can be measured by a known method, for example, can be measured by the Archimedes method.
酸素及び希土類元素
 本発明の窒化アルミニウム系粉末は、酸素及び希土類元素を含む。窒化アルミニウム系粉末中の酸素の含有量は、窒化アルミニウム系粉末100質量%中に、0.01~1質量%であり、0.5~1質量%であることがより好ましく、0.7~1質量%であることが更に好ましい。酸素の含有量が0.01質量%に満たない場合、窒化アルミニウム系粉末の見掛け密度が低下するという問題がある。一方、酸素の含有量が1質量%を超えると、窒化アルミニウム系粉末製造時の焼結工程において液相生成量が多くなってしまい、窒化アルミニウム系粉末粒子の凝集が生じやすくなるという問題がある。それと共に、窒化アルミニウム結晶粒内の酸素量が多くなるため、優れた熱伝導性を得ることができない。
Oxygen and Rare Earth Element The aluminum nitride powder of the present invention contains oxygen and a rare earth element. The content of oxygen in the aluminum nitride-based powder is 0.01 to 1% by mass, and more preferably 0.5 to 1% by mass, with respect to 100% by mass of the aluminum nitride-based powder. More preferably, it is 1% by mass. If the content of oxygen is less than 0.01% by mass, there is a problem that the apparent density of the aluminum nitride powder is reduced. On the other hand, if the content of oxygen exceeds 1% by mass, the amount of liquid phase generation increases in the sintering step at the time of aluminum nitride-based powder production, and there is a problem that aggregation of aluminum nitride-based powder particles tends to occur. . At the same time, the amount of oxygen in the aluminum nitride crystal grains is increased, so that excellent thermal conductivity can not be obtained.
 窒化アルミニウム系粉末中の酸素の含有量は、不活性ガス融解・非分散型赤外線吸収法を用いて、例えば(株)堀場製作所製 酸素窒素分析装置EMGA920により定量分析することにより、測定することができる。 The content of oxygen in the aluminum nitride powder can be measured by quantitative analysis using, for example, an oxygen / nitrogen analyzer EMGA 920 manufactured by Horiba, Ltd. using an inert gas melting / non-dispersive infrared absorption method. it can.
 希土類元素としては、公知の希土類元素を挙げることができる。かかる希土類元素としては、イットリウム(Y)、ランタン(La)、ネオジム(Nd)、ガドリニウム(Gd)、サマリウム(Sm)、ジスプロシウム(Dy)、及びユウロピウム(Eu)からなる群より選ばれる1種以上を挙げることができ、これらに限定されない。中でもイットリウムは、焼結助剤として優れた性質を有しており、高密度で高い熱伝導率を有する窒化アルミニウム系粉末粒子を得ることができる。 Examples of the rare earth element include known rare earth elements. Such rare earth elements include one or more selected from the group consisting of yttrium (Y), lanthanum (La), neodymium (Nd), gadolinium (Gd), samarium (Sm), dysprosium (Dy), and europium (Eu). There may be mentioned, but not limited thereto. Among them, yttrium has excellent properties as a sintering aid, and aluminum nitride powder particles having high density and high thermal conductivity can be obtained.
 窒化アルミニウム系粉末中の希土類元素の含有量は、熱伝導率と凝集防止という観点から、0.1~1.8質量%とすることが好ましく、0.3~1.5質量%とすることがより好ましい。窒化アルミニウム系粉末中の希土類元素の含有量は、ICP発光分光分析装置(例えばThermoFisher Scientific社製iCAP6100)を用いて、試料を硫酸/硝酸溶液中でマイクロ波加熱し溶解した検体をICP発光分光分析することにより、測定することができる。 The content of the rare earth element in the aluminum nitride powder is preferably 0.1 to 1.8% by mass, and preferably 0.3 to 1.5% by mass, from the viewpoint of thermal conductivity and aggregation prevention. Is more preferred. The content of the rare earth element in the aluminum nitride-based powder is determined by subjecting the sample to microwave heating in a sulfuric acid / nitric acid solution using an ICP emission spectrophotometer (for example, iCAP6100 manufactured by ThermoFisher Scientific Co., Ltd.) and ICP emission spectral analysis It can measure by doing.
 窒化アルミニウム系粉末中における希土類元素の含有量(M)と酸素の含有量(M)の質量比(M/M)は、0.1~1.5であり、0.2~1.3であることがより好ましい。質量比(M/M)が0.1未満であると、窒化アルミニウム系粉末粒子の密度が低くなってしまう。一方、1.5を超えると、焼結過程で生成する液相により窒化アルミニウム系粉末粒子同士が結合し、凝集するという問題を生じ、かつ焼結温度が低い場合に粉末粒子の密度も低くなる。このように、質量比(M/M)を上記の数値範囲内とすることにより、窒化アルミニウム系粉末の凝集を抑制することができる。その結果、窒化アルミニウム系粉末の凝集防止のために窒化ホウ素を添加する必要がなくなり、窒化アルミニウム系粉末の製造工程を簡略化することが可能となる。 The mass ratio (M R / M O ) of the content (M R ) of the rare earth element to the content (M O ) of oxygen in the aluminum nitride powder is 0.1 to 1.5, and 0.2 to More preferably, it is 1.3. If the mass ratio (M R / M 2 O 3 ) is less than 0.1, the density of the aluminum nitride-based powder particles is lowered. On the other hand, if it exceeds 1.5, the aluminum nitride-based powder particles are bound to each other by the liquid phase generated in the sintering process, causing a problem of aggregation, and the density of the powder particles also decreases when the sintering temperature is low. . As described above, by setting the mass ratio (M R / M 2 O 3 ) within the above numerical range, the aggregation of the aluminum nitride-based powder can be suppressed. As a result, it is not necessary to add boron nitride to prevent aggregation of the aluminum nitride-based powder, and the process of manufacturing the aluminum nitride-based powder can be simplified.
