WO2019017357A1 - Vehicle-driving-torque control device - Google Patents

Vehicle-driving-torque control device Download PDF

Info

Publication number
WO2019017357A1
WO2019017357A1 PCT/JP2018/026787 JP2018026787W WO2019017357A1 WO 2019017357 A1 WO2019017357 A1 WO 2019017357A1 JP 2018026787 W JP2018026787 W JP 2018026787W WO 2019017357 A1 WO2019017357 A1 WO 2019017357A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
drive
vehicle
wheel
braking
Prior art date
Application number
PCT/JP2018/026787
Other languages
French (fr)
Japanese (ja)
Inventor
敏 藤末
佑介 竹谷
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2019017357A1 publication Critical patent/WO2019017357A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a drive torque control device for a vehicle.
  • Patent Document 1 for the purpose of “effectively suppressing the influence of the brake torque of the drive source on the brake control”, it acts on the left and right front wheels driven by the output of the engine and the wheels according to the state of the vehicle. It is described that “a hydraulic unit for controlling the braking force and a control unit for controlling the hydraulic unit are provided, and the brake torque of the engine is reduced when the hydraulic unit applies the braking force to the engine.”
  • ABS control also referred to as " anti-skid control ”
  • anti-skid control the engine torque request value (the target engine torque for reducing the engine brake torque) is determined to be "none”. It is described that the engine torque request value is determined to "0 Nm” (see Example 1) if the anti-skid control is in the affirmative.
  • the engine torque request value is determined to be "none".
  • the drive wheel average speed is determined, and this value is compared with the target slip ratio speed to which the offset value is added or subtracted.
  • the engine torque request value is set as the engine brake torque according to the difference between the target slip rate speed and the average speed of the driving wheel.
  • the engine torque request value is set as an acceleration torque according to the difference between the driving wheel average speed and the target slip ratio speed.
  • the engine brake is a braking action that occurs when the accelerator pedal is released and the output of the engine is reduced.
  • the engine output is reduced from the state where the engine output and the traveling resistance are balanced (that is, the constant speed traveling state) while the vehicle is traveling, mechanical friction loss of the engine, pumping loss (fluid resistance of intake and exhaust)
  • the accessory drive loss or the like acts as a drag of the engine, and a decelerating force (that is, a braking force of wheels) is generated in the vehicle to act as an engine brake.
  • a decelerating force that is, a braking force of wheels
  • the power transmission mechanism such as the transmission, the drive shaft, etc. are factors that generate the braking force on the wheels.
  • the engine brake is compensated when performing antiskid control, but not compensated when antiskid control is not implemented. For example, on a road surface with a very low coefficient of friction (such as a frozen road), it may happen that the deceleration slip of the wheel becomes excessive only by the engine brake. Even in such a situation, it is desirable that the wheel slip be properly suppressed.
  • the responsiveness differs between the drive source (engine) and the braking device. That is, the generation of the driving torque due to the driving source is relatively slow, and the generation of the braking torque by the braking device is relatively fast. For this reason, when the driving torque is increased or decreased according to the wheel slip state during antiskid control controlled based on the wheel slip, there is a concern about interference with the antiskid control. During anti-skid control, the control interference must be avoided.
  • the object of the present invention is to prevent the reduction slip caused by the drive source etc. from being compensated at all times not only during braking but also at all times, and interference with braking control such as anti-skid control is reliably avoided. It is to provide what you get.
  • the braking control device for a vehicle comprises a drive source (PW) for applying a drive torque (Dq) for accelerating the vehicle (VH) to the drive wheels (WD), and a braking torque (decelerating the vehicle (VH)
  • deceleration of the drive wheel (WD) A controller (ECU) that calculates a required torque (Dr) that requires an increase in the drive torque (Dq) so as to suppress slip, and controls the drive source (PW) based on the required torque (Dr) And.
  • the controller may slip the driving wheel (WD) based on the speed (Vw) when the actuator (BR) is not operating.
  • (Sl) is calculated
  • the required torque (Dr) is calculated based on the slip amount (Sl)
  • the required torque (Dr) is calculated as the slip
  • It is configured to determine a compensation value (db) that does not depend on the quantity (Sl). For example, a preset constant of “0 (zero)” or more is adopted as the compensation value (db).
  • the drive torque increase control is executed based on the slip amount Sl. Therefore, excessive deceleration slip due to the drive source PW can be reliably suppressed.
  • drive torque increase control is executed based on the compensation value db which does not depend on the slip amount Sl. As a result, control interference between braking control such as antiskid control and drive torque increase control can be reliably avoided.
  • FIG. 1 is an overall configuration diagram of a vehicle equipped with a drive torque control device CS of a vehicle according to the present invention. It is a functional block diagram for explaining arithmetic processing of drive torque increase control. It is a time-series diagram for explaining restriction processing block LS. It is the schematic for demonstrating an effect
  • the drive torque control device CS according to the present invention will be described with reference to the overall configuration diagram of FIG. In the following description, components having the same symbol, such as “ECU”, etc., arithmetic processing, signals, characteristics, and values have the same functions.
  • the vehicle VH is provided with a drive source (power unit) PW that generates a drive force, and a transmission (transmission) TR connected to the drive source PW.
  • the drive source PW is an internal combustion engine (so-called engine) or an electric motor.
  • the output (drive torque) Dq of the drive source PW is transmitted to each wheel WH by the transmission TR.
  • the drive torque Dq which is the output of the drive source PW
  • the wheel WH to which the drive torque Dq from the drive source PW is transmitted is referred to as "drive wheel WD".
  • the wheel WH to which the drive torque Dq from the drive source PW is transmitted is referred to as "drive wheel WD".
  • a so-called four-wheel drive system is adopted. That is, all the four wheels WH are drive wheels WD.
  • the driving torque Dq is appropriately distributed and transmitted to the front wheels and the rear wheels. Since the drive source PW and the transmission TR are provided on the front wheel side, the drive torque Dq is transmitted to the drive wheel WD at the rear of the vehicle via the propeller shaft SC.
  • the drive torque Dq of the front wheels is transmitted to the front left and right drive wheels WD via the front wheel differential gear DZ and the front wheel drive shaft SZ.
  • the drive torque Dq of the rear wheel is transmitted to the rear left and right drive wheels WD via the rear wheel differential gear DK and the rear wheel drive shaft SK.
  • the transmission TR includes a center differential gear DC, and the front wheel drive torque and the rear wheel drive torque are appropriately adjusted according to the traveling state of the vehicle VH.
  • the center differential gear DC is controlled by a controller ECU (shift signal Hs).
  • the drive source PW (for example, an internal combustion engine) is provided with a throttle sensor TH that detects a throttle opening Th, an injection amount sensor FI that detects a fuel injection amount Fi, and a rotation speed sensor NE that detects a driving rotation speed Ne.
  • the transmission (transmission) TR is provided with a gear position sensor GP for detecting a transmission gear ratio (gear position) Gp.
  • the throttle opening degree Th, the fuel injection amount Fi, the drive rotational speed Ne, and the gear position Gp are used to calculate the output (drive torque) from the powertrain (generally called drive source PW and transmission TR) of the vehicle VH. Will be adopted.
  • the drive source PW is an electric motor for driving
  • the amount of energization for example, current value
  • the vehicle VH includes an acceleration operation member AP, an acceleration operation amount sensor AA, a braking operation member BP, a braking operation amount sensor BA, a wheel speed sensor VW, a longitudinal acceleration sensor GX, a controller ECU, and a braking actuator (simply, “actuator” Also known as BR).
  • the four wheels WH (drive wheels WD) of the vehicle VH are provided with a brake caliper CP, a wheel cylinder WC, a rotating member KT, and a friction member MS.
  • the actuator BR and the wheel cylinder WC are connected via a braking pipe HK.
  • the acceleration operation member for example, an accelerator pedal
  • the acceleration operation member AP is a member operated by the driver to accelerate the vehicle VH and travel at a constant speed.
  • the drive torque (torque for accelerating the vehicle) Dq for the wheel WH is adjusted, and a drive force is generated on the wheel WH.
  • the acceleration operation amount sensor AA is provided on the acceleration operation member AP.
  • the amount of operation Aa of the acceleration operation member (accelerator pedal) AP by the driver is detected by the acceleration operation amount sensor AA.
  • the acceleration operation amount sensor AA at least one of an operation displacement sensor that detects an operation displacement of the acceleration operation member AP and an operation force sensor that detects an operation force of the acceleration operation member AP is employed. That is, at least one of the operation displacement of the acceleration operation member AP and the operation force of the acceleration operation member AP is detected as the acceleration operation amount Aa by the acceleration operation amount sensor AA.
  • the acceleration operation amount Aa is input to the controller ECU (in particular, the drive controller ECP).
  • the brake operation member (for example, the brake pedal) BP is a member operated by the driver to decelerate the vehicle VH.
  • the braking operation member BP By operating the braking operation member BP, the braking torque Bq for the wheel WH is adjusted, and a braking force is generated on the wheel WH.
  • a braking operation amount sensor BA is provided on the braking operation member BP.
  • the amount of operation Ba of the brake operation member (brake pedal) BP by the driver is detected by the brake operation amount sensor BA.
  • the brake operation amount sensor BA a hydraulic pressure sensor that detects the pressure of the master cylinder MC, an operation displacement sensor that detects an operation displacement of the brake operation member BP, and an operation force sensor that detects an operation force of the brake operation member BP. At least one of is adopted. That is, at least one of the pressure of the master cylinder MC, the operation displacement of the braking operation member BP, and the operation force of the braking operation member BP is detected by the braking operation amount sensor BA as the braking operation amount Ba.
  • the braking operation amount Ba is input to the controller ECU (in particular, the braking controller ECB).
  • a braking operation switch BS is provided on the braking operation member BP.
  • the braking operation switch BS detects the presence or absence of the operation of the braking operation member BP by the driver.
  • the braking operation switch BS outputs an off signal as the operation signal Bs.
  • an ON signal is output as the operation signal Bs.
  • the braking operation signal Bs is input to a controller ECU (in particular, a braking controller ECB).
  • a wheel cylinder WC is provided in the brake caliper (also simply referred to as "caliper") CP.
  • the piston in the wheel cylinder WC is moved (advanced or retracted) with respect to the rotating member KT.
  • the friction member for example, the brake pad
  • the rotating member KT and the wheel WH are fixed so as to rotate integrally. Therefore, a braking torque Bq (as a result, a braking force) is generated on the wheel WH by the frictional force generated by the pressing force.
  • Each of the wheels WH of the vehicle VH is provided with a wheel speed sensor VW.
  • the four wheel speed sensors VW detect the speeds Vw of the four wheels.
  • the wheel speed Vw is input to a controller ECU (in particular, a braking controller ECB).
  • a longitudinal acceleration sensor GX is provided on the vehicle body (spring upper portion) of the vehicle VH.
  • the longitudinal acceleration sensor GX detects a vehicle acceleration (also referred to as “longitudinal acceleration”) Gx in the longitudinal direction (forward direction) of the vehicle VH.
  • vehicle acceleration Gx is represented by a positive (plus) value when the vehicle VH is accelerating in the forward direction, and a negative (minus) value when the vehicle VH is decelerating in the forward direction.
  • the controller also referred to as “electronic control unit” ECU is configured of an electric circuit board on which a microprocessor or the like is mounted, and a control algorithm programmed in the microprocessor.
  • the controller ECU includes a controller ECB (also referred to as “brake controller") for the braking actuator BR, a controller ECP (also referred to as “drive controller”) for the drive source PW, and a controller ECT ("gear shift controller”) for the transmission TR. Also included).
  • the brake controller ECB, the drive controller ECP, and the shift controller ECT are connected by a communication bus CM so that information such as a sensor signal and an internal calculation value may be shared.
  • the controller ECU is a generic name of the braking controller ECB, the drive controller ECP, and the shift controller ECT.
  • the controller ECU reduces excessive deceleration slip (slip in the wheel rotational direction) of the wheel WH based on the detection signal (wheel speed) Vw of the wheel speed sensor VW, and tends to lock the wheel WH.
  • Anti-skid control is performed to prevent Specifically, based on the wheel speed Vw, a deceleration slip amount S1 that represents the deceleration slip degree of each wheel WH is calculated. Then, a braking signal Br for adjusting the fluid pressure in the wheel cylinder WC is calculated based on the reduction slip amount Sl, and is transmitted to the actuator BR.
  • the drive torque Dq of the drive wheel WD is controlled based on the acceleration operation amount Aa.
  • the drive source PW is controlled to adjust the drive torque Dq.
  • the drive source PW is an internal combustion engine
  • the fuel injection amount Fi and the throttle opening degree Th are controlled based on the drive signal Pw.
  • the drive source PW is an electric motor
  • the amount of energization (supply current) to the electric motor is controlled based on the drive signal Pw.
  • control is performed to reduce the resistance by the drive source PW so as to reduce the excessive reduction slip of the drive wheel WD.
  • the drive wheel WD is braked (so-called engine brake).
  • the engine output driving torque Dq
  • the traveling resistance of the vehicle VH are balanced. From this state, when the engine output is reduced, mechanical friction loss, pumping loss (fluid resistance of intake and exhaust), accessory drive loss, etc. of the engine act as drag (drag torque) of the engine and act on the drive wheel WD.
  • the braking torque Bq acts.
  • the braking torque Bq may cause an excessive deceleration slip on the drive wheel WD.
  • the output of the drive source PW (that is, the drive torque Dq) is increased so as to suppress such deceleration slip of the drive wheel WD.
  • the control is called "drive torque increase control".
  • the required torque Dr calculated based on the reduction slip amount Sl in the braking controller ECB is transmitted to the drive controller ECP, and the drive controller ECP achieves the required torque Dr by the drive controller ECP.
  • the drive signal Pw is formed, and the drive source PW is controlled based on the drive signal Pw.
  • the center differential gear DC is controlled by the controller ECU (in particular, the shift controller ECT) based on the traveling state of the vehicle VH, and the driving force distribution control is executed (that is, the driving torque Dq is the front and rear driving wheels WD). As appropriate).
  • the controller ECU in particular, the shift controller ECT
  • the driving force distribution control is executed (that is, the driving torque Dq is the front and rear driving wheels WD).
  • the clutch of the center differential gear DC is engaged, and the four wheels WH of the vehicle VH are drive wheels WD.
  • the clutch is brought into the released state, and is brought into a so-called two-wheel drive state.
  • a braking actuator BR is provided on the vehicle body of the vehicle VH.
  • the actuator BR has a master cylinder MC that generates a braking fluid pressure according to the operating force of the braking operation member (brake pedal) BP, and a hydraulic unit HU that can independently adjust the braking fluid pressure supplied to the wheel cylinder WC.
  • Master cylinder MC is mechanically connected to brake operation member BP via a brake rod.
  • the master cylinder MC converts the operating force (brake pedal depression force) of the brake operating member BP into the pressure of the braking fluid.
  • a hydraulic unit HU is provided between the master cylinder MC and the wheel cylinder WC. The hydraulic unit HU is controlled by a braking signal Br from the controller ECB.
  • the hydraulic unit HU includes a plurality of solenoid valves (for example, two-position valves), a low pressure reservoir, a hydraulic pump, and an electric motor.
  • the calculation processing of the drive torque increase control will be described with reference to the functional block diagram of FIG.
  • the braking torque Bq is applied to the drive wheel WD by the traveling resistance (for example, engine brake) by the drive source PW, and the drive wheel WD tends to lock (that is, generation of excessive deceleration slip).
  • the drive torque Dq of the drive source PW is increased.
  • the drive torque increase control includes two different controls respectively corresponding to non-braking and braking.
  • the drive torque increase control is performed by the vehicle speed calculation block VX, slip amount calculation block SL, vehicle acceleration calculation block GS, command torque calculation block DS, limit processing block LS, braking determination block FB, compensation value setting block DB, selection processing block SR And a drive torque control block DQ.
  • the traveling speed (vehicle speed) Vx of the vehicle VH is calculated.
  • the wheel speed Vw is detected by the wheel speed sensor VW of each wheel WH, and the vehicle speed Vx is calculated based on the wheel speed Vw.
  • the vehicle speed Vx is determined based on the slowest one of the wheel speeds Vw.
  • the vehicle speed Vx is determined based on the fastest one of the wheel speeds Vw.
  • the reduction slip amount Sl is calculated based on the vehicle speed Vx and the wheel speed Vw.
  • the deceleration slip amount Sl represents the degree of deceleration slip of the wheel WH and is a control variable (state amount) in the drive torque increase control.
  • the "deceleration slip” is a slip in the rotational direction of the wheel WH, and in the case where the deceleration slip is occurring, the state is "Vw ⁇ Vx".
  • the wheel slip reverse to a deceleration slip is "acceleration slip", and when this acceleration slip has generate
  • the vehicle body acceleration Gs is calculated based on the vehicle body speed Vx. Specifically, the vehicle speed Vx is time-differentiated to calculate the vehicle acceleration Gs. In addition, the vehicle body acceleration Gs may be determined based on the detection result of the longitudinal acceleration sensor GX (longitudinal acceleration Gx). When the longitudinal acceleration Gx is adopted, the longitudinal acceleration Gx is determined as the vehicle body acceleration Gs as it is. In the vehicle body acceleration calculation block GS, the vehicle body acceleration Gs is calculated based on at least one of the vehicle body speed Vx and the longitudinal acceleration Gx. The vehicle body acceleration Gs is represented by a negative sign when the vehicle VH is in a decelerating state, and is represented by a positive sign when the vehicle VH is in an accelerating state.
  • the command torque Ds is calculated based on the reduction slip amount Sl and the calculation map Zds.
  • the command torque Ds is a target value for commanding the drive source PW to increase the drive torque Dq.
  • the command torque Ds is calculated to increase monotonously according to the increase of the slip amount Sl.
  • the slip amount Sl is less than the predetermined slip sx
  • the command torque Ds is determined as a value smaller than "0" (that is, to request the braking torque)
  • the slip amount Sl is larger than the predetermined slip sx Is determined as a value larger than “0” (that is, to request a drive torque).
  • the predetermined slip sx is a constant set in advance.
  • a limited command torque (referred to as “limit command torque”) Dss is calculated based on the command torque Ds and the vehicle body acceleration Gs.
  • the limit command torque Dss is obtained by limiting the command torque Ds from the command torque calculation block DS.
  • it is determined based on the vehicle body acceleration Gs whether the vehicle VH is in the decelerating state or in the accelerating state. Then, at the time point when the vehicle VH changes from the decelerating state to the accelerating state (corresponding operation cycle), the command torque Ds is held.
  • a value ds (referred to as “transition torque”) of the command torque Ds at the time when the vehicle acceleration Gs having a negative sign changes to “0” (referred to as “transition time”) is stored. Then, after the transition time point, when the command torque Ds becomes larger than the transition torque ds, the command torque Ds is limited to the transition torque ds, and the limited command torque Dss is calculated. The limit command torque Dss is output to the selection processing block SR.
  • a determination flag Fb for displaying the result is determined as the determination result of the presence or absence of braking. For example, when the operation amount Ba is equal to or more than the predetermined value bo, “during braking” is affirmed, and “1 (with braking)” is output as the determination flag Fb. On the other hand, if “Ba ⁇ bo”, “during braking” is denied, and “0 (non-braking)” is output as the determination flag Fb.
  • the compensation value db is output to the selection processing block SR.
  • the compensation value db is set as a preset predetermined value (constant) which is equal to or greater than “0 (zero)”.
  • the compensation value db may be set based on the transition torque ds (corresponding to “transition value”).
  • the compensation value db is a value that does not depend on the slip amount Sl.
  • the compensation value db is determined to be equal to the transition value ds.
  • the compensation value db may be determined in consideration of a predetermined value corresponding to the road surface friction coefficient as the transition value ds.
  • one of limit instruction torque Dss and compensation value db is selected based on determination flag Fb.
  • the limit instructing torque Dss is selected as the required torque Dr.
  • the compensation value db is adopted as the required torque Dr.
  • the required torque Dr is an instruction value that requests the drive controller ECP to increase the drive torque Dq.
  • the arithmetic processing from the vehicle speed calculation block VX to the selection processing block SR is programmed in the braking controller ECB.
  • the drive torque Dq is determined based on the acceleration operation amount Aa at the normal time (when the drive torque increase control is not performed). Then, the drive signal Pw is calculated so that the drive torque Dq is achieved, and the drive source PW is controlled based on the drive signal Pw. Specifically, the throttle opening degree Th and the fuel injection amount Fi are controlled based on the drive signal Pw.
  • the drive torque increase control is executed, the required torque Dr is received by the drive controller ECP via the communication bus CM.
  • the drive signal Pw is calculated based on the required torque Dr so that the drive torque Dq is increased.
  • the drive source PW is controlled (increased adjustment). Since the drive torque Dq is increased by the required torque Dr, the traveling resistance by the drive source PW is reduced, and the deceleration slip of the drive wheel WD is reduced. As a result, the grip of the drive wheel WD is recovered.
  • the restriction processing block LS may be omitted.
  • the command torque Ds is input to the selection processing block SR instead of the limit command torque Dss.
  • the required torque Dr is determined based on the slip amount Sl at the time of non-braking, so that the deceleration slip due to the resistance of the drive source PW can be suitably suppressed.
  • the compensation is not dependent on the slip amount Sl (that is, a value independent of the slip amount Sl)
  • the value db is determined as the required torque Dr.
  • Braking control such as anti-skid control and vehicle stabilization control is executed based on the slip amount Sl as in the drive torque increase control.
  • the restriction processing block LS will be described with reference to the time-series diagram of FIG.
  • the acceleration operation member for example, an accelerator pedal
  • AP the acceleration operation member
  • the command torque calculation block DS the command torque Ds is calculated based on the slip amount Sl, and the command torque Ds is limited by the limit processing block LS.
  • the command torque Ds after the limit is expressed as "limit command torque Dss”. Be done.
  • the limit command torque Dss is a final request signal for the drive torque control block DQ.
  • the acceleration operation member AP is returned, and the braking torque Bq by the traveling resistance (for example, the engine brake) by the drive source PW is suddenly increased.
  • the deceleration slip amount Sl of the drive wheel WD gradually increases from time t0. That is, the difference between the vehicle speed Vx and the wheel speed Vw starts to gradually increase.
  • the slip amount Sl which is a control variable exceeds its start threshold value, so control execution is started and the command torque Ds increases to the value d1 according to the calculation map Zds. Be done. Since the drive torque Dq of the drive source PW is increased based on the command torque Ds, the decelerating motion of the drive wheel WD is alleviated, and the decelerating slip amount Sl is gradually decreased although it is increased once. At this time, since the braking torque Bq from the drive source PW acts on the vehicle VH, the vehicle VH is in a decelerating state, and the vehicle body acceleration Gs is a negative (minus) value.
  • the vehicle body acceleration Gs changes from a negative sign to "0" or a positive sign. That is, at time t3, the vehicle VH changes from the decelerating state to the accelerating state.
  • the transition torque ds is a value corresponding to the frictional resistance of the transmission TR or the like, and a value of “0” or more (not the braking torque , Driving torque).
  • the limit command torque Dss is held at the transition torque ds.
  • the traveling resistance caused by the drive source PW and the transmission TR is suitably compensated, and the slip state of the drive wheel WD can be appropriately suppressed.
  • the drive torque Dq generated by the drive source PW includes a time delay, the drive torque Dq becomes oscillatory due to the time delay by maintaining the instruction torque Dss constant. It can be avoided.
  • a value “ds ⁇ ⁇ ” in which a predetermined value ⁇ is added to the transition torque ds may be employed.
  • the command torque Ds is limited based on the change of the vehicle body acceleration Gs. If the wheel speed Vw of the drive wheel WD is decreasing, it is desirable to generate a larger drive torque Dq in order to recover the wheel speed quickly. However, if drive torque Dq is excessive, vehicle VH is unnecessarily accelerated. Therefore, based on the change in the vehicle body acceleration Gs, the acceleration state of the vehicle VH is taken into consideration, and the command torque Ds is limited. Therefore, the above-mentioned trade-off is satisfied, and the deceleration slip of the drive wheel WD can be suitably suppressed.
  • the compensation value db can be determined based on the transition torque (transition value) ds.
  • the transition value ds corresponds to a drive torque that can compensate for the loss of the power transmission function such as the transmission TR. Therefore, the compensation value db is set based on the transition value ds.
  • the compensation value db is set as a value (for example, a constant) which is not influenced by the slip amount Sl.
  • the drive torque control device CS includes a drive source PW, a wheel speed sensor VW, and a controller ECU.
  • the drive torque PW is applied to the drive wheel WD by the drive source PW to accelerate the vehicle VH.
  • the wheel speed sensor VW detects the speed (wheel speed) Vw of the wheel WH of the vehicle VH.
  • the controller ECU calculates the required torque Dr instructing an increase in the drive torque Dq to suppress the decelerating slip amount Sl of the drive wheel WD based on the wheel speed Vw, and the drive source PW is calculated based on the required torque Dr. Is controlled.
  • the drive source PW transmits power (drive torque Dq) to the drive wheel WD via the transmission TR.
  • the transmission TR includes a clutch CL, a reduction gear GN, and differential gears DZ, DC, DK.
  • the command torque Dss is calculated as a target value of the output of the drive source PW. Therefore, the command torque Dss is a target value of the torque between the drive source PW and the transmission TR (the output torque of the drive source PW, which is the input torque of the transmission TR) shown by the arrow (A).
  • Resistive force (for example, engine brake torque) by drive source PW is generated due to mechanical friction loss of drive source PW, accessory drive loss, fluid resistance of intake and exhaust (when drive source PW is an internal combustion engine), etc. .
  • the braking torque Bq is generated at the wheel not only by the drive source PW but also by the resistance (friction loss etc.) by the power transmission mechanism such as the transmission TR and the drive shafts SZ, SC, SK.
  • the drive torque Dq and the braking torque Bq balance at the axle JW, and the axle JW This is the case when the torque around it is "0". Therefore, in consideration of the power loss in the power transmission mechanism, the drive torque Dq by the drive source PW is adjusted so that the torque of the portion (input torque to the drive wheel WD) shown by the arrow (B) becomes "0". It needs to be done.
  • the acceleration Gs of the vehicle VH is calculated, and the command torque Ds at the time (transition time) when the vehicle body acceleration Gs changes from the deceleration state to the acceleration state is stored as the transition value ds. Then, the command torque Ds is limited based on the transition value ds, and the command torque Dss is determined.
  • the transition value ds corresponds to a drive torque that can compensate for the loss of the power transmission function of the transmission TR or the like. Therefore, the command torque Ds at the transition time is stored as the transition value ds, and the limiting process of the command torque Ds is performed based on the transition value ds.
  • the command torque Dss is limited to coincide with the transition value ds.
  • the upper limit value of the command torque Ds is determined by the transition value ds, and the command torque Ds is limited so as not to exceed the transition value ds, and the command torque Dss is determined. Since commanded torque Dss is limited by transition value ds, power loss of the power transmission mechanism is suitably compensated, and appropriate drive torque increase control can be executed.
  • the drive torque control device CS it is determined whether the braking actuator BR is in operation or not (that is, whether it is in braking or not). Then, when the actuator BR is inoperative (ie, not braking), drive torque increase control is executed based on Ds (or limit command torque Dss) calculated based on the slip amount Sl. Therefore, excessive deceleration slip due to the drive source PW can be reliably suppressed. Further, when the command value Dss to which the limitation is added is adopted as the required torque Dr, the vehicle VH is prevented from being accelerated more than the driver's intention when the output torque of the drive source PW is increased. Disturbance to the driver can be suppressed.
  • the braking actuator BR master cylinder MC, generic term for the hydraulic unit HU
  • drive torque increase control is executed based on the compensation value db which does not depend on the slip amount Sl. Be done.
  • the generation of the driving torque Dq by the driving source PW is relatively slow, and the generation of the braking torque Bq by the braking actuator BR is relatively fast.
  • braking control such as antiskid control and vehicle stabilization control is also performed based on the slip amount Sl. Therefore, when the drive torque increase control is executed based on the slip amount Sl, control interference may occur.
  • the drive torque increase control is performed based on the compensation value db (for example, a predetermined value of “0” or more) which is not affected by the slip amount Sl. To be executed. Therefore, interference between the drive torque increase control and the braking control can be reliably avoided.
  • the compensation value db may be set based on the transition value ds.
  • the four-wheel drive type vehicle is exemplified as the vehicle VH on which the drive torque control device CS is mounted.
  • a two-wheel drive vehicle may be employed.
  • the front wheels are drive wheels WD and the rear wheels are non-drive wheels.
  • the front wheels are non-drive wheels and the rear wheels are drive wheels WD.
  • the drive torque control device CS functions not only in the case of braking (manual brake) by the driver's operation of the braking operation member BP, but also at the time of operation of the automatic brake.
  • a braking force is generated by the hydraulic pressure unit HU. Therefore, in the braking determination block FB, it is determined whether or not the braking actuator BR is in operation.
  • the configuration of the disk brake device has been exemplified.
  • the friction member MS is a brake pad
  • the rotating member KT is a brake disk.
  • a drum brake may be employed.
  • a brake drum is employed instead of the caliper CP.
  • the friction member MS is a brake shoe
  • the rotating member KT is a brake drum.
  • braking liquid was illustrated as an apparatus which provides a damping
  • an electric motor driven by an electric motor may be employed.
  • the rotational power of the electric motor is converted into linear power, whereby the friction member MS is pressed against the rotation member KT. Therefore, the braking torque is directly generated by the electric motor regardless of the pressure of the braking fluid.
  • a composite type configuration may be formed in which a hydraulic type through a braking fluid is adopted as the front wheel, and an electric type is adopted as the rear wheel.
  • the request torque Dr is calculated by the braking controller ECB, the request torque Dr is transmitted to the drive controller ECP, and the drive torque Dq is controlled by the drive controller ECP.
  • the various controllers (ECB etc.) can mutually exchange signals by the communication bus CM. Therefore, various operations can be processed by any controller.

