WO2019017029A1 - Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device - Google Patents

Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device Download PDF

Info

Publication number
WO2019017029A1
WO2019017029A1 PCT/JP2018/016089 JP2018016089W WO2019017029A1 WO 2019017029 A1 WO2019017029 A1 WO 2019017029A1 JP 2018016089 W JP2018016089 W JP 2018016089W WO 2019017029 A1 WO2019017029 A1 WO 2019017029A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
layer
positive electrode
conductive layer
Prior art date
Application number
PCT/JP2018/016089
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 岩根
菜津子 片瀬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019017029A1 publication Critical patent/WO2019017029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present technology relates to a secondary battery in which a battery element is housed inside a film-like exterior member, and a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device using the secondary battery.
  • Secondary batteries are considered not only for electronic devices but also for other applications.
  • a battery pack detachably mounted on an electronic device or the like, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
  • a so-called laminate film secondary battery is known as a secondary battery.
  • the battery element is housed inside the film-like package member, and the battery element contains an electrolytic solution together with the positive electrode and the negative electrode. This is because the secondary battery has flexibility (deformability), so that the degree of freedom regarding the installation location of the secondary battery is expanded.
  • the present technology has been made in view of such problems, and an object thereof is to provide a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device capable of improving safety. It is in.
  • a secondary battery according to the present technology includes a battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on one another via a separator, and a film-like package member that houses the battery element and includes a conductive layer on the innermost side. It is
  • Each of the battery pack, the electric vehicle, the electric power storage system, the electric power tool, and the electronic device of the present technology includes a secondary battery, and the secondary battery has the same configuration as that of the above-described secondary battery of the present technology. .
  • the film-like exterior member for housing the battery element includes the conductive layer on the innermost side, the safety can be improved.
  • similar effects can be obtained in each of the battery pack, the electric vehicle, the electric power storage system, the electric tool, and the electronic device of the present technology.
  • effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 5 is an enlarged cross-sectional view of a configuration of a wound electrode body taken along line IV-IV shown in FIG. It is a top view for demonstrating the safe operation
  • Secondary battery 1-1 Configuration 1-2. Operation 1-3. Manufacturing method 1-4. Action and effect 1-5. Modified example 2. Applications of Secondary Battery 2-1. Battery pack (single cell) 2-2. Battery pack (battery pack) 2-3. Electric vehicle 2-4. Power storage system 2-5. Electric tool
  • the secondary battery described here is, for example, a secondary battery using lithium as an electrode reactant.
  • the "electrode reactant” is a substance involved in an electrode reaction (charge-discharge reaction).
  • the secondary battery is a lithium ion secondary battery in which a battery capacity (capacity of the negative electrode) is obtained by utilizing a lithium absorption phenomenon and a lithium release phenomenon.
  • FIG. 1 shows a perspective view of a secondary battery.
  • 2 shows a plan configuration of the exterior member 20 shown in FIG. 1
  • FIG. 3 is an enlarged cross-sectional configuration of a part (portion 20P1) of the exterior member 20 shown in FIG. .
  • FIG. 4 is an enlarged cross-sectional view of the wound electrode body 10 taken along the line IV-IVI shown in FIG.
  • FIG. 1 in order to make the structure of the winding electrode body 10, and the structure of the exterior member 20 intelligible, the state which the winding electrode body 10 and the exterior member 20 mutually spaced apart is shown.
  • FIG. 2 in order to make the structure of the exterior member 20 legible, the state before the exterior member 20 is folded is shown.
  • This secondary battery is, for example, a laminate in which a wound electrode body 10 as a battery element is housed inside a flexible (or flexible) film-like package member 20 as shown in FIG. It is a film type secondary battery.
  • the wound electrode body 10 includes, for example, a positive electrode 13, a negative electrode 14, a separator 15, and an electrolyte layer 16.
  • the exterior member 20 is a bag-like member that accommodates the wound electrode body 10.
  • the exterior member 20 is, for example, a single film that can be folded in the direction of the arrow R, as shown in FIGS. 1 and 2, and the exterior member 20 includes, for example, a wound electrode body 10.
  • a recess 20U is provided for storing the
  • the planar shape of the exterior member 20 is not particularly limited, and is, for example, a rectangle or the like as shown in FIG.
  • the broken line L shown in FIG. 2 represents the position (folding line) when the exterior member 20 is folded.
  • the exterior member 20 has a multilayer structure including the conductive layer 22 on the innermost side, and is a so-called laminate film.
  • the “innermost” is the side closest to the wound electrode body 10 in the state where the wound electrode body 10 is enclosed in the inside of the exterior member 20.
  • the exterior member 20 includes, for example, the exterior layer 21 and the conductive layer 22 in order from the outside.
  • the conductive layer 22 is shaded.
  • the exterior layer 21 is a layer which becomes an exterior of the secondary battery among the exterior members 20.
  • the exterior layer 21 may be a single layer or multiple layers.
  • the exterior layer 21 has, for example, a three-layer structure in which a surface protection layer 21A, a metal layer 21B, and a fusion layer 21A are laminated in this order from the outside.
  • the surface protective layer 21A is a layer that mainly protects the surface of the exterior member 20.
  • the surface protective layer 21A contains, for example, one or more of insulating polymer materials such as nylon and polyethylene terephthalate. More specifically, the surface protective layer 21A contains, for example, any one or more of films including the above-described insulating polymer material. That is, the surface protective layer 21A may be a single layer or multiple layers.
  • the thickness of the surface protective layer 21A is not particularly limited, and is, for example, 5 ⁇ m to 25 ⁇ m.
  • the metal layer 21 ⁇ / b> B is a layer mainly for preventing entry of moisture and the like from the outside of the exterior member 20 into the inside.
  • the metal layer 21B contains, for example, a metal material such as aluminum. More specifically, the metal layer 21B contains, for example, one or more of foils (metal foils) containing the above-described metal material. That is, the metal layer 21B may be a single layer or multiple layers.
  • the thickness of the metal layer 21B is not particularly limited, and is, for example, 10 ⁇ m to 40 ⁇ m.
  • the fusion layer 21C is a layer mainly used to seal the exterior member 20 folded in the direction of the arrow R in a bag shape.
  • the outer peripheral edge portion of the fusion layer They are fused together.
  • the fusion layer 21C contains, for example, one or more of insulating polymer materials such as polyethylene and polypropylene. More specifically, the fusion layer 21C contains, for example, one or more of films including the above-described insulating polymer material. That is, the fusion layer 21C may be a single layer or a multilayer.
  • the thickness of the fusion layer 21C is not particularly limited, and is, for example, 10 ⁇ m to 40 ⁇ m.
  • the exterior layer 21 is an aluminum laminate film in which a nylon film (surface protective layer 21A), an aluminum foil (metal layer 21B), and a polyethylene film (fusion layer 21C) are laminated in this order from the outside. Is preferred. It is because sufficient durability, sealing performance, waterproofness and the like can be obtained.
  • the exterior layer 21 may be, for example, a laminate film having another multilayer structure.
  • the number of layers of the exterior layer 21 is not limited to three, and may be two or four or more.
  • the exterior layer 21 is not limited to a multilayer, and may be a single layer.
  • the conductive layer 22 is a layer that forms a short circuit path (current flow path) with the wound electrode body 10 mainly by utilizing its own conductivity (electrical conductivity) at the time of breakage of the secondary battery described later. is there. This makes it difficult for the secondary battery to run away thermally even at the time of breakage, so that problems such as ignition are less likely to occur.
  • the principle of forming a short circuit path using the conductive layer 22 will be described later (see FIG. 7).
  • the exterior layer 21 is reinforced by the conductive layer 22 as compared to the case where the exterior member 20 does not include the conductive layer 22. Therefore, since the physical strength of the whole exterior member 20 is improved, even if the secondary battery is repeatedly charged and discharged, the secondary battery becomes difficult to swell and to be warped.
  • the configuration of the conductive layer 22 is not particularly limited as long as it can form a short circuit path together with the wound electrode body 10.
  • the conductive layer 22 includes, for example, one or more of conductive materials.
  • the type of conductive material is not particularly limited, and examples thereof include carbon materials, metal materials and conductive polymer materials.
  • the type of carbon material is not particularly limited, and examples thereof include graphite, carbon black, acetylene black, ketjen black, needle-like carbon, carbon nanotubes, and graphene.
  • the type of metal material is not particularly limited, and examples thereof include aluminum, copper, nickel, silver, palladium and gold.
  • the type of conductive polymer material is not particularly limited, and examples thereof include polyacetylene and polythiophene.
  • the conductive material is preferably a carbon material. Since a carbon material generally has a large specific surface area, even if a gas is generated due to a decomposition reaction of an electrolytic solution or the like, the gas is adsorbed by the carbon material. As a result, even if the flexible film-like exterior member 20 is used, the secondary battery does not easily expand. In particular, when the secondary battery is used or stored in a high temperature environment, the decomposition reaction of the electrolytic solution is likely to proceed, so that the swelling of the secondary battery due to the generation of gas is effectively suppressed.
  • the type of metal material may be determined according to the configuration of the wound electrode body 10, for example.
  • the wound electrode body 10 is formed by winding the positive electrode 13 and the negative electrode 14 laminated to each other via the separator 15, and the positive electrode 13 is at the outermost periphery.
  • the conductive layer 22 preferably contains, for example, the same material as the forming material of the positive electrode current collector 13A described later, specifically, aluminum or the like. It is because the conductive layer 22 becomes difficult to melt
  • the conductive layer 22 contains, for example, the same material as the forming material of the negative electrode current collector 14A described later, specifically, copper and nickel. Is preferred. It is because the conductive layer 22 becomes difficult to melt
  • the form of the conductive layer 22 is not particularly limited.
  • the “form of the conductive layer 22” is a form mainly determined based on the method of forming the conductive layer 22 or the like.
  • the conductive layer 22 may be, for example, a molded body containing a conductive material. That is, the conductive layer 22 may be, for example, a molded body in which the conductive material is previously formed into a sheet, a film, or a foil. In this case, the conductive layer 22 is bonded to the exterior layer 21 through, for example, one or more of the bonding members.
  • the type of the bonding member is not particularly limited, and examples thereof include an adhesive and an adhesive tape.
  • the conductive layer 22 may be, for example, a coating formed by applying a solution containing a conductive material or the like to the surface of the exterior layer 21 and then drying the solution.
  • the solution contains, for example, a plurality of particles containing a conductive material, a binder for binding the plurality of particles, a solvent and the like.
  • the plurality of particles may be dispersed in a solution or may be dissolved in a solution.
  • the conductive layer 22 is in close contact with the surface of the exterior layer 21 through, for example, the application step and the drying step described above.
  • the type of binding agent is not particularly limited, and is, for example, any one or more types of polymeric materials such as polyvinylidene fluoride.
  • the type of solvent is not particularly limited, and is, for example, any one or more of organic solvents such as N-methyl-2-pyrrolidone. The details regarding each of the binding agent and the solvent described here are the same as in the following.
  • the specific form in the case where the conductive layer 22 contains a carbon material is, for example, as follows.
  • the conductive layer 22 may be, for example, a molded body (carbon sheet) in which a powdery carbon material is previously molded into a sheet.
  • the conductive layer 22 may be formed, for example, by applying a solution containing a plurality of particles (carbon particles) containing a carbon material, a binder, a solvent and the like, and then drying the solution. Good.
  • the plurality of particles are dispersed, for example, in a solution.
  • the specific form in case the conductive layer 22 contains a metal material is as follows, for example.
  • the conductive layer 22 may be, for example, a formed body (metal foil) in which a metal material is previously formed into a foil shape.
  • the conductive layer 22 may be formed, for example, by applying a solution containing a plurality of particles (metal particles) containing a metal material, a binder, a solvent and the like, and then drying the solution. Good.
  • the plurality of particles are dispersed, for example, in a solution.
  • the specific form in case the conductive layer 22 contains a conductive polymer material is as follows, for example.
  • the conductive layer 22 may be, for example, a molded body (conductive polymer film or conductive polymer sheet) in which a conductive polymer material is previously formed into a film or sheet.
  • the conductive layer 22 is dried. It may be formed by In this case, the plurality of particles are dispersed or dissolved, for example, in a solution.
  • the formation range of the conductive layer 22 is not particularly limited. Therefore, the conductive layer 22 may be provided, for example, on the entire surface of the exterior layer 21, or may be provided on only a part of the surface of the exterior layer 21.
  • the conductive layer 22 is a region of the surface of the exterior layer 21 (fusion layer 21C) excluding the fusion region 20R1 of the outer edge, ie, fusion of the outer edge It is formed in the central non-fusion area 20R2 surrounded by the area 20R1.
  • the fused region 20R1 is a region where the fused layers are fused together after the package member 20 is folded. Even when the conductive layer 22 is provided on the surface of the exterior layer 21, the exterior member 20 can be sealed using a part of the exterior layer 21 (the fusion layer 21C in the fusion region 20R1). It is from.
  • the formation range of the conductive layer 22 can be arbitrarily changed within the non-fusion area 20R2 described above. That is, the formation area of the conductive layer 22 may be the same as the area of the non-fusion area 20R2, or the formation area of the conductive layer 22 may be smaller than the area of the non-fusion area 20R2. However, as described later, in order to facilitate formation of a short circuit path using conductive layer 22 even if the secondary battery is broken at any position, conductive layer 22 is the entire non-fusion area 20R2. Preferably, it is formed in
  • the electrical resistance of the conductive layer 22 is not particularly limited, but is preferably as low as possible. This is because the conductive layer 22 is used to facilitate formation of a short circuit path, and current can easily flow in the short circuit path. Among them, the surface resistance of the conductive layer 22 is preferably 500 ⁇ or less. This is because the electrical resistance of the conductive layer 22 is sufficiently low, so that the short circuit path can be easily and stably formed using the conductive layer 22. When measuring the surface resistance of the conductive layer 22, for example, a simple low-resistivity meter Loresta AX MCP-T370 manufactured by Mitsubishi Chemical Analytech Co., Ltd. is used.
  • the thickness of the conductive layer 22 is not particularly limited, but is preferably a thickness that does not impair the flexibility of the film-like package member 20.
  • the “external force” is, for example, a force by which the cylindrical round bar 30 is pressed against the secondary battery in a crushing test, as described later (see FIGS. 5 to 7).
  • the thickness of the conductive layer 22 is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less. This is because the flexibility of the conductive layer 22 is secured regardless of the type of the conductive material, so the conductive layer 22 is easily deformed while following the exterior layer 21.
  • the adhesion of the conductive layer 22 to the exterior layer 21 is not particularly limited, but is preferably as high as possible.
  • the peel strength of the conductive layer 22 measured in the 180 ° peel test is preferably 10 mN / mm or more, and more preferably 30 mN / mm or more. This is because the adhesion of the conductive layer 22 to the exterior layer 21 is sufficiently large, and the state of adhesion of the conductive layer 22 to the exterior layer 21 can be stably maintained even if an external force is applied.
  • a table-type precision universal testing machine Autograph AGS-J manufactured by Shimadzu Corporation is used.
  • the exterior member 20 includes the conductive layer 22 on the innermost side
  • the exterior member 20 preferably further includes an insulating layer on the outermost side. This is because the outer surface of the exterior member 20 is insulated without exposing the conductive layer 22 serving as the short circuit path to the outside of the exterior member 20, so that the safety of the secondary battery is ensured.
  • the insulating layer is, for example, the surface protection layer 21A of the exterior layer 21 having the three-layer structure described above.
  • the surface protective layer 21A contains, for example, an insulating polymer material as described above. Thereby, the insulation of the outer surface of the exterior member 20 is ensured.
  • the wound electrode body 10 has the positive electrode 13 and the negative electrode 14 laminated to each other via the separator 15 and the electrolyte layer 16, and then the positive electrode 13, the negative electrode 14, the separator 15 and the electrolyte
  • the layer 16 is formed by winding.
  • the outermost periphery of the wound electrode body 10 is protected by, for example, a protective tape 17.
  • the positive electrode lead 11 is connected to the positive electrode 13, and the positive electrode lead 11 is drawn out from the inside of the exterior member 20 to the outside.
  • the positive electrode lead 11 contains, for example, one or more of conductive materials such as aluminum.
  • the shape of the positive electrode lead 11 is, for example, a thin plate or a mesh.
  • the negative electrode lead 12 is connected to the negative electrode 14, and the negative electrode lead 12 is drawn out from the inside of the package member 20 to the outside.
  • the lead-out direction of the negative electrode lead 12 is, for example, the same as the lead-out direction of the positive electrode lead 11.
  • the negative electrode lead 12 contains, for example, one or more of conductive materials such as copper, nickel and stainless steel.
  • the shape of the negative electrode lead 12 is, for example, the same as the shape of the positive electrode lead 31.
  • an adhesive film 21 is inserted between the exterior member 20 and the positive electrode lead 11 in order to prevent the entry of the outside air.
  • the adhesive film 21 contains, for example, one or more of materials having adhesiveness to the positive electrode lead 11, and more specifically, contains a polyolefin resin or the like.
  • the polyolefin resin is, for example, any one or more of polyethylene, polypropylene, modified polyethylene and modified polypropylene.
  • an adhesive film 22 having the same function as the adhesive film 21 is inserted between the exterior member 20 and the negative electrode lead 12.
  • the forming material of the adhesive film 22 is, for example, the same as the forming material of the adhesive film 21.
  • the positive electrode 13 includes a positive electrode current collector 13A and two positive electrode active material layers 13B provided on both sides of the positive electrode current collector 13A.
  • the positive electrode active material layer 13B may be provided on one side of the positive electrode current collector 13A.
  • the positive electrode current collector 13A contains, for example, one or more of conductive materials.
  • the type of conductive material is not particularly limited, and is, for example, a metal material such as aluminum, nickel and stainless steel.
  • the positive electrode current collector 13A may be a single layer or a multilayer.
  • the positive electrode active material layer 13B contains, as a positive electrode active material, any one or two or more kinds of positive electrode materials capable of inserting and extracting lithium. However, the positive electrode active material layer 13B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material is preferably a lithium-containing compound. This is because a high energy density can be obtained.
  • the "lithium-containing compound” is a generic term for compounds containing lithium as a constituent element.
  • the type of lithium-containing compound is not particularly limited, and examples thereof include lithium-containing composite oxides and lithium-containing phosphoric acid compounds.
  • lithium-containing composite oxide is a generic term for oxides containing lithium and one or more other elements as constituent elements, and, for example, a crystal of layered rock salt type, spinel type, etc. It has a structure.
  • the "lithium-containing phosphoric acid compound” is a generic term for a phosphoric acid compound containing lithium and one or more other elements as constituent elements, and has, for example, a crystal structure such as an olivine type.
  • other elements are elements other than lithium.
  • the type of the other element is not particularly limited, but among them, an element belonging to Groups 2 to 15 in the long period periodic table is preferable.
  • the other elements are, for example, nickel (Ni), cobalt (Co), manganese (Mn) and iron (Fe). This is because a high voltage can be obtained.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, a compound represented by each of the following formulas (1) to (3).
  • Li a Mn (1-bc) Ni b M 1 c O (2-d) F e (1)
  • M1 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc)
  • a to e is 0.8
  • the following conditions are satisfied: a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1.
  • the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state.
  • M2 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ⁇ a ⁇ 1.2, 0.005 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium depends on the charge and discharge state Differently, a is the value of the fully discharged state)
  • Li a Co (1-b) M3 b O (2-c) F d (3) M3 represents nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ⁇ a 1.2, 0 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, a is the value of the completely discharged state)
  • lithium-containing composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and the like.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese and aluminum as constituent elements
  • the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (4).
  • Li a Mn (2-b) M 4 b O c F d (4) (M4 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d are 0.9 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.6, 3.7 ⁇ c ⁇ 4.1 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a Is the value of the completely discharged state.)
  • lithium-containing composite oxide having a spinel type crystal structure is LiMn 2 O 4 or the like.
  • the lithium-containing phosphoric acid compound having an olivine type crystal structure is, for example, a compound represented by the following formula (5).
  • Li a M5PO 4 (5) (M5 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium) At least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W) and zirconium (Zr), a is 0.9 ⁇ a ⁇ 1.1, provided that the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state)
  • lithium-containing phosphoric acid compound having an olivine type crystal structure LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4 and LiFe 0.3 Mn 0.7 PO 4 and the like.
  • the compound etc. which are represented by following formula (6) may be sufficient as lithium containing complex oxide.
  • the positive electrode material may be, for example, an oxide, a disulfide, a chalcogenide, a lithium-containing silicic acid compound, a lithium-containing boric acid compound, a conductive polymer, and the like.
  • the oxides are, for example, titanium oxide, vanadium oxide and manganese dioxide.
  • Examples of the disulfide include titanium disulfide and molybdenum sulfide.
  • the chalcogenide is, for example, niobium selenide or the like.
  • the lithium-containing silicate compound is, for example, Li 2 FeSiO 4 or the like.
  • the lithium-containing boric acid compound is, for example, LiFeBO 3 or the like.
  • the conductive polymer is, for example, sulfur, polyaniline and polythiophene.
  • the positive electrode binder contains, for example, one or more of synthetic rubber and polymer compound.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber and ethylene propylene diene.
  • the high molecular compounds are, for example, polyvinylidene fluoride, polyimide and polytetrafluoroethylene.
  • the positive electrode conductive agent contains, for example, one or more of conductive materials such as a carbon material.
  • the carbon material is, for example, graphite, carbon black, acetylene black, ketjen black and carbon nanotubes.
  • the positive electrode conductive agent is not limited to a carbon material as long as it is a conductive material, and may be a metal material, a conductive polymer, or the like.
  • the negative electrode 14 includes a negative electrode current collector 14A and two negative electrode active material layers 14B provided on both sides of the negative electrode current collector 14A.
  • the negative electrode 14B may be provided on one side of the negative electrode current collector 14A.
  • the negative electrode current collector 14A contains, for example, one or more of conductive materials.
  • the type of conductive material is not particularly limited, and is, for example, a metal material such as copper, nickel and stainless steel.
  • the negative electrode current collector 14A may be a single layer or a multilayer.
  • the surface of the negative electrode current collector 14A is preferably roughened. This is because the adhesion of the negative electrode active material layer 14B to the negative electrode current collector 14A is improved by utilizing the so-called anchor effect. In this case, the surface of the negative electrode current collector 14A may be roughened at least in a region facing the negative electrode active material layer 14B.
  • the roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, since fine particles are formed on the surface of the negative electrode current collector 14A by using the electrolytic method in the electrolytic cell, unevenness is provided on the surface of the negative electrode current collector 14A.
  • the copper foil produced by the electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 14B contains, as a negative electrode active material, any one kind or two or more kinds of negative electrode materials capable of inserting and extracting lithium. However, the negative electrode active material layer 14B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 13. That is, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is preferably larger than the electrochemical equivalent of the positive electrode 13.
  • the type of negative electrode material is not particularly limited as long as it is a material capable of inserting and extracting lithium.
  • the negative electrode material is, for example, a carbon material.
  • the "carbon material” is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon material hardly changes significantly at the time of lithium storage and lithium release, and a high energy density can be stably obtained.
  • the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 14B is improved.
  • the carbon material is, for example, graphitizable carbon, non-graphitizable carbon, graphite and the like.
  • the spacing of the (002) plane relating to the non-graphitizable carbon is preferably 0.37 nm or more, and the spacing of the (002) plane relating to the graphite is preferably 0.34 nm or less.
  • the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like.
  • the cokes include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of fibrous, spherical, granular and scaly.
  • the negative electrode material is, for example, a metal-based material.
  • the "metal-based material” is a generic name of a material containing one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be any one of an element, an alloy and a compound, two or more of them, or a material having at least a part of one or two or more of them. .
  • the alloy in addition to the material which consists of 2 or more types of metal elements, the alloy also contains the material containing 1 or more types of metal elements, and 1 or more types of metalloid elements.
  • the alloy may also contain nonmetallic elements.
  • the structure of this metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more thereof.
  • Metal elements and metalloid elements are, for example, elements that can form an alloy with lithium.
  • the metal element and the metalloid element are, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), Tin (Sn), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), platinum (Pt), etc. is there.
  • silicon and tin are preferred. Because the ability to insert and extract lithium is excellent, extremely high energy density can be obtained.
  • the material containing one or both of silicon and tin as a constituent element may be any of silicon alone, an alloy and a compound, or any of tin alone, an alloy and a compound, and among them Or a material having at least a part of one or two or more of them.
  • the term "single substance” described herein means a single substance (which may contain a trace amount of impurities) in a general sense, and therefore means that the purity is necessarily 100%. is not.
  • the alloy of silicon is, for example, one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as constituent elements other than silicon or It contains two or more types.
  • the compound of silicon contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than silicon.
  • the compound of silicon may contain, for example, one or more of a series of elements described for the alloy of silicon as a constituent element other than silicon.
  • alloy of silicon and the compound of silicon are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), LiSiO and the like.
  • v in SiOv may be 0.2 ⁇ v ⁇ 1.4.
  • the alloy of tin is, for example, one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than tin or the like It contains two or more types.
  • the compound of tin contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than tin.
  • the compound of tin may contain, for example, one or more of the series of elements described for the alloy of tin as a constituent element other than tin.
  • alloys of tin and compounds of tin are SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO and Mg 2 Sn.
  • the material containing tin as a constituent element is preferably, for example, a material (tin-containing material) containing a second constituent element and a third constituent element together with tin as the first constituent element.
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), It contains one or more of tantalum, tungsten, bismuth, silicon and the like.
  • the third constituent element contains, for example, one or more of boron, carbon, aluminum, phosphorus and the like. This is because high battery capacity and excellent cycle characteristics can be obtained.
  • the tin-containing material is preferably a material (tin-cobalt carbon-containing material) containing tin, cobalt and carbon as constituent elements.
  • tin-cobalt carbon-containing material for example, the content of carbon is 9.9% to 29.7% by mass, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20% to 70% by mass is there. This is because a high energy density can be obtained.
  • the tin-cobalt carbon-containing material has a phase containing tin, cobalt and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a phase capable of reacting with lithium (reactive phase), excellent properties are obtained due to the presence of the reactive phase.
  • the half-width (diffraction angle 2 ⁇ ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when the CuK ⁇ ray is used as the specific X-ray and the drawing speed is 1 ° / min. Is preferred. While lithium is occluded and released more smoothly, the reactivity with the electrolytic solution is reduced.
  • the tin-cobalt carbon-containing material may include a phase containing a single element or a part of each constituent element.
  • This reaction phase contains, for example, the above-described series of constituent elements, and is considered to be low in crystallization or amorphization mainly due to the presence of carbon.
  • the tin-cobalt carbon-containing material it is preferable that at least a part of carbon which is a constituent element is bonded to a metal element or a metalloid element which is another constituent element. This is because aggregation or crystallization of tin or the like is suppressed.
  • the bonding state of elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al-K ⁇ rays or Mg-K ⁇ rays are used as soft X-rays.
  • a peak of a synthetic wave of carbon 1s orbital (C1s) appears in an energy region lower than 284.5 eV.
  • the energy calibration is performed so that the peak of 4f orbit (Au4f) of gold atom is obtained at 84.0 eV.
  • the peak of C1s resulting from the surface contamination carbon is made into 284.8 eV, and the peak is used as an energy standard.
  • the waveform of the C1s peak is obtained in a form including the peak attributed to surface contamination carbon and the peak attributed to carbon in the tin-cobalt carbon-containing material. Therefore, for example, by analyzing the peaks including both peaks using commercially available software, the both peaks are separated. In the analysis of the waveform, the position of the main peak present on the lowest binding energy side is used as the energy reference (284.8 eV).
  • the tin-cobalt carbon-containing material is not limited to a material whose constituent elements are only tin, cobalt and carbon.
  • the tin-cobalt-carbon-containing material may be, for example, in addition to tin, cobalt and carbon, any of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium and bismuth etc. You may contain 1 type or 2 types or more as a constitutent element.
  • tin-cobalt carbon-containing materials materials containing tin, cobalt, iron and carbon as constituent elements (tin-cobalt-iron-carbon-containing materials) are also preferable.
  • the composition of this tin-cobalt-iron-carbon-containing material is optional.
  • the content of iron is set to be small, the content of carbon is 9.9% by mass to 29.7% by mass, and the content of iron is 0.3% by mass to 5.9% by mass
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the content of iron when the content of iron is set to be large, the content of carbon is 11.9 mass% to 29.7 mass%, and the content ratio of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the ratio of the content of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • high energy density can be obtained.
  • the physical properties (such as half width) of the tin-cobalt-iron-carbon-containing material are the same as the physical properties of the above-mentioned tin-cobalt-carbon-containing material.
  • the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
  • Metal-based materials in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but have the concern that they tend to undergo extensive expansion and contraction during charge and discharge.
  • carbon materials have the concern that the theoretical capacity is low, but they have the advantage of being difficult to expand and contract during charge and discharge. Therefore, by using the carbon material and the metal-based material in combination, expansion and contraction at the time of charge and discharge are suppressed while securing a high theoretical capacity (that is, battery capacity).
  • the negative electrode material may be, for example, a metal oxide and a polymer compound.
  • the metal oxide is, for example, iron oxide, ruthenium oxide and molybdenum oxide.
  • the polymer compounds are, for example, polyacetylene, polyaniline and polypyrrole.
  • the details of the negative electrode binder are, for example, the same as the details of the positive electrode binder described above. Further, details of the negative electrode conductive agent are, for example, the same as the details of the negative electrode conductive agent described above.
  • the secondary battery in order to prevent lithium metal from being unintentionally deposited on the surface of the negative electrode 14 during charging, electricity of the negative electrode material capable of inserting and extracting lithium
  • the chemical equivalent is preferably larger than the electrochemical equivalent of the positive electrode.
  • the open circuit voltage namely, battery voltage
  • the amount of the positive electrode active material and the amount of the negative electrode active material are mutually adjusted in consideration of the fact that This gives a high energy density.
  • the separator 15 is disposed between the positive electrode 13 and the negative electrode 14, and allows lithium ions to pass while preventing a short circuit of the current caused by the contact of the both electrodes.
  • the separator 15 contains, for example, one or more types of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more types of porous films.
  • Synthetic resins are, for example, polytetrafluoroethylene, polypropylene and polyethylene.
  • the separator 15 may include, for example, the above-described porous membrane (base layer) and a polymer compound layer provided on one side or both sides of the base layer. This is because the adhesion of the separator 15 to each of the positive electrode 13 and the negative electrode 14 is improved, so distortion of the wound electrode body 10 is suppressed. Thereby, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, even if charge and discharge are repeated, the electric resistance is hardly increased and the secondary battery is Is less likely to swell.
  • the polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. It is because it is excellent in physical strength and electrochemically stable. However, the polymer compound may be other than polyvinylidene fluoride.
  • a solution in which the polymer compound is dissolved in an organic solvent or the like is applied to the base material layer, and then the base material layer is dried. In addition, after a base material layer is immersed in a solution, the base material layer may be dried.
  • the polymer compound layer may contain, for example, one or more of insulating particles such as inorganic particles.
  • insulating particles such as inorganic particles.
  • the types of inorganic particles are, for example, aluminum oxide and aluminum nitride.
  • the electrolyte layer 16 contains an electrolytic solution and a polymer compound. However, the electrolyte layer 16 may further contain any one or more of other materials such as additives.
  • the electrolytic solution is held by the polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained, and leakage of the electrolytic solution can be prevented.
  • the electrolyte layer 16 is disposed between the positive electrode 13 and the separator 15 and disposed between the negative electrode 14 and the separator 15.
  • the electrolyte layer 16 may be disposed, for example, only between the positive electrode 13 and the separator 15, or may be disposed only between the negative electrode 14 and the separator 15.
  • the electrolyte contains a solvent and an electrolyte salt.
  • the electrolytic solution may further contain any one or more of other materials such as additives.
  • the solvent contains any one or more kinds of non-aqueous solvents such as organic solvents.
  • the electrolyte containing a non-aqueous solvent is a so-called non-aqueous electrolyte.
  • Nonaqueous solvents are, for example, cyclic carbonates, linear carbonates, lactones, linear carboxylic esters and mononitrile compounds. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
  • Cyclic carbonates are, for example, ethylene carbonate, propylene carbonate and butylene carbonate.
  • chain carbonates include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dibutyl carbonate and methyl propyl carbonate.
  • Lactones are, for example, ⁇ -butyrolactone and ⁇ -valerolactone.
  • the chain carboxylic acid ester is, for example, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, methyl trimethylacetate and the like.
  • the mononitrile compounds are, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • non-aqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 And 4-dioxane, N, N-dimethylformamide, N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N'-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide and the like. It is because the same advantage is obtained.
  • the non-aqueous solvent preferably contains one or more selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
  • high battery capacity excellent cycle characteristics and excellent storage characteristics can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, relative permittivity ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity
  • the combination with ⁇ 1 mPa ⁇ s) is more preferable. This is because the dissociative nature of the electrolyte salt and the mobility of the ions are improved.
  • the non-aqueous solvent includes, for example, unsaturated cyclic carbonate, halogenated carbonate, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound, phosphoric acid ester, carbon-carbon triple bond chain compound, etc. It is. This is because the chemical stability of the electrolytic solution is improved.
  • An unsaturated cyclic carbonate is a cyclic carbonate having one or more unsaturated bonds (carbon-carbon double bonds).
  • the unsaturated cyclic carbonate is, for example, vinylene carbonate, vinyl ethylene carbonate and methylene ethylene carbonate.
  • the content of the unsaturated cyclic carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
  • the halogenated carbonate is a cyclic or chain carbonate containing one or more halogen elements as a constituent element.
  • the halogenated carbonate ester contains two or more halogens as constituent elements, the number of kinds of two or more halogens may be only one or two or more.
  • Cyclic halogenated carbonates are, for example, 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • the chain halogenated carbonates are, for example, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and difluoromethyl methyl carbonate.
  • the content of the halogenated carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 50% by weight.
  • Sulfonic acid esters are, for example, monosulfonic acid esters and disulfonic acid esters.
  • the content of sulfonic acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a linear monosulfonic acid ester.
  • Cyclic monosulfonic acid esters are, for example, sultones such as 1,3-propane sultone and 1,3-propene sultone.
  • the linear monosulfonic acid ester is, for example, a compound in which a cyclic monosulfonic acid ester is cleaved halfway.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a linear disulfonic acid ester.
  • the acid anhydride is, for example, carboxylic acid anhydride, disulfonic acid anhydride and carboxylic acid sulfonic acid anhydride.
  • Carboxylic anhydrides are, for example, succinic anhydride, glutaric anhydride and maleic anhydride.
  • disulfonic anhydride include anhydrous ethanedisulfonic acid and anhydrous propanedisulfonic acid.
  • Carboxylic acid sulfonic acid anhydrides are, for example, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride.
  • the content of the acid anhydride in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the dinitrile compound is, for example, a compound represented by NC-R1-CN (R1 is any of an alkylene group and an arylene group).
  • the dinitrile compounds are, for example, succinonitrile (NC-C 2 H 4 -CN ), glutaronitrile (NC-C 3 H 6 -CN ), adiponitrile (NC-C 4 H 8 -CN ) and phthalonitrile ( NC-C 6 H 4 -CN) and the like.
  • the content of the dinitrile compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the diisocyanate compound is, for example, a compound represented by OCN-R2-NCO (R2 is any of an alkylene group and an arylene group).
  • the diisocyanate compound is, for example, hexamethylene diisocyanate (OCN-C 6 H 12 -NCO).
  • the content of the diisocyanate compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the phosphoric acid ester is, for example, trimethyl phosphate and triethyl phosphate.
  • the content of phosphoric acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • a carbon-carbon triple bond chain compound is a chain compound having one or more carbon-carbon triple bonds.
  • the content of the chain compound having a carbon-carbon triple bond in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the electrolyte salt contains, for example, any one or more of salts such as lithium salts.
  • the electrolyte salt may include, for example, other salts than the lithium salt.
  • Other salts are, for example, salts of light metals other than lithium.
  • the lithium salt is, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoride arsenate (LiAsF 6 ), tetraphenyl Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride Dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ) and lithium bro
  • lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . It is because internal resistance falls.
  • the content of the electrolyte salt is not particularly limited, but preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. It is because high ion conductivity is obtained.
  • the polymer compound contains one or more of homopolymers and copolymers.
  • homopolymers examples include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, and polymethacryl. Acid methyl acrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate.
  • the copolymer is, for example, a copolymer of vinylidene fluoride and another monomer.
  • the “other monomer” is a monomer other than vinylidene fluoride, and is, for example, one or more of hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene and the like.
  • the copolymerization amount (% by weight) of the other monomer in the copolymer is not particularly limited and can be arbitrarily set.
  • the homopolymer is preferably polyvinylidene fluoride
  • the copolymer is preferably a copolymer of vinylidene fluoride and hexafluoropropylene. This is because the physical strength of the electrolyte layer 16 is improved and the electrolyte layer 16 is electrochemically stabilized.
  • the “solvent” contained in the electrolytic solution is not only a liquid material (the non-aqueous solvent described above) but also ion conduction capable of dissociating the electrolyte salt. It is a broad concept that includes even materials with sex. For this reason, when the polymer compound has ion conductivity, the polymer compound is also included in the solvent described herein.
  • the type of additive is not particularly limited. Specifically, the additive is, for example, a plurality of insulating particles. Since the short circuit between the positive electrode 13 and the negative electrode 14 is suppressed by the separator 15 being less likely to be oxidized during charge and discharge of the secondary battery, the safety of the secondary battery is improved.
  • the plurality of insulating particles contain, for example, one or more of inorganic compounds.
  • the type of inorganic compound is not particularly limited. For example, aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), aluminum nitride (AlN), boron nitride (BN) and zeolites.
  • the secondary battery operates, for example, as follows. Hereinafter, after describing the charge and discharge operation, the safe operation will be described.
  • FIG. 7 is an enlarged sectional view of a part (portion 20P2) of the secondary battery shown in FIG.
  • 5 to 7 show the procedure of the crushing test described later, for example, in order to explain the operation (safety operation) of the secondary battery at the time of breakage.
  • the electrolyte layer 16 is omitted to simplify the illustration.
  • cylindrical round bars 30 are disposed to face each other.
  • the round bar 30 is, for example, a metal bar containing one or more of metal materials such as iron, chromium and nickel.
  • the position of the round bar 30 is not particularly limited, but is, for example, a position facing near the center of the secondary battery.
  • the exterior member 20 (the exterior layer 21 and the conductive layer 22) has flexibility, the exterior member 20 is not broken even if it is pushed by the round bar 30, and via the round bar 30. It is pressed against each of the positive electrode 13 and the negative electrode 14. Thereby, the fractured surface 13M contacts the conductive layer 22, and the fractured surface 14M contacts the conductive layer 22.
  • the conductive layer 22 covers the fracture surfaces 13M and 14M.
  • the contact area between the fracture surface 13M and the conductive layer 22 becomes sufficiently large, and the contact area between the fracture surface 14M and the conductive layer 22 becomes sufficiently large.
  • 7 shows the case where the positive electrode active material layer 13B contacts the conductive layer 22 after breakage of the positive electrode 13 and the negative electrode active material layer 14B contacts the conductive layer 22 after breakage of the negative electrode 14.
  • a short circuit path D extending from the negative electrode 14 (negative electrode active material layer 14B) to the positive electrode 13 (positive electrode active material layer 13B) via the conductive layer 22 is formed.
  • the short circuit path D is a current flow path having a low resistance.
  • the positive electrode 13 and the negative electrode 14 come in contact with each other. Not only current flows in the short circuit path formed, but also current flows in the short circuit path D having the above-described low resistance. That is, when the current flows in the short circuit path D having a low resistance, the current does not easily concentrate in the short circuit path formed due to the positive electrode 13 and the negative electrode 14 coming into contact with each other. The current is distributed in As a result, the amount of heat generation is unlikely to increase, and the temperature of the secondary battery is unlikely to rise excessively. In this case, in particular, if the plurality of short circuit paths D are formed as described above, the heat generation parts are dispersed in a plurality of places, so that the temperature of the secondary battery becomes more difficult to rise.
  • the secondary battery provided with the gel electrolyte layer 16 is manufactured, for example, by the following three types of procedures.
  • the configuration of the exterior member 20 has already been described in detail, the description thereof will be omitted below.
  • a positive electrode active material In the case of producing the positive electrode 13, first, a positive electrode active material, and if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to form a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to prepare a paste-like positive electrode mixture slurry. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 13A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 13B. After that, the positive electrode active material layer 13B may be compression molded using a roll press machine or the like, as necessary. In this case, the positive electrode active material layer 13B may be heated or compression molding may be repeated multiple times.
  • the negative electrode active material layer 14B is formed on both surfaces of the negative electrode current collector 14A by the same procedure as the manufacturing procedure of the positive electrode 13 described above. Specifically, the negative electrode active material is mixed with a negative electrode binder and a negative electrode conductive agent to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like to form a paste. A negative mix slurry is prepared. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 14A, and then the negative electrode mixture slurry is dried to form the negative electrode active material layer 14B. Thereafter, the negative electrode active material layer 14B may be compression molded using a roll press or the like, as necessary.
  • the method of forming the negative electrode active material layer 14B is not particularly limited. For example, any one or two or more of a coating method, a gas phase method, a liquid phase method, a thermal spraying method and a firing method (sintering method) It is.
  • the coating method is, for example, a method of preparing a solution in which particles (powder) of a negative electrode active material and a negative electrode binder or the like are dissolved or dispersed by an organic solvent or the like, and then coating the solution on the negative electrode current collector 14A. It is.
  • the vapor phase method is, for example, physical deposition method and chemical deposition method, and more specifically, vacuum deposition method, sputtering method, ion plating method, laser ablation method, thermal chemical vapor deposition, chemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition.
  • the liquid phase method is, for example, an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 14A.
  • the baking method is, for example, a method of applying the above-described solution to the negative electrode current collector 14A using a coating method, and then heat treating the solution at a temperature higher than the melting point of the negative electrode binder and the like.
  • the firing method is, for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like.
  • an electrolytic solution, a polymer compound, an organic solvent and the like are mixed, and then the mixture is stirred to prepare a precursor solution.
  • the precursor solution is applied to the positive electrode 13, and then dried to form the electrolyte layer 16.
  • the precursor solution is applied to the negative electrode 14, and then the precursor solution is dried to form the electrolyte layer 16.
  • the positive electrode lead 11 is connected to the positive electrode current collector 13A using a welding method or the like, and the negative electrode lead 12 is connected to the negative electrode current collector 14A using a welding method or the like.
  • the positive electrode 13 on which the electrolyte layer 16 is formed and the negative electrode 14 on which the electrolyte layer 16 is formed are wound around each other through the separator 15, and then the positive electrode 13, the negative electrode 14, the separator 15, and the electrolyte layer 16.
  • the wound electrode body 10 is formed by winding.
  • the protective tape 17 is attached to the outermost periphery of the wound electrode body 10.
  • the exterior member 20 is folded so as to sandwich the wound electrode body 10. Finally, the outer peripheral edge portions of the exterior member 20 are adhered to each other using a heat fusion method or the like, so that the wound electrode body 10 is sealed inside the exterior member 20.
  • the adhesive film 21 is inserted between the positive electrode lead 11 and the package member 20, and the adhesive film 22 is inserted between the negative electrode lead 12 and the package member 20.
  • the wound electrode body 10 is enclosed in the exterior member 20, and thus the secondary battery is completed.
  • each of the positive electrode 13 and the negative electrode 14 is fabricated by the same procedure as the first procedure described above, and then the positive electrode lead 11 is connected to the positive electrode 13 using a welding method etc.
  • the negative electrode lead 12 is connected to 14.
  • the positive electrode 13 and the negative electrode 14 are stacked on each other through the separator 15, and then the positive electrode 13, the negative electrode 14 and the separator 31 are wound to form a wound body which is a precursor of the wound electrode body 10.
  • the protective tape 37 is attached to the outermost periphery of the wound body.
  • the exterior member 20 is folded so as to sandwich the wound body, and the remaining outer peripheral edge excluding one outer peripheral edge of the exterior member 20 is adhered using a heat fusion method or the like.
  • the wound body is housed inside the bag-like exterior member 20.
  • the mixture is stirred to prepare an electrolyte.
  • the composition is prepared.
  • the composition for electrolyte is injected into the inside of the bag-like exterior member 20, the exterior member 20 is sealed using a heat fusion method or the like.
  • a polymer compound is formed by thermally polymerizing the monomers in the composition for electrolyte.
  • the electrolytic solution is held by the polymer compound, whereby the electrolyte layer 16 is formed.
  • the wound electrode body 10 is sealed inside the exterior member 20.
  • a wound body is produced by the same procedure as the above-described second procedure except that a separator 15 in which two polymer compound layers are formed on both surfaces of a porous membrane (base material layer) is used. .
  • the wound body is housed inside the bag-like exterior member 20.
  • an electrolytic solution is injected into the inside of the exterior member 20, and then the opening of the exterior member 20 is sealed using a heat fusion method or the like.
  • the separator 15 is adhered to the positive electrode 13 via the polymer compound layer, and the separator 14 is placed on the negative electrode 14 via the polymer compound layer. Attach the 15 together.
  • the electrolytic solution is impregnated into the polymer compound layer and the polymer compound layer is gelated, so that the electrolyte layer 16 is formed.
  • the wound electrode body 10 is sealed inside the exterior member 20.
  • the secondary battery is less likely to swell than in the first procedure. Further, in the third procedure, compared to the second procedure, the solvent and the monomer (raw material of the polymer compound) and the like are less likely to remain in the electrolyte layer 16, so the step of forming the polymer compound is well controlled. . Thereby, each of the positive electrode 13, the negative electrode 14, and the separator 15 is sufficiently in close contact with the electrolyte layer 16.
  • the wound electrode body 10 is accommodated inside the film-like exterior member 20, and the exterior member 20 includes the conductive layer 22 on the innermost side, so the reason described below will be described. Safety can be improved.
  • FIG. 8 shows the configuration of the exterior member 40 in the secondary battery of the comparative example, and shows a cross-sectional configuration corresponding to FIG.
  • FIG. 9 shows a cross-sectional configuration corresponding to FIG. 7 in order to explain the problems regarding the safety of the secondary battery of the comparative example.
  • the secondary battery of the comparative example is, for example, the same as the secondary battery of the present technology (see FIG. 3) except that an exterior member 40 is provided instead of the exterior member 20 as shown in FIG. It has a configuration. Since the exterior member 40 does not include, for example, the conductive layer 22, the configuration is the same as that of the exterior member 20 except that it is composed only of the exterior layer 21 (surface protective layer 21 A, metal layer 21 B, fusion layer 21 C). have.
  • the fusion layer 21C contains the insulating polymer material such as polyethylene as described above, even if each of the fracture surfaces 13M and 14M contacts the fusion layer 21C, the short circuit path D (see FIG. 7) is not formed.
  • the round bar 30 is used in the crushing test.
  • each of the broken surfaces 13 M and 14 M contacts the conductive layer 22 to form a short circuit path D.
  • the wound electrode body 10 is less likely to cause thermal runaway, and hence the wound electrode body 10 is less likely to be ignited. Thereby, the safety of the secondary battery can be improved.
  • the same effect can be obtained not only when the above-described crushing test is performed but also when the nailing test and the like are performed, and therefore the same effect can be obtained.
  • the secondary battery was unintentionally broken (each of the positive electrode 13 and the negative electrode 14 was broken) due to some factor, not only when the intentional breakage test such as the crushing test and the nail penetration test was performed. Even in the case, the same effect can be obtained because the same effect can be obtained.
  • the short circuit path D is easily formed utilizing the conductive layer 22 regardless of the position of breakage of the secondary battery. You can get higher effects.
  • the conductive layer 22 contains one or more of carbon material, metal material and conductive polymer material as the conductive material, the short circuit path D is easily formed and the short circuit is generated. Since a sufficient amount of current easily flows in the path D, higher effects can be obtained.
  • the conductive layer 22 is a molded body containing a conductive material, or if the conductive layer 22 contains a plurality of particles containing a conductive material and a binder, the conductive layer 22 is easy and It is formed stably. Therefore, since the short circuit path D is easily and stably formed, a higher effect can be obtained.
  • the conductive layer 22 includes the insulating layer (surface protective layer 21A) on the outermost side, the outer surface of the exterior member 20 is insulated, so that the safety of the secondary battery can be further improved.
  • Modification 1 Specifically, as shown in FIG. 2, after the package member 20 is folded, the fusion layers 21C are fused to each other to seal the package member 20, so that the non-fusion region 20R2 is electrically conductive. Layer 22 was formed.
  • the conductive layer 22 may be formed on both the fused region 20R1 and the non-fused region 20R2.
  • the package member 20 can be sealed by adhering the conductive layers 22 to each other through an adhesive or the like. Also in this case, the same effect can be obtained.
  • the fusion layers 21C can be It is preferable to seal the exterior member 20 by fusing them together.
  • the fusion layer 21C of one exterior member 20 and the fusion layer 21C of the other exterior member 20 may be fused to each other. Also in this case, since the wound electrode body 10 is enclosed in the exterior member 20, the same effect can be obtained.
  • the surface area of the conductive layer 22 is increased as compared with the case where no unevenness is provided on the surface of the conductive layer 22 (FIG. 3).
  • the contact area between the fracture surface 13M and the conductive layer 22 is likely to increase, and the contact area between the fracture surface 14M and the conductive layer 22 is likely to increase. Therefore, the short circuit path D is more easily formed, and the heat is more easily dispersed using the short circuit path D, so that a higher effect can be obtained.
  • the surface area of the conductive layer 22 is increased as compared with the case where the conductive layer 22 is not in the form of a mesh (FIG. 2). Therefore, for the same reason as in the third modification described above, the short circuit path D is more easily formed, and heat is more easily dispersed by using the short circuit path D, so that a higher effect can be obtained.
  • an electrolytic solution that is a liquid electrolyte may be used instead of the electrolyte layer 16.
  • the electrolytic solution instead of forming the electrolyte layer 16 on the surface of each of the positive electrode 13 and the negative electrode 14, for example, the electrolytic solution is impregnated in each of the positive electrode 13, the negative electrode 14, and the separator 15. Also in this case, the same effect can be obtained.
  • Secondary batteries include machines, devices, instruments, devices and systems (aggregates of multiple devices) where secondary batteries can be used as a power source for driving or a power storage source for storing electric power, etc.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power supply is a power supply that is preferentially used regardless of the presence or absence of other power supplies.
  • the auxiliary power source may be, for example, a power source used instead of the main power source, or a power source switched from the main power source as needed.
  • the type of main power supply is not limited to the secondary battery.
  • the application of the secondary battery is, for example, as follows. They are electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs, and portable information terminals. It is a portable household appliance such as an electric shaver. Storage devices such as backup power supplies and memory cards. It is a power tool such as a power drill and a power saw. It is a battery pack installed in a notebook computer as a removable power supply. Medical electronics such as pacemakers and hearing aids. It is an electric vehicle such as an electric car (including a hybrid car). It is a power storage system such as a household battery system for storing power in preparation for an emergency or the like. Of course, applications of the secondary battery may be applications other than the above.
  • the battery pack is a power supply using a secondary battery.
  • the battery pack may use a single cell or an assembled battery as described later.
  • the electric vehicle is a vehicle that operates (travels) using a secondary battery as a driving power source, and as described above, may be a car (such as a hybrid car) equipped with a driving source other than the secondary battery.
  • the power storage system is a system using a secondary battery as a power storage source.
  • the electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using a secondary battery as a power source for driving.
  • the electronic device is a device that exhibits various functions as a power source (power supply source) for driving a secondary battery.
  • FIG. 12 shows a perspective view of a battery pack using single cells.
  • FIG. 13 shows a block configuration of the battery pack shown in FIG. FIG. 12 shows the battery pack in a disassembled state.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted, for example, on an electronic device represented by a smartphone.
  • the battery pack includes a power supply 111 which is a laminated film secondary battery and a circuit board 116 connected to the power supply 111.
  • the positive electrode lead 112 and the negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 is attached to both sides of the power supply 111.
  • a protection circuit (PCM: Protection Circuit) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and connected to the negative electrode lead 113 through the tab 115. Further, the circuit board 116 is connected to the connector-attached lead wire 117 for external connection.
  • the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124.
  • the power source 111 can be connected to the outside through the positive electrode terminal 125 and the negative electrode terminal 127, so the power source 111 is charged and discharged through the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detection unit 124 detects a temperature using a temperature detection terminal (so-called T terminal) 126.
  • the control unit 121 controls the operation of the entire battery pack (including the usage state of the power supply 111).
  • the control unit 121 includes, for example, a central processing unit (CPU) and a memory.
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. Further, for example, when a large current flows during charging, the control unit 121 cuts off the charging current by disconnecting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 to prevent the discharge current from flowing in the current path of the power supply 111. Further, for example, when a large current flows at the time of discharge, the control unit 121 cuts off the discharge current by disconnecting the switch unit 122.
  • the overcharge detection voltage is not particularly limited, but is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ⁇ 0.1 V.
  • the switch unit 122 switches the use state of the power supply 111, that is, the presence or absence of connection between the power supply 111 and an external device, in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the measurement result of the temperature to the control unit 121.
  • the temperature detection unit 124 includes, for example, a temperature detection element such as a thermistor.
  • the measurement result of the temperature measured by the temperature detection unit 124 is used, for example, when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
  • the circuit board 116 may not have the PTC element 123. In this case, the circuit board 116 may be additionally provided with a PTC element.
  • FIG. 14 shows a block configuration of a battery pack using a battery pack.
  • the battery pack includes, for example, a control unit 61, a power supply 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 in a housing 60. , A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive electrode terminal 71 and a negative electrode terminal 72.
  • the housing 60 contains, for example, a plastic material or the like.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62).
  • the control unit 61 includes, for example, a CPU.
  • the power source 62 is a battery pack including two or more secondary batteries, and the connection form of the two or more secondary batteries may be in series, in parallel, or a combination of both.
  • the power supply 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the use state of the power supply 62, that is, the presence or absence of connection between the power supply 62 and an external device, in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, and a discharging diode.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measuring unit 64 measures the current using the current detection resistor 70, and outputs the measurement result of the current to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69, and outputs the measurement result of the temperature to the control unit 61.
  • the measurement result of the temperature is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
  • the switch control unit 67 controls the operation of the switch unit 63 in accordance with the signals input from each of the current measurement unit 64 and the voltage detection unit 66.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) to prevent the charging current from flowing in the current path of the power supply 62.
  • the power supply 62 can only discharge via the discharge diode. Note that, for example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) to prevent the discharge current from flowing in the current path of the power supply 62.
  • the power source 62 can only charge via the charging diode.
  • the switch control unit 67 cuts off the discharge current, for example, when a large current flows during discharge.
  • the overcharge detection voltage is not particularly limited, but is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ⁇ 0.1 V.
  • the memory 68 includes, for example, an EEPROM which is a non-volatile memory.
  • EEPROM electrically erasable programmable read-only memory
  • the temperature detection element 69 measures the temperature of the power supply 62, and outputs the measurement result of the temperature to the control unit 61.
  • the temperature detection element 69 includes, for example, a thermistor.
  • Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (for example, a laptop personal computer) operated by using a battery pack, an external device (for example, a charger or the like) used for charging the battery pack, It is a terminal to be connected.
  • the power source 62 is charged and discharged via the positive electrode terminal 71 and the negative electrode terminal 72.
  • FIG. 15 shows a block configuration of a hybrid vehicle which is an example of the electric vehicle.
  • the electric vehicle includes, for example, a control unit 74, an engine 75, a power supply 76, a driving motor 77, a differential gear 78, a generator 79, and a transmission 80 in a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric-powered vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • the electrically powered vehicle can travel, for example, using one of the engine 75 and the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • Ru Since the rotational power of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational power, and the AC power is converted to DC power through inverter 83. Therefore, the DC power is stored in the power supply 76.
  • the motor 77 which is a conversion unit is used as a power source
  • the electric power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82.
  • 77 drives.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheel 86 and the rear wheel 88 via, for example, the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • the resistance at the time of deceleration is transmitted to the motor 77 as a rotational force, so that the motor 77 generates alternating current power using the rotational force. Good. Since this AC power is converted to DC power via inverter 82, it is preferable that the DC regenerative power be stored in power supply 76.
  • Control unit 74 controls the operation of the entire electric vehicle.
  • the control unit 74 includes, for example, a CPU.
  • the power source 76 includes one or more secondary batteries.
  • the power supply 76 may be connected to an external power supply and may store power by receiving power supply from the external power supply.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the opening degree of the throttle valve (throttle opening degree).
  • the various sensors 84 include, for example, one or more of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 76 and the motor 77 without using the engine 75.
  • FIG. 16 shows a block configuration of the power storage system.
  • the power storage system includes, for example, a control unit 90, a power supply 91, a smart meter 92, and a power hub 93 inside a house 89 such as a home or a commercial building.
  • the power supply 91 can be connected to, for example, the electric device 94 installed inside the house 89 and to the electric vehicle 96 stopped outside the house 89. Also, the power supply 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93, and is connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
  • the electric device 94 includes, for example, one or more types of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, a water heater, and the like.
  • the in-house generator 95 includes, for example, one or more of a solar power generator, a wind power generator, and the like.
  • the electric vehicle 96 includes, for example, any one or more of an electric car, an electric bike, a hybrid car and the like.
  • the centralized power system 97 includes, for example, any one or two or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, a wind power plant and the like.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91).
  • the control unit 90 includes, for example, a CPU.
  • the power supply 91 includes one or more secondary batteries.
  • the smart meter 92 is, for example, a network compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Along with this, the smart meter 92 enables highly efficient and stable energy supply by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside, for example.
  • the power storage system for example, power is stored in the power supply 91 from the centralized power system 97 which is an external power supply via the smart meter 92 and the power hub 93, and from a private generator 95 which is an independent power supply via the power hub 93.
  • power is stored in the power supply 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 according to the instruction of the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged.
  • the power storage system is a system that enables storage and supply of power in the house 89 using the power supply 91.
  • the power stored in the power supply 91 can be used as needed. For this reason, for example, it is possible to store the power from the centralized power system 97 in the power supply 91 at midnight, when the electricity charge is low, and use the power accumulated in the power supply 91 during the day when the electricity charge is high. it can.
  • the above-mentioned electric power storage system may be installed for every one house (one household), and may be installed for every two or more houses (plural households).
  • FIG. 17 shows a block configuration of the power tool.
  • the power tool described here is, for example, a power drill.
  • the power tool includes, for example, a control unit 99 and a power supply 100 inside a tool body 98.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the tool body 98 contains, for example, a plastic material or the like.
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100).
  • the control unit 99 includes, for example, a CPU.
  • the power supply 100 includes one or more secondary batteries.
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to the operation of the operation switch.
  • Example 1 The laminated film type secondary battery (lithium ion secondary battery) shown in FIGS. 1 to 4 was manufactured by the following procedure, and the safety of the secondary battery was examined.
  • Layer 13B was formed.
  • the positive electrode active material layer 13B was compression molded using a roll press. Thus, the positive electrode 13 including the positive electrode current collector 13A and the positive electrode active material layer 13B was obtained.
  • the negative electrode 14 When producing the negative electrode 14, first, 96 parts by weight of a negative electrode active material (artificial graphite), 1 part by weight of a negative electrode binder (acrylic acid-modified styrene-butadiene rubber copolymer), and negative electrode binding By mixing 2 parts by mass of the agent (polyvinylidene fluoride) and 1 part by mass of a thickener (carboxymethyl cellulose), a negative electrode mixture was obtained. Subsequently, the negative electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like negative electrode mixture slurry.
  • a negative electrode active material artificial graphite
  • a negative electrode binder acrylic acid-modified styrene-butadiene rubber copolymer
  • a thickener carboxymethyl cellulose
  • Layer 14B was formed.
  • the negative electrode active material layer 14B was compression molded using a roll press. Thus, the negative electrode 14 including the negative electrode current collector 14A and the negative electrode active material layer 14B was obtained.
  • an electrolyte salt lithium hexafluorophosphate
  • a solvent ethylene carbonate, propylene carbonate and diethyl carbonate
  • the concentration of the electrolyte salt was 1 mol / kg with respect to the solvent.
  • a solution was obtained.
  • the polymer solution was uniformly dispersed in the electrolytic solution by treating the mixed solution using a homogenizer.
  • the precursor solution is applied to the surface of the positive electrode 13 and then dried to form the gel electrolyte layer 16, and the precursor solution is applied to the surface of the negative electrode 14, and then the precursor solution is applied.
  • the gel electrolyte layer 16 was formed by drying.
  • the positive electrode lead 11 made of aluminum was welded to the positive electrode current collector 13A, and the negative electrode lead 12 made of copper was welded to the negative electrode current collector 14A.
  • the package member 20 (the package layer 21 and the conductive layer 22) was folded so as to sandwich the wound electrode body 10, and the outer peripheral edge portions of three sides of the package member 20 were heat-sealed.
  • Thickness 60 ⁇ m).
  • the details of the forming material (conductive material), the forming method, and the form of the conductive layer 22 are as shown in Table 1.
  • a carbon material (carbon black) and a metal material (aluminum) were used as the conductive material.
  • a coating method was used as a method of forming the conductive layer 22.
  • a plurality of particles bindery carbon black which is a plurality of carbon particles
  • a binder polyvinylidene fluoride
  • the mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like slurry.
  • a sticking method is used as a method of forming the conductive layer 22.
  • a coating method is used as a method of forming the conductive layer 22.
  • a plurality of particles packedered aluminum which is a plurality of metal particles
  • a binder polyvinylidene fluoride
  • the mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like slurry.
  • the exterior member 20 (exterior layer 21) in which the conductive layer 22 is not formed was used for comparison.
  • the presence or absence of the conductive layer 22 is as shown in Table 1.
  • the state of the secondary battery was visually observed to determine whether the secondary battery was ignited. In this case, the case where the secondary battery did not ignite was judged as “pass”, and the case where the secondary battery ignited was judged as “fail”.
  • the battery element may have another structure such as a laminated structure.
  • the lithium ion secondary battery in which the capacity of the negative electrode is obtained by utilizing the lithium storage phenomenon and the lithium release phenomenon may be a lithium ion secondary battery in which the capacity of the negative electrode is obtained by utilizing the precipitation phenomenon of lithium and the dissolution phenomenon of lithium.
  • the capacity of the negative electrode active material capable of inserting and extracting lithium may be smaller than the capacity of the positive electrode, the capacity resulting from the lithium absorption phenomenon and the lithium release phenomenon and the lithium
  • It may be a secondary battery in which the capacity of the negative electrode is obtained based on the sum of the capacity resulting from the deposition phenomenon and the dissolution phenomenon of lithium.
  • sodium and potassium may be any other Group 1 element in any long period periodic table, or may be elements of Group 2 in the long periodic table such as magnesium and calcium, or other light metals such as aluminum.
  • the present technology can also be configured as follows.
  • a battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator; And a film-like package member including the conductive layer on the inner side thereof.
  • the conductive layer comprises a conductive material, The conductive material includes at least one of a carbon material, a metal material, and a conductive polymer material.
  • the secondary battery as described in said (1).
  • the conductive layer is a molded body including the conductive material.
  • the secondary battery as described in said (2).
  • the conductive layer is A plurality of particles comprising the conductive material;
  • the exterior member further includes an insulating layer on the outermost side.
  • the secondary battery according to any one of the above (1) to (4). (6) Being a lithium ion secondary battery, The secondary battery according to any one of the above (1) to (5). (7) The secondary battery according to any one of (1) to (6) above, A control unit that controls the operation of the secondary battery; A switch unit that switches the operation of the secondary battery according to an instruction of the control unit. (8) The secondary battery according to any one of (1) to (6) above, A converter for converting the power supplied from the secondary battery into a driving power; A driving unit driven according to the driving force; And a control unit that controls the operation of the secondary battery.
  • the secondary battery according to any one of (1) to (6) above One or more electric devices supplied with power from the secondary battery, And a controller configured to control power supply from the secondary battery to the electric device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

