WO2019016853A1 - Wireless machine identification device and wireless machine identification method - Google Patents
Wireless machine identification device and wireless machine identification method Download PDFInfo
- Publication number
- WO2019016853A1 WO2019016853A1 PCT/JP2017/025914 JP2017025914W WO2019016853A1 WO 2019016853 A1 WO2019016853 A1 WO 2019016853A1 JP 2017025914 W JP2017025914 W JP 2017025914W WO 2019016853 A1 WO2019016853 A1 WO 2019016853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- fourier transform
- unit
- feature amount
- time
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
Definitions
- the present invention relates to a wireless device identification device for identifying a wireless device and a wireless device identification method.
- the wireless device identification device calculates the feature amount of the rising edge of the wireless signal transmitted from the wireless device, and identifies the wireless device based on the calculated feature amount.
- the characteristic quantities of the rising edge of the wireless signal include the dispersion value of the amplitude or the like in the wireless signal at the rising edge, the skewness, and the kurtosis.
- Patent Document 1 discloses a wireless device identification apparatus that calculates the feature value of the rising after improving SNR by performing short-time Fourier transform on a wireless signal transmitted from the wireless device.
- the rise time constant is calculated as the rise feature amount.
- the conventional wireless device identification apparatus employs a wireless device identification method based on the rise time constant.
- the radio identification method based on the rise time constant the radio type can be identified.
- it is not possible to identify an individual wireless device because the difference in the rise time constants is small even if the wireless devices are different.
- the present invention has been made to solve the problems as described above, and it is an object of the present invention to obtain a wireless device identification device and a wireless device identification method capable of performing individual identification of a wireless device.
- the wireless device identification apparatus performs short-time Fourier transform of a wireless signal received by the signal receiving unit and a signal receiving unit that receives a wireless signal transmitted from a wireless device to be identified.
- a Fourier transform unit that outputs a Fourier transform signal indicating a result of Fourier transform, and a time waveform of energy in a spectrogram of the Fourier transform signal output from the Fourier transform unit are calculated, and a rise time of a wireless signal is detected from the time waveform of energy.
- the Fourier transform signal of the time zone including the rise time detected by the rise detection unit is extracted from the rise detection unit and the Fourier transform signal output from the Fourier transform unit, and is included in the extracted Fourier transform signal
- the variation of the Fourier transform signal extracted from the complex time signal of the set frequency component A feature quantity calculating unit that calculates Te provided, the wireless device identification unit, based on the feature amount calculated by the feature calculation unit, in which so as to identify the radio.
- the rise detection unit which calculates the time waveform of energy in the spectrogram of the Fourier transform signal output from the Fourier transform unit and detects the rise time of the wireless signal from the time waveform of energy, and the output from the Fourier transform unit
- the Fourier transform signal of the time zone including the rise time detected by the rise detection unit is extracted from the detected Fourier transform signal, and the complex time signal of the set frequency component included in the extracted Fourier transform signal is extracted Since the wireless device identification unit is configured to identify the wireless device based on the feature amount calculated by the feature amount calculation unit, the feature amount calculation unit calculates the variation of the Fourier transform signal as the feature amount. There is an effect that can identify the individual of the radio.
- FIG. 6 is an explanatory view showing STFTs of a learning radio signal s g (n) and a discrimination radio signal s d (n) by the Fourier transform unit 2.
- FIG. 6 is an explanatory view showing a detection process of rising time T 0 by the rising detection unit 3;
- FIG. 8 is an explanatory view showing calculation processing of a feature amount by the feature amount calculation unit 7;
- the feature amount vector ⁇ ⁇ for the wireless device of type (A) since the parameter for calculating the feature amount is not appropriate, the feature amount vector ⁇ ⁇ for the wireless device of type (A), the feature amount vector ⁇ for the wireless device of type (B), and the type (C) Is an explanatory view showing an example in which the feature quantity vector ⁇ pertaining to the wireless device partially overlaps, and
- FIG. 8B is a feature quantity pertaining to the wireless device of type (A) because the parameters for feature value calculation are appropriate.
- FIG. 8A since the parameter for calculating the feature amount is not appropriate, the feature amount vector ⁇ ⁇ for the wireless device of type (A), the feature amount vector ⁇ for the wireless device of type (B), and the type (C) Is an explanatory view showing an example in which
- FIG. 9 is an explanatory view showing an example in which a vector ⁇ , a feature amount vector ⁇ for a wireless device of type (B), and a feature amount vector ⁇ for a wireless device of type (C) are not overlapped.
- FIG. 5 is an explanatory view showing a learning wireless signal to which a serial number is stored, which is stored in a first database unit 9;
- FIG. 6 is an explanatory view showing an example of feature amounts of a plurality of known wireless devices stored in a second database unit 10; It is a flowchart which shows the identification process in the radio
- FIG. 6 is an explanatory view showing identification processing of a wireless device by the wireless device identification unit 11;
- FIG. 1 is a block diagram showing a radio device identification apparatus according to a first embodiment of the present invention.
- FIG. 2 is a hardware configuration diagram showing a radio device identification apparatus according to Embodiment 1 of the present invention.
- the signal receiving unit 1 is realized by, for example, the signal receiving circuit 21 shown in FIG.
- the signal receiving unit 1 receives a wireless signal transmitted from a known wireless device as a learning wireless signal, and converts the received learning wireless signal from an analog signal to a digital signal to thereby obtain a digital learning wireless signal.
- the signal reception unit 1 receives a wireless signal transmitted from a wireless device to be identified as a wireless signal for identification, and converts the received wireless signal for identification from an analog signal to a digital signal to thereby perform digital identification.
- the radio signal is output to the Fourier transform unit 2.
- the Fourier transform unit 2 is realized by, for example, the Fourier transform circuit 22 shown in FIG.
- the Fourier transform unit 2 performs short time Fourier transform (STFT: Short Time Fourier Transform) on the digital learning wireless signal output from the signal receiving unit 1, and obtains the STFT result that is the short time Fourier transform of the learning wireless signal.
- STFT Short Time Fourier Transform
- a process of outputting the Fourier transform signal shown below (hereinafter referred to as a learning Fourier transform signal) to the rise detection unit 3 and the feature quantity calculation unit 7 is performed.
- the Fourier transform unit 2 performs STFT on the digital identification radio signal output from the signal reception unit 1 and indicates a Fourier transform signal (hereinafter referred to as identification Fourier transform signal) indicating the STFT result of the identification radio signal.
- identification Fourier transform signal The processing to be output to the rising edge detection unit 3 and the feature amount calculation unit 7 is performed.
- the STFT is a method of extracting radio signals of different times at fixed time intervals, and performing fast Four
- the rising edge detection unit 3 is realized by, for example, the rising edge detection circuit 23 shown in FIG.
- the rising edge detection unit 3 calculates a time waveform of energy in the spectrogram of the learning Fourier transform signal output from the Fourier transform unit 2 (hereinafter referred to as an energy time waveform for learning), and learns from the energy time waveform for learning A process of detecting the rise time of the wireless signal is performed. Further, the rising edge detection unit 3 calculates a time waveform of energy in the spectrogram of the identification Fourier transform signal output from the Fourier transform unit 2 (hereinafter, referred to as an energy time waveform for identification), and an energy time waveform for identification From this, the process of detecting the rise time of the identification radio signal is performed.
- the parameter setting unit 4 includes a first parameter setting unit 5 and a second parameter setting unit 6, and is realized by, for example, the parameter setting circuit 24 illustrated in FIG.
- the first parameter setting unit 5 sets a parameter indicating a time range ⁇ t which is a length of a time zone including the rising time detected by the rising detection unit 3 as a parameter for calculating the feature amount, and a setting frequency component A process of setting parameters indicating frequency bins is performed.
- the second parameter setting unit 6 performs a process of setting weighting parameters indicating the weights of the first to ninth feature amounts calculated by the feature amount calculation unit 7. Further, the second parameter setting unit 6 carries out a process of setting the number of samples of the window function and the number of samples for shifting the window function used when the STFT is performed by the Fourier transform unit 2.
- the feature amount calculation unit 7 is realized by, for example, the feature amount calculation circuit 25 shown in FIG.
- the feature amount calculation unit 7 recognizes the time zone including the rise time and the set frequency bin from the parameters for feature amount calculation set by the parameter setting unit 4.
- the feature amount calculation unit 7 performs a learning Fourier transform signal of a time zone including the rise time in the learning wireless signal detected by the rise detection unit 3. Implement the process to extract.
- the feature amount calculation unit 7 performs processing of calculating, as a feature amount, the fluctuation of the extracted learning Fourier transform signal from the complex time signal of the set frequency bin included in the extracted learning Fourier transform signal.
- the feature quantity calculation unit 7 performs Fourier transform for identification of a time zone including a rise time in the identification wireless signal calculated by the rise detection unit 3 among the identification Fourier transform signals output from the Fourier transform unit 2. Implement the process of extracting the signal. Then, the feature amount calculation unit 7 performs processing of calculating, as a feature amount, the fluctuation of the extracted identification Fourier transform signal from the complex time signal of the set frequency component included in the extracted identification Fourier transform signal.
- the database unit 8 includes a first database unit 9 and a second database unit 10, and is realized by, for example, the database circuit 26 shown in FIG.
- the first database unit 9 stores the digital learning radio signal output from the signal receiving unit 1.
- the second database unit 10 stores the fluctuation of the learning Fourier transform signal calculated by the feature amount calculation unit 7 as a feature amount related to a known wireless device.
- the wireless device identification unit 11 is realized by, for example, the wireless device identification circuit 27 shown in FIG.
- the wireless device identification unit 11 compares the feature amount of the wireless device to be identified calculated by the feature amount calculation unit 7 with the feature amount of the known wireless device stored by the second database unit 10. Perform the process.
- the wireless device identification unit 11 carries out a process of identifying the wireless device to be identified based on the comparison result of the feature amount of the wireless device to be identified and the feature amount of the known wireless device.
- the signal receiving unit 1, the Fourier transform unit 2, the rising edge detecting unit 3, the parameter setting unit 4, the feature amount calculating unit 7, the database unit 8 and the wireless device identification unit 11 which are components of the wireless device identification device
- the database circuit 26 is, for example, nonvolatile or random access memory (RAM), read only memory (ROM), flash memory, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM) or the like.
- RAM nonvolatile or random access memory
- ROM read only memory
- EPROM erasable programmable read only memory
- EEPROM electrically erasable programmable read only memory
- a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) corresponds to this.
- the signal reception circuit 21, the Fourier transform circuit 22, the rise detection circuit 23, the parameter setting circuit 24, the feature quantity calculation circuit 25 and the wireless device identification circuit 27 are, for example, a single circuit, a composite circuit, a programmed processor, parallel A programmed processor, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of these is applicable.
- the components excluding the signal receiving unit 1 in the wireless device identification device are not limited to those realized by dedicated hardware, and the components excluding the signal receiving unit 1 in the wireless device identification device are software, firmware, or , And may be realized by a combination of software and firmware.
- the software or firmware is stored as a program in the memory of the computer.
- a computer means hardware that executes a program, and for example, a central processing unit (CPU), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a digital signal processor (DSP). Do.
- FIG. 3 is a hardware configuration diagram of a computer in the case where components excluding the signal receiving unit 1 in the wireless device identification device are realized by software or firmware.
- the database unit 8 is configured on the memory 31 of the computer, and the Fourier transform unit 2, the rising edge detecting unit 3, parameter setting A program for causing the computer to execute the processing procedure of the unit 4, the feature value calculation unit 7 and the wireless device identification unit 11 is stored in the memory 31, and the processor 32 of the computer executes the program stored in the memory 31. do it.
- FIG. 2 shows an example in which each of the components of the wireless device identification device is realized by dedicated hardware
- FIG. 3 shows an example in which the wireless device identification device is realized by software or firmware.
- some of the components of the wireless device identification device may be realized by dedicated hardware, and the remaining components may be realized by software, firmware or the like.
- FIG. 4 is a flowchart showing a learning process in the wireless device identification method according to the first embodiment of the present invention.
- the signal receiving unit 1 receives a wireless signal transmitted from a known wireless device as a learning wireless signal, and converts the received learning wireless signal from an analog signal to a digital signal (step ST1 in FIG. 4). It is assumed that a serial number, which is individual information identifying a known wireless device, is added to the learning wireless signal.
- the signal receiving unit 1 outputs the digital learning wireless signal s g (n) to the Fourier transform unit 2 and the first database unit 9.
- n in s g (n) is a sample number of a learning radio signal.
- FIG. 9 shows a learning radio signal having a sample number n of 1 to 4.
- the first database unit 9 stores a learning radio signal s g (n) to which a serial number is added.
- FIG. 9 is an explanatory view showing a learning radio signal to which the serial number stored in the first database unit 9 is added.
- a plurality of learning radio signals in which reception conditions such as the SNR at the time of reception or the sampling frequency are different are stored even if the radios have the same serial number.
- the Fourier transform unit 2 performs STFT on the digital learning wireless signal s g (n) output from the signal receiving unit 1 as shown in the following equation (1), and outputs the learning wireless signal s g (n).
- a learning Fourier transform signal S g (m, k) which is a Fourier transform signal indicating the STFT result, is output to the rise detection unit 3 and the feature quantity calculation unit 7 (step ST2 in FIG. 4).
- w (n ⁇ m) is a window function, and for example, a rectangular window or a Hamming window can be considered.
- m is the number of samples for shifting the window function w (n-m)
- m 0 is the first sample number of the application interval of the window function w (n-m)
- M is the window function w (n-m)
- the number of samples, k is a frequency bin number. Note that each of the number of samples M of the window function w (n-m) and the number of samples m for shifting the window function w (n-m) is set in advance by the second parameter setting unit 6.
- FIG. 5 is an explanatory view showing the STFT of the learning radio signal s g (n) and the identification radio signal s d (n) by the Fourier transform unit 2.
- the learning wireless signal s g (n) and the identifying wireless signal s d (n) are two-dimensional signals indicating the relationship between time and amplitude.
- the identification radio signal s d (n) will be described later.
- the learning Fourier transform signal S g (m, k) indicating the STFT result and the discrimination Fourier transform signal S d (m, k) are three-dimensional signals indicating the relationship between time, frequency and power.
- the identification Fourier transform signal S d (m, k) will be described later.
- Each of the learning radio signal s g (n) and the identification radio signal s d (n) is STFT by the Fourier transform unit 2 to obtain the learning radio signal s g (n) and the identification radio signal s d ( Since each of n) is coherently integrated, an effect of improving SNR can be obtained.
- Rising edge detection unit 3 performs a process of detecting the rise time T 0 of the learning radio signal s g (n) (step ST3 in FIG. 4).
- FIG. 6 is an explanatory view showing detection processing of the rising time T 0 by the rising detection unit 3. It will be specifically described below detection processing of the rising time T 0 by the rising edge detection unit 3.
- the rising edge detection unit 3 generates a square value
- 2 is calculated as spectrogram SP g (m, k).
- the rising edge detection unit 3 calculates an energy time waveform E g (m) for learning, which is a time waveform of energy in the spectrogram SP g (m, k), as shown in the following equation (3).
- the energy time waveform E g (m) for learning is calculated by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram SP g (m, k).
- k 1 is a frequency bin number indicating the lower limit frequency of the frequencies for summing power among a plurality of frequencies included in the spectrogram SP g (m, k), and k n is the spectrogram SP g It is a frequency bin number which shows the upper limit frequency of the frequency which totals electric power among several frequencies contained in (m, k).
- k k 1, ⁇ , a k n.
- the rising edge detection unit 3 compares the energy time waveform E g (m) for learning with the threshold value E th .
- the threshold value E th for example, a value obtained by subtracting the set value E 0 from the maximum value of the energy time waveform E g (m) for learning can be considered.
- the rising edge detection unit 3 refers to the comparison result of the energy time waveform E g (m) for learning and the threshold value E th, and at first, the energy time waveform E g for learning that indicates the energy of the noise level It is determined whether (m) has reached the threshold value E th .
- the rise detection unit 3 detects the time when the energy time waveform E g (m) for learning reaches the threshold value E th as the rise time T 0 of the learning radio signal s g (n).
- the rising detection unit 3 detects the rising time T 0 of the learning wireless signal s g (n)
- the power at a plurality of frequencies included in the spectrogram SP g (m, k) The powers at the same time are summed up. Thus, even if it contains frequencies vary greatly power at the rise time, the influence of the variation of the power is reduced, thereby improving the detection accuracy of the rise time T 0.
- the feature amount calculation unit 7 recognizes a time zone (t 1 to t 2 ) including the rise time T 0 and the set frequency bin k b from the parameters for feature amount calculation set by the first parameter setting unit 5. .
- the setting process of the parameter for feature amount calculation by the first parameter setting unit 5 will be described later.
- the feature quantity calculation unit 7 learns from the learning Fourier transform signal S g (m, k) output from the Fourier transform unit 2, the learning detected by the rising edge detection unit 3. use to extract the radio signal s g a time zone including the rising time T 0 of the (n) (t 1 ⁇ t 2) learning Fourier transform signal s g of (n) t1 ⁇ t2.
- the feature quantity calculation unit 7 selects one of the complex time signals included in the extracted training Fourier transform signal s g (n) t 1 to t 2 for the set frequency bin k b .
- the complex time signal sg hat (n) t1 to t2 are cut out.
- FIG. 7 is an explanatory view showing calculation processing of the feature amount by the feature amount calculation unit 7.
- the feature amount calculation unit 7 calculates the variation of the extracted learning Fourier transform signal s g (n) t 1 to t 2 as the feature amount from the extracted complex time signal sg hat (n) t 1 to t 2 (FIG. 4 Step ST4).
- the feature quantity calculator 7 calculates the instantaneous amplitude a of the complex time signal sg hat (n) t1 to t2 as shown in the following equation (4). Calculate g (n).
- I g (n) is the real part of the complex time signal s g hat (n) t 1 to t 2
- Q g (n) is the imaginary part of the complex time signal s g hat (n) t 1 to t 2 It is a department.
- the frequency f g (n) is calculated.
- the feature quantity calculation unit 7 calculates the dispersion of the instantaneous amplitude a g (n) at the complex time signal s g hat (n) t 1 to t 2 as the first feature quantity as shown in the following equation (7) Calculate the value pg1 .
- the feature quantity calculation unit 7 calculates the skewness p g2 of the instantaneous amplitude a g (n) in the complex time signal s g hat (n) t 1 to t 2 as the second feature value as shown in the following equation (9) Calculate The feature quantity calculation unit 7 calculates the kurtosis p g3 of the instantaneous amplitude a g (n) at the complex time signal s g hat (n) t 1 to t 2 as the third feature quantity as shown in the following equation (11) Calculate
- the feature quantity calculation unit 7 calculates the dispersion of the instantaneous phase ⁇ g (n) in the complex time signal sg hat (n) t1 to t2 as the fourth feature quantity as shown in the following equation (12) Calculate the value pg4 .
- the feature value calculation unit 7 calculates the skewness p g5 of the instantaneous phase ⁇ g (n) in the complex time signal s g hat (n) t 1 to t 2 as the fifth feature value.
- the feature quantity calculation unit 7 calculates the kurtosis p g6 of the instantaneous phase ⁇ g (n) at the complex time signal s g hat (n) t 1 to t 2 as the sixth feature quantity as shown in the following equation (16) Calculate
- the feature quantity calculation unit 7 calculates the dispersion of the instantaneous frequency f g (n) at the complex time signal s g hat (n) t 1 to t 2 as the seventh feature quantity, as shown in the following equation (17) Calculate the value pg7 .
- the feature quantity calculation unit 7 calculates, as the eighth feature quantity, the skewness p g8 of the instantaneous frequency f g (n) at the complex time signal s g hat (n) t 1 to t 2 as represented by the following equation (19) Calculate As shown in the following equation (21), the feature quantity calculation unit 7 uses the ninth feature quantity as the kurtosis p g9 of the instantaneous frequency f g (n) at the complex time signal s g hat (n) t 1 to t 2 Calculate
- the first to ninth feature quantities p gi there are feature quantities effective for identification of a wireless device and feature quantities not effective for identification. Therefore, a large weight is set to the feature amount effective for identification, and a small weight is set to the feature amount not effective for identification.
- Setting the weighting parameter by the second parameter setting unit 6 is not particularly limited, for example, in the first dispersion value of the ninth feature amount p gi of the feature quantity p gi ninth normalized from the first A method may be considered in which a value obtained by normalizing the first to ninth feature quantities p gi is used as a weight.
- the feature amount calculation unit 7 multiplies the first to ninth feature amounts p gi and the weights w i as shown in the following equation (22) to obtain the first to ninth feature amounts p gi. Perform weighting.
- p ' gi p gi ⁇ w i (22)
- i 1, 2, ..., 9
- Feature amount calculation unit 7, a feature quantity vector p g of the calculated known radio, together with the serial number is added to the learning radio signal is stored in the second database section 10 (step of FIG. 4 ST5).