Abstract

A braking control device according to the present invention includes: a driving source that provides a driving wheel with a driving torque for accelerating a vehicle; an actuator that provides a wheel with a braking torque for decelerating the vehicle; a wheel-speed sensor that detects the speed of the wheel of the vehicle; and a controller that computes a demand torque for requesting an increase in the driving torque so as to suppress deceleration slipping of the driving wheel and that controls the driving source on the basis of the demand torque. The controller is configured to compute the amount of slip of the driving wheel on the basis of the speed and to compute the demand torque on the basis of the amount of slip when the actuator is not operating and to determine the demand torque to be a compensation value that does not depend on the amount of slip when the actuator is operating. For example, the compensation value is a preset constant not less than zero.

Description

車両の駆動トルク制御装置Vehicle drive torque control device
 本発明は、車両の駆動トルク制御装置に関する。 The present invention relates to a drive torque control device for a vehicle.
 特許文献1には、「ブレーキ制御に対する駆動源のブレーキトルクの影響を効果的に抑制すること」を目的に、「エンジンの出力により駆動する左右前輪と、車両の状態に応じて車輪に作用する制動力を制御する油圧ユニットと、油圧ユニットをコントロールするコントロールユニット、を備え、エンジンに対して油圧ユニットが制動力を与えているときはエンジンのブレーキトルクを低減させる」ことが記載されている。 According to Patent Document 1, for the purpose of "effectively suppressing the influence of the brake torque of the drive source on the brake control", it acts on the left and right front wheels driven by the output of the engine and the wheels according to the state of the vehicle. It is described that "a hydraulic unit for controlling the braking force and a control unit for controlling the hydraulic unit are provided, and the brake torque of the engine is reduced when the hydraulic unit applies the braking force to the engine."
 具体的には、「ABS制御(「アンチスキッド制御」ともいう)の実行中であるか否かが判定される。アンチスキッド制御の実行中が否定される場合には、エンジントルク要求値(エンジンブレーキトルクを低減する目標エンジントルク)が「なし」と決定される。アンチスキッド制御の実行中が肯定される場合には、エンジントルク要求値が「0Nm」に決定される(実施例1を参照)」ことが記載されている。 Specifically, it is determined whether "ABS control (also referred to as" anti-skid control ") is being performed. If the anti-skid control is not being performed, the engine torque request value (the target engine torque for reducing the engine brake torque) is determined to be "none". It is described that the engine torque request value is determined to "0 Nm" (see Example 1) if the anti-skid control is in the affirmative.
 また、「上記同様、アンチスキッド制御の実行中が否定される場合には、エンジントルク要求値が「なし」と決定される。しかし、アンチスキッド制御時には、駆動輪平均速度が求められ、この値と、オフセット値が加算又は減算された目標スリップ率速度とが比較される。スリップが過小であると判定された場合は、エンジントルク要求値が目標スリップ率速度と駆動輪平均速度との差に応じたエンジンブレーキトルクとされる。逆に、スリップが過多であると判定された場合は、エンジントルク要求値を駆動輪平均速度と目標スリップ率速度との差に応じた加速トルクとされる」ことが記載されている。 Also, as in the above case, when the anti-skid control is under execution is denied, the engine torque request value is determined to be "none". However, at the time of anti-skid control, the drive wheel average speed is determined, and this value is compared with the target slip ratio speed to which the offset value is added or subtracted. When it is determined that the slip is too small, the engine torque request value is set as the engine brake torque according to the difference between the target slip rate speed and the average speed of the driving wheel. Conversely, when it is determined that the slip is excessive, the engine torque request value is set as an acceleration torque according to the difference between the driving wheel average speed and the target slip ratio speed.
 ところで、エンジンブレーキは、アクセルペダルが戻され、エンジンの出力が低下されることによって発生する制動作用である。車両の走行中にエンジン出力と走行抵抗とが均衡している状態(即ち、定速走行状態)から、エンジン出力が低下されると、エンジンの機械摩擦損失、ポンピングロス(吸排気の流体抵抗)、補機駆動損失等が、エンジンの抗力として作用し、車両に減速力(つまり、車輪の制動力)が生じ、エンジンブレーキとして作用する。更に、エンジンのみならず、トランスミッション、ドライブシャフト等の動力伝達機構による抵抗(摩擦損失等)も車輪に制動力が発生される要因になる。 By the way, the engine brake is a braking action that occurs when the accelerator pedal is released and the output of the engine is reduced. When the engine output is reduced from the state where the engine output and the traveling resistance are balanced (that is, the constant speed traveling state) while the vehicle is traveling, mechanical friction loss of the engine, pumping loss (fluid resistance of intake and exhaust) The accessory drive loss or the like acts as a drag of the engine, and a decelerating force (that is, a braking force of wheels) is generated in the vehicle to act as an engine brake. Furthermore, not only the engine but also the resistance (friction loss etc.) by the power transmission mechanism such as the transmission, the drive shaft, etc. are factors that generate the braking force on the wheels.
 特許文献1に記載の装置では、アンチスキッド制御の実行時には、エンジンブレーキが補償されるが、アンチスキッド制御の非実行時には、それが補償されない。例えば、摩擦係数が非常に低い路面(凍結路等)では、エンジンブレーキのみによっても車輪の減速スリップが過大となる場合が生じ得る。このような状況でも、適切に車輪スリップが抑制されることが望まれている。 In the device described in Patent Document 1, the engine brake is compensated when performing antiskid control, but not compensated when antiskid control is not implemented. For example, on a road surface with a very low coefficient of friction (such as a frozen road), it may happen that the deceleration slip of the wheel becomes excessive only by the engine brake. Even in such a situation, it is desirable that the wheel slip be properly suppressed.
 また、車輪に付与されるトルクにおいて、駆動源(エンジン)と、制動装置とでは、応答性が異なる。つまり、駆動源に起因する駆動トルクの発生は相対的に遅く、制動装置による制動トルクの発生は相対的に速い。このため、車輪スリップに基づいて制御されるアンチスキッド制御中において、駆動トルクが車輪スリップ状態に応じて増減されると、アンチスキッド制御との干渉が懸念される。アンチスキッド制御の実行中には、該制御干渉が回避されなければならない。 Further, in the torque applied to the wheel, the responsiveness differs between the drive source (engine) and the braking device. That is, the generation of the driving torque due to the driving source is relatively slow, and the generation of the braking torque by the braking device is relatively fast. For this reason, when the driving torque is increased or decreased according to the wheel slip state during antiskid control controlled based on the wheel slip, there is a concern about interference with the antiskid control. During anti-skid control, the control interference must be avoided.
特開2010-018147号公報JP, 2010-018147, A
 以上の点を踏まえ、本発明の目的は、駆動源等によって生じる減速スリップが、制動時のみならず、常時好適に補償され得るとともに、アンチスキッド制御等の制動制御との干渉が確実に回避され得るものを提供することである。 Based on the above, the object of the present invention is to prevent the reduction slip caused by the drive source etc. from being compensated at all times not only during braking but also at all times, and interference with braking control such as anti-skid control is reliably avoided. It is to provide what you get.
 本発明に係る車両の制動制御装置は、車両(VH)を加速する駆動トルク(Dq)を駆動車輪(WD)に付与する駆動源(PW)と、前記車両(VH)を減速する制動トルク(Bq)を車輪(WH)に付与するアクチュエータ(BR)と、前記車両(VH)の車輪(WH)の速度(Vw)を検出する車輪速度センサ(VW)と、前記駆動車輪(WD)の減速スリップを抑制するよう、前記駆動トルク(Dq)の増加を要求する要求トルク(Dr)を演算し、前記要求トルク(Dr)に基づいて、前記駆動源(PW)を制御するコントローラ(ECU)と、を備える。 The braking control device for a vehicle according to the present invention comprises a drive source (PW) for applying a drive torque (Dq) for accelerating the vehicle (VH) to the drive wheels (WD), and a braking torque (decelerating the vehicle (VH) An actuator (BR) for applying Bq) to the wheel (WH), a wheel speed sensor (VW) for detecting the speed (Vw) of the wheel (WH) of the vehicle (VH), and deceleration of the drive wheel (WD) A controller (ECU) that calculates a required torque (Dr) that requires an increase in the drive torque (Dq) so as to suppress slip, and controls the drive source (PW) based on the required torque (Dr) And.
 本発明に係る車両の制動制御装置では、前記コントローラ(ECU)は、前記アクチュエータ(BR)が作動していない場合には、前記速度(Vw)に基づいて、前記駆動車輪(WD)のスリップ量(Sl)を演算し、該スリップ量(Sl)に基づいて前記要求トルク(Dr)を演算し、前記アクチュエータ(BR)が作動している場合には、前記要求トルク(Dr)を、前記スリップ量(Sl)には依存しない補償値(db)に決定するよう構成されている。例えば、前記補償値(db)として、「0(ゼロ)」以上の予め設定された定数が採用される。 In the braking control device for a vehicle according to the present invention, the controller (ECU) may slip the driving wheel (WD) based on the speed (Vw) when the actuator (BR) is not operating. (Sl) is calculated, the required torque (Dr) is calculated based on the slip amount (Sl), and when the actuator (BR) is operating, the required torque (Dr) is calculated as the slip It is configured to determine a compensation value (db) that does not depend on the quantity (Sl). For example, a preset constant of “0 (zero)” or more is adopted as the compensation value (db).
 上記構成によれば、アクチュエータBRが非作動の場合には、スリップ量Slに基づいて駆動トルク増加制御が実行される。このため、駆動源PWによる過大な減速スリップが確実に抑制され得る。一方、アクチュエータBRが作動中の場合には、スリップ量Slに依存しない補償値dbに基づいて、駆動トルク増加制御が実行される。結果、アンチスキッド制御等の制動制御と、駆動トルク増加制御との制御干渉が確実に回避され得る。 According to the above configuration, when the actuator BR is inoperative, the drive torque increase control is executed based on the slip amount Sl. Therefore, excessive deceleration slip due to the drive source PW can be reliably suppressed. On the other hand, when the actuator BR is in operation, drive torque increase control is executed based on the compensation value db which does not depend on the slip amount Sl. As a result, control interference between braking control such as antiskid control and drive torque increase control can be reliably avoided.
本発明に係る車両の駆動トルク制御装置CSを搭載した車両の全体構成図である。1 is an overall configuration diagram of a vehicle equipped with a drive torque control device CS of a vehicle according to the present invention. 駆動トルク増加制御の演算処理を説明するための機能ブロック図である。It is a functional block diagram for explaining arithmetic processing of drive torque increase control. 制限処理ブロックLSを説明するための時系列線図である。It is a time-series diagram for explaining restriction processing block LS. 作用・効果を説明するための概略図である。It is the schematic for demonstrating an effect | action and an effect.
<本発明に係る車両の駆動トルク制御装置の全体構成>
 図1の全体構成図を参照して、本発明に係る駆動トルク制御装置CSについて説明する。以下の説明において、「ECU」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。
<Overall Configuration of Drive Torque Control Device for Vehicle According to the Present Invention>
The drive torque control device CS according to the present invention will be described with reference to the overall configuration diagram of FIG. In the following description, components having the same symbol, such as “ECU”, etc., arithmetic processing, signals, characteristics, and values have the same functions.
 車両VHには、駆動力を発生する駆動源(パワーユニット)PWと、該駆動源PWに接続された変速機(トランスミッション)TRと、が備えられる。例えば、駆動源PWは、内燃機関(所謂、エンジン)、電気モータである。駆動源PWの出力(駆動トルク)Dqは、変速機TRによって、各車輪WHに伝達される。 The vehicle VH is provided with a drive source (power unit) PW that generates a drive force, and a transmission (transmission) TR connected to the drive source PW. For example, the drive source PW is an internal combustion engine (so-called engine) or an electric motor. The output (drive torque) Dq of the drive source PW is transmitted to each wheel WH by the transmission TR.
 駆動トルク制御装置CSを搭載した車両VHでは、駆動源PWの出力である駆動トルクDqが、4つの車輪WHに伝達される。ここで、駆動源PWからの駆動トルクDqが伝達される車輪WHが、「駆動輪WD」と称呼される。車両VHでは、所謂、4輪駆動方式が採用されている。つまり、4輪WHの全てが、駆動輪WDである。駆動トルクDqは、前輪と後輪とに適宜配分されて伝達される。駆動源PW、及び、変速機TRは、前輪側に備えられるため、駆動トルクDqは、プロペラシャフトSCを介して、車両後方の駆動輪WDに伝達される。 In the vehicle VH equipped with the drive torque control device CS, the drive torque Dq, which is the output of the drive source PW, is transmitted to the four wheels WH. Here, the wheel WH to which the drive torque Dq from the drive source PW is transmitted is referred to as "drive wheel WD". In the vehicle VH, a so-called four-wheel drive system is adopted. That is, all the four wheels WH are drive wheels WD. The driving torque Dq is appropriately distributed and transmitted to the front wheels and the rear wheels. Since the drive source PW and the transmission TR are provided on the front wheel side, the drive torque Dq is transmitted to the drive wheel WD at the rear of the vehicle via the propeller shaft SC.
 前輪の駆動トルクDqは、前輪差動ギヤDZ、及び、前輪ドライブシャフトSZを介して、前方左右の駆動輪WDに、夫々伝達される。後輪の駆動トルクDqは、後輪差動ギヤDK、及び、後輪ドライブシャフトSKを介して、後方左右の駆動輪WDに、夫々伝達される。変速機TRには、センタ差動ギヤDCが備えられ、前輪駆動トルクと後輪駆動トルクとが、車両VHの走行状態に応じて、適宜調整される。なお、センタ差動ギヤDCは、コントローラECU(変速信号Hs)によって制御される。 The drive torque Dq of the front wheels is transmitted to the front left and right drive wheels WD via the front wheel differential gear DZ and the front wheel drive shaft SZ. The drive torque Dq of the rear wheel is transmitted to the rear left and right drive wheels WD via the rear wheel differential gear DK and the rear wheel drive shaft SK. The transmission TR includes a center differential gear DC, and the front wheel drive torque and the rear wheel drive torque are appropriately adjusted according to the traveling state of the vehicle VH. The center differential gear DC is controlled by a controller ECU (shift signal Hs).
