WO2019017199A1 - Positive electrode active material - Google Patents

Positive electrode active material Download PDF

Info

Publication number
WO2019017199A1
WO2019017199A1 PCT/JP2018/025295 JP2018025295W WO2019017199A1 WO 2019017199 A1 WO2019017199 A1 WO 2019017199A1 JP 2018025295 W JP2018025295 W JP 2018025295W WO 2019017199 A1 WO2019017199 A1 WO 2019017199A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2018/025295
Other languages
French (fr)
Japanese (ja)
Inventor
明 後藤
裕輔 山本
尚 杉江
泰行 森下
泰彰 岡山
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017204674A external-priority patent/JP2019023990A/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019017199A1 publication Critical patent/WO2019017199A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material of a lithium ion secondary battery.
  • Lithium ion secondary batteries are small in size and large in capacity, and thus are used as batteries of various devices such as mobile phones and laptop computers.
  • the lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte as main components.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the surface of the current collector and containing a positive electrode active material.
  • Patent Document 1 reports that a new composite oxide containing lithium, niobium, and iron or manganese can be used as a positive electrode active material of a lithium ion secondary battery.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a new positive electrode active material for providing a lithium ion secondary battery excellent in capacity.
  • the inventors of the present invention conducted research on the complex oxide described in Patent Document 1 and found that there is room for improvement in terms of capacity. And as a result of earnest examination of this inventor, it discovered that the performance as a positive electrode active material of the said complex oxide improves by doping a certain element.
  • the present invention has been completed based on the findings of the present inventor.
  • the positive electrode active material of the present invention exhibits a crystal structure attributable to the space group Fm-3m, and is characterized by being represented by the following composition formula (1).
  • X is selected from halogen elements.
  • x, y, a, b, c, d and e are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, 0.25 ⁇ a + b ⁇ 1, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ C 0.05, 0 ⁇ d ⁇ 0.2, and 1.8 ⁇ e ⁇ 2.2 are satisfied.
  • a lithium ion secondary battery excellent in capacity can be provided.
  • 7 is a SEM image of a positive electrode active material of Comparative Example 1; 7 is a SEM image of the positive electrode active material of Example 1. 7 is a SEM image of the positive electrode active material of Example 2. 7 is a SEM image of the positive electrode active material of Example 3. 5 is an X-ray diffraction chart of a positive electrode active material of Example 1. 7 is a charge / discharge curve at 25 ° C. of the lithium ion secondary battery of Example 1. 7 is a charge / discharge curve at 60 ° C. of the lithium ion secondary battery of Example 1. 7 is a charge / discharge curve at 25 ° C. of the lithium ion secondary battery of Example 2. FIG. 7 is a charge / discharge curve at 60 ° C. of the lithium ion secondary battery of Example 2. FIG.
  • the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in that range. And a numerical range can be constituted by combining these arbitrarily including the upper limit and lower limit, and the numerical value listed in the example. Furthermore, numerical values arbitrarily selected from these numerical ranges can be used as new upper and lower numerical values.
  • the positive electrode active material of the present invention exhibits a crystal structure attributable to the space group Fm-3m, and is characterized by being represented by the following composition formula (1).
  • X is selected from halogen elements.
  • x, y, a, b, c, d and e are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, 0.25 ⁇ a + b ⁇ 1, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ C 0.05, 0 ⁇ d ⁇ 0.2, and 1.8 ⁇ e ⁇ 2.2 are satisfied.
  • "Fm-3m” "-3" represents 3 with an upper line.
  • a range of 0.1 ⁇ x ⁇ 0.7 is preferable, a range of 0.2 ⁇ x ⁇ 0.6 is more preferable, and a range of 0.3 ⁇ x ⁇ 0.5 is more preferable.
  • a range of 0.05 ⁇ y ⁇ 0.5 is preferable, a range of 0.1 ⁇ y ⁇ 0.45 is more preferable, a range of 0.2 ⁇ y ⁇ 0.4 is more preferable, and 0.
  • the range of 3 ⁇ y ⁇ 0.35 is more preferable.
  • a and b it is preferable to satisfy the relationship of 0.25 ⁇ a + b ⁇ 0.75, more preferably 0.3 ⁇ a + b ⁇ 0.7, and 0.35 ⁇ a + b ⁇ 0. It is further preferable to satisfy the relationship of .5. With respect to y, a and b, it is preferable to satisfy the relationship 0.8 ⁇ 2y + a + b ⁇ 1.2, and it is more preferable to satisfy the relationship 0.9 ⁇ 2y + a + b ⁇ 1.15.
  • a range of 1.85 ⁇ e ⁇ 2.15 is preferable, and a range of 1.9 ⁇ e ⁇ 2.1 is more preferable.
  • the positive electrode active material of the present invention is contained in the positive electrode active material represented by composition formula (1). Since the lattice constant of the crystal structure of the positive electrode active material is increased by the addition of P, it can be said that the distance between crystal planes of the positive electrode active material of the present invention is wider than that of the conventional P-free positive electrode active material. Since the distance between crystal planes can be a conductive path of lithium ions, the positive electrode active material of the present invention can be said to have a wide conductive path of lithium ions and excellent ion conductivity. Due to these matters, in the positive electrode active material of the present invention, compared to the complex oxide described in the conventional Patent Document 1, the charge and discharge for releasing and introducing lithium ions are performed smoothly, so the capacity It is advantageous in terms of
  • c indicating the composition ratio of P it is preferable to satisfy 0.001 ⁇ c ⁇ 0.04, it is more preferable to satisfy 0.005 ⁇ c ⁇ 0.03, and 0.005 ⁇ c ⁇ 0. It is more preferable to satisfy .025, and it is particularly preferable to satisfy 0.01 ⁇ c ⁇ 0.02. If the amount of P present is too small, it may be difficult to confirm the effect of P addition. On the other hand, when P is added in excess, the amount of P that can be introduced into the crystal of the positive electrode active material of the present invention is saturated, so P is a phosphate on the surface of the positive electrode active material of the present invention Will also exist in the form of Therefore, excessive addition of P is wasteful.
  • X F, Cl, Br, and I can be illustrated.
  • X is not essential in the positive electrode active material represented by the composition formula (1), the addition of X is expected to have the same effect as the addition of P.
  • a material in which P and X coexist is preferable.
  • d indicating the composition ratio of X, it is preferable to satisfy 0 ⁇ d ⁇ 0.2, more preferably to satisfy 0 ⁇ d ⁇ 0.15, and satisfy 0.01 ⁇ d ⁇ 0.12 Is more preferable, and it is particularly preferable to satisfy 0.05 ⁇ d ⁇ 0.11.
  • the manufacturing method of the positive electrode active material of this invention is demonstrated.
  • the positive electrode active material of the present invention may be synthesized by applying a solid phase method or a coprecipitation method employed when producing a general positive electrode active material.
  • the positive electrode of the present invention can be prepared by mixing and calcining lithium source, niobium source, iron source and / or manganese source, P source, and optionally X source in the desired ratio. Can produce substances.
  • the hydroxide is precipitated to be a precipitate from an aqueous solution in which niobium salt, iron salt and / or manganese salt is mixed in the desired ratio, and then the precipitate, lithium source, P
  • the positive electrode active material of the present invention can be produced by mixing and firing a source and, if necessary, an X source.
  • the calcination temperature in the solid phase method and coprecipitation method is preferably 500 to 1200 ° C., more preferably 700 to 1100 ° C., still more preferably 800 to 1000 ° C., particularly preferably 850 to 950 ° C., most preferably 880 to 920 ° C. preferable.
  • the firing is preferably performed in an inert gas atmosphere such as helium or argon.
  • lithium sources include lithium oxide, lithium hydroxide, lithium carbonate, lithium hydrogen carbonate and lithium fluoride.
  • niobium source or niobium salt include niobium oxide, niobium hydroxide, niobium sulfate, niobium nitrate, niobium chloride, niobium fluoride and lithium niobate.
  • iron source or iron salt include iron oxide, iron hydroxide, iron sulfate, iron nitrate, iron chloride and iron fluoride.
  • Examples of the manganese source or manganese salt include manganese oxide, manganese hydroxide, manganese sulfate, manganese nitrate, manganese chloride and manganese fluoride.
  • Examples of P sources include phosphoric acid, phosphates and phosphates, and derivatives thereof.
  • Examples of the X source include lithium fluoride, niobium fluoride, iron fluoride and manganese fluoride when X is fluorine.
  • a compound having a melting point or decomposition temperature lower than the calcination temperature is preferable.
  • a compound having a melting point or a decomposition temperature lower than the calcination temperature as the P source, it becomes possible to provide an excellent reaction field at the time of calcination. As a result, the reactivity of each raw material is improved, and adverse side reactions can be suppressed. Therefore, mixing of low-capacity impurities such as LiMnO 2 and Li 3 NbO 4 is suppressed in the positive electrode active material of the present invention manufactured using a compound having a melting point or decomposition temperature lower than the firing temperature as the P source. It can be said that.
  • suitable P sources in terms of melting point or decomposition temperature include LiPF 6 and Li 3 PO 4 .
  • the positive electrode active material of the present invention is preferably subjected to a grinding step to prepare a powder of an appropriate particle size distribution.
  • the pulverizing step is preferably carried out in the coexistence of the positive electrode active material of the present invention and the conductive auxiliary agent described later.
  • the average particle diameter of the powder of the positive electrode active material of the present invention is preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and still more preferably 3 to 10 ⁇ m. In the present specification, the average particle size is meant the 50% cumulative diameter when measuring samples with conventional laser diffraction scattering particle size distribution measuring apparatus (D 50).
  • the positive electrode for a lithium ion secondary battery comprising the positive electrode active material of the present invention is referred to as "the positive electrode of the present invention”
  • the lithium ion secondary battery comprising the positive electrode active material of the present invention is referred to as “lithium ion of the present invention It is called a secondary battery.
  • the positive electrode of the present invention comprises a positive electrode active material layer containing the positive electrode active material of the present invention, and a current collector.
  • the positive electrode active material layer is formed on the current collector.
  • the blending ratio of the positive electrode active material of the present invention in the positive electrode active material layer can be, for example, 30 to 100% by mass, 40 to 90% by mass, and 50 to 80% by mass.
  • the current collector refers to a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery.
  • the material of the current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used.
  • the material of the current collector is at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Etc. can be exemplified.
  • the current collector may be coated with a known protective layer. What processed the surface of a collector by a well-known method may be used as a collector.
  • the potential of the positive electrode is set to 4 V or more based on lithium, it is preferable to use aluminum as a current collector for the positive electrode.
  • an aluminum or an aluminum alloy as the positive electrode current collector.
  • aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum.
  • An alloy obtained by adding various elements to pure aluminum is called an aluminum alloy.
  • aluminum alloys include Al-Cu, Al-Mn, Al-Fe, Al-Si, Al-Mg, Al-Mg-Si, and Al-Zn-Mg.
  • Al or aluminum alloy specifically, for example, A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys such as JIS A3003 and A3004 (Al-Mn series), JIS A8079, A8021 etc. A 8000 series alloys (Al-Fe series).
  • the current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer may contain a known positive electrode active material in addition to the positive electrode active material of the present invention.
  • the positive electrode active material layer preferably contains a binder and a conductive auxiliary. What is mentioned later may be suitably adopted suitably as a binder and a conductive support agent contained in a positive electrode active material layer.
  • the lithium ion secondary battery of the present invention comprises the positive electrode of the present invention, a negative electrode, a separator, and an electrolytic solution.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer contains a known negative electrode active material, and preferably further contains a binder and a conductive additive.
  • the current collector of the negative electrode may be appropriately selected from those described for the positive electrode of the present invention.