- the feature quantity calculation unit 7 outputs information indicating that the feature vector p g of the known radio stored in a second database section 10 to the first parameter setting unit 5.
- FIG. 8 is an explanatory view showing a relationship between parameters for feature amount calculation and feature amount vectors of a plurality of known wireless devices.
- ⁇ the feature quantity vector p g according to known radio types (A)
- ⁇ is feature vector p g according to known radio type (B)
- ⁇ the type It is the feature-value vector pg which concerns on the known radio
- the number of wireless devices belonging to the type (A) is 10 feature quantity vectors ⁇ are obtained.
- the number of wireless devices belonging to type (B) is 10, 10 feature quantity vectors are obtained, and the number of wireless devices belonging to type (C) is 10 10 feature quantity vectors ⁇ are obtained.
- the feature amount vector ⁇ ⁇ for the wireless device of type (A), the feature amount vector ⁇ for the wireless device of type (B), and the type (C) An example is shown in which the feature quantity vector ⁇ ⁇ associated with the wireless device of the present invention partially overlaps.
- the feature vector ⁇ for a known wireless device, the feature vector ⁇ , and the feature vector ⁇ overlap, these feature vectors ⁇ , ,, ⁇ and the feature vector for the wireless device to be identified
- the feature quantity vector that is most similar to the feature quantity vector of the wireless device to be identified among the feature quantity vectors ,, ,, ⁇ , the feature quantity of the known wireless apparatus It is desirable that the vector ⁇ , the feature vector ⁇ , and the feature vector ⁇ ⁇ ⁇ ⁇ do not overlap.
- the feature amount vector ⁇ ⁇ for the wireless device of type (A), the feature amount vector ⁇ for the wireless device of type (B), and the type (C) An example is shown in which the feature amount vector ⁇ ⁇ associated with the wireless device in (1) is not overlapped.
- the first parameter setting unit 5 sets a parameter indicating a time range ⁇ t which is a length of a time zone (t 1 to t 2 ) and a parameter indicating a set frequency bin k b as an initial setting of a parameter for feature amount calculation. And set any value.
- the time zone (t 1 to t 2 ) may be set based on the energy time waveform E g (m) for learning. For example, at a time before the rise time T 0 of the learning wireless signal s g (n), a time at which the energy is 30 dB lower than the maximum value of the learning energy time waveform E g (m) is t 1 Do.
- the time at which the energy is 30 dB lower than the maximum value of the learning energy time waveform E g (m) is t 2 Do.
- t 2 a method of setting on the basis of the variation in the frequency direction of the learning Fourier transform signal s g (n) is considered. For example, it is assumed that the time at which the frequency fluctuation during the transient response of the learning Fourier transform signal s g (n) falls within a specific frequency range is t 2 .
- the set frequency bin k b, the energy time waveform E g for learning (m), the average power is considered a method that employs a frequency bin having the maximum value. Also, the set frequency bin k b, the energy time waveform E g for learning (m), to detect the more frequency bins average power threshold, an average of the frequency of the one or more frequency bins detected It is conceivable to adopt a frequency bin of the average frequency.
- the first parameter setting unit 5 receives the information indicating that stored from the feature amount calculation unit 7 feature vector p g of the known radio in the second database section 10, from the second database 10 , it acquires the feature quantity vector p g plurality of known radio.
- the first parameter setting unit 5 determines whether there is overlap between the feature vector p g according to several known radio, for example, as shown in FIG. 8B, a plurality of known radio without overlap between the feature vector p g according to, as an effective parameter for feature calculation is set to above, and ends the parameter setting processing.
- the first parameter setting unit 5 sets, for example, as shown in Figure 8A, if there is overlap between the feature vector p g according to several known radio, as a parameter for the feature amount calculation, first At least one of the time range ⁇ t being set or the set frequency bin k b is updated.
- Feature amount calculation unit 7 using the parameters for the updated feature quantity calculation by the first parameter setting unit 5, again, it is calculated several known feature quantity vectors p g radios respectively.
- the first parameter setting unit 5 determines whether there is overlap between the feature vector p g according to several known radio calculated again by the feature amount calculation unit 7. Until the overlap is eliminated between the feature vector p g according to several known radio, and updating the parameters for feature calculation by the first parameter setting unit 5, feature vector p by the feature amount calculating section 7 The calculation process of g is repeated. Note that the update processing of the parameter, repeating the process of calculating the feature quantity vectors p g, if not eliminated overlap according to several known radio, the overlap is the smallest parameter as appropriate parameters , End the parameter setting process.
- FIG. 10 is an explanatory view showing an example of the feature amounts related to a plurality of known wireless devices stored in the second database unit 10.
- the known types of radios show examples of type (A) and type (B), and the radios belonging to type (A) are individual of serial number (1), serial number An example of the individual of (2) is shown. Further, FIG. 10 shows an example of parameters for feature amount calculation and weighting parameters.
- the parameter for calculating the feature amount is updated by the first parameter setting unit 5 until the parameter for calculating the feature amount becomes an appropriate value.
- the update timing of the parameter for is not limited to this. For example, when the learning wireless signal newly transmitted from the known wireless device is received by the signal receiving unit 1, the first feature amount is calculated by the feature amount calculating unit 7.
- the parameter setting unit 5 may update the parameter for feature amount calculation.
- FIG. 11 is a flowchart showing an identification process in the wireless device identification method according to the first embodiment of the present invention.
- the signal receiving unit 1 receives a radio signal transmitted from a radio to be identified as an identification radio signal, and converts the received identification radio signal from an analog signal to a digital signal (step ST11 in FIG. 11).
- the signal receiving unit 1 outputs the digital radio signal for identification s d (n) to the Fourier transform unit 2.
- n in s d (n) is a sample number of the identification radio signal.
- the Fourier transform unit 2 STFTs the digital identification radio signal s d (n) output from the signal reception unit 1 as shown in the following equation (23) (step ST12 in FIG. 11).
- the Fourier transform unit 2 outputs the discrimination Fourier transform signal S d (m, k), which is a Fourier transform signal indicating the STFT result of the identification radio signal s d (n), to the detection unit 3 and the feature amount calculation unit 7 (Step ST12 in FIG. 11).
- FIG. 5 also shows the STFT of the identification radio signal s d (n).
- Rising edge detection unit 3 performs a process of detecting the rise time T 0 of the identification radio signal s d (n) (step ST13 in FIG. 11). It will be specifically described below detection processing of the rising time T 0 by the rising edge detection unit 3.
- the rising edge detection unit 3 generates a square value
- 2 is calculated as spectrogram SP d (m, k).
- the rising edge detection unit 3 calculates an energy time waveform E d (m) for identification, which is a time waveform of energy in the spectrogram SP d (m, k), as shown in the following equation (25).
- the energy-time waveform E d (m) for identification is calculated by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram SP d (m, k).
- k 1 is a frequency bin number indicating the lower limit frequency of frequencies for summing power among a plurality of frequencies included in spectrogram SP d (m, k), and k n is a spectrogram SP d It is a frequency bin number which shows the upper limit frequency of the frequency which totals electric power among several frequencies contained in (m, k).
- k k 1, ⁇ , a k n.
- the rising edge detection unit 3 compares the energy time waveform E d (m) for identification with the threshold value E th .
- the rising edge detection unit 3 refers to the comparison result of the energy-time waveform E d (m) for identification and the threshold value E th to determine the energy-time waveform E d for identification that initially indicated the energy of the noise level. It is determined whether (m) has reached the threshold value E th .
- the rising edge detection unit 3 detects the time when the energy time waveform E d (m) for identification reaches the threshold value E th as the rising time T 0 of the identification wireless signal s d (n).
- the rising detection unit 3 detects the rising time T 0 of the identification radio signal s d (n)
- the power at a plurality of frequencies included in the spectrogram SP d (m, k) are summed up.
- the influence of the variation of the power is reduced, thereby improving the detection accuracy of the rise time T 0.
- the feature amount calculation unit 7 recognizes a time zone (t 1 to t 2 ) including the rise time T 0 and the set frequency bin k b from the parameters for feature amount calculation set by the first parameter setting unit 5. .
- Parameters for the feature amount calculated by the first parameter setting unit 5, as the overlap between the feature vector p g according to several known radio is eliminated, or set so that the overlap is minimized Parameters that have been Next, as shown in FIG. 6, the feature quantity calculation unit 7 identifies the detection detected by the rising edge detection unit 3 from the identification Fourier transform signal S d (m, k) output from the Fourier transform unit 2. use to extract the radio signal s d time zone including the rising time T 0 of the (n) (t 1 ⁇ t 2) identifying the Fourier transform signal s d of (n) t1 ⁇ t2.
- the feature quantity calculation unit 7 calculates the set frequency bin k b among the complex time signals included in the extracted Fourier transform signal s d (n) t 1 to t 2 .
- the complex time signal sd hat (n) t1 to t2 are cut out.
- the feature amount calculation unit 7 calculates the variation of the extracted Fourier transform signal s d (n) t 1 to t 2 as the feature amount from the extracted complex time signal s d hat (n) t 1 to t 2 (FIG. 11 Step ST14).
- the feature amount calculation unit 7 calculates the instantaneous amplitude a of the complex time signal s d hat (n) t 1 to t 2 as shown in the following equation (26) Calculate d (n).
- I d (n) is the real part of complex time signal s d hat (n) t 1 to t 2
- Q d (n) is the imaginary part of complex time signal s d hat (n) t 1 to t 2 It is a department.
- the frequency f d (n) is calculated.
- the feature quantity calculation unit 7 calculates the dispersion of the instantaneous amplitude a d (n) in the complex time signal s d hat (n) t 1 to t 2 as the first feature quantity as shown in the following equation (29) Calculate the value p d1 .
- the feature quantity calculation unit 7 calculates the skewness p d2 of the instantaneous amplitude a d (n) in the complex time signal s d hat (n) t 1 to t 2 as the second feature quantity as shown in the following equation (31) Calculate The feature quantity calculation unit 7 calculates the kurtosis p d3 of the instantaneous amplitude a d (n) at the complex time signal s d hat (n) t 1 to t 2 as the third feature quantity as shown in the following equation (33) Calculate
- the feature quantity calculation unit 7 calculates the dispersion of the instantaneous phase ⁇ d (n) in the complex time signal s d hat (n) t 1 to t 2 as the fourth feature quantity as shown in the following equation (34) Calculate the value p d4 .
- the feature quantity calculation unit 7 calculates the skewness p d5 of the instantaneous phase ⁇ d (n) in the complex time signal s d hat (n) t 1 to t 2 as the fifth feature quantity, as shown in the following equation (36) Calculate The feature quantity calculation unit 7 calculates the kurtosis p d6 of the instantaneous phase ⁇ d (n) at the complex time signal s d hat (n) t 1 to t 2 as the sixth feature quantity as shown in the following equation (38) Calculate
- the feature quantity calculation unit 7 calculates the dispersion of the instantaneous frequency f d (n) at the complex time signal s d hat (n) t 1 to t 2 as the seventh feature quantity as shown in the following equation (39) Calculate the value p d7 .
- the feature quantity calculation unit 7 calculates, as the eighth feature quantity, the skewness p d8 of the instantaneous frequency f d (n) at the complex time signal s d hat (n) t 1 to t 2 as represented by the following equation (41) Calculate The feature quantity calculation unit 7 calculates the kurtosis p d9 of the instantaneous frequency f d (n) at the complex time signal s d hat (n) t 1 to t 2 as the ninth feature quantity as shown in the following equation (43) Calculate
- the feature quantity calculation unit 7 multiplies the first to ninth feature quantity p di and the weight w i as shown in the following equation (44) to obtain the first to ninth feature quantity p di.
- the feature amount calculation unit 7 calculates a vector in which the weighted first to ninth feature amounts p ′ di are arranged as the feature amount vector p d of the wireless device to be identified.
- the feature amount calculation unit 7 outputs the calculated feature amount vector p d of the wireless device to be identified to the wireless device identification unit 11.
- the wireless device identification unit 11 is a feature amount vector p d for the wireless device to be identified calculated by the feature amount calculation unit 7 and a feature for a plurality of known wireless devices stored in the second database unit 10 comparing the amount vector p g respectively.
- the radio identification unit 11 includes a feature vector p d according to the identification target radio, based on a result of comparison between the feature vector p g according to several known radio, to be identified radios It identifies (step ST15 of FIG. 11).
- FIG. 12 is an explanatory view showing identification processing of a wireless device by the wireless device identification unit 11.
- FIG. 12 only the first to third feature amounts are illustrated among the first to ninth feature amounts calculated by the feature amount calculating unit 7 for simplification of the description.
- the wireless device identification unit 11 uses the feature quantity vector p d for the wireless device to be identified and the plurality of known wireless devices stored by the second database unit 10 as shown in the following equation (45):
- the Mahalanobis distance d ij, h between the feature quantity vector p g is calculated.
- the known radio is located H pieces, it is assumed that the feature vector p g of the H-number of radio is respectively stored in the second database section 10.
- the H wireless devices include, for example, a wireless device belonging to type (A), a wireless device belonging to type (B), or a wireless device belonging to type (C).
- x j is n This is the position of the feature quantity vector p d of the wireless device to be identified in the feature quantity space of a dimension.
- (X i, h- x j ) is the Euclidean distance between two points in the n-dimensional feature amount space
- S is the feature amount space of the learning wireless signal s g (n) transmitted from the known wireless device h Is the variance-covariance matrix of the distribution at.
- the Mahalanobis distance d ij, h is a distance in a space in which the influence of the distribution of the distribution of the learning wireless signal s g (n) in the feature space is normalized.
- Radio identification unit 11 outputs the calculated H-number of the Mahalanobis distance d ij, compared to each other h, H-number of the Mahalanobis distance d ij, in h, the minimum Mahalanobis distance d ij, identifies the h.
- the wireless device identification unit 11 determines that the known wireless device related to the minimum Mahalanobis distance d ij, h is most similar to the wireless device to be identified.
- the wireless device identification unit 11 outputs the serial number of the known wireless device related to the minimum Mahalanobis distance d ij, h as the identification result of the wireless device to be identified. This makes it possible to identify not only the type of wireless device but also the wireless device. In the example of FIG.
- the position of the feature vector p g of the three known radio is shown.
- the Mahalanobis distance between the feature vector p position of g is known radio is ⁇ is the minimum, radio identification target, the position of the feature vector p g Identified as a ⁇ radio.
- the wireless device identification unit 11 identifies the wireless device using the Mahalanobis distance d ij, h
- the present invention is not limited thereto.
- linear identification by the least squares method support vector The radio may be identified using a machine (SVM: Support Vector Machine) or a neural network.
- SVM Support Vector Machine
- the time waveform of energy in the spectrogram of the Fourier transform signal output from the Fourier transform unit 2 is calculated, and the rise time of the wireless signal is detected from the time waveform of energy.
- the Fourier transform signal of the time zone including the rise time detected by the rise detection unit 3 is extracted from the rise detection unit 3 and the Fourier transform signal output from the Fourier transform unit 2 to extract the extracted Fourier transform signal
- the wireless device identification unit 11 is calculated by the feature amount calculation unit 7 by providing the feature amount calculation unit 7 that calculates the variation of the extracted Fourier transform signal as the feature amount from the complex time signal of the set frequency component included. Since the wireless device is configured to identify the wireless device based on the feature amount, the effect of being able to identify the individual of the wireless device Unlikely to.
- the present invention is suitable for a wireless device identification device for identifying a wireless device and a wireless device identification method.
- Reference Signs List 1 signal reception unit, 2 Fourier transform unit, 3 rising detection unit, 4 parameter setting unit, 5 first parameter setting unit, 6 second parameter setting unit, 7 feature amount calculation unit, 8 database unit, 9 first Database unit, 10 Second database unit, 11 radio identification unit, 21 signal reception circuit, 22 Fourier transform circuit, 23 rise detection circuit, 24 parameter setting circuit, 25 feature amount calculation circuit, 26 database circuit, 27 radio identification Circuit, 31 memories, 32 processors.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The present invention is provided with: a rise detection unit (3) which calculates an energy time waveform in a spectrogram of a Fourier transform signal output from a Fourier transform unit (2) and detects a rise time of a wireless signal from the energy time waveform; and a feature amount calculation unit (7) which extracts, from the Fourier transform signal output from the Fourier transform unit (2), a Fourier transform signal in a time period including the rise time detected by the rise detection unit (3) and calculates, from a complex time signal of a set frequency component included in the extracted Fourier transform signal, a variation of the extracted Fourier transform signal as the feature amount, wherein a wireless machine identification unit (11) identifies a wireless machine on the basis of the feature amount calculated by the feature amount calculation unit (7).
Description
この発明は、無線機を識別する無線機識別装置及び無線機識別方法に関するものである。
The present invention relates to a wireless device identification device for identifying a wireless device and a wireless device identification method.
無線機から送信される無線信号の立ち上がりなどの過渡応答は、個体差があることが知られており、近年では、無線機から送信される無線信号を解析することで、無線機を識別する無線機識別装置が提案されている。
例えば、無線機識別装置は、無線機から送信される無線信号の立ち上がりの特徴量を算出し、算出した特徴量に基づいて、無線機を識別する。
無線信号の立ち上がりの特徴量としては、立ち上がり時の無線信号における振幅等の分散値、歪度及び尖度などがある。 It is known that there are individual differences in transient response such as rising of a radio signal transmitted from a wireless device, and in recent years, a wireless device is identified by analyzing the wireless signal transmitted from the wireless device. Machine identification devices have been proposed.
For example, the wireless device identification device calculates the feature amount of the rising edge of the wireless signal transmitted from the wireless device, and identifies the wireless device based on the calculated feature amount.
The characteristic quantities of the rising edge of the wireless signal include the dispersion value of the amplitude or the like in the wireless signal at the rising edge, the skewness, and the kurtosis.
例えば、無線機識別装置は、無線機から送信される無線信号の立ち上がりの特徴量を算出し、算出した特徴量に基づいて、無線機を識別する。
無線信号の立ち上がりの特徴量としては、立ち上がり時の無線信号における振幅等の分散値、歪度及び尖度などがある。 It is known that there are individual differences in transient response such as rising of a radio signal transmitted from a wireless device, and in recent years, a wireless device is identified by analyzing the wireless signal transmitted from the wireless device. Machine identification devices have been proposed.
For example, the wireless device identification device calculates the feature amount of the rising edge of the wireless signal transmitted from the wireless device, and identifies the wireless device based on the calculated feature amount.
The characteristic quantities of the rising edge of the wireless signal include the dispersion value of the amplitude or the like in the wireless signal at the rising edge, the skewness, and the kurtosis.
ただし、信号対雑音比 (Signal-to-Noise Ratio:SNR)が低い環境下では、立ち上がりの特徴量の算出精度が低下して、無線機の識別精度が低下する。このため、無線機から送信される無線信号を短時間フーリエ変換することで、SNRを改善してから、立ち上がりの特徴量を算出する無線機識別装置が以下の特許文献1に開示されている。
この無線機識別装置では、立ち上がりの特徴量として、立ち上がりの時定数を算出している。 However, in an environment where the signal-to-noise ratio (SNR) is low, the calculation accuracy of the rising feature amount is reduced, and the identification accuracy of the wireless device is reduced. For this reason, the followingPatent Document 1 discloses a wireless device identification apparatus that calculates the feature value of the rising after improving SNR by performing short-time Fourier transform on a wireless signal transmitted from the wireless device.
In this wireless device identification device, the rise time constant is calculated as the rise feature amount.
この無線機識別装置では、立ち上がりの特徴量として、立ち上がりの時定数を算出している。 However, in an environment where the signal-to-noise ratio (SNR) is low, the calculation accuracy of the rising feature amount is reduced, and the identification accuracy of the wireless device is reduced. For this reason, the following
In this wireless device identification device, the rise time constant is calculated as the rise feature amount.
従来の無線機識別装置は、立ち上がりの時定数に基づく無線機の識別方法を採用している。立ち上がりの時定数に基づく無線機の識別方法では、無線機の種類については識別することが可能である。しかし、同一種類の無線機は、異なる無線機であっても、立ち上がりの時定数の差異が小さいため、無線機の個体を識別することができないという課題があった。
The conventional wireless device identification apparatus employs a wireless device identification method based on the rise time constant. In the radio identification method based on the rise time constant, the radio type can be identified. However, even with different types of wireless devices, there is a problem in that it is not possible to identify an individual wireless device because the difference in the rise time constants is small even if the wireless devices are different.
この発明は上記のような課題を解決するためになされたもので、無線機の個体識別を行うことができる無線機識別装置及び無線機識別方法を得ることを目的とする。
The present invention has been made to solve the problems as described above, and it is an object of the present invention to obtain a wireless device identification device and a wireless device identification method capable of performing individual identification of a wireless device.