 駆動源PW(例えば、内燃機関)には、スロットル開度Thを検出するスロットルセンサTH、燃料噴射量Fiを検出する噴射量センサFI、及び、駆動回転数Neを検出る回転数センサNEが設けられる。変速機(トランスミッション)TRには、変速比(ギヤ位置)Gpを検出するためのギヤ位置センサGPが設けられている。スロットル開度Th、燃料噴射量Fi、駆動回転数Ne、及び、ギヤ位置Gpは、車両VHのパワートレイン(駆動源PW、変速機TRの総称)からの出力(駆動トルク)を演算するために採用される。なお、駆動源PWが、駆動用の電気モータである場合には、駆動源PWへの通電量(例えば、電流値)が検出される。各センサによって得られた信号は、後述する通信バスCMを介して、コントローラECUに入力される。 The drive source PW (for example, an internal combustion engine) is provided with a throttle sensor TH that detects a throttle opening Th, an injection amount sensor FI that detects a fuel injection amount Fi, and a rotation speed sensor NE that detects a driving rotation speed Ne. Be The transmission (transmission) TR is provided with a gear position sensor GP for detecting a transmission gear ratio (gear position) Gp. The throttle opening degree Th, the fuel injection amount Fi, the drive rotational speed Ne, and the gear position Gp are used to calculate the output (drive torque) from the powertrain (generally called drive source PW and transmission TR) of the vehicle VH. Will be adopted. When the drive source PW is an electric motor for driving, the amount of energization (for example, current value) to the drive source PW is detected. Signals obtained by the respective sensors are input to the controller ECU via a communication bus CM described later.
 車両VHには、加速操作部材AP、加速操作量センサAA、制動操作部材BP、制動操作量センサBA、車輪速度センサVW、前後加速度センサGX、コントローラECU、及び、制動アクチュエータ(単に、「アクチュエータ」ともいう)BRが備えられる。さらに、車両VHの4つの車輪WH(駆動輪WD)には、ブレーキキャリパCP、ホイールシリンダWC、回転部材KT、及び、摩擦部材MSが備えられる。アクチュエータBRとホイールシリンダWCとは、制動配管HKを介して接続されている。 The vehicle VH includes an acceleration operation member AP, an acceleration operation amount sensor AA, a braking operation member BP, a braking operation amount sensor BA, a wheel speed sensor VW, a longitudinal acceleration sensor GX, a controller ECU, and a braking actuator (simply, “actuator” Also known as BR). Furthermore, the four wheels WH (drive wheels WD) of the vehicle VH are provided with a brake caliper CP, a wheel cylinder WC, a rotating member KT, and a friction member MS. The actuator BR and the wheel cylinder WC are connected via a braking pipe HK.
 加速操作部材(例えば、アクセルペダル)APは、運転者が車両VHを加速し、一定の速度で走行するために操作する部材である。加速操作部材APが操作されることによって、車輪WHに対する駆動トルク(車両を加速するトルク)Dqが調整され、車輪WHに駆動力が発生される。 The acceleration operation member (for example, an accelerator pedal) AP is a member operated by the driver to accelerate the vehicle VH and travel at a constant speed. By operating the acceleration operation member AP, the drive torque (torque for accelerating the vehicle) Dq for the wheel WH is adjusted, and a drive force is generated on the wheel WH.
 加速操作部材APには、加速操作量センサAAが設けられる。加速操作量センサAAによって、運転者による加速操作部材(アクセルペダル)APの操作量Aaが検出される。加速操作量センサAAとして、加速操作部材APの操作変位を検出する操作変位センサ、及び、加速操作部材APの操作力を検出する操作力センサのうちの少なくとも1つが採用される。つまり、加速操作量センサAAによって、加速操作量Aaとして、加速操作部材APの操作変位、及び、加速操作部材APの操作力のうちの少なくとも1つが検出される。加速操作量Aaは、コントローラECU(特に、駆動コントローラECP)に入力される。 The acceleration operation amount sensor AA is provided on the acceleration operation member AP. The amount of operation Aa of the acceleration operation member (accelerator pedal) AP by the driver is detected by the acceleration operation amount sensor AA. As the acceleration operation amount sensor AA, at least one of an operation displacement sensor that detects an operation displacement of the acceleration operation member AP and an operation force sensor that detects an operation force of the acceleration operation member AP is employed. That is, at least one of the operation displacement of the acceleration operation member AP and the operation force of the acceleration operation member AP is detected as the acceleration operation amount Aa by the acceleration operation amount sensor AA. The acceleration operation amount Aa is input to the controller ECU (in particular, the drive controller ECP).
 制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両VHを減速するために操作する部材である。制動操作部材BPが操作されることによって、車輪WHに対する制動トルクBqが調整され、車輪WHに制動力が発生される。 The brake operation member (for example, the brake pedal) BP is a member operated by the driver to decelerate the vehicle VH. By operating the braking operation member BP, the braking torque Bq for the wheel WH is adjusted, and a braking force is generated on the wheel WH.
 制動操作部材BPには、制動操作量センサBAが設けられる。制動操作量センサBAによって、運転者による制動操作部材(ブレーキペダル)BPの操作量Baが検出される。制動操作量センサBAとして、マスタシリンダMCの圧力を検出する液圧センサ、制動操作部材BPの操作変位を検出する操作変位センサ、及び、制動操作部材BPの操作力を検出する操作力センサのうちの少なくとも1つが採用される。つまり、制動操作量センサBAによって、制動操作量Baとして、マスタシリンダMCの圧力、制動操作部材BPの操作変位、及び、制動操作部材BPの操作力のうちの少なくとも1つが検出される。制動操作量Baは、コントローラECU(特に、制動コントローラECB)に入力される。 A braking operation amount sensor BA is provided on the braking operation member BP. The amount of operation Ba of the brake operation member (brake pedal) BP by the driver is detected by the brake operation amount sensor BA. Among the brake operation amount sensor BA, a hydraulic pressure sensor that detects the pressure of the master cylinder MC, an operation displacement sensor that detects an operation displacement of the brake operation member BP, and an operation force sensor that detects an operation force of the brake operation member BP. At least one of is adopted. That is, at least one of the pressure of the master cylinder MC, the operation displacement of the braking operation member BP, and the operation force of the braking operation member BP is detected by the braking operation amount sensor BA as the braking operation amount Ba. The braking operation amount Ba is input to the controller ECU (in particular, the braking controller ECB).
 制動操作部材BPには、制動操作スイッチBSが設けられる。制動操作スイッチBSによって、運転者による制動操作部材BPの操作の有無が検出される。制動操作部材BPが操作されていない場合(即ち、非制動時)には、制動操作スイッチBSによって、操作信号Bsとしてオフ信号が出力される。一方、制動操作部材BPが操作されている場合(即ち、制動時)には、操作信号Bsとしてオン信号が出力される。制動操作信号Bsは、コントローラECU(特に、制動コントローラECB)に入力される。 A braking operation switch BS is provided on the braking operation member BP. The braking operation switch BS detects the presence or absence of the operation of the braking operation member BP by the driver. When the braking operation member BP is not operated (that is, when not braking), the braking operation switch BS outputs an off signal as the operation signal Bs. On the other hand, when the braking operation member BP is operated (ie, at the time of braking), an ON signal is output as the operation signal Bs. The braking operation signal Bs is input to a controller ECU (in particular, a braking controller ECB).
 ブレーキキャリパ(単に、「キャリパ」ともいう)CPには、ホイールシリンダWCが設けられる。キャリパCPのホイールシリンダWC内の液圧が調整(増加、又は、減少)されることによって、ホイールシリンダWC内のピストンが回転部材KTに対して移動(前進、又は、後退)される。このピストンの移動によって、摩擦部材(例えば、ブレーキパッド)MSが、回転部材KTに押し付けられ、押圧力が発生する。回転部材KTと車輪WHとは、一体となって回転するように固定されている。このため、上記押圧力にて生じる摩擦力によって、車輪WHに制動トルクBq(結果、制動力)が発生される。 A wheel cylinder WC is provided in the brake caliper (also simply referred to as "caliper") CP. By adjusting (increasing or decreasing) the hydraulic pressure in the wheel cylinder WC of the caliper CP, the piston in the wheel cylinder WC is moved (advanced or retracted) with respect to the rotating member KT. By the movement of the piston, the friction member (for example, the brake pad) MS is pressed against the rotating member KT, and a pressing force is generated. The rotating member KT and the wheel WH are fixed so as to rotate integrally. Therefore, a braking torque Bq (as a result, a braking force) is generated on the wheel WH by the frictional force generated by the pressing force.
 車両VHの車輪WHの各々には、車輪速度センサVWが備えられる。4つの車輪速度センサVWによって、4つの車輪の速度Vwが検出される。車輪速度Vwは、コントローラECU(特に、制動コントローラECB)に入力される。 Each of the wheels WH of the vehicle VH is provided with a wheel speed sensor VW. The four wheel speed sensors VW detect the speeds Vw of the four wheels. The wheel speed Vw is input to a controller ECU (in particular, a braking controller ECB).
 車両VHの車体(ばね上部分)には、前後加速度センサGXが備えられる。前後加速度センサGXによって、車両VHの前後方向(前進方向)の車体加速度(「前後加速度」ともいう)Gxが検出される。例えば、車体加速度Gxは、車両VHが前進方向に加速状態にある場合に正(プラス)の値で、車両VHが前進方向に減速状態にある場合に負(マイナス)の値で表される。 A longitudinal acceleration sensor GX is provided on the vehicle body (spring upper portion) of the vehicle VH. The longitudinal acceleration sensor GX detects a vehicle acceleration (also referred to as “longitudinal acceleration”) Gx in the longitudinal direction (forward direction) of the vehicle VH. For example, the vehicle body acceleration Gx is represented by a positive (plus) value when the vehicle VH is accelerating in the forward direction, and a negative (minus) value when the vehicle VH is decelerating in the forward direction.
 コントローラ(「電子制御ユニット」ともいう)ECUは、マイクロプロセッサ等が実装された電気回路基板と、マイクロプロセッサにプログラムされた制御アルゴリズムにて構成されている。コントローラECUは、制動アクチュエータBR用のコントローラECB(「制動コントローラ」ともいう)、駆動源PW用のコントローラECP(「駆動コントローラ」ともいう)、及び、変速機TR用のコントローラECT(「変速コントローラ」ともいう)を含んで構成される。制動コントローラECB、駆動コントローラECP、及び、変速コントローラECTは、センサ信号、内部演算値等の情報が共有されるよう、通信バスCMにて接続されている。換言すれば、コントローラECUは、制動コントローラECB、駆動コントローラECP、及び、変速コントローラECTの総称である。 The controller (also referred to as “electronic control unit”) ECU is configured of an electric circuit board on which a microprocessor or the like is mounted, and a control algorithm programmed in the microprocessor. The controller ECU includes a controller ECB (also referred to as "brake controller") for the braking actuator BR, a controller ECP (also referred to as "drive controller") for the drive source PW, and a controller ECT ("gear shift controller") for the transmission TR. Also included). The brake controller ECB, the drive controller ECP, and the shift controller ECT are connected by a communication bus CM so that information such as a sensor signal and an internal calculation value may be shared. In other words, the controller ECU is a generic name of the braking controller ECB, the drive controller ECP, and the shift controller ECT.
 コントローラECU(特に、制動コントローラECB)では、車輪速度センサVWの検出信号(車輪速度)Vwに基づいて、車輪WHの過大な減速スリップ(車輪回転方向のスリップ)を低減し、車輪WHのロック傾向を防止するよう、アンチスキッド制御が実行される。具体的には、車輪速度Vwに基づいて、各車輪WHの減速スリップ度合を表す減速スリップ量Slが演算される。そして、減速スリップ量Slに基づいて、ホイールシリンダWC内の液圧を調整するための制動信号Brが演算され、アクチュエータBRに送信される。 The controller ECU (in particular, the braking controller ECB) reduces excessive deceleration slip (slip in the wheel rotational direction) of the wheel WH based on the detection signal (wheel speed) Vw of the wheel speed sensor VW, and tends to lock the wheel WH. Anti-skid control is performed to prevent Specifically, based on the wheel speed Vw, a deceleration slip amount S1 that represents the deceleration slip degree of each wheel WH is calculated. Then, a braking signal Br for adjusting the fluid pressure in the wheel cylinder WC is calculated based on the reduction slip amount Sl, and is transmitted to the actuator BR.
 コントローラECU(特に、駆動コントローラECP)では、加速操作量Aaに基づいて、駆動輪WDの駆動トルクDqが制御される。コントローラECPにて演算された駆動信号Pwに基づいて、駆動源PWが制御されて、駆動トルクDqが調整される。例えば、駆動源PWが内燃機関である場合には、駆動信号Pwに基づいて、燃料噴射量Fi、及び、スロットル開度Thが制御される。また、駆動源PWが電気モータである場合には、駆動信号Pwに基づいて、電気モータへの通電量(供給電流)が制御される。 In the controller ECU (in particular, the drive controller ECP), the drive torque Dq of the drive wheel WD is controlled based on the acceleration operation amount Aa. Based on the drive signal Pw calculated by the controller ECP, the drive source PW is controlled to adjust the drive torque Dq. For example, when the drive source PW is an internal combustion engine, the fuel injection amount Fi and the throttle opening degree Th are controlled based on the drive signal Pw. Further, when the drive source PW is an electric motor, the amount of energization (supply current) to the electric motor is controlled based on the drive signal Pw.
 更に、コントローラECUでは、上記減速スリップ量Slに基づいて、駆動輪WDの過大な減速スリップを低減するよう、駆動源PWによる抵抗力を低減する制御が実行される。例えば、車両VHの走行中に、アクセルペダルが戻され、エンジンの出力が低下されると、駆動輪WDには制動が作用する(所謂、エンジンブレーキ)。車両VHの定速走行状態では、エンジン出力(駆動トルクDq)と、車両VHの走行抵抗とが均衡している。この状態から、エンジン出力が低下されると、エンジンの機械摩擦損失、ポンピングロス(吸排気の流体抵抗)、補機駆動損失等が、エンジンの抗力(引き摺りトルク)として作用し、駆動輪WDには制動トルクBqが作用する。特に、摩擦係数が低い路面では、該制動トルクBqによって、駆動輪WDに過大な減速スリップが生じることがある。コントローラECUでは、このような駆動輪WDの減速スリップを抑制するよう、駆動源PWの出力(つまり、駆動トルクDq)が増加される。該制御が、「駆動トルク増加制御」と称呼される。例えば、駆動トルク増加制御では、制動コントローラECBにて減速スリップ量Slに基づいて演算された要求トルクDrが駆動コントローラECPに送信され、駆動コントローラECPにて要求トルクDrを達成するよう駆動源PWの駆動信号Pwが形成され、駆動源PWが駆動信号Pwに基づいて制御される。 Further, in the controller ECU, based on the reduction slip amount Sl, control is performed to reduce the resistance by the drive source PW so as to reduce the excessive reduction slip of the drive wheel WD. For example, while the vehicle VH is traveling, when the accelerator pedal is released and the output of the engine is reduced, the drive wheel WD is braked (so-called engine brake). In the constant speed traveling state of the vehicle VH, the engine output (driving torque Dq) and the traveling resistance of the vehicle VH are balanced. From this state, when the engine output is reduced, mechanical friction loss, pumping loss (fluid resistance of intake and exhaust), accessory drive loss, etc. of the engine act as drag (drag torque) of the engine and act on the drive wheel WD. The braking torque Bq acts. In particular, on a road surface with a low coefficient of friction, the braking torque Bq may cause an excessive deceleration slip on the drive wheel WD. In the controller ECU, the output of the drive source PW (that is, the drive torque Dq) is increased so as to suppress such deceleration slip of the drive wheel WD. The control is called "drive torque increase control". For example, in the drive torque increase control, the required torque Dr calculated based on the reduction slip amount Sl in the braking controller ECB is transmitted to the drive controller ECP, and the drive controller ECP achieves the required torque Dr by the drive controller ECP. The drive signal Pw is formed, and the drive source PW is controlled based on the drive signal Pw.