アルカリ土類金属元素
 本発明の窒化アルミニウム系粉末は、さらアルカリ土類金属元素を含んでもよい。アルカリ土類金属元素を含むことにより、より低い焼結温度で緻密な(内部に空隙を含まない)窒化アルミニウム系粉末を得ることができる。かかるアルカリ土類金属としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)及びラジウム(Ra)からなる群より選ばれる1種以上を挙げることができ、勿論これらに限定されない。中でもカルシウムは、窒化アルミニウム系粉末に高い熱伝導性を付与できることから、好ましい。
Alkaline Earth Metal Element The aluminum nitride-based powder of the present invention may further contain an alkaline earth metal element. By containing an alkaline earth metal element, it is possible to obtain a dense (without an air gap inside) aluminum nitride-based powder at a lower sintering temperature. As such an alkaline earth metal, one or more selected from the group consisting of beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra) may be mentioned. Of course, it is not limited to these. Among them, calcium is preferable because it can impart high thermal conductivity to the aluminum nitride powder.
 アルカリ土類金属元素の含有量としては、窒化アルミニウム系粉末に含まれるアルカリ土類金属元素以外の成分100質量部に対して、アルカリ土類金属元素を0.01~0.05質量部含むことが好ましく、0.01~0.05質量部含むことがより好ましい。アルカリ土類金属元素を0.01質量部以上含むことにより、窒化アルミニウム系粉末製造の焼結工程における焼結温度を低くすることができる。また0.08質量部以下とすることにより、得られる窒化アルミニウム系粉末の熱伝導性を高めることができる。 The content of the alkaline earth metal element is 0.01 to 0.05 parts by mass of the alkaline earth metal element with respect to 100 parts by mass of components other than the alkaline earth metal element contained in the aluminum nitride powder Is preferable, and 0.01 to 0.05 parts by mass is more preferable. By containing 0.01 mass part or more of alkaline-earth metal elements, the sintering temperature in the sintering process of aluminum nitride-type powder manufacture can be made low. Moreover, the thermal conductivity of the aluminum nitride type powder obtained can be improved by setting it as 0.08 mass part or less.
窒化アルミニウム系粉末粒子
 窒化アルミニウム系粉末における窒化アルミニウム系粉末粒子は、窒化アルミニウム結晶粒である第1相成分と、複合金属酸化物である第2相成分とを含んで構成されることが好ましい。
Aluminum Nitride-Based Powder Particles The aluminum nitride-based powder particles in the aluminum nitride-based powder preferably include a first phase component which is aluminum nitride crystal grains and a second phase component which is a composite metal oxide.
 ここで、第2相成分は、窒化アルミニウム系粉末に含まれる第2相成分全体のうちの95%以上が、第1相成分を構成する結晶粒の粒界三重点(以下、単に三重点という。)に点在することが好ましい。つまり、第2相成分が連続して存在せず、第1相成分の三重点に点在していることが好ましい。第2相成分が結晶粒界に連続して面状に存在する場合、焼結工程で表面に液相が染み出しやすくなり、その結果、窒化アルミニウム系粉末が凝集しやすくなる。換言すると、第2相成分の95%以上が、第1相成分の三重点に存在するという構成をとることにより、窒化アルミニウム系粉末の凝集を抑制することができる。 Here, in the second phase component, at least 95% of the total second phase component contained in the aluminum nitride-based powder is a grain boundary triple point of crystal grains constituting the first phase component (hereinafter simply referred to as a triple point) It is preferable to intersperse. That is, it is preferable that the second phase components do not exist continuously but are dotted at the triple points of the first phase components. When the second phase component is present in the form of a surface continuously in grain boundaries, the liquid phase easily exudes to the surface in the sintering step, and as a result, the aluminum nitride-based powder tends to aggregate. In other words, aggregation of the aluminum nitride-based powder can be suppressed by adopting a configuration in which 95% or more of the second phase component is present at the triple point of the first phase component.
 上述した、前記第2相成分全体の95%以上が最長径1μm以下である。最長径が1μmを超えると、第2相成分は前述の三重点に収まらず面状に拡がるおそれがある。第2相成分全体の95%以上が最長径1μm以下であることは、窒化アルミニウム系粉末のイオンミリング等による断面のSEM観察により第1相成分(暗い部分)のマトリクス中に分布する第2相成分(明るい部分)の大きさを測定し、最長径1μm以下の大きさを有する第2相成分の数の全数量に対する割合を求めることによって算出することができる。 As described above, 95% or more of the entire second phase component is 1 μm or less in longest diameter. When the longest diameter exceeds 1 μm, the second phase component may not be accommodated in the above-mentioned triple point, and may spread in a plane. The fact that 95% or more of the entire second phase component has a longest diameter of 1 μm or less means that the second phase is distributed in the matrix of the first phase component (dark part) by SEM observation of the cross section of the aluminum nitride powder by ion milling or the like. It can be calculated by measuring the size of the component (bright portion) and determining the ratio of the number of second phase components having a size of 1 μm or less of the longest diameter to the total number.
 第2相成分における複合金属酸化物は、少なくともアルミニウム及び希土類を含む複合金属酸化物であることが好ましい。また、アルミニウム、希土類、及びアルカリ土類金属を含む複合金属酸化物であってもよい。かかる構成を有することにより、第2相成分の融点が低くなり、低温で焼結工程を行っても、高密度の窒化アルミニウム系粉末を得ることができる。 The composite metal oxide in the second phase component is preferably a composite metal oxide containing at least aluminum and a rare earth. Further, it may be a composite metal oxide containing aluminum, rare earths and alkaline earth metals. By having such a configuration, the melting point of the second phase component is lowered, and a high density aluminum nitride-based powder can be obtained even if the sintering step is performed at a low temperature.