この発明に係る無線機識別装置は、識別対象の無線機から送信された無線信号を受信する信号受信部と、信号受信部により受信された無線信号を短時間フーリエ変換し、無線信号の短時間フーリエ変換結果を示すフーリエ変換信号を出力するフーリエ変換部と、フーリエ変換部から出力されたフーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形を算出し、エネルギーの時間波形から無線信号の立ち上がり時刻を検出する立ち上がり検出部と、フーリエ変換部から出力されたフーリエ変換信号の中から、立ち上がり検出部により検出された立ち上がり時刻を含む時間帯のフーリエ変換信号を抽出し、抽出したフーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出したフーリエ変換信号の変動を特徴量として算出する特徴量算出部とを設け、無線機識別部が、特徴量算出部により算出された特徴量に基づいて、無線機を識別するようにしたものである。
The wireless device identification apparatus according to the present invention performs short-time Fourier transform of a wireless signal received by the signal receiving unit and a signal receiving unit that receives a wireless signal transmitted from a wireless device to be identified. A Fourier transform unit that outputs a Fourier transform signal indicating a result of Fourier transform, and a time waveform of energy in a spectrogram of the Fourier transform signal output from the Fourier transform unit are calculated, and a rise time of a wireless signal is detected from the time waveform of energy. The Fourier transform signal of the time zone including the rise time detected by the rise detection unit is extracted from the rise detection unit and the Fourier transform signal output from the Fourier transform unit, and is included in the extracted Fourier transform signal The variation of the Fourier transform signal extracted from the complex time signal of the set frequency component A feature quantity calculating unit that calculates Te provided, the wireless device identification unit, based on the feature amount calculated by the feature calculation unit, in which so as to identify the radio.
この発明によれば、フーリエ変換部から出力されたフーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形を算出し、エネルギーの時間波形から無線信号の立ち上がり時刻を検出する立ち上がり検出部と、フーリエ変換部から出力されたフーリエ変換信号の中から、立ち上がり検出部により検出された立ち上がり時刻を含む時間帯のフーリエ変換信号を抽出し、抽出したフーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出したフーリエ変換信号の変動を特徴量として算出する特徴量算出部とを設け、無線機識別部が、特徴量算出部により算出された特徴量に基づいて、無線機を識別するように構成したので、無線機の個体を識別することができる効果がある。
According to the present invention, the rise detection unit which calculates the time waveform of energy in the spectrogram of the Fourier transform signal output from the Fourier transform unit and detects the rise time of the wireless signal from the time waveform of energy, and the output from the Fourier transform unit The Fourier transform signal of the time zone including the rise time detected by the rise detection unit is extracted from the detected Fourier transform signal, and the complex time signal of the set frequency component included in the extracted Fourier transform signal is extracted Since the wireless device identification unit is configured to identify the wireless device based on the feature amount calculated by the feature amount calculation unit, the feature amount calculation unit calculates the variation of the Fourier transform signal as the feature amount. There is an effect that can identify the individual of the radio.
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described according to the attached drawings.
実施の形態1.
図1は、この発明の実施の形態1による無線機識別装置を示す構成図である。
図2は、この発明の実施の形態1による無線機識別装置を示すハードウェア構成図である。
図1及び図2において、信号受信部1は、例えば図2に示す信号受信回路21で実現される。
信号受信部1は、既知の無線機から送信された無線信号を学習用無線信号として受信し、受信した学習用無線信号をアナログ信号からデジタル信号に変換することで、デジタルの学習用無線信号をフーリエ変換部2及び第1のデータベース部9に出力する。
また、信号受信部1は、識別対象の無線機から送信された無線信号を識別用無線信号として受信し、受信した識別用無線信号をアナログ信号からデジタル信号に変換することで、デジタルの識別用無線信号をフーリエ変換部2に出力する。Embodiment 1
FIG. 1 is a block diagram showing a radio device identification apparatus according to a first embodiment of the present invention.
FIG. 2 is a hardware configuration diagram showing a radio device identification apparatus according toEmbodiment 1 of the present invention.
In FIGS. 1 and 2, thesignal receiving unit 1 is realized by, for example, the signal receiving circuit 21 shown in FIG.
Thesignal receiving unit 1 receives a wireless signal transmitted from a known wireless device as a learning wireless signal, and converts the received learning wireless signal from an analog signal to a digital signal to thereby obtain a digital learning wireless signal. Output to the Fourier transform unit 2 and the first database unit 9.
In addition, thesignal reception unit 1 receives a wireless signal transmitted from a wireless device to be identified as a wireless signal for identification, and converts the received wireless signal for identification from an analog signal to a digital signal to thereby perform digital identification. The radio signal is output to the Fourier transform unit 2.
図1は、この発明の実施の形態1による無線機識別装置を示す構成図である。
図2は、この発明の実施の形態1による無線機識別装置を示すハードウェア構成図である。
図1及び図2において、信号受信部1は、例えば図2に示す信号受信回路21で実現される。
信号受信部1は、既知の無線機から送信された無線信号を学習用無線信号として受信し、受信した学習用無線信号をアナログ信号からデジタル信号に変換することで、デジタルの学習用無線信号をフーリエ変換部2及び第1のデータベース部9に出力する。
また、信号受信部1は、識別対象の無線機から送信された無線信号を識別用無線信号として受信し、受信した識別用無線信号をアナログ信号からデジタル信号に変換することで、デジタルの識別用無線信号をフーリエ変換部2に出力する。
FIG. 1 is a block diagram showing a radio device identification apparatus according to a first embodiment of the present invention.
FIG. 2 is a hardware configuration diagram showing a radio device identification apparatus according to
In FIGS. 1 and 2, the
The
In addition, the
フーリエ変換部2は、例えば図2に示すフーリエ変換回路22で実現される。
フーリエ変換部2は、信号受信部1から出力されたデジタルの学習用無線信号を短時間フーリエ変換(STFT:Short Time Fourier Transform)し、学習用無線信号の短時間フーリエ変換結果であるSTFT結果を示すフーリエ変換信号(以下、学習用フーリエ変換信号と称する)を立ち上がり検出部3及び特徴量算出部7に出力する処理を実施する。
また、フーリエ変換部2は、信号受信部1から出力されたデジタルの識別用無線信号をSTFTし、識別用無線信号のSTFT結果を示すフーリエ変換信号(以下、識別用フーリエ変換信号と称する)を立ち上がり検出部3及び特徴量算出部7に出力する処理を実施する。
STFTは、一定時間毎に異なる時刻の無線信号をそれぞれ切り出し、切り出した各々の無線信号をそれぞれ高速フーリエ変換(FFT:Fast Fourier Transform)する手法である。 The Fouriertransform unit 2 is realized by, for example, the Fourier transform circuit 22 shown in FIG.
The Fouriertransform unit 2 performs short time Fourier transform (STFT: Short Time Fourier Transform) on the digital learning wireless signal output from the signal receiving unit 1, and obtains the STFT result that is the short time Fourier transform of the learning wireless signal. A process of outputting the Fourier transform signal shown below (hereinafter referred to as a learning Fourier transform signal) to the rise detection unit 3 and the feature quantity calculation unit 7 is performed.
Further, the Fouriertransform unit 2 performs STFT on the digital identification radio signal output from the signal reception unit 1 and indicates a Fourier transform signal (hereinafter referred to as identification Fourier transform signal) indicating the STFT result of the identification radio signal. The processing to be output to the rising edge detection unit 3 and the feature amount calculation unit 7 is performed.
The STFT is a method of extracting radio signals of different times at fixed time intervals, and performing fast Fourier transform (FFT) on the extracted radio signals.
フーリエ変換部2は、信号受信部1から出力されたデジタルの学習用無線信号を短時間フーリエ変換(STFT:Short Time Fourier Transform)し、学習用無線信号の短時間フーリエ変換結果であるSTFT結果を示すフーリエ変換信号(以下、学習用フーリエ変換信号と称する)を立ち上がり検出部3及び特徴量算出部7に出力する処理を実施する。
また、フーリエ変換部2は、信号受信部1から出力されたデジタルの識別用無線信号をSTFTし、識別用無線信号のSTFT結果を示すフーリエ変換信号(以下、識別用フーリエ変換信号と称する)を立ち上がり検出部3及び特徴量算出部7に出力する処理を実施する。
STFTは、一定時間毎に異なる時刻の無線信号をそれぞれ切り出し、切り出した各々の無線信号をそれぞれ高速フーリエ変換(FFT:Fast Fourier Transform)する手法である。 The Fourier
The Fourier
Further, the Fourier
The STFT is a method of extracting radio signals of different times at fixed time intervals, and performing fast Fourier transform (FFT) on the extracted radio signals.
立ち上がり検出部3は、例えば図2に示す立ち上がり検出回路23で実現される。
立ち上がり検出部3は、フーリエ変換部2から出力された学習用フーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形(以下、学習用のエネルギー時間波形と称する)を算出し、学習用のエネルギー時間波形から学習用無線信号における立ち上がり時刻を検出する処理を実施する。
また、立ち上がり検出部3は、フーリエ変換部2から出力された識別用フーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形(以下、識別用のエネルギー時間波形と称する)を算出し、識別用のエネルギー時間波形から識別用無線信号における立ち上がり時刻を検出する処理を実施する。 The risingedge detection unit 3 is realized by, for example, the rising edge detection circuit 23 shown in FIG.
The risingedge detection unit 3 calculates a time waveform of energy in the spectrogram of the learning Fourier transform signal output from the Fourier transform unit 2 (hereinafter referred to as an energy time waveform for learning), and learns from the energy time waveform for learning A process of detecting the rise time of the wireless signal is performed.
Further, the risingedge detection unit 3 calculates a time waveform of energy in the spectrogram of the identification Fourier transform signal output from the Fourier transform unit 2 (hereinafter, referred to as an energy time waveform for identification), and an energy time waveform for identification From this, the process of detecting the rise time of the identification radio signal is performed.
立ち上がり検出部3は、フーリエ変換部2から出力された学習用フーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形(以下、学習用のエネルギー時間波形と称する)を算出し、学習用のエネルギー時間波形から学習用無線信号における立ち上がり時刻を検出する処理を実施する。
また、立ち上がり検出部3は、フーリエ変換部2から出力された識別用フーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形(以下、識別用のエネルギー時間波形と称する)を算出し、識別用のエネルギー時間波形から識別用無線信号における立ち上がり時刻を検出する処理を実施する。 The rising
The rising
Further, the rising
パラメータ設定部4は、第1のパラメータ設定部5及び第2のパラメータ設定部6を備えており、例えば図2に示すパラメータ設定回路24で実現される。
第1のパラメータ設定部5は、特徴量算出用のパラメータとして、立ち上がり検出部3により検出された立ち上がり時刻を含む時間帯の長さである時間範囲Δtを示すパラメータと、設定周波数成分である設定周波数ビンを示すパラメータとを設定する処理を実施する。
第2のパラメータ設定部6は、特徴量算出部7により算出される第1から第9の特徴量の重みを示す重み付けパラメータを設定する処理を実施する。
また、第2のパラメータ設定部6は、フーリエ変換部2によりSTFTが行われる際に用いられる窓関数のサンプル数及び窓関数をシフトさせるサンプル数を設定する処理を実施する。 Theparameter setting unit 4 includes a first parameter setting unit 5 and a second parameter setting unit 6, and is realized by, for example, the parameter setting circuit 24 illustrated in FIG.
The first parameter setting unit 5 sets a parameter indicating a time range Δt which is a length of a time zone including the rising time detected by the risingdetection unit 3 as a parameter for calculating the feature amount, and a setting frequency component A process of setting parameters indicating frequency bins is performed.
The secondparameter setting unit 6 performs a process of setting weighting parameters indicating the weights of the first to ninth feature amounts calculated by the feature amount calculation unit 7.
Further, the secondparameter setting unit 6 carries out a process of setting the number of samples of the window function and the number of samples for shifting the window function used when the STFT is performed by the Fourier transform unit 2.
第1のパラメータ設定部5は、特徴量算出用のパラメータとして、立ち上がり検出部3により検出された立ち上がり時刻を含む時間帯の長さである時間範囲Δtを示すパラメータと、設定周波数成分である設定周波数ビンを示すパラメータとを設定する処理を実施する。
第2のパラメータ設定部6は、特徴量算出部7により算出される第1から第9の特徴量の重みを示す重み付けパラメータを設定する処理を実施する。
また、第2のパラメータ設定部6は、フーリエ変換部2によりSTFTが行われる際に用いられる窓関数のサンプル数及び窓関数をシフトさせるサンプル数を設定する処理を実施する。 The
The first parameter setting unit 5 sets a parameter indicating a time range Δt which is a length of a time zone including the rising time detected by the rising
The second
Further, the second
特徴量算出部7は、例えば図2に示す特徴量算出回路25で実現される。
特徴量算出部7は、パラメータ設定部4により設定された特徴量算出用のパラメータから、立ち上がり時刻を含む時間帯及び設定周波数ビンを認識する。
特徴量算出部7は、フーリエ変換部2から出力された学習用フーリエ変換信号の中から、立ち上がり検出部3により検出された学習用無線信号における立ち上がり時刻を含む時間帯の学習用フーリエ変換信号を抽出する処理を実施する。
そして、特徴量算出部7は、抽出した学習用フーリエ変換信号に含まれている設定周波数ビンの複素時間信号から、抽出した学習用フーリエ変換信号の変動を特徴量として算出する処理を実施する。 The featureamount calculation unit 7 is realized by, for example, the feature amount calculation circuit 25 shown in FIG.
The featureamount calculation unit 7 recognizes the time zone including the rise time and the set frequency bin from the parameters for feature amount calculation set by the parameter setting unit 4.
Among the learning Fourier transform signals output from the Fouriertransform unit 2, the feature amount calculation unit 7 performs a learning Fourier transform signal of a time zone including the rise time in the learning wireless signal detected by the rise detection unit 3. Implement the process to extract.
Then, the featureamount calculation unit 7 performs processing of calculating, as a feature amount, the fluctuation of the extracted learning Fourier transform signal from the complex time signal of the set frequency bin included in the extracted learning Fourier transform signal.
特徴量算出部7は、パラメータ設定部4により設定された特徴量算出用のパラメータから、立ち上がり時刻を含む時間帯及び設定周波数ビンを認識する。
特徴量算出部7は、フーリエ変換部2から出力された学習用フーリエ変換信号の中から、立ち上がり検出部3により検出された学習用無線信号における立ち上がり時刻を含む時間帯の学習用フーリエ変換信号を抽出する処理を実施する。
そして、特徴量算出部7は、抽出した学習用フーリエ変換信号に含まれている設定周波数ビンの複素時間信号から、抽出した学習用フーリエ変換信号の変動を特徴量として算出する処理を実施する。 The feature
The feature
Among the learning Fourier transform signals output from the Fourier
Then, the feature
また、特徴量算出部7は、フーリエ変換部2から出力された識別用フーリエ変換信号の中から、立ち上がり検出部3により算出された識別用無線信号における立ち上がり時刻を含む時間帯の識別用フーリエ変換信号を抽出する処理を実施する。
そして、特徴量算出部7は、抽出した識別用フーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出した識別用フーリエ変換信号の変動を特徴量として算出する処理を実施する。 In addition, the featurequantity calculation unit 7 performs Fourier transform for identification of a time zone including a rise time in the identification wireless signal calculated by the rise detection unit 3 among the identification Fourier transform signals output from the Fourier transform unit 2. Implement the process of extracting the signal.
Then, the featureamount calculation unit 7 performs processing of calculating, as a feature amount, the fluctuation of the extracted identification Fourier transform signal from the complex time signal of the set frequency component included in the extracted identification Fourier transform signal.
そして、特徴量算出部7は、抽出した識別用フーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出した識別用フーリエ変換信号の変動を特徴量として算出する処理を実施する。 In addition, the feature
Then, the feature
データベース部8は、第1のデータベース部9及び第2のデータベース部10を備えており、例えば図2に示すデータベース回路26で実現される。
第1のデータベース部9は、信号受信部1から出力されたデジタルの学習用無線信号を格納する。
第2のデータベース部10は、既知の無線機に係る特徴量として、特徴量算出部7により算出された学習用フーリエ変換信号の変動を格納する。 Thedatabase unit 8 includes a first database unit 9 and a second database unit 10, and is realized by, for example, the database circuit 26 shown in FIG.
Thefirst database unit 9 stores the digital learning radio signal output from the signal receiving unit 1.
Thesecond database unit 10 stores the fluctuation of the learning Fourier transform signal calculated by the feature amount calculation unit 7 as a feature amount related to a known wireless device.
第1のデータベース部9は、信号受信部1から出力されたデジタルの学習用無線信号を格納する。
第2のデータベース部10は、既知の無線機に係る特徴量として、特徴量算出部7により算出された学習用フーリエ変換信号の変動を格納する。 The
The
The
無線機識別部11は、例えば図2に示す無線機識別回路27で実現される。
無線機識別部11は、特徴量算出部7により算出された識別対象の無線機に係る特徴量と、第2のデータベース部10により格納されている既知の無線機に係る特徴量とを比較する処理を実施する。
無線機識別部11は、識別対象の無線機に係る特徴量と既知の無線機に係る特徴量との比較結果に基づいて、識別対象の無線機を識別する処理を実施する。 The wirelessdevice identification unit 11 is realized by, for example, the wireless device identification circuit 27 shown in FIG.
The wirelessdevice identification unit 11 compares the feature amount of the wireless device to be identified calculated by the feature amount calculation unit 7 with the feature amount of the known wireless device stored by the second database unit 10. Perform the process.
The wirelessdevice identification unit 11 carries out a process of identifying the wireless device to be identified based on the comparison result of the feature amount of the wireless device to be identified and the feature amount of the known wireless device.
無線機識別部11は、特徴量算出部7により算出された識別対象の無線機に係る特徴量と、第2のデータベース部10により格納されている既知の無線機に係る特徴量とを比較する処理を実施する。
無線機識別部11は、識別対象の無線機に係る特徴量と既知の無線機に係る特徴量との比較結果に基づいて、識別対象の無線機を識別する処理を実施する。 The wireless
The wireless
The wireless
図1では、無線機識別装置の構成要素である信号受信部1、フーリエ変換部2、立ち上がり検出部3、パラメータ設定部4、特徴量算出部7、データベース部8及び無線機識別部11のそれぞれが、図2に示すような専用のハードウェアで実現されるものを想定している。即ち、信号受信回路21、フーリエ変換回路22、立ち上がり検出回路23、パラメータ設定回路24、特徴量算出回路25、データベース回路26及び無線機識別回路27で実現されるものを想定している。
In FIG. 1, the signal receiving unit 1, the Fourier transform unit 2, the rising edge detecting unit 3, the parameter setting unit 4, the feature amount calculating unit 7, the database unit 8 and the wireless device identification unit 11 which are components of the wireless device identification device However, it assumes what is implement | achieved by the special purpose hardware as shown in FIG. That is, what is realized by the signal reception circuit 21, the Fourier transform circuit 22, the rising edge detection circuit 23, the parameter setting circuit 24, the feature amount calculation circuit 25, the database circuit 26, and the radio device identification circuit 27 is assumed.
ここで、データベース回路26は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)が該当する。
また、信号受信回路21、フーリエ変換回路22、立ち上がり検出回路23、パラメータ設定回路24、特徴量算出回路25及び無線機識別回路27は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。 Here, thedatabase circuit 26 is, for example, nonvolatile or random access memory (RAM), read only memory (ROM), flash memory, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM) or the like. A volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) corresponds to this.
Further, thesignal reception circuit 21, the Fourier transform circuit 22, the rise detection circuit 23, the parameter setting circuit 24, the feature quantity calculation circuit 25 and the wireless device identification circuit 27 are, for example, a single circuit, a composite circuit, a programmed processor, parallel A programmed processor, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination of these is applicable.
また、信号受信回路21、フーリエ変換回路22、立ち上がり検出回路23、パラメータ設定回路24、特徴量算出回路25及び無線機識別回路27は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。 Here, the
Further, the
無線機識別装置における信号受信部1を除く構成要素は、専用のハードウェアで実現されるものに限るものではなく、無線機識別装置における信号受信部1を除く構成要素が、ソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせで実現されるものであってもよい。
ソフトウェア又はファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。 The components excluding thesignal receiving unit 1 in the wireless device identification device are not limited to those realized by dedicated hardware, and the components excluding the signal receiving unit 1 in the wireless device identification device are software, firmware, or , And may be realized by a combination of software and firmware.
The software or firmware is stored as a program in the memory of the computer. A computer means hardware that executes a program, and for example, a central processing unit (CPU), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a digital signal processor (DSP). Do.
ソフトウェア又はファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。 The components excluding the
The software or firmware is stored as a program in the memory of the computer. A computer means hardware that executes a program, and for example, a central processing unit (CPU), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a digital signal processor (DSP). Do.