  • both the positive electrode active material and the negative electrode active material may be collectively referred to as "active material”
  • both the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as the "active material layer”. .
  • fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resin, carboxymethyl cellulose
  • fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber
  • thermoplastic resins such as polypropylene and polyethylene
  • imide resins such as polyimide and polyamideimide
  • alkoxysilyl group-containing resin such as carboxymethyl cellulose
  • carboxymethyl cellulose carboxymethyl cellulose
  • active material: binder 1: 0.005 to 1: 0.5.
  • a conductive aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive support agent may be any chemically active high electron conductor, and carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber, and various metal particles are exemplified. Ru. Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, channel black and the like. These conductive assistants can be added to the active material layer singly or in combination of two or more.
  • current collection can be performed using conventionally known methods such as roll coating, die coating, dip coating, doctor blade method, spray coating, and curtain coating.
  • the active material may be applied to the surface of the body.
  • the active material, the binder, the solvent, and the conductive auxiliary agent as needed may be mixed to form a slurry, and the slurry may be applied to the surface of the current collector and then dried.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and water. The dried one may be compressed to increase the electrode density.
  • a mixture containing an active material, a binder, and, if necessary, a conductive auxiliary may be prepared, and the mixture may be pressed onto the current collector to form an active material layer on the surface of the current collector. Good.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing a short circuit due to the contact of the both electrodes.
  • a known one may be employed, and polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, synthetic resin such as polyacrylonitrile, polysaccharide such as cellulose, amylose, fibroin Examples thereof include porous bodies, non-woven fabrics, and woven fabrics using one or more of electrically insulating materials such as natural polymers and ceramics such as keratin, lignin and suberin.
  • the separator may have a multilayer structure.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic carbonate As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate.
  • cyclic esters include gamma butyrolactone, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.
  • chain carbonates include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate.
  • chain esters examples include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like.
  • ethers tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be exemplified.
  • non-aqueous solvent a compound in which part or all of hydrogens in the chemical structure of the above specific solvent is substituted with fluorine may be adopted.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
  • a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a nonaqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate
  • a nonaqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate
  • the positive electrode and the negative electrode sandwich a separator to form an electrode body.
  • the electrode body may be any of a laminated type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a laminate of a positive electrode, a separator and a negative electrode is wound.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle using electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form a battery pack.
  • various household appliances driven by a battery such as a personal computer and a mobile communication apparatus, as well as a vehicle, an office apparatus, an industrial apparatus and the like can be mentioned.
  • the lithium ion secondary battery of the present invention can be used in wind power generation, solar power generation, hydroelectric power generation, storage devices and power smoothing devices for electric power systems, power sources for power and / or accessories of ships, etc., aircraft, Power supply source for power of spacecraft and / or accessories, auxiliary power supply for vehicles not using electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charge station etc. for electric vehicles.
  • Comparative example 1 Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 were weighed so that the element ratio Li: Nb: Mn was 1.3: 0.3: 0.4, and these powders were put into a ball mill . Then, mixing with a ball mill was performed at about 100 rpm for 24 hours to obtain a mixture. After molding the mixture, the mixture was fired by heating at 950 ° C. for 12 hours in an argon gas atmosphere to manufacture a positive electrode active material of Comparative Example 1 which is a fired product.
  • the theoretical composition of the positive electrode active material of Comparative Example 1 is Li 1.3 Nb 0.3 Mn 0.4 O 2 .
  • the positive electrode active material of Comparative Example 1 and acetylene black as a conductive additive were weighed so as to have a mass ratio of 5: 2, and charged into a ball mill. And the mixing by a ball mill was performed for 0.5 hours at 300 rpm, and it was set as the mixture of the comparative example 1 containing the positive electrode active material of the comparative example 1, and acetylene black.
  • the mixture of Comparative Example 1, acetylene black, and polytetrafluoroethylene as a binder were mixed in a mortar to obtain a clay-like composition for a positive electrode active material layer.
  • the mass ratio of the positive electrode active material of Comparative Example 1, acetylene black to polytetrafluoroethylene was 5: 3: 2.
  • a mesh-like aluminum was prepared as a current collector, and the composition for the positive electrode active material layer was pressure-bonded to this, whereby the positive electrode of Comparative Example 1 was obtained.
  • Lithium foil was prepared and used as a negative electrode.
  • a polyethylene porous membrane was prepared as a separator.
  • an electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which 5 parts by volume of ethylene carbonate and 5 parts by volume of diethyl carbonate were mixed.
  • the separator was sandwiched between the positive electrode and the negative electrode of Comparative Example 1 to form an electrode body.
  • the electrode body was covered with a pair of laminate films, and the three sides were sealed, and then the electrolytic solution was injected into the bag-like laminate film. Thereafter, by sealing the other side, the lithium ion secondary battery of Comparative Example 1 was manufactured, in which the four sides were airtightly sealed and the electrode body and the electrolytic solution were sealed.
  • Comparative example 2 The positive electrode active material of Comparative Example 2, the mixture of Comparative Example 2, the positive electrode of Comparative Example 2, and the lithium ion secondary battery of Comparative Example 2 are the same as in Comparative Example 1 except that the firing temperature is 900.degree. Manufactured.
  • Example 1 LiPF 6 was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an amount equivalent to 1% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2
  • the positive electrode active material of Example 1, the mixture of Example 1, the positive electrode of Example 1, and the secondary lithium ion of Example 1 are the same as Comparative Example 1 except that the baking temperature is set to 900 ° C.
  • the battery was manufactured.
  • the theoretical composition of the positive electrode active material of Example 1 is Li 1.306 Nb 0.3 Mn 0.4 P 0.006 F 0.036 O 2 .
  • Example 2 LiPF 6 was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an amount equivalent to 2% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2
  • the baking temperature was set to 900 ° C.
  • the positive electrode active material of Example 2 the mixture of Example 2, the positive electrode of Example 2, and the secondary lithium ion of Example 2
  • the battery was manufactured.
  • the composition of the theoretical positive electrode active material of Example 2 is Li 1.312 Nb 0.3 Mn 0.4 P 0.012 F 0.072 O 2.
  • Example 3 LiPF 6 was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an additive amount corresponding to 3% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2
  • the baking temperature was set to 900 ° C.
  • the positive electrode active material of Example 3 the mixture of Example 3, the positive electrode of Example 3, and the secondary lithium ion of Example 3
  • the battery was manufactured.
  • the theoretical composition of the positive electrode active material of Example 3 is Li 1.318 Nb 0.3 Mn 0.4 P 0.018 F 0.108 O 2 .
  • Table 1 shows a list of production methods of positive electrode active materials of Comparative Examples 1 to 2 and Examples 1 to 3.
  • Nb, Mn, P, and O were targeted for the positive electrode active material of Example 2 by SEM-EDX combining a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDX). As a result of analysis, it was confirmed that these elements were dispersed and present in the positive electrode active material of Example 2.
  • Example 3 The positive electrode active materials of Example 1 and Example 2 were analyzed by a powder X-ray diffractometer using radiation light. Also in the X-ray diffraction chart of any positive electrode active material, a diffraction pattern showing a crystal structure attributable to the space group Fm-3m was observed. The X-ray diffraction chart of the positive electrode active material of Example 1 showed some peaks derived from LiMnO 2 as an impurity, while the X-ray diffraction chart of the positive electrode active material of Example 2 was derived from LiMnO 2 Peak was not observed. In addition, in both X-ray diffraction charts, a peak derived from Li 3 PO 4 was slightly observed. The intensity of the peak derived from Li 3 PO 4 was larger in the X-ray diffraction chart of the positive electrode active material of Example 2. It can be said that the amount of Li 3 PO 4 formed tends to increase as the amount of addition of LiPF 6 increases.
  • Example 4 The positive electrode active materials of Example 1 and Example 2 were subjected to elemental analysis using inductively coupled plasma emission spectrometry (ICP-AES) and ion chromatography (IC). The results are shown in Table 2. The mass% of Li, Nb, Mn and P is the analysis result by ICP-AES, and the mass% of F is the analysis result by IC. The mass% of O was calculated by subtracting the mass% of Li, Nb, Mn, P and F from 100%.
  • ICP-AES inductively coupled plasma emission spectrometry
  • IC ion chromatography
  • the positive electrode active material of the present invention can preferably contribute to charge and discharge.
  • the value of the discharge capacity at 60 ° C. in Example 1 and Example 2 can be said to be extremely high.
  • the addition of LiPF 6 can suppress the formation of low-capacity impurities (LiMnO 2 and Li 3 NbO 4 ), and the point of the increase in crystal plane spacing due to P addition and F addition increases the discharge capacity It is considered to have brought
  • the amount of LiPF 6 is increased as 0 ⁇ 1 ⁇ 2% by weight, although the discharge capacity of each temperature conditions also increased, the amount of LiPF 6 is 2 ⁇ 3 wt% And it was found that the discharge capacity decreased.
  • the addition amount of LiPF 6 is too large, it is considered that an excessive amount of Li 3 PO 4 as an impurity is generated, which becomes a resistance factor, and the discharge capacity per unit mass of the positive electrode active material is reduced.
  • the preferable range of the addition amount of LiPF 6 is 0.5 to 2.5% by mass, the more preferable range is 1 to 2.2% by mass, and the more preferable range is 1.5 It is considered to be ⁇ 2.1 mass%.
  • Example 4 An additive amount of Li 3 PO 4 equivalent to 1% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2 is introduced into a ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3
  • the positive electrode active material of Example 4, the mixture of Example 4, the positive electrode of Example 4, and the lithium ion secondary battery of Example 4 were manufactured in the same manner as in Comparative Example 1 except for the above.
  • Example 5 Li 1.3 Nb 0.3 Mn 0.4 amount of Li 3 PO 4 and Li 1.3 1 mass relative to Nb 0.3 Mn 0.4 O 2 which relative O 2 equivalent to 1 wt% %, And the positive electrode active material of Example 5 in the same manner as Comparative Example 1 except that LiF was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 .
  • the mixture of Example 5, the positive electrode of Example 5, and the lithium ion secondary battery of Example 5 were manufactured.
  • the composition of the positive electrode active theoretical material of Example 5 are Li 1.359 Nb 0.3 Mn 0.4 P 0.008 F 0.035 O 2.032.
  • Comparative example 3 Except that LiF was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an additive amount corresponding to 1 mass% with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2
  • a positive electrode active material of Comparative Example 3 a mixture of Comparative Example 3, a positive electrode of Comparative Example 3, and a lithium ion secondary battery of Comparative Example 3 were manufactured.
  • the theoretical composition of the positive electrode active material of Comparative Example 3 is Li 1.335 Nb 0.3 Mn 0.4 F 0.035 O 2 .
  • Example 6 The positive electrode active materials of Example 4, Example 5, and Comparative Example 3 were analyzed by a powder X-ray diffractometer using a Cu-K ⁇ ray. In the X-ray diffraction charts of all the positive electrode active materials, diffraction patterns showing crystal structures attributable to the space group Fm-3m were observed.