 特に、希土類元素としてイットリウムを使用し、且つ、希土類元素の含有量(M)と酸素の含有量(M)の質量比(M/M)を、0.1~1.5となる窒化アルミニウム系粉末を製造することにより、第2相成分の主成分がイットリウムアルミニウムガーネット(YAl12)となる。第2相成分の主成分がイットリウムアルミニウムガーネット(YAl12)であることにより、第2相成分の融点が低くなり、低温で焼結工程を行っても、高密度の窒化アルミニウム系粉末を得ることができる。 In particular, yttrium is used as the rare earth element, and the mass ratio (M R / M O ) of the content of the rare earth element (M R ) to the content of the oxygen (M O ) is 0.1 to 1.5. The main component of the second phase component is yttrium aluminum garnet (Y 3 Al 5 O 12 ) by producing the aluminum nitride-based powder. Since the main component of the second phase component is yttrium aluminum garnet (Y 3 Al 5 O 12 ), the melting point of the second phase component is lowered, and a high-density aluminum nitride-based material is obtained even if a sintering step is performed at low temperatures. Powder can be obtained.
 窒化アルミニウム系粉末粒子の形状は、特に限定は無いが、球状度0.9以上の粒子であることが好ましい。また、平均粒度としては5~200μmであることが好ましい。平均粒度が200μmを超えると、樹脂と混合してシート等に成形した場合に粉末粒子が突き出すという問題が生じる。ここで、窒化アルミニウム系粉末粒子の球状度は、粉末の投影画像を、画像解析装置(例えば、Malvern社製モフォロギG3)により個々の粒子の投影像の面積S、周囲長Lを求め、円形度4πS/Lを計算しその個数当りの平均値を計算することにより、また、平均粒度は一般的なレーザー回折・散乱式粒度分布測定装置(例えば、日機装株式会社製MT3300)により、界面活性剤(例えばダウケミカル社製TritonX-100)を加えた水に超音波分散した窒化アルミニウム系粉末の体積平均粒径を測定することにより、算出することができる。 The shape of the aluminum nitride-based powder particles is not particularly limited, but particles having a sphericity of 0.9 or more are preferable. The average particle size is preferably 5 to 200 μm. When the average particle size exceeds 200 μm, there is a problem that the powder particles stick out when mixed with a resin and formed into a sheet or the like. Here, the sphericity of the aluminum nitride-based powder particles is determined by determining the area S and peripheral length L of the projected image of the individual particles using an image analysis device (for example, Mophorogi G3 manufactured by Malvern) for the projected image of the powder. By calculating 4πS / L 2 and calculating the average value per unit number, the average particle size can be determined by using a general laser diffraction / scattering type particle size distribution measuring apparatus (eg, MT3300 manufactured by Nikkiso Co., Ltd.). It can be calculated by measuring the volume average particle size of the aluminum nitride-based powder ultrasonically dispersed in water to which (for example, Triton X-100 manufactured by Dow Chemical Co., Ltd.) is added.
 また窒化アルミニウム系粉末100質量%中、粒径2μm以下の窒化アルミニウム系粉末粒子の存在比率は、0.01~10質量%である事が望ましい。10質量%を超えて存在していると、窒化アルミニウム系粉末を樹脂と複合化した時の充填密度が低くなる。また、窒化アルミニウム系粉末と樹脂を混合した場合の粘度が高くなるため、充填量を多くする事が出来ず、高い熱伝導率を得ることが困難となる。上述の通り、形状については原則的に球状度が0.9以上の球状粒子であることが好ましいが、用途に応じて扁平状あるいはブロック状に調整しても良い。 The proportion of aluminum nitride powder particles having a particle diameter of 2 μm or less in 100 mass% of the aluminum nitride powder is desirably 0.01 to 10 mass%. If the amount is more than 10% by mass, the packing density when the aluminum nitride powder is compounded with the resin is low. In addition, since the viscosity when mixing the aluminum nitride powder and the resin becomes high, the filling amount can not be increased, and it becomes difficult to obtain a high thermal conductivity. As described above, the shape is preferably spherical particles having a sphericity of 0.9 or more in principle, but it may be adjusted to be flat or block depending on the application.
窒化アルミニウム系粉末の製造方法
 本発明の窒化アルミニウム系粉末の製造方法は、
(1)酸素を0.01~3質量%含有し、平均粒径が2μm以下の窒化アルミニウム原料粉末、希土類化合物粉末、有機バインダー、及び溶剤を混合してスラリー化する工程1、(2)前記工程1で得られたスラリーを造粒及び乾燥し、造粒物を得る工程2、及び
(3)前記工程2で得られた造粒物を脱脂し、還元性雰囲気中で1700~1900℃の温度条件で焼結する工程3、を有することを特徴とする。
Method for Producing Aluminum Nitride-Based Powder The method for producing an aluminum nitride-based powder of the present invention is
(1) A step of mixing an aluminum nitride raw material powder containing 0.01 to 3% by mass of oxygen and having an average particle diameter of 2 μm or less, a rare earth compound powder, an organic binder, and a solvent to form a slurry The slurry obtained in step 1 is granulated and dried to obtain a granulated product; and (3) the granulated material obtained in step 2 is degreased to a temperature of 1700 to 1900 ° C. in a reducing atmosphere. And Sintering at a temperature condition.
工程1
 工程1で使用する窒化アルミニウム原料粉末は、該窒化アルミニウム原料粉末100質量%中に、酸素を0.01~3質量%含む。酸素含有量が3質量%を超えると、熱伝導率の高い窒化アルミニウム系粉末を得ることが難しくなる。
Step 1
The aluminum nitride raw material powder used in step 1 contains 0.01 to 3% by mass of oxygen in 100% by mass of the aluminum nitride raw material powder. When the oxygen content exceeds 3% by mass, it is difficult to obtain an aluminum nitride-based powder having a high thermal conductivity.