This secondary battery is provided with: a battery element that includes an electrolytic solution together with a positive electrode and a negative electrode that are mutually stacked via a separator; and a film-shaped exterior member that accommodates the battery element and includes a conductive layer on the innermost side of the exterior member.

Description

二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
 本技術は、フィルム状の外装部材の内部に電池素子が収納された二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。 The present technology relates to a secondary battery in which a battery element is housed inside a film-like exterior member, and a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device using the secondary battery.
 携帯電話機などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。そこで、電源として、小型かつ軽量であると共に高エネルギー密度を得ることが可能な二次電池の開発が進められている。 2. Description of the Related Art Various electronic devices such as mobile phones are widely used, and there is a demand for downsizing, weight reduction and long life of the electronic devices. Therefore, development of a secondary battery which is compact and lightweight and capable of obtaining high energy density is being promoted as a power source.
 二次電池は、電子機器に限らず、他の用途への適用も検討されている。一例を挙げると、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、および電動ドリルなどの電動工具である。 Secondary batteries are considered not only for electronic devices but also for other applications. For example, a battery pack detachably mounted on an electronic device or the like, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
 二次電池としては、いわゆるラミネートフィルム型の二次電池が知られている。このラミネートフィルム型の二次電池では、フィルム状の外装部材の内部に電池素子が収納されており、その電池素子は、正極および負極と共に電解液を含んでいる。二次電池が柔軟性(変形性)を有するため、その二次電池の設置場所などに関する自由度が広がるからである。 A so-called laminate film secondary battery is known as a secondary battery. In this laminated film type secondary battery, the battery element is housed inside the film-like package member, and the battery element contains an electrolytic solution together with the positive electrode and the negative electrode. This is because the secondary battery has flexibility (deformability), so that the degree of freedom regarding the installation location of the secondary battery is expanded.
 二次電池の構成は、安全性に大きな影響を及ぼすため、その二次電池の構成に関しては、さまざまな検討がなされている。具体的には、熱暴走などを防止するために、外装部材の外表面に、正極リードまたは負極リードに接続された導電部材が設けられている(例えば、特許文献1参照。)。また、発火などを防止するために、外装部材と電池素子との間に短絡誘導部材が設けられている(例えば、特許文献2参照。)。 Since the configuration of the secondary battery greatly affects the safety, various studies have been made on the configuration of the secondary battery. Specifically, in order to prevent thermal runaway and the like, a conductive member connected to a positive electrode lead or a negative electrode lead is provided on the outer surface of the package member (see, for example, Patent Document 1). Moreover, in order to prevent ignition etc., the short circuit induction | guidance | derivation member is provided between the exterior member and the battery element (for example, refer patent document 2).
特開2009-064630号公報JP, 2009-064630, A 特開2013-122910号公報JP, 2013-122910, A
 二次電池の安全性を向上させるために様々な対策がなされているが、その対策は十分でない。そこで、二次電池の安全性に関しては、未だ改善の余地がある。 Although various measures have been taken to improve the safety of secondary batteries, the measures are not sufficient. Therefore, the safety of the secondary battery still has room for improvement.
 本技術はかかる問題点に鑑みてなされたもので、その目的は、安全性を向上させることが可能な二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することにある。 The present technology has been made in view of such problems, and an object thereof is to provide a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device capable of improving safety. It is in.
 本技術の二次電池は、セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、その電池素子を収納すると共に最も内側に導電層を含むフィルム状の外装部材とを備えたものである。 A secondary battery according to the present technology includes a battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on one another via a separator, and a film-like package member that houses the battery element and includes a conductive layer on the innermost side. It is
 本技術の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の二次電池と同様の構成を有するものである。 Each of the battery pack, the electric vehicle, the electric power storage system, the electric power tool, and the electronic device of the present technology includes a secondary battery, and the secondary battery has the same configuration as that of the above-described secondary battery of the present technology. .
 本技術の二次電池によれば、電池素子を収納するフィルム状の外装部材が最も内側に導電層を含んでいるので、安全性を向上させることができる。また、本技術の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれにおいても、同様の効果を得ることができる。 According to the secondary battery of the present technology, since the film-like exterior member for housing the battery element includes the conductive layer on the innermost side, the safety can be improved. In addition, similar effects can be obtained in each of the battery pack, the electric vehicle, the electric power storage system, the electric tool, and the electronic device of the present technology.
 なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.
本技術の一実施形態の二次電池の構成を表す斜視図である。It is a perspective view showing composition of a rechargeable battery of one embodiment of this art. 図1に示した外装部材の構成を表す平面図である。It is a top view showing the structure of the exterior member shown in FIG. 図2に示した外装部材のうちの一部の構成を拡大して表す断面図である。It is sectional drawing which expands and represents the structure of one part among the exterior members shown in FIG. 図1に示したIV-IV線に沿った巻回電極体の構成を拡大して表す断面図である。FIG. 5 is an enlarged cross-sectional view of a configuration of a wound electrode body taken along line IV-IV shown in FIG. 二次電池の安全動作を説明するための平面図である。It is a top view for demonstrating the safe operation | movement of a secondary battery. 図5に続く二次電池の安全動作を説明するための平面図である。It is a top view for demonstrating the safe operation | movement of the secondary battery following FIG. 図6に示した二次電池のうちの一部の構成を拡大して表す断面図である。It is sectional drawing which expands and represents the structure of a part of secondary battery shown in FIG. 比較例の二次電池における外装部材の構成を表す断面図である。It is sectional drawing showing the structure of the exterior member in the secondary battery of a comparative example. 比較例の二次電池の問題点を説明するための断面図である。It is sectional drawing for demonstrating the problem of the secondary battery of a comparative example. 二次電池の構成に関する変形例を表す断面図である。It is sectional drawing showing the modification regarding the structure of a secondary battery. 二次電池の構成に関する他の変形例を表す平面図である。It is a top view showing the other modification regarding the composition of a rechargeable battery. 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。It is a perspective view showing the composition of the example of application of a rechargeable battery (battery pack: single battery). 図12に示した電池パックの構成を表すブロック図である。It is a block diagram showing the structure of the battery pack shown in FIG. 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。It is a block diagram showing the composition of the example of application of a rechargeable battery (battery pack: group battery). 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the composition of the example of application of a rechargeable battery (electric vehicle). 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the composition of the example of application of a rechargeable battery (electric power storage system). 二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the composition of the example of application of a rechargeable battery (electric tool).
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.構成
  1-2.動作
  1-3.製造方法
  1-4.作用および効果
  1-5.変形例
 2.二次電池の用途
  2-1.電池パック(単電池)
  2-2.電池パック(組電池)
  2-3.電動車両
  2-4.電力貯蔵システム
  2-5.電動工具
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order to be described is as follows.