図3は、無線機識別装置における信号受信部1を除く構成要素がソフトウェア又はファームウェアなどで実現される場合のコンピュータのハードウェア構成図である。
無線機識別装置における信号受信部1を除く構成要素がソフトウェア又はファームウェアなどで実現される場合、データベース部8をコンピュータのメモリ31上に構成するとともに、フーリエ変換部2、立ち上がり検出部3、パラメータ設定部4、特徴量算出部7及び無線機識別部11の処理手順をコンピュータに実行させるためのプログラムをメモリ31に格納し、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行するようにすればよい。 FIG. 3 is a hardware configuration diagram of a computer in the case where components excluding thesignal receiving unit 1 in the wireless device identification device are realized by software or firmware.
When components other than thesignal receiving unit 1 in the wireless device identification apparatus are realized by software or firmware, the database unit 8 is configured on the memory 31 of the computer, and the Fourier transform unit 2, the rising edge detecting unit 3, parameter setting A program for causing the computer to execute the processing procedure of the unit 4, the feature value calculation unit 7 and the wireless device identification unit 11 is stored in the memory 31, and the processor 32 of the computer executes the program stored in the memory 31. do it.
無線機識別装置における信号受信部1を除く構成要素がソフトウェア又はファームウェアなどで実現される場合、データベース部8をコンピュータのメモリ31上に構成するとともに、フーリエ変換部2、立ち上がり検出部3、パラメータ設定部4、特徴量算出部7及び無線機識別部11の処理手順をコンピュータに実行させるためのプログラムをメモリ31に格納し、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行するようにすればよい。 FIG. 3 is a hardware configuration diagram of a computer in the case where components excluding the
When components other than the
また、図2では、無線機識別装置の構成要素のそれぞれが専用のハードウェアで実現される例を示し、図3では、無線機識別装置がソフトウェアやファームウェアなどで実現される例を示しているが、無線機識別装置における一部の構成要素が専用のハードウェアで実現され、残りの構成要素がソフトウェアやファームウェアなどで実現されるものであってもよい。
Also, FIG. 2 shows an example in which each of the components of the wireless device identification device is realized by dedicated hardware, and FIG. 3 shows an example in which the wireless device identification device is realized by software or firmware. However, some of the components of the wireless device identification device may be realized by dedicated hardware, and the remaining components may be realized by software, firmware or the like.
次に動作について説明する。
<学習時の処理>
最初に、既知の無線機から送信された無線信号を学習する際の処理内容を説明する。
図4は、この発明の実施の形態1による無線機識別方法における学習処理を示すフローチャートである。
信号受信部1は、既知の無線機から送信された無線信号を学習用無線信号として受信し、受信した学習用無線信号をアナログ信号からデジタル信号に変換する(図4のステップST1)。
学習用無線信号には、既知の無線機を識別する個体情報であるシリアルナンバーが付加されているものとする。
信号受信部1は、デジタルの学習用無線信号sg(n)をフーリエ変換部2及び第1のデータベース部9に出力する。sg(n)におけるnは、学習用無線信号のサンプル番号である。例えば、図9には、サンプル番号nが1~4の学習用無線信号が示されている。
第1のデータベース部9には、シリアルナンバーが付加されている学習用無線信号sg(n)が格納される。
図9は、第1のデータベース部9に格納されているシリアルナンバーが付加されている学習用無線信号を示す説明図である。
図9の例では、シリアルナンバーが同じ無線機であっても、受信時のSNR又はサンプリング周波数などの受信条件が異なっている複数の学習用無線信号が格納されている。 Next, the operation will be described.
<Process at the time of learning>
First, the contents of processing when learning a radio signal transmitted from a known radio will be described.
FIG. 4 is a flowchart showing a learning process in the wireless device identification method according to the first embodiment of the present invention.
Thesignal receiving unit 1 receives a wireless signal transmitted from a known wireless device as a learning wireless signal, and converts the received learning wireless signal from an analog signal to a digital signal (step ST1 in FIG. 4).
It is assumed that a serial number, which is individual information identifying a known wireless device, is added to the learning wireless signal.
Thesignal receiving unit 1 outputs the digital learning wireless signal s g (n) to the Fourier transform unit 2 and the first database unit 9. n in s g (n) is a sample number of a learning radio signal. For example, FIG. 9 shows a learning radio signal having a sample number n of 1 to 4.
Thefirst database unit 9 stores a learning radio signal s g (n) to which a serial number is added.
FIG. 9 is an explanatory view showing a learning radio signal to which the serial number stored in thefirst database unit 9 is added.
In the example of FIG. 9, a plurality of learning radio signals in which reception conditions such as the SNR at the time of reception or the sampling frequency are different are stored even if the radios have the same serial number.
<学習時の処理>
最初に、既知の無線機から送信された無線信号を学習する際の処理内容を説明する。
図4は、この発明の実施の形態1による無線機識別方法における学習処理を示すフローチャートである。
信号受信部1は、既知の無線機から送信された無線信号を学習用無線信号として受信し、受信した学習用無線信号をアナログ信号からデジタル信号に変換する(図4のステップST1)。
学習用無線信号には、既知の無線機を識別する個体情報であるシリアルナンバーが付加されているものとする。
信号受信部1は、デジタルの学習用無線信号sg(n)をフーリエ変換部2及び第1のデータベース部9に出力する。sg(n)におけるnは、学習用無線信号のサンプル番号である。例えば、図9には、サンプル番号nが1~4の学習用無線信号が示されている。
第1のデータベース部9には、シリアルナンバーが付加されている学習用無線信号sg(n)が格納される。
図9は、第1のデータベース部9に格納されているシリアルナンバーが付加されている学習用無線信号を示す説明図である。
図9の例では、シリアルナンバーが同じ無線機であっても、受信時のSNR又はサンプリング周波数などの受信条件が異なっている複数の学習用無線信号が格納されている。 Next, the operation will be described.
<Process at the time of learning>
First, the contents of processing when learning a radio signal transmitted from a known radio will be described.
FIG. 4 is a flowchart showing a learning process in the wireless device identification method according to the first embodiment of the present invention.
The
It is assumed that a serial number, which is individual information identifying a known wireless device, is added to the learning wireless signal.
The
The
FIG. 9 is an explanatory view showing a learning radio signal to which the serial number stored in the
In the example of FIG. 9, a plurality of learning radio signals in which reception conditions such as the SNR at the time of reception or the sampling frequency are different are stored even if the radios have the same serial number.
フーリエ変換部2は、以下の式(1)に示すように、信号受信部1から出力されたデジタルの学習用無線信号sg(n)をSTFTし、学習用無線信号sg(n)のSTFT結果を示すフーリエ変換信号である学習用フーリエ変換信号Sg(m,k)を立ち上がり検出部3及び特徴量算出部7に出力する(図4のステップST2)。
TheFourier transform unit 2 performs STFT on the digital learning wireless signal s g (n) output from the signal receiving unit 1 as shown in the following equation (1), and outputs the learning wireless signal s g (n). A learning Fourier transform signal S g (m, k), which is a Fourier transform signal indicating the STFT result, is output to the rise detection unit 3 and the feature quantity calculation unit 7 (step ST2 in FIG. 4).
The
式(1)において、w(n-m)は、窓関数であり、例えば、矩形窓又はハミング窓が考えられる。
mは、窓関数w(n-m)をシフトさせるサンプル数、m0は、窓関数w(n-m)の適用区間の初めのサンプル番号、Mは、窓関数w(n-m)のサンプル数、kは、周波数ビン番号である。
なお、窓関数w(n-m)のサンプル数M及び窓関数w(n-m)をシフトさせるサンプル数mのそれぞれは、第2のパラメータ設定部6によって事前に設定される。 In equation (1), w (n−m) is a window function, and for example, a rectangular window or a Hamming window can be considered.
m is the number of samples for shifting the window function w (n-m), m 0 is the first sample number of the application interval of the window function w (n-m), and M is the window function w (n-m) The number of samples, k, is a frequency bin number.
Note that each of the number of samples M of the window function w (n-m) and the number of samples m for shifting the window function w (n-m) is set in advance by the secondparameter setting unit 6.
mは、窓関数w(n-m)をシフトさせるサンプル数、m0は、窓関数w(n-m)の適用区間の初めのサンプル番号、Mは、窓関数w(n-m)のサンプル数、kは、周波数ビン番号である。
なお、窓関数w(n-m)のサンプル数M及び窓関数w(n-m)をシフトさせるサンプル数mのそれぞれは、第2のパラメータ設定部6によって事前に設定される。 In equation (1), w (n−m) is a window function, and for example, a rectangular window or a Hamming window can be considered.
m is the number of samples for shifting the window function w (n-m), m 0 is the first sample number of the application interval of the window function w (n-m), and M is the window function w (n-m) The number of samples, k, is a frequency bin number.
Note that each of the number of samples M of the window function w (n-m) and the number of samples m for shifting the window function w (n-m) is set in advance by the second
ここで、図5は、フーリエ変換部2による学習用無線信号sg(n)及び識別用無線信号sd(n)のSTFTを示す説明図である。
学習用無線信号sg(n)及び識別用無線信号sd(n)は、時間と振幅との関係を示す2次元信号である。識別用無線信号sd(n)については後述する。
STFT結果を示す学習用フーリエ変換信号Sg(m,k)及び識別用フーリエ変換信号Sd(m,k)は、時間と周波数及び電力との関係を示す3次元信号である。識別用フーリエ変換信号Sd(m,k)については後述する。
フーリエ変換部2により学習用無線信号sg(n)及び識別用無線信号sd(n)のそれぞれがSTFTされることで、学習用無線信号sg(n)及び識別用無線信号sd(n)のそれぞれが、コヒーレント積分されるので、SNRが改善される効果が得られる。 Here, FIG. 5 is an explanatory view showing the STFT of the learning radio signal s g (n) and the identification radio signal s d (n) by theFourier transform unit 2.
The learning wireless signal s g (n) and the identifying wireless signal s d (n) are two-dimensional signals indicating the relationship between time and amplitude. The identification radio signal s d (n) will be described later.
The learning Fourier transform signal S g (m, k) indicating the STFT result and the discrimination Fourier transform signal S d (m, k) are three-dimensional signals indicating the relationship between time, frequency and power. The identification Fourier transform signal S d (m, k) will be described later.
Each of the learning radio signal s g (n) and the identification radio signal s d (n) is STFT by theFourier transform unit 2 to obtain the learning radio signal s g (n) and the identification radio signal s d ( Since each of n) is coherently integrated, an effect of improving SNR can be obtained.
学習用無線信号sg(n)及び識別用無線信号sd(n)は、時間と振幅との関係を示す2次元信号である。識別用無線信号sd(n)については後述する。
STFT結果を示す学習用フーリエ変換信号Sg(m,k)及び識別用フーリエ変換信号Sd(m,k)は、時間と周波数及び電力との関係を示す3次元信号である。識別用フーリエ変換信号Sd(m,k)については後述する。
フーリエ変換部2により学習用無線信号sg(n)及び識別用無線信号sd(n)のそれぞれがSTFTされることで、学習用無線信号sg(n)及び識別用無線信号sd(n)のそれぞれが、コヒーレント積分されるので、SNRが改善される効果が得られる。 Here, FIG. 5 is an explanatory view showing the STFT of the learning radio signal s g (n) and the identification radio signal s d (n) by the
The learning wireless signal s g (n) and the identifying wireless signal s d (n) are two-dimensional signals indicating the relationship between time and amplitude. The identification radio signal s d (n) will be described later.
The learning Fourier transform signal S g (m, k) indicating the STFT result and the discrimination Fourier transform signal S d (m, k) are three-dimensional signals indicating the relationship between time, frequency and power. The identification Fourier transform signal S d (m, k) will be described later.
Each of the learning radio signal s g (n) and the identification radio signal s d (n) is STFT by the
立ち上がり検出部3は、学習用無線信号sg(n)の立ち上がり時刻T0を検出する処理を実施する(図4のステップST3)。
図6は、立ち上がり検出部3による立ち上がり時刻T0の検出処理を示す説明図である。
以下、立ち上がり検出部3による立ち上がり時刻T0の検出処理を具体的に説明する。 Risingedge detection unit 3 performs a process of detecting the rise time T 0 of the learning radio signal s g (n) (step ST3 in FIG. 4).
FIG. 6 is an explanatory view showing detection processing of the rising time T 0 by the risingdetection unit 3.
It will be specifically described below detection processing of the rising time T 0 by the risingedge detection unit 3.
図6は、立ち上がり検出部3による立ち上がり時刻T0の検出処理を示す説明図である。
以下、立ち上がり検出部3による立ち上がり時刻T0の検出処理を具体的に説明する。 Rising
FIG. 6 is an explanatory view showing detection processing of the rising time T 0 by the rising
It will be specifically described below detection processing of the rising time T 0 by the rising
まず、立ち上がり検出部3は、以下の式(2)に示すように、フーリエ変換部2から出力された学習用フーリエ変換信号Sg(m,k)の2乗値|Sg(m,k)|2をスペクトログラムSPg(m,k)として算出する。
First, the risingedge detection unit 3 generates a square value | S g (m, k) of the learning Fourier transform signal S g (m, k) output from the Fourier transform unit 2 as shown in the following equation (2). ) | 2 is calculated as spectrogram SP g (m, k).
First, the rising
次に、立ち上がり検出部3は、以下の式(3)に示すように、スペクトログラムSPg(m,k)におけるエネルギーの時間波形である学習用のエネルギー時間波形Eg(m)を算出する。
学習用のエネルギー時間波形Eg(m)は、スペクトログラムSPg(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士がそれぞれ合計されることで算出される各々の時刻における電力の合計値である。
式(3)において、k1は、スペクトログラムSPg(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の下限周波数を示す周波数ビン番号、knは、スペクトログラムSPg(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の上限周波数を示す周波数ビン番号である。
k=k1,・・・,knである。 Next, the risingedge detection unit 3 calculates an energy time waveform E g (m) for learning, which is a time waveform of energy in the spectrogram SP g (m, k), as shown in the following equation (3).
The energy time waveform E g (m) for learning is calculated by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram SP g (m, k). The total value of the power at the time of
In equation (3), k 1 is a frequency bin number indicating the lower limit frequency of the frequencies for summing power among a plurality of frequencies included in the spectrogram SP g (m, k), and k n is the spectrogram SP g It is a frequency bin number which shows the upper limit frequency of the frequency which totals electric power among several frequencies contained in (m, k).
k = k 1, ···, a k n.
学習用のエネルギー時間波形Eg(m)は、スペクトログラムSPg(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士がそれぞれ合計されることで算出される各々の時刻における電力の合計値である。
式(3)において、k1は、スペクトログラムSPg(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の下限周波数を示す周波数ビン番号、knは、スペクトログラムSPg(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の上限周波数を示す周波数ビン番号である。
k=k1,・・・,knである。 Next, the rising
The energy time waveform E g (m) for learning is calculated by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram SP g (m, k). The total value of the power at the time of
In equation (3), k 1 is a frequency bin number indicating the lower limit frequency of the frequencies for summing power among a plurality of frequencies included in the spectrogram SP g (m, k), and k n is the spectrogram SP g It is a frequency bin number which shows the upper limit frequency of the frequency which totals electric power among several frequencies contained in (m, k).
k = k 1, ···, a k n.
次に、立ち上がり検出部3は、学習用のエネルギー時間波形Eg(m)と閾値Ethとを比較する。
閾値Ethとしては、例えば、学習用のエネルギー時間波形Eg(m)の最大値から設定値E0を減算した値が考えられる。
立ち上がり検出部3は、学習用のエネルギー時間波形Eg(m)と閾値Ethとの比較結果を参照することで、最初は、ノイズレベルのエネルギーを示していた学習用のエネルギー時間波形Eg(m)が、閾値Ethに到達したか否かを判定する。
立ち上がり検出部3は、学習用のエネルギー時間波形Eg(m)が閾値Ethに到達した時刻を、学習用無線信号sg(n)の立ち上がり時刻T0として検出する。
この実施の形態1では、立ち上がり検出部3が、学習用無線信号sg(n)の立ち上がり時刻T0を検出する際、スペクトログラムSPg(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士をそれぞれ合計するようにしている。これにより、立ち上がり時に電力が大きく変動する周波数が含まれている場合でも、当該電力の変動の影響が低減されるため、立ち上がり時刻T0の検出精度が向上する。 Next, the risingedge detection unit 3 compares the energy time waveform E g (m) for learning with the threshold value E th .
As the threshold value E th , for example, a value obtained by subtracting the set value E 0 from the maximum value of the energy time waveform E g (m) for learning can be considered.
The risingedge detection unit 3 refers to the comparison result of the energy time waveform E g (m) for learning and the threshold value E th, and at first, the energy time waveform E g for learning that indicates the energy of the noise level It is determined whether (m) has reached the threshold value E th .
Therise detection unit 3 detects the time when the energy time waveform E g (m) for learning reaches the threshold value E th as the rise time T 0 of the learning radio signal s g (n).
In the first embodiment, when the risingdetection unit 3 detects the rising time T 0 of the learning wireless signal s g (n), the power at a plurality of frequencies included in the spectrogram SP g (m, k) The powers at the same time are summed up. Thus, even if it contains frequencies vary greatly power at the rise time, the influence of the variation of the power is reduced, thereby improving the detection accuracy of the rise time T 0.
閾値Ethとしては、例えば、学習用のエネルギー時間波形Eg(m)の最大値から設定値E0を減算した値が考えられる。
立ち上がり検出部3は、学習用のエネルギー時間波形Eg(m)と閾値Ethとの比較結果を参照することで、最初は、ノイズレベルのエネルギーを示していた学習用のエネルギー時間波形Eg(m)が、閾値Ethに到達したか否かを判定する。
立ち上がり検出部3は、学習用のエネルギー時間波形Eg(m)が閾値Ethに到達した時刻を、学習用無線信号sg(n)の立ち上がり時刻T0として検出する。
この実施の形態1では、立ち上がり検出部3が、学習用無線信号sg(n)の立ち上がり時刻T0を検出する際、スペクトログラムSPg(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士をそれぞれ合計するようにしている。これにより、立ち上がり時に電力が大きく変動する周波数が含まれている場合でも、当該電力の変動の影響が低減されるため、立ち上がり時刻T0の検出精度が向上する。 Next, the rising
As the threshold value E th , for example, a value obtained by subtracting the set value E 0 from the maximum value of the energy time waveform E g (m) for learning can be considered.
The rising
The
In the first embodiment, when the rising
特徴量算出部7は、第1のパラメータ設定部5により設定された特徴量算出用のパラメータから、立ち上がり時刻T0を含む時間帯(t1~t2)及び設定周波数ビンkbを認識する。
第1のパラメータ設定部5による特徴量算出用のパラメータの設定処理については後述する。
次に、特徴量算出部7は、図6に示すように、フーリエ変換部2から出力された学習用フーリエ変換信号Sg(m,k)の中から、立ち上がり検出部3により検出された学習用無線信号sg(n)の立ち上がり時刻T0を含む時間帯(t1~t2)の学習用フーリエ変換信号sg(n)t1~t2を抽出する。 The featureamount calculation unit 7 recognizes a time zone (t 1 to t 2 ) including the rise time T 0 and the set frequency bin k b from the parameters for feature amount calculation set by the first parameter setting unit 5. .
The setting process of the parameter for feature amount calculation by the first parameter setting unit 5 will be described later.
Next, as shown in FIG. 6, the featurequantity calculation unit 7 learns from the learning Fourier transform signal S g (m, k) output from the Fourier transform unit 2, the learning detected by the rising edge detection unit 3. use to extract the radio signal s g a time zone including the rising time T 0 of the (n) (t 1 ~ t 2) learning Fourier transform signal s g of (n) t1 ~ t2.
第1のパラメータ設定部5による特徴量算出用のパラメータの設定処理については後述する。
次に、特徴量算出部7は、図6に示すように、フーリエ変換部2から出力された学習用フーリエ変換信号Sg(m,k)の中から、立ち上がり検出部3により検出された学習用無線信号sg(n)の立ち上がり時刻T0を含む時間帯(t1~t2)の学習用フーリエ変換信号sg(n)t1~t2を抽出する。 The feature
The setting process of the parameter for feature amount calculation by the first parameter setting unit 5 will be described later.
Next, as shown in FIG. 6, the feature
次に、特徴量算出部7は、図7に示すように、抽出した学習用フーリエ変換信号sg(n)t1~t2に含まれている複素時間信号の中から、設定周波数ビンkbの複素時間信号sgハット(n)t1~t2の切り出しを行う。
電子出願の都合上、明細書の文章中では、sの文字の上に“^”の記号を付することができないので、sgハット(n)t1~t2のように表記している。
図7は、特徴量算出部7による特徴量の算出処理を示す説明図である。
特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、抽出した学習用フーリエ変換信号sg(n)t1~t2の変動を特徴量として算出する(図4のステップST4)。 Next, as shown in FIG. 7, the featurequantity calculation unit 7 selects one of the complex time signals included in the extracted training Fourier transform signal s g (n) t 1 to t 2 for the set frequency bin k b . The complex time signal sg hat (n) t1 to t2 are cut out.