 コントローラECU(特に、変速コントローラECT)によって、車両VHの走行状態に基づいて、センタ差動ギヤDCが制御され、駆動力配分制御が実行される(つまり、駆動トルクDqが、前後の駆動輪WDに適宜、配分される)。アンチスキッド制御が実行されていない場合には、センタ差動ギヤDCのクラッチが締結状態にされ、車両VHの4つの車輪WHが駆動輪WDとなっている。一方、アンチスキッド制御が実行される場合には、該クラッチが解放状態にされ、所謂、2輪駆動の状態にされる。 The center differential gear DC is controlled by the controller ECU (in particular, the shift controller ECT) based on the traveling state of the vehicle VH, and the driving force distribution control is executed (that is, the driving torque Dq is the front and rear driving wheels WD). As appropriate). When anti-skid control is not performed, the clutch of the center differential gear DC is engaged, and the four wheels WH of the vehicle VH are drive wheels WD. On the other hand, when anti-skid control is performed, the clutch is brought into the released state, and is brought into a so-called two-wheel drive state.
 車両VHの車体には、制動アクチュエータBRが備えられる。アクチュエータBRは、制動操作部材(ブレーキペダル)BPの操作力に応じた制動液圧を発生するマスタシリンダMC、及び、ホイールシリンダWCに供給する制動液圧を独立して調整可能な液圧ユニットHUにて構成される。マスタシリンダMCは、制動操作部材BPと、ブレーキロッドを介して、機械的に接続されている。マスタシリンダMCによって、制動操作部材BPの操作力(ブレーキペダル踏力)が、制動液の圧力に変換される。マスタシリンダMCとホイールシリンダWCとの間には、液圧ユニットHUが設けられている。液圧ユニットHUは、コントローラECBからの制動信号Brによって制御される。例えば、アンチスキッド制御が実行される場合には、液圧ユニットHUによって、ホイールシリンダWCの制動液圧が、各輪独立で調整される。液圧ユニットHUは、複数の電磁弁(例えば、2位置弁)、低圧リザーバ、液圧ポンプ、及び、電気モータにて構成される。 A braking actuator BR is provided on the vehicle body of the vehicle VH. The actuator BR has a master cylinder MC that generates a braking fluid pressure according to the operating force of the braking operation member (brake pedal) BP, and a hydraulic unit HU that can independently adjust the braking fluid pressure supplied to the wheel cylinder WC. It consists of Master cylinder MC is mechanically connected to brake operation member BP via a brake rod. The master cylinder MC converts the operating force (brake pedal depression force) of the brake operating member BP into the pressure of the braking fluid. A hydraulic unit HU is provided between the master cylinder MC and the wheel cylinder WC. The hydraulic unit HU is controlled by a braking signal Br from the controller ECB. For example, when anti-skid control is performed, the hydraulic pressure of the wheel cylinder WC is adjusted independently for each wheel by the hydraulic unit HU. The hydraulic unit HU includes a plurality of solenoid valves (for example, two-position valves), a low pressure reservoir, a hydraulic pump, and an electric motor.
<駆動トルク増加制御の演算処理>
 図2の機能ブロック図を参照して、駆動トルク増加制御の演算処理について説明する。駆動トルク増加制御では、駆動源PWによる走行抵抗(例えば、エンジンブレーキ)によって駆動輪WDに制動トルクBqが付与され、駆動輪WDがロック傾向となること(つまり、過大な減速スリップの発生)を抑制するため、駆動源PWの駆動トルクDqが増加される。駆動トルク増加制御には、非制動時、及び、制動時の夫々に対応した、2つの異なる制御が含まれている。
<Calculation processing of drive torque increase control>
The calculation processing of the drive torque increase control will be described with reference to the functional block diagram of FIG. In the drive torque increase control, the braking torque Bq is applied to the drive wheel WD by the traveling resistance (for example, engine brake) by the drive source PW, and the drive wheel WD tends to lock (that is, generation of excessive deceleration slip). To suppress this, the drive torque Dq of the drive source PW is increased. The drive torque increase control includes two different controls respectively corresponding to non-braking and braking.
 駆動トルク増加制御は、車体速度演算ブロックVX、スリップ量演算ブロックSL、車体加速度演算ブロックGS、指示トルク演算ブロックDS、制限処理ブロックLS、制動判定ブロックFB、補償値設定ブロックDB、選択処理ブロックSR、及び、駆動トルク制御ブロックDQにて構成される。 The drive torque increase control is performed by the vehicle speed calculation block VX, slip amount calculation block SL, vehicle acceleration calculation block GS, command torque calculation block DS, limit processing block LS, braking determination block FB, compensation value setting block DB, selection processing block SR And a drive torque control block DQ.
 車体速度演算ブロックVXにて、車両VHの走行速度(車体速度)Vxが演算される。車輪速度Vwが、各車輪WHの車輪速度センサVWによって検出され、該車輪速度Vwに基づいて、車体速度Vxが演算される。例えば、車両VHの非制動時(加速時を含む)には、車輪速度Vwのうちで、最遅のものに基づいて、車体速度Vxが決定される。また、車両VHの制動時には、車輪速度Vwのうちで、最速のものに基づいて、車体速度Vxが決定される。 In the vehicle speed calculation block VX, the traveling speed (vehicle speed) Vx of the vehicle VH is calculated. The wheel speed Vw is detected by the wheel speed sensor VW of each wheel WH, and the vehicle speed Vx is calculated based on the wheel speed Vw. For example, when the vehicle VH is not braking (including acceleration), the vehicle speed Vx is determined based on the slowest one of the wheel speeds Vw. Further, at the time of braking of the vehicle VH, the vehicle speed Vx is determined based on the fastest one of the wheel speeds Vw.
 スリップ量演算ブロックSLにて、車体速度Vx、及び、車輪速度Vwに基づいて、減速スリップ量Slが演算される。減速スリップ量Slは、車輪WHの減速スリップの度合いを表し、駆動トルク増加制御における制御変数(状態量)である。ここで、「減速スリップ」は、車輪WHの回転方向における滑りであり、該減速スリップが発生している場合には「Vw<Vx」の状態である。例えば、車体速度Vxと車輪速度Vwとの差(物理量は速度であり、「減速スリップ速度」という)が、減速スリップ量Sl(=Vx-Vw)として演算される。また、車体速度Vxに対する車体速度Vxと車輪速度Vwとの差(無次元数であり、「減速スリップ率」という)が、減速スリップ量Sl(=(Vx-Vw)/Vx)として決定され得る。つまり、減速スリップ量Slは、スリップ速度、及び、スリップ率のうちの少なくとも1つに基づいて演算される。減速スリップ量Slが大きいほど、車体速度Vxと車輪速度Vwとの差は大きく、スリップ量Slが小さいほど、その差は小さい。なお、減速スリップとは逆の車輪滑りは「加速スリップ」であり、該加速スリップが発生している場合には「Vw>Vx」の状態である。 In the slip amount calculation block SL, the reduction slip amount Sl is calculated based on the vehicle speed Vx and the wheel speed Vw. The deceleration slip amount Sl represents the degree of deceleration slip of the wheel WH and is a control variable (state amount) in the drive torque increase control. Here, the "deceleration slip" is a slip in the rotational direction of the wheel WH, and in the case where the deceleration slip is occurring, the state is "Vw <Vx". For example, the difference between the vehicle body speed Vx and the wheel speed Vw (a physical quantity is a speed, referred to as "deceleration slip speed") is calculated as a reduction slip amount Sl (= Vx-Vw). Further, the difference between the vehicle speed Vx and the wheel speed Vw (a dimensionless number, referred to as "deceleration slip ratio") with respect to the vehicle speed Vx may be determined as the deceleration slip amount Sl (= (Vx-Vw) / Vx) . That is, the reduction slip amount Sl is calculated based on at least one of the slip speed and the slip ratio. As the reduction slip amount Sl is larger, the difference between the vehicle speed Vx and the wheel speed Vw is larger, and as the slip amount Sl is smaller, the difference is smaller. In addition, the wheel slip reverse to a deceleration slip is "acceleration slip", and when this acceleration slip has generate | occur | produced, it is a state of "Vw> Vx."
 車体加速度演算ブロックGSにて、車体速度Vxに基づいて、車体加速度Gsが演算される。具体的には、車体速度Vxが時間微分されて、車体加速度Gsが演算される。また、車体加速度Gsは、前後加速度センサGXの検出結果(前後加速度Gx)に基づいて決定され得る。前後加速度Gxが採用される場合には、前後加速度Gxがそのまま、車体加速度Gsとして決定される。車体加速度演算ブロックGSでは、車体速度Vx、及び、前後加速度Gxのうちの少なくとも1つに基づいて、車体加速度Gsが演算される。車体加速度Gsは、車両VHが減速状態である場合には負符号で、車両VHが加速状態である場合には正符号で表現される。 In the vehicle body acceleration calculation block GS, the vehicle body acceleration Gs is calculated based on the vehicle body speed Vx. Specifically, the vehicle speed Vx is time-differentiated to calculate the vehicle acceleration Gs. In addition, the vehicle body acceleration Gs may be determined based on the detection result of the longitudinal acceleration sensor GX (longitudinal acceleration Gx). When the longitudinal acceleration Gx is adopted, the longitudinal acceleration Gx is determined as the vehicle body acceleration Gs as it is. In the vehicle body acceleration calculation block GS, the vehicle body acceleration Gs is calculated based on at least one of the vehicle body speed Vx and the longitudinal acceleration Gx. The vehicle body acceleration Gs is represented by a negative sign when the vehicle VH is in a decelerating state, and is represented by a positive sign when the vehicle VH is in an accelerating state.
 指示トルク演算ブロックDSにて、減速スリップ量Sl、及び、演算マップZdsに基づいて、指示トルクDsが演算される。指示トルクDsは、駆動源PWに駆動トルクDqの増加を指示するための目標値である。演算マップZdsに従って、スリップ量Slの増加に応じて、指示トルクDsは単調増加するように演算される。また、指示トルクDsは、スリップ量Slが所定スリップsx未満では、「0」よりも小さい値として(つまり、制動トルクを要求するように)決定され、スリップ量Slが所定スリップsxよりも大きい場合には、「0」よりも大きい値として(つまり、駆動トルクを要求するように)決定される。ここで、所定スリップsxは、予め設定された定数である。 In the command torque calculation block DS, the command torque Ds is calculated based on the reduction slip amount Sl and the calculation map Zds. The command torque Ds is a target value for commanding the drive source PW to increase the drive torque Dq. In accordance with the calculation map Zds, the command torque Ds is calculated to increase monotonously according to the increase of the slip amount Sl. Further, when the slip amount Sl is less than the predetermined slip sx, the command torque Ds is determined as a value smaller than "0" (that is, to request the braking torque), and the slip amount Sl is larger than the predetermined slip sx Is determined as a value larger than “0” (that is, to request a drive torque). Here, the predetermined slip sx is a constant set in advance.
 制限処理ブロックLSにて、指示トルクDs、及び、車体加速度Gsに基づいて、制限された指示トルク(「制限指示トルク」という)Dssが演算される。制限指示トルクDssは、指示トルク演算ブロックDSからの指示トルクDsに対して制限が加えられたものである。制限処理ブロックLSでは、車体加速度Gsに基づいて、車両VHが減速状態であるか、加速状態であるかが判定される。そして、車両VHが、減速状態から加速状態に遷移した時点(該当する演算周期)にて、指示トルクDsは保持される。具体的には、先ず、負符号である車体加速度Gsが、「0」に変化した時点(「遷移時点」という)における指示トルクDsの値ds(「遷移トルク」という)が記憶される。そして、遷移時点の後は、指示トルクDsが遷移トルクdsよりも大きくなった場合には、指示トルクDsは遷移トルクdsに制限され、制限された指示トルクDssが演算される。制限指示トルクDssは、選択処理ブロックSRに出力される。 In the limit processing block LS, a limited command torque (referred to as “limit command torque”) Dss is calculated based on the command torque Ds and the vehicle body acceleration Gs. The limit command torque Dss is obtained by limiting the command torque Ds from the command torque calculation block DS. In the limiting processing block LS, it is determined based on the vehicle body acceleration Gs whether the vehicle VH is in the decelerating state or in the accelerating state. Then, at the time point when the vehicle VH changes from the decelerating state to the accelerating state (corresponding operation cycle), the command torque Ds is held. Specifically, first, a value ds (referred to as “transition torque”) of the command torque Ds at the time when the vehicle acceleration Gs having a negative sign changes to “0” (referred to as “transition time”) is stored. Then, after the transition time point, when the command torque Ds becomes larger than the transition torque ds, the command torque Ds is limited to the transition torque ds, and the limited command torque Dss is calculated. The limit command torque Dss is output to the selection processing block SR.
 制動判定ブロックFBにて、制動操作量Ba、及び、制動操作信号Stのうちの少なくとも1つに基づいて、「制動中であるか、否か」が判定される。制動判定ブロックFBでは、制動の有無の判定結果として、その結果を表示する判定フラグFbが決定される。例えば、操作量Baが、所定値bo以上である場合には、「制動中」が肯定され、判定フラグFbとして、「1(制動あり)」が出力される。一方、「Ba<bo」である場合には、「制動中」が否定され、判定フラグFbとして、「0(非制動)」が出力される。ここで、所定値boは、制動操作部材BPの遊びに相当する、予め設定された定数である。また、操作信号Stがオンである場合には、「Fb=1(制動中)」が決定され、操作信号Stがオフである場合には、「Fb=0(非制動)」が決定される。 In the braking determination block FB, “whether or not braking is in progress” is determined based on at least one of the braking operation amount Ba and the braking operation signal St. In the braking determination block FB, a determination flag Fb for displaying the result is determined as the determination result of the presence or absence of braking. For example, when the operation amount Ba is equal to or more than the predetermined value bo, “during braking” is affirmed, and “1 (with braking)” is output as the determination flag Fb. On the other hand, if “Ba <bo”, “during braking” is denied, and “0 (non-braking)” is output as the determination flag Fb. Here, the predetermined value bo is a preset constant corresponding to the play of the braking operation member BP. Further, when the operation signal St is on, "Fb = 1 (during braking)" is determined, and when the operation signal St is off, "Fb = 0 (non-restricting)" is determined. .