Abstract

The present invention provides a novel positive electrode active material for providing a lithium-ion secondary battery that exhibits a superior capacity. This positive electrode active material is characterized by exhibiting a crystal structure attributable to the space group Fm-3m and by being represented by compositional formula (1): Li1+xNbyFeaMnbPcXdOe, wherein X is selected from among halogens, and x, y, a, b, c, d, and e satisfy 0<x<1, 0<y<0.5, 0.25≤a+b<1, 0≤a<1, 0≤b<1, 0<c≤0.05, 0≤d≤0.2, and 1.8≤e≤2.2.

Description

正極活物質Positive electrode active material
 本発明は、リチウムイオン二次電池の正極活物質に関するものである。 The present invention relates to a positive electrode active material of a lithium ion secondary battery.
 リチウムイオン二次電池は小型で大容量であるため、携帯電話やノート型パソコンなどの種々の機器の電池として用いられている。リチウムイオン二次電池は、主な構成要素として、正極、負極及び電解液を備える。正極は、集電体と、該集電体の表面に形成され、正極活物質を含有する正極活物質層とを有する。 Lithium ion secondary batteries are small in size and large in capacity, and thus are used as batteries of various devices such as mobile phones and laptop computers. The lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte as main components. The positive electrode includes a current collector and a positive electrode active material layer formed on the surface of the current collector and containing a positive electrode active material.
 リチウムイオン二次電池の正極活物質としては、種々の材料が用いられることが知られており、また、優れた正極活物質となり得る材料が探求されている。例えば、特許文献1にて、リチウム、ニオブ、及び、鉄若しくはマンガンを含有する新たな複合酸化物が、リチウムイオン二次電池の正極活物質として使用可能なことが報告されている。 As a positive electrode active material of a lithium ion secondary battery, various materials are known to be used, and a material that can be an excellent positive electrode active material is being explored. For example, Patent Document 1 reports that a new composite oxide containing lithium, niobium, and iron or manganese can be used as a positive electrode active material of a lithium ion secondary battery.
国際公開第2014/156153号International Publication No. 2014/156153
 近年、産業界からは、容量に優れるリチウムイオン二次電池が求められており、それを実現するための、新たな正極活物質が求められている。 In recent years, a lithium ion secondary battery excellent in capacity is required from the industrial world, and a new positive electrode active material for realizing it is required.
 本発明は、かかる事情に鑑みて為されたものであり、容量に優れるリチウムイオン二次電池を提供するための新たな正極活物質を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a new positive electrode active material for providing a lithium ion secondary battery excellent in capacity.
 本発明者は、特許文献1に記載の複合酸化物についての研究を行ったところ、容量の観点で、改良の余地があることに気が付いた。そして、本発明者の鋭意検討の結果、ある種の元素をドープすることで、当該複合酸化物の正極活物質としての性能が向上することを見出した。本発明は、本発明者のかかる知見に基づき、完成されたものである。 The inventors of the present invention conducted research on the complex oxide described in Patent Document 1 and found that there is room for improvement in terms of capacity. And as a result of earnest examination of this inventor, it discovered that the performance as a positive electrode active material of the said complex oxide improves by doping a certain element. The present invention has been completed based on the findings of the present inventor.
 本発明の正極活物質は、空間群Fm-3mに帰属可能な結晶構造を示し、下記組成式(1)で表されることを特徴とする。
 Li1+xNbFeMn   (1)
 組成式(1)において、Xはハロゲン元素から選択される。x、y、a、b、c、d及びeは、0<x<1、0<y<0.5、0.25≦a+b<1、0≦a<1、0≦b<1、0<c≦0.05、0≦d≦0.2、1.8≦e≦2.2を満足する。
The positive electrode active material of the present invention exhibits a crystal structure attributable to the space group Fm-3m, and is characterized by being represented by the following composition formula (1).
Li 1 + x Nb y Fe a Mn b P c X d O e (1)
In the composition formula (1), X is selected from halogen elements. x, y, a, b, c, d and e are 0 <x <1, 0 <y <0.5, 0.25 ≦ a + b <1, 0 ≦ a <1, 0 ≦ b <1, 0 <C ≦ 0.05, 0 ≦ d ≦ 0.2, and 1.8 ≦ e ≦ 2.2 are satisfied.
 本発明の正極活物質に因り、容量に優れるリチウムイオン二次電池を提供できる。 According to the positive electrode active material of the present invention, a lithium ion secondary battery excellent in capacity can be provided.
比較例1の正極活物質のSEM像である。7 is a SEM image of a positive electrode active material of Comparative Example 1; 実施例1の正極活物質のSEM像である。7 is a SEM image of the positive electrode active material of Example 1. 実施例2の正極活物質のSEM像である。7 is a SEM image of the positive electrode active material of Example 2. 実施例3の正極活物質のSEM像である。7 is a SEM image of the positive electrode active material of Example 3. 実施例1の正極活物質のX線回折チャートである。5 is an X-ray diffraction chart of a positive electrode active material of Example 1. 実施例1のリチウムイオン二次電池の25℃での充放電曲線である。7 is a charge / discharge curve at 25 ° C. of the lithium ion secondary battery of Example 1. 実施例1のリチウムイオン二次電池の60℃での充放電曲線である。7 is a charge / discharge curve at 60 ° C. of the lithium ion secondary battery of Example 1. 実施例2のリチウムイオン二次電池の25℃での充放電曲線である。7 is a charge / discharge curve at 25 ° C. of the lithium ion secondary battery of Example 2. FIG. 実施例2のリチウムイオン二次電池の60℃での充放電曲線である。7 is a charge / discharge curve at 60 ° C. of the lithium ion secondary battery of Example 2. FIG.
 以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a~b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。 Below, the form for implementing this invention is demonstrated. Incidentally, unless otherwise specified, the numerical range “ab” described in the present specification includes the lower limit a and the upper limit b in that range. And a numerical range can be constituted by combining these arbitrarily including the upper limit and lower limit, and the numerical value listed in the example. Furthermore, numerical values arbitrarily selected from these numerical ranges can be used as new upper and lower numerical values.
 本発明の正極活物質は、空間群Fm-3mに帰属可能な結晶構造を示し、下記組成式(1)で表されることを特徴とする。
 Li1+xNbFeMn   (1)
 組成式(1)において、Xはハロゲン元素から選択される。x、y、a、b、c、d及びeは、0<x<1、0<y<0.5、0.25≦a+b<1、0≦a<1、0≦b<1、0<c≦0.05、0≦d≦0.2、1.8≦e≦2.2を満足する。
 なお、「Fm-3m」において、「-3」は上線を付した3を表したものである。
The positive electrode active material of the present invention exhibits a crystal structure attributable to the space group Fm-3m, and is characterized by being represented by the following composition formula (1).
Li 1 + x Nb y Fe a Mn b P c X d O e (1)
In the composition formula (1), X is selected from halogen elements. x, y, a, b, c, d and e are 0 <x <1, 0 <y <0.5, 0.25 ≦ a + b <1, 0 ≦ a <1, 0 ≦ b <1, 0 <C ≦ 0.05, 0 ≦ d ≦ 0.2, and 1.8 ≦ e ≦ 2.2 are satisfied.
In "Fm-3m", "-3" represents 3 with an upper line.
 まず、組成式(1)のx、y、a、b、eについて説明する。かかる説明については、特許文献1の記載を一部引用する。 First, x, y, a, b and e in the composition formula (1) will be described. About this description, a part of description of patent document 1 is referred.
 xとしては、0.1≦x<0.7の範囲が好ましく、0.2≦x≦0.6の範囲がより好ましく、0.3≦x≦0.5の範囲がさらに好ましい。yとしては、0.05≦y<0.5の範囲が好ましく、0.1≦y≦0.45の範囲がより好ましく、0.2≦y≦0.4の範囲がさらに好ましく、0.3≦y≦0.35の範囲がさらに好ましい。 As x, a range of 0.1 ≦ x <0.7 is preferable, a range of 0.2 ≦ x ≦ 0.6 is more preferable, and a range of 0.3 ≦ x ≦ 0.5 is more preferable. As y, a range of 0.05 ≦ y <0.5 is preferable, a range of 0.1 ≦ y ≦ 0.45 is more preferable, a range of 0.2 ≦ y ≦ 0.4 is more preferable, and 0. The range of 3 ≦ y ≦ 0.35 is more preferable.
 aとbについては、0.25≦a+b≦0.75の関係を満足するのが好ましく、0.3≦a+b≦0.7の関係を満足するのがより好ましく、0.35≦a+b≦0.5の関係を満足するのがさらに好ましい。また、yとaとbについては、0.8≦2y+a+b≦1.2の関係を満足するのが好ましく、0.9≦2y+a+b≦1.15の関係を満足するのがより好ましい。 For a and b, it is preferable to satisfy the relationship of 0.25 ≦ a + b ≦ 0.75, more preferably 0.3 ≦ a + b ≦ 0.7, and 0.35 ≦ a + b ≦ 0. It is further preferable to satisfy the relationship of .5. With respect to y, a and b, it is preferable to satisfy the relationship 0.8 ≦ 2y + a + b ≦ 1.2, and it is more preferable to satisfy the relationship 0.9 ≦ 2y + a + b ≦ 1.15.
 eとしては、1.85≦e≦2.15の範囲が好ましく、1.9≦e≦2.1の範囲がより好ましい。 As e, a range of 1.85 ≦ e ≦ 2.15 is preferable, and a range of 1.9 ≦ e ≦ 2.1 is more preferable.
 組成式(1)で表される正極活物質にはPが含まれる。Pの添加により、正極活物質の結晶構造の格子定数が大きくなるため、従来のP無添加の正極活物質と比較して、本発明の正極活物質は、結晶面の間隔が広いといえる。結晶面の間隔はリチウムイオンの導電経路となり得るため、本発明の正極活物質は、リチウムイオンの導電経路が広く、イオン伝導性に優れるといえる。これらの事項に起因して、本発明の正極活物質は、従来の特許文献1に記載の複合酸化物と比較して、リチウムイオンを放出及び導入する充放電が円滑に実施されるため、容量の点で有利といえる。 P is contained in the positive electrode active material represented by composition formula (1). Since the lattice constant of the crystal structure of the positive electrode active material is increased by the addition of P, it can be said that the distance between crystal planes of the positive electrode active material of the present invention is wider than that of the conventional P-free positive electrode active material. Since the distance between crystal planes can be a conductive path of lithium ions, the positive electrode active material of the present invention can be said to have a wide conductive path of lithium ions and excellent ion conductivity. Due to these matters, in the positive electrode active material of the present invention, compared to the complex oxide described in the conventional Patent Document 1, the charge and discharge for releasing and introducing lithium ions are performed smoothly, so the capacity It is advantageous in terms of
 Pの組成比を示すcとしては、0.001≦c≦0.04を満足するのが好ましく、0.005≦c≦0.03を満足するのがより好ましく、0.005≦c≦0.025を満足するのがさらに好ましく、0.01≦c≦0.02を満足するのが特に好ましい。Pの存在量が過小であれば、Pの添加効果が確認され難い場合がある。他方、Pを過剰に添加した場合には、本発明の正極活物質の結晶内部に導入され得るPの量が飽和状態となるため、Pは、本発明の正極活物質の表層にリン酸塩との形態でも存在することになる。そのため、Pの過剰添加は無駄である。 As c indicating the composition ratio of P, it is preferable to satisfy 0.001 ≦ c ≦ 0.04, it is more preferable to satisfy 0.005 ≦ c ≦ 0.03, and 0.005 ≦ c ≦ 0. It is more preferable to satisfy .025, and it is particularly preferable to satisfy 0.01 ≦ c ≦ 0.02. If the amount of P present is too small, it may be difficult to confirm the effect of P addition. On the other hand, when P is added in excess, the amount of P that can be introduced into the crystal of the positive electrode active material of the present invention is saturated, so P is a phosphate on the surface of the positive electrode active material of the present invention Will also exist in the form of Therefore, excessive addition of P is wasteful.
 Xとしては、F、Cl、Br、Iを例示できる。組成式(1)で表される正極活物質にはXが必須ではないものの、Xの添加はPの添加と同様の効果が期待される。組成式(1)で表される正極活物質としては、PとXが共存するものが好ましい。 As X, F, Cl, Br, and I can be illustrated. Although X is not essential in the positive electrode active material represented by the composition formula (1), the addition of X is expected to have the same effect as the addition of P. As the positive electrode active material represented by the composition formula (1), a material in which P and X coexist is preferable.
 Xの組成比を示すdとしては、0<d≦0.2を満足するのが好ましく、0<d≦0.15を満足するのがより好ましく、0.01<d≦0.12を満足するのがさらに好ましく、0.05<d≦0.11を満足するのが特に好ましい。 As d indicating the composition ratio of X, it is preferable to satisfy 0 <d ≦ 0.2, more preferably to satisfy 0 <d ≦ 0.15, and satisfy 0.01 <d ≦ 0.12 Is more preferable, and it is particularly preferable to satisfy 0.05 <d ≦ 0.11.
 本発明の正極活物質の製造方法について説明する。
 本発明の正極活物質を製造するには、一般的な正極活物質を製造する際に採用される、固相法や共沈法を応用して合成すればよい。固相法の場合には、リチウム源、ニオブ源、鉄源及び/若しくはマンガン源、P源、必要に応じてX源を、所望の比率で混合し、焼成することで、本発明の正極活物質を製造できる。共沈法の場合には、ニオブ塩、鉄塩及び/若しくはマンガン塩を所望の比率で混合した水溶液から、水酸化物を沈殿させて沈殿物とし、次いで、沈殿物と、リチウム源と、P源と、必要に応じてX源とを混合して焼成することで、本発明の正極活物質を製造できる。固相法及び共沈法の焼成温度としては、500~1200℃が好ましく、700~1100℃がより好ましく、800~1000℃がさらに好ましく、850~950℃が特に好ましく、880~920℃が最も好ましい。焼成は、ヘリウムやアルゴンなどの不活性ガス雰囲気下で行うのが好ましい。
The manufacturing method of the positive electrode active material of this invention is demonstrated.
In order to produce the positive electrode active material of the present invention, it may be synthesized by applying a solid phase method or a coprecipitation method employed when producing a general positive electrode active material. In the case of the solid phase method, the positive electrode of the present invention can be prepared by mixing and calcining lithium source, niobium source, iron source and / or manganese source, P source, and optionally X source in the desired ratio. Can produce substances. In the case of the coprecipitation method, the hydroxide is precipitated to be a precipitate from an aqueous solution in which niobium salt, iron salt and / or manganese salt is mixed in the desired ratio, and then the precipitate, lithium source, P The positive electrode active material of the present invention can be produced by mixing and firing a source and, if necessary, an X source. The calcination temperature in the solid phase method and coprecipitation method is preferably 500 to 1200 ° C., more preferably 700 to 1100 ° C., still more preferably 800 to 1000 ° C., particularly preferably 850 to 950 ° C., most preferably 880 to 920 ° C. preferable. The firing is preferably performed in an inert gas atmosphere such as helium or argon.