For convenience of the electronic application, in the text of the specification, since it is not possible to add the symbol “^” on the letter s, it is written as s g hat (n) t 1 to t 2 .
FIG. 7 is an explanatory view showing calculation processing of the feature amount by the featureamount calculation unit 7.
The featureamount calculation unit 7 calculates the variation of the extracted learning Fourier transform signal s g (n) t 1 to t 2 as the feature amount from the extracted complex time signal sg hat (n) t 1 to t 2 (FIG. 4 Step ST4).
電子出願の都合上、明細書の文章中では、sの文字の上に“^”の記号を付することができないので、sgハット(n)t1~t2のように表記している。
図7は、特徴量算出部7による特徴量の算出処理を示す説明図である。
特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、抽出した学習用フーリエ変換信号sg(n)t1~t2の変動を特徴量として算出する(図4のステップST4)。 Next, as shown in FIG. 7, the feature
For convenience of the electronic application, in the text of the specification, since it is not possible to add the symbol “^” on the letter s, it is written as s g hat (n) t 1 to t 2 .
FIG. 7 is an explanatory view showing calculation processing of the feature amount by the feature
The feature
以下、特徴量算出部7による特徴量の算出処理を具体的に説明する。
特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、以下の式(4)に示すように、複素時間信号sgハット(n)t1~t2の瞬時振幅ag(n)を算出する。
式(4)において、Ig(n)は、複素時間信号sgハット(n)t1~t2の実部、Qg(n)は、複素時間信号sgハット(n)t1~t2の虚部である。 Hereinafter, the process of calculating the feature amount by the featureamount calculating unit 7 will be specifically described.
From the extracted complex time signal sg hat (n) t1 to t2 , thefeature quantity calculator 7 calculates the instantaneous amplitude a of the complex time signal sg hat (n) t1 to t2 as shown in the following equation (4). Calculate g (n).
In equation (4), I g (n) is the real part of the complex time signal s g hat (n) t 1 to t 2 , and Q g (n) is the imaginary part of the complex time signal s g hat (n) t 1 to t 2 It is a department.
特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、以下の式(4)に示すように、複素時間信号sgハット(n)t1~t2の瞬時振幅ag(n)を算出する。
式(4)において、Ig(n)は、複素時間信号sgハット(n)t1~t2の実部、Qg(n)は、複素時間信号sgハット(n)t1~t2の虚部である。 Hereinafter, the process of calculating the feature amount by the feature
From the extracted complex time signal sg hat (n) t1 to t2 , the
In equation (4), I g (n) is the real part of the complex time signal s g hat (n) t 1 to t 2 , and Q g (n) is the imaginary part of the complex time signal s g hat (n) t 1 to t 2 It is a department.
また、特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、以下の式(5)に示すように、複素時間信号sgハット(n)t1~t2の瞬時位相φg(n)を算出する。
また、特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、以下の式(6)に示すように、複素時間信号sgハット(n)t1~t2の瞬時周波数fg(n)を算出する。
The featurequantity calculation unit 7, the complex time signal cut s g hat (n) t1 ~ t2, as shown in the following equation (5), the instantaneous complex time signal s g hat (n) t1 ~ t2 The phase φ g (n) is calculated.
The featurequantity calculation unit 7, the complex time signal s g hat (n) t1 ~ t2 cut, as shown in the following equation (6), the instantaneous complex time signal s g hat (n) t1 ~ t2 The frequency f g (n) is calculated.
また、特徴量算出部7は、切り出した複素時間信号sgハット(n)t1~t2から、以下の式(6)に示すように、複素時間信号sgハット(n)t1~t2の瞬時周波数fg(n)を算出する。
The feature
The feature
次に、特徴量算出部7は、以下の式(7)に示すように、第1の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時振幅ag(n)の分散値pg1を算出する。
特徴量算出部7は、以下の式(9)に示すように、第2の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時振幅ag(n)の歪度pg2を算出する。
特徴量算出部7は、以下の式(11)に示すように、第3の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時振幅ag(n)の尖度pg3を算出する。
Next, the featurequantity calculation unit 7 calculates the dispersion of the instantaneous amplitude a g (n) at the complex time signal s g hat (n) t 1 to t 2 as the first feature quantity as shown in the following equation (7) Calculate the value pg1 .
The featurequantity calculation unit 7 calculates the skewness p g2 of the instantaneous amplitude a g (n) in the complex time signal s g hat (n) t 1 to t 2 as the second feature value as shown in the following equation (9) Calculate
The featurequantity calculation unit 7 calculates the kurtosis p g3 of the instantaneous amplitude a g (n) at the complex time signal s g hat (n) t 1 to t 2 as the third feature quantity as shown in the following equation (11) Calculate
特徴量算出部7は、以下の式(9)に示すように、第2の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時振幅ag(n)の歪度pg2を算出する。
特徴量算出部7は、以下の式(11)に示すように、第3の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時振幅ag(n)の尖度pg3を算出する。
Next, the feature
The feature
The feature
次に、特徴量算出部7は、以下の式(12)に示すように、第4の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時位相φg(n)の分散値pg4を算出する。
特徴量算出部7は、以下の式(14)に示すように、第5の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時位相φg(n)の歪度pg5を算出する。
特徴量算出部7は、以下の式(16)に示すように、第6の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時位相φg(n)の尖度pg6を算出する。
Next, the featurequantity calculation unit 7 calculates the dispersion of the instantaneous phase φ g (n) in the complex time signal sg hat (n) t1 to t2 as the fourth feature quantity as shown in the following equation (12) Calculate the value pg4 .
As the fifth feature value, the featurevalue calculation unit 7 calculates the skewness p g5 of the instantaneous phase φ g (n) in the complex time signal s g hat (n) t 1 to t 2 as the fifth feature value. Calculate
The featurequantity calculation unit 7 calculates the kurtosis p g6 of the instantaneous phase φ g (n) at the complex time signal s g hat (n) t 1 to t 2 as the sixth feature quantity as shown in the following equation (16) Calculate
特徴量算出部7は、以下の式(14)に示すように、第5の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時位相φg(n)の歪度pg5を算出する。
特徴量算出部7は、以下の式(16)に示すように、第6の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時位相φg(n)の尖度pg6を算出する。
Next, the feature
As the fifth feature value, the feature
The feature
次に、特徴量算出部7は、以下の式(17)に示すように、第7の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時周波数fg(n)の分散値pg7を算出する。
特徴量算出部7は、以下の式(19)に示すように、第8の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時周波数fg(n)の歪度pg8を算出する。
特徴量算出部7は、以下の式(21)に示すように、第9の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時周波数fg(n)の尖度pg9を算出する。
Next, the featurequantity calculation unit 7 calculates the dispersion of the instantaneous frequency f g (n) at the complex time signal s g hat (n) t 1 to t 2 as the seventh feature quantity, as shown in the following equation (17) Calculate the value pg7 .
The featurequantity calculation unit 7 calculates, as the eighth feature quantity, the skewness p g8 of the instantaneous frequency f g (n) at the complex time signal s g hat (n) t 1 to t 2 as represented by the following equation (19) Calculate
As shown in the following equation (21), the featurequantity calculation unit 7 uses the ninth feature quantity as the kurtosis p g9 of the instantaneous frequency f g (n) at the complex time signal s g hat (n) t 1 to t 2 Calculate
特徴量算出部7は、以下の式(19)に示すように、第8の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時周波数fg(n)の歪度pg8を算出する。
特徴量算出部7は、以下の式(21)に示すように、第9の特徴量として、複素時間信号sgハット(n)t1~t2における瞬時周波数fg(n)の尖度pg9を算出する。
Next, the feature
The feature
As shown in the following equation (21), the feature
特徴量算出部7は、第2のパラメータ設定部6により設定された第1から第9の特徴量pgi(i=1,2,・・・,9)の重みwiを示す重み付けパラメータを取得する。
第1から第9の特徴量pgiの中には、無線機の識別に有効な特徴量と、識別に有効でない特徴量とが存在している。このため、識別に有効な特徴量には大きな重みが設定され、識別に有効でない特徴量には小さな重みが設定される。
例えば、wi(i=1,2,・・・,9)は、0以上1以下の値であり、w1+w2+・・・+w9=1である。
第2のパラメータ設定部6による重み付けパラメータの設定方法は、特に問わないが、例えば、第1から第9の特徴量pgiの分散値で、第1から第9の特徴量pgiを規格化し、第1から第9の特徴量pgiを規格化した値を重みとして用いる方法が考えられる。 The featureamount calculation unit 7 sets a weighting parameter indicating the weight w i of the first to ninth feature amounts p gi (i = 1, 2,..., 9) set by the second parameter setting unit 6. get.
Among the first to ninth feature quantities p gi , there are feature quantities effective for identification of a wireless device and feature quantities not effective for identification. Therefore, a large weight is set to the feature amount effective for identification, and a small weight is set to the feature amount not effective for identification.
For example, w i (i = 1, 2,..., 9) is a value of 0 or more and 1 or less, and w 1 + w 2 +... + W 9 = 1.
Setting the weighting parameter by the secondparameter setting unit 6 is not particularly limited, for example, in the first dispersion value of the ninth feature amount p gi of the feature quantity p gi ninth normalized from the first A method may be considered in which a value obtained by normalizing the first to ninth feature quantities p gi is used as a weight.
第1から第9の特徴量pgiの中には、無線機の識別に有効な特徴量と、識別に有効でない特徴量とが存在している。このため、識別に有効な特徴量には大きな重みが設定され、識別に有効でない特徴量には小さな重みが設定される。
例えば、wi(i=1,2,・・・,9)は、0以上1以下の値であり、w1+w2+・・・+w9=1である。
第2のパラメータ設定部6による重み付けパラメータの設定方法は、特に問わないが、例えば、第1から第9の特徴量pgiの分散値で、第1から第9の特徴量pgiを規格化し、第1から第9の特徴量pgiを規格化した値を重みとして用いる方法が考えられる。 The feature
Among the first to ninth feature quantities p gi , there are feature quantities effective for identification of a wireless device and feature quantities not effective for identification. Therefore, a large weight is set to the feature amount effective for identification, and a small weight is set to the feature amount not effective for identification.
For example, w i (i = 1, 2,..., 9) is a value of 0 or more and 1 or less, and w 1 + w 2 +... + W 9 = 1.
Setting the weighting parameter by the second
特徴量算出部7は、以下の式(22)に示すように、第1から第9の特徴量pgiと重みwiとをそれぞれ乗算することで、第1から第9の特徴量pgiの重み付けを行う。
p’gi=pgi×wi (22)
i=1,2,・・・,9
特徴量算出部7は、重み付け後の第1から第9の特徴量p’giを並べたベクトルを、既知の無線機の特徴量ベクトルpgとして算出する。
特徴量算出部7は、算出した既知の無線機の特徴量ベクトルpgを、学習用無線信号に付加されているシリアルナンバーと一緒に、第2のデータベース部10に格納する(図4のステップST5)。
また、特徴量算出部7は、既知の無線機の特徴量ベクトルpgを第2のデータベース部10に格納した旨を示す情報を第1のパラメータ設定部5に出力する。 The featureamount calculation unit 7 multiplies the first to ninth feature amounts p gi and the weights w i as shown in the following equation (22) to obtain the first to ninth feature amounts p gi. Perform weighting.
p ' gi = p gi × w i (22)
i = 1, 2, ..., 9
Featureamount calculation unit 7, a vector from the first the weighted arranged feature quantities p 'gi ninth, calculated as a feature vector p g of the known radio.
Featureamount calculation unit 7, a feature quantity vector p g of the calculated known radio, together with the serial number is added to the learning radio signal is stored in the second database section 10 (step of FIG. 4 ST5).
The featurequantity calculation unit 7 outputs information indicating that the feature vector p g of the known radio stored in a second database section 10 to the first parameter setting unit 5.
p’gi=pgi×wi (22)
i=1,2,・・・,9
特徴量算出部7は、重み付け後の第1から第9の特徴量p’giを並べたベクトルを、既知の無線機の特徴量ベクトルpgとして算出する。
特徴量算出部7は、算出した既知の無線機の特徴量ベクトルpgを、学習用無線信号に付加されているシリアルナンバーと一緒に、第2のデータベース部10に格納する(図4のステップST5)。
また、特徴量算出部7は、既知の無線機の特徴量ベクトルpgを第2のデータベース部10に格納した旨を示す情報を第1のパラメータ設定部5に出力する。 The feature
p ' gi = p gi × w i (22)
i = 1, 2, ..., 9
Feature
Feature
The feature
ここで、第1のパラメータ設定部5による特徴量算出用のパラメータの設定処理について説明する。
図8は、特徴量算出用のパラメータと複数の既知の無線機に係る特徴量ベクトルとの関係を示す説明図である。
図8の例では、〇は、種類(A)の既知の無線機に係る特徴量ベクトルpg、◇は、種類(B)の既知の無線機に係る特徴量ベクトルpg、△は、種類(C)の既知の無線機に係る特徴量ベクトルpgである。
図8の例では、種類(A)に属する無線機の個体の数が10であるため、10個の特徴量ベクトル〇が得られている。
また、種類(B)に属する無線機の個体の数が10であるため、10個の特徴量ベクトル◇が得られており、種類(C)に属する無線機の個体の数が10であるため、10個の特徴量ベクトル△が得られている。 Here, the setting process of the parameter for feature amount calculation by the first parameter setting unit 5 will be described.
FIG. 8 is an explanatory view showing a relationship between parameters for feature amount calculation and feature amount vectors of a plurality of known wireless devices.
In the example of FIG. 8, 〇, the feature quantity vector p g according to known radio types (A), ◇ is feature vector p g according to known radio type (B), △ the type It is the feature-value vector pg which concerns on the known radio | wireless machine of (C).
In the example of FIG. 8, since the number of wireless devices belonging to the type (A) is 10, 10 feature quantity vectors 〇 are obtained.
Further, since the number of wireless devices belonging to type (B) is 10, 10 feature quantity vectors are obtained, and the number of wireless devices belonging to type (C) is 10 10 feature quantity vectors Δ are obtained.
図8は、特徴量算出用のパラメータと複数の既知の無線機に係る特徴量ベクトルとの関係を示す説明図である。
図8の例では、〇は、種類(A)の既知の無線機に係る特徴量ベクトルpg、◇は、種類(B)の既知の無線機に係る特徴量ベクトルpg、△は、種類(C)の既知の無線機に係る特徴量ベクトルpgである。
図8の例では、種類(A)に属する無線機の個体の数が10であるため、10個の特徴量ベクトル〇が得られている。
また、種類(B)に属する無線機の個体の数が10であるため、10個の特徴量ベクトル◇が得られており、種類(C)に属する無線機の個体の数が10であるため、10個の特徴量ベクトル△が得られている。 Here, the setting process of the parameter for feature amount calculation by the first parameter setting unit 5 will be described.
FIG. 8 is an explanatory view showing a relationship between parameters for feature amount calculation and feature amount vectors of a plurality of known wireless devices.
In the example of FIG. 8, 〇, the feature quantity vector p g according to known radio types (A), ◇ is feature vector p g according to known radio type (B), △ the type It is the feature-value vector pg which concerns on the known radio | wireless machine of (C).
In the example of FIG. 8, since the number of wireless devices belonging to the type (A) is 10, 10 feature quantity vectors 〇 are obtained.
Further, since the number of wireless devices belonging to type (B) is 10, 10 feature quantity vectors are obtained, and the number of wireless devices belonging to type (C) is 10 10 feature quantity vectors Δ are obtained.
図8Aは、特徴量算出用のパラメータが適正でないために、種類(A)の無線機に係る特徴量ベクトル〇と、種類(B)の無線機に係る特徴量ベクトル◇と、種類(C)の無線機に係る特徴量ベクトル△とが一部重なっている例を示している。
既知の無線機に係る特徴量ベクトル〇と特徴量ベクトル◇と特徴量ベクトル△とが重なっている場合、これらの特徴量ベクトル〇,◇,△と、識別対象の無線機に係る特徴量ベクトルとを比較しても、特徴量ベクトル〇,◇,△の中で、識別対象の無線機に係る特徴量ベクトルと最も類似している特徴量ベクトルを高精度に特定することができない。
したがって、特徴量ベクトル〇,◇,△の中で、識別対象の無線機に係る特徴量ベクトルと最も類似している特徴量ベクトルを高精度に特定する上で、既知の無線機に係る特徴量ベクトル〇と特徴量ベクトル◇と特徴量ベクトル△とが重なっていないことが望ましい。
図8Bは、特徴量算出用のパラメータが適正であるために、種類(A)の無線機に係る特徴量ベクトル〇と、種類(B)の無線機に係る特徴量ベクトル◇と、種類(C)の無線機に係る特徴量ベクトル△とが重なっていない例を示している。 In FIG. 8A, since the parameter for calculating the feature amount is not appropriate, the feature amount vector 係 る for the wireless device of type (A), the feature amount vector ◇ for the wireless device of type (B), and the type (C) An example is shown in which the feature quantity vector 係 る associated with the wireless device of the present invention partially overlaps.
When the feature vector 〇 for a known wireless device, the feature vector ◇, and the feature vector △ overlap, these feature vectors 〇, ,, と and the feature vector for the wireless device to be identified However, among the feature amount vectors ,, ,, Δ, it is not possible to specify with high accuracy the feature amount vector that is most similar to the feature amount vector of the wireless device to be identified.
Therefore, in order to specify with high accuracy the feature quantity vector that is most similar to the feature quantity vector of the wireless device to be identified among the feature quantity vectors ,, ,, △, the feature quantity of the known wireless apparatus It is desirable that the vector と, the feature vector ◇, and the feature vector ベ ク ト ル do not overlap.
In FIG. 8B, since the parameters for calculating the feature amount are appropriate, the feature amount vector 係 る for the wireless device of type (A), the feature amount vector ◇ for the wireless device of type (B), and the type (C) An example is shown in which the feature amount vector 係 る associated with the wireless device in (1) is not overlapped.
既知の無線機に係る特徴量ベクトル〇と特徴量ベクトル◇と特徴量ベクトル△とが重なっている場合、これらの特徴量ベクトル〇,◇,△と、識別対象の無線機に係る特徴量ベクトルとを比較しても、特徴量ベクトル〇,◇,△の中で、識別対象の無線機に係る特徴量ベクトルと最も類似している特徴量ベクトルを高精度に特定することができない。
したがって、特徴量ベクトル〇,◇,△の中で、識別対象の無線機に係る特徴量ベクトルと最も類似している特徴量ベクトルを高精度に特定する上で、既知の無線機に係る特徴量ベクトル〇と特徴量ベクトル◇と特徴量ベクトル△とが重なっていないことが望ましい。
図8Bは、特徴量算出用のパラメータが適正であるために、種類(A)の無線機に係る特徴量ベクトル〇と、種類(B)の無線機に係る特徴量ベクトル◇と、種類(C)の無線機に係る特徴量ベクトル△とが重なっていない例を示している。 In FIG. 8A, since the parameter for calculating the feature amount is not appropriate, the feature amount vector 係 る for the wireless device of type (A), the feature amount vector ◇ for the wireless device of type (B), and the type (C) An example is shown in which the feature quantity vector 係 る associated with the wireless device of the present invention partially overlaps.
When the feature vector 〇 for a known wireless device, the feature vector ◇, and the feature vector △ overlap, these feature vectors 〇, ,, と and the feature vector for the wireless device to be identified However, among the feature amount vectors ,, ,, Δ, it is not possible to specify with high accuracy the feature amount vector that is most similar to the feature amount vector of the wireless device to be identified.
Therefore, in order to specify with high accuracy the feature quantity vector that is most similar to the feature quantity vector of the wireless device to be identified among the feature quantity vectors ,, ,, △, the feature quantity of the known wireless apparatus It is desirable that the vector と, the feature vector ◇, and the feature vector ベ ク ト ル do not overlap.
In FIG. 8B, since the parameters for calculating the feature amount are appropriate, the feature amount vector 係 る for the wireless device of type (A), the feature amount vector ◇ for the wireless device of type (B), and the type (C) An example is shown in which the feature amount vector 係 る associated with the wireless device in (1) is not overlapped.
第1のパラメータ設定部5は、特徴量算出用のパラメータの初期設定として、時間帯(t1~t2)の長さである時間範囲Δtを示すパラメータと、設定周波数ビンkbを示すパラメータとを任意の値に設定する。
時間帯(t1~t2)については、学習用のエネルギー時間波形Eg(m)に基づいて設定する方法が考えられる。
例えば、学習用無線信号sg(n)の立ち上がり時刻T0よりも前の時刻において、学習用のエネルギー時間波形Eg(m)の最大値よりもエネルギーが30dB下がっている時刻をt1とする。また、学習用無線信号sg(n)の立ち上がり時刻T0よりも後の時刻において、学習用のエネルギー時間波形Eg(m)の最大値よりもエネルギーが30dB下がっている時刻をt2とする。
また、t2については、学習用フーリエ変換信号sg(n)の周波数方向の変動に基づいて設定する方法が考えられる。
例えば、学習用フーリエ変換信号sg(n)の過渡応答時の周波数変動が、特定の周波数範囲内に収まった時刻をt2とする。 The first parameter setting unit 5 sets a parameter indicating a time range Δt which is a length of a time zone (t 1 to t 2 ) and a parameter indicating a set frequency bin k b as an initial setting of a parameter for feature amount calculation. And set any value.