 窒化アルミニウム原料粉末において、酸素は上記した含量が含まれていれば、その含まれる態様については特に限定はない。例えば、酸素の2質量%以上が窒化アルミニウムの表面に表面酸化膜(水和膜)として存在しているような態様を、挙げることができる。 In the aluminum nitride raw material powder, as long as the content of oxygen described above is contained, there is no particular limitation on the contained aspect. For example, an embodiment in which 2% by mass or more of oxygen is present as a surface oxide film (hydrated film) on the surface of aluminum nitride can be mentioned.
 また、工程1で使用する窒化アルミニウム原料粉末は、平均粒径2μm以下のものを使用する。平均粒径が2μmを超えるものを使用した場合、緻密な窒化アルミニウム系粉末を得ることが難しい。窒化アルミニウム原料粉末の平均粒径の下限値としては特に限定はないが、たとえば0.1μm以上が好ましい。 Moreover, as an aluminum nitride raw material powder used at the process 1, an average particle diameter of 2 micrometers or less is used. When the mean particle size exceeds 2 μm, it is difficult to obtain a compact aluminum nitride-based powder. The lower limit value of the average particle diameter of the aluminum nitride raw material powder is not particularly limited, but for example, 0.1 μm or more is preferable.
 窒化アルミニウム原料粉末は、分散のし易さ、造粒のし易さという観点から、工程1で得るスラリー100質量%中に、20~60質量%の含有量で添加することが好ましい。 The aluminum nitride raw material powder is preferably added at a content of 20 to 60% by mass in 100% by mass of the slurry obtained in step 1 from the viewpoint of easiness of dispersion and easiness of granulation.
 希土類化合物粉末としては、公知のものを広く使用することが可能である。特に限定はないが、具体的にはY、La、Nd、CeO、Dy、Sm、Scなどを挙げることができる。これは1種単独で使用してもよいし、2種以上を併用してもよい。粒径としては、平均粒径0.1~2μmのものを使用することが好ましい。 A wide variety of known rare earth compound powders can be used. Although there is no particular limitation, specifically, Y 2 O 3 , La 2 O 3 , Nd 2 O 3 , CeO 2 , Dy 2 O 3 , Sm 2 O 3 , Sc 2 O 3 and the like can be mentioned. These may be used alone or in combination of two or more. As the particle diameter, it is preferable to use one having an average particle diameter of 0.1 to 2 μm.
 また、焼結しやすくし、得られる窒化アルミニウム系粉末の熱伝導率を良好なものとするという観点から、希土類化合物粉末の添加量は、窒化アルミニウム原料粉末100質量部に対して、0.1~10質量部とするのが好ましく、0.1~5質量部とするのがより好ましく、0.3~3質量部とするのが更に好ましい。 Further, from the viewpoint of facilitating sintering and making the thermal conductivity of the obtained aluminum nitride-based powder good, the amount of the rare earth compound powder added is 0.1 parts by mass with respect to 100 parts by mass of the aluminum nitride raw material powder. The amount is preferably 10 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.3 to 3 parts by mass.
 有機バインダーとしては、窒化アルミニウム系粉末の製造に使用される公知の有機バインダーを広く使用することが可能である。具体的には、アクリル系樹脂、ワックス、ポリビニルブチラール系樹脂、ポリエステル系樹脂等を挙げることができ、勿論これらに限定されない。これらは1種単独で使用してもよいし、2種以上を併用してもよい。 As an organic binder, it is possible to use widely the well-known organic binder used for manufacture of aluminum nitride type powder. Specifically, acrylic resins, waxes, polyvinyl butyral resins, polyester resins and the like can be mentioned, and of course are not limited thereto. These may be used alone or in combination of two or more.
 有機バインダーの添加量は、使用する窒化アルミニウム原料粉末や希土類化合物粉末の種類や添加量によって適宜調整すればよく、例えば、窒化アルミニウム原料粉末100質量部に対して0.5~10質量部添加するのが好ましい。 The addition amount of the organic binder may be appropriately adjusted according to the kind and addition amount of the aluminum nitride raw material powder and the rare earth compound powder to be used, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the aluminum nitride raw material powder Is preferred.
 溶剤としても、窒化アルミニウム系粉末の製造に使用される公知の溶剤を広く使用することが可能である。具体的には、エステル系溶剤、ケトン系溶剤、芳香族系溶剤、エーテル系溶剤などを挙げることができ、勿論これらに限定されない。これらは1種単独で使用してもよいし、2種以上を併用してもよい。 As the solvent, it is possible to widely use known solvents used for producing aluminum nitride powders. Specific examples thereof include ester solvents, ketone solvents, aromatic solvents, ether solvents and the like, and of course are not limited thereto. These may be used alone or in combination of two or more.
 溶剤の添加量についても、使用する窒化アルミニウム原料粉末や希土類化合物粉末の種類や添加量によって適宜調整すればよく、例えば、窒化アルミニウム原料粉末100質量部に対して50~300質量部添加するのが好ましい。 The addition amount of the solvent may be appropriately adjusted according to the kind and addition amount of the aluminum nitride raw material powder and the rare earth compound powder used, for example, 50 to 300 parts by mass with respect to 100 parts by mass of the aluminum nitride raw material powder preferable.