 リチウム源としては、酸化リチウム、水酸化リチウム、炭酸リチウム、炭酸水素リチウム、フッ化リチウムを例示できる。ニオブ源又はニオブ塩としては、酸化ニオブ、水酸化ニオブ、硫酸ニオブ、硝酸ニオブ、塩化ニオブ、フッ化ニオブ、ニオブ酸リチウムを例示できる。鉄源又は鉄塩としては、酸化鉄、水酸化鉄、硫酸鉄、硝酸鉄、塩化鉄、フッ化鉄を例示できる。マンガン源又はマンガン塩としては、酸化マンガン、水酸化マンガン、硫酸マンガン、硝酸マンガン、塩化マンガン、フッ化マンガンを例示できる。P源としては、リン酸、リン酸化物及びリン酸塩、並びにこれらの誘導体を例示できる。X源としては、Xがフッ素の場合で例示すると、フッ化リチウム、フッ化ニオブ、フッ化鉄、フッ化マンガンを例示できる。また、P源としては、リチウム源やX源にもなり得る化合物を採用するのが合理的であるため、P源として、リン酸リチウム塩やLiPXを採用するのが好ましい。 Examples of lithium sources include lithium oxide, lithium hydroxide, lithium carbonate, lithium hydrogen carbonate and lithium fluoride. Examples of the niobium source or niobium salt include niobium oxide, niobium hydroxide, niobium sulfate, niobium nitrate, niobium chloride, niobium fluoride and lithium niobate. Examples of the iron source or iron salt include iron oxide, iron hydroxide, iron sulfate, iron nitrate, iron chloride and iron fluoride. Examples of the manganese source or manganese salt include manganese oxide, manganese hydroxide, manganese sulfate, manganese nitrate, manganese chloride and manganese fluoride. Examples of P sources include phosphoric acid, phosphates and phosphates, and derivatives thereof. Examples of the X source include lithium fluoride, niobium fluoride, iron fluoride and manganese fluoride when X is fluorine. In addition, since it is reasonable to adopt a compound that can be a lithium source or an X source as the P source, it is preferable to adopt a lithium phosphate lithium salt or LiPX 6 as the P source.
 P源としては、焼成温度よりも融点又は分解温度が低い化合物が好ましい。P源として、焼成温度よりも融点又は分解温度が低い化合物を採用することで、焼成時に優れた反応場を提供することが可能となる。その結果、各原料の反応性が向上して、不都合な副反応を抑制することができる。したがって、P源として焼成温度よりも融点又は分解温度が低い化合物を採用して製造された本発明の正極活物質には、LiMnOやLiNbOなどの低容量な不純物の混入が抑制されるといえる。融点又は分解温度の点で好適なP源としては、LiPF、LiPOを例示できる。 As the P source, a compound having a melting point or decomposition temperature lower than the calcination temperature is preferable. By employing a compound having a melting point or a decomposition temperature lower than the calcination temperature as the P source, it becomes possible to provide an excellent reaction field at the time of calcination. As a result, the reactivity of each raw material is improved, and adverse side reactions can be suppressed. Therefore, mixing of low-capacity impurities such as LiMnO 2 and Li 3 NbO 4 is suppressed in the positive electrode active material of the present invention manufactured using a compound having a melting point or decomposition temperature lower than the firing temperature as the P source. It can be said that. Examples of suitable P sources in terms of melting point or decomposition temperature include LiPF 6 and Li 3 PO 4 .
 合成後の本発明の正極活物質は、適切な粒度分布の粉末に調製する粉砕工程に供されるのが好ましい。粉砕工程は、本発明の正極活物質と後述する導電助剤との共存下で、実施されるのが好ましい。本発明の正極活物質の粉末の平均粒子径としては、0.5~50μmが好ましく、1~30μmがより好ましく、3~10μmがさらに好ましい。なお、本明細書において、平均粒子径とは、一般的なレーザー回折散乱式粒度分布測定装置で試料を測定した際の50%累積径(D50)を意味する。 After synthesis, the positive electrode active material of the present invention is preferably subjected to a grinding step to prepare a powder of an appropriate particle size distribution. The pulverizing step is preferably carried out in the coexistence of the positive electrode active material of the present invention and the conductive auxiliary agent described later. The average particle diameter of the powder of the positive electrode active material of the present invention is preferably 0.5 to 50 μm, more preferably 1 to 30 μm, and still more preferably 3 to 10 μm. In the present specification, the average particle size is meant the 50% cumulative diameter when measuring samples with conventional laser diffraction scattering particle size distribution measuring apparatus (D 50).
 以下、本発明の正極活物質を具備するリチウムイオン二次電池用正極を「本発明の正極」といい、本発明の正極活物質を具備するリチウムイオン二次電池を「本発明のリチウムイオン二次電池」という。 Hereinafter, the positive electrode for a lithium ion secondary battery comprising the positive electrode active material of the present invention is referred to as "the positive electrode of the present invention", and the lithium ion secondary battery comprising the positive electrode active material of the present invention is referred to as "lithium ion of the present invention It is called a secondary battery.
 本発明の正極は、本発明の正極活物質を含む正極活物質層、及び、集電体を具備する。正極活物質層は集電体上に形成される。正極活物質層における本発明の正極活物質の配合割合として、30~100質量%、40~90質量%、50~80質量%を例示できる。 The positive electrode of the present invention comprises a positive electrode active material layer containing the positive electrode active material of the present invention, and a current collector. The positive electrode active material layer is formed on the current collector. The blending ratio of the positive electrode active material of the present invention in the positive electrode active material layer can be, for example, 30 to 100% by mass, 40 to 90% by mass, and 50 to 80% by mass.
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体の材料は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体の材料としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 The current collector refers to a chemically inert electron conductor for keeping current flowing to the electrode during discharge or charge of the lithium ion secondary battery. The material of the current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. The material of the current collector is at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Etc. can be exemplified. The current collector may be coated with a known protective layer. What processed the surface of a collector by a well-known method may be used as a collector.
 正極の電位をリチウム基準で4V以上とする場合には、正極用集電体としてアルミニウムを採用するのが好ましい。 When the potential of the positive electrode is set to 4 V or more based on lithium, it is preferable to use aluminum as a current collector for the positive electrode.
 具体的には、正極用集電体として、アルミニウム又はアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al-Cu系、Al-Mn系、Al-Fe系、Al-Si系、Al-Mg系、Al-Mg-Si系、Al-Zn-Mg系が挙げられる。 Specifically, it is preferable to use an aluminum or an aluminum alloy as the positive electrode current collector. Here, aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum. An alloy obtained by adding various elements to pure aluminum is called an aluminum alloy. Examples of aluminum alloys include Al-Cu, Al-Mn, Al-Fe, Al-Si, Al-Mg, Al-Mg-Si, and Al-Zn-Mg.
 また、アルミニウム又はアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al-Mn系)、JIS A8079、A8021等のA8000系合金(Al-Fe系)が挙げられる。 As aluminum or aluminum alloy, specifically, for example, A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys such as JIS A3003 and A3004 (Al-Mn series), JIS A8079, A8021 etc. A 8000 series alloys (Al-Fe series).
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can take the form of a foil, a sheet, a film, a line, a rod, a mesh or the like. Therefore, as the current collector, for example, metal foils such as copper foil, nickel foil, aluminum foil, and stainless steel foil can be suitably used. When the current collector is in the form of a foil, a sheet or a film, the thickness is preferably in the range of 1 μm to 100 μm.
 正極活物質層には、本発明の正極活物質以外に公知の正極活物質が含まれていてもよい。また、正極活物質層には、結着剤及び導電助剤が含まれているのが好ましい。正極活物質層に含まれる結着剤及び導電助剤としては、後述するものを適宜適切に採用すればよい。 The positive electrode active material layer may contain a known positive electrode active material in addition to the positive electrode active material of the present invention. The positive electrode active material layer preferably contains a binder and a conductive auxiliary. What is mentioned later may be suitably adopted suitably as a binder and a conductive support agent contained in a positive electrode active material layer.
 本発明のリチウムイオン二次電池は、具体的に、本発明の正極と、負極と、セパレータと、電解液とを具備する。 Specifically, the lithium ion secondary battery of the present invention comprises the positive electrode of the present invention, a negative electrode, a separator, and an electrolytic solution.
 負極は、集電体と集電体上に形成された負極活物質層を具備する。負極活物質層には、公知の負極活物質が含まれており、さらに、結着剤及び導電助剤が含まれているのが好ましい。負極の集電体としては、本発明の正極で説明したものから適宜適切に選択すればよい。以下、正極活物質及び負極活物質の両者を総合して「活物質」という場合があり、また、正極活物質層及び負極活物質層の両者を総合して「活物質層」という場合がある。 The negative electrode includes a current collector and a negative electrode active material layer formed on the current collector. The negative electrode active material layer contains a known negative electrode active material, and preferably further contains a binder and a conductive additive. The current collector of the negative electrode may be appropriately selected from those described for the positive electrode of the present invention. Hereinafter, both the positive electrode active material and the negative electrode active material may be collectively referred to as "active material", and both the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as the "active material layer". .
 結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、カルボキシメチルセルロース、スチレンブタジエンゴムなどの公知のものを採用すればよい。 As the binder, fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resin, carboxymethyl cellulose Known materials such as styrene butadiene rubber may be employed.
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.005~1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 The blending ratio of the binder in the active material layer is preferably, in mass ratio, active material: binder = 1: 0.005 to 1: 0.5. When the amount of the binder is too small, the formability of the electrode decreases, and when the amount of the binder is too large, the energy density of the electrode decreases.
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独又は二種以上組み合わせて活物質層に添加することができる。活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.01~1:0.7であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 A conductive aid is added to enhance the conductivity of the electrode. Therefore, the conductive additive may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent. The conductive support agent may be any chemically active high electron conductor, and carbon black fine particles such as carbon black, graphite, vapor grown carbon fiber, and various metal particles are exemplified. Ru. Examples of the carbon black include acetylene black, ketjen black (registered trademark), furnace black, channel black and the like. These conductive assistants can be added to the active material layer singly or in combination of two or more. The compounding ratio of the conductive aid in the active material layer is preferably, in mass ratio, active material: conductive aid = 1: 0.01 to 1: 0.7. If the amount of the conductive additive is too small, efficient conductive paths can not be formed. If the amount of the conductive additive is too large, the formability of the active material layer deteriorates and the energy density of the electrode decreases.