The time zone (t 1 to t 2 ) may be set based on the energy time waveform E g (m) for learning.
For example, at a time before the rise time T 0 of the learning wireless signal s g (n), a time at which the energy is 30 dB lower than the maximum value of the learning energy time waveform E g (m) is t 1 Do. Also, at a time after the rise time T 0 of the learning radio signal s g (n), the time at which the energy is 30 dB lower than the maximum value of the learning energy time waveform E g (m) is t 2 Do.
As for the t 2, a method of setting on the basis of the variation in the frequency direction of the learning Fourier transform signal s g (n) is considered.
For example, it is assumed that the time at which the frequency fluctuation during the transient response of the learning Fourier transform signal s g (n) falls within a specific frequency range is t 2 .
時間帯(t1~t2)については、学習用のエネルギー時間波形Eg(m)に基づいて設定する方法が考えられる。
例えば、学習用無線信号sg(n)の立ち上がり時刻T0よりも前の時刻において、学習用のエネルギー時間波形Eg(m)の最大値よりもエネルギーが30dB下がっている時刻をt1とする。また、学習用無線信号sg(n)の立ち上がり時刻T0よりも後の時刻において、学習用のエネルギー時間波形Eg(m)の最大値よりもエネルギーが30dB下がっている時刻をt2とする。
また、t2については、学習用フーリエ変換信号sg(n)の周波数方向の変動に基づいて設定する方法が考えられる。
例えば、学習用フーリエ変換信号sg(n)の過渡応答時の周波数変動が、特定の周波数範囲内に収まった時刻をt2とする。 The first parameter setting unit 5 sets a parameter indicating a time range Δt which is a length of a time zone (t 1 to t 2 ) and a parameter indicating a set frequency bin k b as an initial setting of a parameter for feature amount calculation. And set any value.
The time zone (t 1 to t 2 ) may be set based on the energy time waveform E g (m) for learning.
For example, at a time before the rise time T 0 of the learning wireless signal s g (n), a time at which the energy is 30 dB lower than the maximum value of the learning energy time waveform E g (m) is t 1 Do. Also, at a time after the rise time T 0 of the learning radio signal s g (n), the time at which the energy is 30 dB lower than the maximum value of the learning energy time waveform E g (m) is t 2 Do.
As for the t 2, a method of setting on the basis of the variation in the frequency direction of the learning Fourier transform signal s g (n) is considered.
For example, it is assumed that the time at which the frequency fluctuation during the transient response of the learning Fourier transform signal s g (n) falls within a specific frequency range is t 2 .
設定周波数ビンkbについては、学習用のエネルギー時間波形Eg(m)において、平均電力が最大値をとる周波数ビンを採用する方法が考えられる。
また、設定周波数ビンkbについては、学習用のエネルギー時間波形Eg(m)において、平均電力が閾値以上の周波数ビンを検出して、検出した1以上の周波数ビンに係る周波数の平均を求め、平均の周波数の周波数ビンを採用する方法が考えられる。 The set frequency bin k b, the energy time waveform E g for learning (m), the average power is considered a method that employs a frequency bin having the maximum value.
Also, the set frequency bin k b, the energy time waveform E g for learning (m), to detect the more frequency bins average power threshold, an average of the frequency of the one or more frequency bins detected It is conceivable to adopt a frequency bin of the average frequency.
また、設定周波数ビンkbについては、学習用のエネルギー時間波形Eg(m)において、平均電力が閾値以上の周波数ビンを検出して、検出した1以上の周波数ビンに係る周波数の平均を求め、平均の周波数の周波数ビンを採用する方法が考えられる。 The set frequency bin k b, the energy time waveform E g for learning (m), the average power is considered a method that employs a frequency bin having the maximum value.
Also, the set frequency bin k b, the energy time waveform E g for learning (m), to detect the more frequency bins average power threshold, an average of the frequency of the one or more frequency bins detected It is conceivable to adopt a frequency bin of the average frequency.
第1のパラメータ設定部5は、特徴量算出部7から既知の無線機の特徴量ベクトルpgを第2のデータベース部10に格納した旨を示す情報を受けると、第2のデータベース部10から、複数の既知の無線機の特徴量ベクトルpgを取得する。
The first parameter setting unit 5 receives the information indicating that stored from the feature amount calculation unit 7 feature vector p g of the known radio in the second database section 10, from the second database 10 , it acquires the feature quantity vector p g plurality of known radio.
第1のパラメータ設定部5は、複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがあるか否かを判定し、例えば、図8Bに示すように、複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがなければ、先に設定している特徴量算出用のパラメータを有効として、パラメータの設定処理を終了する。
第1のパラメータ設定部5は、例えば、図8Aに示すように、複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがあれば、特徴量算出用のパラメータとして、先に設定している時間範囲Δt又は設定周波数ビンkbのうち、少なくとも1つを更新する。
特徴量算出部7は、第1のパラメータ設定部5により更新された特徴量算出用のパラメータを用いて、再度、複数の既知の無線機の特徴量ベクトルpgをそれぞれ算出する。
第1のパラメータ設定部5は、特徴量算出部7により再度算出された複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがあるか否かを判定する。
複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがなくなるまで、第1のパラメータ設定部5による特徴量算出用のパラメータの更新処理と、特徴量算出部7による特徴量ベクトルpgの算出処理とが繰り返される。
なお、パラメータの更新処理と、特徴量ベクトルpgの算出処理とを繰り返しても、複数の既知の無線機に係る重なりがなくならない場合には、重なりが最も小さくなったパラメータを適正なパラメータとして、パラメータの設定処理を終了する。 The first parameter setting unit 5 determines whether there is overlap between the feature vector p g according to several known radio, for example, as shown in FIG. 8B, a plurality of known radio without overlap between the feature vector p g according to, as an effective parameter for feature calculation is set to above, and ends the parameter setting processing.
The first parameter setting unit 5 sets, for example, as shown in Figure 8A, if there is overlap between the feature vector p g according to several known radio, as a parameter for the feature amount calculation, first At least one of the time range Δt being set or the set frequency bin k b is updated.
Featureamount calculation unit 7, using the parameters for the updated feature quantity calculation by the first parameter setting unit 5, again, it is calculated several known feature quantity vectors p g radios respectively.
The first parameter setting unit 5 determines whether there is overlap between the feature vector p g according to several known radio calculated again by the featureamount calculation unit 7.
Until the overlap is eliminated between the feature vector p g according to several known radio, and updating the parameters for feature calculation by the first parameter setting unit 5, feature vector p by the featureamount calculating section 7 The calculation process of g is repeated.
Note that the update processing of the parameter, repeating the process of calculating the feature quantity vectors p g, if not eliminated overlap according to several known radio, the overlap is the smallest parameter as appropriate parameters , End the parameter setting process.
第1のパラメータ設定部5は、例えば、図8Aに示すように、複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがあれば、特徴量算出用のパラメータとして、先に設定している時間範囲Δt又は設定周波数ビンkbのうち、少なくとも1つを更新する。
特徴量算出部7は、第1のパラメータ設定部5により更新された特徴量算出用のパラメータを用いて、再度、複数の既知の無線機の特徴量ベクトルpgをそれぞれ算出する。
第1のパラメータ設定部5は、特徴量算出部7により再度算出された複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがあるか否かを判定する。
複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがなくなるまで、第1のパラメータ設定部5による特徴量算出用のパラメータの更新処理と、特徴量算出部7による特徴量ベクトルpgの算出処理とが繰り返される。
なお、パラメータの更新処理と、特徴量ベクトルpgの算出処理とを繰り返しても、複数の既知の無線機に係る重なりがなくならない場合には、重なりが最も小さくなったパラメータを適正なパラメータとして、パラメータの設定処理を終了する。 The first parameter setting unit 5 determines whether there is overlap between the feature vector p g according to several known radio, for example, as shown in FIG. 8B, a plurality of known radio without overlap between the feature vector p g according to, as an effective parameter for feature calculation is set to above, and ends the parameter setting processing.
The first parameter setting unit 5 sets, for example, as shown in Figure 8A, if there is overlap between the feature vector p g according to several known radio, as a parameter for the feature amount calculation, first At least one of the time range Δt being set or the set frequency bin k b is updated.
Feature
The first parameter setting unit 5 determines whether there is overlap between the feature vector p g according to several known radio calculated again by the feature
Until the overlap is eliminated between the feature vector p g according to several known radio, and updating the parameters for feature calculation by the first parameter setting unit 5, feature vector p by the feature
Note that the update processing of the parameter, repeating the process of calculating the feature quantity vectors p g, if not eliminated overlap according to several known radio, the overlap is the smallest parameter as appropriate parameters , End the parameter setting process.
第1のパラメータ設定部5により特徴量算出用のパラメータが更新されることで、特徴量算出用のパラメータが適正な値になると、図8Bに示すように、第2のデータベース部10に格納される複数の既知の無線機に係る特徴量ベクトルpgの間の重なりがなくなる、もしくは、重なりが最も小さくなる。
特徴量算出用のパラメータが更新されたのち、特徴量算出部7により再度算出された複数の既知の無線機に係る特徴量ベクトルpgが第2のデータベース部10に格納される際、不適正な特徴量算出用のパラメータに従って算出されている複数の既知の無線機に係る特徴量ベクトルpgは、第2のデータベース部10から削除される。
図10は、第2のデータベース部10に格納される複数の既知の無線機に係る特徴量の一例を示す説明図である。
図10では、既知の無線機の種類が、種類(A)、種類(B)の例を示しており、また、種類(A)に属する無線機が、シリアルナンバー(1)の個体、シリアルナンバー(2)の個体の例を示している。
また、図10には、特徴量算出用のパラメータ及び重み付けパラメータの一例を示している。 When the parameter for calculating the feature amount becomes an appropriate value by updating the parameter for calculating the feature amount by the first parameter setting unit 5, the parameter is stored in thesecond database unit 10 as shown in FIG. 8B. that overlap between the plurality of known feature vector p g of the radio is eliminated, or, overlap smallest.
After the parameters for feature calculation is updated, when a feature vector p g according to several known radio calculated again by the featureamount calculation unit 7 is stored in the second database section 10, improper feature vector p g according to several known radio that is calculated in accordance with the parameters for the feature quantity calculation is deleted from the second database 10.
FIG. 10 is an explanatory view showing an example of the feature amounts related to a plurality of known wireless devices stored in thesecond database unit 10.
In FIG. 10, the known types of radios show examples of type (A) and type (B), and the radios belonging to type (A) are individual of serial number (1), serial number An example of the individual of (2) is shown.
Further, FIG. 10 shows an example of parameters for feature amount calculation and weighting parameters.
特徴量算出用のパラメータが更新されたのち、特徴量算出部7により再度算出された複数の既知の無線機に係る特徴量ベクトルpgが第2のデータベース部10に格納される際、不適正な特徴量算出用のパラメータに従って算出されている複数の既知の無線機に係る特徴量ベクトルpgは、第2のデータベース部10から削除される。
図10は、第2のデータベース部10に格納される複数の既知の無線機に係る特徴量の一例を示す説明図である。
図10では、既知の無線機の種類が、種類(A)、種類(B)の例を示しており、また、種類(A)に属する無線機が、シリアルナンバー(1)の個体、シリアルナンバー(2)の個体の例を示している。
また、図10には、特徴量算出用のパラメータ及び重み付けパラメータの一例を示している。 When the parameter for calculating the feature amount becomes an appropriate value by updating the parameter for calculating the feature amount by the first parameter setting unit 5, the parameter is stored in the
After the parameters for feature calculation is updated, when a feature vector p g according to several known radio calculated again by the feature
FIG. 10 is an explanatory view showing an example of the feature amounts related to a plurality of known wireless devices stored in the
In FIG. 10, the known types of radios show examples of type (A) and type (B), and the radios belonging to type (A) are individual of serial number (1), serial number An example of the individual of (2) is shown.
Further, FIG. 10 shows an example of parameters for feature amount calculation and weighting parameters.
この実施の形態1では、第1のパラメータ設定部5によって、特徴量算出用のパラメータが適正な値になるまで、特徴量算出用のパラメータが更新される例を示しているが、特徴量算出用のパラメータの更新タイミングは、これに限るものではない。
例えば、信号受信部1によって、既知の無線機から新たに送信された学習用無線信号が受信されることで、特徴量算出部7によって、新たに特徴量が算出されたタイミングで、第1のパラメータ設定部5が、特徴量算出用のパラメータを更新するようにしてもよい。 In the first embodiment, an example is shown in which the parameter for calculating the feature amount is updated by the first parameter setting unit 5 until the parameter for calculating the feature amount becomes an appropriate value. The update timing of the parameter for is not limited to this.
For example, when the learning wireless signal newly transmitted from the known wireless device is received by thesignal receiving unit 1, the first feature amount is calculated by the feature amount calculating unit 7. The parameter setting unit 5 may update the parameter for feature amount calculation.
例えば、信号受信部1によって、既知の無線機から新たに送信された学習用無線信号が受信されることで、特徴量算出部7によって、新たに特徴量が算出されたタイミングで、第1のパラメータ設定部5が、特徴量算出用のパラメータを更新するようにしてもよい。 In the first embodiment, an example is shown in which the parameter for calculating the feature amount is updated by the first parameter setting unit 5 until the parameter for calculating the feature amount becomes an appropriate value. The update timing of the parameter for is not limited to this.
For example, when the learning wireless signal newly transmitted from the known wireless device is received by the
<識別時の処理>
次に、識別対象の無線機から送信された無線信号を用いて、無線機を識別する際の処理内容を説明する。
図11は、この発明の実施の形態1による無線機識別方法における識別処理を示すフローチャートである。
信号受信部1は、識別対象の無線機から送信された無線信号を識別用無線信号として受信し、受信した識別用無線信号をアナログ信号からデジタル信号に変換する(図11のステップST11)。
信号受信部1は、デジタルの識別用無線信号sd(n)をフーリエ変換部2に出力する。sd(n)におけるnは、識別用無線信号のサンプル番号である。 <Process at the time of identification>
Next, processing contents in identifying a wireless device will be described using a wireless signal transmitted from the wireless device to be identified.
FIG. 11 is a flowchart showing an identification process in the wireless device identification method according to the first embodiment of the present invention.
Thesignal receiving unit 1 receives a radio signal transmitted from a radio to be identified as an identification radio signal, and converts the received identification radio signal from an analog signal to a digital signal (step ST11 in FIG. 11).
Thesignal receiving unit 1 outputs the digital radio signal for identification s d (n) to the Fourier transform unit 2. n in s d (n) is a sample number of the identification radio signal.
次に、識別対象の無線機から送信された無線信号を用いて、無線機を識別する際の処理内容を説明する。
図11は、この発明の実施の形態1による無線機識別方法における識別処理を示すフローチャートである。
信号受信部1は、識別対象の無線機から送信された無線信号を識別用無線信号として受信し、受信した識別用無線信号をアナログ信号からデジタル信号に変換する(図11のステップST11)。
信号受信部1は、デジタルの識別用無線信号sd(n)をフーリエ変換部2に出力する。sd(n)におけるnは、識別用無線信号のサンプル番号である。 <Process at the time of identification>
Next, processing contents in identifying a wireless device will be described using a wireless signal transmitted from the wireless device to be identified.
FIG. 11 is a flowchart showing an identification process in the wireless device identification method according to the first embodiment of the present invention.
The
The
フーリエ変換部2は、以下の式(23)に示すように、信号受信部1から出力されたデジタルの識別用無線信号sd(n)をSTFTする(図11のステップST12)。
フーリエ変換部2は、識別用無線信号sd(n)のSTFT結果を示すフーリエ変換信号である識別用フーリエ変換信号Sd(m,k)を立ち上がり検出部3及び特徴量算出部7に出力する(図11のステップST12)。図5は、識別用無線信号sd(n)のSTFTについても表している。
立ち上がり検出部3は、識別用無線信号sd(n)の立ち上がり時刻T0を検出する処理を実施する(図11のステップST13)。
以下、立ち上がり検出部3による立ち上がり時刻T0の検出処理を具体的に説明する。 TheFourier transform unit 2 STFTs the digital identification radio signal s d (n) output from the signal reception unit 1 as shown in the following equation (23) (step ST12 in FIG. 11).
TheFourier transform unit 2 outputs the discrimination Fourier transform signal S d (m, k), which is a Fourier transform signal indicating the STFT result of the identification radio signal s d (n), to the detection unit 3 and the feature amount calculation unit 7 (Step ST12 in FIG. 11). FIG. 5 also shows the STFT of the identification radio signal s d (n).
Risingedge detection unit 3 performs a process of detecting the rise time T 0 of the identification radio signal s d (n) (step ST13 in FIG. 11).
It will be specifically described below detection processing of the rising time T 0 by the risingedge detection unit 3.
フーリエ変換部2は、識別用無線信号sd(n)のSTFT結果を示すフーリエ変換信号である識別用フーリエ変換信号Sd(m,k)を立ち上がり検出部3及び特徴量算出部7に出力する(図11のステップST12)。図5は、識別用無線信号sd(n)のSTFTについても表している。
立ち上がり検出部3は、識別用無線信号sd(n)の立ち上がり時刻T0を検出する処理を実施する(図11のステップST13)。
以下、立ち上がり検出部3による立ち上がり時刻T0の検出処理を具体的に説明する。 The
The
Rising
It will be specifically described below detection processing of the rising time T 0 by the rising
まず、立ち上がり検出部3は、以下の式(24)に示すように、フーリエ変換部2から出力された識別用フーリエ変換信号Sd(m,k)の2乗値|Sd(m,k)|2をスペクトログラムSPd(m,k)として算出する。
First, the risingedge detection unit 3 generates a square value | S d (m, k) of the identification Fourier transform signal S d (m, k) output from the Fourier transform unit 2 as shown in the following equation (24). ) | 2 is calculated as spectrogram SP d (m, k).
First, the rising
次に、立ち上がり検出部3は、以下の式(25)に示すように、スペクトログラムSPd(m,k)におけるエネルギーの時間波形である識別用のエネルギー時間波形Ed(m)を算出する。
識別用のエネルギー時間波形Ed(m)は、スペクトログラムSPd(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士がそれぞれ合計されることで算出される各々の時刻における電力の合計値である。
式(25)において、k1は、スペクトログラムSPd(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の下限周波数を示す周波数ビン番号、knは、スペクトログラムSPd(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の上限周波数を示す周波数ビン番号である。
k=k1,・・・,knである。 Next, the risingedge detection unit 3 calculates an energy time waveform E d (m) for identification, which is a time waveform of energy in the spectrogram SP d (m, k), as shown in the following equation (25).
The energy-time waveform E d (m) for identification is calculated by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram SP d (m, k). The total value of the power at the time of
In equation (25), k 1 is a frequency bin number indicating the lower limit frequency of frequencies for summing power among a plurality of frequencies included in spectrogram SP d (m, k), and k n is a spectrogram SP d It is a frequency bin number which shows the upper limit frequency of the frequency which totals electric power among several frequencies contained in (m, k).
k = k 1, ···, a k n.
識別用のエネルギー時間波形Ed(m)は、スペクトログラムSPd(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士がそれぞれ合計されることで算出される各々の時刻における電力の合計値である。
式(25)において、k1は、スペクトログラムSPd(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の下限周波数を示す周波数ビン番号、knは、スペクトログラムSPd(m,k)に含まれている複数の周波数のうち、電力を合計する周波数の上限周波数を示す周波数ビン番号である。
k=k1,・・・,knである。 Next, the rising
The energy-time waveform E d (m) for identification is calculated by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram SP d (m, k). The total value of the power at the time of
In equation (25), k 1 is a frequency bin number indicating the lower limit frequency of frequencies for summing power among a plurality of frequencies included in spectrogram SP d (m, k), and k n is a spectrogram SP d It is a frequency bin number which shows the upper limit frequency of the frequency which totals electric power among several frequencies contained in (m, k).
k = k 1, ···, a k n.
次に、立ち上がり検出部3は、識別用のエネルギー時間波形Ed(m)と閾値Ethとを比較する。
立ち上がり検出部3は、識別用のエネルギー時間波形Ed(m)と閾値Ethとの比較結果を参照することで、最初は、ノイズレベルのエネルギーを示していた識別用のエネルギー時間波形Ed(m)が、閾値Ethに到達したか否かを判定する。
立ち上がり検出部3は、識別用のエネルギー時間波形Ed(m)が閾値Ethに到達した時刻を、識別用無線信号sd(n)の立ち上がり時刻T0として検出する。
この実施の形態1では、立ち上がり検出部3が、識別用無線信号sd(n)の立ち上がり時刻T0を検出する際、スペクトログラムSPd(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士をそれぞれ合計するようにしている。これにより、立ち上がり時に電力が大きく変動する周波数が含まれている場合でも、当該電力の変動の影響が低減されるため、立ち上がり時刻T0の検出精度が向上する。 Next, the risingedge detection unit 3 compares the energy time waveform E d (m) for identification with the threshold value E th .