1. Secondary battery 1-1. Configuration 1-2. Operation 1-3. Manufacturing method 1-4. Action and effect 1-5. Modified example 2. Applications of Secondary Battery 2-1. Battery pack (single cell)
2-2. Battery pack (battery pack)
2-3. Electric vehicle 2-4. Power storage system 2-5. Electric tool
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
<1. Secondary battery>
First, a secondary battery according to an embodiment of the present technology will be described.
 ここで説明する二次電池は、例えば、電極反応物質としてリチウムを用いた二次電池である。この「電極反応物質」とは、電極反応(充放電反応)に関わる物質である。 The secondary battery described here is, for example, a secondary battery using lithium as an electrode reactant. The "electrode reactant" is a substance involved in an electrode reaction (charge-discharge reaction).
 より具体的には、二次電池は、リチウムの吸蔵現象およびリチウムの放出現象を利用して電池容量(負極の容量)が得られるリチウムイオン二次電池である。 More specifically, the secondary battery is a lithium ion secondary battery in which a battery capacity (capacity of the negative electrode) is obtained by utilizing a lithium absorption phenomenon and a lithium release phenomenon.
<1-1.構成>
 まず、二次電池の構成に関して説明する。
<1-1. Configuration>
First, the configuration of the secondary battery will be described.
 図1は、二次電池の斜視構成を表している。図2は、図1に示した外装部材20の平面構成を表していると共に、図3は、図2に示した外装部材20のうちの一部(部分20P1)の断面構成を拡大している。図4は、図1に示したIV-IVI線に沿った巻回電極体10の断面構成を拡大している。 FIG. 1 shows a perspective view of a secondary battery. 2 shows a plan configuration of the exterior member 20 shown in FIG. 1, and FIG. 3 is an enlarged cross-sectional configuration of a part (portion 20P1) of the exterior member 20 shown in FIG. . FIG. 4 is an enlarged cross-sectional view of the wound electrode body 10 taken along the line IV-IVI shown in FIG.
 なお、図1では、巻回電極体10の構成および外装部材20の構成を見やすくするために、巻回電極体10と外装部材20とが互いに離間された状態を示している。また、図2では、外装部材20の構成を見やすくするために、その外装部材20が折り畳まれる前の状態を示している。 In addition, in FIG. 1, in order to make the structure of the winding electrode body 10, and the structure of the exterior member 20 intelligible, the state which the winding electrode body 10 and the exterior member 20 mutually spaced apart is shown. Moreover, in FIG. 2, in order to make the structure of the exterior member 20 legible, the state before the exterior member 20 is folded is shown.
 この二次電池は、例えば、図1に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材20の内部に、電池素子である巻回電極体10が収納されたラミネートフィルム型の二次電池である。この巻回電極体10は、例えば、正極13、負極14、セパレータ15および電解質層16を含んでいる。 This secondary battery is, for example, a laminate in which a wound electrode body 10 as a battery element is housed inside a flexible (or flexible) film-like package member 20 as shown in FIG. It is a film type secondary battery. The wound electrode body 10 includes, for example, a positive electrode 13, a negative electrode 14, a separator 15, and an electrolyte layer 16.
[外装部材]
 外装部材20は、巻回電極体10を収納する袋状の部材である。この外装部材20は、例えば、図1および図2に示したように、矢印Rの方向に折り畳むことが可能な1枚のフィルムであり、その外装部材20には、例えば、巻回電極体10を収納するための窪み20Uが設けられている。
[Exterior member]
The exterior member 20 is a bag-like member that accommodates the wound electrode body 10. The exterior member 20 is, for example, a single film that can be folded in the direction of the arrow R, as shown in FIGS. 1 and 2, and the exterior member 20 includes, for example, a wound electrode body 10. A recess 20U is provided for storing the
 外装部材20の平面形状は、特に限定されないが、例えば、図2に示したように、長方形などである。なお、図2に示した破線Lは、外装部材20を折りたたむ際の位置(折り畳み線)を表している。 The planar shape of the exterior member 20 is not particularly limited, and is, for example, a rectangle or the like as shown in FIG. In addition, the broken line L shown in FIG. 2 represents the position (folding line) when the exterior member 20 is folded.
 特に、外装部材20は、図3に示したように、最も内側に導電層22を含む多層構造を有しており、いわゆるラミネートフィルムである。この「最も内側」とは、外装部材20の内部に巻回電極体10が封入された状態において、その巻回電極体10に最も近い側である。 In particular, as shown in FIG. 3, the exterior member 20 has a multilayer structure including the conductive layer 22 on the innermost side, and is a so-called laminate film. The “innermost” is the side closest to the wound electrode body 10 in the state where the wound electrode body 10 is enclosed in the inside of the exterior member 20.
 より具体的には、外装部材20は、例えば、外側から順に外装層21および導電層22を含んでいる。なお、図2では、外装層21と導電層22とを互いに識別しやすくするために、その導電層22に網掛けを施している。 More specifically, the exterior member 20 includes, for example, the exterior layer 21 and the conductive layer 22 in order from the outside. In addition, in FIG. 2, in order to make the exterior layer 21 and the conductive layer 22 easily distinguishable from each other, the conductive layer 22 is shaded.
(外装層)
 外装層21は、外装部材20のうち、二次電池の外装となる層である。この外装層21は、単層でもよいし、多層でもよい。
(Exterior layer)
The exterior layer 21 is a layer which becomes an exterior of the secondary battery among the exterior members 20. The exterior layer 21 may be a single layer or multiple layers.
 ここでは、外装層21は、例えば、外側から、表面保護層21Aと、金属層21Bと、融着層21Aとがこの順に積層された3層構造を有している。 Here, the exterior layer 21 has, for example, a three-layer structure in which a surface protection layer 21A, a metal layer 21B, and a fusion layer 21A are laminated in this order from the outside.
(表面保護層)
 表面保護層21Aは、主に、外装部材20の表面を保護する層である。この表面保護層21Aは、例えば、ナイロンおよびポリエチレンテレフタレートなどの絶縁性高分子材料のうちのいずれか1種類または2種類以上を含んでいる。より具体的には、表面保護層21Aは、例えば、上記した絶縁性高分子材料を含むフィルムのうちのいずれか1種類または2種類以上を含んでいる。すなわち、表面保護層21Aは、単層でもよいし、多層でもよい。
(Surface protection layer)
The surface protective layer 21A is a layer that mainly protects the surface of the exterior member 20. The surface protective layer 21A contains, for example, one or more of insulating polymer materials such as nylon and polyethylene terephthalate. More specifically, the surface protective layer 21A contains, for example, any one or more of films including the above-described insulating polymer material. That is, the surface protective layer 21A may be a single layer or multiple layers.
 表面保護層21Aの厚さは、特に限定されないが、例えば、5μm~25μmである。 The thickness of the surface protective layer 21A is not particularly limited, and is, for example, 5 μm to 25 μm.
(金属層)
 金属層21Bは、主に、外装部材20の外部から内部に水分などが侵入することを防止する層である。この金属層21Bは、例えば、アルミニウムなどの金属材料を含んでいる。より具体的には、金属層21Bは、例えば、上記した金属材料を含む箔(金属箔)のうちのいずれか1種類または2種類以上を含んでいる。すなわち金属層21Bは、単層でもよいし、多層でもよい。
(Metal layer)
The metal layer 21 </ b> B is a layer mainly for preventing entry of moisture and the like from the outside of the exterior member 20 into the inside. The metal layer 21B contains, for example, a metal material such as aluminum. More specifically, the metal layer 21B contains, for example, one or more of foils (metal foils) containing the above-described metal material. That is, the metal layer 21B may be a single layer or multiple layers.
 金属層21Bの厚さは、特に限定されないが、例えば、10μm~40μmである。 The thickness of the metal layer 21B is not particularly limited, and is, for example, 10 μm to 40 μm.
(融着層)
 融着層21Cは、主に、矢印Rの方向に折り畳まれた外装部材20を袋状に封止するために用いられる層である。二次電池の製造工程では、例えば、後述するように、融着層同士が巻回電極体10を介して互いに対向するように外装部材20が折り畳まれたのち、その融着層の外周縁部同士が融着される。
(Fusing layer)
The fusion layer 21C is a layer mainly used to seal the exterior member 20 folded in the direction of the arrow R in a bag shape. In the manufacturing process of the secondary battery, for example, as described later, after the package member 20 is folded so that the fusion layers face each other via the wound electrode body 10, the outer peripheral edge portion of the fusion layer They are fused together.
 この融着層21Cは、例えば、ポリエチレンおよびポリプロピレンなどの絶縁性高分子材料のうちのいずれか1種類または2種類以上を含んでいる。より具体的には、融着層21Cは、例えば、上記した絶縁性高分子材料を含むフィルムのうちのいずれか1種類または2種類以上を含んでいる。すなわち、融着層21Cは、単層でもよいし、多層でもよい。 The fusion layer 21C contains, for example, one or more of insulating polymer materials such as polyethylene and polypropylene. More specifically, the fusion layer 21C contains, for example, one or more of films including the above-described insulating polymer material. That is, the fusion layer 21C may be a single layer or a multilayer.
 融着層21Cの厚さは、特に限定されないが、例えば、10μm~40μmである。 The thickness of the fusion layer 21C is not particularly limited, and is, for example, 10 μm to 40 μm.
 中でも、外装層21は、外側から、ナイロンフィルム(表面保護層21A)と、アルミニウム箔(金属層21B)と、ポリエチレンフィルム(融着層21C)とがこの順に積層されたアルミラミネートフィルムであることが好ましい。十分な耐久性、封止性および防水性などが得られるからである。 Among them, the exterior layer 21 is an aluminum laminate film in which a nylon film (surface protective layer 21A), an aluminum foil (metal layer 21B), and a polyethylene film (fusion layer 21C) are laminated in this order from the outside. Is preferred. It is because sufficient durability, sealing performance, waterproofness and the like can be obtained.
 ただし、外装層21は、例えば、他の多層構造を有するラミネートフィルムでもよい。この場合には、外装層21の層数は、3層に限られず、2層でもよいし、4層以上でもよい。もちろん、外装層21は、多層に限られず、単層でもよい。 However, the exterior layer 21 may be, for example, a laminate film having another multilayer structure. In this case, the number of layers of the exterior layer 21 is not limited to three, and may be two or four or more. Of course, the exterior layer 21 is not limited to a multilayer, and may be a single layer.
(導電層)
 導電層22は、主に、後述する二次電池の破損時において、自らの導電性(電気伝導性)を利用して巻回電極体10と共に短絡経路(電流の流路)を形成する層である。これにより、破損時においても二次電池が熱暴走しにくくなるため、発火などの不具合が発生しにくくなる。この導電層22を利用して短絡経路が形成される原理に関しては、後述する(図7参照)。
(Conductive layer)
The conductive layer 22 is a layer that forms a short circuit path (current flow path) with the wound electrode body 10 mainly by utilizing its own conductivity (electrical conductivity) at the time of breakage of the secondary battery described later. is there. This makes it difficult for the secondary battery to run away thermally even at the time of breakage, so that problems such as ignition are less likely to occur. The principle of forming a short circuit path using the conductive layer 22 will be described later (see FIG. 7).
 なお、外装部材20が導電層22を含んでいると、外装部材20が導電層22を含んでいない場合と比較して、その導電層22により外装層21が補強される。よって、外装部材20の全体の物理的強度が向上するため、二次電池が繰り返して充放電されても、その二次電池が膨れにくくなると共に反りにくくなる。 When the exterior member 20 includes the conductive layer 22, the exterior layer 21 is reinforced by the conductive layer 22 as compared to the case where the exterior member 20 does not include the conductive layer 22. Therefore, since the physical strength of the whole exterior member 20 is improved, even if the secondary battery is repeatedly charged and discharged, the secondary battery becomes difficult to swell and to be warped.
 導電層22の構成は、巻回電極体10と共に短絡経路を形成することが可能であれば、特に限定されない。 The configuration of the conductive layer 22 is not particularly limited as long as it can form a short circuit path together with the wound electrode body 10.
 具体的には、導電層22は、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、炭素材料、金属材料および導電性高分子材料などである。 Specifically, the conductive layer 22 includes, for example, one or more of conductive materials. The type of conductive material is not particularly limited, and examples thereof include carbon materials, metal materials and conductive polymer materials.
 炭素材料の種類は、特に限定されないが、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、針状カーボン、カーボンナノチューブおよびグラフェンなどである。金属材料の種類は、特に限定されないが、例えば、アルミニウム、銅、ニッケル、銀、パラジウムおよび金などである。導電性高分子材料の種類は、特に限定されないが、例えば、ポリアセチレンおよびポリチオフェンなどである。 The type of carbon material is not particularly limited, and examples thereof include graphite, carbon black, acetylene black, ketjen black, needle-like carbon, carbon nanotubes, and graphene. The type of metal material is not particularly limited, and examples thereof include aluminum, copper, nickel, silver, palladium and gold. The type of conductive polymer material is not particularly limited, and examples thereof include polyacetylene and polythiophene.
 中でも、導電性材料は、炭素材料であることが好ましい。炭素材料は、一般的に、大きな比表面積を有しているため、電解液の分解反応などに起因してガスが発生しても、そのガスが炭素材料により吸着されるからである。これにより、柔軟性を有するフィルム状の外装部材20を用いても、二次電池が膨れにくくなる。特に、高温環境中において二次電池が使用または保存された場合には、電解液の分解反応が進行しやすくなるため、ガスの発生に起因する二次電池の膨れが効果的に抑制される。 Among them, the conductive material is preferably a carbon material. Since a carbon material generally has a large specific surface area, even if a gas is generated due to a decomposition reaction of an electrolytic solution or the like, the gas is adsorbed by the carbon material. As a result, even if the flexible film-like exterior member 20 is used, the secondary battery does not easily expand. In particular, when the secondary battery is used or stored in a high temperature environment, the decomposition reaction of the electrolytic solution is likely to proceed, so that the swelling of the secondary battery due to the generation of gas is effectively suppressed.
 なお、金属材料の種類は、例えば、巻回電極体10の構成に応じて決定されてもよい。具体的には、例えば、後述するように、セパレータ15を介して互いに積層された正極13および負極14が巻回されることにより巻回電極体10が形成されており、正極13が最外周に配置されている場合には、導電層22は、例えば、後述する正極集電体13Aの形成材料と同様の材料、具体的にはアルミニウムなどを含んでいることが好ましい。導電層22の形成材料と正極集電体13Aの形成材料とが互いに同じであると、充放電時において導電層22が溶解しにくくなるからである。一方、負極14が最外周に配置されている場合には、導電層22は、例えば、後述する負極集電体14Aの形成材料と同様の材料、具体的には銅およびニッケルなどを含んでいることが好ましい。導電層22の形成材料と負極集電体14Aの形成材料とが互いに同じであると、充放電時において導電層22が溶解しにくくなるからである。 The type of metal material may be determined according to the configuration of the wound electrode body 10, for example. Specifically, for example, as described later, the wound electrode body 10 is formed by winding the positive electrode 13 and the negative electrode 14 laminated to each other via the separator 15, and the positive electrode 13 is at the outermost periphery. When disposed, the conductive layer 22 preferably contains, for example, the same material as the forming material of the positive electrode current collector 13A described later, specifically, aluminum or the like. It is because the conductive layer 22 becomes difficult to melt | dissolve at the time of charge / discharge as the formation material of the conductive layer 22 and the formation material of the positive electrode collector 13A are mutually the same. On the other hand, when the negative electrode 14 is arranged at the outermost periphery, the conductive layer 22 contains, for example, the same material as the forming material of the negative electrode current collector 14A described later, specifically, copper and nickel. Is preferred. It is because the conductive layer 22 becomes difficult to melt | dissolve at the time of charge / discharge as the formation material of the conductive layer 22 and the formation material of the negative electrode collector 14A are mutually identical.
 ここで、導電層22の形態は、特に限定されない。この「導電層22の形態」とは、主に、その導電層22の形成方法などに基づいて決定される形態である。 Here, the form of the conductive layer 22 is not particularly limited. The “form of the conductive layer 22” is a form mainly determined based on the method of forming the conductive layer 22 or the like.
 具体的には、導電層22は、例えば、導電性材料を含む成型体でもよい。すなわち、導電層22は、例えば、導電性材料があらかじめシート状、フィルム状または箔状となるように成型された成型体でもよい。この場合には、導電層22は、例えば、接着用部材のうちのいずれか1種類または2種類以上を介して外装層21に接着されている。接着用部材の種類は、特に限定されないが、例えば、接着剤および接着テープなどである。 Specifically, the conductive layer 22 may be, for example, a molded body containing a conductive material. That is, the conductive layer 22 may be, for example, a molded body in which the conductive material is previously formed into a sheet, a film, or a foil. In this case, the conductive layer 22 is bonded to the exterior layer 21 through, for example, one or more of the bonding members. The type of the bonding member is not particularly limited, and examples thereof include an adhesive and an adhesive tape.
 または、導電層22は、例えば、導電性材料などを含む溶液が外装層21の表面に塗布されたのち、その溶液が乾燥されることにより形成された塗膜でもよい。具体的には、溶液は、例えば、導電性材料を含む複数の粒子と、その複数の粒子を結着させる結着剤と、溶媒などを含んでいる。この複数の粒子は、溶液中において分散されていてもよいし、溶液中において溶解されていてもよい。この場合には、導電層22は、例えば、上記した塗布工程および乾燥工程を経ることにより、外装層21の表面に密着される。 Alternatively, the conductive layer 22 may be, for example, a coating formed by applying a solution containing a conductive material or the like to the surface of the exterior layer 21 and then drying the solution. Specifically, the solution contains, for example, a plurality of particles containing a conductive material, a binder for binding the plurality of particles, a solvent and the like. The plurality of particles may be dispersed in a solution or may be dissolved in a solution. In this case, the conductive layer 22 is in close contact with the surface of the exterior layer 21 through, for example, the application step and the drying step described above.
 結着剤の種類は、特に限定されないが、例えば、ポリフッ化ビニリデンなどの高分子材料のうちのいずれか1種類または2種類以上である。溶媒の種類は、特に限定されないが、例えば、N-メチル-2-ピロリドンなどの有機溶剤のうちのいずれか1種類または2種類以上である。ここで説明した結着剤および溶媒のそれぞれに関する詳細は、以降においても同様である。 The type of binding agent is not particularly limited, and is, for example, any one or more types of polymeric materials such as polyvinylidene fluoride. The type of solvent is not particularly limited, and is, for example, any one or more of organic solvents such as N-methyl-2-pyrrolidone. The details regarding each of the binding agent and the solvent described here are the same as in the following.
 より具体的には、導電層22が炭素材料を含んでいる場合の具体的な形態は、例えば、以下の通りである。 More specifically, the specific form in the case where the conductive layer 22 contains a carbon material is, for example, as follows.
 導電層22は、例えば、あらかじめ粉末状の炭素材料がシート状に成型された成型体(炭素シート)でもよい。 The conductive layer 22 may be, for example, a molded body (carbon sheet) in which a powdery carbon material is previously molded into a sheet.
 または、導電層22は、例えば、炭素材料を含む複数の粒子(炭素粒子)と結着剤と溶媒などとを含む溶液が塗布されたのち、その溶液が乾燥されることにより形成されていてもよい。この場合には、複数の粒子は、例えば、溶液中において分散される。 Alternatively, the conductive layer 22 may be formed, for example, by applying a solution containing a plurality of particles (carbon particles) containing a carbon material, a binder, a solvent and the like, and then drying the solution. Good. In this case, the plurality of particles are dispersed, for example, in a solution.
 また、導電層22が金属材料を含んでいる場合の具体的な形態は、例えば、以下の通りである。 Moreover, the specific form in case the conductive layer 22 contains a metal material is as follows, for example.
 導電層22は、例えば、あらかじめ金属材料が箔状に成型された成型体(金属箔)でもよい。 The conductive layer 22 may be, for example, a formed body (metal foil) in which a metal material is previously formed into a foil shape.
 または、導電層22は、例えば、金属材料を含む複数の粒子(金属粒子)と結着剤と溶媒などとを含む溶液が塗布されたのち、その溶液が乾燥されることにより形成されていてもよい。この場合には、複数の粒子は、例えば、溶液中において分散される。 Alternatively, the conductive layer 22 may be formed, for example, by applying a solution containing a plurality of particles (metal particles) containing a metal material, a binder, a solvent and the like, and then drying the solution. Good. In this case, the plurality of particles are dispersed, for example, in a solution.
 また、導電層22が導電性高分子材料を含んでいる場合の具体的な形態は、例えば、以下の通りである。 Moreover, the specific form in case the conductive layer 22 contains a conductive polymer material is as follows, for example.
 導電層22は、例えば、あらかじめ導電性高分子材料がフィルム状またはシート状に成型された成型体(導電性高分子フィルムまたは導電性高分子シート)でもよい。 The conductive layer 22 may be, for example, a molded body (conductive polymer film or conductive polymer sheet) in which a conductive polymer material is previously formed into a film or sheet.
 または、導電層22は、例えば、導電性高分子材料を含む複数の粒子(導電性高分子粒子)と結着剤と溶媒などとを含む溶液が塗布されたのち、その溶液が乾燥されることにより形成されていてもよい。この場合には、複数の粒子は、例えば、溶液中において分散または溶解される。 Alternatively, for example, after a solution containing a plurality of particles (conductive polymer particles) containing a conductive polymer material, a binder, a solvent and the like is applied, the conductive layer 22 is dried. It may be formed by In this case, the plurality of particles are dispersed or dissolved, for example, in a solution.
 導電層22の形成範囲は、特に限定されない。このため、導電層22は、例えば、外装層21の表面のうちの全体に設けられていてもよいし、外装層21の表面のうちの一部だけに設けられていてもよい。 The formation range of the conductive layer 22 is not particularly limited. Therefore, the conductive layer 22 may be provided, for example, on the entire surface of the exterior layer 21, or may be provided on only a part of the surface of the exterior layer 21.
 ここでは、導電層22は、例えば、図2に示したように、外装層21(融着層21C)の表面のうち、外縁部の融着領域20R1を除いた領域、すなわち外縁部の融着領域20R1により囲まれた中央の非融着領域20R2に形成されている。この融着領域20R1は、外装部材20が折り畳まれたのち、融着層同士が融着される領域である。外装層21の表面に導電層22を設けた場合においても、その外装層21のうちの一部(融着領域20R1における融着層21C)を利用して外装部材20を封止することができるからである。 Here, for example, as shown in FIG. 2, the conductive layer 22 is a region of the surface of the exterior layer 21 (fusion layer 21C) excluding the fusion region 20R1 of the outer edge, ie, fusion of the outer edge It is formed in the central non-fusion area 20R2 surrounded by the area 20R1. The fused region 20R1 is a region where the fused layers are fused together after the package member 20 is folded. Even when the conductive layer 22 is provided on the surface of the exterior layer 21, the exterior member 20 can be sealed using a part of the exterior layer 21 (the fusion layer 21C in the fusion region 20R1). It is from.
 なお、上記した非融着領域20R2の内部であれば、導電層22の形成範囲は任意に変更可能である。すなわち、導電層22の形成面積を非融着領域20R2の面積と同じにしてもよいし、導電層22の形成面積を非融着領域20R2の面積より小さくしてもよい。ただし、後述するように、いかなる位置において二次電池が破損した場合においても導電層22を利用して短絡経路を形成しやすくするためには、その導電層22は、非融着領域20R2の全体に形成されていることが好ましい。 The formation range of the conductive layer 22 can be arbitrarily changed within the non-fusion area 20R2 described above. That is, the formation area of the conductive layer 22 may be the same as the area of the non-fusion area 20R2, or the formation area of the conductive layer 22 may be smaller than the area of the non-fusion area 20R2. However, as described later, in order to facilitate formation of a short circuit path using conductive layer 22 even if the secondary battery is broken at any position, conductive layer 22 is the entire non-fusion area 20R2. Preferably, it is formed in
 導電層22の電気抵抗は、特に限定されないが、できるだけ低いことが好ましい。導電層22を利用して短絡経路が形成されやすくなると共に、その短絡経路において電流が流れやすくなるからである。中でも、導電層22の表面抵抗は、500Ω以下であることが好ましい。導電層22の電気抵抗が十分に低くなるため、その導電層22を利用して短絡経路が容易かつ安定に形成されるからである。導電層22の表面抵抗を測定する場合には、例えば、株式会社三菱ケミカルアナリテック製の簡易型低抵抗率計 ロレスタAX MCP-T370を用いる。この場合には、例えば、同社製のプローブ MCP-TPAPを用いると共に、導電層22に対して2本の円柱型のプローブ(各プローブの直径=2mm,2つのプローブの間隔=10mm)を押し当てる(各プローブの押し当て加重=240g)。 The electrical resistance of the conductive layer 22 is not particularly limited, but is preferably as low as possible. This is because the conductive layer 22 is used to facilitate formation of a short circuit path, and current can easily flow in the short circuit path. Among them, the surface resistance of the conductive layer 22 is preferably 500 Ω or less. This is because the electrical resistance of the conductive layer 22 is sufficiently low, so that the short circuit path can be easily and stably formed using the conductive layer 22. When measuring the surface resistance of the conductive layer 22, for example, a simple low-resistivity meter Loresta AX MCP-T370 manufactured by Mitsubishi Chemical Analytech Co., Ltd. is used. In this case, for example, while using a probe MCP-TPAP manufactured by the same company, two cylindrical probes (diameter of each probe = 2 mm, distance between two probes = 10 mm) are pressed against the conductive layer 22 (Push weight of each probe = 240 g).
 導電層22の厚さは、特に限定されないが、フィルム状の外装部材20の柔軟性を損ないすぎない厚さであることが好ましい。二次電池の破損の要因となる外力を外装層21が受けた際に、その外力に応じて導電層22が外装層21に追随しながら変形しやすくなるため、その導電層22を利用して短絡経路が形成されやすくなるからである。この「外力」とは、例えば、後述するように、圧潰試験において円筒状の丸棒30が二次電池に押し付けられる力などである(図5~図7参照)。中でも、導電層22の厚さは、100μm以下であることが好ましく、50μm以下であることがより好ましい。導電性材料の種類に依存せずに導電層22の柔軟性が担保されるため、その導電層22が外装層21に追随しながら変形しやすくなるからである。 The thickness of the conductive layer 22 is not particularly limited, but is preferably a thickness that does not impair the flexibility of the film-like package member 20. When the exterior layer 21 receives an external force that causes breakage of the secondary battery, the conductive layer 22 easily deforms while following the exterior layer 21 according to the external force, so using the conductive layer 22 It is because it becomes easy to form a short circuit path. The “external force” is, for example, a force by which the cylindrical round bar 30 is pressed against the secondary battery in a crushing test, as described later (see FIGS. 5 to 7). Among them, the thickness of the conductive layer 22 is preferably 100 μm or less, and more preferably 50 μm or less. This is because the flexibility of the conductive layer 22 is secured regardless of the type of the conductive material, so the conductive layer 22 is easily deformed while following the exterior layer 21.
 外装層21に対する導電層22の密着力は、特に限定されないが、できるだけ高いことが好ましい。上記した外力に起因して外装層21が変形した際に、その外装層21から導電層22が剥離しにくくなるからである。中でも、180°剥離試験において測定される導電層22の剥離強度は、10mN/mm以上であることが好ましく、30mN/mm以上であることがより好ましい。外装層21に対する導電層22の密着力が十分に大きくなるため、外力を受けても外装層21に対する導電層22の密着状態が安定に維持されるからである。剥離強度を測定する場合には、例えば、株式会社島津製作所製の卓上形精密万能試験機 オートグラフAGS-Jを用いる。180°剥離試験では、例えば、上下方向に延在するように配置された金属板に対して、両面テープを用いて外装層21が表側となるように外装部材20(幅=25mm)を貼り付けたのち、その外装層21を上方向に引っ張る(引っ張り速さ=100mm/分)。この場合には、導電層22から外装層21を引き剥がしながら剥離強度を測定することにより(引き剥がし長さ=65mm)、その剥離強度の平均値を求める。 The adhesion of the conductive layer 22 to the exterior layer 21 is not particularly limited, but is preferably as high as possible. When the exterior layer 21 is deformed due to the above-described external force, the conductive layer 22 is less likely to peel off the exterior layer 21. Among them, the peel strength of the conductive layer 22 measured in the 180 ° peel test is preferably 10 mN / mm or more, and more preferably 30 mN / mm or more. This is because the adhesion of the conductive layer 22 to the exterior layer 21 is sufficiently large, and the state of adhesion of the conductive layer 22 to the exterior layer 21 can be stably maintained even if an external force is applied. In the case of measuring the peel strength, for example, a table-type precision universal testing machine Autograph AGS-J manufactured by Shimadzu Corporation is used. In the 180 ° peel test, for example, a double-sided adhesive tape is used to affix the exterior member 20 (width = 25 mm) so that the exterior layer 21 is on the front side to a metal plate arranged to extend in the vertical direction. After that, the exterior layer 21 is pulled upward (pulling speed = 100 mm / min). In this case, the peeling strength is measured while peeling the exterior layer 21 from the conductive layer 22 (peeling length = 65 mm), and the average value of the peeling strength is determined.
(絶縁層)
 なお、外装部材20が最も内側に導電層22を含んでいる場合には、その外装部材20は、さらに、最も外型に絶縁層を含んでいることが好ましい。短絡経路となる導電層22が外装部材20の外側に露出せずに、その外装部材20の外側表面が絶縁されるため、二次電池の安全性が担保されるからである。
(Insulating layer)
In the case where the exterior member 20 includes the conductive layer 22 on the innermost side, the exterior member 20 preferably further includes an insulating layer on the outermost side. This is because the outer surface of the exterior member 20 is insulated without exposing the conductive layer 22 serving as the short circuit path to the outside of the exterior member 20, so that the safety of the secondary battery is ensured.
 ここでは、絶縁層は、例えば、上記した3層構造を有する外装層21のうちの表面保護層21Aである。この表面保護層21Aは、例えば、上記したように、絶縁性高分子材料を含んでいる。これにより、外装部材20の外側表面の絶縁性が担保されている。 Here, the insulating layer is, for example, the surface protection layer 21A of the exterior layer 21 having the three-layer structure described above. The surface protective layer 21A contains, for example, an insulating polymer material as described above. Thereby, the insulation of the outer surface of the exterior member 20 is ensured.
[巻回電極体]
 巻回電極体10は、例えば、図4に示したように、セパレータ15および電解質層16を介して正極13と負極14とが互いに積層されたのち、その正極13、負極14、セパレータ15および電解質層16が巻回されることにより形成されている。なお、巻回電極体10の最外周部は、例えば、保護テープ17により保護されている。
[Wound electrode body]
For example, as shown in FIG. 4, the wound electrode body 10 has the positive electrode 13 and the negative electrode 14 laminated to each other via the separator 15 and the electrolyte layer 16, and then the positive electrode 13, the negative electrode 14, the separator 15 and the electrolyte The layer 16 is formed by winding. The outermost periphery of the wound electrode body 10 is protected by, for example, a protective tape 17.
[正極リードおよび負極リード]
 正極13には、正極リード11が接続されており、その正極リード11は、外装部材20の内部から外部に導出されている。この正極リード11は、例えば、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。正極リード11の形状は、例えば、薄板状または網目状である。
[Positive electrode lead and negative electrode lead]
The positive electrode lead 11 is connected to the positive electrode 13, and the positive electrode lead 11 is drawn out from the inside of the exterior member 20 to the outside. The positive electrode lead 11 contains, for example, one or more of conductive materials such as aluminum. The shape of the positive electrode lead 11 is, for example, a thin plate or a mesh.
 負極14には、負極リード12が接続されており、その負極リード12は、外装部材20の内部から外部に導出されている。負極リード12の導出方向は、例えば、正極リード11の導出方向と同様である。この負極リード12は、例えば、銅、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極リード12の形状は、例えば、正極リード31の形状と同様である。 The negative electrode lead 12 is connected to the negative electrode 14, and the negative electrode lead 12 is drawn out from the inside of the package member 20 to the outside. The lead-out direction of the negative electrode lead 12 is, for example, the same as the lead-out direction of the positive electrode lead 11. The negative electrode lead 12 contains, for example, one or more of conductive materials such as copper, nickel and stainless steel. The shape of the negative electrode lead 12 is, for example, the same as the shape of the positive electrode lead 31.
[密着フィルム]
 外装部材20と正極リード11との間には、例えば、外気の侵入を防止するために密着フィルム21が挿入されている。この密着フィルム21は、例えば、正極リード11に対して密着性を有する材料のうちのいずれか1種類または2種類以上を含んでおり、より具体的には、ポリオレフィン樹脂などを含んでいる。このポリオレフィン樹脂は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンのうちのいずれか1種類または2種類以上などである。
[Adhesive film]
For example, an adhesive film 21 is inserted between the exterior member 20 and the positive electrode lead 11 in order to prevent the entry of the outside air. The adhesive film 21 contains, for example, one or more of materials having adhesiveness to the positive electrode lead 11, and more specifically, contains a polyolefin resin or the like. The polyolefin resin is, for example, any one or more of polyethylene, polypropylene, modified polyethylene and modified polypropylene.
 外装部材20と負極リード12との間には、例えば、密着フィルム21と同様の機能を有する密着フィルム22が挿入されている。密着フィルム22の形成材料は、例えば、密着フィルム21の形成材料と同様である。 For example, an adhesive film 22 having the same function as the adhesive film 21 is inserted between the exterior member 20 and the negative electrode lead 12. The forming material of the adhesive film 22 is, for example, the same as the forming material of the adhesive film 21.
[正極]
 正極13は、例えば、図4に示したように、正極集電体13Aと、その正極集電体13Aの両面に設けられた2つの正極活物質層13Bとを含んでいる。ただし、正極集電体13Aの片面に1つの正極活物質層13Bだけが設けられていてもよい。
[Positive electrode]
For example, as shown in FIG. 4, the positive electrode 13 includes a positive electrode current collector 13A and two positive electrode active material layers 13B provided on both sides of the positive electrode current collector 13A. However, only one positive electrode active material layer 13B may be provided on one side of the positive electrode current collector 13A.
(正極集電体)
 正極集電体13Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、アルミニウム、ニッケルおよびステンレスなどの金属材料である。この正極集電体13Aは、単層でもよいし、多層でもよい。
(Positive current collector)
The positive electrode current collector 13A contains, for example, one or more of conductive materials. The type of conductive material is not particularly limited, and is, for example, a metal material such as aluminum, nickel and stainless steel. The positive electrode current collector 13A may be a single layer or a multilayer.
(正極活物質層)
 正極活物質層13Bは、正極活物質として、リチウムを吸蔵および放出することが可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層13Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
(Positive electrode active material layer)
The positive electrode active material layer 13B contains, as a positive electrode active material, any one or two or more kinds of positive electrode materials capable of inserting and extracting lithium. However, the positive electrode active material layer 13B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
(正極活物質(正極材料))
 正極材料は、リチウム含有化合物であることが好ましい。高いエネルギー密度が得られるからである。この「リチウム含有化合物」とは、リチウムを構成元素として含む化合物の総称である。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム含有複合酸化物およびリチウム含有リン酸化合物などである。
(Positive electrode active material (positive electrode material))
The positive electrode material is preferably a lithium-containing compound. This is because a high energy density can be obtained. The "lithium-containing compound" is a generic term for compounds containing lithium as a constituent element. The type of lithium-containing compound is not particularly limited, and examples thereof include lithium-containing composite oxides and lithium-containing phosphoric acid compounds.
 「リチウム含有複合酸化物」とは、リチウムと1種類または2種類以上の他元素とを構成元素として含む酸化物の総称であり、例えば、層状岩塩型およびスピネル型などのうちのいずれかの結晶構造を有している。「リチウム含有リン酸化合物」とは、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物の総称であり、例えば、オリビン型などの結晶構造を有している。なお、「他元素」とは、リチウム以外の元素である。 The term "lithium-containing composite oxide" is a generic term for oxides containing lithium and one or more other elements as constituent elements, and, for example, a crystal of layered rock salt type, spinel type, etc. It has a structure. The "lithium-containing phosphoric acid compound" is a generic term for a phosphoric acid compound containing lithium and one or more other elements as constituent elements, and has, for example, a crystal structure such as an olivine type. In addition, "other elements" are elements other than lithium.
 他元素の種類は、特に限定されないが、中でも、長周期型周期表における2族~15族に属する元素であることが好ましい。具体的には、他元素は、例えば、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)などである。高い電圧が得られるからである。 The type of the other element is not particularly limited, but among them, an element belonging to Groups 2 to 15 in the long period periodic table is preferable. Specifically, the other elements are, for example, nickel (Ni), cobalt (Co), manganese (Mn) and iron (Fe). This is because a high voltage can be obtained.
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(1)~式(3)のそれぞれで表される化合物などである。 The lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, a compound represented by each of the following formulas (1) to (3).
 LiMn(1-b-c) NiM1(2-d)  ・・・(1)
(M1は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (1-bc) Ni b M 1 c O (2-d) F e (1)
(M1 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc) At least one of (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e is 0.8 The following conditions are satisfied: a ≦ 1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5, (b + c) <1, −0.1 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.1. However, the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state.)
 LiNi(1-b) M2(2-c)  ・・・(2)
(M2は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Ni (1-b) M 2 b O (2-c) F d (2)
(M2 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ≦ a ≦ 1.2, 0.005 ≦ b ≦ 0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium depends on the charge and discharge state Differently, a is the value of the fully discharged state)
 LiCo(1-b) M3(2-c)  ・・・(3)
(M3は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Co (1-b) M3 b O (2-c) F d (3)
(M3 represents nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ≦ a ≦ 1.2, 0 ≦ b <0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, a is the value of the completely discharged state)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。 Specific examples of the lithium-containing composite oxide having a layered rock salt type crystal structure are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and the like.
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。 When the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese and aluminum as constituent elements, the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(4)で表される化合物などである。 The lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (4).
 LiMn(2-b) M4 ・・・(4)
(M4は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (2-b) M 4 b O c F d (4)
(M4 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d are 0.9 ≦ a ≦ 1.1, 0 ≦ b ≦ 0.6, 3.7 ≦ c ≦ 4.1 and 0 ≦ d ≦ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a Is the value of the completely discharged state.)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。 A specific example of the lithium-containing composite oxide having a spinel type crystal structure is LiMn 2 O 4 or the like.
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(5)で表される化合物などである。 The lithium-containing phosphoric acid compound having an olivine type crystal structure is, for example, a compound represented by the following formula (5).
 LiM5PO ・・・(5)
(M5は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a M5PO 4 (5)
(M5 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium) At least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W) and zirconium (Zr), a is 0.9 ≦ a ≦ 1.1, provided that the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of the lithium-containing phosphoric acid compound having an olivine type crystal structure are LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4 and LiFe 0.3 Mn 0.7 PO 4 and the like.