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、結着剤、溶剤、並びに必要に応じて導電助剤を混合してスラリーにしてから、当該スラリーを集電体の表面に塗布後、乾燥するとよい。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。また、活物質、結着剤、及び必要に応じて導電助剤を含む混合物を調製し、当該混合物を集電体に圧着させることで、集電体の表面に活物質層を形成させてもよい。 In order to form an active material layer on the surface of a current collector, current collection can be performed using conventionally known methods such as roll coating, die coating, dip coating, doctor blade method, spray coating, and curtain coating. The active material may be applied to the surface of the body. Specifically, the active material, the binder, the solvent, and the conductive auxiliary agent as needed may be mixed to form a slurry, and the slurry may be applied to the surface of the current collector and then dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone and water. The dried one may be compressed to increase the electrode density. Alternatively, a mixture containing an active material, a binder, and, if necessary, a conductive auxiliary may be prepared, and the mixture may be pressed onto the current collector to form an active material layer on the surface of the current collector. Good.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子及びセラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布及び織布などを挙げることができる。また、セパレータは多層構造としてもよい。 The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass while preventing a short circuit due to the contact of the both electrodes. As the separator, a known one may be employed, and polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, synthetic resin such as polyacrylonitrile, polysaccharide such as cellulose, amylose, fibroin Examples thereof include porous bodies, non-woven fabrics, and woven fabrics using one or more of electrically insulating materials such as natural polymers and ceramics such as keratin, lignin and suberin. In addition, the separator may have a multilayer structure.
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。 The electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。 As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used. Examples of cyclic carbonates include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. Examples of cyclic esters include gamma butyrolactone, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate. Examples of chain esters include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester and the like. As the ethers, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane can be exemplified. As the non-aqueous solvent, a compound in which part or all of hydrogens in the chemical structure of the above specific solvent is substituted with fluorine may be adopted.
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .
 電解液としては、フルオロエチレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。 As an electrolytic solution, 0.5 mol / liter of a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in a nonaqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate A solution dissolved at a concentration of about L to 1.7 mol / L can be exemplified.
 本発明のリチウムイオン二次電池の具体的な製造方法について述べる。
 例えば、正極と負極とでセパレータを挟持して電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。
The specific manufacturing method of the lithium ion secondary battery of this invention is described.
For example, the positive electrode and the negative electrode sandwich a separator to form an electrode body. The electrode body may be any of a laminated type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a laminate of a positive electrode, a separator and a negative electrode is wound. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collection lead or the like, an electrolytic solution is added to the electrode body to form a lithium ion secondary battery. Good.
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as cylindrical, square, coin, and laminate types can be adopted.
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle using electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form a battery pack. As an apparatus which mounts a lithium ion secondary battery, various household appliances driven by a battery, such as a personal computer and a mobile communication apparatus, as well as a vehicle, an office apparatus, an industrial apparatus and the like can be mentioned. Furthermore, the lithium ion secondary battery of the present invention can be used in wind power generation, solar power generation, hydroelectric power generation, storage devices and power smoothing devices for electric power systems, power sources for power and / or accessories of ships, etc., aircraft, Power supply source for power of spacecraft and / or accessories, auxiliary power supply for vehicles not using electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charge station etc. for electric vehicles.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. In the range which does not deviate from the summary of the present invention, it can carry out with various forms which gave change, improvement, etc. which a person skilled in the art can make.
 以下に、各種の具体例を示し、本発明をより具体的に説明する。なお、本発明は、これらの具体例によって限定されるものではない。  Below, various specific examples are shown and this invention is more concretely demonstrated to it. The present invention is not limited by these specific examples.
(比較例1)
 LiCO、Nb及びMnを、元素比Li:Nb:Mnが1.3:0.3:0.4となるように秤量し、これらの粉末をボールミルに投入した。そして、ボールミルによる混合を約100rpmで24時間行い、混合物とした。混合物を成型した上で、アルゴンガス雰囲気下、950℃で12時間加熱して焼成することで、焼成物である比較例1の正極活物質を製造した。比較例1の正極活物質の理論上の組成は、Li1.3Nb0.3Mn0.4である。
(Comparative example 1)
Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 were weighed so that the element ratio Li: Nb: Mn was 1.3: 0.3: 0.4, and these powders were put into a ball mill . Then, mixing with a ball mill was performed at about 100 rpm for 24 hours to obtain a mixture. After molding the mixture, the mixture was fired by heating at 950 ° C. for 12 hours in an argon gas atmosphere to manufacture a positive electrode active material of Comparative Example 1 which is a fired product. The theoretical composition of the positive electrode active material of Comparative Example 1 is Li 1.3 Nb 0.3 Mn 0.4 O 2 .
 比較例1の正極活物質と導電助剤としてのアセチレンブラックとを、質量比5:2となるように秤量して、ボールミルに投入した。そして、ボールミルによる混合を300rpmで0.5時間行い、比較例1の正極活物質及びアセチレンブラックを含む比較例1の混合物とした。 The positive electrode active material of Comparative Example 1 and acetylene black as a conductive additive were weighed so as to have a mass ratio of 5: 2, and charged into a ball mill. And the mixing by a ball mill was performed for 0.5 hours at 300 rpm, and it was set as the mixture of the comparative example 1 containing the positive electrode active material of the comparative example 1, and acetylene black.
 比較例1の混合物、アセチレンブラック、結着剤としてのポリテトラフルオロエチレンを乳鉢で混合して、粘土状の正極活物質層用組成物とした。当該正極活物質層用組成物において、比較例1の正極活物質とアセチレンブラックとポリテトラフルオロエチレンとの質量比は5:3:2であった。
 集電体としてメッシュ状のアルミニウムを準備し、これに正極活物質層用組成物を圧着して、比較例1の正極を得た。
The mixture of Comparative Example 1, acetylene black, and polytetrafluoroethylene as a binder were mixed in a mortar to obtain a clay-like composition for a positive electrode active material layer. In the composition for the positive electrode active material layer, the mass ratio of the positive electrode active material of Comparative Example 1, acetylene black to polytetrafluoroethylene was 5: 3: 2.
A mesh-like aluminum was prepared as a current collector, and the composition for the positive electrode active material layer was pressure-bonded to this, whereby the positive electrode of Comparative Example 1 was obtained.
 リチウム箔を準備し、これを負極とした。セパレータとしてポリエチレン多孔質膜を準備した。また、エチレンカーボネート5体積部及びジエチルカーボネート5体積部を混合した溶媒にLiPF6を1mol/Lの濃度で溶解した電解液を準備した。セパレータを比較例1の正極と負極とで挟持し電極体とした。この電極体を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、電極体および電解液が密閉された比較例1のリチウムイオン二次電池を製造した。  Lithium foil was prepared and used as a negative electrode. A polyethylene porous membrane was prepared as a separator. Further, an electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which 5 parts by volume of ethylene carbonate and 5 parts by volume of diethyl carbonate were mixed. The separator was sandwiched between the positive electrode and the negative electrode of Comparative Example 1 to form an electrode body. The electrode body was covered with a pair of laminate films, and the three sides were sealed, and then the electrolytic solution was injected into the bag-like laminate film. Thereafter, by sealing the other side, the lithium ion secondary battery of Comparative Example 1 was manufactured, in which the four sides were airtightly sealed and the electrode body and the electrolytic solution were sealed.
(比較例2)
 焼成温度を900℃としたこと以外は、比較例1と同様の方法で、比較例2の正極活物質、比較例2の混合物、比較例2の正極、比較例2のリチウムイオン二次電池を製造した。 
(Comparative example 2)
The positive electrode active material of Comparative Example 2, the mixture of Comparative Example 2, the positive electrode of Comparative Example 2, and the lithium ion secondary battery of Comparative Example 2 are the same as in Comparative Example 1 except that the firing temperature is 900.degree. Manufactured.
(実施例1)
 Li1.3Nb0.3Mn0.4に対して1質量%に相当する添加量のLiPFを、LiCO、Nb及びMnと共にボールミルに投入したこと、及び焼成温度を900℃としたこと以外は、比較例1と同様の方法で、実施例1の正極活物質、実施例1の混合物、実施例1の正極、実施例1のリチウムイオン二次電池を製造した。実施例1の正極活物質の理論上の組成は、Li1.306Nb0.3Mn0.40.0060.036である。 
Example 1
LiPF 6 was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an amount equivalent to 1% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2 The positive electrode active material of Example 1, the mixture of Example 1, the positive electrode of Example 1, and the secondary lithium ion of Example 1 are the same as Comparative Example 1 except that the baking temperature is set to 900 ° C. The battery was manufactured. The theoretical composition of the positive electrode active material of Example 1 is Li 1.306 Nb 0.3 Mn 0.4 P 0.006 F 0.036 O 2 .
(実施例2)
 Li1.3Nb0.3Mn0.4に対して2質量%に相当する添加量のLiPFを、LiCO、Nb及びMnと共にボールミルに投入したこと、及び焼成温度を900℃としたこと以外は、比較例1と同様の方法で、実施例2の正極活物質、実施例2の混合物、実施例2の正極、実施例2のリチウムイオン二次電池を製造した。実施例2の正極活物質の理論上の組成は、Li1.312Nb0.3Mn0.40.0120.072である。 
(Example 2)
LiPF 6 was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an amount equivalent to 2% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2 In the same manner as in Comparative Example 1 except that the baking temperature was set to 900 ° C., the positive electrode active material of Example 2, the mixture of Example 2, the positive electrode of Example 2, and the secondary lithium ion of Example 2 The battery was manufactured. The composition of the theoretical positive electrode active material of Example 2 is Li 1.312 Nb 0.3 Mn 0.4 P 0.012 F 0.072 O 2.
(実施例3)
 Li1.3Nb0.3Mn0.4に対して3質量%に相当する添加量のLiPFを、LiCO、Nb及びMnと共にボールミルに投入したこと、及び焼成温度を900℃としたこと以外は、比較例1と同様の方法で、実施例3の正極活物質、実施例3の混合物、実施例3の正極、実施例3のリチウムイオン二次電池を製造した。実施例3の正極活物質の理論上の組成は、Li1.318Nb0.3Mn0.40.0180.108である。
(Example 3)
LiPF 6 was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an additive amount corresponding to 3% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2 In the same manner as in Comparative Example 1 except that the baking temperature was set to 900 ° C., the positive electrode active material of Example 3, the mixture of Example 3, the positive electrode of Example 3, and the secondary lithium ion of Example 3 The battery was manufactured. The theoretical composition of the positive electrode active material of Example 3 is Li 1.318 Nb 0.3 Mn 0.4 P 0.018 F 0.108 O 2 .
 表1に、比較例1~比較例2、実施例1~実施例3の正極活物質の製造方法の一覧を示す。  Table 1 shows a list of production methods of positive electrode active materials of Comparative Examples 1 to 2 and Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(評価例1)
 走査型電子顕微鏡(SEM)にて、比較例1、実施例1、実施例2及び実施例3の正極活物質を観察した。図1に比較例1の正極活物質のSEM像、図2に実施例1の正極活物質のSEM像、図3に実施例2の正極活物質のSEM像、図4に実施例3の正極活物質の正極活物質のSEM像を、それぞれ示す。
 比較例1の正極活物質のSEM像からは、1μm程度の粒子径の正極活物質が観察された。実施例1、実施例2及び実施例3の正極活物質のSEM像からは、LiPFの添加量が増加するにつれて、粒子同士が結着する度合いが高くなる傾向が確認された。
(Evaluation example 1)
The positive electrode active material of Comparative Example 1, Example 1, Example 2 and Example 3 was observed with a scanning electron microscope (SEM). 1 shows a SEM image of the positive electrode active material of Comparative Example 1, FIG. 2 shows a SEM image of the positive electrode active material of Example 1, FIG. 3 shows a SEM image of the positive electrode active material of Example 2, FIG. 4 shows the positive electrode of Example 3. The SEM image of the positive electrode active material of an active material is shown, respectively.
From the SEM image of the positive electrode active material of Comparative Example 1, a positive electrode active material with a particle diameter of about 1 μm was observed. From the SEM images of the positive electrode active materials of Example 1, Example 2 and Example 3, it was confirmed that as the addition amount of LiPF 6 increased, the degree of the particles to be bound tended to increase.