 補償値設定ブロックDBにて、補償値dbが、選択処理ブロックSRに出力される。例えば、補償値dbは、「0(ゼロ)」以上である、予め設定された所定値(定数)として設定されている。また、遷移トルクds(「遷移値」に相当)に基づいて、補償値dbが設定され得る。ここで、補償値dbは、スリップ量Slには依存しない値である。例えば、補償値dbは、遷移値dsに等しい値に決定される。或いは、遷移値dsに、路面摩擦係数に応じた所定値が考慮されて、補償値dbが決定され得る。 In the compensation value setting block DB, the compensation value db is output to the selection processing block SR. For example, the compensation value db is set as a preset predetermined value (constant) which is equal to or greater than “0 (zero)”. Further, the compensation value db may be set based on the transition torque ds (corresponding to “transition value”). Here, the compensation value db is a value that does not depend on the slip amount Sl. For example, the compensation value db is determined to be equal to the transition value ds. Alternatively, the compensation value db may be determined in consideration of a predetermined value corresponding to the road surface friction coefficient as the transition value ds.
 選択処理ブロックSRにて、判定フラグFbに基づいて、制限指示トルクDss、及び、補償値dbのうちの何れか一方の値が選択される。「Fb=0」であり、非制動時(つまり、制動アクチュエータBRが作動していない場合)には、要求トルクDrとして、制限指示トルクDssが選択される。一方、「Fb=1」であり、制動時(つまり、制動アクチュエータBRが作動している場合)には、要求トルクDrとして、補償値dbが採用される。要求トルクDrは、駆動コントローラECPに対して、駆動トルクDqの増加を要求する指示値である。 In selection processing block SR, one of limit instruction torque Dss and compensation value db is selected based on determination flag Fb. When "Fb = 0" and not braking (ie, when the braking actuator BR is not operating), the limit instructing torque Dss is selected as the required torque Dr. On the other hand, “Fb = 1”, and at the time of braking (that is, when the braking actuator BR is operating), the compensation value db is adopted as the required torque Dr. The required torque Dr is an instruction value that requests the drive controller ECP to increase the drive torque Dq.
 以上、車体速度演算ブロックVXから選択処理ブロックSRまでの演算処理は、制動コントローラECBにプログラムされている。 As described above, the arithmetic processing from the vehicle speed calculation block VX to the selection processing block SR is programmed in the braking controller ECB.
 駆動コントローラECP内の駆動トルク制御ブロックDQでは、通常時(駆動トルク増加制御の非実行時)には、加速操作量Aaに基づいて、駆動トルクDqが決定される。そして、駆動トルクDqが達成されるよう、駆動信号Pwが演算され、駆動信号Pwに基づいて、駆動源PWが制御される。具体的には、駆動信号Pwに基づいて、スロットル開度Th、及び、燃料噴射量Fiが制御される。 In the drive torque control block DQ in the drive controller ECP, the drive torque Dq is determined based on the acceleration operation amount Aa at the normal time (when the drive torque increase control is not performed). Then, the drive signal Pw is calculated so that the drive torque Dq is achieved, and the drive source PW is controlled based on the drive signal Pw. Specifically, the throttle opening degree Th and the fuel injection amount Fi are controlled based on the drive signal Pw.
 一方、駆動トルク増加制御が実行されると、要求トルクDrが、通信バスCMを介して、駆動コントローラECPにて受信される。この場合、駆動トルク制御ブロックDQにて、要求トルクDrに基づいて、駆動トルクDqが増加されるよう、駆動信号Pwが演算される。そして、駆動信号Pwに基づいて、駆動源PWが制御(増加調整)される。要求トルクDrによって、駆動トルクDqが増加されるため、駆動源PWによる走行抵抗が低減され、駆動輪WDの減速スリップが減少される。結果、駆動輪WDのグリップが回復される。 On the other hand, when the drive torque increase control is executed, the required torque Dr is received by the drive controller ECP via the communication bus CM. In this case, in the drive torque control block DQ, the drive signal Pw is calculated based on the required torque Dr so that the drive torque Dq is increased. Then, based on the drive signal Pw, the drive source PW is controlled (increased adjustment). Since the drive torque Dq is increased by the required torque Dr, the traveling resistance by the drive source PW is reduced, and the deceleration slip of the drive wheel WD is reduced. As a result, the grip of the drive wheel WD is recovered.
 ここで、制限処理ブロックLSは省略され得る。この場合、選択処理ブロックSRには、制限指示トルクDssに代えて、指示トルクDsが入力される。選択処理ブロックSRでは、アクチュエータBRの非作動時(「Fb=0」の場合)には、「Dr=Ds」が選択される。一方、アクチュエータBRの作動時(「Fb=1」の場合)には、「Dr=db」が選択される。 Here, the restriction processing block LS may be omitted. In this case, the command torque Ds is input to the selection processing block SR instead of the limit command torque Dss. In the selection processing block SR, “Dr = Ds” is selected when the actuator BR is not operating (when “Fb = 0”). On the other hand, at the time of operation of the actuator BR (in the case of “Fb = 1”), “Dr = db” is selected.
 駆動トルク増加制御では、非制動時には、スリップ量Slに基づいて要求トルクDrが決定されるため、駆動源PWの抵抗に起因する減速スリップが好適に抑制され得る。また、制動アクチュエータBR(マスタシリンダMC、又は、液圧ユニットHU)によって減速スリップが発生される場合には、スリップ量Slには依存しない(つまり、スリップ量Slとは独立した値である)補償値dbが、要求トルクDrとして決定される。アンチスキッド制御、車両安定化制御等の制動制御は、駆動トルク増加制御と同様に、スリップ量Slに基づいて実行される。補償値dbの採用によって、制動アクチュエータBRによる減速スリップとの干渉が抑制され、駆動トルク増加制御が振動的になることが回避され得る。 In the drive torque increase control, the required torque Dr is determined based on the slip amount Sl at the time of non-braking, so that the deceleration slip due to the resistance of the drive source PW can be suitably suppressed. In addition, in the case where a deceleration slip is generated by the brake actuator BR (master cylinder MC or hydraulic unit HU), the compensation is not dependent on the slip amount Sl (that is, a value independent of the slip amount Sl) The value db is determined as the required torque Dr. Braking control such as anti-skid control and vehicle stabilization control is executed based on the slip amount Sl as in the drive torque increase control. By adopting the compensation value db, interference with the deceleration slip by the braking actuator BR can be suppressed, and it can be avoided that the drive torque increase control becomes oscillatory.
<制限処理ブロックLS>
 図3の時系列線図を参照して、制限処理ブロックLSについて説明する。摩擦係数が低い路面を一定速度で走行している場合に、加速操作部材(例えば、アクセルペダル)APが、「Aa=0」にまで、急に戻された状況を想定している。なお、指示トルク演算ブロックDSにて、スリップ量Slに基づいて演算され指示トルクDsは、制限処理ブロックLSにて制限されるが、制限後の指示トルクDsは、「制限指示トルクDss」と表記される。制限指示トルクDssは、駆動トルク制御ブロックDQに対する最終的な要求信号である。
<Restriction processing block LS>
The restriction processing block LS will be described with reference to the time-series diagram of FIG. When traveling at a constant speed on a road surface with a low coefficient of friction, it is assumed that the acceleration operation member (for example, an accelerator pedal) AP is suddenly returned to “Aa = 0”. In the command torque calculation block DS, the command torque Ds is calculated based on the slip amount Sl, and the command torque Ds is limited by the limit processing block LS. However, the command torque Ds after the limit is expressed as "limit command torque Dss". Be done. The limit command torque Dss is a final request signal for the drive torque control block DQ.
 時点t0にて、加速操作部材APが戻され、駆動源PWによる走行抵抗(例えば、エンジンブレーキ)による制動トルクBqが急に増加される。これにより、時点t0から、駆動輪WDの減速スリップ量Slが徐々に増加する。つまり、車体速度Vxと車輪速度Vwとの差が徐々に拡大し始める。 At time t0, the acceleration operation member AP is returned, and the braking torque Bq by the traveling resistance (for example, the engine brake) by the drive source PW is suddenly increased. Thereby, the deceleration slip amount Sl of the drive wheel WD gradually increases from time t0. That is, the difference between the vehicle speed Vx and the wheel speed Vw starts to gradually increase.
 時点t1にて、駆動トルク増加制御において、制御変数であるスリップ量Slが、その開始しきい値を超過するため、制御実行が開始され、演算マップZdsに従って、指示トルクDsが値d1にまで増加される。指示トルクDsに基づいて、駆動源PWの駆動トルクDqが増加されるため、駆動輪WDの減速運動は緩和され、減速スリップ量Slは、一旦は増加するものの、徐々に減少される。このとき、車両VHには、駆動源PWによる制動トルクBqが作用するため、車両VHは減速状態であり、車体加速度Gsは負(マイナス)の値である。 At time t1, in the drive torque increase control, the slip amount Sl which is a control variable exceeds its start threshold value, so control execution is started and the command torque Ds increases to the value d1 according to the calculation map Zds. Be done. Since the drive torque Dq of the drive source PW is increased based on the command torque Ds, the decelerating motion of the drive wheel WD is alleviated, and the decelerating slip amount Sl is gradually decreased although it is increased once. At this time, since the braking torque Bq from the drive source PW acts on the vehicle VH, the vehicle VH is in a decelerating state, and the vehicle body acceleration Gs is a negative (minus) value.
 時点t2にて、スリップ量Slは減少を開始し、車輪速度Vwは、車体速度Vxに近づき始める。指示トルクDsは、演算マップZdsに基づいて、スリップ量Slが大きいほど大きく演算され、スリップ量Slが小さいほど小さく演算されるため、時点t2から、指示トルクDsは、徐々に減少される。これに伴って、駆動トルクDqが減少され、車体加速度Gsは徐々に増加する。つまり、車両VHの減速の程度が徐々に弱まっていく。 At time t2, the slip amount Sl starts to decrease and the wheel speed Vw starts to approach the vehicle speed Vx. The command torque Ds is calculated larger as the slip amount Sl is larger based on the calculation map Zds, and is calculated smaller as the slip amount Sl is smaller. Therefore, from time t2, the command torque Ds is gradually decreased. Along with this, the drive torque Dq is decreased, and the vehicle body acceleration Gs is gradually increased. That is, the degree of deceleration of the vehicle VH gradually decreases.
 時点t3にて、車体加速度Gsが負符号から、「0」、又は、正符号に変化する。即ち、時点t3にて、車両VHは、減速状態から加速状態に遷移する。この時点t3(遷移時点)の指示トルクDsが、遷移トルクdsとして記憶される。時点t1から時点t3までは、指示トルクDsは実質的には制限されず、制限指示トルクDssとして、指示トルク演算ブロックDSからの指示トルクDsがそのまま決定される(つまり、「Dss=Ds」)。しかし、時点t3以降は、指示トルクDsは、遷移トルクdsによって制限される。遷移トルクdsは、「Gs=0」に対応する駆動トルクDqであるため、遷移トルクdsは、変速機TR等の摩擦抵抗に相当する値であり、「0」以上の値(制動トルクではなく、駆動トルク)である。 At time t3, the vehicle body acceleration Gs changes from a negative sign to "0" or a positive sign. That is, at time t3, the vehicle VH changes from the decelerating state to the accelerating state. The command torque Ds at this time t3 (transition time) is stored as the transition torque ds. From time t1 to time t3, the command torque Ds is not substantially limited, and the command torque Ds from the command torque calculation block DS is determined as it is as the limit command torque Dss (that is, "Dss = Ds") . However, after time t3, the commanded torque Ds is limited by the transition torque ds. Since the transition torque ds is the drive torque Dq corresponding to “Gs = 0”, the transition torque ds is a value corresponding to the frictional resistance of the transmission TR or the like, and a value of “0” or more (not the braking torque , Driving torque).
 例えば、時点t3以降は、制限指示トルクDssは、遷移トルクdsに保持される。「Dss=ds」の状態が維持されることによって、駆動源PW、変速機TRに起因する走行抵抗が好適に補償され、駆動輪WDのスリップ状態が適切に抑制され得る。更に、駆動源PWが発生する駆動トルクDqには、時間遅れが含まれるため、指示トルクDssが一定に維持されることにより、該時間遅れに起因して駆動トルクDqが振動的になることが回避され得る。ここで、「Dss=ds」とされたが、遷移トルクdsに所定値αが加味された値「ds±α」が採用され得る。 For example, after time t3, the limit command torque Dss is held at the transition torque ds. By maintaining the state of “Dss = ds”, the traveling resistance caused by the drive source PW and the transmission TR is suitably compensated, and the slip state of the drive wheel WD can be appropriately suppressed. Furthermore, since the drive torque Dq generated by the drive source PW includes a time delay, the drive torque Dq becomes oscillatory due to the time delay by maintaining the instruction torque Dss constant. It can be avoided. Here, although “Dss = ds”, a value “ds ± α” in which a predetermined value α is added to the transition torque ds may be employed.
 また、遷移トルクdsが上限値とされ、指示トルクDsが遷移トルクdsを超えないように制限され得る。つまり、指示トルクDsが、遷移トルクds以下の場合には、指示トルクDsは制限されず、そのまま、最終的な指示トルクDssとして決定される。しかし、指示トルクDsが遷移トルクdsよりも大きい場合には、指示トルクDsが遷移トルクdsに制限されて、「Dss=ds」で演算される。この場合でも、駆動源PW、変速機TRに起因する走行抵抗が好適に補償され、駆動輪WDのグリップ状態が適切に回復され得る。上記同様、指示トルクDsの上限値として、遷移トルクdsに所定値αが考慮された値「ds±α」が採用され得る。 Further, the transition torque ds may be set to the upper limit value, and the command torque Ds may be limited so as not to exceed the transition torque ds. That is, when the command torque Ds is equal to or less than the transition torque ds, the command torque Ds is not limited and is determined as the final command torque Dss as it is. However, when the command torque Ds is larger than the transition torque ds, the command torque Ds is limited to the transition torque ds and is calculated by “Dss = ds”. Also in this case, the traveling resistance due to the drive source PW and the transmission TR can be suitably compensated, and the grip state of the drive wheel WD can be properly recovered. Similarly to the above, as the upper limit value of the command torque Ds, a value “ds ± α” in which the predetermined value α is considered in the transition torque ds may be employed.
 以上で説明したように、指示トルクDsが車体加速度Gsの変化に基づいて制限される。駆動輪WDの車輪速度Vwが低下している場合、これを迅速に回復させるためには、より大きな駆動トルクDqを発生させることが望ましい。しかし、駆動トルクDqが過大であると、車両VHが不必要に加速される。このため、車体加速度Gsの変化に基づいて、車両VHの加速状態が参酌されて、指示トルクDsの制限が行われる。このため、上記トレードオフが満足され、駆動輪WDの減速スリップが好適に抑制され得る。 As described above, the command torque Ds is limited based on the change of the vehicle body acceleration Gs. If the wheel speed Vw of the drive wheel WD is decreasing, it is desirable to generate a larger drive torque Dq in order to recover the wheel speed quickly. However, if drive torque Dq is excessive, vehicle VH is unnecessarily accelerated. Therefore, based on the change in the vehicle body acceleration Gs, the acceleration state of the vehicle VH is taken into consideration, and the command torque Ds is limited. Therefore, the above-mentioned trade-off is satisfied, and the deceleration slip of the drive wheel WD can be suitably suppressed.