 さらに、アルカリ土類金属化合物粉末を添加し、工程1のスラリーとしてもよい。かかるアルカリ土類金属化合物粉末の具体例としては、BeO、MgO、CaO、SrO、BaO、CaC、CaCO、CaCN等を挙げることができ、これらに限定されない。これらは1種単独で使用してもよいし、2種以上を併用してもよい。粒径としては、平均粒径0.1~2μmのものを使用することが好ましい。 Furthermore, alkaline earth metal compound powder may be added to make a slurry of step 1. Specific examples of the alkaline earth metal compound powder, BeO, mention may be made of MgO, CaO, SrO, BaO, and CaC 2, CaCO 3, CaCN 2, and the like. These may be used alone or in combination of two or more. As the particle diameter, it is preferable to use one having an average particle diameter of 0.1 to 2 μm.
 また、焼結しやすくし、得られる窒化アルミニウム系粉末の熱伝導率を良好なものとするという観点から、アルカリ土類金属化合物粉末の添加量は、窒化アルミニウム原料粉末100質量部に対して0.01~0.1質量部とするのが好ましく、0.01~0.08質量部とするのがより好ましい。 In addition, from the viewpoint of facilitating sintering and making the thermal conductivity of the obtained aluminum nitride-based powder good, the addition amount of the alkaline earth metal compound powder is 0 with respect to 100 parts by mass of the aluminum nitride raw material powder. The content is preferably from 0.1 to 0.1 parts by mass, and more preferably from 0.01 to 0.08 parts by mass.
 その他、工程1でスラリーを得るに際して、必要に応じてさらに、分散剤、チクソ剤、可塑剤、消泡剤などを加えてもよい。 In addition, when the slurry is obtained in Step 1, a dispersing agent, a thixo agent, a plasticizer, an antifoaming agent, and the like may be further added as necessary.
 スラリー化する方法としては、特に限定はなく、例えば、上記した各種の材料を混合し、ボールミル、ビーズミル、撹拌機等を使用して分散する方法を挙げることができる。 The method for forming a slurry is not particularly limited, and examples thereof include a method of mixing the various materials described above and dispersing them using a ball mill, a bead mill, a stirrer or the like.
工程2
 工程2では、工程1で得られたスラリーを造粒及び乾燥させる。造粒及び乾燥させるための方法としては特に限定はなく、公知の方法を広く採用することが可能である。具体的には、スプレードライや転動造粒などの方法を挙げることができる。
Step 2
In step 2, the slurry obtained in step 1 is granulated and dried. The method for granulation and drying is not particularly limited, and it is possible to adopt widely known methods. Specifically, methods such as spray drying and rolling granulation can be mentioned.
工程3
 工程3では、工程2で得られた造粒物を脱脂し、還元性雰囲気中で1700~1900度の温度条件で焼結を行う。
Step 3
In step 3, the granulated product obtained in step 2 is degreased and sintered under temperature conditions of 1700 to 1900 ° C. in a reducing atmosphere.
 脱脂の具体的な方法としては、例えば、空気中又は不活性雰囲気中で、400~600℃に加熱する方法が好ましい。かかる方法により、工程1において添加した有機バインダーの樹脂成分を効果的に除去することが可能であり、得られる脱脂体における、上記有機バインダー由来の残炭素量を、脱脂体100質量%中0.1~0.5質量%にまで減少させることができる。尚、脱脂体における有機バインダー由来の残炭素量が0.1質量%以上となることにより、得られる造粒物の脱脂体が崩れにくくなり、また残炭素量が0.5質量%以下となることにより、得られる窒化アルミニウム系粉末の密度が十分なものとなる。 As a specific method of degreasing, for example, a method of heating to 400 to 600 ° C. in air or in an inert atmosphere is preferable. By this method, it is possible to effectively remove the resin component of the organic binder added in step 1, and the amount of remaining carbon derived from the organic binder in the resulting degreased body is 0. It can be reduced to 1 to 0.5% by mass. In addition, when the amount of residual carbon derived from the organic binder in the defatted body becomes 0.1% by mass or more, the defatted body of the granulated product obtained becomes difficult to be broken, and the amount of remaining carbon becomes 0.5% by mass or less Thereby, the density of the obtained aluminum nitride-based powder is sufficient.
 さらに、得られた上記脱脂体を、還元性雰囲気中で1700~1900℃の温度条件にて焼結する。 Furthermore, the obtained degreased body is sintered at a temperature of 1700 to 1900 ° C. in a reducing atmosphere.
 還元性雰囲気とする方法としては、例えば、還元性の窒素雰囲気とする方法を挙げることができる。 As a method of setting it as a reducing atmosphere, the method of setting it as a reducing nitrogen atmosphere can be mentioned, for example.
 かかる還元性の窒素雰囲気とするための更に具体的な態様としては、炭素系材料を使用した焼結炉を用い、カーボン以外の材質(BN,WC,Mo,SiC,Siなど)で造粒粉末を包囲することにより、焼結体へのカーボン蒸気の浸入量を調節する方法を挙げることができる。 As a more specific embodiment for setting such a reducing nitrogen atmosphere, using a sintering furnace using a carbon-based material, it is possible to use materials other than carbon (BN, WC, Mo, SiC, Si 3 N 4 etc.) By surrounding granulated powder, the method of adjusting the amount of penetration of carbon vapor to a sintered compact can be mentioned.
 還元性の窒素雰囲気とするためのその他の具体的な態様としては、造粒粉末にカーボンまたは炭化物または有機物を添加し、焼結時に炭素を気化させる事により、弱還元性雰囲気を作る方法も挙げることができる。ここで、添加するカーボン量は脱脂体の段階で、原料窒化アルミニウム系粉末の酸素量100質量部に対し、70質量部以下である事が望ましい。 As another specific embodiment for setting a reducing nitrogen atmosphere, there is also mentioned a method of forming a weakly reducing atmosphere by adding carbon or carbide or an organic substance to granulated powder and vaporizing carbon at the time of sintering. be able to. Here, the amount of carbon to be added is preferably 70 parts by mass or less with respect to 100 parts by mass of the oxygen content of the raw material aluminum nitride-based powder at the stage of the degreased body.