 また、走査型電子顕微鏡(SEM)とエネルギー分散型X線分析装置(EDX)を組み合わせたSEM-EDXにて、実施例2の正極活物質に対して、Nb、Mn、P及びOを対象とした分析を行ったところ、これらの元素が実施例2の正極活物質中に分散して存在することが確認できた。  Moreover, Nb, Mn, P, and O were targeted for the positive electrode active material of Example 2 by SEM-EDX combining a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDX). As a result of analysis, it was confirmed that these elements were dispersed and present in the positive electrode active material of Example 2.
(評価例2)
 Cu-Kα線を用いた粉末X線回折装置にて、比較例1、比較例2、実施例1、実施例2及び実施例3の正極活物質の分析を行った。実施例1の正極活物質のX線回折チャートを図5に示す。
 すべての正極活物質のX線回折チャートにおいて、空間群Fm-3mに帰属可能な結晶構造を示す回折パターンが観察された。
(Evaluation example 2)
The positive electrode active materials of Comparative Example 1, Comparative Example 2, Example 1, Example 2, and Example 3 were analyzed by a powder X-ray diffractometer using a Cu-Kα ray. The X-ray diffraction chart of the positive electrode active material of Example 1 is shown in FIG.
In the X-ray diffraction charts of all the positive electrode active materials, diffraction patterns showing crystal structures attributable to the space group Fm-3m were observed.
 焼成温度が950℃の比較例1の正極活物質のX線回折チャートと焼成温度が900℃の比較例2の正極活物質のX線回折チャートを比較すると、比較例2の正極活物質のX線回折チャートの方が、不純物であるLiMnO及びLiNbOに由来するピークが強く観察された。したがって、LiPFを添加しない製造条件においては、焼成温度900℃よりも焼成温度950℃の方が有利といえる。
 他方、焼成温度が900℃の実施例1~実施例3の正極活物質のX線回折チャートには、不純物であるLiMnO及びLiNbOに由来するピークがほとんど観察されなかった。焼成温度が900℃の比較例2の結果を鑑みると、実施例1~実施例3においては、LiPFの添加により、各原料の焼成時における反応性が向上して、不都合な副反応を抑制できたといえる。
Comparing the X-ray diffraction chart of the positive electrode active material of Comparative Example 1 whose firing temperature is 950 ° C. with the X-ray diffraction chart of the positive electrode active material of Comparative Example 2 whose firing temperature is 900 ° C. In the line diffraction chart, the peaks derived from the impurities LiMnO 2 and Li 3 NbO 4 were strongly observed. Therefore, under the production conditions in which LiPF 6 is not added, it can be said that the firing temperature of 950 ° C. is more advantageous than the firing temperature of 900 ° C.
On the other hand, in the X-ray diffraction charts of the positive electrode active materials of Examples 1 to 3 with a baking temperature of 900 ° C., almost no peaks derived from the impurities LiMnO 2 and Li 3 NbO 4 were observed. In view of the result of Comparative Example 2 in which the baking temperature is 900 ° C., in Examples 1 to 3, the addition of LiPF 6 improves the reactivity of each raw material at the time of baking and suppresses the adverse side reaction. It can be said that it was possible.
 また、LiPFの添加量が0%、1%、2%と増加するにつれて、X線回折ピークの位置が左にシフトすることが判明した。ブラッグの条件:2dsinθ=nλより、X線回折ピークの位置が左にシフトすることは、sinθが小さくなったこと、すなわち、結晶面間隔dが大きくなったことを意味する。よって、LiPFの添加量が増加するにつれて、空間群Fm-3mに帰属可能な結晶構造の結晶面間隔が大きくなるといえる。  Also, it was found that the position of the X-ray diffraction peak shifted to the left as the addition amount of LiPF 6 increased to 0%, 1% and 2%. From the Bragg's condition: 2 d sin θ = n λ, the shift of the position of the X-ray diffraction peak to the left means that sin θ becomes smaller, that is, the crystal plane distance d becomes larger. Therefore, as the addition amount of LiPF 6 increases, it can be said that the interplanar spacing of the crystal structure that can be assigned to the space group Fm-3m increases.
(評価例3)
 放射光を用いた粉末X線回折装置にて、実施例1及び実施例2の正極活物質の分析を行った。いずれの正極活物質のX線回折チャートにおいても、空間群Fm-3mに帰属可能な結晶構造を示す回折パターンが観察された。
 実施例1の正極活物質のX線回折チャートには、不純物であるLiMnOに由来するピークが若干観察されたが、実施例2の正極活物質のX線回折チャートには、LiMnOに由来するピークは観察されなかった。
 また、両者のX線回折チャートには、LiPOに由来するピークが若干観察された。実施例2の正極活物質のX線回折チャートの方が、LiPOに由来するピークの強度は大きかった。LiPFの添加量が増加するにつれて、LiPOの生成量が増加する傾向にあるといえる。 
(Evaluation example 3)
The positive electrode active materials of Example 1 and Example 2 were analyzed by a powder X-ray diffractometer using radiation light. Also in the X-ray diffraction chart of any positive electrode active material, a diffraction pattern showing a crystal structure attributable to the space group Fm-3m was observed.
The X-ray diffraction chart of the positive electrode active material of Example 1 showed some peaks derived from LiMnO 2 as an impurity, while the X-ray diffraction chart of the positive electrode active material of Example 2 was derived from LiMnO 2 Peak was not observed.
In addition, in both X-ray diffraction charts, a peak derived from Li 3 PO 4 was slightly observed. The intensity of the peak derived from Li 3 PO 4 was larger in the X-ray diffraction chart of the positive electrode active material of Example 2. It can be said that the amount of Li 3 PO 4 formed tends to increase as the amount of addition of LiPF 6 increases.
(評価例4)
 実施例1及び実施例2の正極活物質について、誘導結合プラズマ発光分析(ICP-AES)及びイオンクロマトグラフィー(IC)を用いた元素分析を行った。結果を表2に示す。Li、Nb、Mn及びPの質量%はICP-AESでの分析結果であり、Fの質量%はICでの分析結果である。Oの質量%は、100%からLi、Nb、Mn、P及びFの質量%を減じて算出した。 
(Evaluation example 4)
The positive electrode active materials of Example 1 and Example 2 were subjected to elemental analysis using inductively coupled plasma emission spectrometry (ICP-AES) and ion chromatography (IC). The results are shown in Table 2. The mass% of Li, Nb, Mn and P is the analysis result by ICP-AES, and the mass% of F is the analysis result by IC. The mass% of O was calculated by subtracting the mass% of Li, Nb, Mn, P and F from 100%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価例5)
 比較例1、実施例1、実施例2及び実施例3のリチウムイオン二次電池につき、25℃及び60℃の条件下、電流レート13.5mA/gで電圧4.8Vまで充電し、電流レート13.5mA/gで電圧1.5Vまで放電した時の放電量を測定した。各正極活物質の単位質量あたりの放電容量の結果を表3に示す。また、実施例1のリチウムイオン二次電池の25℃での充放電曲線を図6に、実施例1のリチウムイオン二次電池の60℃での充放電曲線を図7に、実施例2のリチウムイオン二次電池の25℃での充放電曲線を図8に、実施例2のリチウムイオン二次電池の60℃での充放電曲線を図9に、それぞれ示す。 
(Evaluation example 5)
The lithium ion secondary batteries of Comparative Example 1, Example 1, Example 2 and Example 3 were charged to a voltage of 4.8 V at a current rate of 13.5 mA / g under conditions of 25 ° C. and 60 ° C. The amount of discharge when discharged to a voltage of 1.5 V at 13.5 mA / g was measured. The results of the discharge capacity per unit mass of each positive electrode active material are shown in Table 3. The charge / discharge curve at 25 ° C. of the lithium ion secondary battery of Example 1 is shown in FIG. 6, and the charge / discharge curve at 60 ° C. of the lithium ion secondary battery of Example 1 is shown in FIG. The charge-discharge curve at 25 ° C. of the lithium ion secondary battery is shown in FIG. 8, and the charge-discharge curve at 60 ° C. of the lithium ion secondary battery of Example 2 is shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の正極活物質は好適に充放電に寄与できることが裏付けられた。特に、実施例1と実施例2における60℃での放電容量の値は著しく高いといえる。LiPFの添加により、低容量な不純物(LiMnO及びLiNbO)の生成を抑制できた点、並びに、P添加及びF添加に起因する結晶面間隔の増大の点が、放電容量の増大をもたらしたと考えられる。 It was supported that the positive electrode active material of the present invention can preferably contribute to charge and discharge. In particular, the value of the discharge capacity at 60 ° C. in Example 1 and Example 2 can be said to be extremely high. The addition of LiPF 6 can suppress the formation of low-capacity impurities (LiMnO 2 and Li 3 NbO 4 ), and the point of the increase in crystal plane spacing due to P addition and F addition increases the discharge capacity It is considered to have brought
 また、表3の結果から、LiPFの添加量が0→1→2質量%と増加するのに従い、各温度条件下の放電容量も増加したものの、LiPFの添加量が2→3質量%と増加すると、放電容量が減少したことが判明した。LiPFの添加量が多すぎると、不純物であるLiPOが過剰に生成して、これが抵抗因子となり、正極活物質の単位質量あたりの放電容量が低下すると考えられる。
 以上の結果から、LiPFの添加量の好適な範囲は0.5~2.5質量%であり、より好適な範囲は1~2.2質量%であり、さらに好適な範囲は1.5~2.1質量%であると考えられる。 
Further, from the results in Table 3, in accordance with the amount of LiPF 6 is increased as 0 → 1 → 2% by weight, although the discharge capacity of each temperature conditions also increased, the amount of LiPF 6 is 2 → 3 wt% And it was found that the discharge capacity decreased. When the addition amount of LiPF 6 is too large, it is considered that an excessive amount of Li 3 PO 4 as an impurity is generated, which becomes a resistance factor, and the discharge capacity per unit mass of the positive electrode active material is reduced.
From the above results, the preferable range of the addition amount of LiPF 6 is 0.5 to 2.5% by mass, the more preferable range is 1 to 2.2% by mass, and the more preferable range is 1.5 It is considered to be ̃2.1 mass%.
(実施例4)
 Li1.3Nb0.3Mn0.4に対して1質量%に相当する添加量のLiPOを、LiCO、Nb及びMnと共にボールミルに投入したこと以外は、比較例1と同様の方法で、実施例4の正極活物質、実施例4の混合物、実施例4の正極、実施例4のリチウムイオン二次電池を製造した。実施例4の正極活物質の理論上の組成は、Li1.324Nb0.3Mn0.40.0082.032である。 
(Example 4)
An additive amount of Li 3 PO 4 equivalent to 1% by mass with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2 is introduced into a ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 The positive electrode active material of Example 4, the mixture of Example 4, the positive electrode of Example 4, and the lithium ion secondary battery of Example 4 were manufactured in the same manner as in Comparative Example 1 except for the above. The composition of the theoretical positive electrode active material of Example 4, a Li 1.324 Nb 0.3 Mn 0.4 P 0.008 O 2.032.
(実施例5)
 Li1.3Nb0.3Mn0.4に対して1質量%に相当する添加量のLiPO及びLi1.3Nb0.3Mn0.4に対して1質量%に相当する添加量のLiFを、LiCO、Nb及びMnと共にボールミルに投入したこと以外は、比較例1と同様の方法で、実施例5の正極活物質、実施例5の混合物、実施例5の正極、実施例5のリチウムイオン二次電池を製造した。実施例5の正極活物質の理論上の組成は、Li1.359Nb0.3Mn0.40.0080.0352.032である。 
(Example 5)
Li 1.3 Nb 0.3 Mn 0.4 amount of Li 3 PO 4 and Li 1.3 1 mass relative to Nb 0.3 Mn 0.4 O 2 which relative O 2 equivalent to 1 wt% %, And the positive electrode active material of Example 5 in the same manner as Comparative Example 1 except that LiF was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 . The mixture of Example 5, the positive electrode of Example 5, and the lithium ion secondary battery of Example 5 were manufactured. The composition of the positive electrode active theoretical material of Example 5 are Li 1.359 Nb 0.3 Mn 0.4 P 0.008 F 0.035 O 2.032.
(比較例3)
 Li1.3Nb0.3Mn0.4に対して1質量%に相当する添加量のLiFを、LiCO、Nb及びMnと共にボールミルに投入したこと以外は、比較例1と同様の方法で、比較例3の正極活物質、比較例3の混合物、比較例3の正極、比較例3のリチウムイオン二次電池を製造した。比較例3の正極活物質の理論上の組成は、Li1.335Nb0.3Mn0.40.035である。 
(Comparative example 3)
Except that LiF was added to the ball mill together with Li 2 CO 3 , Nb 2 O 5 and Mn 2 O 3 in an additive amount corresponding to 1 mass% with respect to Li 1.3 Nb 0.3 Mn 0.4 O 2 In the same manner as in Comparative Example 1, a positive electrode active material of Comparative Example 3, a mixture of Comparative Example 3, a positive electrode of Comparative Example 3, and a lithium ion secondary battery of Comparative Example 3 were manufactured. The theoretical composition of the positive electrode active material of Comparative Example 3 is Li 1.335 Nb 0.3 Mn 0.4 F 0.035 O 2 .
(評価例6)
 Cu-Kα線を用いた粉末X線回折装置にて、実施例4、実施例5及び比較例3の正極活物質の分析を行った。
 すべての正極活物質のX線回折チャートにおいて、空間群Fm-3mに帰属可能な結晶構造を示す回折パターンが観察された。 
(Evaluation example 6)
The positive electrode active materials of Example 4, Example 5, and Comparative Example 3 were analyzed by a powder X-ray diffractometer using a Cu-Kα ray.
In the X-ray diffraction charts of all the positive electrode active materials, diffraction patterns showing crystal structures attributable to the space group Fm-3m were observed.
(評価例7)
 実施例4、実施例5及び比較例3のリチウムイオン二次電池に対して、評価例5と同様の方法で、放電量を測定した。結果を表4に示す。 
(Evaluation example 7)
For the lithium ion secondary batteries of Example 4 and Example 5 and Comparative Example 3, the amount of discharge was measured in the same manner as in Evaluation Example 5. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、LiPOを添加した実施例4のリチウムイオン二次電池、及び、LiFを添加した比較例3のリチウムイオン二次電池と比較して、LiPO及びLiFの両者を添加した実施例5のリチウムイオン二次電池は、放電容量に優れることがわかる。
 本発明の正極活物質においては、PとXを共添加したものが、特に好適であると考えられる。
From Table 4, in comparison with the lithium ion secondary battery of Example 4 to which Li 3 PO 4 is added and the lithium ion secondary battery of Comparative Example 3 to which LiF is added, both of Li 3 PO 4 and LiF are compared. It turns out that the lithium ion secondary battery of Example 5 added is excellent in discharge capacity.
In the positive electrode active material of the present invention, it is considered that co-addition of P and X is particularly preferable.