 なお、リチウム含有複合酸化物は、下記の式(6)で表される化合物などでもよい。 In addition, the compound etc. which are represented by following formula (6) may be sufficient as lithium containing complex oxide.
 (LiMnO(LiMnO1-x  ・・・(6)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
(Li 2 MnO 3 ) x (LiMnO 2 ) 1-x (6)
(X satisfies 0 ≦ x ≦ 1. However, the composition of lithium varies depending on the charge and discharge state, and x is a value of a completely discharged state)
(他の正極材料)
 なお、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物、リチウム含有ケイ酸化合物、リチウム含有ホウ酸化合物および導電性高分子などでもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。リチウム含有ケイ酸化合物は、例えば、LiFeSiOなどである。リチウム含有ホウ酸化合物は、例えば、LiFeBOなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。
(Other positive electrode materials)
The positive electrode material may be, for example, an oxide, a disulfide, a chalcogenide, a lithium-containing silicic acid compound, a lithium-containing boric acid compound, a conductive polymer, and the like. The oxides are, for example, titanium oxide, vanadium oxide and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. The chalcogenide is, for example, niobium selenide or the like. The lithium-containing silicate compound is, for example, Li 2 FeSiO 4 or the like. The lithium-containing boric acid compound is, for example, LiFeBO 3 or the like. The conductive polymer is, for example, sulfur, polyaniline and polythiophene.
(正極結着剤)
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデン、ポリイミドおよびポリテトラフルオロエチレンなどである。
(Positive electrode binder)
The positive electrode binder contains, for example, one or more of synthetic rubber and polymer compound. The synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber and ethylene propylene diene. The high molecular compounds are, for example, polyvinylidene fluoride, polyimide and polytetrafluoroethylene.
(正極導電剤)
 正極導電剤は、例えば、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックおよびカーボンナノチューブなどである。ただし、正極導電剤は、導電性材料であれば、炭素材料に限られず、金属材料および導電性高分子などでもよい。
(Positive electrode conductive agent)
The positive electrode conductive agent contains, for example, one or more of conductive materials such as a carbon material. The carbon material is, for example, graphite, carbon black, acetylene black, ketjen black and carbon nanotubes. However, the positive electrode conductive agent is not limited to a carbon material as long as it is a conductive material, and may be a metal material, a conductive polymer, or the like.
[負極]
 負極14は、例えば、図4に示したように、負極集電体14Aと、その負極集電体14Aの両面に設けられた2つの負極活物質層14Bとを含んでいる。ただし、負極集電体14Aの片面に1つの負極活物質層14Bだけが設けられていてもよい。
[Negative electrode]
For example, as shown in FIG. 4, the negative electrode 14 includes a negative electrode current collector 14A and two negative electrode active material layers 14B provided on both sides of the negative electrode current collector 14A. However, only one negative electrode active material layer 14B may be provided on one side of the negative electrode current collector 14A.
(負極集電体)
 負極集電体14Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、銅、ニッケルおよびステンレスなどの金属材料である。この負極集電体14Aは、単層でもよいし、多層でもよい。
(Negative current collector)
The negative electrode current collector 14A contains, for example, one or more of conductive materials. The type of conductive material is not particularly limited, and is, for example, a metal material such as copper, nickel and stainless steel. The negative electrode current collector 14A may be a single layer or a multilayer.
 負極集電体14Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果を利用して、負極集電体14Aに対する負極活物質層14Bの密着性が向上するからである。この場合には、少なくとも負極活物質層14Bと対向する領域において、負極集電体14Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法を用いて負極集電体14Aの表面に微粒子が形成されるため、その負極集電体14Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。 The surface of the negative electrode current collector 14A is preferably roughened. This is because the adhesion of the negative electrode active material layer 14B to the negative electrode current collector 14A is improved by utilizing the so-called anchor effect. In this case, the surface of the negative electrode current collector 14A may be roughened at least in a region facing the negative electrode active material layer 14B. The roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, since fine particles are formed on the surface of the negative electrode current collector 14A by using the electrolytic method in the electrolytic cell, unevenness is provided on the surface of the negative electrode current collector 14A. The copper foil produced by the electrolytic method is generally called an electrolytic copper foil.
(負極活物質層)
 負極活物質層14Bは、負極活物質として、リチウムを吸蔵および放出することが可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層14Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
(Anode active material layer)
The negative electrode active material layer 14B contains, as a negative electrode active material, any one kind or two or more kinds of negative electrode materials capable of inserting and extracting lithium. However, the negative electrode active material layer 14B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
 充電途中において意図せずにリチウム金属が負極14の表面に析出することを防止するために、負極材料の充電可能な容量は、正極13の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極13の電気化学当量よりも大きいことが好ましい。 In order to prevent lithium metal from unintentionally depositing on the surface of the negative electrode 14 during charging, the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 13. That is, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is preferably larger than the electrochemical equivalent of the positive electrode 13.
(負極活物質(負極材料))
 負極材料の種類は、リチウムを吸蔵および放出することが可能である材料であれば、特に限定されない。
(Anode active material (negative electrode material))
The type of negative electrode material is not particularly limited as long as it is a material capable of inserting and extracting lithium.
(炭素材料)
 負極材料は、例えば、炭素材料である。この「炭素材料」とは、炭素を構成元素として含む材料の総称である。リチウムの吸蔵時およびリチウムの放出時において炭素材料の結晶構造は著しく変化しにくいため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層14Bの導電性が向上するからである。
(Carbon material)
The negative electrode material is, for example, a carbon material. The "carbon material" is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon material hardly changes significantly at the time of lithium storage and lithium release, and a high energy density can be stably obtained. In addition, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 14B is improved.
 この炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛に関する(002)面の面間隔は、0.34nm以下であることが好ましい。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類には、ピッチコークス、ニードルコークスおよび石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)された焼成物である。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。 The carbon material is, for example, graphitizable carbon, non-graphitizable carbon, graphite and the like. However, the spacing of the (002) plane relating to the non-graphitizable carbon is preferably 0.37 nm or more, and the spacing of the (002) plane relating to the graphite is preferably 0.34 nm or less. More specifically, the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like. The cokes include pitch coke, needle coke and petroleum coke. The organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon heat treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon. The shape of the carbon material may be any of fibrous, spherical, granular and scaly.
(金属系材料)
 また、負極材料は、例えば、金属系材料である。この「金属系材料」とは、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。高いエネルギー密度が得られるからである。
(Metal-based material)
The negative electrode material is, for example, a metal-based material. The "metal-based material" is a generic name of a material containing one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
 金属系材料は、単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。この金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。 The metal-based material may be any one of an element, an alloy and a compound, two or more of them, or a material having at least a part of one or two or more of them. . However, in addition to the material which consists of 2 or more types of metal elements, the alloy also contains the material containing 1 or more types of metal elements, and 1 or more types of metalloid elements. The alloy may also contain nonmetallic elements. The structure of this metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more thereof.
 金属元素および半金属元素は、例えば、リチウムと合金を形成することが可能である元素である。具体的には、金属元素および半金属元素は、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。 Metal elements and metalloid elements are, for example, elements that can form an alloy with lithium. Specifically, the metal element and the metalloid element are, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), Tin (Sn), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), platinum (Pt), etc. is there.
 中でも、ケイ素およびスズのうちの一方または双方が好ましい。リチウムを吸蔵および放出する能力が優れているため、著しく高いエネルギー密度が得られるからである。 Among them, one or both of silicon and tin are preferred. Because the ability to insert and extract lithium is excellent, extremely high energy density can be obtained.
 ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、ケイ素の単体、合金および化合物のうちのいずれでもよいし、スズの単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ここで説明する「単体」とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)を意味しているため、必ずしも純度が100%であることを意味しているわけではない。 The material containing one or both of silicon and tin as a constituent element may be any of silicon alone, an alloy and a compound, or any of tin alone, an alloy and a compound, and among them Or a material having at least a part of one or two or more of them. The term "single substance" described herein means a single substance (which may contain a trace amount of impurities) in a general sense, and therefore means that the purity is necessarily 100%. is not.
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of silicon is, for example, one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as constituent elements other than silicon or It contains two or more types. The compound of silicon contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than silicon. The compound of silicon may contain, for example, one or more of a series of elements described for the alloy of silicon as a constituent element other than silicon.
 ケイ素の合金およびケイ素の化合物のそれぞれの具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。なお、SiOにおけるvは、0.2<v<1.4でもよい。 Specific examples of the alloy of silicon and the compound of silicon are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 <v ≦ 2), LiSiO and the like. In addition, v in SiOv may be 0.2 <v <1.4.
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of tin is, for example, one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than tin or the like It contains two or more types. The compound of tin contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than tin. The compound of tin may contain, for example, one or more of the series of elements described for the alloy of tin as a constituent element other than tin.
 スズの合金およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。 Specific examples of alloys of tin and compounds of tin are SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO and Mg 2 Sn.
 特に、スズを構成元素として含む材料は、例えば、第1構成元素であるスズと共に第2構成元素および第3構成元素を含む材料(スズ含有材料)であることが好ましい。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上を含んでいる。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンなどのうちのいずれか1種類または2種類以上を含んでいる。高い電池容量および優れたサイクル特性などが得られるからである。 In particular, the material containing tin as a constituent element is preferably, for example, a material (tin-containing material) containing a second constituent element and a third constituent element together with tin as the first constituent element. The second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), It contains one or more of tantalum, tungsten, bismuth, silicon and the like. The third constituent element contains, for example, one or more of boron, carbon, aluminum, phosphorus and the like. This is because high battery capacity and excellent cycle characteristics can be obtained.
 中でも、スズ含有材料は、スズとコバルトと炭素とを構成元素として含む材料(スズコバルト炭素含有材料)であることが好ましい。このスズコバルト炭素含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。 Among them, the tin-containing material is preferably a material (tin-cobalt carbon-containing material) containing tin, cobalt and carbon as constituent elements. In this tin-cobalt carbon-containing material, for example, the content of carbon is 9.9% to 29.7% by mass, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20% to 70% by mass is there. This is because a high energy density can be obtained.
 スズコバルト炭素含有材料は、スズとコバルトと炭素とを含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応することが可能な相(反応相)であるため、その反応相の存在に起因して優れた特性が得られる。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。リチウムがより円滑に吸蔵および放出されると共に、電解液との反応性が低減するからである。なお、スズコバルト炭素含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を含んでいる場合もある。 The tin-cobalt carbon-containing material has a phase containing tin, cobalt and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a phase capable of reacting with lithium (reactive phase), excellent properties are obtained due to the presence of the reactive phase. The half-width (diffraction angle 2θ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when the CuKα ray is used as the specific X-ray and the drawing speed is 1 ° / min. Is preferred. While lithium is occluded and released more smoothly, the reactivity with the electrolytic solution is reduced. In addition to the low crystalline or amorphous phase, the tin-cobalt carbon-containing material may include a phase containing a single element or a part of each constituent element.
 X線回折により得られた回折ピークがリチウムと反応することが可能な反応相に対応する回折ピークであるか否かに関しては、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応する回折ピークである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°~50°の範囲に検出される。この反応相は、例えば、上記した一連の構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化していると考えられる。 As to whether the diffraction peak obtained by X-ray diffraction is a diffraction peak corresponding to a reaction phase capable of reacting with lithium, compare X-ray diffraction charts before and after the electrochemical reaction with lithium. It can be easily determined. For example, if the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it is a diffraction peak corresponding to the reaction phase capable of reacting with lithium. In this case, for example, the diffraction peak of the low crystalline or amorphous reaction phase is detected in the range of 2θ = 20 ° to 50 °. This reaction phase contains, for example, the above-described series of constituent elements, and is considered to be low in crystallization or amorphization mainly due to the presence of carbon.
 スズコバルト炭素含有材料では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低いエネルギー領域に現れる。なお、金原子の4f軌道(Au4f)のピークは、84.0eVに得られるようにエネルギー較正されているとする。この際、通常、物質の表面には表面汚染炭素が存在しているため、その表面汚染炭素に起因するC1sのピークを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素に起因するピークとスズコバルト炭素含有材料中の炭素に起因するピークとを含んだ形で得られる。このため、例えば、市販のソフトウエアを用いて両者のピークを含むピークを解析することにより、その両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。 In the tin-cobalt carbon-containing material, it is preferable that at least a part of carbon which is a constituent element is bonded to a metal element or a metalloid element which is another constituent element. This is because aggregation or crystallization of tin or the like is suppressed. The bonding state of elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS). In a commercially available apparatus, for example, Al-Kα rays or Mg-Kα rays are used as soft X-rays. When at least a part of carbon is bonded to a metal element or a metalloid element or the like, a peak of a synthetic wave of carbon 1s orbital (C1s) appears in an energy region lower than 284.5 eV. In addition, it is assumed that the energy calibration is performed so that the peak of 4f orbit (Au4f) of gold atom is obtained at 84.0 eV. Under the present circumstances, since surface contamination carbon exists in the surface of a substance normally, the peak of C1s resulting from the surface contamination carbon is made into 284.8 eV, and the peak is used as an energy standard. In XPS measurement, the waveform of the C1s peak is obtained in a form including the peak attributed to surface contamination carbon and the peak attributed to carbon in the tin-cobalt carbon-containing material. Therefore, for example, by analyzing the peaks including both peaks using commercially available software, the both peaks are separated. In the analysis of the waveform, the position of the main peak present on the lowest binding energy side is used as the energy reference (284.8 eV).
 このスズコバルト炭素含有材料は、構成元素がスズ、コバルトおよび炭素だけである材料に限られない。このスズコバルト炭素含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。 The tin-cobalt carbon-containing material is not limited to a material whose constituent elements are only tin, cobalt and carbon. The tin-cobalt-carbon-containing material may be, for example, in addition to tin, cobalt and carbon, any of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium and bismuth etc. You may contain 1 type or 2 types or more as a constitutent element.
 スズコバルト炭素含有材料の他、スズとコバルトと鉄と炭素とを構成元素として含む材料(スズコバルト鉄炭素含有材料)も好ましい。このスズコバルト鉄炭素含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。なお、スズコバルト鉄炭素含有材料の物性(半値幅など)は、上記したスズコバルト炭素含有材料の物性と同様である。 Besides tin-cobalt carbon-containing materials, materials containing tin, cobalt, iron and carbon as constituent elements (tin-cobalt-iron-carbon-containing materials) are also preferable. The composition of this tin-cobalt-iron-carbon-containing material is optional. For example, when the content of iron is set to be small, the content of carbon is 9.9% by mass to 29.7% by mass, and the content of iron is 0.3% by mass to 5.9% by mass The content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass. In addition, when the content of iron is set to be large, the content of carbon is 11.9 mass% to 29.7 mass%, and the content ratio of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the ratio of the content of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass. In such a composition range, high energy density can be obtained. The physical properties (such as half width) of the tin-cobalt-iron-carbon-containing material are the same as the physical properties of the above-mentioned tin-cobalt-carbon-containing material.
(炭素材料と金属系材料との併用)
 中でも、負極材料は、以下の理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。
(Combined use of carbon material and metal material)
Among them, the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
 金属系材料、特に、ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張収縮しにくいという利点を有する。よって、炭素材料と金属系材料とを併用することにより、高い理論容量(すなわち電池容量)が担保されながら、充放電時の膨張収縮が抑制される。 Metal-based materials, in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but have the concern that they tend to undergo extensive expansion and contraction during charge and discharge. On the other hand, carbon materials have the concern that the theoretical capacity is low, but they have the advantage of being difficult to expand and contract during charge and discharge. Therefore, by using the carbon material and the metal-based material in combination, expansion and contraction at the time of charge and discharge are suppressed while securing a high theoretical capacity (that is, battery capacity).
(他の負極材料)
 なお、負極材料は、例えば、金属酸化物および高分子化合物などでもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。
(Other negative electrode materials)
The negative electrode material may be, for example, a metal oxide and a polymer compound. The metal oxide is, for example, iron oxide, ruthenium oxide and molybdenum oxide. The polymer compounds are, for example, polyacetylene, polyaniline and polypyrrole.
(負極結着剤および負極導電剤)
 負極結着剤に関する詳細は、例えば、上記した正極結着剤に関する詳細と同様である。また、負極導電剤に関する詳細は、例えば、上記した負極導電剤に関する詳細と同様である。
(Negative electrode binder and negative electrode conductive agent)
The details of the negative electrode binder are, for example, the same as the details of the positive electrode binder described above. Further, details of the negative electrode conductive agent are, for example, the same as the details of the negative electrode conductive agent described above.
 この二次電池では、上記したように、充電途中において負極14の表面にリチウム金属が意図せずに析出することを防止するために、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きいことが好ましい。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなることを考慮して、正極活物質の量と負極活物質の量とは互いに調整されていることが好ましい。これにより、高いエネルギー密度が得られる。 In the secondary battery, as described above, in order to prevent lithium metal from being unintentionally deposited on the surface of the negative electrode 14 during charging, electricity of the negative electrode material capable of inserting and extracting lithium The chemical equivalent is preferably larger than the electrochemical equivalent of the positive electrode. Moreover, compared with the case where it is 4.20V, the open circuit voltage (namely, battery voltage) at the time of complete charge is the discharge amount of lithium per unit mass using the same positive electrode active material compared with the case where it is 4.20V. Preferably, the amount of the positive electrode active material and the amount of the negative electrode active material are mutually adjusted in consideration of the fact that This gives a high energy density.
[セパレータ]
 セパレータ15は、例えば、図4に示したように、正極13と負極14との間に配置されており、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる。
[Separator]
For example, as shown in FIG. 4, the separator 15 is disposed between the positive electrode 13 and the negative electrode 14, and allows lithium ions to pass while preventing a short circuit of the current caused by the contact of the both electrodes.
 このセパレータ15は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上を含んでおり、2種類以上の多孔質膜の積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。 The separator 15 contains, for example, one or more types of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more types of porous films. Synthetic resins are, for example, polytetrafluoroethylene, polypropylene and polyethylene.
 特に、セパレータ15は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極13および負極14のそれぞれに対するセパレータ15の密着性が向上するため、巻回電極体10の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても、電気抵抗が上昇しにくくなると共に二次電池が膨れにくくなる。 In particular, the separator 15 may include, for example, the above-described porous membrane (base layer) and a polymer compound layer provided on one side or both sides of the base layer. This is because the adhesion of the separator 15 to each of the positive electrode 13 and the negative electrode 14 is improved, so distortion of the wound electrode body 10 is suppressed. Thereby, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, even if charge and discharge are repeated, the electric resistance is hardly increased and the secondary battery is Is less likely to swell.
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子化合物は、ポリフッ化ビニリデン以外でもよい。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。 The polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. It is because it is excellent in physical strength and electrochemically stable. However, the polymer compound may be other than polyvinylidene fluoride. In the case of forming the polymer compound layer, for example, a solution in which the polymer compound is dissolved in an organic solvent or the like is applied to the base material layer, and then the base material layer is dried. In addition, after a base material layer is immersed in a solution, the base material layer may be dried.
 なお、高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。無機粒子の種類は、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。 The polymer compound layer may contain, for example, one or more of insulating particles such as inorganic particles. The types of inorganic particles are, for example, aluminum oxide and aluminum nitride.
[電解質層]
 電解質層16は、電解液と、高分子化合物とを含んでいる。ただし、電解質層16は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Electrolyte layer]
The electrolyte layer 16 contains an electrolytic solution and a polymer compound. However, the electrolyte layer 16 may further contain any one or more of other materials such as additives.
 ここで説明する電解質層16は、いわゆるゲル状の電解質であるため、その電解質層16中では、高分子化合物により電解液が保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。 Since the electrolyte layer 16 described here is a so-called gel electrolyte, in the electrolyte layer 16, the electrolytic solution is held by the polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained, and leakage of the electrolytic solution can be prevented.
 この電解質層16は、例えば、図4に示したように、正極13とセパレータ15との間に配置されていると共に、負極14とセパレータ15との間に配置されている。ただし、電解質層16は、例えば、正極13とセパレータ15との間だけに配置されていてもよいし、負極14とセパレータ15との間だけに配置されていてもよい。 For example, as shown in FIG. 4, the electrolyte layer 16 is disposed between the positive electrode 13 and the separator 15 and disposed between the negative electrode 14 and the separator 15. However, the electrolyte layer 16 may be disposed, for example, only between the positive electrode 13 and the separator 15, or may be disposed only between the negative electrode 14 and the separator 15.
(電解液)
 電解液は、溶媒および電解質塩を含んでいる。ただし、電解液は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
(Electrolyte solution)
The electrolyte contains a solvent and an electrolyte salt. However, the electrolytic solution may further contain any one or more of other materials such as additives.
(溶媒)
 溶媒は、有機溶剤などの非水溶媒のうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
(solvent)
The solvent contains any one or more kinds of non-aqueous solvents such as organic solvents. The electrolyte containing a non-aqueous solvent is a so-called non-aqueous electrolyte.
 非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびモノニトリル化合物である。優れた電池容量、サイクル特性および保存特性などが得られるからである。 Nonaqueous solvents are, for example, cyclic carbonates, linear carbonates, lactones, linear carboxylic esters and mononitrile compounds. This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
 環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸ジブチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。モノニトリル化合物は、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。 Cyclic carbonates are, for example, ethylene carbonate, propylene carbonate and butylene carbonate. Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dibutyl carbonate and methyl propyl carbonate. Lactones are, for example, γ-butyrolactone and γ-valerolactone. The chain carboxylic acid ester is, for example, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, methyl trimethylacetate and the like. The mononitrile compounds are, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。 Other non-aqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 And 4-dioxane, N, N-dimethylformamide, N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N'-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide and the like. It is because the same advantage is obtained.
 中でも、非水溶媒は、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどのうちのいずれか1種類または2種類以上を含んでいることが好ましい。高い電池容量、優れたサイクル特性および優れた保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。 Among them, the non-aqueous solvent preferably contains one or more selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. This is because high battery capacity, excellent cycle characteristics and excellent storage characteristics can be obtained. In this case, high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, relative permittivity ε ≧ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity The combination with ≦ 1 mPa · s) is more preferable. This is because the dissociative nature of the electrolyte salt and the mobility of the ions are improved.
 また、非水溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)、ジイソシアネート化合物、リン酸エステルおよび炭素間三重結合鎖状化合物などである。電解液の化学的安定性が向上するからである。 Moreover, the non-aqueous solvent includes, for example, unsaturated cyclic carbonate, halogenated carbonate, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound, phosphoric acid ester, carbon-carbon triple bond chain compound, etc. It is. This is because the chemical stability of the electrolytic solution is improved.
 不飽和環状炭酸エステルは、1個または2個以上の不飽和結合(炭素間二重結合)を有する環状炭酸エステルである。この不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。非水溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 An unsaturated cyclic carbonate is a cyclic carbonate having one or more unsaturated bonds (carbon-carbon double bonds). The unsaturated cyclic carbonate is, for example, vinylene carbonate, vinyl ethylene carbonate and methylene ethylene carbonate. The content of the unsaturated cyclic carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
 ハロゲン化炭酸エステルは、1個または2個以上のハロゲン元素を構成元素として含む環状または鎖状の炭酸エステルである。ハロゲン化炭酸エステルが2個以上のハロゲンを構成元素として含んでいる場合、その2個以上のハロゲンの種類は、1種類だけでもよいし、2種類以上でもよい。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。非水溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。 The halogenated carbonate is a cyclic or chain carbonate containing one or more halogen elements as a constituent element. When the halogenated carbonate ester contains two or more halogens as constituent elements, the number of kinds of two or more halogens may be only one or two or more. Cyclic halogenated carbonates are, for example, 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one. The chain halogenated carbonates are, for example, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and difluoromethyl methyl carbonate. The content of the halogenated carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 50% by weight.
 スルホン酸エステルは、例えば、モノスルホン酸エステルおよびジスルホン酸エステルなどである。非水溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 Sulfonic acid esters are, for example, monosulfonic acid esters and disulfonic acid esters. The content of sulfonic acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
 モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。環状モノスルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどのスルトンである。鎖状モノスルホン酸エステルは、例えば、環状モノスルホン酸エステルが途中で切断された化合物などである。ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。 The monosulfonic acid ester may be a cyclic monosulfonic acid ester or a linear monosulfonic acid ester. Cyclic monosulfonic acid esters are, for example, sultones such as 1,3-propane sultone and 1,3-propene sultone. The linear monosulfonic acid ester is, for example, a compound in which a cyclic monosulfonic acid ester is cleaved halfway. The disulfonic acid ester may be a cyclic disulfonic acid ester or a linear disulfonic acid ester.
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。非水溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The acid anhydride is, for example, carboxylic acid anhydride, disulfonic acid anhydride and carboxylic acid sulfonic acid anhydride. Carboxylic anhydrides are, for example, succinic anhydride, glutaric anhydride and maleic anhydride. Examples of disulfonic anhydride include anhydrous ethanedisulfonic acid and anhydrous propanedisulfonic acid. Carboxylic acid sulfonic acid anhydrides are, for example, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride. The content of the acid anhydride in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 ジニトリル化合物は、例えば、NC-R1-CN(R1は、アルキレン基およびアリーレン基のうちのいずれかである。)で表される化合物である。このジニトリル化合物は、例えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)、アジポニトリル(NC-C-CN)およびフタロニトリル(NC-C-CN)などである。非水溶媒中におけるジニトリル化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The dinitrile compound is, for example, a compound represented by NC-R1-CN (R1 is any of an alkylene group and an arylene group). The dinitrile compounds are, for example, succinonitrile (NC-C 2 H 4 -CN ), glutaronitrile (NC-C 3 H 6 -CN ), adiponitrile (NC-C 4 H 8 -CN ) and phthalonitrile ( NC-C 6 H 4 -CN) and the like. The content of the dinitrile compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 ジイソシアネート化合物は、例えば、OCN-R2-NCO(R2は、アルキレン基およびアリーレン基のうちのいずれかである。)で表される化合物である。このジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート(OCN-C12-NCO)などである。非水溶媒中におけるジイソシアネート化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The diisocyanate compound is, for example, a compound represented by OCN-R2-NCO (R2 is any of an alkylene group and an arylene group). The diisocyanate compound is, for example, hexamethylene diisocyanate (OCN-C 6 H 12 -NCO). The content of the diisocyanate compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。非水溶媒中におけるリン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The phosphoric acid ester is, for example, trimethyl phosphate and triethyl phosphate. The content of phosphoric acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 炭素間三重結合鎖状化合物は、1個または2個以上の炭素間三重結合を有する鎖状の化合物である。この炭素間三重結合鎖状化合物は、例えば、炭酸プロパルギルメチル(CH≡C-CH-O-C(=O)-O-CH)およびメチルスルホン酸プロパルギル(CH≡C-CH-O-S(=O)-CH)などである。非水溶媒中における炭素間三重結合を有する鎖状化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 A carbon-carbon triple bond chain compound is a chain compound having one or more carbon-carbon triple bonds. Examples of such a carbon-carbon triple bond chain compound include propargyl methyl carbonate (CH≡C-CH 2 —O—C ((O) —O—CH 3 ) and propargyl methyl sulfonate (CH≡C—CH 2 —O -S (= O) 2 -CH 3 ) and the like. The content of the chain compound having a carbon-carbon triple bond in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
(電解質塩)
 電解質塩は、例えば、リチウム塩などの塩のうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の他の塩を含んでいてもよい。他の塩は、例えば、リチウム以外の軽金属の塩などである。
(Electrolyte salt)
The electrolyte salt contains, for example, any one or more of salts such as lithium salts. However, the electrolyte salt may include, for example, other salts than the lithium salt. Other salts are, for example, salts of light metals other than lithium.
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)、ビス(フルオロスルホニル)イミドリチウム(LiN(SOF))、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。 The lithium salt is, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoride arsenate (LiAsF 6 ), tetraphenyl Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride Dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), bis (fluorosulfonyl) imide lithium (LiN (SO 2 F) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ) and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
 中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちのいずれか1種類または2種類以上が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するからである。 Among them, one or two or more of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . It is because internal resistance falls.
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is not particularly limited, but preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. It is because high ion conductivity is obtained.
(高分子化合物)
 高分子化合物は、単独重合体および共重合体などのうちのいずれか1種類または2種類以上を含んでいる。
(Polymer compound)
The polymer compound contains one or more of homopolymers and copolymers.
 単独重合体は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどである。 Examples of homopolymers include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, and polymethacryl. Acid methyl acrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate.
 共重合体は、例えば、フッ化ビニリデンと他のモノマーとの共重合体などである。この「他のモノマー」とは、フッ化ビニリデン以外のモノマーであり、例えば、ヘキサフルオロプロピレン、マレイン酸モノメチル、トリフルオロエチレンおよびクロロトリフルオロエチレンなどのうちのいずれか1種類または2種類以上である。共重合体中における他のモノマーの共重合量(重量%)は、特に限定されないため、任意に設定可能である。 The copolymer is, for example, a copolymer of vinylidene fluoride and another monomer. The “other monomer” is a monomer other than vinylidene fluoride, and is, for example, one or more of hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene and the like. . The copolymerization amount (% by weight) of the other monomer in the copolymer is not particularly limited and can be arbitrarily set.
 中でも、単独重合体は、ポリフッ化ビニリデンであることが好ましいと共に、共重合体は、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体であることが好ましい。電解質層16の物理的強度が向上すると共に、その電解質層16が電気化学的に安定化するからである。 Among them, the homopolymer is preferably polyvinylidene fluoride, and the copolymer is preferably a copolymer of vinylidene fluoride and hexafluoropropylene. This is because the physical strength of the electrolyte layer 16 is improved and the electrolyte layer 16 is electrochemically stabilized.
 ここで、ゲル状の電解質である電解質層16において、電解液に含まれる「溶媒」とは、液状の材料(上記した非水溶媒)だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。このため、高分子化合物がイオン伝導性を有している場合には、その高分子化合物もここで説明する溶媒に含まれる。 Here, in the electrolyte layer 16 which is a gel electrolyte, the “solvent” contained in the electrolytic solution is not only a liquid material (the non-aqueous solvent described above) but also ion conduction capable of dissociating the electrolyte salt. It is a broad concept that includes even materials with sex. For this reason, when the polymer compound has ion conductivity, the polymer compound is also included in the solvent described herein.