 更に、遷移トルク(遷移値)dsに基づいて、補償値dbが決定され得る。遷移値dsは、変速機TR等の動力伝達機能の損失が補償され得る駆動トルクに相当する。このため、遷移値dsを基準に、補償値dbが設定される。ここで、補償値dbは、スリップ量Slに影響されない値(例えば、定数)として設定される。 Furthermore, the compensation value db can be determined based on the transition torque (transition value) ds. The transition value ds corresponds to a drive torque that can compensate for the loss of the power transmission function such as the transmission TR. Therefore, the compensation value db is set based on the transition value ds. Here, the compensation value db is set as a value (for example, a constant) which is not influenced by the slip amount Sl.
<作用・効果>
 図4の概略図を参照して、作用・効果について説明する。本発明に係る駆動トルク制御装置CSには、駆動源PW、車輪速度センサVW、及び、コントローラECUが備えられる。駆動源PWによって、車両VHを加速する駆動トルクDqが駆動車輪WDに付与される。車輪速度センサVWによって、車両VHの車輪WHの速度(車輪速度)Vwが検出される。そして、コントローラECUによって、車輪速度Vwに基づいて、駆動輪WDの減速スリップ量Slを抑制するよう、駆動トルクDqの増加を指示する要求トルクDrが演算され、要求トルクDrに基づいて駆動源PWが制御される。
<Operation and effect>
The operation and effect will be described with reference to the schematic view of FIG. The drive torque control device CS according to the present invention includes a drive source PW, a wheel speed sensor VW, and a controller ECU. The drive torque PW is applied to the drive wheel WD by the drive source PW to accelerate the vehicle VH. The wheel speed sensor VW detects the speed (wheel speed) Vw of the wheel WH of the vehicle VH. Then, the controller ECU calculates the required torque Dr instructing an increase in the drive torque Dq to suppress the decelerating slip amount Sl of the drive wheel WD based on the wheel speed Vw, and the drive source PW is calculated based on the required torque Dr. Is controlled.
 先ず、駆動源PWの出力と、駆動車輪WDのトルクとの関係について説明する。駆動源PWは、変速機TRを介して、駆動輪WDに動力(駆動トルクDq)を伝達する。変速機TRには、クラッチCL、減速機GN、及び、差動ギヤDZ、DC、DKが含まれる。指示トルクDssは、駆動源PWの出力の目標値として演算される。従って、指示トルクDssは、矢印(A)で示す、駆動源PWと変速機TRとの間のトルク(駆動源PWの出力トルクであり、変速機TRの入力トルク)の目標値である。駆動源PWによる抵抗力(例えば、エンジンブレーキトルク)は、駆動源PWの機械摩擦損失、補機駆動損失、吸排気の流体抵抗(駆動源PWが内燃機関の場合)等に起因して発生する。更に、駆動源PWのみならず、トランスミッションTR、ドライブシャフトSZ、SC、SK等の動力伝達機構による抵抗(摩擦損失等)よっても、車輪に制動トルクBqが発生される。 First, the relationship between the output of the drive source PW and the torque of the drive wheel WD will be described. The drive source PW transmits power (drive torque Dq) to the drive wheel WD via the transmission TR. The transmission TR includes a clutch CL, a reduction gear GN, and differential gears DZ, DC, DK. The command torque Dss is calculated as a target value of the output of the drive source PW. Therefore, the command torque Dss is a target value of the torque between the drive source PW and the transmission TR (the output torque of the drive source PW, which is the input torque of the transmission TR) shown by the arrow (A). Resistive force (for example, engine brake torque) by drive source PW is generated due to mechanical friction loss of drive source PW, accessory drive loss, fluid resistance of intake and exhaust (when drive source PW is an internal combustion engine), etc. . Furthermore, the braking torque Bq is generated at the wheel not only by the drive source PW but also by the resistance (friction loss etc.) by the power transmission mechanism such as the transmission TR and the drive shafts SZ, SC, SK.
 駆動輪WDにおいて、車輪スリップ(車輪の回転方向における減速、及び、加速スリップ)が「0(非発生)」となる場合は、車軸JWにおいて、駆動トルクDqと制動トルクBqとが釣り合い、車軸JWまわりのトルクが「0」となる場合である。このため、動力伝達機構での動力損失が考慮されて、矢印(B)で示す部位(駆動輪WDへの入力トルク)のトルクが「0」となるよう、駆動源PWによる駆動トルクDqが調整される必要がある。 In the drive wheel WD, when the wheel slip (deceleration in the rotational direction of the wheel and acceleration slip) is "0 (not generated)", the drive torque Dq and the braking torque Bq balance at the axle JW, and the axle JW This is the case when the torque around it is "0". Therefore, in consideration of the power loss in the power transmission mechanism, the drive torque Dq by the drive source PW is adjusted so that the torque of the portion (input torque to the drive wheel WD) shown by the arrow (B) becomes "0". It needs to be done.
 車両VHの加速度Gsが演算され、車体加速度Gsが減速状態から加速状態に遷移する時点(遷移時点)の指示トルクDsを遷移値dsとして記憶される。そして、指示トルクDsが遷移値dsに基づいて制限されて、指示トルクDssが決定される。車体加速度Gsの遷移時点では、「Gs=0」であり、駆動輪WDには、駆動トルクDqも制動トルクBqも作用していない。つまり、遷移値dsは、変速機TR等の動力伝達機能の損失が補償され得る駆動トルクに相当する。このため、遷移時点の指示トルクDsが、遷移値dsとして記憶され、指示トルクDsの制限処理が遷移値dsに基づいて行われる。 The acceleration Gs of the vehicle VH is calculated, and the command torque Ds at the time (transition time) when the vehicle body acceleration Gs changes from the deceleration state to the acceleration state is stored as the transition value ds. Then, the command torque Ds is limited based on the transition value ds, and the command torque Dss is determined. At the transition point of the vehicle body acceleration Gs, “Gs = 0”, and neither the driving torque Dq nor the braking torque Bq acts on the driving wheel WD. That is, the transition value ds corresponds to a drive torque that can compensate for the loss of the power transmission function of the transmission TR or the like. Therefore, the command torque Ds at the transition time is stored as the transition value ds, and the limiting process of the command torque Ds is performed based on the transition value ds.
 例えば、遷移時点以降は、指示トルクDssが遷移値dsに一致するように制限される。また、遷移値dsによって、指示トルクDsの上限値が決定され、指示トルクDsが遷移値dsを超過しないように制限されて指示トルクDssが決定される。指示トルクDssが、遷移値dsによって制限されるため、動力伝達機構の動力損失が好適に補償され、適切な駆動トルク増加制御が実行され得る。 For example, after the transition time point, the command torque Dss is limited to coincide with the transition value ds. Further, the upper limit value of the command torque Ds is determined by the transition value ds, and the command torque Ds is limited so as not to exceed the transition value ds, and the command torque Dss is determined. Since commanded torque Dss is limited by transition value ds, power loss of the power transmission mechanism is suitably compensated, and appropriate drive torque increase control can be executed.
 本発明に係る駆動トルク制御装置CSでは、「制動アクチュエータBRが作動中か、否か(即ち、制動中か、否か)」が判定される。そして、アクチュエータBRが非作動の場合(即ち、非制動時)には、スリップ量Slに基づいて演算されたDs(又は、制限指示トルクDss)に基づいて、駆動トルク増加制御が実行される。このため、駆動源PWによる過大な減速スリップが確実に抑制され得る。また、要求トルクDrとして、制限が加えられた指示値Dssが採用される場合には、駆動源PWの出力トルクの増加において、車両VHは運転者の意図以上に加速されることが回避され、運転者に対する違和が抑制され得る。 In the drive torque control device CS according to the present invention, it is determined whether the braking actuator BR is in operation or not (that is, whether it is in braking or not). Then, when the actuator BR is inoperative (ie, not braking), drive torque increase control is executed based on Ds (or limit command torque Dss) calculated based on the slip amount Sl. Therefore, excessive deceleration slip due to the drive source PW can be reliably suppressed. Further, when the command value Dss to which the limitation is added is adopted as the required torque Dr, the vehicle VH is prevented from being accelerated more than the driver's intention when the output torque of the drive source PW is increased. Disturbance to the driver can be suppressed.
 一方、制動アクチュエータBR(マスタシリンダMC、液圧ユニットHUの総称)が作動中の場合(即ち、制動時)には、スリップ量Slに依存しない補償値dbに基づいて、駆動トルク増加制御が実行される。駆動源PWによる駆動トルクDqの発生は相対的に遅く、制動アクチュエータBRによる制動トルクBqの発生は相対的に速い。例えば、アンチスキッド制御、車両安定化制御等の制動制御も、スリップ量Slに基づいて実行される。このため、スリップ量Slに基づいて駆動トルク増加制御が実行されると、制御干渉が生じ得る。しかし、制動アクチュエータBRが作動中(制動制御の実行時を含む)には、スリップ量Slには影響されない補償値db(例えば、「0」以上の所定値)に基づいて、駆動トルク増加制御が実行される。このため、駆動トルク増加制御と制動制御との干渉が確実に回避され得る。なお、補償値dbは、上記遷移値dsに基づいて設定され得る。 On the other hand, when the braking actuator BR (master cylinder MC, generic term for the hydraulic unit HU) is in operation (that is, at the time of braking), drive torque increase control is executed based on the compensation value db which does not depend on the slip amount Sl. Be done. The generation of the driving torque Dq by the driving source PW is relatively slow, and the generation of the braking torque Bq by the braking actuator BR is relatively fast. For example, braking control such as antiskid control and vehicle stabilization control is also performed based on the slip amount Sl. Therefore, when the drive torque increase control is executed based on the slip amount Sl, control interference may occur. However, while the brake actuator BR is in operation (including the time of execution of the braking control), the drive torque increase control is performed based on the compensation value db (for example, a predetermined value of “0” or more) which is not affected by the slip amount Sl. To be executed. Therefore, interference between the drive torque increase control and the braking control can be reliably avoided. The compensation value db may be set based on the transition value ds.
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果(制動時の過大な車輪スリップの抑制、制御干渉の回避)を奏する。
Other Embodiments
Hereinafter, other embodiments will be described. Also in the other embodiments, the same effects (suppression of excessive wheel slip at the time of braking, avoidance of control interference) are exerted.
 上記実施形態では、駆動トルク制御装置CSが搭載される車両VHとして、4輪駆動方式のものが例示された。これに代えて、2輪駆動方式の車両が採用され得る。例えば、前輪駆動の車両では、前輪が駆動輪WDであり、後輪が非駆動輪である。後輪駆動の車両では、前輪が非駆動輪であり、後輪が駆動輪WDである。 In the above-described embodiment, the four-wheel drive type vehicle is exemplified as the vehicle VH on which the drive torque control device CS is mounted. Instead of this, a two-wheel drive vehicle may be employed. For example, in a front wheel drive vehicle, the front wheels are drive wheels WD and the rear wheels are non-drive wheels. In a rear wheel drive vehicle, the front wheels are non-drive wheels and the rear wheels are drive wheels WD.
 駆動トルク制御装置CSは、運転者の制動操作部材BPの操作による制動(マニュアルブレーキ)の場合に加え、自動ブレーキの作動時においても機能する。自動ブレーキでは、液圧ユニットHUによって、制動力が発生されるため、制動判定ブロックFBにおいて、「制動アクチュエータBRが作動中であるか、否か」が判定される。マニュアルブレーキ時と同様に、制動判定ブロックFBでは、自動ブレーキ作動時には、「Fb=1(制動中)」が出力され、非作動時には、「Fb=0(非制動)」が出力される。 The drive torque control device CS functions not only in the case of braking (manual brake) by the driver's operation of the braking operation member BP, but also at the time of operation of the automatic brake. In the automatic brake, a braking force is generated by the hydraulic pressure unit HU. Therefore, in the braking determination block FB, it is determined whether or not the braking actuator BR is in operation. As in the manual braking, in the braking determination block FB, "Fb = 1 (during braking)" is output when the automatic braking is operating, and "Fb = 0 (non-braking)" is output when the automatic braking is not operating.
 上記実施形態では、ディスク型制動装置(ディスクブレーキ)の構成が例示された。この場合、摩擦部材MSはブレーキパッドであり、回転部材KTはブレーキディスクである。ディスク型制動装置に代えて、ドラム型制動装置(ドラムブレーキ)が採用され得る。ドラムブレーキの場合、キャリパCPに代えて、ブレーキドラムが採用される。また、摩擦部材MSはブレーキシューであり、回転部材KTはブレーキドラムである。 In the above embodiment, the configuration of the disk brake device (disk brake) has been exemplified. In this case, the friction member MS is a brake pad, and the rotating member KT is a brake disk. Instead of the disc brake, a drum brake may be employed. In the case of a drum brake, a brake drum is employed instead of the caliper CP. The friction member MS is a brake shoe, and the rotating member KT is a brake drum.
 上記実施形態では、車輪WHに制動トルクを付与する装置として、制動液を介した液圧式のものが例示された。これに代えて、電気モータによって駆動される、電動式のものが採用され得る。電動式装置では、電気モータの回転動力が、直線動力に変換され、これによって、摩擦部材MSが回転部材KTに押し付けられる。従って、制動液の圧力に依らず、電気モータによって、直接、制動トルクが発生される。さらに、前輪用として、制動液を介した液圧式のものが採用され、後輪用として、電動式のものが採用された、複合型の構成が形成され得る。 In the said embodiment, the thing of the hydraulic type via damping | braking liquid was illustrated as an apparatus which provides a damping | braking torque to the wheel WH. Alternatively, an electric motor driven by an electric motor may be employed. In the electrically driven device, the rotational power of the electric motor is converted into linear power, whereby the friction member MS is pressed against the rotation member KT. Therefore, the braking torque is directly generated by the electric motor regardless of the pressure of the braking fluid. Furthermore, a composite type configuration may be formed in which a hydraulic type through a braking fluid is adopted as the front wheel, and an electric type is adopted as the rear wheel.
 上記実施形態では、制動コントローラECBにて要求トルクDrが演算され、要求トルクDrが駆動コントローラECPに送信され、駆動コントローラECPにて駆動トルクDqが制御された。各種コントローラ(ECB等)は、通信バスCMによって、信号授受が相互に可能である。このため、各種演算等は、何れのコントローラにおいても処理され得る。 In the above embodiment, the request torque Dr is calculated by the braking controller ECB, the request torque Dr is transmitted to the drive controller ECP, and the drive torque Dq is controlled by the drive controller ECP. The various controllers (ECB etc.) can mutually exchange signals by the communication bus CM. Therefore, various operations can be processed by any controller.