Claims (6)

  1.  空間群Fm-3mに帰属可能な結晶構造を示し、下記組成式(1)で表されることを特徴とする正極活物質。
     Li1+xNbFeMn   (1)
     組成式(1)において、Xはハロゲン元素から選択される。x、y、a、b、c、d及びeは、0<x<1、0<y<0.5、0.25≦a+b<1、0≦a<1、0≦b<1、0<c≦0.05、0≦d≦0.2、1.8≦e≦2.2を満足する。
    What is claimed is: 1. A positive electrode active material, which has a crystal structure that can be assigned to a space group Fm-3m and is represented by the following composition formula (1).
    Li 1 + x Nb y Fe a Mn b P c X d O e (1)
    In the composition formula (1), X is selected from halogen elements. x, y, a, b, c, d and e are 0 <x <1, 0 <y <0.5, 0.25 ≦ a + b <1, 0 ≦ a <1, 0 ≦ b <1, 0 <C ≦ 0.05, 0 ≦ d ≦ 0.2, and 1.8 ≦ e ≦ 2.2 are satisfied.
  2.  0.8≦2y+a+b≦1.2を満足する請求項1に記載の正極活物質。 The positive electrode active material according to claim 1, which satisfies 0.8 ≦ 2 y + a + b ≦ 1.2.
  3.  0<c≦0.025を満足する請求項1又は2に記載の正極活物質。 The positive electrode active material according to claim 1, wherein 0 <c ≦ 0.025 is satisfied.
  4.  請求項1~3のいずれか1項に記載の正極活物質を具備するリチウムイオン二次電池用正極。 A positive electrode for a lithium ion secondary battery comprising the positive electrode active material according to any one of claims 1 to 3.
  5.  請求項4に記載のリチウムイオン二次電池用正極を具備するリチウムイオン二次電池。 The lithium ion secondary battery which comprises the positive electrode for lithium ion secondary batteries of Claim 4.
  6.  リチウム源と、ニオブ源と、鉄源及び/若しくはマンガン源と、P源とを混合して混合物とする工程、
     前記混合物を焼成する工程、を含む、請求項1~3のいずれか1項に記載の正極活物質の製造方法。
    Mixing a lithium source, a niobium source, an iron source and / or a manganese source, and a P source into a mixture,
    The method for producing a positive electrode active material according to any one of claims 1 to 3, comprising the step of firing the mixture.
PCT/JP2018/025295 2017-07-21 2018-07-04 Positive electrode active material WO2019017199A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-142307 2017-07-21
JP2017142307 2017-07-21
JP2017-204674 2017-10-23
JP2017204674A JP2019023990A (en) 2017-07-21 2017-10-23 Positive electrode active material