 また、還元性の窒素雰囲気とするためのその他の具体的な態様としては、焼結を窒素と炭化水素の混合雰囲気中で行う方法も挙げることができる。雰囲気を還元性、好ましくは弱還元性にする事により、焼結窒化アルミニウム系粉末に含まれる酸素量を1質量%以下とすることができるため、過剰な液相生成による凝集を防止し、焼結粉末の熱伝導率を高くすることが可能となる。ここで、窒素中の炭化水素濃度は5体積%以下である事が望ましい。 Moreover, the method of performing sintering in the mixed atmosphere of nitrogen and hydrocarbon can also be mentioned as another specific aspect for setting it as a reducing nitrogen atmosphere. By making the atmosphere reductive, preferably weakly reductive, the amount of oxygen contained in the sintered aluminum nitride powder can be reduced to 1% by mass or less, thereby preventing aggregation due to excessive liquid phase formation, and firing It is possible to increase the thermal conductivity of the sintered powder. Here, the hydrocarbon concentration in nitrogen is preferably 5% by volume or less.
 また、焼結温度が1700℃に満たない場合、得られる窒化アルミニウム系粉末粒子の密度が不十分となるおそれがある。一方、焼結温度が1900℃を超えると、窒化アルミニウム系粉末粒子が凝集しやすくなる。かかる事情に鑑みて、焼結温度は1750~1850℃とするのがより好ましい。 In addition, when the sintering temperature is less than 1700 ° C., the density of the obtained aluminum nitride-based powder particles may be insufficient. On the other hand, when the sintering temperature exceeds 1900 ° C., the aluminum nitride-based powder particles are easily aggregated. In view of such circumstances, the sintering temperature is more preferably 1750 to 1850 ° C.
 以上、本発明の実施形態について説明したが、本発明はこうした例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these examples, and it is needless to say that the present invention can be practiced in various forms without departing from the scope of the present invention.
 以下、実施例に基づき、本発明の実施形態をより具体的に説明するが、本発明がこれらに限定されるものではない。 Hereinafter, the embodiments of the present invention will be more specifically described based on examples, but the present invention is not limited to these.
(実施例1~7及び比較例1~5)
 下記表1の配合で、ボールミルにて24時間混合することにより、スラリーを作製した。その後、得られたスラリーをスプレードライ法(装置:大川原化工機(株)製CDL20)により造粒・乾燥し、体積平均粒径70μmの造粒粉末を得た。この造粒粉末を、空気中400℃で1時間脱脂した後、内面にBN板を装着したカーボン容器に充填し、窒素中で3時間焼結した。得られた窒化アルミニウム系粉末の見掛け密度は、アルキメデス法により測定を行った。また、窒化アルミニウム系粉末に含まれる酸素量は、不活性ガス融解・非分散型赤外線吸収法酸素窒素分析装置(堀場製作所株式会社製、ENGA-920)により測定を行った。窒化アルミニウムに含まれるイットリウム量は、ICP(高周波誘導結合プラズマ)発光分光分析装置(Thermo Fisher Scientific社製、iCAP6100)により、試料を硫酸/硝酸溶液中でマイクロ波加熱し溶解した検体を測定した。
(Examples 1 to 7 and Comparative Examples 1 to 5)
A slurry was produced by mixing in a ball mill for 24 hours with the composition of Table 1 below. Thereafter, the obtained slurry was granulated and dried by a spray dry method (apparatus: CDL 20 manufactured by Ogawara Kakohki Co., Ltd.) to obtain a granulated powder having a volume average particle size of 70 μm. The granulated powder was degreased at 400 ° C. in air for 1 hour, then filled in a carbon container equipped with a BN plate on the inner surface, and sintered in nitrogen for 3 hours. The apparent density of the obtained aluminum nitride powder was measured by the Archimedes method. Further, the amount of oxygen contained in the aluminum nitride powder was measured by an inert gas melting / non-dispersive infrared absorption oxygen nitrogen analyzer (manufactured by Horiba, Ltd., ENGA-920). The amount of yttrium contained in aluminum nitride was measured by microwave heating a sample in a sulfuric acid / nitric acid solution using an ICP (high frequency inductively coupled plasma) emission spectrophotometer (iCAP 6100 manufactured by Thermo Fisher Scientific) to measure the dissolved sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、各実施例及び比較例において使用した材料に関する詳細は、表2の通りである。尚、実施例7及び比較例4の窒化アルミニウム原料粉末については表2中に表示していないが、東洋アルミニウム(株)製JDを製造する際に、粉砕の程度を調整することにより、粒度を変えたものを窒化アルミニウム原料粉末として使用した。 In addition, the detail regarding the material used in each Example and a comparative example is as Table 2. In addition, about the aluminum nitride raw material powder of Example 7 and Comparative Example 4, although it does not display in Table 2, when manufacturing Toyo Aluminum Co., Ltd. product JD, a particle size is adjusted by adjusting the grade of grinding. What was changed was used as an aluminum nitride raw material powder.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1の窒化アルミニウム系粉末を走査電子顕微鏡で観察したところ、図1のような、略球状の窒化アルミニウム系粉末粒子により構成されることが確認できた。 When the aluminum nitride powder of Example 1 was observed by a scanning electron microscope, it could be confirmed that the powder was composed of substantially spherical aluminum nitride powder particles as shown in FIG.