(添加剤)
添加剤の種類は、特に限定されない。具体的には、添加剤は、例えば、複数の絶縁性粒子などである。二次電池の充放電時においてセパレータ15が酸化されにくくなることにより、正極13と負極14との短絡が抑制されるため、二次電池の安全性が向上するからである。
(Additive)
The type of additive is not particularly limited. Specifically, the additive is, for example, a plurality of insulating particles. Since the short circuit between the positive electrode 13 and the negative electrode 14 is suppressed by the separator 15 being less likely to be oxidized during charge and discharge of the secondary battery, the safety of the secondary battery is improved.
 複数の絶縁性粒子は、例えば、無機化合物のうちのいずれか1種類または2種類以上を含んでいる。無機化合物の種類は、特に限定されないが、例えば、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)、窒化ホウ素(BN)およびゼオライトなどである。 The plurality of insulating particles contain, for example, one or more of inorganic compounds. The type of inorganic compound is not particularly limited. For example, aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), aluminum nitride (AlN), boron nitride (BN) and zeolites.
<1-2.動作>
 この二次電池は、例えば、以下のように動作する。以下では、充放電動作に関して説明したのち、安全動作に関して説明する。
<1-2. Operation>
The secondary battery operates, for example, as follows. Hereinafter, after describing the charge and discharge operation, the safe operation will be described.
[充放電動作]
 充電時には、正極13からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層16を介して負極14に吸蔵される。一方、放電時には、負極14からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層16を介して正極13に吸蔵される。
[Charge and discharge operation]
At the time of charging, lithium ions are released from the positive electrode 13 and the lithium ions are occluded by the negative electrode 14 through the electrolyte layer 16. On the other hand, at the time of discharge, lithium ions are released from the negative electrode 14, and the lithium ions are occluded by the positive electrode 13 via the electrolyte layer 16.
[安全動作]
 図5および図6のそれぞれは、二次電池の安全動作を説明するために、その二次電池の構成を模式的に表している。図7は、図6に示した二次電池のうちの一部(部分20P2)の断面構成を拡大している。
[Safe operation]
Each of FIG. 5 and FIG. 6 schematically shows the configuration of the secondary battery in order to explain the safe operation of the secondary battery. FIG. 7 is an enlarged sectional view of a part (portion 20P2) of the secondary battery shown in FIG.
 図5~図7では、例えば、破損時における二次電池の動作(安全動作)を説明するために、後述する圧潰試験の手順を示している。ただし、図7では、図示内容を簡略化するために、電解質層16の図示を省略している。 5 to 7 show the procedure of the crushing test described later, for example, in order to explain the operation (safety operation) of the secondary battery at the time of breakage. However, in FIG. 7, the electrolyte layer 16 is omitted to simplify the illustration.
 圧潰試験では、例えば、図5に示したように、外装部材20の内部に巻回電極体10が封入されると共に正極リード11および負極リード12が巻回電極体10に接続された二次電池に対して、円筒状の丸棒30が対向配置される。この丸棒30は、例えば、鉄、クロムおよびニッケルなどの金属材料のうちのいずれか1種類または2種類以上を含んでいる金属棒である。丸棒30の位置は、特に限定されないが、例えば、二次電池の中央近傍に対向する位置である。 In the crushing test, for example, as illustrated in FIG. 5, the secondary battery in which the wound electrode body 10 is enclosed in the exterior member 20 and the positive electrode lead 11 and the negative electrode lead 12 are connected to the wound electrode body 10. On the other hand, cylindrical round bars 30 are disposed to face each other. The round bar 30 is, for example, a metal bar containing one or more of metal materials such as iron, chromium and nickel. The position of the round bar 30 is not particularly limited, but is, for example, a position facing near the center of the secondary battery.
 こののち、二次電池に対して丸棒30が押し付けられることにより、例えば、図6に示したように、その二次電池のうちの一部が丸棒30により押し潰されるため、その丸棒30が外装部材20を介して巻回電極体10に食い込む。二次電池に対して丸棒30を押し付ける力は、任意に設定可能である。 After this, by pressing the round bar 30 against the secondary battery, for example, as shown in FIG. 6, a part of the secondary battery is crushed by the round bar 30, so that the round bar 30 bites into the wound electrode body 10 through the exterior member 20. The force pressing the round bar 30 against the secondary battery can be set arbitrarily.
 この場合には、丸棒30により正極13、負極14およびセパレータ15のそれぞれの一部が破断されるため、正極13が破断された箇所において破断面13Mが露出すると共に、負極14が破断された箇所において破断面14Mが露出する。 In this case, since a part of each of the positive electrode 13, the negative electrode 14 and the separator 15 is broken by the round bar 30, the broken surface 13 M is exposed at the place where the positive electrode 13 is broken and the negative electrode 14 is broken. The fractured surface 14M is exposed at the portion.
 一方、外装部材20(外装層21および導電層22)は柔軟性を有しているため、その外装部材20は、丸棒30により押されても破断せずに、その丸棒30を介して正極13および負極14のそれぞれに押し付けられる。これにより、破断面13Mが導電層22に接触すると共に、破断面14Mが導電層22に接触する。 On the other hand, since the exterior member 20 (the exterior layer 21 and the conductive layer 22) has flexibility, the exterior member 20 is not broken even if it is pushed by the round bar 30, and via the round bar 30. It is pressed against each of the positive electrode 13 and the negative electrode 14. Thereby, the fractured surface 13M contacts the conductive layer 22, and the fractured surface 14M contacts the conductive layer 22.
 この場合には、特に、丸棒30を介して外装部材20が正極13および負極14のそれぞれに対して十分に押し付けられると、導電層22が破断面13M,14Mのそれぞれに覆い被さる。これにより、破断面13Mと導電層22との接触面積が十分に大きくなると共に、破断面14Mと導電層22との接触面積が十分に大きくなる。なお、図7では、正極13の破断後、正極活物質層13Bが導電層22に接触すると共に、負極14の破断後、負極活物質層14Bが導電層22に接触する場合を示している。 In this case, particularly, when the package member 20 is sufficiently pressed against each of the positive electrode 13 and the negative electrode 14 through the round bar 30, the conductive layer 22 covers the fracture surfaces 13M and 14M. As a result, the contact area between the fracture surface 13M and the conductive layer 22 becomes sufficiently large, and the contact area between the fracture surface 14M and the conductive layer 22 becomes sufficiently large. 7 shows the case where the positive electrode active material layer 13B contacts the conductive layer 22 after breakage of the positive electrode 13 and the negative electrode active material layer 14B contacts the conductive layer 22 after breakage of the negative electrode 14.
 よって、例えば、負極14(負極活物質層14B)から導電層22を経由して正極13(正極活物質層13B)に至る短絡経路Dが形成される。この場合には、もちろん、正極13が複数の箇所において破断すると共に負極14が複数の箇所において破断すれば、複数の短絡経路Dが形成される。この短絡経路Dは、低抵抗を有する電流の流路である。 Thus, for example, a short circuit path D extending from the negative electrode 14 (negative electrode active material layer 14B) to the positive electrode 13 (positive electrode active material layer 13B) via the conductive layer 22 is formed. In this case, of course, if the positive electrode 13 is broken at a plurality of locations and the negative electrode 14 is broken at a plurality of locations, a plurality of short circuit paths D are formed. The short circuit path D is a current flow path having a low resistance.
 これにより、外力(ここでは、例えば、二次電池に対して丸棒が押し付けられる力)に起因して二次電池が破損しても、正極13と負極14とが互いに接触することに起因して形成される短絡経路に電流が流れるだけでなく、上記した低抵抗を有する短絡経路Dにも電流が流れる。すなわち、低抵抗を有する短絡経路Dに電流が流れることにより、正極13と負極14とが互いに接触することに起因して形成される短絡経路に電流が集中しにくくなるため、二次電池の全体では電流が分散される。よって、発熱量が増加しにくくなるため、二次電池の温度が過度に上昇しにくくなる。この場合には、特に、上記したように複数の短絡経路Dが形成されれば、発熱部位が複数箇所に分散されるため、二次電池の温度がより上昇しにくくなる。 Thus, even if the secondary battery is broken due to an external force (here, for example, a force by which the round bar is pressed against the secondary battery), the positive electrode 13 and the negative electrode 14 come in contact with each other. Not only current flows in the short circuit path formed, but also current flows in the short circuit path D having the above-described low resistance. That is, when the current flows in the short circuit path D having a low resistance, the current does not easily concentrate in the short circuit path formed due to the positive electrode 13 and the negative electrode 14 coming into contact with each other. The current is distributed in As a result, the amount of heat generation is unlikely to increase, and the temperature of the secondary battery is unlikely to rise excessively. In this case, in particular, if the plurality of short circuit paths D are formed as described above, the heat generation parts are dispersed in a plurality of places, so that the temperature of the secondary battery becomes more difficult to rise.
 これらのことから、二次電池の破損時において、巻回電極体10が熱暴走しにくくなるため、その巻回電極体10が発火しにくくなる。 From these things, since it becomes difficult to carry out thermal runaway of the winding electrode body 10 at the time of the failure | damage of a secondary battery, the winding electrode body 10 becomes difficult to ignite.
<1-3.製造方法>
 ゲル状の電解質層16を備えた二次電池は、例えば、以下の3種類の手順により製造される。なお、外装部材20の構成に関しては既に詳細に説明したので、以下では、その説明を省略する。
<1-3. Manufacturing method>
The secondary battery provided with the gel electrolyte layer 16 is manufactured, for example, by the following three types of procedures. In addition, since the configuration of the exterior member 20 has already been described in detail, the description thereof will be omitted below.
[第1手順]
 正極13を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体13Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、必要に応じて、ロールプレス機などを用いて正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
[First step]
In the case of producing the positive electrode 13, first, a positive electrode active material, and if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to form a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to prepare a paste-like positive electrode mixture slurry. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 13A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 13B. After that, the positive electrode active material layer 13B may be compression molded using a roll press machine or the like, as necessary. In this case, the positive electrode active material layer 13B may be heated or compression molding may be repeated multiple times.
 負極14を作製する場合には、上記した正極13の作製手順と同様の手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、負極活物質と、負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体14Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成する。こののち、必要に応じて、ロールプレス機などを用いて負極活物質層14Bを圧縮成型してもよい。 When manufacturing the negative electrode 14, the negative electrode active material layer 14B is formed on both surfaces of the negative electrode current collector 14A by the same procedure as the manufacturing procedure of the positive electrode 13 described above. Specifically, the negative electrode active material is mixed with a negative electrode binder and a negative electrode conductive agent to form a negative electrode mixture, and then the negative electrode mixture is dispersed in an organic solvent or the like to form a paste. A negative mix slurry is prepared. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 14A, and then the negative electrode mixture slurry is dried to form the negative electrode active material layer 14B. Thereafter, the negative electrode active material layer 14B may be compression molded using a roll press or the like, as necessary.
 負極活物質層14Bの形成方法は、特に限定されないが、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。塗布法は、例えば、粒子(粉末)状の負極活物質と負極結着剤などとが有機溶剤などにより溶解または分散された溶液を調製したのち、その溶液を負極集電体14Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などであり、より具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法は、溶融状態または半溶融状態の負極活物質を負極集電体14Aに噴き付ける方法である。焼成法は、例えば、塗布法を用いて上記した溶液を負極集電体14Aに塗布したのち、その溶液を負極結着剤などの融点よりも高い温度で熱処理する方法である。この焼成法は、例えば、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。 The method of forming the negative electrode active material layer 14B is not particularly limited. For example, any one or two or more of a coating method, a gas phase method, a liquid phase method, a thermal spraying method and a firing method (sintering method) It is. The coating method is, for example, a method of preparing a solution in which particles (powder) of a negative electrode active material and a negative electrode binder or the like are dissolved or dispersed by an organic solvent or the like, and then coating the solution on the negative electrode current collector 14A. It is. The vapor phase method is, for example, physical deposition method and chemical deposition method, and more specifically, vacuum deposition method, sputtering method, ion plating method, laser ablation method, thermal chemical vapor deposition, chemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition. The liquid phase method is, for example, an electrolytic plating method and an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 14A. The baking method is, for example, a method of applying the above-described solution to the negative electrode current collector 14A using a coating method, and then heat treating the solution at a temperature higher than the melting point of the negative electrode binder and the like. The firing method is, for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like.
 電解質層16を形成する場合には、電解液と、高分子化合物と、有機溶剤などとを混合したのち、その混合物を撹拌することにより、前駆溶液を調製する。この前駆溶液を正極13に塗布したのち、その前駆溶液を乾燥させることにより、電解質層16を形成すると共に、前駆溶液を負極14に塗布したのち、その前駆溶液を乾燥させることにより、電解質層16を形成する。 In the case of forming the electrolyte layer 16, an electrolytic solution, a polymer compound, an organic solvent and the like are mixed, and then the mixture is stirred to prepare a precursor solution. The precursor solution is applied to the positive electrode 13, and then dried to form the electrolyte layer 16. The precursor solution is applied to the negative electrode 14, and then the precursor solution is dried to form the electrolyte layer 16. Form
 二次電池を組み立てる場合には、最初に、溶接法などを用いて正極集電体13Aに正極リード11を接続させると共に、溶接法などを用いて負極集電体14Aに負極リード12を接続させる。続いて、セパレータ15を介して、電解質層16が形成された正極13と電解質層16が形成された負極14とを互いに巻回させたのち、その正極13、負極14、セパレータ15および電解質層16を巻回させることにより、巻回電極体10を形成する。こののち、巻回電極体10の最外周部に保護テープ17を貼り付ける。続いて、巻回電極体10が窪み20Uに収納された状態において、その巻回電極体10を挟むように外装部材20を折り畳む。最後に、熱融着法などを用いて外装部材20の外周縁部同士を接着させることにより、その外装部材20の内部に巻回電極体10を封入する。この場合には、正極リード11と外装部材20との間に密着フィルム21を挿入すると共に、負極リード12と外装部材20との間に密着フィルム22を挿入する。 When assembling the secondary battery, first, the positive electrode lead 11 is connected to the positive electrode current collector 13A using a welding method or the like, and the negative electrode lead 12 is connected to the negative electrode current collector 14A using a welding method or the like. . Subsequently, the positive electrode 13 on which the electrolyte layer 16 is formed and the negative electrode 14 on which the electrolyte layer 16 is formed are wound around each other through the separator 15, and then the positive electrode 13, the negative electrode 14, the separator 15, and the electrolyte layer 16. The wound electrode body 10 is formed by winding. After this, the protective tape 17 is attached to the outermost periphery of the wound electrode body 10. Subsequently, in a state in which the wound electrode body 10 is housed in the recess 20U, the exterior member 20 is folded so as to sandwich the wound electrode body 10. Finally, the outer peripheral edge portions of the exterior member 20 are adhered to each other using a heat fusion method or the like, so that the wound electrode body 10 is sealed inside the exterior member 20. In this case, the adhesive film 21 is inserted between the positive electrode lead 11 and the package member 20, and the adhesive film 22 is inserted between the negative electrode lead 12 and the package member 20.
 これにより、外装部材20の内部に巻回電極体10が封入されるため、二次電池が完成する。 As a result, the wound electrode body 10 is enclosed in the exterior member 20, and thus the secondary battery is completed.
[第2手順]
 最初に、上記した第1手順と同様の手順により、正極13および負極14のそれぞれを作製したのち、溶接法などを用いて正極13に正極リード11を接続させると共に、溶接法などを用いて負極14に負極リード12を接続させる。続いて、セパレータ15を介して正極13と負極14と互いに積層させたのち、その正極13、負極14およびセパレータ31を巻回させることにより、巻回電極体10の前駆体である巻回体を作製する。こののち、巻回体の最外周部に保護テープ37を貼り付ける。
[Second step]
First, each of the positive electrode 13 and the negative electrode 14 is fabricated by the same procedure as the first procedure described above, and then the positive electrode lead 11 is connected to the positive electrode 13 using a welding method etc. The negative electrode lead 12 is connected to 14. Subsequently, the positive electrode 13 and the negative electrode 14 are stacked on each other through the separator 15, and then the positive electrode 13, the negative electrode 14 and the separator 31 are wound to form a wound body which is a precursor of the wound electrode body 10. Make. After this, the protective tape 37 is attached to the outermost periphery of the wound body.
 続いて、巻回体を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20のうちの一辺の外周縁部を除いた残りの外周縁部を接着させることにより、袋状の外装部材20の内部に巻回体を収納する。 Subsequently, the exterior member 20 is folded so as to sandwich the wound body, and the remaining outer peripheral edge excluding one outer peripheral edge of the exterior member 20 is adhered using a heat fusion method or the like. The wound body is housed inside the bag-like exterior member 20.
 続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合したのち、その混合物を撹拌することにより、電解質用組成物を調製する。続いて、袋状の外装部材20の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材20を密封する。 Then, after mixing the electrolyte solution, the monomer which is a raw material of a high molecular compound, a polymerization initiator, and other materials such as a polymerization inhibitor according to need, the mixture is stirred to prepare an electrolyte. The composition is prepared. Subsequently, after the composition for electrolyte is injected into the inside of the bag-like exterior member 20, the exterior member 20 is sealed using a heat fusion method or the like.
 最後に、電解質用組成物中のモノマーを熱重合させることにより、高分子化合物を形成する。これにより、電解液が高分子化合物により保持されるため、電解質層16が形成される。よって、外装部材20の内部に巻回電極体10が封入される。 Finally, a polymer compound is formed by thermally polymerizing the monomers in the composition for electrolyte. As a result, the electrolytic solution is held by the polymer compound, whereby the electrolyte layer 16 is formed. Thus, the wound electrode body 10 is sealed inside the exterior member 20.
[第3手順]
 最初に、多孔質膜(基材層)の両面に2つの高分子化合物層が形成されたセパレータ15を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製する。続いて、袋状の外装部材20の内部に巻回体を収納する。続いて、外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20の開口部を密封する。最後に、外装部材20に加重をかけながら、その外装部材20を加熱することにより、正極13に高分子化合物層を介してセパレータ15を密着させると共に、負極14に高分子化合物層を介してセパレータ15を密着させる。これにより、電解液が高分子化合物層に含浸すると共に、その高分子化合物層がゲル化するため、電解質層16が形成される。よって、外装部材20の内部に巻回電極体10が封入される。
[Third step]
First, a wound body is produced by the same procedure as the above-described second procedure except that a separator 15 in which two polymer compound layers are formed on both surfaces of a porous membrane (base material layer) is used. . Subsequently, the wound body is housed inside the bag-like exterior member 20. Subsequently, an electrolytic solution is injected into the inside of the exterior member 20, and then the opening of the exterior member 20 is sealed using a heat fusion method or the like. Finally, by heating the package member 20 while applying weight to the package member 20, the separator 15 is adhered to the positive electrode 13 via the polymer compound layer, and the separator 14 is placed on the negative electrode 14 via the polymer compound layer. Attach the 15 together. As a result, the electrolytic solution is impregnated into the polymer compound layer and the polymer compound layer is gelated, so that the electrolyte layer 16 is formed. Thus, the wound electrode body 10 is sealed inside the exterior member 20.
 この第3手順では、第1手順と比較して、二次電池が膨れにくくなる。また、第3手順では、第2手順と比較して、溶媒およびモノマー(高分子化合物の原料)などが電解質層16中に残存しにくくなるため、高分子化合物の形成工程が良好に制御される。これにより、正極13、負極14およびセパレータ15のそれぞれが電解質層16に対して十分に密着される。 In this third procedure, the secondary battery is less likely to swell than in the first procedure. Further, in the third procedure, compared to the second procedure, the solvent and the monomer (raw material of the polymer compound) and the like are less likely to remain in the electrolyte layer 16, so the step of forming the polymer compound is well controlled. . Thereby, each of the positive electrode 13, the negative electrode 14, and the separator 15 is sufficiently in close contact with the electrolyte layer 16.
<1-4.作用および効果>
 この二次電池によれば、フィルム状の外装部材20の内部に巻回電極体10が収納されており、その外装部材20が最も内側に導電層22を含んでいるので、以下で説明する理由により、安全性を向上させることができる。
<1-4. Action and effect>
According to this secondary battery, the wound electrode body 10 is accommodated inside the film-like exterior member 20, and the exterior member 20 includes the conductive layer 22 on the innermost side, so the reason described below will be described. Safety can be improved.
 図8は、比較例の二次電池における外装部材40の構成を表しており、図3に対応する断面構成を示している。図9は、比較例の二次電池の安全性に関する問題点を説明するために、図7に対応する断面構成を示している。 FIG. 8 shows the configuration of the exterior member 40 in the secondary battery of the comparative example, and shows a cross-sectional configuration corresponding to FIG. FIG. 9 shows a cross-sectional configuration corresponding to FIG. 7 in order to explain the problems regarding the safety of the secondary battery of the comparative example.
 比較例の二次電池は、例えば、図8に示したように、外装部材20の代わりに外装部材40を備えていることを除いて、本技術の二次電池(図3参照)と同様の構成を有している。この外装部材40は、例えば、導電層22を含んでいないため、外装層21(表面保護層21A,金属層21B,融着層21C)だけからなることを除いて、外装部材20と同様の構成を有している。 The secondary battery of the comparative example is, for example, the same as the secondary battery of the present technology (see FIG. 3) except that an exterior member 40 is provided instead of the exterior member 20 as shown in FIG. It has a configuration. Since the exterior member 40 does not include, for example, the conductive layer 22, the configuration is the same as that of the exterior member 20 except that it is composed only of the exterior layer 21 (surface protective layer 21 A, metal layer 21 B, fusion layer 21 C). have.
 比較例の二次電池では、上記した圧潰試験(図5および図6参照)において丸棒30により正極13、負極14およびセパレータ15のそれぞれの一部が破断されると、図9に示したように、破断面13Mが融着層21Cに接触すると共に、破断面14Mが融着層21Cに接触する。 In the secondary battery of the comparative example, as shown in FIG. 9, when a part of each of the positive electrode 13, the negative electrode 14 and the separator 15 is broken by the round bar 30 in the above-described crushing test (see FIGS. 5 and 6). While the fractured surface 13M contacts the fusion layer 21C, the fractured surface 14M contacts the fusion layer 21C.
 しかしながら、融着層21Cは、上記したように、ポリエチレンなどの絶縁性高分子材料を含んでいるため、破断面13M,14Mのそれぞれが融着層21Cに接触しても、短絡経路D(図7参照)が形成されない。 However, since the fusion layer 21C contains the insulating polymer material such as polyethylene as described above, even if each of the fracture surfaces 13M and 14M contacts the fusion layer 21C, the short circuit path D (see FIG. 7) is not formed.
 この場合には、外力に起因して二次電池が破損すると、正極13と負極14とが互いに接触することに起因して形成される短絡経路に電流が集中する。これにより、二次電池の全体では発熱量が増加しやすくなるため、その二次電池の温度が過度に上昇しやすくなる。よって、巻回電極体10が熱暴走しやすくなるため、その巻回電極体10が発火しやすくなる。これにより、二次電池の安全性を向上させることが困難である。 In this case, when the secondary battery is broken due to the external force, current concentrates in the short circuit path formed due to the positive electrode 13 and the negative electrode 14 coming into contact with each other. As a result, the calorific value tends to increase in the entire secondary battery, and the temperature of the secondary battery tends to rise excessively. Therefore, since the wound electrode body 10 is easily thermally runaway, the wound electrode body 10 is easily ignited. This makes it difficult to improve the safety of the secondary battery.
 これに対して、本技術の二次電池では、図5~図7を参照しながら説明したように、外装部材20が最も内側に導電層22を含んでいるため、圧潰試験において丸棒30により正極13、負極14およびセパレータ15のそれぞれの一部が破断されると、破断面13M,14Mのそれぞれが導電層22に接触することにより、短絡経路Dが形成される。 On the other hand, in the secondary battery of the present technology, as described with reference to FIGS. 5 to 7, since the exterior member 20 includes the conductive layer 22 on the innermost side, the round bar 30 is used in the crushing test. When a part of each of the positive electrode 13, the negative electrode 14 and the separator 15 is broken, each of the broken surfaces 13 M and 14 M contacts the conductive layer 22 to form a short circuit path D.
 この場合には、上記したように、外力に起因して二次電池が破損しても、低抵抗を有する短絡経路Dに電流が流れるため、正極13と負極14とが互いに接触することに起因して形成される短絡経路に電流が集中しにくくなる。これにより、二次電池の全体では発熱量が増加しにくくなるため、その二次電池の温度が過度に上昇しにくくなる。よって、巻回電極体10が熱暴走しにくくなるため、その巻回電極体10が発火しにくくなる。これにより、二次電池の安全性を向上させることができる。 In this case, as described above, even if the secondary battery is broken due to external force, the current flows in the short circuit path D having low resistance, so the positive electrode 13 and the negative electrode 14 come in contact with each other It becomes difficult for current to concentrate in the short circuit path formed. As a result, the amount of heat generation is unlikely to increase in the entire secondary battery, and the temperature of the secondary battery is unlikely to rise excessively. Thus, the wound electrode body 10 is less likely to cause thermal runaway, and hence the wound electrode body 10 is less likely to be ignited. Thereby, the safety of the secondary battery can be improved.
 特に、本技術の二次電池では、上記した圧潰試験を行った場合に限らず、釘刺し試験などを行った場合においても、同様の作用が得られるため、同様の効果を得ることができる。もちろん、圧潰試験および釘刺し試験などの意図的な破損試験を行った場合に限らず、何らかの要因に起因して二次電池が意図せずに破損(正極13および負極14のそれぞれが破断)した場合においても、同様の作用が得られるため、同様の効果を得ることができる。 In particular, in the secondary battery of the present technology, the same effect can be obtained not only when the above-described crushing test is performed but also when the nailing test and the like are performed, and therefore the same effect can be obtained. Of course, the secondary battery was unintentionally broken (each of the positive electrode 13 and the negative electrode 14 was broken) due to some factor, not only when the intentional breakage test such as the crushing test and the nail penetration test was performed. Even in the case, the same effect can be obtained because the same effect can be obtained.
 この他、導電層22が非融着領域20R2の全体に形成されていれば、二次電池の破損位置に依存せずに、その導電層22を利用して短絡経路Dが形成されやすくなるため、より高い効果を得ることができる。 In addition, if the conductive layer 22 is formed over the entire non-fused region 20R2, the short circuit path D is easily formed utilizing the conductive layer 22 regardless of the position of breakage of the secondary battery. You can get higher effects.
 また、導電層22が導電性材料として炭素材料、金属材料および導電性高分子材料のうちのいずれか1種類または2種類以上を含んでいれば、短絡経路Dが形成されやすくなると共に、その短絡経路Dにおいて十分な量の電流が流れやすくなるため、より高い効果を得ることができる。 In addition, when the conductive layer 22 contains one or more of carbon material, metal material and conductive polymer material as the conductive material, the short circuit path D is easily formed and the short circuit is generated. Since a sufficient amount of current easily flows in the path D, higher effects can be obtained.
 この場合には、導電層22が導電性材料を含む成型体であり、または導電層22が導電性材料を含む複数の粒子と結着剤とを含んでいれば、その導電層22が容易かつ安定に形成される。よって、短絡経路Dが容易かつ安定に形成されやすくなるため、より高い効果を得ることができる。 In this case, if the conductive layer 22 is a molded body containing a conductive material, or if the conductive layer 22 contains a plurality of particles containing a conductive material and a binder, the conductive layer 22 is easy and It is formed stably. Therefore, since the short circuit path D is easily and stably formed, a higher effect can be obtained.
 また、導電層22が最も外側に絶縁層(表面保護層21A)を含んでいれば、外装部材20の外側表面が絶縁されるため、二次電池の安全性をより向上させることができる。 In addition, when the conductive layer 22 includes the insulating layer (surface protective layer 21A) on the outermost side, the outer surface of the exterior member 20 is insulated, so that the safety of the secondary battery can be further improved.
<1-5.変形例>
 本技術の二次電池の構成は、適宜、変更可能である。
<1-5. Modified example>
The configuration of the secondary battery of the present technology can be changed as appropriate.
[変形例1]
 具体的には、図2に示したように、外装部材20を折り畳んだのち、融着層21C同士を互いに融着させることにより外装部材20を封止するために、非融着領域20R2に導電層22を形成した。
[Modification 1]
Specifically, as shown in FIG. 2, after the package member 20 is folded, the fusion layers 21C are fused to each other to seal the package member 20, so that the non-fusion region 20R2 is electrically conductive. Layer 22 was formed.
 しかしながら、例えば、融着領域20R1および非融着領域20R2の双方に導電層22を形成してもよい。この場合には、例えば、上記したように、外装部材20を折り畳んだのち、接着剤などを介して導電層22同士を互いに接着させることにより、その外装部材20を封止することができる。この場合においても、同様の効果を得ることができる。 However, for example, the conductive layer 22 may be formed on both the fused region 20R1 and the non-fused region 20R2. In this case, for example, as described above, after the package member 20 is folded, the package member 20 can be sealed by adhering the conductive layers 22 to each other through an adhesive or the like. Also in this case, the same effect can be obtained.
 ただし、融着層21Cを利用して封止性を向上させるためには、図2に示したように、非融着領域20R2に導電層22を形成することにより、その融着層21C同士を互いに融着させることにより外装部材20を封止することが好ましい。 However, in order to improve the sealability by utilizing the fusion layer 21C, as shown in FIG. 2, by forming the conductive layer 22 in the non-fusion area 20R2, the fusion layers 21C can be It is preferable to seal the exterior member 20 by fusing them together.
[変形例2]
 図2に示したように、1枚の外装部材20を用いることにより、巻回電極体10を収納するために1枚の外装部材20を折り畳むようにした。
[Modification 2]
As shown in FIG. 2, by using one exterior member 20, one exterior member 20 is folded in order to accommodate the wound electrode assembly 10.
 しかしながら、例えば、2枚の外装部材20を用いることにより、一方の外装部材20のうちの融着層21Cと他方の外装部材20のうちの融着層21Cとを互いに融着させてもよい。この場合においても、外装部材20の内部に巻回電極体10が封入されるため、同様の効果を得ることができる。 However, for example, by using two exterior members 20, the fusion layer 21C of one exterior member 20 and the fusion layer 21C of the other exterior member 20 may be fused to each other. Also in this case, since the wound electrode body 10 is enclosed in the exterior member 20, the same effect can be obtained.
[変形例3]
 例えば、図3に対応する図10に示したように、導電層22の表面に複数の突起部22Tを形成することにより、その導電層22の表面に凹凸を設けてもよい。
[Modification 3]
For example, as shown in FIG. 10 corresponding to FIG. 3, by forming a plurality of projections 22 T on the surface of the conductive layer 22, unevenness may be provided on the surface of the conductive layer 22.
 この場合には、導電層22の表面に凹凸を設けない場合(図3)と比較して、その導電層22の表面積が増加する。これにより、二次電池の破損時において(図7)、破断面13Mと導電層22との接触面積が増加しやすくなると共に、破断面14Mと導電層22との接触面積が増加しやすくなる。よって、短絡経路Dがより形成されやすくなると共に、その短絡経路Dを利用してより熱が分散されやすくなるため、より高い効果を得ることができる。 In this case, the surface area of the conductive layer 22 is increased as compared with the case where no unevenness is provided on the surface of the conductive layer 22 (FIG. 3). Thus, when the secondary battery is broken (FIG. 7), the contact area between the fracture surface 13M and the conductive layer 22 is likely to increase, and the contact area between the fracture surface 14M and the conductive layer 22 is likely to increase. Therefore, the short circuit path D is more easily formed, and the heat is more easily dispersed using the short circuit path D, so that a higher effect can be obtained.
[変形例4]
 例えば、図2に対応する図11に示したように、導電層22に複数の開口部22Kを形成することにより、その導電層22をメッシュ状にしてもよい。
[Modification 4]
For example, as shown in FIG. 11 corresponding to FIG. 2, by forming a plurality of openings 22 K in the conductive layer 22, the conductive layer 22 may be meshed.
 この場合には、導電層22がメッシュ状でない場合(図2)と比較して、その導電層22の表面積が増加する。よって、上記した変形例3と同様の理由により、短絡経路Dがより形成されやすくなると共に、その短絡経路Dを利用してより熱が分散されやすくなるため、より高い効果を得ることができる。 In this case, the surface area of the conductive layer 22 is increased as compared with the case where the conductive layer 22 is not in the form of a mesh (FIG. 2). Therefore, for the same reason as in the third modification described above, the short circuit path D is more easily formed, and heat is more easily dispersed by using the short circuit path D, so that a higher effect can be obtained.
[変形例5]
 図4に示したように、高分子化合物により電解液が保持されたゲル状の電解質である電解質層16を用いた。
[Modification 5]
As shown in FIG. 4, an electrolyte layer 16 which is a gel electrolyte in which an electrolytic solution is held by a polymer compound was used.
 しかしながら、電解質層16の代わりに、液状の電解質である電解液を用いてもよい。この場合には、正極13および負極14のそれぞれの表面に電解質層16が形成される代わりに、例えば、正極13、負極14およびセパレータ15のそれぞれに電解液が含浸される。この場合においても、同様の効果を得ることができる。 However, instead of the electrolyte layer 16, an electrolytic solution that is a liquid electrolyte may be used. In this case, instead of forming the electrolyte layer 16 on the surface of each of the positive electrode 13 and the negative electrode 14, for example, the electrolytic solution is impregnated in each of the positive electrode 13, the negative electrode 14, and the separator 15. Also in this case, the same effect can be obtained.
[変形例6]
 もちろん、上記した一連の変形例1~5のうちの任意の2種類以上を互いに組み合わせてもよい。
[Modification 6]
Of course, any two or more of the series of modifications 1 to 5 may be combined with each other.
<2.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
<2. Applications of Secondary Battery>
Next, application examples of the above-described secondary battery will be described.
 二次電池の用途は、駆動用の電源または電力蓄積用の電力貯蔵源などとして二次電池を利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。 Applications of secondary batteries include machines, devices, instruments, devices and systems (aggregates of multiple devices) where secondary batteries can be used as a power source for driving or a power storage source for storing electric power, etc. For example, it is not particularly limited. The secondary battery used as a power source may be a main power source or an auxiliary power source. The main power supply is a power supply that is preferentially used regardless of the presence or absence of other power supplies. The auxiliary power source may be, for example, a power source used instead of the main power source, or a power source switched from the main power source as needed. When a secondary battery is used as an auxiliary power supply, the type of main power supply is not limited to the secondary battery.
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記以外の用途でもよい。 The application of the secondary battery is, for example, as follows. They are electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs, and portable information terminals. It is a portable household appliance such as an electric shaver. Storage devices such as backup power supplies and memory cards. It is a power tool such as a power drill and a power saw. It is a battery pack installed in a notebook computer as a removable power supply. Medical electronics such as pacemakers and hearing aids. It is an electric vehicle such as an electric car (including a hybrid car). It is a power storage system such as a household battery system for storing power in preparation for an emergency or the like. Of course, applications of the secondary battery may be applications other than the above.
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。これらの用途では優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源である。この電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用することが可能である。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。 Among them, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. Since excellent battery characteristics are required in these applications, it is possible to effectively improve the performance by using the secondary battery of the present technology. The battery pack is a power supply using a secondary battery. The battery pack may use a single cell or an assembled battery as described later. The electric vehicle is a vehicle that operates (travels) using a secondary battery as a driving power source, and as described above, may be a car (such as a hybrid car) equipped with a driving source other than the secondary battery. The power storage system is a system using a secondary battery as a power storage source. For example, in a household power storage system, since power is stored in a secondary battery which is a power storage source, it is possible to use the power to use household electrical appliances and the like. The electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using a secondary battery as a power source for driving. The electronic device is a device that exhibits various functions as a power source (power supply source) for driving a secondary battery.
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する適用例の構成は、あくまで一例であるため、その適用例の構成は、適宜変更可能である。 Here, some application examples of the secondary battery will be specifically described. The configuration of the application example described below is merely an example, and the configuration of the application example can be changed as appropriate.
<2-1.電池パック(単電池)>
 図12は、単電池を用いた電池パックの斜視構成を表している。図13は、図12に示した電池パックのブロック構成を表している。なお、図12では、電池パックが分解された状態を示している。
<2-1. Battery pack (single cell)>
FIG. 12 shows a perspective view of a battery pack using single cells. FIG. 13 shows a block configuration of the battery pack shown in FIG. FIG. 12 shows the battery pack in a disassembled state.