Publications (1)

Publication Number Publication Date
WO2019017199A1 true WO2019017199A1 (en) 2019-01-24

Family

ID=65015655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025295 WO2019017199A1 (en) 2017-07-21 2018-07-04 Positive electrode active material

Country Status (1)

Country Link
WO (1) WO2019017199A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038564A (en) * 2010-08-06 2012-02-23 Tdk Corp Active material, method for manufacturing active material, and lithium ion secondary battery
WO2014156153A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Active material for nonaqueous electrolyte electricity storage elements
WO2017047021A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038564A (en) * 2010-08-06 2012-02-23 Tdk Corp Active material, method for manufacturing active material, and lithium ion secondary battery
WO2014156153A1 (en) * 2013-03-27 2014-10-02 株式会社Gsユアサ Active material for nonaqueous electrolyte electricity storage elements
WO2017047021A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YABUUCHI, NAOAKI ET AL.: "Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries", NAT. COMMUN., vol. 7, no. 13814, 2016, pages 1 - 10 *

Similar Documents

Publication Publication Date Title
CN111566757B (en) Solid electrolyte material and battery
WO2019135343A1 (en) Solid electrolyte material, and battery
US10074851B2 (en) Surface modified lithium-containing composite oxide particles, positive electrode using the particles, and non-aqueous electrolyte secondary battery
KR101670327B1 (en) Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries
KR20100105387A (en) Non-aqueous electrolyte secondary battery
WO2016042728A1 (en) Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same
CN113412548A (en) Anode active material, method of preparing the same, and lithium secondary battery including anode of the anode active material
CN111668484A (en) Negative electrode active material and electricity storage device
WO2015025877A1 (en) Lithium ion secondary battery
US20230327106A1 (en) Method for producing positive electrode material
WO2015068351A1 (en) Negative electrode active substance and electricity storage device
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
WO2016199732A1 (en) Positive electrode active material for magnesium secondary cell, positive electrode for magnesium secondary cell, and magnesium secondary cell
JP2020050554A (en) Composite particle
US20160006022A1 (en) Negative-electrode active material, production process for the same and electric storage apparatus
WO2018190048A1 (en) Positive electrode active material
JP6252864B2 (en) Method for producing silicon material
JP7131258B2 (en) Composite particle manufacturing method
JP7074006B2 (en) Composite particles
JP2019179714A (en) Positive electrode active material
JP2019091580A (en) Positive electrode active material
JP2019102308A (en) Positive electrode active material
WO2019017199A1 (en) Positive electrode active material
JP2019117781A (en) Positive electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835274

Country of ref document: EP

Kind code of ref document: A1