The risingedge detection unit 3 refers to the comparison result of the energy-time waveform E d (m) for identification and the threshold value E th to determine the energy-time waveform E d for identification that initially indicated the energy of the noise level. It is determined whether (m) has reached the threshold value E th .
The risingedge detection unit 3 detects the time when the energy time waveform E d (m) for identification reaches the threshold value E th as the rising time T 0 of the identification wireless signal s d (n).
In the first embodiment, when the risingdetection unit 3 detects the rising time T 0 of the identification radio signal s d (n), the power at a plurality of frequencies included in the spectrogram SP d (m, k) The powers at the same time are summed up. Thus, even if it contains frequencies vary greatly power at the rise time, the influence of the variation of the power is reduced, thereby improving the detection accuracy of the rise time T 0.
立ち上がり検出部3は、識別用のエネルギー時間波形Ed(m)と閾値Ethとの比較結果を参照することで、最初は、ノイズレベルのエネルギーを示していた識別用のエネルギー時間波形Ed(m)が、閾値Ethに到達したか否かを判定する。
立ち上がり検出部3は、識別用のエネルギー時間波形Ed(m)が閾値Ethに到達した時刻を、識別用無線信号sd(n)の立ち上がり時刻T0として検出する。
この実施の形態1では、立ち上がり検出部3が、識別用無線信号sd(n)の立ち上がり時刻T0を検出する際、スペクトログラムSPd(m,k)に含まれている複数の周波数における電力のうち、同一時刻の電力同士をそれぞれ合計するようにしている。これにより、立ち上がり時に電力が大きく変動する周波数が含まれている場合でも、当該電力の変動の影響が低減されるため、立ち上がり時刻T0の検出精度が向上する。 Next, the rising
The rising
The rising
In the first embodiment, when the rising
特徴量算出部7は、第1のパラメータ設定部5により設定された特徴量算出用のパラメータから、立ち上がり時刻T0を含む時間帯(t1~t2)及び設定周波数ビンkbを認識する。
この特徴量算出用のパラメータは、第1のパラメータ設定部5によって、複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがなくなるように、もしくは、重なりが最も小さくなるように設定されたパラメータである。
次に、特徴量算出部7は、図6に示すように、フーリエ変換部2から出力された識別用フーリエ変換信号Sd(m,k)の中から、立ち上がり検出部3により検出された識別用無線信号sd(n)の立ち上がり時刻T0を含む時間帯(t1~t2)の識別用フーリエ変換信号sd(n)t1~t2を抽出する。 The featureamount calculation unit 7 recognizes a time zone (t 1 to t 2 ) including the rise time T 0 and the set frequency bin k b from the parameters for feature amount calculation set by the first parameter setting unit 5. .
Parameters for the feature amount calculated by the first parameter setting unit 5, as the overlap between the feature vector p g according to several known radio is eliminated, or set so that the overlap is minimized Parameters that have been
Next, as shown in FIG. 6, the featurequantity calculation unit 7 identifies the detection detected by the rising edge detection unit 3 from the identification Fourier transform signal S d (m, k) output from the Fourier transform unit 2. use to extract the radio signal s d time zone including the rising time T 0 of the (n) (t 1 ~ t 2) identifying the Fourier transform signal s d of (n) t1 ~ t2.
この特徴量算出用のパラメータは、第1のパラメータ設定部5によって、複数の既知の無線機に係る特徴量ベクトルpgの間に重なりがなくなるように、もしくは、重なりが最も小さくなるように設定されたパラメータである。
次に、特徴量算出部7は、図6に示すように、フーリエ変換部2から出力された識別用フーリエ変換信号Sd(m,k)の中から、立ち上がり検出部3により検出された識別用無線信号sd(n)の立ち上がり時刻T0を含む時間帯(t1~t2)の識別用フーリエ変換信号sd(n)t1~t2を抽出する。 The feature
Parameters for the feature amount calculated by the first parameter setting unit 5, as the overlap between the feature vector p g according to several known radio is eliminated, or set so that the overlap is minimized Parameters that have been
Next, as shown in FIG. 6, the feature
次に、特徴量算出部7は、図7に示すように、抽出した識別用フーリエ変換信号sd(n)t1~t2に含まれている複素時間信号の中から、設定周波数ビンkbの複素時間信号sdハット(n)t1~t2の切り出しを行う。
電子出願の都合上、明細書の文章中では、sの文字の上に“^”の記号を付することができないので、sdハット(n)t1~t2のように表記している。
特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、抽出した識別用フーリエ変換信号sd(n)t1~t2の変動を特徴量として算出する(図11のステップST14)。 Next, as shown in FIG. 7, the featurequantity calculation unit 7 calculates the set frequency bin k b among the complex time signals included in the extracted Fourier transform signal s d (n) t 1 to t 2 . The complex time signal sd hat (n) t1 to t2 are cut out.
For convenience of the electronic application, in the text of the specification, since it is not possible to attach the symbol “^” on the letter s, it is written as s d hat (n) t 1 to t 2 .
The featureamount calculation unit 7 calculates the variation of the extracted Fourier transform signal s d (n) t 1 to t 2 as the feature amount from the extracted complex time signal s d hat (n) t 1 to t 2 (FIG. 11 Step ST14).
電子出願の都合上、明細書の文章中では、sの文字の上に“^”の記号を付することができないので、sdハット(n)t1~t2のように表記している。
特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、抽出した識別用フーリエ変換信号sd(n)t1~t2の変動を特徴量として算出する(図11のステップST14)。 Next, as shown in FIG. 7, the feature
For convenience of the electronic application, in the text of the specification, since it is not possible to attach the symbol “^” on the letter s, it is written as s d hat (n) t 1 to t 2 .
The feature
以下、特徴量算出部7による特徴量の算出処理を具体的に説明する。
特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、以下の式(26)に示すように、複素時間信号sdハット(n)t1~t2の瞬時振幅ad(n)を算出する。
式(26)において、Id(n)は、複素時間信号sdハット(n)t1~t2の実部、Qd(n)は、複素時間信号sdハット(n)t1~t2の虚部である。 Hereinafter, the process of calculating the feature amount by the featureamount calculating unit 7 will be specifically described.
From the extracted complex time signal s d hat (n) t 1 to t 2 , the featureamount calculation unit 7 calculates the instantaneous amplitude a of the complex time signal s d hat (n) t 1 to t 2 as shown in the following equation (26) Calculate d (n).
In equation (26), I d (n) is the real part of complex time signal s d hat (n) t 1 to t 2 , and Q d (n) is the imaginary part of complex time signal s d hat (n) t 1 to t 2 It is a department.
特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、以下の式(26)に示すように、複素時間信号sdハット(n)t1~t2の瞬時振幅ad(n)を算出する。
式(26)において、Id(n)は、複素時間信号sdハット(n)t1~t2の実部、Qd(n)は、複素時間信号sdハット(n)t1~t2の虚部である。 Hereinafter, the process of calculating the feature amount by the feature
From the extracted complex time signal s d hat (n) t 1 to t 2 , the feature
In equation (26), I d (n) is the real part of complex time signal s d hat (n) t 1 to t 2 , and Q d (n) is the imaginary part of complex time signal s d hat (n) t 1 to t 2 It is a department.
また、特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、以下の式(27)に示すように、複素時間信号sdハット(n)t1~t2の瞬時位相φd(n)を算出する。
また、特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、以下の式(28)に示すように、複素時間信号sdハット(n)t1~t2の瞬時周波数fd(n)を算出する。
The featurequantity calculation unit 7, the complex time signal cut s d hat (n) t1 ~ t2, as shown in the following equation (27), the instantaneous complex time signal s d hat (n) t1 ~ t2 The phase φ d (n) is calculated.
The featurequantity calculation unit 7, the complex time signal s d hat (n) t1 ~ t2 cut, as shown in the following equation (28), the instantaneous complex time signal s d hat (n) t1 ~ t2 The frequency f d (n) is calculated.
また、特徴量算出部7は、切り出した複素時間信号sdハット(n)t1~t2から、以下の式(28)に示すように、複素時間信号sdハット(n)t1~t2の瞬時周波数fd(n)を算出する。
The feature
The feature
次に、特徴量算出部7は、以下の式(29)に示すように、第1の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時振幅ad(n)の分散値pd1を算出する。
特徴量算出部7は、以下の式(31)に示すように、第2の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時振幅ad(n)の歪度pd2を算出する。
特徴量算出部7は、以下の式(33)に示すように、第3の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時振幅ad(n)の尖度pd3を算出する。
Next, the featurequantity calculation unit 7 calculates the dispersion of the instantaneous amplitude a d (n) in the complex time signal s d hat (n) t 1 to t 2 as the first feature quantity as shown in the following equation (29) Calculate the value p d1 .
The featurequantity calculation unit 7 calculates the skewness p d2 of the instantaneous amplitude a d (n) in the complex time signal s d hat (n) t 1 to t 2 as the second feature quantity as shown in the following equation (31) Calculate
The featurequantity calculation unit 7 calculates the kurtosis p d3 of the instantaneous amplitude a d (n) at the complex time signal s d hat (n) t 1 to t 2 as the third feature quantity as shown in the following equation (33) Calculate
特徴量算出部7は、以下の式(31)に示すように、第2の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時振幅ad(n)の歪度pd2を算出する。
特徴量算出部7は、以下の式(33)に示すように、第3の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時振幅ad(n)の尖度pd3を算出する。
Next, the feature
The feature
The feature
次に、特徴量算出部7は、以下の式(34)に示すように、第4の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時位相φd(n)の分散値pd4を算出する。
特徴量算出部7は、以下の式(36)に示すように、第5の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時位相φd(n)の歪度pd5を算出する。
特徴量算出部7は、以下の式(38)に示すように、第6の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時位相φd(n)の尖度pd6を算出する。
Next, the featurequantity calculation unit 7 calculates the dispersion of the instantaneous phase φ d (n) in the complex time signal s d hat (n) t 1 to t 2 as the fourth feature quantity as shown in the following equation (34) Calculate the value p d4 .
The featurequantity calculation unit 7 calculates the skewness p d5 of the instantaneous phase φ d (n) in the complex time signal s d hat (n) t 1 to t 2 as the fifth feature quantity, as shown in the following equation (36) Calculate
The featurequantity calculation unit 7 calculates the kurtosis p d6 of the instantaneous phase φ d (n) at the complex time signal s d hat (n) t 1 to t 2 as the sixth feature quantity as shown in the following equation (38) Calculate
特徴量算出部7は、以下の式(36)に示すように、第5の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時位相φd(n)の歪度pd5を算出する。
特徴量算出部7は、以下の式(38)に示すように、第6の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時位相φd(n)の尖度pd6を算出する。
Next, the feature
The feature
The feature
次に、特徴量算出部7は、以下の式(39)に示すように、第7の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時周波数fd(n)の分散値pd7を算出する。
特徴量算出部7は、以下の式(41)に示すように、第8の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時周波数fd(n)の歪度pd8を算出する。
特徴量算出部7は、以下の式(43)に示すように、第9の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時周波数fd(n)の尖度pd9を算出する。
Next, the featurequantity calculation unit 7 calculates the dispersion of the instantaneous frequency f d (n) at the complex time signal s d hat (n) t 1 to t 2 as the seventh feature quantity as shown in the following equation (39) Calculate the value p d7 .
The featurequantity calculation unit 7 calculates, as the eighth feature quantity, the skewness p d8 of the instantaneous frequency f d (n) at the complex time signal s d hat (n) t 1 to t 2 as represented by the following equation (41) Calculate
The featurequantity calculation unit 7 calculates the kurtosis p d9 of the instantaneous frequency f d (n) at the complex time signal s d hat (n) t 1 to t 2 as the ninth feature quantity as shown in the following equation (43) Calculate
特徴量算出部7は、以下の式(41)に示すように、第8の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時周波数fd(n)の歪度pd8を算出する。
特徴量算出部7は、以下の式(43)に示すように、第9の特徴量として、複素時間信号sdハット(n)t1~t2における瞬時周波数fd(n)の尖度pd9を算出する。
Next, the feature
The feature
The feature
特徴量算出部7は、第2のパラメータ設定部6により設定された第1から第9の特徴量pdi(i=1,2,・・・,9)の重みwiを示す重み付けパラメータを取得する。
特徴量算出部7は、以下の式(44)に示すように、第1から第9の特徴量pdiと重みwiとをそれぞれ乗算することで、第1から第9の特徴量pdiの重み付けを行う。
p’di=pdi×wi (44)
i=1,2,・・・,9
特徴量算出部7は、重み付け後の第1から第9の特徴量p’diを並べたベクトルを、識別対象の無線機の特徴量ベクトルpdとして算出する。
特徴量算出部7は、算出した識別対象の無線機の特徴量ベクトルpdを無線機識別部11に出力する。 The featureamount calculation unit 7 sets a weighting parameter indicating the weight w i of the first to ninth feature amounts p di (i = 1, 2,..., 9) set by the second parameter setting unit 6. get.
The featurequantity calculation unit 7 multiplies the first to ninth feature quantity p di and the weight w i as shown in the following equation (44) to obtain the first to ninth feature quantity p di. Perform weighting.
p ' di = p di × w i (44)
i = 1, 2, ..., 9
The featureamount calculation unit 7 calculates a vector in which the weighted first to ninth feature amounts p ′ di are arranged as the feature amount vector p d of the wireless device to be identified.
The featureamount calculation unit 7 outputs the calculated feature amount vector p d of the wireless device to be identified to the wireless device identification unit 11.
特徴量算出部7は、以下の式(44)に示すように、第1から第9の特徴量pdiと重みwiとをそれぞれ乗算することで、第1から第9の特徴量pdiの重み付けを行う。
p’di=pdi×wi (44)
i=1,2,・・・,9
特徴量算出部7は、重み付け後の第1から第9の特徴量p’diを並べたベクトルを、識別対象の無線機の特徴量ベクトルpdとして算出する。
特徴量算出部7は、算出した識別対象の無線機の特徴量ベクトルpdを無線機識別部11に出力する。 The feature
The feature
p ' di = p di × w i (44)
i = 1, 2, ..., 9
The feature
The feature
無線機識別部11は、特徴量算出部7により算出された識別対象の無線機に係る特徴量ベクトルpdと、第2のデータベース部10により格納されている複数の既知の無線機に係る特徴量ベクトルpgとをそれぞれ比較する。
そして、無線機識別部11は、識別対象の無線機に係る特徴量ベクトルpdと、複数の既知の無線機に係る特徴量ベクトルpgとの比較結果に基づいて、識別対象の無線機を識別する(図11のステップST15)。 The wirelessdevice identification unit 11 is a feature amount vector p d for the wireless device to be identified calculated by the feature amount calculation unit 7 and a feature for a plurality of known wireless devices stored in the second database unit 10 comparing the amount vector p g respectively.
Theradio identification unit 11 includes a feature vector p d according to the identification target radio, based on a result of comparison between the feature vector p g according to several known radio, to be identified radios It identifies (step ST15 of FIG. 11).
そして、無線機識別部11は、識別対象の無線機に係る特徴量ベクトルpdと、複数の既知の無線機に係る特徴量ベクトルpgとの比較結果に基づいて、識別対象の無線機を識別する(図11のステップST15)。 The wireless
The
以下、無線機識別部11による無線機の識別処理を具体的に説明する。
図12は、無線機識別部11による無線機の識別処理を示す説明図である。
図12では、説明の簡単化のため、特徴量算出部7により算出される第1から第9の特徴量のうち、第1から第3の特徴量だけを例示している。 Hereinafter, identification processing of a wireless device by the wirelessdevice identification unit 11 will be specifically described.
FIG. 12 is an explanatory view showing identification processing of a wireless device by the wirelessdevice identification unit 11.
In FIG. 12, only the first to third feature amounts are illustrated among the first to ninth feature amounts calculated by the featureamount calculating unit 7 for simplification of the description.
図12は、無線機識別部11による無線機の識別処理を示す説明図である。
図12では、説明の簡単化のため、特徴量算出部7により算出される第1から第9の特徴量のうち、第1から第3の特徴量だけを例示している。 Hereinafter, identification processing of a wireless device by the wireless
FIG. 12 is an explanatory view showing identification processing of a wireless device by the wireless
In FIG. 12, only the first to third feature amounts are illustrated among the first to ninth feature amounts calculated by the feature
無線機識別部11は、以下の式(45)に示すように、識別対象の無線機に係る特徴量ベクトルpdと、第2のデータベース部10により格納されている複数の既知の無線機に係る特徴量ベクトルpgとの間のマハラノビス距離dij,hをそれぞれ算出する。
ここでは、説明の便宜上、既知の無線機がH個あり、H個の無線機に係る特徴量ベクトルpgが第2のデータベース部10にそれぞれ格納されているものとする。
H個の無線機の中には、例えば、種類(A)に属する無線機、種類(B)に属する無線機、あるいは、種類(C)に属する無線機が含まれている。
式(45)において、xi,hは、n次元の特徴量空間における既知の無線機h(h=1,・・・,H)に係る特徴量ベクトルpgの位置、xjは、n次元の特徴量空間における識別対象の無線機に係る特徴量ベクトルpdの位置である。
(xi,h-xj)は、n次元の特徴量空間における2点間のユークリッド距離、Sは、既知の無線機hから送信される学習用無線信号sg(n)の特徴量空間における分布の分散共分散行列である。
マハラノビス距離dij,hは、学習用無線信号sg(n)の特徴量空間における分布の分散による影響が正規化された空間での距離となる。 The wirelessdevice identification unit 11 uses the feature quantity vector p d for the wireless device to be identified and the plurality of known wireless devices stored by the second database unit 10 as shown in the following equation (45): The Mahalanobis distance d ij, h between the feature quantity vector p g is calculated.
Here, for convenience of explanation, the known radio is located H pieces, it is assumed that the feature vector p g of the H-number of radio is respectively stored in thesecond database section 10.
The H wireless devices include, for example, a wireless device belonging to type (A), a wireless device belonging to type (B), or a wireless device belonging to type (C).
In equation (45), x i, h is the position of the feature vector p g of the known wireless device h (h = 1,..., H) in the n-dimensional feature space, and x j is n This is the position of the feature quantity vector p d of the wireless device to be identified in the feature quantity space of a dimension.
(X i, h- x j ) is the Euclidean distance between two points in the n-dimensional feature amount space, S is the feature amount space of the learning wireless signal s g (n) transmitted from the known wireless device h Is the variance-covariance matrix of the distribution at.
The Mahalanobis distance d ij, h is a distance in a space in which the influence of the distribution of the distribution of the learning wireless signal s g (n) in the feature space is normalized.
ここでは、説明の便宜上、既知の無線機がH個あり、H個の無線機に係る特徴量ベクトルpgが第2のデータベース部10にそれぞれ格納されているものとする。
H個の無線機の中には、例えば、種類(A)に属する無線機、種類(B)に属する無線機、あるいは、種類(C)に属する無線機が含まれている。
式(45)において、xi,hは、n次元の特徴量空間における既知の無線機h(h=1,・・・,H)に係る特徴量ベクトルpgの位置、xjは、n次元の特徴量空間における識別対象の無線機に係る特徴量ベクトルpdの位置である。
(xi,h-xj)は、n次元の特徴量空間における2点間のユークリッド距離、Sは、既知の無線機hから送信される学習用無線信号sg(n)の特徴量空間における分布の分散共分散行列である。
マハラノビス距離dij,hは、学習用無線信号sg(n)の特徴量空間における分布の分散による影響が正規化された空間での距離となる。 The wireless
Here, for convenience of explanation, the known radio is located H pieces, it is assumed that the feature vector p g of the H-number of radio is respectively stored in the
The H wireless devices include, for example, a wireless device belonging to type (A), a wireless device belonging to type (B), or a wireless device belonging to type (C).
In equation (45), x i, h is the position of the feature vector p g of the known wireless device h (h = 1,..., H) in the n-dimensional feature space, and x j is n This is the position of the feature quantity vector p d of the wireless device to be identified in the feature quantity space of a dimension.
(X i, h- x j ) is the Euclidean distance between two points in the n-dimensional feature amount space, S is the feature amount space of the learning wireless signal s g (n) transmitted from the known wireless device h Is the variance-covariance matrix of the distribution at.
The Mahalanobis distance d ij, h is a distance in a space in which the influence of the distribution of the distribution of the learning wireless signal s g (n) in the feature space is normalized.