 ここで説明する電池パックは、1個の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図12に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。 The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted, for example, on an electronic device represented by a smartphone. For example, as shown in FIG. 12, the battery pack includes a power supply 111 which is a laminated film secondary battery and a circuit board 116 connected to the power supply 111. The positive electrode lead 112 and the negative electrode lead 113 are attached to the power source 111.
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:Protection・Circuit・Module )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により保護されている。このラベル120が貼り付けられることにより、回路基板116および絶縁シート121などは固定されている。 A pair of adhesive tapes 118 and 119 is attached to both sides of the power supply 111. On the circuit board 116, a protection circuit (PCM: Protection Circuit) is formed. The circuit board 116 is connected to the positive electrode 112 through the tab 114 and connected to the negative electrode lead 113 through the tab 115. Further, the circuit board 116 is connected to the connector-attached lead wire 117 for external connection. When the circuit board 116 is connected to the power supply 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
 また、電池パックは、例えば、図13に示しているように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC素子123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続されることが可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出する。 In addition, the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG. The circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. The power source 111 can be connected to the outside through the positive electrode terminal 125 and the negative electrode terminal 127, so the power source 111 is charged and discharged through the positive electrode terminal 125 and the negative electrode terminal 127. The temperature detection unit 124 detects a temperature using a temperature detection terminal (so-called T terminal) 126.
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御する。この制御部121は、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。 The control unit 121 controls the operation of the entire battery pack (including the usage state of the power supply 111). The control unit 121 includes, for example, a central processing unit (CPU) and a memory.
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させることにより、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. Further, for example, when a large current flows during charging, the control unit 121 cuts off the charging current by disconnecting the switch unit 122.
 一方、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させることにより、放電電流を遮断する。 On the other hand, for example, when the battery voltage reaches the overdischarge detection voltage, the control unit 121 disconnects the switch unit 122 to prevent the discharge current from flowing in the current path of the power supply 111. Further, for example, when a large current flows at the time of discharge, the control unit 121 cuts off the discharge current by disconnecting the switch unit 122.
 なお、過充電検出電圧は、特に限定されないが、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、例えば、2.4V±0.1Vである。 The overcharge detection voltage is not particularly limited, but is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ± 0.1 V.
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態、すなわち電源111と外部機器との接続の有無を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。 The switch unit 122 switches the use state of the power supply 111, that is, the presence or absence of connection between the power supply 111 and an external device, in accordance with an instruction from the control unit 121. The switch unit 122 includes, for example, a charge control switch and a discharge control switch. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor. The charge and discharge current is detected based on, for example, the ON resistance of the switch unit 122.
 温度検出部124は、電源111の温度を測定すると共に、その温度の測定結果を制御部121に出力する。この温度検出部124は、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124により測定される温度の測定結果は、異常発熱時において制御部121が充放電制御を行う場合、残容量の算出時において制御部121が補正処理を行う場合などに用いられる。 The temperature detection unit 124 measures the temperature of the power supply 111 and outputs the measurement result of the temperature to the control unit 121. The temperature detection unit 124 includes, for example, a temperature detection element such as a thermistor. The measurement result of the temperature measured by the temperature detection unit 124 is used, for example, when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
 なお、回路基板116は、PTC素子123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。 The circuit board 116 may not have the PTC element 123. In this case, the circuit board 116 may be additionally provided with a PTC element.
<2-2.電池パック(組電池)>
 図14は、組電池を用いた電池パックのブロック構成を表している。
<2-2. Battery pack (battery pack)>
FIG. 14 shows a block configuration of a battery pack using a battery pack.
 この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などを含んでいる。 The battery pack includes, for example, a control unit 61, a power supply 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 in a housing 60. , A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive electrode terminal 71 and a negative electrode terminal 72. The housing 60 contains, for example, a plastic material or the like.
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御する。この制御部61は、例えば、CPUなどを含んでいる。電源62は、2個以上の二次電池を含む組電池であり、その2個以上の二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6個の二次電池を含んでいる。 The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62). The control unit 61 includes, for example, a CPU. The power source 62 is a battery pack including two or more secondary batteries, and the connection form of the two or more secondary batteries may be in series, in parallel, or a combination of both. As one example, the power supply 62 includes six secondary batteries connected in two parallel three series.
 スイッチ部63は、制御部61の指示に応じて、電源62の使用状態、すなわち電源62と外部機器との接続の有無を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。 The switch unit 63 switches the use state of the power supply 62, that is, the presence or absence of connection between the power supply 62 and an external device, in accordance with an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, and a discharging diode. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
 電流測定部64は、電流検出抵抗70を用いて電流を測定すると共に、その電流の測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度の測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合、残容量の算出時において制御部61が補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部61に供給する。 The current measuring unit 64 measures the current using the current detection resistor 70, and outputs the measurement result of the current to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69, and outputs the measurement result of the temperature to the control unit 61. The measurement result of the temperature is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
 スイッチ制御部67は、電流測定部64および電圧検出部66のそれぞれから入力される信号に応じて、スイッチ部63の動作を制御する。 The switch control unit 67 controls the operation of the switch unit 63 in accordance with the signals input from each of the current measurement unit 64 and the voltage detection unit 66.
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部63(充電制御スイッチ)を切断することにより、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電だけが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れると、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) to prevent the charging current from flowing in the current path of the power supply 62. Thus, the power supply 62 can only discharge via the discharge diode. Note that, for example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部63(放電制御スイッチ)を切断することにより、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電だけが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れると、放電電流を遮断する。 Further, for example, when the battery voltage reaches the overdischarge detection voltage, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) to prevent the discharge current from flowing in the current path of the power supply 62. Thus, the power source 62 can only charge via the charging diode. The switch control unit 67 cuts off the discharge current, for example, when a large current flows during discharge.
 なお、過充電検出電圧は、特に限定されないが、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、例えば、2.4V±0.1Vである。 The overcharge detection voltage is not particularly limited, but is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ± 0.1 V.
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどを含んでいる。このメモリ68には、例えば、制御部61により演算された数値、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握できる。 The memory 68 includes, for example, an EEPROM which is a non-volatile memory. In the memory 68, for example, numerical values calculated by the control unit 61, information of the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state) and the like are stored. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
 温度検出素子69は、電源62の温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度検出素子69は、例えば、サーミスタなどを含んでいる。 The temperature detection element 69 measures the temperature of the power supply 62, and outputs the measurement result of the temperature to the control unit 61. The temperature detection element 69 includes, for example, a thermistor.
 正極端子71および負極端子72のそれぞれは、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62は、正極端子71および負極端子72を介して充放電される。 Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (for example, a laptop personal computer) operated by using a battery pack, an external device (for example, a charger or the like) used for charging the battery pack, It is a terminal to be connected. The power source 62 is charged and discharged via the positive electrode terminal 71 and the negative electrode terminal 72.
<2-3.電動車両>
 図15は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。
<2-3. Electric vehicles>
FIG. 15 shows a block configuration of a hybrid vehicle which is an example of the electric vehicle.
 この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。 The electric vehicle includes, for example, a control unit 74, an engine 75, a power supply 76, a driving motor 77, a differential gear 78, a generator 79, and a transmission 80 in a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric-powered vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン75およびモータ77のうちのいずれか一方を駆動源として用いて走行することが可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合には、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して、エンジン75の駆動力(回転力)が前輪86および後輪88に伝達される。なお、エンジン75の回転力が発電機79に伝達されるため、その回転力を利用して発電機79が交流電力を発生すると共に、その交流電力がインバータ83を介して直流電力に変換されるため、その直流電力が電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合には、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換されるため、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86および後輪88に伝達される。 The electrically powered vehicle can travel, for example, using one of the engine 75 and the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, for example, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential 78 as a driving unit, the transmission 80 and the clutch 81. Ru. Since the rotational power of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational power, and the AC power is converted to DC power through inverter 83. Therefore, the DC power is stored in the power supply 76. On the other hand, in the case where the motor 77 which is a conversion unit is used as a power source, the electric power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82. 77 drives. The driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheel 86 and the rear wheel 88 via, for example, the differential 78 as a driving unit, the transmission 80 and the clutch 81.
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達されるため、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換されるため、その直流回生電力は電源76に蓄積されることが好ましい。 When the electric vehicle decelerates via the braking mechanism, the resistance at the time of deceleration is transmitted to the motor 77 as a rotational force, so that the motor 77 generates alternating current power using the rotational force. Good. Since this AC power is converted to DC power via inverter 82, it is preferable that the DC regenerative power be stored in power supply 76.
 制御部74は、電動車両全体の動作を制御する。この制御部74は、例えば、CPUなどを含んでいる。電源76は、1個または2個以上の二次電池を含んでいる。この電源76は、外部電源と接続されていると共に、その外部電源から電力供給を受けることにより、電力を蓄積させてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。 Control unit 74 controls the operation of the entire electric vehicle. The control unit 74 includes, for example, a CPU. The power source 76 includes one or more secondary batteries. The power supply 76 may be connected to an external power supply and may store power by receiving power supply from the external power supply. The various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the opening degree of the throttle valve (throttle opening degree). The various sensors 84 include, for example, one or more of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle is exemplified, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 76 and the motor 77 without using the engine 75.
<2-4.電力貯蔵システム>
 図16は、電力貯蔵システムのブロック構成を表している。
<2-4. Power storage system>
FIG. 16 shows a block configuration of the power storage system.
 この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。 The power storage system includes, for example, a control unit 90, a power supply 91, a smart meter 92, and a power hub 93 inside a house 89 such as a home or a commercial building.
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続されることが可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続されることが可能である。 Here, the power supply 91 can be connected to, for example, the electric device 94 installed inside the house 89 and to the electric vehicle 96 stopped outside the house 89. Also, the power supply 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93, and is connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
 なお、電気機器94は、例えば、1種類または2種類以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上を含んでいる。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上を含んでいる。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上を含んでいる。 The electric device 94 includes, for example, one or more types of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, a water heater, and the like. The in-house generator 95 includes, for example, one or more of a solar power generator, a wind power generator, and the like. The electric vehicle 96 includes, for example, any one or more of an electric car, an electric bike, a hybrid car and the like. The centralized power system 97 includes, for example, any one or two or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, a wind power plant and the like.
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御する。この制御部90は、例えば、CPUなどを含んでいる。電源91は、1個または2個以上の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信することが可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における電力の需要と供給とのバランスを制御することにより、高効率で安定したエネルギー供給を可能とする。 The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91). The control unit 90 includes, for example, a CPU. The power supply 91 includes one or more secondary batteries. The smart meter 92 is, for example, a network compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Along with this, the smart meter 92 enables highly efficient and stable energy supply by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside, for example.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、その電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is stored in the power supply 91 from the centralized power system 97 which is an external power supply via the smart meter 92 and the power hub 93, and from a private generator 95 which is an independent power supply via the power hub 93. Thus, power is stored in the power supply 91. The electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 according to the instruction of the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged. Become. That is, the power storage system is a system that enables storage and supply of power in the house 89 using the power supply 91.
 電源91に蓄積された電力は、必要に応じて使用することが可能である。このため、例えば、電気使用料が安い深夜において、集中型電力系統97から電源91に電力を蓄積しておき、電気使用料が高い日中において、その電源91に蓄積された電力を用いることができる。 The power stored in the power supply 91 can be used as needed. For this reason, for example, it is possible to store the power from the centralized power system 97 in the power supply 91 at midnight, when the electricity charge is low, and use the power accumulated in the power supply 91 during the day when the electricity charge is high. it can.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 In addition, the above-mentioned electric power storage system may be installed for every one house (one household), and may be installed for every two or more houses (plural households).
<2-5.電動工具>
 図17は、電動工具のブロック構成を表している。
<2-5. Power tool>
FIG. 17 shows a block configuration of the power tool.
 ここで説明する電動工具は、例えば、電動ドリルである。この電動工具は、例えば、工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。 The power tool described here is, for example, a power drill. The power tool includes, for example, a control unit 99 and a power supply 100 inside a tool body 98. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
 工具本体98は、例えば、プラスチック材料などを含んでいる。制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御する。この制御部99は、例えば、CPUなどを含んでいる。電源100は、1個または2個以上の二次電池を含んでいる。この制御部99は、動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。 The tool body 98 contains, for example, a plastic material or the like. The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100). The control unit 99 includes, for example, a CPU. The power supply 100 includes one or more secondary batteries. The control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to the operation of the operation switch.
 以下では、本技術の実施例に関して説明する。 Hereinafter, embodiments of the present technology will be described.
(実験例1~4)
 以下の手順により、図1~図4に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製すると共に、その二次電池の安全性を調べた。
(Experimental examples 1 to 4)
The laminated film type secondary battery (lithium ion secondary battery) shown in FIGS. 1 to 4 was manufactured by the following procedure, and the safety of the secondary battery was examined.
[二次電池の作製]
 正極13を作製する場合には、最初に、正極活物質(コバルト酸リチウム(LiCoO))90質量部と、正極結着剤(ポリフッ化ビニリデン)5質量部と、正極導電剤(カーボンブラック)5質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体13A(帯状のアルミニウム箔,厚さ=15μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成した。最後に、ロールプレス機を用いて正極活物質層13Bを圧縮成型した。これにより、正極集電体13Aおよび正極活物質層13Bを含む正極13が得られた。
[Preparation of secondary battery]
When producing the positive electrode 13, first, 90 parts by mass of a positive electrode active material (lithium cobaltate (LiCoO 2 )), 5 parts by mass of a positive electrode binder (polyvinylidene fluoride), and a positive electrode conductive agent (carbon black) It was set as the positive mix by mixing with 5 mass parts. Subsequently, the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like positive electrode mixture slurry. Subsequently, a positive electrode mixture slurry is applied on both sides of the positive electrode current collector 13A (strip-like aluminum foil, thickness = 15 μm) using a coating apparatus, and then the positive electrode mixture slurry is dried to obtain a positive electrode active material. Layer 13B was formed. Finally, the positive electrode active material layer 13B was compression molded using a roll press. Thus, the positive electrode 13 including the positive electrode current collector 13A and the positive electrode active material layer 13B was obtained.
 負極14を作製する場合には、最初に、負極活物質(人造黒鉛)96質量部と、負極結着剤(スチレン-ブタジエンゴム共重合体のアクリル酸変性体)1質量部と、負極結着剤(ポリフッ化ビニリデン)2質量部と、増粘剤(カルボキシメチルセルロース)1質量部とを混合することにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体14A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層14Bを形成した。最後に、ロールプレス機を用いて負極活物質層14Bを圧縮成型した。これにより、負極集電体14Aおよび負極活物質層14Bを含む負極14が得られた。 When producing the negative electrode 14, first, 96 parts by weight of a negative electrode active material (artificial graphite), 1 part by weight of a negative electrode binder (acrylic acid-modified styrene-butadiene rubber copolymer), and negative electrode binding By mixing 2 parts by mass of the agent (polyvinylidene fluoride) and 1 part by mass of a thickener (carboxymethyl cellulose), a negative electrode mixture was obtained. Subsequently, the negative electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like negative electrode mixture slurry. Subsequently, a negative electrode mixture slurry is applied on both sides of the negative electrode current collector 14A (strip-shaped copper foil, thickness = 15 μm) using a coating apparatus, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material. Layer 14B was formed. Finally, the negative electrode active material layer 14B was compression molded using a roll press. Thus, the negative electrode 14 including the negative electrode current collector 14A and the negative electrode active material layer 14B was obtained.
 電解質層16を形成する場合には、最初に、溶媒(炭酸エチレン、炭酸プロピレンおよび炭酸ジエチル)に電解質塩(六フッ化リン酸リチウム)を加えたのち、その溶媒を撹拌することにより、電解液を調製した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル=15:15:70とすると共に、電解質塩の濃度を溶媒に対して1mol/kgとした。 In the case of forming the electrolyte layer 16, first, an electrolyte salt (lithium hexafluorophosphate) is added to a solvent (ethylene carbonate, propylene carbonate and diethyl carbonate), and then the solvent is stirred to obtain an electrolytic solution. Was prepared. In this case, the mixing ratio (weight ratio) of the solvent was ethylene carbonate: propylene carbonate: diethyl carbonate = 15: 15: 70, and the concentration of the electrolyte salt was 1 mol / kg with respect to the solvent.
 続いて、電解液90質量部と、高分子化合物(フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体,ヘキサフルオロプロピレンの共重合量=15重量%)10質量部とを混合することにより、混合溶液を得た。続いて、ホモジナイザを用いて混合溶液を処理することにより、電解液中に高分子化合物を均一に分散させた。続いて、混合溶液を加熱(加熱温度=75℃)しながら撹拌したのち、さらに混合溶液を撹拌(撹拌時間=1時間)することにより、ゾル状の前駆溶液を調製した。 Subsequently, mixing is carried out by mixing 90 parts by mass of the electrolytic solution and 10 parts by mass of a polymer compound (copolymer of vinylidene fluoride and hexafluoropropylene, copolymerized amount of hexafluoropropylene = 15% by weight). A solution was obtained. Subsequently, the polymer solution was uniformly dispersed in the electrolytic solution by treating the mixed solution using a homogenizer. Subsequently, the mixed solution was stirred while heating (heating temperature = 75 ° C.), and the mixed solution was further stirred (stirring time = 1 hour) to prepare a sol-like precursor solution.
 最後に、正極13の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層16を形成すると共に、負極14の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層16を形成した。 Finally, the precursor solution is applied to the surface of the positive electrode 13 and then dried to form the gel electrolyte layer 16, and the precursor solution is applied to the surface of the negative electrode 14, and then the precursor solution is applied. The gel electrolyte layer 16 was formed by drying.
 二次電池を組み立てる場合には、最初に、正極集電体13Aにアルミニウム製の正極リード11を溶接すると共に、負極集電体14Aに銅製の負極リード12を溶接した。続いて、セパレータ15(微多孔性ポリエチレンフィルム,厚さ=7μm)を介して、電解質層16が形成された正極13と電解質層16が形成された負極14とを互いに積層させることにより、積層体を得た。続いて、積層体を長手方向に巻回させたのち、その積層体の最外周部に保護テープ17を貼り付けることにより、巻回電極体10を作製した。最後に、巻回電極体10を挟むように外装部材20(外装層21および導電層22)を折り畳んだのち、その外装部材20のうちの3辺の外周縁部同士を熱融着した。この場合には、正極リード11と外装部材20との間に密着フィルム21(ポリプロピレンフィルム,厚さ=60μm)を挿入すると共に、負極リード12と外装部材20との間に密着フィルム22(ポリプロピレンフィルム,厚さ=60μm)を挿入した。 When assembling the secondary battery, first, the positive electrode lead 11 made of aluminum was welded to the positive electrode current collector 13A, and the negative electrode lead 12 made of copper was welded to the negative electrode current collector 14A. Subsequently, a laminate is obtained by laminating the positive electrode 13 on which the electrolyte layer 16 is formed and the negative electrode 14 on which the electrolyte layer 16 is formed via the separator 15 (microporous polyethylene film, thickness = 7 μm). I got Subsequently, the laminate was wound in the longitudinal direction, and then the protective tape 17 was attached to the outermost periphery of the laminate to produce a wound electrode body 10. Finally, the package member 20 (the package layer 21 and the conductive layer 22) was folded so as to sandwich the wound electrode body 10, and the outer peripheral edge portions of three sides of the package member 20 were heat-sealed. In this case, the adhesive film 21 (polypropylene film, thickness = 60 μm) is inserted between the positive electrode lead 11 and the package member 20, and the adhesive film 22 (polypropylene film) is formed between the negative electrode lead 12 and the package member 20. , Thickness = 60 μm).
 外装層21としては、表面保護層21A(ナイロンフィルム,厚さ=25μm)と、金属層21B(アルミニウム箔,厚さ=40μm)と、融着層21C(ポリプロピレンフィルム,厚さ=30μm)とが外側からこの順に積層されたアルミラミネートフィルムを用いた。 As the exterior layer 21, a surface protective layer 21A (nylon film, thickness = 25 μm), a metal layer 21 B (aluminum foil, thickness = 40 μm), and a fusion layer 21 C (polypropylene film, thickness = 30 μm) An aluminum laminated film laminated in this order from the outside was used.
 導電層22の形成材料(導電性材料)、形成方法および形態に関する詳細は、表1に示した通りである。ここでは、導電性材料として、炭素材料(カーボンブラック)および金属材料(アルミニウム)を用いた。 The details of the forming material (conductive material), the forming method, and the form of the conductive layer 22 are as shown in Table 1. Here, a carbon material (carbon black) and a metal material (aluminum) were used as the conductive material.
 導電性材料として炭素材料を用いる場合には、導電層22の形成方法として塗布法を用いた。この場合には、最初に、導電性材料を含む複数の粒子(複数の炭素粒子である粉末状のカーボンブラック)50質量部と、結着剤(ポリフッ化ビニリデン)50質量部とを混合した。続いて、有機溶剤(N-メチル-2-ピロリドン)に混合物を投入したのち、その有機溶剤を撹拌することにより、ペースト状のスラリーを調製した。続いて、外装層21(融着層21C)のうちの非融着領域20R2にスラリーを塗布したのち、そのスラリーを乾燥させることにより、導電層22(厚さ=10μm)を形成した。 When a carbon material was used as the conductive material, a coating method was used as a method of forming the conductive layer 22. In this case, first, 50 parts by mass of a plurality of particles (powdery carbon black which is a plurality of carbon particles) containing a conductive material and 50 parts by mass of a binder (polyvinylidene fluoride) were mixed. Subsequently, the mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like slurry. Subsequently, a slurry was applied to the non-fusion area 20R2 of the exterior layer 21 (fusion layer 21C), and then the slurry was dried to form a conductive layer 22 (thickness = 10 μm).
 導電性材料として金属材料を用いる場合には、導電層22の形成方法として貼付法を用いた。この場合には、アクリル系の接着剤を用いて、外装層21(融着層21C)のうちの非融着領域20R2に、導電性材料の成型体(金属箔であるアルミニウム箔,厚さ=10μm)を貼り付けた。 When a metal material is used as the conductive material, a sticking method is used as a method of forming the conductive layer 22. In this case, a molded body of a conductive material (aluminum foil which is a metal foil, thickness ==) is used in the non-fusion area 20R2 of the exterior layer 21 (fusion layer 21C) using an acrylic adhesive. 10 μm) was attached.
 また、導電性材料として金属材料を用いる場合には、導電層22の形成方法として塗布法を用いた。この場合には、最初に、導電性材料を含む複数の粒子(複数の金属粒子である粉末状のアルミニウム)50質量部と、結着剤(ポリフッ化ビニリデン)50質量部とを混合した。続いて、有機溶剤(N-メチル-2-ピロリドン)に混合物を投入したのち、その有機溶剤を撹拌することにより、ペースト状のスラリーを調製した。続いて、外装層21(融着層21C)のうちの非融着領域20R2にスラリーを塗布したのち、そのスラリーを乾燥させることにより、導電層22(厚さ=10μm)を形成した。 When a metal material is used as the conductive material, a coating method is used as a method of forming the conductive layer 22. In this case, first, 50 parts by mass of a plurality of particles (powdered aluminum which is a plurality of metal particles) containing a conductive material and 50 parts by mass of a binder (polyvinylidene fluoride) were mixed. Subsequently, the mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like slurry. Subsequently, a slurry was applied to the non-fusion area 20R2 of the exterior layer 21 (fusion layer 21C), and then the slurry was dried to form a conductive layer 22 (thickness = 10 μm).
 なお、比較のために、導電層22が形成されていない外装部材20(外装層21)を用いた。導電層22の有無は、表1に示した通りである。 In addition, the exterior member 20 (exterior layer 21) in which the conductive layer 22 is not formed was used for comparison. The presence or absence of the conductive layer 22 is as shown in Table 1.
 これにより、外装部材20の内部に巻回電極体10が封入されたため、ラミネートフィルム型の二次電池(電池容量=3000mAh)が完成した。 As a result, since the wound electrode body 10 was sealed inside the exterior member 20, a laminate film type secondary battery (battery capacity = 3000 mAh) was completed.
[電池特性の評価]
 二次電池の安全性を評価するために、その二次電池を用いて圧潰試験を行ったところ、表1に示した結果が得られた。
[Evaluation of battery characteristics]
When the crushing test was performed using the secondary battery to evaluate the safety of the secondary battery, the results shown in Table 1 were obtained.
 圧潰試験を行う際には、最初に、二次電池を過充電させたのち、図5および図6を参照しながら説明したように、充電状態の二次電池に対して丸棒30(直径=16.5mm)を押し付けることにより、その二次電池を部分的に押し潰した。この場合には、1500mAの電流で電圧が4.7Vに到達するまで定電流充電したのち、4.7Vの電圧で電流が30mAに到達するまで定電圧充電した。また、丸棒30を介して二次電池に付与する加重を50kNとした。 When carrying out the crushing test, first, after overcharging the secondary battery, as described with reference to FIG. 5 and FIG. The secondary battery was partially crushed by pressing 16.5 mm). In this case, constant current charging was performed until the voltage reached 4.7 V at a current of 1500 mA, and then constant voltage charging was performed until the current reached 30 mA at a voltage of 4.7 V. Moreover, the weight given to the secondary battery via the round bar 30 was 50 kN.
 続いて、二次電池の状態を目視で観察することにより、その二次電池が発火したか否かを判定した。この場合には、二次電池が発火しなかった場合を「合格」、二次電池が発火した場合を「不合格」と判定した。 Subsequently, the state of the secondary battery was visually observed to determine whether the secondary battery was ignited. In this case, the case where the secondary battery did not ignite was judged as “pass”, and the case where the secondary battery ignited was judged as “fail”.
 最後に、20個の二次電池(試験数=20)を用いて上記した判定手順を繰り返すことにより、合格数=合格した二次電池の個数/圧潰試験に用いた二次電池の個数(=20個)を調べた。 Finally, by repeating the above determination procedure using 20 secondary batteries (number of tests = 20), the number of passed = the number of passed secondary batteries / the number of secondary batteries used in the crushing test (= 20 pieces were examined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 導電層22を用いなかった場合(実験例4)には、合格数が著しく低くなった。この場合の合格率は、25%であった。これに対して、導電層22を用いた場合(実験例1~3)には、導電性材料の種類、形成方法および形態に依存せずに、合格率が著しく高くなった。この場合の合格率は、最大で90%であった。 When the conductive layer 22 was not used (Experimental Example 4), the number of passes became extremely low. The pass rate in this case was 25%. On the other hand, in the case where the conductive layer 22 was used (Experimental Examples 1 to 3), the pass rate was extremely high regardless of the type, formation method and form of the conductive material. The pass rate in this case was 90% at the maximum.
 表1に示した結果から、フィルム状の外装部材20の内部に巻回電極体10が収納されており、その外装部材20が最も内側に導電層22を含んでいると、二次電池が発火しにくくなった。よって、二次電池の安全性が向上した。 From the results shown in Table 1, when the wound electrode body 10 is accommodated inside the film-like exterior member 20 and the exterior member 20 includes the conductive layer 22 at the innermost side, the secondary battery is ignited It became difficult to do. Therefore, the safety of the secondary battery is improved.
 以上、実施形態および実施例を挙げながら本技術を説明したが、その本技術に関しては、実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。 Although the present technology has been described above by citing embodiments and examples, the present technology is not limited to the aspects described in the embodiments and examples, and various modifications are possible.
 具体的には、例えば、電池素子が巻回構造を有する場合に関して説明したが、これに限られない。例えば、電池素子が積層構造などの他の構造を有していてもよい。 Specifically, for example, although the case where the battery element has a wound structure has been described, the present invention is not limited thereto. For example, the battery element may have another structure such as a laminated structure.
 また、リチウムの吸蔵現象およびリチウムの放出現象を利用して負極の容量が得られるリチウムイオン二次電池に関して説明したが、これに限られない。例えば、リチウムの析出現象およびリチウムの溶解現象を利用して負極の容量が得られるリチウムイオン二次電池でもよい。また、例えば、リチウムを吸蔵および放出することが可能な負極活物質の容量を正極の容量よりも小さくなるように設定することにより、リチウムの吸蔵現象およびリチウムの放出現象に起因する容量とリチウムの析出現象およびリチウムの溶解現象に起因する容量との和に基づいて負極の容量が得られる二次電池でもよい。 In addition, although the lithium ion secondary battery in which the capacity of the negative electrode is obtained by utilizing the lithium storage phenomenon and the lithium release phenomenon has been described, the invention is not limited thereto. For example, it may be a lithium ion secondary battery in which the capacity of the negative electrode is obtained by utilizing the precipitation phenomenon of lithium and the dissolution phenomenon of lithium. Also, for example, by setting the capacity of the negative electrode active material capable of inserting and extracting lithium to be smaller than the capacity of the positive electrode, the capacity resulting from the lithium absorption phenomenon and the lithium release phenomenon and the lithium It may be a secondary battery in which the capacity of the negative electrode is obtained based on the sum of the capacity resulting from the deposition phenomenon and the dissolution phenomenon of lithium.
 また、電極反応物質としてリチウムを用いた二次電池に関して説明したが、これに限られない。例えば、ナトリウムおよびカリウムどの長周期型周期表における他の1族の元素でもよいし、マグネシウムおよびカルシウムなどの長周期型周期表における2族の元素でもよいし、アルミニウムなどの他の軽金属でもよい。 Moreover, although demonstrated regarding the secondary battery which used lithium as an electrode reaction substance, it is not restricted to this. For example, sodium and potassium may be any other Group 1 element in any long period periodic table, or may be elements of Group 2 in the long periodic table such as magnesium and calcium, or other light metals such as aluminum.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, is not limited, and may have other effects.
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
 前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
 を備えた、二次電池。
(2)
 前記導電層は、導電性材料を含み、
 前記導電性材料は、炭素材料、金属材料および導電性高分子材料のうちの少なくとも1種を含む、
 上記(1)に記載の二次電池。
(3)
 前記導電層は、前記導電性材料を含む成型体である、
 上記(2)に記載の二次電池。
(4)
 前記導電層は、
 前記導電性材料を含む複数の粒子と、
 前記複数の粒子を結着させる結着剤と
 を含む、上記(2)に記載の二次電池。
(5)
 前記外装部材は、さらに、最も外側に絶縁層を含む、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 リチウムイオン二次電池である、
 上記(1)ないし(5)のいずれかに請求項1記載の二次電池。
(7)
 上記(1)ないし(6)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(8)
 上記(1)ないし(6)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(9)
 上記(1)ないし(6)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(10)
 上記(1)ないし(6)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(11)
 上記(1)ないし(6)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。
The present technology can also be configured as follows.
(1)
A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
And a film-like package member including the conductive layer on the inner side thereof.
(2)
The conductive layer comprises a conductive material,
The conductive material includes at least one of a carbon material, a metal material, and a conductive polymer material.
The secondary battery as described in said (1).
(3)
The conductive layer is a molded body including the conductive material.
The secondary battery as described in said (2).
(4)
The conductive layer is
A plurality of particles comprising the conductive material;
The secondary battery according to (2), including a binder for binding the plurality of particles.
(5)
The exterior member further includes an insulating layer on the outermost side.
The secondary battery according to any one of the above (1) to (4).
(6)
Being a lithium ion secondary battery,
The secondary battery according to any one of the above (1) to (5).
(7)
The secondary battery according to any one of (1) to (6) above,
A control unit that controls the operation of the secondary battery;
A switch unit that switches the operation of the secondary battery according to an instruction of the control unit.
(8)
The secondary battery according to any one of (1) to (6) above,
A converter for converting the power supplied from the secondary battery into a driving power;
A driving unit driven according to the driving force;
And a control unit that controls the operation of the secondary battery.
(9)
The secondary battery according to any one of (1) to (6) above,
One or more electric devices supplied with power from the secondary battery,
And a controller configured to control power supply from the secondary battery to the electric device.
(10)
The secondary battery according to any one of (1) to (6) above,
A movable part to which power is supplied from the secondary battery;
(11)
The electronic device provided with the secondary battery in any one of said (1) thru | or (6) as an electric power supply source.