Claims (3)

  1.  車両を加速する駆動トルクを駆動車輪に付与する駆動源と、
     前記車両を減速する制動トルクを車輪に付与するアクチュエータと、
     前記車両の車輪の速度を検出する車輪速度センサと、
     前記駆動車輪の減速スリップを抑制するよう、前記駆動トルクの増加を要求する要求トルクを演算し、前記要求トルクに基づいて、前記駆動源を制御するコントローラと、を備えた車両の駆動トルク制御装置において、
     前記コントローラは、
     前記アクチュエータが作動していない場合には、
     前記速度に基づいて、前記駆動車輪のスリップ量を演算し、該スリップ量に基づいて前記要求トルクを演算し、
     前記アクチュエータが作動している場合には、
     前記要求トルクを、前記スリップ量には依存しない補償値に決定するよう構成された、車両の駆動トルク制御装置。
    A drive source for applying a drive torque for accelerating the vehicle to the drive wheels;
    An actuator for applying a braking torque to the wheels to decelerate the vehicle;
    A wheel speed sensor for detecting the speed of the wheel of the vehicle;
    A drive torque control device for a vehicle, comprising: a controller that calculates a required torque that requires an increase in the drive torque so as to suppress a reduction in slip of the drive wheel, and controls the drive source based on the required torque; In
    The controller
    If the actuator is not operating,
    Based on the speed, the slip amount of the drive wheel is calculated, and the required torque is calculated based on the slip amount.
    If the actuator is operating,
    A driving torque control device for a vehicle, wherein the required torque is set to a compensation value that does not depend on the slip amount.
  2.  請求項1に記載の車両の制駆動制御装置において、
     前記補償値は、ゼロ以上の予め設定された定数である、車両の駆動トルク制御装置。
    In the vehicle braking / driving control device according to claim 1,
    The driving torque control device for a vehicle, wherein the compensation value is a preset constant equal to or more than zero.
  3.  請求項1に記載の車両の制駆動制御装置において、
     前記コントローラは、
     前記アクチュエータが作動していない場合に、
     前記車両の加速度が、減速状態から加速状態に遷移する時点の前記要求トルクを遷移値として記憶し、
     前記遷移値に基づいて、前記補償値を設定するよう構成された、車両の駆動トルク制御装置。
    In the vehicle braking / driving control device according to claim 1,
    The controller
    If the actuator is not operating,
    Storing the required torque as a transition value when the acceleration of the vehicle transitions from a decelerating state to an accelerating state;
    A drive torque control device for a vehicle configured to set the compensation value based on the transition value.
PCT/JP2018/026787 2017-07-18 2018-07-17 Vehicle-driving-torque control device WO2019017357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138700A JP6756310B2 (en) 2017-07-18 2017-07-18 Vehicle drive torque controller
JP2017-138700 2017-07-18