 同じく実施例1の窒化アルミニウム系粉末粒子の断面を、イオンミリングによって研削することにより観察したところ、図2に示すように、第1相成分である窒化アルミニウムの結晶粒の間に、第2相成分である複合金属酸化物が点在している様子が確認され、その大きさは最長径として1μm以下のものが100%であった。一方、比較例1の窒化アルミニウム系粉末粒子の断面を観察したところ、図3に示すように、最長径1μm以下の第2相成分の個数が60%となっている様子が確認された。 Similarly, when the cross section of the aluminum nitride-based powder particles of Example 1 was observed by grinding by ion milling, as shown in FIG. 2, the second phase was interposed between the crystal grains of aluminum nitride as the first phase component. It was confirmed that the component composite metal oxides were scattered, and the maximum diameter of 1 μm or less was 100%. On the other hand, when the cross section of the aluminum nitride-based powder particles of Comparative Example 1 was observed, it was confirmed that the number of second phase components having a longest diameter of 1 μm or less was 60% as shown in FIG.
凝集評価試験
 各実施例及び各比較例の窒化アルミニウム系粉末の凝集の有無については、粒度を測定することによって評価した。具体的には、一次粒子に解砕し、解砕語後の粉末の粒度をレーザー回折法により測定し、体積平均粒径が80μm以下の場合に、凝集が見られないと判断した。
Aggregation Evaluation Test The presence or absence of aggregation of the aluminum nitride-based powder of each Example and each Comparative Example was evaluated by measuring the particle size. Specifically, the particles were crushed into primary particles, and the particle size of the powder after crushing was measured by a laser diffraction method, and it was judged that no aggregation was observed when the volume average particle diameter was 80 μm or less.
熱伝導率評価試験
 各実施例及び各比較例の窒化アルミニウム系粉末を、シリコーン樹脂(信越化学株式会社製、KE-1013)に、65体積%配合し、混合攪拌及び脱泡を行った後に、厚み3mmのシートを作製し、その熱伝導率を、熱伝導率測定装置(C-THERMTECHNOLOGIES社製、TCi)により測定した。
Thermal conductivity evaluation test After mixing the aluminum nitride-based powder of each Example and each Comparative Example with a silicone resin (KE-1013 manufactured by Shin-Etsu Chemical Co., Ltd.) at 65% by volume and performing mixing stirring and defoaming, A sheet having a thickness of 3 mm was produced, and the thermal conductivity was measured by a thermal conductivity measuring device (TCi manufactured by C-THERMTECHNOLOGIES).
 表3に示すように、各実施例の窒化アルミニウム系粉末は、優れた熱伝導率を有したうえで、なお且つ粒子同士の凝集も見られないことが確認できた。 As shown in Table 3, it was confirmed that the aluminum nitride-based powder of each example had excellent thermal conductivity, and that no aggregation of particles was also observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  酸素及び希土類元素を含む窒化アルミニウム系粉末であって、
     該窒化アルミニウム系粉末の見掛け密度は3.2g/cm以上であり、
     前記酸素の含有量は、前記窒化アルミニウム系粉末100質量%中に0.01~1質量%であり、
     前記希土類元素の含有量(M)と前記酸素の含有量(M)の質量比(M/M)は0.1~1.5であることを特徴とする、窒化アルミニウム系粉末。
    Aluminum nitride powder containing oxygen and rare earth elements,
    The apparent density of the aluminum nitride powder is 3.2 g / cm 3 or more,
    The content of the oxygen is 0.01 to 1% by mass in 100% by mass of the aluminum nitride-based powder,
    Aluminum nitride powder characterized in that a mass ratio (M R / M O 2 ) of the content (M R ) of the rare earth element to the content (M O 2 ) of the oxygen is 0.1 to 1.5. .
  2.  前記希土類元素はイットリウムである、請求項1に記載の窒化アルミニウム系粉末。 The aluminum nitride-based powder according to claim 1, wherein the rare earth element is yttrium.
  3.  さらにアルカリ土類金属元素を、前記窒化アルミニウム系粉末に含まれる前記アルカリ土類金属元素以外の成分100質量部に対して0.01~0.05質量部含む、請求項1又は2に記載の窒化アルミニウム系粉末。 The alkaline earth metal element according to claim 1 or 2, further comprising 0.01 to 0.05 parts by mass with respect to 100 parts by mass of components other than the alkaline earth metal element contained in the aluminum nitride-based powder. Aluminum nitride powder.
  4.  窒化アルミニウム系粉末における窒化アルミニウム系粉末粒子は、
     窒化アルミニウム結晶粒である第1相成分と、
     複合金属酸化物である第2相成分とを含んで構成され、
     前記第2相成分全体の95%以上が最長径1μm以下である、
     請求項1~3の何れか1項に記載の窒化アルミニウム系粉末。
    The aluminum nitride-based powder particles in the aluminum nitride-based powder are
    A first phase component which is an aluminum nitride crystal grain,
    And comprising a second phase component which is a composite metal oxide,
    95% or more of the entire second phase component has a longest diameter of 1 μm or less,
    The aluminum nitride-based powder according to any one of claims 1 to 3.
  5.  前記複合金属酸化物は、
     少なくともアルミニウム及び希土類を含む複合金属酸化物である、請求項4に記載の窒化アルミニウム系粉末。
    The composite metal oxide is
    The aluminum nitride-based powder according to claim 4, which is a composite metal oxide containing at least aluminum and a rare earth.