Claims (11)

  1.  セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
     前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
     を備えた、二次電池。
    A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
    And a film-like package member including the conductive layer on the inner side thereof.
  2.  前記導電層は、導電性材料を含み、
     前記導電性材料は、炭素材料、金属材料および導電性高分子材料のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
    The conductive layer comprises a conductive material,
    The conductive material includes at least one of a carbon material, a metal material, and a conductive polymer material.
    The secondary battery according to claim 1.
  3.  前記導電層は、前記導電性材料を含む成型体である、
     請求項2記載の二次電池。
    The conductive layer is a molded body including the conductive material.
    The secondary battery according to claim 2.
  4.  前記導電層は、
     前記導電性材料を含む複数の粒子と、
     前記複数の粒子を結着させる結着剤と
     を含む、請求項2記載の二次電池。
    The conductive layer is
    A plurality of particles comprising the conductive material;
    The secondary battery according to claim 2, further comprising: a binder that binds the plurality of particles.
  5.  前記外装部材は、さらに、最も外側に絶縁層を含む、
     請求項1記載の二次電池。
    The exterior member further includes an insulating layer on the outermost side.
    The secondary battery according to claim 1.
  6.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
    Being a lithium ion secondary battery,
    The secondary battery according to claim 1.
  7.  二次電池と、
     前記二次電池の動作を制御する制御部と、
     前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
     前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
     を備えた、電池パック。
    With a secondary battery,
    A control unit that controls the operation of the secondary battery;
    A switch unit that switches the operation of the secondary battery in accordance with an instruction from the control unit;
    The secondary battery is
    A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
    A battery pack comprising: a film-like package member that houses the battery element and includes a conductive layer on the innermost side.
  8.  二次電池と、
     前記二次電池から供給された電力を駆動力に変換する変換部と、
     前記駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
     前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
     を備えた、電動車両。
    With a secondary battery,
    A converter for converting the power supplied from the secondary battery into a driving power;
    A driving unit driven according to the driving force;
    A control unit that controls the operation of the secondary battery;
    The secondary battery is
    A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
    An electric vehicle, comprising: a film-like exterior member that houses the battery element and includes a conductive layer on the innermost side.
  9.  二次電池と、
     前記二次電池から電力を供給される1または2以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
     前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
     を備えた、電力貯蔵システム。
    With a secondary battery,
    One or more electric devices supplied with power from the secondary battery,
    A control unit that controls power supply from the secondary battery to the electric device;
    The secondary battery is
    A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
    And a film-like exterior member that houses the battery element and includes a conductive layer on the innermost side.
  10.  二次電池と、
     前記二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
     前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
     を備えた、電動工具。
    With a secondary battery,
    A movable part supplied with power from the secondary battery;
    The secondary battery is
    A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
    And a film-like exterior member that houses the battery element and includes a conductive layer on the innermost side.
  11.  二次電池を電力供給源として備え、
     前記二次電池は、
     セパレータを介して互いに積層された正極および負極と共に電解液を含む電池素子と、
     前記電池素子を収納すると共に、最も内側に導電層を含むフィルム状の外装部材と
     を備えた、電子機器。
    Equipped with a secondary battery as a power supply source,
    The secondary battery is
    A battery element including an electrolytic solution together with a positive electrode and a negative electrode stacked on each other via a separator;
    An electronic apparatus comprising: a film-like package member that houses the battery element and includes a conductive layer on the innermost side.
PCT/JP2018/016089 2017-07-18 2018-04-19 Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device WO2019017029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138810 2017-07-18
JP2017138810 2017-07-18