Publications (1)

Publication Number Publication Date
WO2019017357A1 true WO2019017357A1 (en) 2019-01-24

Family

ID=65015157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026787 WO2019017357A1 (en) 2017-07-18 2018-07-17 Vehicle-driving-torque control device

Country Status (2)

Country Link
JP (1) JP6756310B2 (en)
WO (1) WO2019017357A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018147A (en) * 2008-07-10 2010-01-28 Hitachi Automotive Systems Ltd Braking/driving force control apparatus for vehicle
JP2012116307A (en) * 2010-11-30 2012-06-21 Daimler Ag Control device for hybrid electric vehicle
JP2013043459A (en) * 2011-08-22 2013-03-04 Daimler Ag Controller of hybrid vehicle
JP2016070234A (en) * 2014-09-30 2016-05-09 日信工業株式会社 Control device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018147A (en) * 2008-07-10 2010-01-28 Hitachi Automotive Systems Ltd Braking/driving force control apparatus for vehicle
JP2012116307A (en) * 2010-11-30 2012-06-21 Daimler Ag Control device for hybrid electric vehicle
JP2013043459A (en) * 2011-08-22 2013-03-04 Daimler Ag Controller of hybrid vehicle
JP2016070234A (en) * 2014-09-30 2016-05-09 日信工業株式会社 Control device for vehicle

Also Published As

Publication number Publication date
JP2019018697A (en) 2019-02-07
JP6756310B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US10486547B2 (en) Device and method for controlling electric vehicle with torque command and vibration suppression control
US9931962B2 (en) Control device for electric vehicle and control method for electric vehicle
JP6236672B2 (en) Control device for electric vehicle
JP5773854B2 (en) Vehicle control method and equipment
JP4179392B1 (en) Vehicle turning behavior control device
JP6569646B2 (en) Anti-skid control device for vehicle
JP2007255664A (en) Turning behavior control device for vehicle
US11351969B2 (en) Operation control device for tractor vehicle
JP2003104186A (en) Acceleration slip control device for four-wheel drive vehicle
JP2006200526A (en) Output characteristic control device for vehicle
JP4289294B2 (en) Traction control device
JP6756310B2 (en) Vehicle drive torque controller
JP6733613B2 (en) Vehicle drive torque control device
JP7069626B2 (en) Motion control device for towing vehicle
JP3105045B2 (en) Vehicle slip control device
JP2022157711A (en) Vehicular brake control device
JP2016190607A (en) Control apparatus of vehicle
JP2009298277A (en) Braking force control device for vehicle
JP4803058B2 (en) Vehicle traction control device
JP7188189B2 (en) vehicle braking controller
JP3636149B2 (en) Driving force control device for four-wheel drive vehicle
JP2019093944A (en) Control device of four-wheel drive vehicle
JP2002029401A (en) Limited slip differential for vehicle
JP6780458B2 (en) Vehicle anti-skid control
JP7003555B2 (en) Motion control device for towing vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834672

Country of ref document: EP

Kind code of ref document: A1