  6. (1)酸素を0.01~3質量%含有し、平均粒径が2μm以下の窒化アルミニウム原料粉末、希土類化合物粉末、有機バインダー、及び溶剤を混合してスラリー化する工程1、(2)前記工程1で得られたスラリーを造粒及び乾燥し、造粒物を得る工程2、及び
    (3)前記工程2で得られた造粒物を脱脂し、還元性雰囲気中で1700~1900℃の温度条件で焼結する工程3、
     を有することを特徴とする窒化アルミニウム系粉末の製造方法。
    (1) A step of mixing an aluminum nitride raw material powder containing 0.01 to 3% by mass of oxygen and having an average particle diameter of 2 μm or less, a rare earth compound powder, an organic binder, and a solvent to form a slurry The slurry obtained in step 1 is granulated and dried to obtain a granulated product; and (3) the granulated material obtained in step 2 is degreased to a temperature of 1700 to 1900 ° C. in a reducing atmosphere. Step 3 of sintering at temperature conditions
    A method for producing an aluminum nitride-based powder, comprising:
  7.  前記工程1において、さらにアルカリ土類金属化合物粉末を混合してスラリー化する、請求項6に記載の製造方法。 7. The method according to claim 6, wherein alkaline earth metal compound powder is further mixed and slurried in the step 1.
PCT/JP2018/027177 2017-07-21 2018-07-19 Aluminum nitride powder and production method therefor WO2019017451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-142159 2017-07-21
JP2017142159A JP6921671B2 (en) 2017-07-21 2017-07-21 Aluminum nitride based powder and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2019017451A1 true WO2019017451A1 (en) 2019-01-24

Family

ID=65016213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027177 WO2019017451A1 (en) 2017-07-21 2018-07-19 Aluminum nitride powder and production method therefor

Country Status (2)

Country Link
JP (1) JP6921671B2 (en)
WO (1) WO2019017451A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589021B1 (en) 2018-08-06 2019-10-09 株式会社Maruwa Spherical aluminum nitride powder and method for producing spherical aluminum nitride powder
CN112543743B (en) * 2018-08-06 2022-03-29 丸和公司 Spherical aluminum nitride powder and method for producing same
JP7562077B2 (en) 2020-06-17 2024-10-07 株式会社豊田中央研究所 Thermally conductive filler, thermally conductive composite material using same, and manufacturing method thereof
JP7149379B1 (en) * 2021-06-11 2022-10-06 株式会社Maruwa Spherical aluminum nitride powder and its production method
KR102626997B1 (en) * 2021-09-06 2024-01-23 (주) 네올 Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120214A (en) * 1988-10-28 1990-05-08 Sumitomo Chem Co Ltd Production of aluminum nitride powder
JP2003267708A (en) * 2002-03-12 2003-09-25 Tokuyama Corp Method of manufacturing aluminum nitride sintered powder
JP2006206393A (en) * 2005-01-28 2006-08-10 Mitsui Chemicals Inc Spherical aluminum nitride sintered powder, its manufacturing method, and its use
JP2013060323A (en) * 2011-09-13 2013-04-04 Tokuyama Corp Method of manufacturing aluminum nitride sintered granule
WO2014123247A1 (en) * 2013-02-08 2014-08-14 株式会社トクヤマ Aluminum nitride powder
JP2017178751A (en) * 2016-03-31 2017-10-05 新日鉄住金マテリアルズ株式会社 Spherical ain particles and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120214A (en) * 1988-10-28 1990-05-08 Sumitomo Chem Co Ltd Production of aluminum nitride powder
JP2003267708A (en) * 2002-03-12 2003-09-25 Tokuyama Corp Method of manufacturing aluminum nitride sintered powder
JP2006206393A (en) * 2005-01-28 2006-08-10 Mitsui Chemicals Inc Spherical aluminum nitride sintered powder, its manufacturing method, and its use
JP2013060323A (en) * 2011-09-13 2013-04-04 Tokuyama Corp Method of manufacturing aluminum nitride sintered granule
WO2014123247A1 (en) * 2013-02-08 2014-08-14 株式会社トクヤマ Aluminum nitride powder
JP2017178751A (en) * 2016-03-31 2017-10-05 新日鉄住金マテリアルズ株式会社 Spherical ain particles and manufacturing method therefor

Also Published As

Publication number Publication date
JP6921671B2 (en) 2021-08-18
JP2019019045A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2019017451A1 (en) Aluminum nitride powder and production method therefor
JP7069314B2 (en) Bulked boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
JP4750220B2 (en) Hexagonal boron nitride powder and method for producing the same
EP2868641B1 (en) Sintered spherical bn particles with concave part, method for producing same, and polymer material comprising them
TWI415980B (en) Α Aluminum oxide powder
KR101845106B1 (en) Spherical aluminum nitride powder
US10766783B2 (en) Magnesium oxide-containing spinel powder and method for producing same
WO2006011317A1 (en) α-SIALON POWDER AND PROCESS FOR PRODUCING THE SAME
EP3135746B1 (en) Method for producing nitride fluorescent material
JP4618255B2 (en) Sialon phosphor particles and manufacturing method thereof
TW201425268A (en) Method for producing conductive mayenite compound having high-electron-density
Kanai et al. Hot‐Pressing Method to Consolidate Gd 3 (Al, Ga) 5 O 12: Ce Garnet Scintillator Powder for use in an X‐ray CT Detector
JP2006256940A (en) Method of manufacturing aluminum nitride powder
EP3560905A1 (en) Transparent aln sintered body, and production method therefor
JP5258650B2 (en) Method for producing aluminum nitride sintered body
JP7464767B2 (en) Aluminum nitride powder and its manufacturing method
JP4829524B2 (en) Strontium aluminate-based phosphorescent material and method for producing the same
WO2017081842A1 (en) Nanostructure and method for producing same
WO2022163650A1 (en) Hexagonal boron nitride sintered body and method for producing same
EP4317057A1 (en) Method for producing silicon nitride sinterned body
WO2005103197A1 (en) Strontium aluminate light storing material and process for producing the same
WO2024210054A1 (en) Aluminum nitride powder
JP2023058634A (en) boron nitride powder
JP2901135B2 (en) Semiconductor device
KR20210009218A (en) Method of preparing spherical shape aluminum nitride powder and spherical shape aluminum nitride powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835404

Country of ref document: EP

Kind code of ref document: A1