無線機識別部11は、算出したH個のマハラノビス距離dij,hを相互に比較し、H個のマハラノビス距離dij,hの中で、最小のマハラノビス距離dij,hを特定する。
無線機識別部11は、H個の無線機の中で、最小のマハラノビス距離dij,hに係る既知の無線機が、識別対象の無線機と最も類似していると判断する。
無線機識別部11は、識別対象の無線機の識別結果として、最小のマハラノビス距離dij,hに係る既知の無線機のシリアルナンバーを出力する。これにより、無線機の種類だけでなく、無線機の個体識別が可能になる。
図12の例では、3つの既知の無線機に係る特徴量ベクトルpgの位置が示されている。3つの既知の無線機の中で、特徴量ベクトルpgの位置が●である既知の無線機とのマハラノビス距離が最小であるため、識別対象の無線機は、特徴量ベクトルpgの位置が●の無線機であると識別される。Radio identification unit 11 outputs the calculated H-number of the Mahalanobis distance d ij, compared to each other h, H-number of the Mahalanobis distance d ij, in h, the minimum Mahalanobis distance d ij, identifies the h.
Among the H wireless devices, the wirelessdevice identification unit 11 determines that the known wireless device related to the minimum Mahalanobis distance d ij, h is most similar to the wireless device to be identified.
The wirelessdevice identification unit 11 outputs the serial number of the known wireless device related to the minimum Mahalanobis distance d ij, h as the identification result of the wireless device to be identified. This makes it possible to identify not only the type of wireless device but also the wireless device.
In the example of FIG. 12, the position of the feature vector p g of the three known radio is shown. Among the three known radio, since the Mahalanobis distance between the feature vector p position of g is known radio is ● is the minimum, radio identification target, the position of the feature vector p g Identified as a ● radio.
無線機識別部11は、H個の無線機の中で、最小のマハラノビス距離dij,hに係る既知の無線機が、識別対象の無線機と最も類似していると判断する。
無線機識別部11は、識別対象の無線機の識別結果として、最小のマハラノビス距離dij,hに係る既知の無線機のシリアルナンバーを出力する。これにより、無線機の種類だけでなく、無線機の個体識別が可能になる。
図12の例では、3つの既知の無線機に係る特徴量ベクトルpgの位置が示されている。3つの既知の無線機の中で、特徴量ベクトルpgの位置が●である既知の無線機とのマハラノビス距離が最小であるため、識別対象の無線機は、特徴量ベクトルpgの位置が●の無線機であると識別される。
Among the H wireless devices, the wireless
The wireless
In the example of FIG. 12, the position of the feature vector p g of the three known radio is shown. Among the three known radio, since the Mahalanobis distance between the feature vector p position of g is known radio is ● is the minimum, radio identification target, the position of the feature vector p g Identified as a ● radio.
ここでは、無線機識別部11が、マハラノビス距離dij,hを用いて、無線機を識別する例を示しているが、これに限るものではなく、例えば、最小二乗法による線形識別、サポートベクターマシン(SVM:Support Vector Machine)、あるいは、ニューラルネットワークを用いて、無線機を識別するようにしてもよい。
Here, although the example in which the wireless device identification unit 11 identifies the wireless device using the Mahalanobis distance d ij, h is shown, the present invention is not limited thereto. For example, linear identification by the least squares method, support vector The radio may be identified using a machine (SVM: Support Vector Machine) or a neural network.
以上で明らかなように、この実施の形態1によれば、フーリエ変換部2から出力されたフーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形を算出し、エネルギーの時間波形から無線信号の立ち上がり時刻を検出する立ち上がり検出部3と、フーリエ変換部2から出力されたフーリエ変換信号の中から、立ち上がり検出部3により検出された立ち上がり時刻を含む時間帯のフーリエ変換信号を抽出し、抽出したフーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出したフーリエ変換信号の変動を特徴量として算出する特徴量算出部7とを設け、無線機識別部11が、特徴量算出部7により算出された特徴量に基づいて、無線機を識別するように構成したので、無線機の個体を識別することができる効果を奏する。
As apparent from the above, according to the first embodiment, the time waveform of energy in the spectrogram of the Fourier transform signal output from the Fourier transform unit 2 is calculated, and the rise time of the wireless signal is detected from the time waveform of energy. The Fourier transform signal of the time zone including the rise time detected by the rise detection unit 3 is extracted from the rise detection unit 3 and the Fourier transform signal output from the Fourier transform unit 2 to extract the extracted Fourier transform signal The wireless device identification unit 11 is calculated by the feature amount calculation unit 7 by providing the feature amount calculation unit 7 that calculates the variation of the extracted Fourier transform signal as the feature amount from the complex time signal of the set frequency component included. Since the wireless device is configured to identify the wireless device based on the feature amount, the effect of being able to identify the individual of the wireless device Unlikely to.
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
In the present invention, within the scope of the invention, modifications of optional components of the embodiment or omission of optional components of the embodiment is possible.
この発明は、無線機を識別する無線機識別装置及び無線機識別方法に適している。
The present invention is suitable for a wireless device identification device for identifying a wireless device and a wireless device identification method.
1 信号受信部、2 フーリエ変換部、3 立ち上がり検出部、4 パラメータ設定部、5 第1のパラメータ設定部、6 第2のパラメータ設定部、7 特徴量算出部、8 データベース部、9 第1のデータベース部、10 第2のデータベース部、11 無線機識別部、21 信号受信回路、22 フーリエ変換回路、23 立ち上がり検出回路、24 パラメータ設定回路、25 特徴量算出回路、26 データベース回路、27 無線機識別回路、31 メモリ、32 プロセッサ。
Reference Signs List 1 signal reception unit, 2 Fourier transform unit, 3 rising detection unit, 4 parameter setting unit, 5 first parameter setting unit, 6 second parameter setting unit, 7 feature amount calculation unit, 8 database unit, 9 first Database unit, 10 Second database unit, 11 radio identification unit, 21 signal reception circuit, 22 Fourier transform circuit, 23 rise detection circuit, 24 parameter setting circuit, 25 feature amount calculation circuit, 26 database circuit, 27 radio identification Circuit, 31 memories, 32 processors.
Claims (8)
- 識別対象の無線機から送信された無線信号を受信する信号受信部と、
前記信号受信部により受信された無線信号を短時間フーリエ変換し、前記無線信号の短時間フーリエ変換結果を示すフーリエ変換信号を出力するフーリエ変換部と、
前記フーリエ変換部から出力されたフーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形を算出し、前記エネルギーの時間波形から前記無線信号の立ち上がり時刻を検出する立ち上がり検出部と、
前記フーリエ変換部から出力されたフーリエ変換信号の中から、前記立ち上がり検出部により検出された立ち上がり時刻を含む時間帯のフーリエ変換信号を抽出し、抽出したフーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出したフーリエ変換信号の変動を特徴量として算出する特徴量算出部と、
前記特徴量算出部により算出された特徴量に基づいて、前記無線機を識別する無線機識別部と
を備えた無線機識別装置。 A signal receiving unit for receiving a radio signal transmitted from a radio to be identified;
A Fourier transform unit that performs a short time Fourier transform on the wireless signal received by the signal reception unit, and outputs a Fourier transform signal indicating a short time Fourier transform result of the wireless signal;
A rise detection unit that calculates a time waveform of energy in a spectrogram of the Fourier transform signal output from the Fourier transform unit, and detects a rise time of the wireless signal from the time waveform of the energy;
From the Fourier transform signal output from the Fourier transform unit, a Fourier transform signal of a time zone including the rise time detected by the rise detection unit is extracted, and the set frequency component included in the extracted Fourier transform signal A feature amount calculation unit that calculates, as a feature amount, a fluctuation of the extracted Fourier transform signal from the complex time signal of
And a wireless device identification unit for identifying the wireless device based on the feature amount calculated by the feature amount calculation unit. - 前記信号受信部は、既知の無線機から送信された無線信号を受信し、
前記フーリエ変換部は、前記信号受信部により受信された既知の無線機の無線信号を短時間フーリエ変換し、既知の無線機の無線信号の短時間フーリエ変換結果を示すフーリエ変換信号を出力し、
前記立ち上がり検出部は、前記フーリエ変換部から出力された既知の無線機に係るフーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形を算出し、当該エネルギーの時間波形から既知の無線機の無線信号の立ち上がり時刻を検出し、
前記特徴量算出部は、前記フーリエ変換部から出力された既知の無線機に係るフーリエ変換信号の中から、前記立ち上がり検出部により検出された立ち上がり時刻を含む時間帯のフーリエ変換信号を抽出し、抽出した既知の無線機に係るフーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出した既知の無線機に係るフーリエ変換信号の変動を特徴量として算出し、算出した既知の無線機に係る特徴量をデータベース部に格納し、
前記無線機識別部は、前記特徴量算出部により算出された識別対象の無線機に係る特徴量と、前記データベース部により格納されている既知の無線機に係る特徴量とを比較し、特徴量の比較結果に基づいて、識別対象の無線機を識別することを特徴とする請求項1記載の無線機識別装置。 The signal receiving unit receives a wireless signal transmitted from a known wireless device,
The Fourier transform unit performs a short-time Fourier transform on the wireless signal of the known wireless device received by the signal receiving unit, and outputs a Fourier transform signal indicating a short-time Fourier transform result of the wireless signal of the known wireless device.
The rise detection unit calculates a time waveform of energy in a spectrogram of a Fourier transform signal of a known wireless device output from the Fourier transform unit, and a rise time of a wireless signal of the known wireless device from the time waveform of the energy To detect
The feature quantity calculation unit extracts a Fourier transform signal of a time zone including a rise time detected by the rise detection unit from among Fourier transform signals of a known wireless device output from the Fourier transform unit. The known radio calculated by calculating the fluctuation of the Fourier transform of the known radio extracted from the complex time signal of the set frequency component included in the Fourier transform signal of the extracted known radio as a feature amount Store the feature amount related to the machine in the database unit,
The wireless device identification unit compares the feature amount of the wireless device to be identified calculated by the feature amount calculation unit with the feature amount of a known wireless device stored by the database unit, The radio set identification device according to claim 1, wherein the radio set to be identified is identified based on the comparison result of (4). - 特徴量算出用のパラメータとして、前記時間帯の長さを示すパラメータと、前記設定周波数成分を示すパラメータとを設定する第1のパラメータ設定部を備え、
前記特徴量算出部は、前記第1のパラメータ設定部により設定された特徴量算出用のパラメータを用いて、識別対象の無線機に係る特徴量及び既知の無線機に係る特徴量のそれぞれを算出することを特徴とする請求項2記載の無線機識別装置。 The first parameter setting unit is configured to set a parameter indicating the length of the time zone and a parameter indicating the set frequency component as parameters for calculating the feature amount.
The feature amount calculation unit calculates each of the feature amount of the wireless device to be identified and the feature amount of the known wireless device using the parameter for calculating the feature amount set by the first parameter setting unit. The wireless device identification device according to claim 2, characterized in that: - 前記第1のパラメータ設定部は、互いに異なる既知の無線機から送信された無線信号のそれぞれが前記信号受信部に受信された際に、前記特徴量算出部によりそれぞれ算出される特徴量が重ならないように、あるいは、前記特徴量算出部によりそれぞれ算出される特徴量の重なりが最も小さくなるように、前記特徴量算出用のパラメータを更新することを特徴とする請求項3記載の無線機識別装置。 The first parameter setting unit does not overlap the feature amounts calculated by the feature amount calculating unit when the signal receiving unit receives radio signals transmitted from different known wireless devices. 4. The wireless device identification apparatus according to claim 3, wherein the parameter for calculating the feature amount is updated such that an overlap of the feature amounts calculated by the feature amount calculating unit is minimized. .
- 前記立ち上がり検出部は、前記スペクトログラムに含まれている複数の周波数における電力のうち、同一時刻の電力同士をそれぞれ合計することで、前記エネルギーの時間波形として、各々の時刻における電力の合計値を算出し、無線信号の立ち上がり時刻として、前記電力の合計値が閾値に到達した時刻を検出することを特徴とする請求項1記載の無線機識別装置。 The rise detection unit calculates the total value of the power at each time as the time waveform of the energy by summing the powers at the same time among the powers at a plurality of frequencies included in the spectrogram. The wireless device identification apparatus according to claim 1, wherein the time when the total value of the power reaches a threshold is detected as the rise time of the wireless signal.
- 前記特徴量算出部は、
第1から第3の特徴量として、前記複素時間信号における振幅の分散値、歪度及び尖度をそれぞれ算出し、第4から第6の特徴量として、前記複素時間信号における位相の分散値、歪度及び尖度をそれぞれ算出し、第7から第9の特徴量として、前記複素時間信号における周波数の分散値、歪度及び尖度をそれぞれ算出することを特徴とする請求項1記載の無線機識別装置。 The feature quantity calculation unit
As the first to third feature quantities, the dispersion value, skewness and kurtosis of the amplitude in the complex time signal are calculated, and as the fourth to sixth feature quantities, the dispersion value of the phase in the complex time signal, The radio according to claim 1, wherein the skewness and kurtosis are calculated respectively, and the dispersion value of the frequency in the complex time signal, the skewness and the kurtosis are calculated as the seventh to ninth feature quantities, respectively. Machine identification device. - 前記第1から第9の特徴量の重みを示す重み付けパラメータを設定する第2のパラメータ設定部を備え、
前記特徴量算出部は、前記第2のパラメータ設定部により設定された重み付けパラメータに従って前記第1から第9の特徴量の重み付けを実施することを特徴とする請求項6記載の無線機識別装置。 A second parameter setting unit configured to set a weighting parameter indicating the weight of the first to ninth feature amounts;
The wireless device identification apparatus according to claim 6, wherein the feature amount calculation unit performs weighting of the first to ninth feature amounts in accordance with the weighting parameter set by the second parameter setting unit. - 信号受信部が、識別対象の無線機から送信された無線信号を受信し、
フーリエ変換部が、前記信号受信部により受信された無線信号を短時間フーリエ変換し、前記無線信号の短時間フーリエ変換結果を示すフーリエ変換信号を出力し、
立ち上がり検出部が、前記フーリエ変換部から出力されたフーリエ変換信号のスペクトログラムにおけるエネルギーの時間波形を算出し、前記エネルギーの時間波形から前記無線信号の立ち上がり時刻を検出し、
特徴量算出部が、前記フーリエ変換部から出力されたフーリエ変換信号の中から、前記立ち上がり検出部により検出された立ち上がり時刻を含む時間帯のフーリエ変換信号を抽出し、抽出したフーリエ変換信号に含まれている設定周波数成分の複素時間信号から、抽出したフーリエ変換信号の変動を特徴量として算出し、
無線機識別部が、前記特徴量算出部により算出された特徴量に基づいて、前記無線機を識別する
無線機識別方法。 A signal reception unit receives a radio signal transmitted from the radio to be identified;
A Fourier transform unit performs a short time Fourier transform on the wireless signal received by the signal reception unit, and outputs a Fourier transform signal indicating a result of a short time Fourier transform of the wireless signal;
The rise detection unit calculates a time waveform of energy in a spectrogram of the Fourier transform signal output from the Fourier transform unit, and detects a rise time of the wireless signal from the time waveform of the energy;
The feature amount calculation unit extracts a Fourier transform signal of a time zone including the rise time detected by the rise detection unit from the Fourier transform signal output from the Fourier transform unit, and includes the extracted Fourier transform signal The fluctuation of the extracted Fourier transform signal is calculated as the feature amount from the complex time signal of the set frequency component being
A wireless device identification method, wherein a wireless device identification unit identifies the wireless device based on the feature amount calculated by the feature amount calculation unit.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/025914 WO2019016853A1 (en) | 2017-07-18 | 2017-07-18 | Wireless machine identification device and wireless machine identification method |
JP2019530259A JP6567242B2 (en) | 2017-07-18 | 2017-07-18 | Radio identification device and radio identification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/025914 WO2019016853A1 (en) | 2017-07-18 | 2017-07-18 | Wireless machine identification device and wireless machine identification method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019016853A1 true WO2019016853A1 (en) | 2019-01-24 |
Family
ID=65016165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025914 WO2019016853A1 (en) | 2017-07-18 | 2017-07-18 | Wireless machine identification device and wireless machine identification method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6567242B2 (en) |
WO (1) | WO2019016853A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7447669B2 (en) | 2020-05-13 | 2024-03-12 | 日本電気株式会社 | Transmitting device verification device, transmitting device verification method, and program |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002026826A (en) * | 2000-07-07 | 2002-01-25 | Communication Research Laboratory | Radio equipment identifying device |
JP2004214817A (en) * | 2002-12-27 | 2004-07-29 | National Institute Of Information & Communication Technology | Radio identification system |
JP2006211241A (en) * | 2005-01-27 | 2006-08-10 | Nec Corp | Wireless signal rising detection method and apparatus |
JP2014082610A (en) * | 2012-10-16 | 2014-05-08 | Nec Corp | Radio identification device, method, program and system |
JP2016040871A (en) * | 2014-08-12 | 2016-03-24 | 三菱電機株式会社 | Radio wave identification system |
JP2016058841A (en) * | 2014-09-08 | 2016-04-21 | 株式会社国際電気通信基礎技術研究所 | Radio communication system detection device, radio communication system detection method and program |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005033312A (en) * | 2003-07-08 | 2005-02-03 | Interenergy Co Ltd | Radio wave identification apparatus, identification switching terminal, switch apparatus, and identification method |
JP4543283B2 (en) * | 2005-01-27 | 2010-09-15 | 日本電気株式会社 | Radio identification method and apparatus |
-
2017
- 2017-07-18 JP JP2019530259A patent/JP6567242B2/en not_active Expired - Fee Related
- 2017-07-18 WO PCT/JP2017/025914 patent/WO2019016853A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002026826A (en) * | 2000-07-07 | 2002-01-25 | Communication Research Laboratory | Radio equipment identifying device |
JP2004214817A (en) * | 2002-12-27 | 2004-07-29 | National Institute Of Information & Communication Technology | Radio identification system |
JP2006211241A (en) * | 2005-01-27 | 2006-08-10 | Nec Corp | Wireless signal rising detection method and apparatus |
JP2014082610A (en) * | 2012-10-16 | 2014-05-08 | Nec Corp | Radio identification device, method, program and system |
JP2016040871A (en) * | 2014-08-12 | 2016-03-24 | 三菱電機株式会社 | Radio wave identification system |
JP2016058841A (en) * | 2014-09-08 | 2016-04-21 | 株式会社国際電気通信基礎技術研究所 | Radio communication system detection device, radio communication system detection method and program |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7447669B2 (en) | 2020-05-13 | 2024-03-12 | 日本電気株式会社 | Transmitting device verification device, transmitting device verification method, and program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019016853A1 (en) | 2019-11-07 |
JP6567242B2 (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9473849B2 (en) | Sound source direction estimation apparatus, sound source direction estimation method and computer program product | |
JP2017531410A5 (en) | ||
US20190074030A1 (en) | Voice extraction device, voice extraction method, and non-transitory computer readable storage medium | |
CN110618316B (en) | Harmonic source identification method and device, terminal equipment and storage medium | |
Zhang et al. | Compensation for the mutual coupling effect in the ESPRIT direction finding algorithm by using a more effective method | |
US9820043B2 (en) | Sound source detection apparatus, method for detecting sound source, and program | |
JP6862799B2 (en) | Signal processing device, directional calculation method and directional calculation program | |
WO2019016853A1 (en) | Wireless machine identification device and wireless machine identification method | |
JP5394060B2 (en) | Probability density function separation device, probability density function separation method, noise separation device, noise separation method, test device, test method, program, and recording medium | |
CN111168569A (en) | Grinding material removal amount prediction method, device, equipment and storage medium | |
US9857460B2 (en) | Waveform estimation device and waveform estimation method | |
US12078613B2 (en) | Identification apparatus, identification method, identification processing program, generation apparatus, generation method, and generation processing program | |
Welikala et al. | A real-time non-intrusive load monitoring system | |
US10948417B2 (en) | Method for identifying Raman spectrogram and electronic apparatus | |
US20210232737A1 (en) | Analysis device, analysis method, and recording medium | |
EP3792651B1 (en) | Path estimating device and portable information terminal | |
CN113688655B (en) | Method, device, computer equipment and storage medium for identifying interference signals | |
US10001579B2 (en) | High frequency electromagnetic induction | |
CN114513374A (en) | Network security threat identification method and system based on artificial intelligence | |
Alimuradov | An algorithm for measurement of the pitch frequency of speech signals based on complementary ensemble decomposition into empirical modes | |
CN111415681B (en) | Method and device for determining notes based on audio data | |
JP7173369B2 (en) | Transmitter Verification Device, Transmitter Verification System, and Transmitter Verification Method | |
KR101509649B1 (en) | Method and apparatus for detecting sound object based on estimation accuracy in frequency band | |
JP4676920B2 (en) | Signal separation device, signal separation method, signal separation program, and recording medium | |
Bruni et al. | A Multiscale Energy-Based Time-Domain Approach for Interference Detection in Non-stationary Signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918134 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019530259 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918134 Country of ref document: EP Kind code of ref document: A1 |