Publications (1)

Publication Number Publication Date
WO2019017029A1 true WO2019017029A1 (en) 2019-01-24

Family

ID=65015719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016089 WO2019017029A1 (en) 2017-07-18 2018-04-19 Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device

Country Status (1)

Country Link
WO (1) WO2019017029A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085205A1 (en) * 2019-10-31 2021-05-06

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324527A (en) * 2001-04-26 2002-11-08 Toyo Kohan Co Ltd Outer package for secondary battery and its manufacturing method
WO2013094404A1 (en) * 2011-12-20 2013-06-27 ソニー株式会社 Active material for secondary batteries, secondary battery, and electronic device
WO2014112420A1 (en) * 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
JP2016207542A (en) * 2015-04-24 2016-12-08 昭和電工パッケージング株式会社 Outer housing for electricity storage device and electricity storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324527A (en) * 2001-04-26 2002-11-08 Toyo Kohan Co Ltd Outer package for secondary battery and its manufacturing method
WO2013094404A1 (en) * 2011-12-20 2013-06-27 ソニー株式会社 Active material for secondary batteries, secondary battery, and electronic device
WO2014112420A1 (en) * 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
JP2016207542A (en) * 2015-04-24 2016-12-08 昭和電工パッケージング株式会社 Outer housing for electricity storage device and electricity storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021085205A1 (en) * 2019-10-31 2021-05-06
WO2021085205A1 (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Secondary battery and battery pack
JP7429855B2 (en) 2019-10-31 2024-02-09 株式会社村田製作所 Secondary batteries and battery packs

Similar Documents

Publication Publication Date Title
WO2016009794A1 (en) Negative electrode active material for secondary battery, negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic equipment
JP6801722B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
US11329277B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
JP2015133278A (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool and electronic unit
JP2018206514A (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
JP6566130B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2015045707A1 (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
US11695119B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP2020053407A (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment
WO2019022044A1 (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, energy storage system, electric tool and electronic device
JP6536690B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
JP6516021B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
WO2016056361A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric power tool and electronic apparatus equipment
US20190348670A1 (en) Anode for secondary battery, secondary battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
WO2019013027A1 (en) Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP6597793B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2015156280A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
US11817572B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
JP6257087B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2019017029A1 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP2017130474A (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JPWO2017085994A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP