WO2019015472A1 - 一种通信方法、设备和系统 - Google Patents

一种通信方法、设备和系统 Download PDF

Info

Publication number
WO2019015472A1
WO2019015472A1 PCT/CN2018/093993 CN2018093993W WO2019015472A1 WO 2019015472 A1 WO2019015472 A1 WO 2019015472A1 CN 2018093993 W CN2018093993 W CN 2018093993W WO 2019015472 A1 WO2019015472 A1 WO 2019015472A1
Authority
WO
WIPO (PCT)
Prior art keywords
subnet
network
information
manager
radio access
Prior art date
Application number
PCT/CN2018/093993
Other languages
English (en)
French (fr)
Inventor
王瑞
戴明增
曾清海
韩立锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18836155.4A priority Critical patent/EP3567896B1/en
Publication of WO2019015472A1 publication Critical patent/WO2019015472A1/zh
Priority to US16/574,769 priority patent/US20200015293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • H04L12/4645Details on frame tagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0895Configuration of virtualised networks or elements, e.g. virtualised network function or OpenFlow elements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method, device, and system.
  • wireless communication network systems and wireless access technologies With the evolution of wireless communication network systems and wireless access technologies, on the one hand, the configuration of wireless communication network systems and the services that can be provided are more flexible and diverse, and on the other hand, the user requirements of wireless communication networks are increasingly differentiated. Therefore, an important function of future wireless communication networks, such as the fifth generation (5G) mobile communication system, is to provide customized differentiated services for different users through network slicing.
  • the so-called network slicing can be a set of network functions, resources, and connection relationships.
  • the operator can compose the key performance indicators such as capacity, coverage, rate, delay, and reliability according to each specific business use case.
  • a communication network system 100-1 related to slice communication may include the following parts: a slice selection function (SSF) module, and a user subscription information library (subscriber) Repository), radio access network (RAN), common control panel network functions (Common CP NFs) module, user panel network functions module, etc.
  • SSF slice selection function
  • RAN radio access network
  • Common control panel network functions Common CP NFs
  • user panel network functions module etc.
  • the information is exchanged between the interfaces through each other.
  • the slice selection function module performs information interaction with the wireless access network through an interface between the module and the wireless access network, and the user subscription information database can respectively pass through the slice selection function module.
  • the surface network function module performs information interaction, and each of them is shown in Figure 1-1.
  • the function modules are connected by a dotted line, which means that there is a communication interface between the modules in which the connection relationship exists, and details are not described herein.
  • Figure 1-1 in the system 100-1, three network slices are established, namely, network slice A, network slice B, and network slice C. In the figure, slice A, slice B, and slice C are shown.
  • the logical division is identified by different wireframes, wherein the network function modules involved in each network slice operation include: a radio access network, a common control plane network function module, and a control plane network function corresponding to the slice User plane network function.
  • the wireless access network and the common control plane network function modules can be shared by multiple network slices.
  • the network architecture shown in the system 100-1 is only an example, and the setting of each functional module is not limited to the relationship in the figure.
  • the SSF module may also be deployed in the Common CP NFs module.
  • Each module may further include a sub-function module.
  • the Common CP NF module may further include at least one of a mobility management function module, an authentication and security module, etc.; a slice-specific CP NF may also include session management. Modules, etc.; a slice-specific UP NF may contain user plane features, such as traditional gateway functions.
  • the naming of function modules may also be different, and will not be repeated here.
  • the network slice is an end-to-end service chain, and the domains covered may include: a Radio Access Network (RAN), a Core Network (CN), and a Transport Network (TN). )Wait.
  • RAN Radio Access Network
  • CN Core Network
  • TN Transport Network
  • the service runs and transmits in the above network category, the cooperation between the networks of each sub-domain is required to ensure consistent service quality. Therefore, there is a dedicated network slice management system that manages the creation, configuration, association, maintenance, and collaboration of end-to-end network slice components (such as RAN part, CN part, and TN part) in different network sub-domains. .
  • a network slice management system 100 can include an end-to-end network slice manager, such as a network manager, and includes the end-to-end network slice components.
  • Part of the subdomain managers such as the RAN Manager, CN Manager, and TN Manager.
  • Each sub-domain manager is responsible for the overall management within its sub-domains, and the corresponding nodes in the sub-domain are configured accordingly. Interfaces can be set up between each sub-domain manager to facilitate interactive messages for sub-domain coordination.
  • the current end-to-end communication network design also has inconsistent system efficiency and inconsistent end-to-end service experience.
  • the subnet referred to in this application may include: a slice and/or a slice instance.
  • the slice is a logical network with predefined network capabilities and network characteristics provided for a specific service or tenant.
  • the slice can be divided into end-to-end slices and sub-domain slices, wherein the sub-domain slices can be composed of end-to-end slices.
  • a segmentation instance is a network functional entity consisting of a set of network function instances and network resources, which can be divided into end-to-end slice instances and sub-domain slice instances, where the sub-domain slice instances can be part of an end-to-end slice instance. .
  • an object to be achieved by the solution of the embodiment of the present application may be expressed as: when creating an end to the terminal network, creating sub-domain subnets associated with the end to the terminal network, so as to be a user
  • each sub-domain can provide services for the UE by using a subnet that is consistent with the terminal network.
  • Each sub-domain can provide differentiated services for different subnets, and can also provide different quality of service for different services of the same subnet, and make the differentiated processing coordinated among the sub-domains in the end-to-terminal network.
  • the embodiment of the present application takes a terminal to a terminal network (slice) in a 5G system as an example, and proposes a subnet (slice) between the RAN sub-domain, the CN sub-domain, and the TN sub-domain belonging to the terminal network.
  • Mapping methods such as mapping of RAN subnets to TN subnets, and mapping methods of QoS within subnets.
  • the present application provides a communication method, device, system, and the like, so that mapping and cooperation can be performed between subnets (slices) of RAN subdomains, CN subdomains, and TN subdomains belonging to the same end to the terminal network, thereby making
  • the end-to-terminal network can cooperatively manage resources in different sub-domains, improve the system efficiency of the end-to-terminal network communication, and improve the consistency of the end-to-end service experience.
  • the present application provides a communication method, where the method includes: a radio access network device receives an uplink data packet from a terminal device, where the radio access network device learns identity information of the uplink data packet, and the wireless access device The network access device carries the uplink data packet in the transport network subnet according to the correspondence between the identity information of the uplink data packet and the transport network subnet.
  • the method enables the radio access network device to carry uplink data on the corresponding transmission network subnet in a reliable and efficient manner.
  • the identity information of the uplink data packet includes: information about a packet data connection identifier associated with the uplink data packet, and information of an identifier of a user plane part of the GPRS tunneling protocol associated with the uplink data packet, At least one of the information of the data flow identifier associated with the uplink data packet and the information of the data radio bearer (DRB) associated with the uplink data packet may be any one of the information, or may be Any two or any of these pieces of information are combined to obtain identity information of the uplink data packet.
  • DRB data radio bearer
  • the packet data connection referred to herein may be a session; the data stream referred to herein may be a group of data packets having the same or similar quality of service requirements, such as the QoS Flow mentioned in the standard definition process.
  • the packet data connection, the GPRS tunneling protocol user plane part, the data stream, and the data radio bearer are obtained by the packet data connection associated with the uplink data packet, and the uplink data packet is obtained.
  • Identity Information is obtained by the packet data connection associated with the uplink data packet.
  • the identity information of the uplink data packet has a corresponding relationship with a radio access network subnet (or a slice), or the information of the identifier of the radio access network subnet (or slice) includes the identity.
  • the radio access network device may obtain the radio access network subnet (or slice) and the transmission network sub-preparation in advance. Correspondence between nets (or slices).
  • the uplink data packet can be reliably and efficiently carried. Transmitting on the corresponding transmission network subnet, or when the identification information of the subnet (or slice) of the radio access network carries the identity information of the uplink data packet, then through the radio access network subnet (or slice) and The transmission network subnet (or slice) has a corresponding relationship between the two, and the uplink data packet is carried on the corresponding transmission network subnet for transmission.
  • the identifier of the radio access network subnet (or slice) may also be an identifier of the identity information of the uplink data packet.
  • the process for the radio access network device to obtain the correspondence between the radio access network subnet (or slice) and the transport network subnet (or slice) may include: the radio access
  • the information of the correspondence between the network subnet (or slice) and the transport network subnet (or slice) can be configured through the system management plane, the network manager in the system management plane, the transport network manager, and the radio access network.
  • An interface for information interaction may be set between any two of the manager and the core network manager, and the interface of the information exchange enables the wireless access network subnet (or slice) and the transport network subnet (or
  • the information of the correspondence between the slices can be transferred between the four to enable the four to know the correspondence.
  • the radio access network device configures the uplink data packet on the system management plane before the transmission network subnet (slice) transmission, so that the information of the correspondence relationship is obtained by the radio access network device.
  • the information of the correspondence between the subnet (or slice) of the radio access network and the subnet (or slice) of the transport network may be the transport network manager through the transport network manager and the radio access network manager.
  • the information interaction interface is sent to the radio access network manager, and the radio access network manager passes the interface between the radio access network manager and the radio access network device, and the corresponding relationship is The information is sent to the radio access network device; or the transport network manager sends the information of the correspondence to the network manager through an interface between the transport network manager and the network manager, where the network management Transmitting, by the interface between the network manager and the radio access network manager, information of the correspondence relationship to the radio access network manager, the radio access network manager passing the radio access network manager The interface with the radio access network device sends the information of the correspondence to the radio access network device.
  • the radio access network subnet (or slice) and the transport network subnet (or slice) respectively correspond to an end-to-terminal network (or slice) created by the network manager, thereby Corresponding relationship can be established between the radio access network subnet and the transport network subnet.
  • the transport network manager sends information about the correspondence between the foregoing radio access network subnet (or slice) and the transport network subnet (or slice) to the network manager or sends the wireless access
  • the transport network manager obtains the correspondence between the radio access network subnet (or slice) and the transport network subnet (or slice) based on the end-to-terminal network (or slice) created by the network manager. .
  • the end-to-terminal network has a corresponding relationship with the network slice selection assistance information (NSSAI); or the end-to-terminal network identifier, that is, the network slice selection auxiliary information.
  • the network slice selection auxiliary information may be carried in a non-access stratum (NAS) message, sent by the terminal device to a related device in the core network, and/or the network slice selection auxiliary information may be carried.
  • the RRC (Radio Resource Connection) message is sent by the terminal device to the radio access network device.
  • the radio access network subnet has a correspondence with a core network subnet (or slice), the core network subnet (or slice) and the end to the terminal network (or slice) Corresponding relationship, so that the radio access network device can learn the subnet corresponding to the radio access network device side belonging to the same end to the terminal network (or slice) according to the obtained core network subnet (or slice). (or slice).
  • the uplink data packet is carried on the transport network subnet, and includes: the foregoing uplink data packet includes information of an identifier of a transport network subnet (or a slice), for example, in a radio access network device.
  • the uplink data packet is processed, and information of the identifier of the transmission network subnet is added to the uplink data packet.
  • the information of the identifier of the transport network subnet (or slice) includes the identifier of the virtual local area network (virtual local area) Network ID, VLAN ID);
  • the identifier information of the transport network subnet includes at least one of the following: a port number of the IP network, and an internet protocol address.
  • the present application provides a radio access network device, where the radio access network device includes: at least one processor, a memory, a first transceiver, a second transceiver, and a system bus; the at least one processor, The memory, the first transceiver device and the second transceiver device are coupled by the system bus; the wireless access network device communicates with the network side device through the first transceiver device, and the wireless access network device passes the second transceiver device Communicating with the terminal device; the memory storing program instructions, the at least one processor invoking the program instructions stored in the memory to perform the wireless access network device according to the first aspect or any possible implementation thereof Operation.
  • the first transceiver device is hereinafter referred to as a wired communication interface, or a communication interface based on a wireless air interface technology.
  • the second transceiver device is specifically implemented as a communication based on wireless air interface technology. interface.
  • the first transceiver device and the second transceiver device may be implemented by sharing one wireless transceiver device, or may be divided into two A wireless transceiver is implemented.
  • the present application provides a system chip, which can be applied to a radio access network device, by which the radio access network device can perform the above first aspect or any possible The operation of the radio access network device in an implementation manner.
  • the system chip includes: at least one processor, a memory, an interface circuit, and a bus; the at least one processor, the memory, and the interface circuit are coupled through the bus; the system chip passes through the interface circuit and the other in the wireless access network device/network Interacting with the device; the memory storing program instructions, the at least one processor invoking the program instructions stored in the memory to perform operation of the radio access network device in accordance with the first aspect or any of the possible methods thereof .
  • the present application provides a communication method, where the method includes: a core network device learns identity information of a downlink data packet; and the core network device performs, according to a correspondence between the identity information of the downlink data packet and a transmission network subnet, The downlink data packet is carried on the transport network subnet for transmission.
  • the method enables the core network device to carry downlink data on the corresponding transmission network subnet in a reliable and efficient manner.
  • the identity information of the downlink data packet includes: information about a packet data connection identifier associated with the downlink data packet, and information of an identifier of a user plane part of the GPRS tunneling protocol associated with the downlink data packet, At least one of the information of the data flow identifier associated with the downlink data packet and the information of the data radio bearer (DRB) associated with the downlink data packet may be any one of the information, or may be Any two or any of these pieces of information are combined to obtain identity information of the downlink data packet.
  • DRB data radio bearer
  • the packet data connection referred to herein may be a session; the data stream referred to herein may be a group of data packets having the same or similar quality of service requirements, such as Qos Flow mentioned in the standard definition process.
  • the packet data connection, the GPRS tunneling protocol user plane part, the data stream, and the data radio bearer are obtained by the packet data connection associated with the downlink data packet, and the downlink data packet is obtained.
  • Identity Information is obtained by the packet data connection associated with the downlink data packet.
  • the identity information of the downlink data packet has a corresponding relationship with a core network subnet (or a slice); or, the information of the identifier of the core network subnet (or slice) includes the identity of the downlink data packet.
  • Information; the core network subnet (or slice) and the transport network subnet (or slice) have a correspondence relationship, so that the identity information of the downlink data packet can be associated with the transport network subnet (or slice)
  • the relationship for example, before the core network device carries the downlink data packet in the transport network subnet (or slice), the core network device may obtain the core network subnet (or slice) and the transport network subnet in advance (or Correspondence between slices).
  • the downlink data packet can be reliably and efficiently carried in the corresponding data packet.
  • the identifier of the core network subnet (or slice) may also be an identifier of the identity information of the downlink data packet.
  • the process for the core network device to obtain the correspondence between the core network subnet (or slice) and the transport network subnet (or slice) may include: the core network subnet (or slice)
  • the information corresponding to the transmission network subnet (or slice) can be configured through the system management plane, the network manager in the system management plane, the transport network manager, the radio access network manager and the core network management
  • An interface for information interaction may be set between any two of the four, and the interface between the core network subnet (or slice) and the transport network subnet (or slice) is made through the interface of the information interaction.
  • Information can be passed between the four to enable the four to know the correspondence.
  • the core network device configures the downlink data packet on the system management plane before the transport network subnet (slice) is transmitted, so that the information of the corresponding relationship is obtained by the core network device.
  • the information of the correspondence between the core network subnet (or slice) and the transport network subnet (or slice) may be the information exchange between the transport network manager and the transport network manager and the core network manager.
  • the interface is sent to the core network manager, and the core network manager sends the information of the corresponding relationship to the core network device through the interface between the core network manager and the core network device; Transmitting, by the transport network manager, information of the correspondence relationship to the network manager through an interface between the transport network manager and a network manager, the network manager passing between the network manager and the core network manager
  • the interface sends the information of the corresponding relationship to the core network manager, and the core network manager sends the information of the corresponding relationship to the core network through an interface between the core network manager and the core network device. device.
  • the core network subnet (or slice) and the transport network subnet (slice) have a corresponding relationship with the end-to-terminal network (or slice) created by the network manager, thereby making the core
  • a network subnet (or slice) can be associated with the transport network subnet (or slice).
  • the transport network manager obtains a correspondence between the core network subnet (or slice) and the transport network subnet (or slice) based on the end-to-terminal network (or slice) created by the network manager.
  • the foregoing end-to-terminal network has a corresponding relationship with the network slice selection assistance information (NSSAI); or the end-to-terminal network identifier, that is, the network slice selection auxiliary information.
  • the network slice selection auxiliary information may be carried in a non-access stratum (NAS) message, sent by the terminal device to a related device in the core network, and/or the network slice selection auxiliary information may be The RRC (Radio Resource Connection) message is carried by the terminal device to the radio access network device. .
  • NAS non-access stratum
  • the downlink data packet is carried in the transport network subnet, including: the foregoing downlink data packet includes information of an identifier of a transport network subnet (or a slice), for example, on a core network side,
  • the downlink data packet is processed, and the information of the identifier of the transmission network subnet is added in the downlink data packet.
  • the information of the identifier of the transport network subnet (or slice) includes the identifier of the virtual local area network (virtual local area) Network ID, VLAN ID);
  • the identifier information of the transport network subnet may further include at least one of the following: a port number of the IP network, and an internet protocol address.
  • the present application provides a core network device, where the core network device includes: at least one processor, a memory, a transceiver, and a system bus; the at least one processor, the memory and the transceiver are coupled by the system bus; The core network device communicates with the network side device through the transceiver device; the memory stores program instructions, and the at least one processor calls the program instructions stored in the memory to perform according to the fourth aspect or any of the possible The implementation of the core network device in the implementation.
  • the present application provides a system chip, which can be applied to a core network device, by which the core network device can perform the foregoing fourth aspect or any possible implementation manner thereof.
  • the operation of the core network device includes: at least one processor, a memory, an interface circuit, and a bus; the at least one processor, the memory, and the interface circuit are coupled through the bus; the system chip is performed by the interface circuit and other devices in the core network device/network Interacting; the memory storing program instructions, the at least one processor invoking the program instructions stored in the memory to perform operations of the core network device in accordance with the fourth aspect or any possible implementation thereof.
  • the application provides a communication system, comprising: the radio access network device according to the second aspect, and/or the core network device according to the fifth aspect.
  • the present application provides a computer storage medium having program instructions stored therein, when the program instructions are run on a computer, in accordance with the first aspect or any possible implementation thereof
  • the present application provides a computer program product, comprising: program instructions, when the program instructions are invoked, in a wireless access network device according to the first aspect or any of its possible implementations The operation of the core network device in accordance with the fourth aspect or any of its possible implementations, when the program instructions are invoked.
  • a subnet (or slice) between the RAN subdomain, the CN subdomain and the TN subdomain belonging to the same end to the terminal network can be made in the end-to-terminal network.
  • the mapping and coordination are obtained, so that the data can be reliably and efficiently processed in each sub-domain of the terminal to the terminal network, thereby improving the system efficiency of the end-to-terminal network communication and improving the consistency of the end-to-end service experience.
  • 1-1 is a schematic diagram of a communication network system 100-1 provided by the present application.
  • 1-2 is a schematic diagram of a network management system 100-2 provided by the present application.
  • FIG. 2 is a schematic flowchart diagram of a communication method 200 according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of a communication method 300 according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart diagram of a communication method 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of a communication method 500 according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of operation of a communication system 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of an optional communication method 700 of Part 1 according to an embodiment of the present disclosure
  • FIG. 8 is a schematic flowchart diagram of an optional communication method 800 of Part 1 according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart diagram of an optional communication method 900 of Part 1 according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a communication method and system 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart diagram of a communication method 1100 according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart diagram of a communication method 1200 according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an interface protocol stack between a RAN and a CN according to an embodiment of the present disclosure
  • FIG. 14 is a schematic flowchart of a communication method 1400 according to an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a communication method 1500 according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a radio access network device 1600 according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a radio access network device 1700 according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a system chip 1800 according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a core network device 1900 according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a core network device 2000 according to an embodiment of the present application.
  • FIG. 21 is a schematic block diagram of a system chip 2100 according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a wireless communication system 2200 according to an embodiment of the present application.
  • the communication method provided by the present application may be related to a radio access network device, a core network device, a transport network device, a terminal device, and a wireless communication system configured to run the method, and a management plane system thereof, where the management plane system may include : Network Manager, RAN Subdomain Manager, CN Subdomain Manager, and TN Subdomain Manager.
  • the radio access network device in the present application may also be referred to as a base station in a wireless communication standard. In most scenarios, it is a device deployed in a radio access network to provide a wireless communication function for a terminal device.
  • the radio access network equipment referred to in the present application includes but is not limited to: various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, Transmission Reception Point (TRP), and evolved Node B ( Evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS),
  • the home base station for example, Home evolved Node B, or Home Node B, HNB
  • BBU Base Band Unit
  • the home base station for example, Home evolved Node B, or Home Node B, HNB
  • BBU Base Band Unit
  • WLAN wireless local area network
  • a wireless access network device that is not a third generation of the Partnership Generation Project (3GPP) system.
  • 3GPP Partnership Generation Project
  • the names of wireless access network devices with similar wireless communication capabilities may vary.
  • the foregoing apparatus for providing a wireless communication function for a terminal device is collectively referred to as a radio access network device.
  • the RAN sub-domain referred to in the embodiment of the present application may include at least one radio access network device as referred to herein, or may correspond to at least one radio access network device as referred to herein.
  • the core network device as used in the present application generally refers to an entity having a core network processing function, such as any one of the following devices: a device with access and/or mobility management network functions, and a control plane function with session management.
  • the core network device referred to herein is a device having at least any one of the core network functions mentioned above or a combination of any core network functions.
  • the entities having the core network functions are collectively referred to as core network devices.
  • the CN sub-domain referred to in the embodiment of the present application may include at least one core network device as referred to herein, or may correspond to at least one core network device as referred to herein.
  • the transmission network referred to in the present application generally refers to a network for providing data transmission and conversion functions, and the transmission type may be any one of the following: an optical transmission network, an IP transmission network, or a flexible ethernet transmission network, and Other types of transport network forms are not limited here.
  • the transport network device can include at least one of: a route forwarding node, a switch, a hub, a repeater, a bridge, etc., or a device having at least one of the functions described above or any combination of functions.
  • the foregoing entities having data transmission and conversion functions are collectively referred to as transmission network devices.
  • the TN sub-domain referred to in the embodiment of the present application may include at least one transmission network device as referred to herein, or may correspond to at least one transmission network device as referred to herein.
  • terminal device is a device with wireless transceiver function, which can be deployed on land, indoors or outdoors, hand-held or on-board; it can also be deployed on the water surface (such as a ship); it can also be deployed in the air ( Such as airplanes, balloons and satellites, etc.).
  • the terminal device may include various types of mobile phones, tablets, computers with wireless transceiver functions, wireless data cards, virtual reality (VR) terminal devices, and augmented reality (AR).
  • VR virtual reality
  • AR augmented reality
  • Terminal equipment terminal equipment of machine type communication (MTC), terminal equipment in industrial control, terminal equipment in self driving, terminal in remote medical Equipment, terminal equipment in smart grid, terminal equipment in transportation safety, terminal equipment in smart city, smart home (home equipment with wireless communication function, such as refrigerator, TV , washing machines or furniture, etc., as well as wearable devices (such as smart watches, smart bracelets, pedometers, etc.) and so on.
  • the terminal device referred to in the present application can also be set to a fixed position, and has a device similar to the wireless communication function of the foregoing terminal device. In a system using a different wireless access technology, the name of the terminal device having the similar wireless communication function may be different.
  • the devices having the wireless communication function are collectively referred to as Terminal Equipment.
  • upstream and downstream appearing in this application are used in some scenarios to describe the direction of data/information transmission.
  • the "upstream” direction is the direction in which data/information is transmitted from the terminal device to the core network device.
  • the “downstream” direction is the direction in which the data/information is transmitted from the core network device to the terminal device, and the “upstream” and “downlink” are only used to describe the direction, and the specific device for starting and ending the data/information transmission is not limited.
  • the character "-" appearing in the present application is generally used to indicate that there is an association/mapping relationship between objects before and after the character, that is, "A-B" indicates that there is an association/mapping relationship between A and B.
  • the system establishes an end-to-terminal network, and the sub-domains of the RAN, CN, and TN respectively establish sub-domain sub-networks to implement the end-to-terminal network, then RAN, CN, and TN.
  • There is a correspondence/mapping relationship based on the end to the terminal network which is expressed as: RAN-CN-TN.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present application provides a communication method 200, and an implementation process based on the method 200 includes:
  • Operation 201 The radio access network device receives an uplink data packet from the terminal device;
  • Operation 202 The radio access network device obtains identity information of the uplink data packet.
  • Operation 203 The radio access network device carries the uplink data packet on a corresponding subnet of the transmission network for transmission according to the correspondence between the identity information of the uplink data packet and the transmission network subnet.
  • the foregoing method 200 is described from the perspective of a radio access network side. It can be understood that the method 200 can be applied to a communication system including a terminal device, a radio access network device, and a transmission network. Through the method 200, the radio access network device enables the uplink data to be carried on the corresponding transport network subnet (slice) in a reliable and efficient manner.
  • a transport network subnet slice
  • the identity information of the uplink data packet may include: information about a packet data connection identifier associated with the uplink data packet, and a GPRS tunneling protocol user plane associated with the uplink data packet.
  • the information of the part of the identifier, the information of the data stream identifier associated with the uplink data packet, and the information of the data radio bearer (DRB) associated with the uplink data packet may be at least one of the information. Any one of the two or any combination of the information may be combined to obtain the identity information of the uplink data packet.
  • the packet data connection referred to herein may be a session; the data stream referred to herein may be a group of data packets having the same or similar quality of service requirements, such as the QoS Flow mentioned in the standard definition process.
  • the packet data connection, the GPRS tunneling protocol user plane part, the data stream, and the data radio bearer are obtained by the packet data connection associated with the uplink data packet, and the uplink data packet is obtained.
  • Identity Information may also be: a packet data connection identifier associated with the uplink data packet, an identifier of a user plane part of the GPRS tunneling protocol associated with the uplink data packet, and data associated with the uplink data packet. And a flow identifier, and at least one of a data radio bearer (DRB) identifier associated with the uplink data packet.
  • DRB data radio bearer
  • the identity information of the uplink data packet has a corresponding relationship with a radio access network subnet (or slice), or the identifier of the radio access network subnet (or slice).
  • the information includes the identity information; the wireless access network subnet (or slice) and the transport network subnet (or slice) have a correspondence between the identity information and the transport network subnet (or slice)
  • the radio access network device may obtain the radio access network subnet (or slice) in advance.
  • the transport network subnet (or slice) may obtain the radio access network subnet (or slice).
  • the uplink data packet can be reliably and efficiently carried. Transmitting on the corresponding transmission network subnet, or when the identification information of the subnet (or slice) of the radio access network carries the identity information of the uplink data packet, then through the radio access network subnet (or slice) and The transmission network subnet (or slice) has a corresponding relationship between the two, and the uplink data packet is carried on the corresponding transmission network subnet for transmission.
  • the identifier of the radio access network subnet (or slice) may also be an identifier of the identity information of the uplink data packet.
  • the process for the radio access network device to obtain the correspondence between the radio access network subnet (or slice) and the transport network subnet (or slice) may include : information about the correspondence between the subnet (or slice) of the radio access network and the subnet (or slice) of the transport network can be configured through the system management plane, the network manager in the system management plane, and the transport network manager An interface for information interaction may be set between any two of the radio access network manager and the core network manager, and the interface of the information exchange enables the radio access network subnet (or slice) and the transmission Information of the correspondence between network subnets (or slices) can be passed between the four to enable the four to know the correspondence.
  • the radio access network device configures the uplink data packet on the system management plane before the transmission network subnet (slice) transmission, so that the information of the correspondence relationship is obtained by the radio access network device.
  • the information of the correspondence between the subnet (or slice) of the radio access network and the subnet (or slice) of the transport network may be the transport network manager through the transport network manager and the radio access network manager.
  • the information interaction interface is sent to the radio access network manager, and the radio access network manager passes the interface between the radio access network manager and the radio access network device, and the corresponding relationship is The information is sent to the radio access network device; or the transport network manager sends the information of the correspondence to the network manager through an interface between the transport network manager and the network manager, where the network management Transmitting, by the interface between the network manager and the radio access network manager, information of the correspondence relationship to the radio access network manager, the radio access network manager passing the radio access network manager The interface with the radio access network device sends the information of the correspondence to the radio access network device.
  • the radio access network subnet (or slice) and the transport network subnet (or slice) are respectively connected to the end-to-terminal network (or slice) created by the network manager. Corresponding relationship is provided, so that a correspondence relationship between the radio access network subnet and the transport network subnet can be established.
  • the transport network manager sends information about the correspondence between the foregoing radio access network subnet (or slice) and the transport network subnet (or slice) to the network manager or sends the wireless access Before the network manager, the transport network manager obtains the correspondence between the radio access network subnet (or slice) and the transport network subnet (or slice) based on the end-to-terminal network (or slice) created by the network manager. .
  • the end-to-terminal network has a corresponding relationship with the network slice selection assistance information (NSSAI); or the end-to-terminal network identifier, that is, the network slice selection auxiliary information.
  • the network slice selection auxiliary information may be carried in a non-access stratum (NAS) message, sent by the terminal device to a related device in the core network, and or the network slice selection auxiliary information may be carried.
  • the RRC (Radio Resource Connection) message is sent by the terminal device to the radio access network device.
  • the radio access network subnet has a corresponding relationship with a core network subnet (or slice), and the core network subnet (or slice) and the end to The terminal network (or slice) has a corresponding relationship, so that the radio access network device can learn the radio access network device belonging to the same end to the terminal network (or slice) according to the obtained core network subnet (or slice).
  • the corresponding subnet (or slice) on the side has a corresponding relationship with a core network subnet (or slice), and the core network subnet (or slice) and the end to The terminal network (or slice) has a corresponding relationship, so that the radio access network device can learn the radio access network device belonging to the same end to the terminal network (or slice) according to the obtained core network subnet (or slice).
  • the corresponding subnet (or slice) on the side
  • the uplink data packet is carried in the transport network subnet, including: the foregoing uplink data packet includes information of an identifier of a transport network subnet (or slice), for example,
  • the radio access network device side processes the uplink data packet, and adds information of the identifier of the transmission network subnet to the uplink data packet.
  • the information of the identifier of the transport network subnet (or slice) includes the identifier of the virtual local area network (virtual local area) Network ID, VLAN ID);
  • the identifier information of the transport network subnet includes at least one of the following: a port number of the IP network, and an internet protocol address.
  • subnets (or slices) between the RAN subdomain, the CN subdomain, and the TN subdomain belonging to the same end to the terminal network can be made in the end-to-terminal network.
  • the mapping and coordination are obtained, so that the data can be processed reliably and efficiently in each sub-domain of the terminal network, which improves the system efficiency of the end-to-terminal network communication and improves the consistency of the end-to-end service experience.
  • the present application provides a communication method 300, and an implementation process based on the method 300 includes:
  • Operation 301 The core network device learns identity information of the downlink data packet.
  • Operation 302 The core network device carries the downlink data packet in the transport network subnet according to the correspondence between the identity information of the downlink data packet and the transport network subnet.
  • the above method 300 is described from the perspective of the core network side. It can be understood that the method 300 can be applied in a communication system including a core network device and a transmission network.
  • the core network device can carry downlink data bearer on the corresponding transport network subnet (or slice) in a reliable and efficient manner.
  • the identity information of the downlink data packet includes: information about a packet data connection identifier associated with the downlink data packet, and a user plane portion of the GPRS tunneling protocol associated with the downlink data packet. At least one of the information of the identification, the information of the data flow identifier associated with the downlink data packet, and the information of the data radio bearer (DRB) associated with the downlink data packet may be in the information. Either any two or any of the pieces of information may be combined to obtain identity information of the downlink data packet.
  • DRB data radio bearer
  • the packet data connection referred to herein may be a session; the data stream referred to herein may be a group of data packets having the same or similar quality of service requirements, such as Qos Flow mentioned in the standard definition process.
  • the packet data connection, the GPRS tunneling protocol user plane part, the data stream, and the data radio bearer are obtained by the packet data connection associated with the downlink data packet, and the downlink data packet is obtained.
  • Identity Information may be: a packet data connection identifier associated with the downlink data packet, an identifier of a user plane part of the GPRS tunneling protocol associated with the downlink data packet, and data associated with the downlink data packet.
  • DRB data radio bearer
  • the identity information of the downlink data packet has a corresponding relationship with a core network subnet (or a slice); or the information of the identifier of the core network subnet (or slice) includes the The identity information of the downlink data packet; the core network subnet (or slice) and the transport network subnet (or slice) have a correspondence relationship, so that the identity information of the downlink data packet and the transport network subnet (or slice)
  • a correspondence can be established between the core network device before the core network device carries the downlink data packet (or slice), and the core network device can obtain the core network subnet (or slice) and the transmission in advance.
  • the downlink data packet can be reliably and efficiently carried in the corresponding data packet.
  • the identifier of the core network subnet (or slice) may also be an identifier of the identity information of the downlink data packet.
  • a process in which a core network device obtains a correspondence between the core network subnet (or a slice) and the transport network subnet (or a slice) may include: the core network
  • the information of the correspondence between the subnet (or slice) and the transport network subnet (or slice) can be configured through the system management plane, the network manager in the system management plane, the transport network manager, and the radio access network management.
  • An interface for information interaction may be set between any two of the four core network controllers, and the interface for interacting with the core network subnet (or slice) and the transport network subnet (or slice)
  • the information of the correspondence between the two can be transmitted between the four to enable the four to know the correspondence.
  • the core network device configures the downlink data packet on the system management plane before the transport network subnet (slice) is transmitted, so that the information of the corresponding relationship is obtained by the core network device.
  • the information of the correspondence between the core network subnet (or slice) and the transport network subnet (or slice) may be the information exchange between the transport network manager and the transport network manager and the core network manager.
  • the interface is sent to the core network manager, and the core network manager sends the information of the corresponding relationship to the core network device through the interface between the core network manager and the core network device; Transmitting, by the transport network manager, information of the correspondence relationship to the network manager through an interface between the transport network manager and the network manager, the network manager passing between the network manager and the core network manager
  • the interface sends the information of the corresponding relationship to the core network manager, and the core network manager sends the information of the correspondence relationship to the core network device by using an interface between the core network manager and the core network device.
  • the core network subnet (or slice) and the transport network subnet (slice) respectively correspond to the end-to-terminal network (or slice) created by the network manager. So that the core network subnet (or slice) can be associated with the transport network subnet (or slice).
  • the transport network manager before transmitting, by the transport network manager, the information about the correspondence between the foregoing core network subnet (or slice) and the transport network subnet (slice) to the network manager or to the core network manager, The transport network manager obtains a correspondence between the core network subnet (or slice) and the transport network subnet (or slice) based on the end-to-terminal network (or slice) created by the network manager.
  • the foregoing end-to-terminal network has a corresponding relationship with the network slice selection assistance information (NSSAI); or the end-to-terminal network identifier, that is, the network slice selection auxiliary information.
  • the network slice selection auxiliary information may be carried in a non-access stratum (NAS) message, sent by the terminal device to a related device in the core network, and/or the network slice selection auxiliary information may be The RRC (Radio Resource Connection) message is carried by the terminal device to the radio access network device.
  • NAS non-access stratum
  • RRC Radio Resource Connection
  • the downlink data packet is carried in the transport network subnet, including: the foregoing downlink data packet includes information for identifying an identifier of a network subnet (or a slice), for example, On the core network side, the downlink data packet is processed, and the information of the identifier of the transmission network subnet is added in the downlink data packet.
  • the information of the identifier of the transport network subnet (or slice) includes the identifier of the virtual local area network (virtual local area) Network ID, VLAN ID);
  • the identifier information of the transport network subnet may further include at least one of the following: a port number of the IP network, and an internet protocol address.
  • the foregoing communication method 200 is mainly described from the perspective of processing of the radio access network device side from the uplink transmission direction of the data, and the communication method 300 is from the data downlink transmission direction to the processing angle of the core network device side. A description is made.
  • the foregoing communication method 200 and the foregoing communication method 300 can be used in combination to complete processing of uplink and downlink data.
  • the present application further provides a communication method 400.
  • An implementation process based on the method 400 includes:
  • Operation 401 Create an end to the terminal network.
  • a network manager for end-to-end slice management can be set up in the 5G system, which creates an end-to-terminal network based on input parameters, such as customer quality of service requirements.
  • Operation 402 Instruct the sub-domain manager.
  • the network manager configures the performance sub-domain sub-network performance indicator requirements and/or parameters for the subnets created in operation 401, and the sub-domain performance index requirements and/or required for each sub-domain subnet.
  • the configuration parameters are separately sent to the involved sub-domain manager.
  • the network manager may also send information about the identifier of the end to the terminal network to each sub-domain, and the information about the identifier of the end-to-terminal network may be It may be sent together when the performance indicator requirements and/or the required configuration parameters are delivered, or may be separately sent to each sub-domain.
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type ID), service management Related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant ID), user group identifier (user group) ID), used to characterize the slice type or slice identifier index, end to the subnet work ID, subdomain identification information (for example, RAN subnet identifier, CN subnet ID, or TN subnet ID).
  • the subnet identifier may be a slice identifier or a slice instance identifier.
  • Each sub-domain manager receives various types of information sent from the network manager shown in operation 402, which may be received from the same information sent from the network manager, or may be sent from the network manager. Received in a number of different messages coming over. On this basis, each sub-domain manager obtains at least the requirements corresponding to its own sub-domain performance indicators, respectively creates subnets corresponding to the aforementioned sub-domains of the terminal network, and feeds back to the network manager about its own sub-domain subnets.
  • the results of the creation, the results of the feedback include but are not limited to: successfully created, or not successfully created.
  • Operation 404 (This operation is optional) The subdomain manager notifies the subdomain configuration.
  • Each sub-domain manager separately informs the network manager and/or other sub-domain management of the specific configuration of its own sub-domain subnet and/or the information about the end-to-terminal network (slice) corresponding to the subnet created by the sub-domain.
  • the TN manager will inform the network manager, at least one of the RAN manager and the CN manager, of the TN subnet (optional, and its identified information) created by the end to the terminal network, the TN subnet.
  • the identifier information may be the identifier information of the TN subnet on the internal interface of the RAN (such as the X2 interface or the Xn interface between the base station and the base station), or may be the TN on the internal interface of the CN (such as the interface between the AMF and the SMF).
  • the identification information of the subnet may also be the identification information of the TN subnet on the interface between the RAN and the CN (such as the S1 interface of the 4G and the NG interface of the 5G).
  • Operation 405 (This operation is optional) The network manager notifies the subdomain configuration.
  • the network manager sends the sub-domain configuration of a sub-domain to the sub-network to the other sub-domain manager for the cooperation of the sub-domain and other sub-domains.
  • the TN manager informs the network manager of the TN subnet created by the terminal to the terminal network and its identification information, and the network manager further identifies the transmission subnet through the network manager and the RAN.
  • the interface between the devices, or through the interface between the network manager and the CN manager, is sent to the RAN manager and/or the CN manager, respectively.
  • the network manager sends the parameters required for the TN subdomain to create a subnet (or: subdomain slice) to the TN manager.
  • the TN manager manages the network. After the device feeds back the identification information of the transmission subdomain subnet (slice) created by it (for example, the created TN subnet identifier), the network manager sends the TN subnet correlation identifier together with the RAN/CN related parameters to the RAN/CN.
  • the manager or, optionally, the TN manager sends the information of the subnet identification of the TN subdomain directly to the RAN/CN manager so that the TN subnet and its identification information can be managed by the RAN manager and/or CN.
  • the interaction between the RAN manager and the radio access network device enables the radio access network device to learn the TN subnet and its identification information, and/or through the CN manager and the core network device.
  • the interaction enables the core network device to also know the TN subnet and its identification information.
  • the RAN domain and the CN domain have at least two options for obtaining the TN subnet identification information:
  • Mode 1 The RAN manager learns the information of the identifier of the TN subnet from the network manager by interacting with the interface between the RAN manager and the network manager; or, the CN manager can pass the CN manager and the network manager. The interface between the interaction information, so that the CN manager can obtain the information of the identifier of the TN subnet through the network manager;
  • the RAN manager can exchange information with the interface between the RAN manager and the TN manager, so that the RAN manager learns the information of the identifier of the TN subnet from the TN manager; or, the CN manager can manage through the CN.
  • the interface between the device and the TN manager exchanges information, so that the CN manager learns the information of the identifier of the TN subnet from the TN manager.
  • the information of the TN subnet and/or the identity of the TN subnet can be known by the RAN manager and/or the CN manager, thereby enabling the radio access network device and/or the core network device to learn the TN subnet.
  • information about the identifier of the TN subnet can also be obtained), so that subnets (slices) between the RAN subdomain, the CN subdomain, and the TN subdomain belonging to the same terminal to the terminal network can be performed.
  • Mapping and collaboration enable collaborative management of resources in different sub-domains in the end-to-terminal network, improving system efficiency of the end-to-terminal network communication and improving the consistency of the end-to-end service experience.
  • the embodiment of the present application further provides a communication method 500, where the method 500 includes:
  • Operation 501 initial access request and/or service request.
  • the terminal device initiates an initial access request and/or a service request, and carries an parameter for selecting a network slice in the initial access request and/or the service request, where the initial access request and/or the service request may be the UE.
  • Operation 502 Establish a data flow connection.
  • the CN establishes a data flow connection for the UE (the data flow connection may be a session connection, a QoS flow, multiple QoS flows, an IP data flow, or multiple IP data flows), and associates the data flow connection to Subnet, where the subnet can be the end-to-terminal network configured by the network manager or the subnet of the CN domain. If it is a subnet of the CN domain, the CN domain subnet has a corresponding relationship with the terminal to the terminal network. The subnet has information about the identity of the subnet.
  • the CN may also allocate a data transmission channel between the core network and the RAN for the data stream connection, the identification information of the CN connection, and the identifier information of the corresponding subnet (for example, the information related to the terminal network identifier, CN)
  • the UE is informed to at least one of the information related to the subnet identification, at least one of the information related to the subnet identification of the CN authentication, and the information of the data transmission channel and the QoS related information.
  • Operation 503 Know the correspondence between the data stream and the subnet.
  • the RAN learns the information of the identifier of the subnet, and the information of the identifier of the data stream connection corresponds to at least one of the information of the transmission channel, so as to correctly carry the data packet to the corresponding TN subnet for transmission.
  • the RAN learns the related information of the subnet identifier, the identifier information of the data stream connection, and the information of the corresponding transmission channel, and may include any one of the following manners:
  • Option 1 In operation 501, the CN exchanges information through the interface between the CN and the RAN, and the related information is transmitted to the radio access network device (such as the base station) on the RAN side through the interface interaction information.
  • the radio access network device such as the base station
  • the RAN exchanges information through the interface between the RAN and the CN, obtains the identifier information of the data stream connection and the information of the corresponding transmission channel through the interface message, and obtains related information of the subnet identifier in the UE and the After the identifier information of the data stream is connected, the air interface message between the UE and the RAN carries the information about the subnet identifier and the identifier information of the data stream connection, so as to notify the base station on the RAN side, so that the RAN knows the corresponding data stream connection.
  • Subnet information (for example, at least one of end-to-terminal network identification information, CN sub-domain subnet identification information, and CN-authenticated subnet identification information).
  • Operation 504 end to terminal network transmission.
  • the RAN Based on the related information of the subnet identifier obtained in operation 503, in the present operation, the RAN associates the RAN sub-domain subnet with the data flow connection, and allocates a corresponding air interface transmission resource (for example, DRB) for the data flow connection.
  • the CN and the RAN learn the information of the TN subnet corresponding to the subnet through the management plane interface (for example, the manner of obtaining the information of the TN subnet can refer to the operations 403, 404 and 405 in the foregoing method 400), so as to be able to user data. Put it in the corresponding TN subnet for transmission.
  • the present application proposes a communication system, namely the system 600 as illustrated in FIG.
  • the present embodiment is described in two parts: a first part (see Part 1 of the illustration), which describes the network manager and the managers of the various sub-domains mainly from the perspective of the management plane signaling flow of the system 600. Parameter configuration and coordination; the second part (see Part 2) shows the signaling flow of the RAN and CN parts of the system, so that the user data belonging to the same end to the terminal network can be in RAN, CN and TN.
  • the three sub-domains are carried in the sub-domain subnet belonging to the terminal network.
  • the management plane signaling process of Part 1 can be used as the process design of the independent system management plane to complete the relevant signaling configuration of the management plane. It can also be used as a common part of the various schemes in the embodiment of the present application, for example, as a common part of each scheme in the Part 2; and the Part 2 part needs to consider different design schemes adopted by the core network configuration network slice, and may have corresponding differences on the RAN side. Supporting processing.
  • Figure 6 shows only part 1 and part 2 of the system 600, and various possible process designs for part 1 and part 2, respectively, have not been further described, and a detailed description will be shown step by step.
  • the network manager, the RAN manager, the TN manager and the management plane have various possible implementations of the signaling interaction process, as long as they can be implemented in the network manager, the RAN manager, and the TN manager.
  • the CN manager can transmit information related to each sub-domain subnet such as RAN, TN, and CN.
  • the information to be transmitted includes but is not limited to any one or any of the following: at least one sub-domain Subnet identification related information, information of correspondence/mapping relationship between any two subdomain subnets, information of correspondence/mapping relationship between subdomain subnets and end-to-end network subnets created by the system, And at least one of the following information that may be applied in the slice management and the slice mapping: a UE ID, a session ID, a tunnel ID, a subnet identifier related information, a core network user plane IP address, and a QoS flow. Identification information, DRB identification, IP data flow identification information.
  • the Part 2 portion currently shows a summary flow of the transmission of data in each sub-domain by means of signaling interaction between the terminal device, the wireless access device, the transmission network, and the core network.
  • a signaling interface exists between the RAN manager and the radio access network, and a signaling interface exists between the TN manager and the transport network device, and a signal interface exists between the CN manager and the core network, and each of the signaling interfaces One can be used to interact with the information that needs to be passed.
  • an optional method 1 of the component 1 provides a communication method 700, where an implementation process based on the method 700 includes:
  • Operation 701 Create an end to the terminal network.
  • the network manager creates an end-to-terminal network based on input parameters, such as quality of service (QoS) parameters associated with a service level agreement (SLA) (customer's quality of service requirements for a particular type of service) And decompose the capability requirements of the end to the terminal network into configuration parameters of each subdomain.
  • QoS quality of service
  • SLA service level agreement
  • the configuration parameter may include a specific configuration of each sub-domain, such as at least one of a resource usage mode, a usage policy, and a usage restriction, and the configuration parameter may further include a key performance indicator requirement for each sub-domain (specific parameters may be
  • the subdomain is flexibly configured as long as the parameters configured in each subdomain meet the requirements of the indicator.
  • Operation 702 Configure subdomain subnet parameters.
  • the network manager sends the configuration parameters of each sub-domain involved to each sub-domain manager.
  • the network manager can also send related information of the end-to-terminal network identifier to each sub-domain manager.
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type ID), service Management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant ID), user group identifier (user Group ID), used to represent the slice type or slice identifier index, end to subnet work ID, subdomain subnet identification information (for example: RAN subnet ID, CN subnet) At least one of the identifier and the identifier of the TN subnet).
  • NSSAI network slice selection assistance information
  • slice type ID slice type ID
  • the configuration parameter that is sent by the network manager to the RAN manager for the RAN subdomain may include the corresponding TN subnet identification information, and/or the correspondence between the RAN subdomain subnet and the TN subnet. .
  • the configuration parameter that is sent by the network manager to the CN manager for the CN subdomain includes the corresponding TN subnet identification information, and/or the correspondence between the RAN subdomain subnet and the TN subnet.
  • Operation 703 Each sub-domain creates a subnet, and respectively feeds back to the network manager information about the result of the creation and/or the identity of the sub-domain subnet it creates.
  • each sub-domain manager involved receives the configuration information related to the creation of the terminal to the terminal network from the network manager, each sub-domain manager separately creates a subnet corresponding to the sub-domain, and then Each sub-domain manager feeds back to the network manager the identification information of the sub-domain subnet that it creates, for example, by sending a response message to feed back the identification information.
  • the configuration information related to the terminal-to-terminal network creation may be various types of information that the management manager sends to each sub-domain manager in operation 702, and the configuration information may also be sent by the network manager to a sub-domain management. The child is then forwarded by the child domain manager to the other involved child domain managers through the interconnect interface.
  • the response message that the TN manager replies to the network manager may include at least one or any combination of the following: the identifier information of the TN subnet created by the TN manager for the RAN/CN, and the TN manager is created for the RAN-CN interface.
  • the identifier information of the TN subnet does not distinguish the information of the identifier of the global TN subnet created by the TN manager in the case of the CN, RAN, and RAN-CN interfaces.
  • the TN subnet created by the TN manager can further distinguish the control bearer between the control plane and the user plane. That is, the TN manager can also create different TN subnets for transmitting control plane data packets and user plane data packets.
  • the TN subnet created by the TN manager can further distinguish the data flows in the subnet, such as TN subnets created for IP data flows, multiple IP data flows, QoS flows, and multiple QoS flows.
  • the identification information of the TN subnets can also be fed back to the network manager.
  • the identification information of the TN subnets is also included in the foregoing response message.
  • the identification information of the end-to-terminal network corresponding to the TN subnet can also be Carry in the response message.
  • the response message in this embodiment refers to a message that can carry the above-mentioned various types of configuration information.
  • the specific name is not limited, and may be named as another message name.
  • the identification information of the TN subnet may be differently expressed based on different ways of creating a TN subnet (ie, a TN domain subnet portion corresponding to the terminal network).
  • a TN domain subnet portion corresponding to the terminal network.
  • the TN subnet identifier may be a VLAN ID; if the network slicing mode of the TN domain is another method and technology for creating a virtual subnet, The TN subnet identifier is a corresponding identifier that can distinguish each virtual subnet, and is not limited herein.
  • the information of the TN subnet includes information for distinguishing different TN subnets, such as a port number and an IP address.
  • the identifier information of the TN subnet can include information used to distinguish between the signaling plane and the data plane, so that the identifier can be differentiated for the bearer. Different subnets for signaling or data plane transmission.
  • the identification information section of the TN subnet includes information for distinguishing different data flows, such as identification information of the IP data flow, and multiple IP addresses.
  • the identification information section of the TN subnet includes information for distinguishing different data flows, such as identification information of the IP data flow, and multiple IP addresses.
  • Operation 704 Notifying the RAN/CN manager of the information of the identity of the TN subnet.
  • the network manager sends the identifier information of the TN subnet configured by the TN manager to the RAN manager/CN manager through the interface message, and the identifier information of the TN subnet can be operated. 703 is obtained by the network manager.
  • the interface message may also carry the information of the terminal corresponding to the identification information of the TN subnet to the terminal network identifier.
  • the TN subnet identification information also needs to include parameters for distinguishing the same end to each TN subnet in the terminal network.
  • the TN manager may send an interface message through an interface between the TN manager and the RAN manager/CN manager, where the interface message carries the identifier of the TN subnet configured for the RAN/CN
  • the information enables the identification information of the TN subnet configured by the TN for the RAN/CN to be separately sent to the RAN manager/CN manager.
  • the TN manager may also carry the end-to-terminal network identification information corresponding to the TN subnet identification information in the interface message.
  • the TN subnet identification information also needs to include parameters for distinguishing the same end to each TN subnet in the terminal network.
  • Operation 705 RAN/CN associates a TN subnet.
  • the RAN/CN is based on the acquired information about the subnet identity (such as the information obtained in operations 702 and/or 704), and the RAN/CN itself is the RAN/CN subdomain subnet created by the end to the terminal network and correspondingly
  • the TN subnets are associated such that RAN/CN and TN correspond to the same end to the terminal network.
  • Operation 706 The TN manager configures TN parameters for the involved TN subnet.
  • the TN manager configures corresponding TN parameters for the corresponding TN subnets involved based on the requirements of the terminal to the TN domain of the terminal network.
  • the TN parameter may include at least one of the following: a configuration of a topology table, a configuration of a routing table, a mapping relationship between a forwarding priority and a parameter in the RAN/CN/RAN-CN interface, where the mapping relationship may include: The mapping between the forwarding priorities of the VLANs and the QoS parameters of the RAN/CN/RAN-CN interface (at least one of the RAN, the CN and the RAN-CN interface), and/or a VLAN The mapping between the forwarding priority and the differentiated service code point (DSCP) carried by the packet IP on the RAN/CN/RAN-CN interface (at least one of the RAN, the CN, and the RAN-CN interface) ).
  • the TN manager sends the TN subnet parameter configuration to the corresponding TN domain node.
  • Option 2 of Part 1 provides a communication method 800, wherein an implementation process based on the method 800 includes:
  • Operation 801 Create an end to the terminal network, and determine subdomain configuration parameters.
  • Operation 801 is similar to operation 701 and will not be described again here.
  • Operation 802 Configure TN subnet parameters.
  • the network manager sends the configuration parameters of the TN domain to the TN manager.
  • the network manager can also send the relevant information of the terminal to the terminal network identifier to the TN domain manager.
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type ID), service Management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant ID), user group identifier (user Group ID), used to represent the slice type or slice identifier index, end to subnet work ID, subdomain subnet identification information (eg RAN subnet ID, CN subnet ID) And at least one of the TN subnet identifiers).
  • NSSAI network slice selection assistance information
  • slice type ID slice type ID
  • service Management related NSSAI session management NSSA
  • Operation 803 Create a TN sub-domain subnet, and feed back information of the creation result and/or the identifier of the created TN domain subnet to the network manager.
  • the TN manager creates a TN subdomain subnet, and then the TN manager feeds back to the network manager.
  • the identification information of the sub-domain subnet that it creates for example, by sending a response message to feed back the identification information.
  • the response message sent by the TN manager to the network manager may include at least one or any combination of the following: the identifier information of the TN subnet created by the TN manager for the RAN/CN, and the TN manager is created for the RAN-CN interface.
  • the TN subnet identification information does not distinguish the information of the identifier of the global TN subnet created by the TN manager in the case of the CN, RAN, and RAN-CN interfaces.
  • the TN subnet created by the TN manager can further distinguish the transmission bearer between the control plane and the user plane, that is, the manager can also create different TN subnets for respectively transmitting the control plane data packet and the user plane data packet;
  • the TN subnet created by the TN manager can further distinguish the data flows in the subnet, such as TN subnets created for IP data streams, multiple IP data streams, QoS flows, and multiple QoS flows. .
  • the identification information of the TN subnets can also be fed back to the network manager.
  • the identification information of the TN subnets is also included in the foregoing response message, and correspondingly, the end-to-terminal network identification information corresponding to the TN subnets is corresponding. It can also be carried in the response message.
  • the response message in this embodiment refers to a message that can carry the above-mentioned various types of configuration information.
  • the specific name is not limited, and may be named as another message name.
  • the identification information of the TN subnet may be differently expressed based on different ways of creating a TN subnet (ie, a TN domain subnet portion corresponding to the terminal network).
  • the TN subnet identifier may be a VLAN ID; if the network slicing mode of the TN domain is another method and technology for creating a virtual subnet, the TN subnet identifier is a corresponding identifier that can distinguish each virtual subnet, and is not limited herein.
  • the information of the TN subnet includes information for distinguishing different TN subnets, such as a port number, an IP address, and the like; If the TN subnet can be used to distinguish the bearer signaling plane or the data plane, the identifier information of the TN subnet can include information for distinguishing between the signaling plane and the data plane, so that the signaling can be differentiated for bearer signaling.
  • the identification information section of the TN subnet includes information for distinguishing different data flows, such as Identification information of the IP data stream, group identification information of the plurality of IP data streams, identification information of the QoS flow, group identification information of the plurality of QoS flows, and the like.
  • Operation 804 Notifying the RAN/CN manager of the information identified by the TN subnet.
  • the network manager uses the RAN subdomain configuration parameter corresponding to the foregoing end-to-terminal network and/or the identifier of the TN subnet configured by the TN manager for the RAN, through the network manager and the RAN.
  • Interface messages between the managers are sent to the RAN manager.
  • the interface message may further carry information about the RAN sub-domain configuration and/or the end-to-terminal network identifier corresponding to the TN subnet identifier;
  • the network manager sets the CN subdomain configuration parameter corresponding to the information about the terminal to the terminal network identifier and/or the identifier information of the TN subnet configured by the TN manager for the CN, through the network manager and
  • the interface message between the CN managers is sent to the CN manager.
  • the interface message may further carry configuration information of the CN subdomain and/or information of the identifier of the terminal to the terminal network corresponding to the TN subnet.
  • Operation 805 RAN/CN associates a TN subnet.
  • the RAN/CN is based on the acquired information about the subnet identity (such as the information obtained in operation 804), and the RAN/CN itself is the RAN/CN subdomain partial subnet created by the end to the terminal network and the corresponding TN sub-sub
  • the network is associated so that RAN/CN and TN correspond to the same end to the terminal network.
  • Operation 806 The TN Manager configures a TN parameter for the TN subnet.
  • the TN manager configures corresponding TN parameters for the corresponding TN subnets involved based on the requirements of the end-to-terminal network to the TN sub-domain.
  • the TN parameter may include at least one of the following: a configuration of a topology table, a configuration of a routing table, a mapping relationship between a forwarding priority and a parameter in the RAN/CN/RAN-CN interface, where the mapping relationship may include: The mapping between the forwarding priorities of the VLANs and the QoS parameters of the RAN/CN/RAN-CN interface (at least one of the RAN, the CN and the RAN-CN interface), and/or a VLAN The mapping between the forwarding priority and the differentiated service code point (DSCP) carried by the packet IP on the RAN/CN/RAN-CN interface (at least one of the RAN, the CN, and the RAN-CN interface) ).
  • the act of configuring the TN subnet in operation 806 can be performed at any time after operation 802 in the method 800.
  • Option 3 of Part 1 provides a communication method 900, wherein an implementation process based on the method 900 includes:
  • Operation 901 Create an end to the terminal network.
  • the network manager creates an end-to-terminal network based on input parameters (eg, parameters related to the customer's quality of service requirements for a particular type of service) and decomposes the capability requirements of that end to the terminal network into configuration parameters for each sub-domain.
  • the configuration parameter may be a specific configuration of each sub-domain, such as a resource usage mode, a usage policy, and a usage limitation.
  • the configuration parameter may also include key performance indicator requirements for each sub-domain (the specific parameters may be flexibly configured by each sub-domain. As long as the parameters configured in each subdomain meet the requirements of the indicator). Operation 901 herein is similar to operation 701 in method 700 above or operation 801 in method 800.
  • the configuration parameter of the TN sub-domain may include at least one or any of the following information: the identification information of the TN subnet configured in the RAN domain/CN domain of the end-to-end network subnet, and The identification information of the TN subnet created by the interface between the RAN and the CN, and the identification information of the global TN subnet created without distinguishing between the CN, the RAN, and the RAN-CN interface.
  • the configuration parameter of the TN sub-domain may further include a TN parameter configured for each TN subnet, where the TN parameter may include at least one of the following: configuration of a topology table, configuration of a routing table, forwarding priority, and RAN/ Mapping relationship of parameters on the CN/RAN-CN interface.
  • the mapping relationship may include: mapping between a forwarding priority of a certain VLAN and a packet QoS parameter on the RAN/CN/RAN-CN interface (at least one of the RAN, the CN, and the RAN-CN interface) And/or, the mapping between the forwarding priority of a certain VLAN and the differentiated service code point (DSCP) carried by the IP packet of the intra-RAN/CN/RAN-CN interface (intra-RAN, CN) At least one of the inner and RAN-CN interfaces).
  • DSCP differentiated service code point
  • the TN subnet identification information may be differently expressed based on different manners of creating a TN subnet (ie, a TN domain subnet portion corresponding to the terminal network). For example, if the subnet of the TN domain is created by creating a virtual local area network (VLAN), the identification information of the TN subnet is the VLAN ID. If the subnet of the TN domain is created in the other way, the virtual subnet is created.
  • VLAN virtual local area network
  • the TN subnet identification information is a corresponding identifier that can distinguish each virtual subnet, and is not limited herein.
  • the information of the TN subnet includes information for distinguishing different TN subnets, such as a port number and an IP address.
  • the identifier information of the TN subnet can include information used to distinguish between the signaling plane and the data plane, so that the identifier can be differentiated for the bearer. Different subnets for signaling or data plane transmission.
  • the identification information section of the TN subnet includes information for distinguishing different data flows, such as identification information of the IP data flow, and multiple IP addresses.
  • the identification information section of the TN subnet includes information for distinguishing different data flows, such as identification information of the IP data flow, and multiple IP addresses.
  • Operation 902 Configure subdomain subnet parameters.
  • the network manager sends the configuration parameters of the sub-domains to the sub-domain managers through the interface message.
  • the interface message can also carry the information about the identifier of the terminal to the terminal network.
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type) ID), service management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant ID), user A user group ID, which is used to represent a slice type or a slice identifier, a subnet work ID, and a subnet subnet identification information (for example, a RAN subnet identifier, At least one of a CN subnet identifier and a TN subnet identifier).
  • NSSAI network slice selection assistance information
  • slice type identifier slice type identifier
  • service management related NSSAI session management NSSAI
  • SM-NSSAI single NSSAI
  • service type ID service type ID
  • the configuration parameter that is sent by the network manager to the RAN manager for the RAN subdomain may include the corresponding TN subnet identification information, and/or the correspondence between the RAN subdomain subnet and the TN subnet. .
  • the configuration parameter that is sent by the network manager to the CN manager for the CN subdomain includes the corresponding TN subnet identification information, and/or the correspondence between the RAN subdomain subnet and the TN subnet.
  • the configuration parameter that is sent by the network manager to the TN manager for the TN sub-domain includes: information about the identifier of the TN subnet created by the end to the terminal network (optional, respectively, corresponding to the RAN Configuration parameters required for each TN subnet involved in the internal/CN/RAN-CN interface configuration TN subnet), and/or involved.
  • Each sub-domain creates a subnet, and feeds back to the network manager the identification information of the subnet created by the network manager.
  • each sub-domain manager involved receives the configuration information related to the creation of the terminal to the terminal network from the network manager, each sub-domain manager separately creates a subnet corresponding to the sub-domain, and then Each sub-domain manager feeds back to the network manager the identification information of the sub-domain subnet that it creates, for example, by sending a response message to feed back the identification information.
  • the configuration information related to the terminal-to-terminal network creation may be various types of configuration information related to each sub-domain manager determined by the management manager in operation 902, and the configuration information may also be sent by the network manager to a sub-domain management.
  • the child is then forwarded by the child domain manager to the other involved child domain managers through the interconnect interface.
  • This operation 903 can be similar to operation 703 in method 700.
  • Optional implementation of operation 904 The information of the identifier of the TN subnet configured by the TN manager is sent to the RAN manager/CN manager through the interface message through the network manager, and the identifier information of the TN subnet can be Obtained in operation 903 by the network manager.
  • the interface message may also carry the information of the terminal corresponding to the identification information of the TN subnet to the terminal network identifier.
  • the TN subnet identification information also needs to include parameters for distinguishing the same end to each TN subnet in the terminal network.
  • the TN manager may send an interface message through an interface between the TN manager and the RAN manager/CN manager, where the interface message carries the identifier of the TN subnet configured for the RAN/CN
  • the information so that the TN is the identity of the TN subnet configured for the RAN/CN can be sent to the RAN manager/CN manager, respectively.
  • the TN manager may also carry information about the identifier of the terminal to the terminal network corresponding to the TN subnet identification information in the interface message.
  • the information of the TN subnet identifier needs to include parameters for distinguishing the same end to each TN subnet in the terminal network.
  • This operation 904 can be similar to operation 704 in method 700.
  • Operation 905 RAN/CN associates a TN subnet.
  • the RAN subdomain/CN subdomain can be based on the obtained subnet identification information, and can itself be the RAN/CN part and the TN subnet created by the end to the terminal network.
  • the association is performed such that the RAN sub-domain subnet/CN sub-domain subnet and the TN sub-network can correspond to the same end-to-end network subnet.
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type ID), and service management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID, user group ID ), used to characterize the slice type or slice identifier index, end to subnet work ID, subdomain subnet identification information (eg RAN subnet ID, CN subnet ID and TN) At least one of the subnet identifiers).
  • NSSAI network slice selection assistance information
  • slice type ID slice type ID
  • service management related NSSAI session management NSSAI, SM-NSSAI
  • single NSSAI single NSSAI
  • service type ID service type ID
  • service type identifier of a subdomain tenant ID
  • tenant ID tenant ID
  • user group ID used to characterize the
  • the RAN/CN subnet created by the end to the terminal network can be associated with the corresponding TN subnet, so that the RAN subdomain subnet/ The CN subdomain subnet and the TN subnet can correspond to the same end-to-end network subnet to facilitate data transfer between the RAN-TN-CN.
  • Operation 906 Configuring a TN domain node accordingly.
  • the TN manager sends the TN subnet parameters to the corresponding TN domain device.
  • the TN manager configures a corresponding TN parameter for the corresponding TN subnet according to the requirement of the TN domain of the terminal to the terminal network.
  • the TN parameter may include at least one of the following: a configuration of a topology table, a configuration of a routing table, a mapping relationship between a forwarding priority and a parameter in the RAN/CN/RAN-CN interface, where the mapping relationship may include: The mapping between the forwarding priorities of the VLANs and the QoS parameters of the RAN/CN/RAN-CN interface (at least one of the RAN, the CN and the RAN-CN interface), and/or a VLAN The mapping between the forwarding priority and the differentiated service code point (DSCP) carried by the packet IP on the RAN/CN/RAN-CN interface (at least one of the RAN, the CN, and the RAN-CN interface) ).
  • the action of configuring the TN subnet in operation 906 may be performed at any time after operation 902 in the method 900.
  • the embodiment of the present invention provides a communication method and system 1000 thereof, the core thereof.
  • the core network device distinguishes the subnet to which the data transmitted between the RAN and the CN belongs by the identification information of the session connection between the RAN and the CN.
  • a radio access network device can obtain a correspondence between a subnet and a tunnel ID, a transport network subnet (such as a VLAN), and/or a core network device establishes a subnet and a tunnel ID, and a transport network subnet ( Correspondence such as VLAN).
  • an implementation process of the method 1000 includes:
  • Operation 1001 The terminal device initiates a service request.
  • the terminal device takes the UE as an example.
  • the UE sends a service request to the RAN.
  • the RAN forwards the service request to the core network, or the RAN extracts the content in the service request. After being sent out, the content in the service request is sent to the core network through a signaling message between the RAN and the core network.
  • the service request includes reference information for assisting network slice selection.
  • the reference information may be any one or any combination of the following parameters: (1) UE identification information, where the UE identification information may include an international mobile subscriber identifier (IMSI), or the UE identification information may include Temporary mobile subscriber identity (TMSI), or the UE identity information may include a temporary UE identity (temp UE ID); (2) network slice selection assistance information (NSSAI); (3) Slice type ID; (4) NSSAI (session management NSSAI, SM-NSSAI); (5) Service type ID of a subdomain; (6) Tenant ID (tenant) ID); (7) user group ID; (8) single NSSAI (single NSSAI); (9) used to characterize the slice type or slice identifier (slice index); (10) end to terminal A subnet work ID; (11) information of an identifier of a subdomain subnet (eg, at least one of a RAN subnet identifier, a CN subnet identifier, and a TN
  • Operation 1002 Associate a slice for the terminal device.
  • the core network device After receiving the service request in operation 1001, the core network device associates the slice with the UE, and/or selects a corresponding core network functional entity for the UE, for example, selects a core network access and mobility management function entity, and the session The management function entity, the user plane function entity, and the like, wherein the session management function entity is responsible for creating a session and selecting a corresponding user plane function function entity.
  • Operation 1003 Feedback Response.
  • the CN device feeds back the response information to the UE, and the response information may be sent by the CN directly to the UE through the RAN, or the CN sends the response information to the RAN, and the RAN obtains the response information.
  • the content of the response information is then sent to the UE in the air interface message between the RAN and the UE.
  • the response information involved in this step may include: information that the CN is a subnet identifier associated with the UE, and/or a session ID.
  • the CN may also associate the CN with the UE by using the response information in the above 1003a or by using an interface message between the RAN and the CN. Any one or any of the information about the subnet identifier, and/or the core network user plane IP address, the session ID, and the tunnel ID (upstream and/or downlink) are sent to the RAN.
  • the chronological order of the two actions 1003a and 1003b is not limited herein.
  • the information related to the subnet identifier may include any one of the following parameters or a combination of any one of the following parameters: network slice selection assistance information (NSSAI), slice type in 1003a and/or 1003b.
  • NSSAI network slice selection assistance information
  • Slice type ID service management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant) ID), user group ID, used to characterize the slice type or slice identifier, the subnet work ID, and the subdomain subnet identification information (for example: At least one of a RAN subnet identifier, a CN subnet identifier, and a TN subnet identifier).
  • the UE may use the air interface signaling message, such as the message of the Uu interface, to set the CN as the relevant information of the subnet identifier associated with the UE. And/or any one or any of the core network user plane IP address, the session ID, and the tunnel ID (uplink and/or downlink) are sent to the RAN device.
  • the air interface signaling message such as the message of the Uu interface
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type ID), service Management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant ID), user group identifier (user Group ID), used to identify the slice type or slice identifier index, end to subnet work ID, subdomain subnet identification information (eg RAN subnet ID, CN subnet) At least one of an identifier and a TN subnet identifier).
  • NSSAI network slice selection assistance information
  • slice type ID slice type ID
  • service Management related NSSAI session management NSSAI
  • SM-NSSAI single NSSAI
  • service type ID service type ID
  • service type identifier of a subdomain tenant ID (tenant ID)
  • tenant ID tenant ID
  • Operation 1005 Associate a TN subnet.
  • an optional design for the radio access network device to associate the RAN sub-domain subnet (or data) with the TN sub-domain subnet is: a radio access network device
  • the information related to the subnet identification of the UE (eg, operation 1004) or CN (eg, operation 1003b or 1003a) is associated with the end-to-terminal network created by the system and the corresponding RAN subnet.
  • Combine the information of the TN subnet identification obtained by the RAN such as the VLAN ID), thereby obtaining the mapping relationship between the RAN subnet information, the session connection identification information, the tunnel establishment related information, and the TN subnet identification information. .
  • a specific representation of the mapping relationship is: (subnet identification information, session connection identification information, tunnel establishment related information, TN subnet identification information (such as VLAN ID)), exemplary, where, session The connection identifier may be a packet data connection identifier; the tunnel establishment related information may be a GPRS Tunneling Protocol-User Plane tunnel endpoint identifier (GTP-U TEID) and/or an IP address;
  • the VLAN ID is the TN subnet VLAN ID associated with the RAN side, or the TN subnet identification information may include the TN slice instance ID of the side.
  • a solution is designed to enable the radio access network device to obtain the TN subnet by implementing various feasible management plane signaling procedures in the foregoing Part 1 of the present application. Identification information.
  • an optional design for the core network device to associate the CN subdomain subnet (or data) with the TN subdomain subnet is: the core network device is reported based on the UE (for example, the network slice selection auxiliary information included in the service request in the operations 1001a and/or 1001b) obtains the related information of the subnet identifier, and combines the information of the TN subnet identifier obtained by the CN (such as the VLAN ID) to obtain the CN sub- The mapping relationship between the information about the network identifier, the identification information of the session connection, the information about the tunnel establishment, and the information of the TN subnet identifier.
  • mapping relationship is: (subnet identification information, session connection identification information, tunnel establishment related information, TN subnet identification information (such as VLAN ID)), exemplary, where, session The connection identifier is a packet data connection identifier; the tunnel establishment related information may be a GTP-U TEID and/or an IP address; the VLAN ID is a TN subnet VLAN identifier associated with the CN side, or the TN subnet identification information may include Side network slice instance ID (TN slice instance ID).
  • session The connection identifier is a packet data connection identifier
  • the tunnel establishment related information may be a GTP-U TEID and/or an IP address
  • the VLAN ID is a TN subnet VLAN identifier associated with the CN side
  • the TN subnet identification information may include Side network slice instance ID (TN slice instance ID).
  • a scheme is designed to enable the CN to obtain the information of the TN subnet identifier by implementing various feasible management plane signaling procedures in the foregoing Part 1 of the present application.
  • the RAN subdomain subnet, the CN subdomain subnet and the TN subdomain subnet corresponding to the terminal network can be established, and the subnet-based uplink and downlink data transmission is coordinated in each subdomain. Improve end-to-end transmission performance.
  • Operation 1006 Data Transfer.
  • the RAN side device For the data transmission between the RAN-CN, for a session connection of the UE, the RAN side device establishes an association relationship between the session connection identification information, the tunnel identification information, and the TN subnet identification information, or any of the following.
  • the RAN For the upstream data packet of the session connection from the UE, the RAN encapsulates it into a corresponding tunnel protocol data packet, exemplarily carrying a GTP-U TEID and/or an IP address. Further, the RAN transmits the tunnel protocol data packet in the corresponding TN subnet.
  • the tunnel protocol data packet is processed to carry a TN subnet identifier (such as a VLAN identifier).
  • the CN establishes an association relationship between the session connection identifier information, the tunnel identifier information, and the TN subnet identifier information, for any one of The downlink data packet that the UE connects to the session, the CN encapsulates the packet into a corresponding tunnel protocol data packet, carries the GTP-U TEID and/or the IP address, and the CN transmits the tunnel protocol data packet in the corresponding TN subnet, exemplary.
  • the tunnel protocol data packet is processed to carry the TN subnet identifier (such as a VLAN identifier).
  • a possible implementation manner is: for one session connection of the UE, the first base station passes the first An interface message between the base station and the second base station, and the tunnel-related information (for example, GTP-U TEID and/or IP address) established by the second base station for the session connection of the UE is learned, and the first base station establishes a The relationship between the session connection identifier information, the tunnel identifier information, and the TN subnet identifier information used by the second base station to transmit data, and the first base station sends the UE to the second base station to connect the session to the second base station.
  • the tunnel-related information for example, GTP-U TEID and/or IP address
  • the first base station RAN encapsulates the data packet into a corresponding tunnel protocol data packet, exemplarily carrying a GTP-U TEID and/or an IP address. Further, the RAN transmits the tunnel protocol data packet in the corresponding TN subnet. For example, the tunnel protocol data packet is processed to carry a TN subnet identifier (such as a VLAN identifier).
  • a TN subnet identifier such as a VLAN identifier
  • the RAN allocates one or more radio data bearer resources (for example, DRB) thereto.
  • the first base station learns, by the interface message between the first base station and the second base station, the tunnel information (for example, GTP-U TEID and/or IP address) established by the second base station for one radio data bearer of the UE, so the first base station is established.
  • the relationship between the session connection identification information, the wireless data bearer identification information, the tunnel identification information, and the TN subnet identification information used by the second base station to transmit data the first base station to the first base station
  • the first base station RAN encapsulates the data packet into a corresponding tunnel protocol data packet, which exemplarily carries the GTP-U TEID and/or the IP address.
  • the RAN transmits the tunnel protocol data packet in the corresponding TN subnet.
  • the tunnel protocol data packet is processed to carry a TN subnet identifier (such as a VLAN identifier).
  • the correspondence between a session connection and a data transmission tunnel is not limited, that is, the following implementation manner may be implemented: establishing a data transmission tunnel for a session connection, or establishing a session connection. Data transfer tunnels or a data transfer tunnel for multiple session connections.
  • each sub-domain subnet when creating an end-to-end network slice, each sub-domain subnet is created, and after the UE is associated with one end to the terminal network, each sub-domain can serve the UE by using a consistent subnet configuration.
  • Implementing subnet mapping between RAN, CN and TN especially mapping of RAN subdomain subnets to TN subdomain subnets, and/or mapping within RAN/CN subnets, eg RAN/CN sub
  • the information of the management plane signaling end to the terminal network and the mapping mode of each sub-domain subnet provide effective process support for the RAN side to perform transmission conversion of the RAN subnet TN subnet of the data packet.
  • the core network device distinguishes the subnet (or network slice) by the identifier information of the session connection between the RAN and the CN, and the radio access network device obtains the correspondence between the session connection identifier information and the VLAN (RAN side), and/or, The core network device establishes a correspondence between the session connection identifier information and the VLAN (CN side), thereby establishing a slice mapping between the RAN, the CN, and the TN.
  • the embodiment of the present invention further provides a communication method 1100, which can be applied to the system 1000, and needs to be described in the system 1000 dotted frame Part
  • a communication method 1100 which can be applied to the system 1000, and needs to be described in the system 1000 dotted frame Part
  • the network manager, the RAN manager, the TN manager and the CN manager for information interaction exists, but it should be understood that the network manager, the RAN manager, the TN manager and the CN
  • the management plane signaling interaction process involved in the manager as long as the RAN, TN and CN subdomains can be transmitted between the network manager, the RAN manager, the TN manager and the CN manager.
  • the information required for the association to be performed by the network including but not limited to: information related to the subnet identifier of each subdomain, information of the correspondence/mapping relationship between any two subdomain slices, and subnet subnets respectively Information on the correspondence/mapping relationship with the end-to-end network subnet created by the system, and at least one of the following information that may be applied in the slice management and the slice mapping: UE ID, Session ID, Tunnel ID, subnet ID information, core network user plane IP address, QoS flow identifier information, DRB ID, IP data stream identifier information, IP data stream group identifier information, and so on.
  • the method 1100 is described from the perspective of the terminal device access terminal to the terminal network.
  • One of the core points can be expressed as: the core network distinguishes the subnet to which the transmitted data belongs by using a data stream having the same or similar quality of service requirements.
  • the RAN side obtains the correspondence between the RAN sub-domain subnet (transport data) and the data stream, and the TN subnet.
  • the RAN obtains the information about the subnet identification and the QoS flow identification information, and the correspondence between the VLAN IDs.
  • the identifier information of the data flow is carried in the identifier information of the user plane tunnel, for example, the data flow identifier is an identifier of the QoS flow, and the identifier of the QoS flow is included in the GTP-U packet header, the method 1100 and the method 900 is similar at this point.
  • the method 1100 includes: an operation 1101, an operation 1102, an operation 1103, an operation 1104, an operation 1105, and an operation 1106, respectively, and an operation 1001 in FIG. 10, an operation 1002, Operation 1003, operation 1004, operation 1005 and operation 1006 have similarities in the process, but it should be noted that the information passed between the various execution entities in the specific process may be different, and some operations may have alternatives. among them:
  • Operation 1101 the terminal device initiates a service request/service modification request; or the core network device initiates a service modification request.
  • the operation of the terminal device to initiate the service request is similar to the operation 1001, and may be implemented by referring to operation 1001, and details are not described herein again.
  • the terminal device sends a request message to the core network, where the request message is used to modify an established session connection, for example, adding one or more or a group of QoS flows.
  • the request message may include reference information for assisting network slice selection, where the reference information may be any one or any combination of the following parameters: (1) UE identification information, where the UE The identification information may include an international mobile subscriber identifier (IMSI), or the UE identification information may include a temporary mobile subscriber identity (TMSI), or the UE identification information may include a temporary UE identifier (temp) UE ID); (2) network slice selection assistance information (NSSAI); (3) slice type identification (slice type ID); (4) service management related NSSAI (session management NSSAI, SM-NSSAI (5) service type ID of a sub-domain; (6) tenant ID; (7) user group ID; (8) single NSSAI (single NSSAI); (9) an index value for characterizing a slice
  • IMSI international mobile subscriber identifier
  • the core network device may send a request message, where the request message is used to modify a session connection that the UE has established, for example, adding one or more or a group of QoS flows.
  • the request message may further include at least one of service information of the UE, a core network, and operator policy information, for the auxiliary core network to be a UE associated subnet.
  • Operation 1102 Associate a subnet for the terminal device.
  • the core network device After receiving the service request described in operation 1101, the core network device creates a session and/or a Qos flow correspondingly, or after the core network device receives the service modification request described in operation 1101, the corresponding modification session and / / Modify the QoS flow, associate the subnet for the UE, and allocate corresponding QoS parameters for the subnet, the QoS parameters include: information of the QoS flow identifier.
  • One implementation manner is that the information of the QoS flow identifier is carried in the header of the GTP-U.
  • Operation 1103 Feedback response.
  • the CN feeds back information to the UE, where the information includes, but is not limited to, any one of the following information: the CN is related information of the subnet identifier associated with the UE, session connection identifier information, and QoS flow identification information, etc.
  • the CN feeds back information to the RAN, where the information includes but is not limited to any one of the following information: CN is related information of the subnet identifier associated with the UE, and the core network user plane IP The information of the address, the information of the session connection identifier, the tunnel establishment related information (uplink and/or downlink), and the Qos stream identification information.
  • the related information of the subnet identifier may include any one of the following parameters or a combination of any one of the following: network slice selection assistance information (NSSAI), slice type identifier (slice type ID), service Management related NSSAI (session management NSSAI, SM-NSSAI), single NSSAI (single NSSAI), service type ID (service type ID), service type identifier of a subdomain, tenant ID (tenant ID), user group identifier (user Group ID), used to represent the slice type or slice identifier index, end to subnet work ID, subdomain subnet identifier (such as RAN subnet ID, CN subnet ID, TN sub Web logo).
  • NSSAI network slice selection assistance information
  • slice type ID slice type ID
  • service Management related NSSAI session management NSSAI
  • SM-NSSAI single NSSAI
  • service type ID service type ID
  • service type ID service type identifier of a subdomain
  • tenant ID tenant ID
  • user group identifier user Group ID
  • the UE may use the air interface signaling message, such as the message of the Uu interface, to locate the information about the subnet identifier associated with the UE, the session connection identifier information, and the QoS flow identifier information. Any one or any of several types are sent to the RAN side device.
  • Operation 1105 Associate a TN subnet.
  • an optional design of the radio access network device associating the subnet (or data) on the RAN side with the subnet on the TN side is: the radio access network device reports based on the UE (eg, : Operation 1104) or information about the subnet identity provided by the CN (eg, operation 1103), associated with the end-to-end network subnet created by the system and the corresponding RAN subdomain subnet.
  • mapping of information For example, a specific representation of the mapping relationship is: subnet identification related information, session connection identification information, TN subnet identification information (such as VLAN ID), mapping between QoS ranges, where the subnet identifier is related.
  • the information may be information about the identifier of the end-to-terminal network created by the system, or the identifier of the RAN sub-domain subnet corresponding to the terminal network, or may be the terminal to the terminal network or the RAN sub-domain.
  • the information related to the network is not limited herein; the QoS range is a parameter related to the Qos flow. For example, when multiple QoS flows belong to the same slice, the QoS range is used to describe the related information of the multiple QoS flows.
  • the QoS range is equivalent to a set of QoS flows. If there is only one QoS flow, the QoS range can be replaced by the identification information or quantity information of the QoS flow; the VLAN ID is the TN subnet associated with the RAN side. VLAN ID.
  • an optional design for the core network device to associate the subnet (or data) on the CN side with the subnet on the TN side is as follows: the core network device reports based on the UE reporting or other core network devices. Obtain the information about the subnet identifier in the message, and combine the information of the TN subnet identifier obtained by the CN (for example, the VLAN ID obtained through various feasible processes of part 1), and the information about the subnet identifier and the TN subnet. The association relationship between the identified information, thereby obtaining the mapping relationship between the information related to the subnet identification, the information related to the QoS flow identification information, and the information identified by the TN subnet.
  • a specific representation of the mapping relationship is: information about the subnet identifier, session connection identifier information, tunnel establishment related information, TN subnet identification information (such as VLAN ID), and mapping relationship between QoS ranges.
  • the information about the identifier of the subnet may be the information of the identifier of the terminal to the terminal network created by the system, or the identifier of the RAN subdomain subnet corresponding to the terminal network, and may also be related to the identifier of the RAN subdomain subnet of the terminal network.
  • the information about the terminal network or the RAN sub-domain subnet is not limited here; the QoS range is a QoS flow-related parameter.
  • the QoS range indicates the multiple QoS.
  • Flow information at this time, the QoS range is equivalent to a set of QoS flows. If there is only one QoS flow, the QoS range can be replaced by the identification information or quantity information of the Qos flow, and the VLAN ID is the CN side.
  • Associated TN subnet VLAN ID Through the operation of 1105, the RAN subnet belonging to the same terminal to the terminal network, the correspondence between the CN subnet and the TN subnet can be obtained, and the uplink and downlink data transmission based on the network subnet is coordinated in each subdomain, and the end-to-end is improved. The performance of the transmission.
  • Operation 1106 Data Transfer.
  • the data corresponding to a subnet may be based on at least information related to the Qos flow, such as QoS range, QoS flow identifier information, and the like.
  • the packet is carried in the corresponding TN subnet.
  • the specific implementation method may be: for one QoS flow of the UE, the RAN establishes four or any of the information of the session connection identifier, the information of the tunnel identifier, the information of the QoS flow identifier, and the information of the TN subnet identifier.
  • the RAN encapsulates it into a corresponding tunnel protocol data packet, exemplarily carrying a GTP-U TEID and/or an IP address. Further, the RAN transmits the tunnel protocol data packet in the corresponding TN subnet. For example, the tunnel protocol data packet is processed to carry a TN subnet identifier (such as a VLAN identifier).
  • the CN establishes the association relationship between the four or any of the session connection identification information, the tunnel identification information, the QoS flow identification information, and the TN subnet identification information, and the downlink of the QoS flow from the UE.
  • the data packet which the CN encapsulates into a corresponding tunneling protocol packet, exemplarily, carries the GTP-U TEID and/or IP address. Further, the CN transmits the tunnel protocol data packet in the corresponding TN subnet. For example, the tunnel protocol data packet is processed to carry the TN subnet identifier (such as a VLAN identifier).
  • a possible implementation manner is: for one/a set of QoS flows of the UE, the first base station learns, by using an interface message between the first base station and the second base station, that the second base station is a QoS flow/QoS flow set of the UE.
  • Established tunnel information (such as GTP-U TEID and/or IP address), whereby the first base station establishes session connection identification information, tunnel identification information, QoS range information, and TN subnet to be used when forwarding data to the second base station.
  • the first base station encapsulates the data packet into a corresponding tunneling protocol.
  • the data packet by way of example, carries the GTP-U TEID and/or IP address.
  • the RAN transmits the tunnel protocol data packet in the corresponding TN subnet.
  • the tunnel protocol data packet is processed to carry a TN subnet identifier (such as a VLAN identifier).
  • the RAN allocates one or more radio data bearer resources (for example, DRB) thereto.
  • the first base station learns the tunnel information (for example, GTP-U TEID and/or IP address) established by the second base station for one radio data bearer of the UE by using an interface message between the first base station and the second base station, thereby the first base station Establishing the association relationship between the session connection identification information, the wireless data bearer identification information, the tunnel identification information, and the TN subnet identification information, which are to be used when forwarding the data to the second base station, or the relationship between any one of them, the first base station
  • the first base station RAN encapsulates the data packet into a corresponding tunnel protocol data packet, which exemplarily carries the GTP-U TEID and/or the IP address. Further, the RAN transmits the tunnel protocol data packet
  • the correspondence between the QoS flow and the data transmission tunnel is not limited, that is, the following implementation manner may be implemented: establishing a data transmission tunnel for one/group of QoS flows, or Establish multiple data transmission tunnels for one/group of QoS flows, or establish a data transmission tunnel for multiple/multiple groups of QoS flows.
  • each sub-domain subnet when creating an end-to-terminal network, each sub-domain subnet is created, and after the UE is associated with one end to the terminal network, each sub-domain can provide a service for the UE by using a consistent subnet configuration.
  • Subdomain mapping between RAN, CN, and TN is implemented, especially mapping of RAN subdomain subnets to TN subdomain subnets, and/or RAN/CN subnet internal QoS mapping.
  • the information of the management plane signaling end to the terminal network and the mapping mode of each domain subnet part provide an effective process support for the RAN side to carry out the transmission conversion of the RAN subnet TN subnet of the data packet, thereby facilitating the RAN.
  • the core network distinguishes the subnet to which the transmitted data belongs by using the data flow with the same or similar quality of service requirements, and the RAN side.
  • the core network device obtains a correspondence between the RAN side subnet (transmitting data) and the data stream, and the transport network subnet, and/or, the core network device obtaining the CN side subnet (transmitting data) and the data stream, and the transport network subnet Correspondence relationship, thereby establishing a subnet mapping between RAN, CN, and TN.
  • the embodiment of the present application further provides a communication method 1200, which can be used as an independent solution to transmit data on the radio access network device side.
  • the mapping between the RAN subnet and the TN subnet is performed to solve the problem of data mapping based on network slice transmission between the RAN and the TN, and may also be combined with various possible implementation manners of the foregoing part 1 and part 2 in the relative manner of the system.
  • the more macro process assists in solving the problem of coordinated transmission of the entire system end to the terminal network between sub-domains.
  • Operation 1201 Establish a protocol data unit session.
  • the radio access network device establishes a protocol data unit session (PDU session) for the UE, and obtains information about the subnet (slice) corresponding to the PDU session, thereby aligning with the subnet (slice) of the core network.
  • PDU session protocol data unit session
  • the data of Session x belongs to Slice y, and Session x is mapped to DRB m+DRB n on the air interface.
  • the radio access network device can know that the TN slice of slice y is VLAN k.
  • Operation 1202 Identify the data packet.
  • the radio access network device receives the data of the user in the DRBm and carries it to the GTP-U tunnel. For example, adding the identifier TE ID z (corresponding to session x) to the GTP-U data packet, so that the core Network devices distinguish data from different subnets (slices). In order to deliver the corresponding subnet information to the TN, the VLAN ID needs to be carried in the data packet.
  • the specific method may be as follows:
  • FIG. 13 is a protocol stack 1300 of a radio access network device (such as a base station) on a RAN-CN interface, where User plane PDUs is a user plane protocol data unit, and UDP is a user datagram protocol.
  • GTP-U is the GPRS tunneling protocol user plane protocol
  • the Data link layer is the data link layer
  • the Physical layer is the physical layer.
  • the IP layer, or the data link layer, or the physical layer data packet in the protocol stack shown in Figure 13 (a) may carry the identifier of the transport subnet, such as: VLAN ID;
  • a new protocol layer may be added in FIG. 13(b) to identify the identifier of the transport subnet (eg, VLAN ID), optionally, as shown in the figure, added on the IP layer. Protocol layer, and add the identity of the transport subnet (such as VLAN k) in the layer protocol data.
  • VLAN ID the identifier of the transport subnet
  • IP layer the identity of the transport subnet (such as VLAN k) in the layer protocol data.
  • Operation 1203 uplink transport bearer.
  • the data packet is transmitted through the physical port of the radio access network device (base station).
  • the data packet is sent on the physical port corresponding to the subnet (slice) to carry the data packet to the corresponding TN subnet.
  • the corresponding IP address is carried in the data packet to carry the data packet to the corresponding TN subnet.
  • n, k, z can be all natural numbers.
  • the embodiment of the present application further provides a communication method 1400.
  • an implementation process of the method includes:
  • Operation 1401 Acquire traffic load transmission status of each transport bearer network subnet.
  • the radio access network device (such as a base station) detects and counts the traffic load transmission condition of each transport subnet, so that the RAN system can know the load condition of the transport subnet (such as a VLAN);
  • Operation 1402 The load information of the bearer network slice is exchanged through the internal interface of the radio access network system.
  • the RAN internal interface usually an interface between base stations, referred to herein as a base station, may be a base station belonging to 2G, 3G, 4G, 5G, and a future evolved wireless network.
  • one design is to exchange bearer load information of the network slice on an internal interface of the RAN, such as an X2 or Xn interface.
  • the information relates to a bearer network slice, and includes at least one of the following information: (1) at least one TN subnet identification information; (2) related information of the subnet identifier; (3) load information of the at least one TN subnet (example Optionally, the load information may be a specific value, or a qualitative description, such as low/medium/high; (4) used to identify the coverage of the associated TN subnet, such as RAN/CN/RAN- CN interface / whole network.
  • the Xn interface is an interface between the 5G radio access network devices, such as an interface between the gNB and the gNB, and the gNB is a base station device in the 5G system.
  • the eNB can be considered as a base station device in the 4G LTE system.
  • the eNB and the gNB interconnected through the Xn interface may be connected to the core network of the 5G system; wherein the X2 interface is also an interface between the radio access network devices, such as an interface between the eNB and the eNB.
  • An interface between the other types of radio access network devices can be defined as needed.
  • One purpose of this embodiment is to enable the load information of the TN subnet to be exchanged in the internal interface of the RAN system, so as to improve the subsequent handover process and load balancing.
  • the specific interface name and category are not limited here.
  • the base station and the base station need to communicate with each other through interface messages to complete the handover process and the dual/multiple connection process.
  • there may be interference between the base stations interference coordination needs to be performed, or self-organization is established and maintained.
  • the base station in order to complete the foregoing process, the base station needs to exchange its own resource usage with the neighbor base station, and the resources include air interface resources, interface resources, and the like.
  • the resource usage between the base stations can be reported according to the dimension of the subnet/TN subnet, which facilitates network management, handover decision, and load balancing decision according to the subnet in the radio access network.
  • the method and system 1400 provided by this embodiment may be performed independently or in combination with any of the foregoing methods/systems 200 to 1200.
  • the embodiment of the present application further provides a communication method 1500, where the method 1500 includes:
  • the RAN side device (such as a base station) can inform the CN device of the information established by the interface inside the RAN through the interface between the RAN and the CN device.
  • the internal interface on the RAN side generally refers to an interface between base stations.
  • the base station referred to herein may be a base station belonging to 2G, 3G, 4G, 5G, and a future evolved wireless network.
  • the Xn interface is the interface between the gNB and the gNB.
  • the gNB is the base station device in the 5G system.
  • the eNB is usually the base station device in the 4G LTE system.
  • the eNB and the gNB connected through the Xn interface can Connected to the core network of the 5G system; wherein, the X2 interface is an interface between the eNB and the eNB.
  • the information established by the interface may be the communication protocol version 3GPP TS36.423, section 9.2.3.29 X2 TNL Configuration Information defined in Info.
  • the information about the internal interface of the RAN may further include: at least one of the following information: information about the identifier of the control plane TN subnet, and information about the subnet identifier (corresponding to the control plane TN subnet), The information of the TN transmission resource used by the interface control plane (for example, the transport layer address corresponding to each TN subnet) and the corresponding control plane indication information (if the control plane is not sliced, there is no such information).
  • the information about the interface established by the RAN itself may include at least one of the following information: a user plane TN subnet identifier, and a subnet identifier (corresponding to the user plane TN subnet), the interface user.
  • the information of the TN transmission resource used by the face for example, the transport layer address and/or tunnel establishment information corresponding to each TN subnet, etc.), and the corresponding user plane indication information.
  • the information established by the RAN internal interface may also be exchanged when the RAN internal interface control plane is established, for example, when the RAN internal interface establishes a control plane (such as the SCTP association process related to the X2/Xn interface), through the base station.
  • the interface between the two interfaces is as follows: information of the user plane TN subnet identifier, and information about the subnet identifier (corresponding to the user plane TN subnet identifier).
  • an interface needs to be established between the base station and the core network for interactive control information/transmission of user data.
  • an interface needs to be established between the base stations, and the transport layer information for establishing an interface between the base stations can be The core network transits. Therefore, the base station needs to inform the core network of necessary information for establishing an interface (including a control plane and a user plane) with the neighbor base station.
  • different transport layer establishment information may be configured for different network slices on an interface between base stations (for example, Different transport layer addresses), thereby establishing control plane connections belonging to different network slices, and/or user data transmission tunnels on the interface between the base stations.
  • the method and system 1500 provided by this embodiment may be performed independently or in combination with any of the foregoing methods/systems 200 to 1400.
  • FIG. 16 is a schematic block diagram of a radio access network device 1600 provided by an embodiment of the present application.
  • the radio access network device 1600 includes a first transceiver 1601, a second transceiver 1602, and at least one processor 1603.
  • a memory 1604 can also be included.
  • the first transceiver 1601, the second transceiver 1602, and the at least one processor 1603 and the memory 1604 communicate with each other through an internal connection path (such as the system bus 1605 in the figure) to transfer control and/or data signals.
  • the memory 1604 is configured to store a computer program
  • the processor 1603 is configured to call and run the computer program from the memory 1604 to control the first transceiver 1601 and the second transceiver 1602 to receive a transmission signal, so that the wireless access network
  • the device communicates with the network side device by using the first transceiver device, and the wireless access network device communicates with the terminal device by using the second transceiver device, so that the wireless access network device 1600 performs the method provided by the embodiment of the present application.
  • the operation performed by the radio access network device in any of the possible communication schemes/systems 200-1500. For the sake of brevity, it will not be repeated here.
  • the processor 1603 and the memory 1604 may synthesize a processing device, and the processor 1603 is configured to execute the program code stored in the memory 1604 to implement the foregoing functions.
  • the memory 1604 can also be integrated in the processor 1603 or independently of the processor 1603.
  • the first transceiver device in the wireless access network device 1600 may be a wired communication interface or a communication interface based on the wireless air interface technology.
  • the specific implementation may be Communication interface based on wireless air interface technology.
  • the first transceiver device and the second transceiver device are both communication interfaces based on the wireless air interface technology, the first transceiver device and the second transceiver device may be implemented by sharing one wireless transceiver device, or may be divided into two A wireless transceiver is implemented.
  • FIG. 17 is a schematic block diagram of a radio access network device 1700 according to an embodiment of the present application.
  • the radio access network device 1700 includes a transceiver module 1701 and a processing module 1702, wherein the transceiver module 1701 and the processing module 1702 communicate with each other through internal connection paths to transmit control and/or data signals.
  • the module 1702 is configured to control the transceiver module 1701 to receive a transmission signal, so that the radio access network device communicates with the network side device and/or the terminal device through the transceiver module 1701, and the control operation of the processing module 1702 enables
  • the radio access network device 1700 performs the operations performed on the radio access network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application.
  • the transceiver module 1701 in the radio access network device 1700 may include a wired communication interface module, a communication interface module based on the wireless air interface technology, and a communication interface module having wired communication and wireless communication functions.
  • the transceiver module 1701 when the transceiver module 1701 includes a communication interface module having wired communication and wireless communication functions, the wired communication function module is used to communicate with the network side device, and the wireless communication function module is used to communicate with the terminal device; when the transceiver module 1701 is When the communication interface module of the wireless communication function is used, the transceiver module 1701 may further include a first transceiver device and a second transceiver device, wherein the first transceiver device and the second transceiver device are both communication interfaces based on wireless air interface technology, and the first transceiver device And the second transceiver device can be implemented by sharing one wireless transceiver device, or can be implemented by two wireless transceiver devices.
  • the embodiment of the present application provides a system chip 1800.
  • the structure and function of the system chip 1800 are described below with reference to FIG. 18.
  • the system chip 1800 can be applied to the foregoing radio access network device 1600 or the radio access network device 1700, and the wireless access is performed through the processing of the system chip.
  • the network device is capable of performing operations on the radio access network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application.
  • FIG. 18 is a schematic block diagram of a system chip 1800 provided by an embodiment of the present application. As shown in FIG.
  • the system chip 1800 includes at least one processor 1801, a memory 1802, an interface circuit 1803, and a bus 1804; the at least one processor 1801, the memory 1802, and the interface circuit 1803 are coupled through the bus 1804; the system chip 1800
  • the interface circuit 1803 interacts with other devices in the wireless access network device/network; the memory 1802 stores program instructions, and the at least one processor 1801 invokes the program instructions stored in the memory 1802 to cause the wireless
  • the access network device 1600 or the foregoing radio access network device 1700 performs the operations performed by the radio access network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application. For the sake of brevity, it will not be repeated here.
  • the processor 1801 and the memory 1802 may be combined to form a processing device, and the processor 1801 is configured to execute the program code stored in the memory 1802 to implement the foregoing functions.
  • the memory 1802 can also be integrated in the processor 1801 or independent of the processor 1801.
  • FIG. 19 is a schematic block diagram of a core network device 1900 provided by an embodiment of the present application.
  • the core network device 1900 includes at least one processor 1901, a memory 1902, a transceiver 1903, and a system bus 1904; the at least one processor 1901, the memory 1902, and the transceiver 1903 are coupled through the system bus 1904;
  • a processor 1901 controls the transceiver device 1903 to cause the core network device to communicate with the network side device through the transceiver device 1903;
  • the memory 1902 stores program instructions, the at least processor 1901, invoking the stored in the memory 1902
  • the program instructions are used to perform operations on the core network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application. For the sake of brevity, it will not be repeated here.
  • the processor 1901 and the memory 1902 may synthesize a processing device, and the processor 1901 is configured to execute the program code stored in the memory 1902 to implement the foregoing functions.
  • the memory 1902 may also be integrated in the processor 1901 or independent of the processor 1901.
  • FIG. 20 is a schematic block diagram of a core network device 2000 provided by an embodiment of the present application.
  • the core network device 2000 includes a transceiver module 2001 and a processing module 2002, wherein the transceiver module 2001 and the processing module 2002 communicate with each other through internal connection paths to transmit control and/or data signals.
  • the processing module 2002 The control module 2001 is configured to receive a transmission signal, so that the core network device 2000 communicates with the network side device and/or the terminal device through the transceiver module 2001, and the core network is controlled by the control operation of the processing module 2002.
  • the device 2000 performs the operations performed on the core network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application.
  • the transceiver module 2001 in the core network device 2000 may include a wired communication interface module, a communication interface module based on the wireless air interface technology, and a communication interface module having wired communication and wireless communication functions.
  • the embodiment of the present application provides a system chip 2100.
  • the structure and function of the system chip 2100 are described below with reference to FIG. 21.
  • the system chip 2100 can be applied to the core network device 1900 or the core network device 2000. Through the processing of the system chip 2100, the core network device can be enabled. The operations performed on the core network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application are performed.
  • FIG. 21 is a schematic block diagram of a system chip 2100 provided by an embodiment of the present application. As shown in FIG. 21, the system chip 2100 includes at least one processor 2101, a memory 2102, an interface circuit 2103, and a bus 2104.
  • the at least one processor 2101, the memory 2102, and the interface circuit 2103 are coupled through the bus 2104.
  • the system chip 2100 The interface circuit 2103 interacts with other devices in the core network device/network; the memory 2102 stores program instructions, and the at least one processor 2101 calls the program instructions stored in the memory 2102 to make the core network device 1900 or the foregoing core network device 2000 performs the operations performed on the core network device in any of the possible communication solutions/systems 200 to 1500 provided by the embodiments of the present application.
  • the processor 2101 and the memory 2102 may be configured as a processing device, and the processor 2101 is configured to execute program code stored in the memory 2102 to implement the foregoing functions.
  • the memory 2102 can also be integrated in the processor 2101 or independent of the processor 2101.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • FIG. 22 is a schematic diagram of a wireless communication system 2200 according to an embodiment of the present application. As shown in FIG. 22, the wireless communication system 2200 includes a first network node 2201 and a second network node 2202.
  • the first network node 2201 may be a radio access network device in any one of the communication methods/systems 200 to 1500 provided by the embodiment of the present application, and the second network node 2202 is a communication method/ A core network device in conjunction with a radio access network device of any of the possible designs of systems 200-1500.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Abstract

本申请提供了一种通信方法,该方法包括:无线接入网设备接收来自于终端设备的上行数据包,该无线接入网设备获知该上行数据包的身份信息,该无线接入网设备根据该上行数据包的身份信息和传输网络子网的对应关系,将该上行数据包承载在该传输网络子网。通过该方法,使得无线接入网设备能够以可靠、高效的方式将上行数据承载在对应的传输网络子网上传输。

Description

一种通信方法、设备和系统
本申请要求于2017年7月17日提交中国专利局、申请号为201710582415.8、发明名称为“一种通信方法、设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种通信方法、设备和系统。
背景技术
随着无线通信网络系统和无线接入技术的演进,一方面,无线通信网络系统的配置和能够提供的服务更加灵活多样,另一方面,无线通信网络的用户需求愈发差异化。因此,未来的无线通信网络,比如第五代(the fifth generation,5G)移动通信系统的一个重要功能就是通过网络切片为不同的用户提供定制的差异化的服务。所谓网络切片,可以是由一组网络功能、资源,以及连接关系构成的一个集合,运营商可以根据各个具体商业用例对容量,覆盖,速率,时延以及可靠性等关键性能指标的需求,组成一个特定网络功能集合以及包含运行这些网络功能所需的网络资源,从而为用户提供所需的电信服务业务以及网络能力服务,满足特定的市场场景以及需求。
为便于理解,一个与切片通信有关的通信网络系统100-1,如图1-1所示,可以包括如下几个部分:切片选择功能(slice selection function,SSF)模块,用户签约信息库(subscriber repository),无线接入网(radio access network,RAN),公共控制面网络功能(common control panel network functions,Common CP NFs)模块,用户面网络功能(user panel network functions)模块等,以上各个模块之间通过相互之间的接口交互信息,比如,切片选择功能模块通过其与无线接入网之间的接口与该无线接入网进行信息交互,用户签约信息库可以分别通过其与切片选择功能模块、公共控制面网络功能模块之间的接口,分别与切片选择功能模块、公共控制面网络功能模块进行信息交互,无线接入网通过其与公共控制面网络功能模块之间的接口,与公共控制面网络功能模块进行信息交互,在图1-1中示出了各个功能模块之间通过虚线连接,即表明存在连接关系的模块之间可存在信息交互的通信接口,此处不再一一赘述。如图1-1所示例的,该系统100-1中,建立了3个网络切片,分别是网络切片A,网络切片B和网络切片C,在图示中切片A,切片B和切片C的逻辑划分通过不同的线框进行了标识,其中,每个网络切片运行所需涉及的网络功能模块包括:无线接入网,公共控制面网络功能模块,以及和该切片对应的控制面网络功能和用户面网络功能。其中,无线接入网,公共控制面网络功能模块均可以被多个网络切片所共用。
需要说明的是,该系统100-1中所示出的网络架构仅为一个示例,其各个功能模块的设置并不限于图中的关系,例如,SSF模块也可以部署在Common CP NFs模块中。各模块可能还可以进一步包含子功能模块,例如,Common CP NF模块还可以包含移动性管理功能模块,鉴权和安全模块等模块中的至少一个;某个切片专属的CP NF还可以包括会话管理模块等;某个切片专属的UP NF可能包含用户面功能,如传统的网关功能。功能模块的命名也可能有不同方式,此处不再一一赘述。
一般来说网络切片是一个端到端的业务链,涵盖的领域(Domain)可以包括:接入网(Radio Access Network,RAN)、核心网(Core Network,CN)以及传输承载网(Transport Network,TN)等。当业务在上述网络范畴内运行和传输时,需要各个子域的网络之间协同配合,从而保障提供一致的服务质量。因此,有专用的网络切片管理系统对不同网络子域内的端到端网络切片组成部分(例如RAN部分、CN部分和TN部分)进行创建、配置、关联、维护以及各部分间的协作等进行管理。如图1-2所示的网络管理系统100-2,一个网 络切片管理系统100可以包含一个端到端网络切片管理器,比如称之为网络管理器,以及包括该端到端网络切片各个组成部分的子域管理器,如RAN管理器、CN管理器以及TN管理器。每个子域管理器负责其子域内的统筹管理,为该子域内节点进行相应的配置。各个子域管理器之间可以设置接口以便于交互消息,用于子域间协调。
但目前端到端通信网络的设计,还存在系统效率不高,端到端业务体验不一致的情况。
发明内容
为了设计和实现高效的端到端通信网络,面对的一个问题就是如何将一个端到端子网中各域的子网的资源协同起来,实现端到端网络一致的业务体验。
本申请所称子网,可以包括:切片和/或切片实例。其中,切片,是为特定业务或租户提供的具有预定义的网络能力和网络特性的逻辑网络,切片可以分为端到端切片,子域切片,其中子域切片可以为端到端切片的组成部分;切片实例,是由一组网络功能实例和网络资源组成的网络功能实体,可以分为端到端切片实例,子域切片实例,其中子域切片实例可以为端到端切片实例的组成部分。为便于理解,本申请实施例的方案,要达成的一个目标可以表述为:在创建一个端到端子网时,创建与该端到端子网相关联的各个子域子网,以使得在为用户设备(user equipment,UE)关联一个端到端网络子网时,各个子域能够使用与该端到端子网一致的子网为该UE提供服务。各个子域能够为不同的子网提供差异化服务,也能够为同一子网的不同业务提供不同的服务质量,并使得这种差异化处理在端到端子网中的各个子域间协同一致。
有鉴于此,本申请实施例以5G系统中端到端子网(切片)为例,提出了属于该端到端子网的RAN子域、CN子域和TN子域之间的子网(切片)映射方法,比如RAN子网与TN子网的映射,以及在子网内部QoS的映射方法。
本申请提供一种通信方法,设备和系统等,使得分别属于同一个端到端子网的RAN子域、CN子域和TN子域的子网(切片)之间能够进行映射和协同,从而使得在端到端子网中能够协同管理不同子域中的资源,提高该端到端子网通信的系统效率,提升端到端业务体验的一致性。
第一方面,本申请提供了一种通信方法,该方法包括:无线接入网设备接收来自于终端设备的上行数据包,该无线接入网设备获知该上行数据包的身份信息,该无线接入网设备根据该上行数据包的身份信息和传输网络子网的对应关系,将该上行数据包承载在该传输网络子网。通过该方法,使得无线接入网设备能够以可靠、高效的方式将上行数据承载在对应的传输网络子网上传输。
在一些可能的实现方式中,该上行数据包的身份信息,包括:与该上行数据包关联的分组数据连接标识的信息,与该上行数据包关联的GPRS隧道协议用户面部分的标识的信息,与该上行数据包关联的数据流标识的信息,以及与该上行数据包关联的数据无线承载(data radio bearer,DRB)标识的信息中的至少一个,可以是这些信息中的任一个,也可以是这些信息中的任意两个或者任意多个结合起来,以获取上行数据包的身份信息。此处所称分组数据连接,可以是会话(Session);此处所称数据流,可以是具有相同或者相近的服务质量要求的一组数据包,比如在标准制定过程中讨论提到的QoS Flow等。在本示例中,通过与该上行数据包具有关联关系的分组数据连接,GPRS隧道协议用户面部分,数据流和数据无线承载(其中的至少一个,具体不做限定),获得该上行数据包的身份信息。
在一些可能的实现方式中,该上行数据包的身份信息和无线接入网子网(或切片)具有对应关系,或者,该无线接入网子网(或切片)的标识的信息包含该身份信息;该无线接入网子网(或切片)和该传输网络子网(或切片)之间具有对应关系,从而该身份信息与该传输网络子网(或切片)之间具有对应关系,比如在该无线接入网设备将该上行数据包承载在该传输网络子网(或切片)之前,该无线接入网设备可以预先获得该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系。这样,通过获得上行数据 包的身份信息,无线接入网子网(或切片)和传输网络子网(或切片)这三者之间具有的对应关系,能够将该上行数据包可靠高效的承载在对应的传输网络子网上进行传输,或者,当无线接入网子网(或切片)的标识信息中就带有上行数据包的身份信息,则通过无线接入网子网(或切片)和传输网络子网(或切片)这两者之间具有的对应关系,将该上行数据包承载在对应的传输网络子网上进行传输。可选的,无线接入网子网(或切片)的标识还可以是上行数据包的身份信息的标识。
在一些可能的实现方式中,无线接入网设备获得该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的过程,可以包括:该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息,可以通过系统管理面来配置,系统管理面中网络管理器,传输网络管理器,无线接入网管理器和核心网管理器这四者中的任意两者之间可以设置信息交互的接口,通过这些信息交互的接口使得该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息可以在这四者之间进行传递,以使得这四者能够获知该对应关系。可选的,在该无线接入网设备将该上行数据包承载在传输网络子网(切片)传输之前在系统管理面进行配置,使得该对应关系的信息被该无线接入网设备获得。
比如,该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息,可以是传输网络管理器通过传输网络管理器和无线接入网管理器之间的信息交互接口,发给该无线接入网管理器,再由该无线接入网管理器通过该无线接入网管理器和该无线接入网设备之间的接口,将该对应关系的信息发给该无线接入网设备;还可以是,该传输网络管理器通过该传输网络管理器和该网络管理器之间的接口将该对应关系的信息发送给该网络管理器,该网络管理器通过该网络管理器和该无线接入网管理器之间的接口,将该对应关系的信息发给该无线接入网管理器,该无线接入网管理器通过该无线接入网管理器和该无线接入网设备的接口,将该对应关系的信息发送给该无线接入网设备。
在一些可能的实现方式中,该无线接入网子网(或切片)与该传输网络子网(或切片)分别与该网络管理器创建的端到端子网(或切片)具有对应关系,从而使得该无线接入网子网与该传输网络子网之间可以建立对应关系。可选的,该传输网络管理器在将前述无线接入网子网(或切片)与传输网络子网(或切片)之间对应关系的信息发给该网络管理器或者发给该无线接入网管理器之前,该传输网络管理器基于网络管理器创建的该端到端子网(或切片)获得该无线接入网子网(或切片)与该传输网络子网(或切片)的对应关系。
在一些可能的实现方式中,该端到端子网(切片)与网络切片选择辅助信息(NSSAI)具有对应关系;或者,该端到端子网的标识即网络切片选择辅助信息。可选的,该网络切片选择辅助信息可以携带在非接入层(non-access stratum,NAS)消息,由终端设备发送给核心网中的相关设备和/或,该网络切片选择辅助信息可以携带在RRC(Radio Resource Connection)消息,由终端设备发送给无线接入网设备。
在一些可能的实现方式中,该无线接入网子网(或切片)与核心网子网(或切片)具有对应关系,该核心网子网(或切片)与该端到端子网(或切片)具有对应关系,这样,该无线接入网设备可以根据获得的核心网子网(或切片),获知归属于同一个端到端子网(或切片)的无线接入网设备侧对应的子网(或切片)。
在一些可能的实现方式中,将该上行数据包承载在该传输网络子网,包含:前述上行数据包中包含传输网络子网(或切片)的标识的信息,比如,在无线接入网设备侧,对该上行数据包进行处理,在该上行数据包中增加传输网络子网的标识的信息。可选的,在一些可能的实现方式中,如果该传输网络子网(或切片)为虚拟局域网,则该传输网络子网(或切片)的标识的信息包括该虚拟局域网的标识(virtual local area network ID,VLAN ID);可选的,在一些可能的实现方式中,该传输网络子网的标识信息,包括如下至少一种:IP网络的端口号,以及互联网协议地址。通过传输网络子网(或切片)的标识的信息,比如VLAN ID,IP网络的端口号,以及互联网协议地址等,可以标识一个传输网络子网(或切 片),从而可以将上行数据包承载在对应传输网络子网上。
第二方面,本申请提供了一种无线接入网设备,该无线接入网设备包括:至少一个处理器,存储器,第一收发装置,第二收发装置和系统总线;该至少一个处理器,存储器,第一收发装置和第二收发装置通过该系统总线耦合;该无线接入网设备通过该第一收发装置,与网络侧设备相通信,该无线接入网设备通过该第二收发装置,与终端设备相通信;该存储器存储有程序指令,该至少一个处理器,调用该存储器中存储的该程序指令,以进行根据前述第一方面或其任一可能的实现方式中无线接入网设备的操作。可选的,此处所称第一收发装置,具体实现可以是有线的通信接口,也可以是基于无线空口技术的通信接口,此处所称第二收发装置,具体实现可以是基于无线空口技术的通信接口。可选的,如果第一收发装置和第二收发装置都是基于无线空口技术的通信接口的话,第一收发装置和第二收发装置可以通过共用一个无线收发装置实现,也可以通过分列的两个无线收发装置来实现。
第三方面,本申请提供了一种系统芯片,该系统芯片可以应用在无线接入网设备,通过该系统芯片的处理,使得无线接入网设备能够执行上述第一方面或其任一可能的实现方式中该无线接入网设备的操作。该系统芯片包括:至少一个处理器,存储器,接口电路和总线;该至少一个处理器,存储器,接口电路通过该总线耦合;该系统芯片通过该接口电路和该无线接入网设备/网络中其他设备进行交互;该存储器存储有程序指令,该至少一个处理器,调用该存储器中存储的所述程序指令,以进行根据前述第一方面或其任一可行的方法中无线接入网设备的操作。
第四方面,本申请提供了一种通信方法,该方法包括:核心网设备获知下行数据包的身份信息;该核心网设备根据该下行数据包的身份信息和传输网络子网的对应关系,将该下行数据包承载在该传输网络子网进行传输。通过该方法,使得该核心网设备能够以可靠、高效的方式将下行数据承载在对应的传输网络子网上传输。
在一些可能的实现方式中,该下行数据包的身份信息,包括:与该下行数据包关联的分组数据连接标识的信息,与该下行数据包关联的GPRS隧道协议用户面部分的标识的信息,与该下行数据包关联的数据流标识的信息,以及与该下行数据包关联的数据无线承载(data radio bearer,DRB)标识的信息中的至少一个,可以是这些信息中的任一个,也可以是这些信息中的任意两个或者任意多个结合起来,以获取该下行数据包的身份信息。此处所称分组数据连接,可以是会话(session);此处所称数据流,可以是具有相同或者相近的服务质量要求的一组数据包,比如在标准制定过程中讨论提到的Qos Flow等。在本示例中,通过与该下行数据包具有关联关系的分组数据连接,GPRS隧道协议用户面部分,数据流和数据无线承载(其中的至少一个,具体不做限定),获得该下行数据包的身份信息。
在一些可能的实现方式中,该下行数据包的身份信息和核心网子网(或切片)具有对应关系;或者,该核心网子网(或切片)的标识的信息包含该下行数据包的身份信息;该核心网子网(或切片)和该传输网络子网(或切片)之间具有对应关系,从而该下行数据包的身份信息与该传输网络子网(或切片)之间能够建立对应关系,比如在该核心网设备将该下行数据包承载在该传输网络子网(或切片)之前,该核心网设备可以预先获得该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系。这样,通过获得下行数据包的身份信息,核心网子网(或切片)和传输网络子网(或切片)这三者之间具有的对应关系,能够将该下行数据包可靠高效的承载在对应的传输网络子网上进行传输;或者,当核心网子网(或切片)的标识信息中包含该下行数据包的身份信息时,则通过该核心网子网(或切片)和传输网络子网(或切片)这两者之间具有的对应关系,将该下行数据包承载在对应的传输网络子网上进行传输。可选的,核心网子网(或切片)的标识还可以就是该下行数据包的身份信息的标识。
在一些可能的实现方式中,核心网设备获得该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的过程,可以包括:该核心网子网(或切片)和该传输网络 子网(或切片)之间的对应关系的信息,可以通过系统管理面来配置,系统管理面中网络管理器,传输网络管理器,无线接入网管理器和核心网管理器这四者中的任意两者之间可以设置信息交互的接口,通过这些信息交互的接口使得该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息可以在这四者之间进行传递,以使得这四者能够获知该对应关系。可选的,在该核心网设备将该下行数据包承载在传输网络子网(切片)传输之前在系统管理面进行配置,使得该对应关系的信息被该核心网设备获得。
比如,该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息,可以是传输网络管理器通过传输网络管理器和核心网管理器之间的信息交互接口,发给该核心网管理器,再由该核心网管理器通过该核心网管理器和该核心网设备之间的接口,将该对应关系的信息发给该核心网设备;还可以是,该传输网络管理器通过该传输网络管理器和网络管理器之间的接口将所述对应关系的信息发送给该网络管理器,该网络管理器通过该网络管理器和该核心网管理器之间的接口,将该对应关系的信息发给该核心网管理器,该核心网管理器通过该核心网管理器和该核心网设备之间的接口,将所述对应关系的信息发送给该核心网设备。
在一些可能的实现方式中,该核心网子网(或切片)与该传输网络子网(切片)分别与该网络管理器创建的端到端子网(或切片)具有对应关系,从而使得该核心网子网(或切片)与该传输网络子网(或切片)之间可以建立对应关系。可选的,该传输网络管理器在将前述核心网子网(或切片)与传输网络子网(切片)之间对应关系的信息发给该网络管理器或者发给该核心网管理器之前,该传输网络管理器基于网络管理器创建的该端到端子网(或切片)获得该核心网子网(或切片)与该传输网络子网(或切片)的对应关系。
在一些可能的实现方式中,前述端到端子网(或切片)与网络切片选择辅助信息(NSSAI)具有对应关系;或者,该端到端子网的标识即网络切片选择辅助信息。可选的,该网络切片选择辅助信息可以携带在非接入层(non-access stratum,NAS)消息,由终端设备发送给核心网中的相关设备,和/或,该网络切片选择辅助信息可以携带在RRC(Radio Resource Connection)消息,由终端设备发送给无线接入网设备。。
在一些可能的实现方式中,将该下行数据包承载在该传输网络子网,包括:前述下行数据包中包含传输网络子网(或切片)的标识的信息,比如,在核心网侧,对下行数据包进行处理,在下行数据包中增加传输网络子网的标识的信息。可选的,在一些可能的实现方式中,如果该传输网络子网(或切片)为虚拟局域网,则该传输网络子网(或切片)的标识的信息包括该虚拟局域网的标识(virtual local area network ID,VLAN ID);可选的,在一些可能的实现方式中,该传输网络子网的标识信息,还可以包括如下至少一种:IP网络的端口号,以及互联网协议地址。通过传输网络子网(或切片)的标识的信息,比如VLAN ID,IP网络的端口号,以及互联网协议地址等,可以标识一个传输网络子网(或切片),从而可以将下行数据包承载在对应传输网络子网上。
第五方面,本申请提供了一种核心网设备,该核心网设备包括:至少一个处理器,存储器,收发装置和系统总线;该至少一个处理器,存储器和收发装置通过该系统总线耦合;该核心网设备通过该收发装置,与网络侧设备相通信;该存储器存储有程序指令,该至少一个处理器,调用该存储器中存储的所述程序指令,以进行根据第四方面或其任一可能的实现方式中核心网设备的操作。
第六方面,本申请提供了一种系统芯片,该系统芯片可以应用在核心网设备,通过该系统芯片的处理,使得核心网设备能够执行上述第四方面或其任一可能的实现方式中该核心网设备的操作。该系统芯片包括:至少一个处理器,存储器,接口电路和总线;该至少一个处理器,存储器,接口电路通过该总线耦合;该系统芯片通过该接口电路和该核心网设备/网络中其他设备进行交互;该存储器存储有程序指令,该至少一个处理器,调用该存储器中存储的所述程序指令,以进行根据第四方面或其任一可能的实现方式中核心网设备的操作。
第七方面,本申请提供了一种通信系统,该系统包括:如第二方面所述的无线接入网设备,和/或,如第五方面所述的核心网设备。
第八方面,本申请提供了一种计算机存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机上运行时,进行根据第一方面或其任一可能的实现方式中在无线接入网设备的操作,或者,当该程序指令在计算机上运行时,进行根据第四方面或其任一可能的实现方式中在核心网设备的操作。
第九方面,本申请提供了一种计算机程序产品,该计算机程序产品包含程序指令,当该程序指令被调用时,进行根据第一方面或其任一可能的实现方式中在无线接入网设备的操作,或者,当该程序指令被调用时,进行根据第四方面或其任一可能的实现方式中在核心网设备的操作。
通过本申请提供的上述通信方法,设备和系统等,能够在端到端子网中,使得属于同一个端到端子网的RAN子域、CN子域和TN子域之间的子网(或切片)之间获得映射和协同,从而使得数据能够在端到端子网中各个子域得到可靠高效的处理,提升了该端到端子网通信的系统效率,提升了端到端业务体验的一致性。
附图说明
图1-1为本申请提供的一种通信网络系统100-1的示意图;
图1-2为本申请提供的一种网络管理系统100-2的示意图;
图2为本申请实施例提供的一种通信方法200的流程示意图;
图3为本申请实施例提供的一种通信方法300的流程示意图;
图4为本申请实施例提供的一种通信方法400的流程示意图;
图5为本申请实施例提供的一种通信方法500的流程示意图;
图6为本申请实施例提供的一种通信系统600的运行示意图;
图7为本申请实施例提供的Part 1的一种可选通信方法700的流程示意图;
图8为本申请实施例提供的Part 1的一种可选通信方法800的流程示意图;
图9为本申请实施例提供的Part 1的一种可选通信方法900的流程示意图;
图10为本申请实施例提供的一种通信方法及其系统1000的示意图;
图11为本申请实施例提供的一种通信方法1100的流程示意图;
图12为本申请实施例提供的一种通信方法1200的流程示意图;
图13为本申请实施例提供的RAN和CN之间的接口协议栈的示意图;
图14为为本申请实施例提供的一种通信方法1400的流程示意图;
图15为为本申请实施例提供的一种通信方法1500的流程示意图;
图16是本申请实施例提供的一种无线接入网设备1600的示意性框图;
图17是本申请实施例提供的一种无线接入网设备1700的示意性框图;
图18是本申请实施例提供的一种系统芯片1800的示意性框图;
图19是本申请实施例提供的一种核心网设备1900的示意性框图;
图20是本申请实施例提供的一种核心网设备2000的示意性框图;
图21是本申请实施例提供的一种系统芯片2100的示意性框图;
图22是本申请实施例提供的一种无线通信系统2200的示意图。
具体实施方式
下面结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法,该方法可以涉及无线接入网设备,核心网设备,传输网设备,终端设备,以及被配置成运行该方法的无线通信系统及其管理面系统,管理面系统可以包 括:网络管理器,RAN子域管理器、CN子域管理器以及TN子域管理器等。
其中,本申请所称无线接入网设备,在无线通信标准中也可以称为基站,在大部分场景中,是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置,本申请所称的无线接入网设备包括但不限于:各种形式的宏基站,微基站(也称为小站),中继站,发送接收点(Transmission Reception Point,TRP),演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved Node B,或Home Node B,HNB)、以及处理通信数据的基带单元(Base Band Unit,BBU)等,还可以包括无线局域网(wireless local area network,WLAN)接入设备等非第三代合作伙伴计划(Third Generation Partnership Project,3GPP)系统的无线接入网设备。在采用不同的无线接入技术的系统中,具备相类似无线通信功能的无线接入网设备的名称可能会有所不同。仅为描述方便,本申请实施例中,上述可以为终端设备提供无线通信功能的装置统称为无线接入网设备。本申请实施例所称RAN子域,可以包含至少一个此处所称的无线接入网设备,或者可以对应至少一个此处所称的无线接入网设备。
本申请所称核心网设备,通常是指具有核心网处理功能的实体,比如可以是如下任一种设备:具有接入和/或移动性管理网络功能的设备、具有会话管理的控制面功能的设备、具有负责数据传输的用户面功能的设备、具有鉴权管理网络功能的设备,以及执行核心网所需的其他类型功能的设备。或者此处所称的核心网设备是具有上述提到的至少任意一种核心网功能或任意核心网功能组合的设备。仅为描述方便,本申请实施例中,上述具有核心网功能的实体统称为核心网设备。本申请实施例所称CN子域,可以包含至少一个此处所称的核心网设备,或者可以对应至少一个此处所称的核心网设备。
本申请所称传输网络,一般是指用来提供数据传送和转换功能的网络,传输类型可以是如下的任一种:光传输网,IP传输网,或者灵活以太(flexible ethernet)传输网,以及其他类型的传输网络形式,此处不再一一限定。通常传输网设备可以包括如下的至少一种:路由转发节点、交换机、集线器、中继器、网桥等,或者具有上述至少一种功能或任意功能组合的设备。仅为描述方便,本申请实施例中,上述具有数据传送和转换功能的实体统称为传输网设备。本申请实施例所称TN子域,可以包含至少一个此处所称的传输网设备,或者可以对应至少一个此处所称的传输网设备。
本申请所称终端设备,是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备可以包括各种类型的手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、无线数据卡、虚拟现实(Virtual Reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、机器类型通信(machine type communication,MTC)的终端设备,工业控制(industrial control)中的终端设备、无人驾驶(self driving)中的终端设备、远程医疗(remote medical)中的终端设备、智能电网(smart grid)中的终端设备、运输安全(transportation safety)中的终端设备、智慧城市(smart city)中的终端设备、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等),以及可穿戴设备(如智能手表,智能手环,计步器等)等等。本申请所称的终端设备,还可以被设置成固定位置,具有和前述终端设备相类似无线通信功能的设备。在采用不同的无线接入技术的系统中,具备相类似无线通信功能的终端设备的名称可能会有所不同,仅为描述方便,本申请实施例中,上述具有无线收发通信功能的装置统称为终端设备。
本申请中出现的术语“上行”和“下行”,在某些场景用于描述数据/信息传输的方向,比如,“上行”方向为数据/信息从终端设备向核心网设备传输的方向,“下行”方向为数据/信息从核心网设备向终端设备传输的方向,“上行”和“下行”仅用于描述方向,该数据/信息传输起止的具体设备都不作限定。
本申请中出现的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三 种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的字符“-”,一般用来表示该字符前后的对象两者之间具有关联/映射关系,即,“A-B”表示A和B两者之间具有关联/映射关系。例如,系统建立了一个端到端子网,与该端到端子网相对应的,RAN,CN,TN各子域分别建立了子域子网来实现该端到端子网,那么RAN,CN和TN之间存在基于该端到端子网的对应/映射关系,表示为:RAN-CN-TN。
在本专利申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,但这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对相关客体的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,本申请实施例提供了一种通信方法200,基于该方法200思想的一种实现流程,包括:
操作201:无线接入网设备接收来自于终端设备的上行数据包;
操作202:该无线接入网设备获得该上行数据包的身份信息;
操作203:该无线接入网设备根据该上行数据包的身份信息和传输网络子网的对应关系,将该上行数据包承载在该传输网络的相应子网上进行传输。
上述方法200从无线接入网侧的角度进行描述,可以理解的是,该方法200可应用在包含终端设备,无线接入网设备,以及传输网络的通信系统中。通过该方法200,使得无线接入网设备能够以可靠、高效的方式将上行数据承载在对应的传输网络子网(切片)上传输。
根据该方法200,在一些可能的实现方式中,该上行数据包的身份信息,可以包括:与该上行数据包关联的分组数据连接标识的信息,与该上行数据包关联的GPRS隧道协议用户面部分的标识的信息,与该上行数据包关联的数据流标识的信息,以及与该上行数据包关联的数据无线承载(data radio bearer,DRB)标识的信息中的至少一个,可以是这些信息中的任一个,也可以是这些信息中的任意两个或者任意多个结合起来,以获取上行数据包的身份信息。此处所称分组数据连接,可以是会话(session);此处所称数据流,可以是具有相同或者相近的服务质量要求的一组数据包,比如在标准制定过程中讨论提到的QoS Flow等。在本示例中,通过与该上行数据包具有关联关系的分组数据连接,GPRS隧道协议用户面部分,数据流和数据无线承载(其中的至少一个,具体不做限定),获得该上行数据包的身份信息。可选的,上行数据包的身份信息也可以是:与该上行数据包关联的分组数据连接标识,与该上行数据包关联的GPRS隧道协议用户面部分的标识,与该上行数据包关联的数据流标识,以及与该上行数据包关联的数据无线承载(data radio bearer,DRB)标识中的至少一个。
根据该方法200,在一些可能的实现方式中,该上行数据包的身份信息和无线接入网子网(或切片)具有对应关系,或者,该无线接入网子网(或切片)的标识的信息包含该身份信息;该无线接入网子网(或切片)和该传输网络子网(或切片)之间具有对应关系,从而该身份信息与该传输网络子网(或切片)之间具有对应关系,比如在该无线接入网设备将该上行数据包承载在该传输网络子网(或切片)之前,该无线接入网设备可以预先获得该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系。这样,通过获得上行数据包的身份信息,无线接入网子网(或切片)和传输网络子网(或切片)这三者之间具有的对应关系,能够将该上行数据包可靠高效的承载在对应的传输网络子网上进行传输,或者,当无线接入网子网(或切片)的标识信息中就带有上行数据包的身份信 息,则通过无线接入网子网(或切片)和传输网络子网(或切片)这两者之间具有的对应关系,将该上行数据包承载在对应的传输网络子网上进行传输。可选的,无线接入网子网(或切片)的标识还可以是上行数据包的身份信息的标识。
根据该方法200,在一些可能的实现方式中,无线接入网设备获得该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的过程,可以包括:该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息,可以通过系统管理面来配置,系统管理面中网络管理器,传输网络管理器,无线接入网管理器和核心网管理器这四者中的任意两者之间可以设置信息交互的接口,通过这些信息交互的接口使得该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息可以在这四者之间进行传递,以使得这四者能够获知该对应关系。可选的,在该无线接入网设备将该上行数据包承载在传输网络子网(切片)传输之前在系统管理面进行配置,使得该对应关系的信息被该无线接入网设备获得。
比如,该无线接入网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息,可以是传输网络管理器通过传输网络管理器和无线接入网管理器之间的信息交互接口,发给该无线接入网管理器,再由该无线接入网管理器通过该无线接入网管理器和该无线接入网设备之间的接口,将该对应关系的信息发给该无线接入网设备;还可以是,该传输网络管理器通过该传输网络管理器和该网络管理器之间的接口将该对应关系的信息发送给该网络管理器,该网络管理器通过该网络管理器和该无线接入网管理器之间的接口,将该对应关系的信息发给该无线接入网管理器,该无线接入网管理器通过该无线接入网管理器和该无线接入网设备的接口,将该对应关系的信息发送给该无线接入网设备。
根据该方法200,在一些可能的实现方式中,该无线接入网子网(或切片)与该传输网络子网(或切片)分别与该网络管理器创建的端到端子网(或切片)具有对应关系,从而使得该无线接入网子网与该传输网络子网之间可以建立对应关系。可选的,该传输网络管理器在将前述无线接入网子网(或切片)与传输网络子网(或切片)之间对应关系的信息发给该网络管理器或者发给该无线接入网管理器之前,该传输网络管理器基于网络管理器创建的该端到端子网(或切片)获得该无线接入网子网(或切片)与该传输网络子网(或切片)的对应关系。
根据该方法200,在一些可能的实现方式中,该端到端子网(切片)与网络切片选择辅助信息(NSSAI)具有对应关系;或者,该端到端子网的标识即网络切片选择辅助信息。可选的,该网络切片选择辅助信息可以携带在非接入层(non-access stratum,NAS)消息,由终端设备发送给核心网中的相关设备,和或,该网络切片选择辅助信息可以携带在RRC(Radio Resource Connection)消息,由终端设备发送给无线接入网设备。
根据该方法200,在一些可能的实现方式中,该无线接入网子网(或切片)与核心网子网(或切片)具有对应关系,该核心网子网(或切片)与该端到端子网(或切片)具有对应关系,这样,该无线接入网设备可以根据获得的核心网子网(或切片),获知归属于同一个端到端子网(或切片)的无线接入网设备侧对应的子网(或切片)。
根据该方法200,在一些可能的实现方式中,将该上行数据包承载在该传输网络子网,包含:前述上行数据包中包含传输网络子网(或切片)的标识的信息,比如,在无线接入网设备侧,对该上行数据包进行处理,在该上行数据包中增加传输网络子网的标识的信息。可选的,在一些可能的实现方式中,如果该传输网络子网(或切片)为虚拟局域网,则该传输网络子网(或切片)的标识的信息包括该虚拟局域网的标识(virtual local area network ID,VLAN ID);可选的,在一些可能的实现方式中,该传输网络子网的标识信息,包括如下至少一种:IP网络的端口号,以及互联网协议地址。通过传输网络子网(或切片)的标识的信息,比如VLAN ID,IP网络的端口号,以及互联网协议地址等,可以标识一个传输网络子网(或切片),从而可以将上行数据包承载在对应传输网络子网上。
通过上述通信方法200,以及涉及的设备和系统,能够在端到端子网中,使得属于同 一个端到端子网的RAN子域、CN子域和TN子域之间的子网(或切片)之间获得映射和协同,从而使得数据能够在端到端子网中各个子域得到可靠高效的处理,提升了该端到端子网通信的系统效率,提升了端到端业务体验的一致性。
如图3所示,本申请提供了一种通信方法300,基于该方法300思想的一种实现流程,包括:
操作301:核心网设备获知下行数据包的身份信息;
操作302:该核心网设备根据该下行数据包的身份信息和传输网络子网的对应关系,将该下行数据包承载在该传输网络子网。
上述方法300从核心网侧的角度进行描述,可以理解的是,该方法300可应用在包含核心网设备,以及传输网络的通信系统中。通过该方法,使得该核心网设备能够以可靠、高效的方式将下行数据承载在对应的传输网络子网(或切片)上传输。
根据该方法300,在一些可能的实现方式中,该下行数据包的身份信息,包括:与该下行数据包关联的分组数据连接标识的信息,与该下行数据包关联的GPRS隧道协议用户面部分的标识的信息,与该下行数据包关联的数据流标识的信息,以及与该下行数据包关联的数据无线承载(data radio bearer,DRB)标识的信息中的至少一个,可以是这些信息中的任一个,也可以是这些信息中的任意两个或者任意多个结合起来,以获取该下行数据包的身份信息。此处所称分组数据连接,可以是会话(session);此处所称数据流,可以是具有相同或者相近的服务质量要求的一组数据包,比如在标准制定过程中讨论提到的Qos Flow等。在本示例中,通过与该下行数据包具有关联关系的分组数据连接,GPRS隧道协议用户面部分,数据流和数据无线承载(其中的至少一个,具体不做限定),获得该下行数据包的身份信息。可选的,下行数据包的身份信息也可以是:与该下行数据包关联的分组数据连接标识,与该下行数据包关联的GPRS隧道协议用户面部分的标识,与该下行数据包关联的数据流标识,以及与该下行数据包关联的数据无线承载(data radio bearer,DRB)标识中的至少一个。
根据该方法300,在一些可能的实现方式中,该下行数据包的身份信息和核心网子网(或切片)具有对应关系;或者,该核心网子网(或切片)的标识的信息包含该下行数据包的身份信息;该核心网子网(或切片)和该传输网络子网(或切片)之间具有对应关系,从而该下行数据包的身份信息与该传输网络子网(或切片)之间能够建立对应关系,比如在该核心网设备将该下行数据包承载在该传输网络子网(或切片)之前,该核心网设备可以预先获得该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系。这样,通过获得下行数据包的身份信息,核心网子网(或切片)和传输网络子网(或切片)这三者之间具有的对应关系,能够将该下行数据包可靠高效的承载在对应的传输网络子网上进行传输;或者,当核心网子网(或切片)的标识信息中包含该下行数据包的身份信息时,则通过该核心网子网(或切片)和传输网络子网(或切片)这两者之间具有的对应关系,将该下行数据包承载在对应的传输网络子网上进行传输。可选的,核心网子网(或切片)的标识还可以就是该下行数据包的身份信息的标识。
根据该方法300,在一些可能的实现方式中,核心网设备获得该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的过程,可以包括:该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息,可以通过系统管理面来配置,系统管理面中网络管理器,传输网络管理器,无线接入网管理器和核心网管理器这四者中的任意两者之间可以设置信息交互的接口,通过这些信息交互的接口使得该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息可以在这四者之间进行传递,以使得这四者能够获知该对应关系。可选的,在该核心网设备将该下行数据包承载在传输网络子网(切片)传输之前在系统管理面进行配置,使得该对应关系的信息被该核心网设备获得。
比如,该核心网子网(或切片)和该传输网络子网(或切片)之间的对应关系的信息, 可以是传输网络管理器通过传输网络管理器和核心网管理器之间的信息交互接口,发给该核心网管理器,再由该核心网管理器通过该核心网管理器和该核心网设备之间的接口,将该对应关系的信息发给该核心网设备;还可以是,该传输网络管理器通过该传输网络管理器和网络管理器之间的接口将该对应关系的信息发送给该网络管理器,该网络管理器通过该网络管理器和该核心网管理器之间的接口,将该对应关系的信息发给该核心网管理器,该核心网管理器通过该核心网管理器和该核心网设备之间的接口,将该对应关系的信息发送给该核心网设备。
根据该方法300,在一些可能的实现方式中,该核心网子网(或切片)与该传输网络子网(切片)分别与该网络管理器创建的端到端子网(或切片)具有对应关系,从而使得该核心网子网(或切片)与该传输网络子网(或切片)之间可以建立对应关系。可选的,该传输网络管理器在将前述核心网子网(或切片)与传输网络子网(切片)之间对应关系的信息发给该网络管理器或者发给该核心网管理器之前,该传输网络管理器基于网络管理器创建的该端到端子网(或切片)获得该核心网子网(或切片)与该传输网络子网(或切片)的对应关系。
根据该方法300,在一些可能的实现方式中,前述端到端子网(或切片)与网络切片选择辅助信息(NSSAI)具有对应关系;或者,该端到端子网的标识即网络切片选择辅助信息。可选的,该网络切片选择辅助信息可以携带在非接入层(non-access stratum,NAS)消息,由终端设备发送给核心网中的相关设备,和/或,该网络切片选择辅助信息可以携带在RRC(Radio Resource Connection)消息,由终端设备发送给无线接入网设备。
根据该方法300,在一些可能的实现方式中,将该下行数据包承载在该传输网络子网,包括:前述下行数据包中包含传输网络子网(或切片)的标识的信息,比如,在核心网侧,对下行数据包进行处理,在下行数据包中增加传输网络子网的标识的信息。可选的,在一些可能的实现方式中,如果该传输网络子网(或切片)为虚拟局域网,则该传输网络子网(或切片)的标识的信息包括该虚拟局域网的标识(virtual local area network ID,VLAN ID);可选的,在一些可能的实现方式中,该传输网络子网的标识信息,还可以包括如下至少一种:IP网络的端口号,以及互联网协议地址。通过传输网络子网(或切片)的标识的信息,比如VLAN ID,IP网络的端口号,以及互联网协议地址等,可以标识一个传输网络子网(或切片),从而可以将下行数据包承载在对应传输网络子网上。
通过上述通信方法300,以及涉及的设备和系统,能够在端到端子网中,使得属于同一个端到端子网的CN子域和TN子域之间的子网(或切片)之间获得映射和协同,从而使得数据能够在端到端子网中各个子域得到可靠高效的处理,提升了该端到端子网通信的系统效率,提升了端到端业务体验的一致性。
可以理解,上述通信方法200主要从数据的上行传输方向,以无线接入网设备侧的处理的角度进行了描述,而上述通信方法300从数据下行传输方向,以核心网设备侧的处理的角度进行了描述。可选的,上述通信方法200和上述通信方法300可结合使用,完成上下行数据的处理。
以下一代5G网络的分层分域管理系统为例,如图4所示,本申请还提供了一种通信方法400,基于该方法400思想的一种实现流程,包括:
操作401:创建端到端子网。
在5G系统中可设置用于端到端切片管理的网络管理器,该网络管理器基于输入的参数,比如,客户的业务质量要求,创建端到端子网。
操作402:指示子域管理器。
该网络管理器为操作401中创建的子网,配置相应的各子域子网的性能指标要求和/或参数,将用于各子域子网的子域性能指标要求和/或所需要的配置参数分别发送给涉及的子域管理器,可选的,该网络管理器还可以分别给各子域发送该端到端子网的标识的相关信息,该端到端子网的标识的相关信息可以在下发性能指标要求和/或所需要的配置参数的时 候一起发送,也可以单独分别发送给各个子域。所述子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域的子网标识的信息(例如可以是RAN子网标识,CN子网标识,或者TN子网标识)。示例性的,所述子网标识可以为切片标识或者切片实例标识。
操作403:各子域创建子网。
各子域管理器分别收到来自操作402中所示出的网络管理器发送的各类信息,这些信息可以同一个从网络管理器发送过来的信息中收到,也可以从网络管理器中发过来的多个不同的信息中分别接收到。在此基础上,各子域管理器至少获得对应其自身子域性能指标的要求,分别创建对应前述端到端子网的自身子域的子网,并向网络管理器反馈关于自身子域子网创建的结果,反馈的结果包括但不限于:成功创建,或者未成功创建。
操作404:(本操作为可选)子域管理器通知子域配置。
各子域管理器分别将自身子域子网的具体配置和/或与本子域创建的子网对应的端到端子网(切片)的标识的相关信息告知网络管理器和/或其他子域管理器,以便于端到端子网在各个子域的协同以及各子域子网的关联。如,TN管理器将为某个端到端子网创建的TN子网(可选的,及其标识的信息)告知网络管理器,RAN管理器和CN管理器中的至少一个,该TN子网标识的信息可以是RAN内部接口(如基站与基站之间的X2接口或Xn接口)上的TN子网的标识信息,也可以是CN内部接口(如AMF与SMF之间的接口)上的TN子网的标识信息,也可以是RAN和CN之间接口(如4G的S1接口,5G的NG接口)上的TN子网的标识信息。
操作405:(本操作为可选)网络管理器通知子域配置。
网络管理器将某个子域针对某端到端子网进行的该子域配置发送给其他子域管理器,用于该子域和其他子域的协同。例如,在操作404中,TN管理器将为某个端到端子网创建的TN子网及其标识信息告知网络管理器,网络管理器进而将上述传输子网标识,通过网络管理器和RAN管理器之间的接口,或者通过网络管理器和CN管理器之间的接口,分别发送给RAN管理器和/或CN管理器。
本实施例中,对应一个端到端子网,网络管理器将TN子域创建子网(或者:子域切片)所需的参数发送给TN管理器,可选的,TN管理器向该网络管理器反馈其创建的传输子域子网(切片)的标识信息(比如,创建的TN子网标识)后,网络管理器将该TN子网相关标识与RAN/CN相关参数一同发送给RAN/CN管理器,或者,可选的,TN管理器将TN子域的子网标识的信息直接发给RAN/CN管理器,以使得TN子网及其标识信息能够被RAN管理器和/或CN管理器获知,通过RAN管理器和无线接入网设备之间的交互,使得无线接入网设备能够获知该TN子网及其标识信息,和/或,通过CN管理器和核心网设备之间的交互,使得核心网设备也能够获知该TN子网及其标识信息。从以上描述可以看出,RAN域和CN域获知TN子网标识的信息至少有两种可选方式:
方式1:RAN管理器通过与RAN管理器与网络管理器之间的接口交互信息,从网络管理器获知该TN子网的标识的信息;或者,CN管理器可以通过CN管理器与网络管理器之间的接口交互信息,从而CN管理器可以通过该网络管理器获知该TN子网的标识的信息;
方式2:RAN管理器可以通过与RAN管理器与TN管理器之间的接口交互信息,从而RAN管理器从TN管理器获知该TN子网的标识的信息;或者,CN管理器可以通过CN管理器与TN管理器之间的接口交互信息,从而CN管理器从该TN管理器获知该TN子网的标识的信息。
本示例中,TN子网和/或该TN子网的标识的信息能够被RAN管理器和/或CN管理器获 知,进而使得无线接入网设备和/或核心网设备能够获知该TN子网(可选的,还可以获知该TN子网的标识的信息),使得属于同一个端到端子网的RAN子域、CN子域和TN子域之间的子网(切片)之间能够进行映射和协同,从而使得在端到端子网中能够协同管理不同子域中的资源,提高了该端到端子网通信的系统效率,提升了端到端业务体验的一致性。
参考前述方法400,从RAN子域与TN子域之间进行网络切片映射的角度,如图3所示,本申请实施例还提出了一种通信方法500,该方法500包括:
操作501:初始接入请求和/或业务请求。
本操作中,终端设备发起初始接入请求和/或业务请求,在初始接入请求和/或业务请求中携带用于选择网络切片的参数,该初始接入请求和/或业务请求可以是UE通过NAS消息发送给CN;
操作502:建立数据流连接。
本操作中,CN为该UE建立数据流连接(该数据流连接可以是会话连接,QoS流,多个QoS流,IP数据流,或者多个IP数据流),并将该数据流连接关联到子网,此处的子网可以是网络管理器配置的端到端子网,或者是CN域的子网,如果是CN域的子网的话,该CN域子网与端到端子网具有对应关系,子网具有子网的标识的信息。CN还可以为该数据流连接分配核心网与RAN之间的数据传输通道,CN将该数据流连接的标识信息,对应的子网的标识的信息(例如端到端子网标识的相关信息、CN子网标识的相关信息、CN认证的该子网标识的相关信息中的至少一个)以及该数据传输通道的信息和QoS相关信息中的至少一个告知UE。
操作503:获知数据流和子网的对应关系。
在本操作中,RAN获知上述子网的标识的信息,该数据流连接的标识的信息,对应传输通道的信息的至少一个,以便于将数据包正确承载到对应的TN子网中传输。
在操作503中,RAN获知上述子网标识的相关信息,该数据流连接的标识信息,以及对应传输通道的信息中的至少一个,可以包括如下任一种方式:
可选方式1:操作501中,CN通过CN与RAN之间的接口进行信息交互,通过该接口交互信息将相关的信息传递给RAN侧的无线接入网设备,比如基站。
可选方式2:操作502中,RAN通过RAN与CN之间的接口进行信息交互,通过接口消息获得数据流连接的标识信息和对应传输通道的信息,在UE获知子网标识的相关信息和该数据流连接的标识信息后,在UE和RAN之间的空口消息中携带子网标识的相关信息和该数据流连接的标识信息,以告知RAN侧的基站,从而RAN获知该数据流连接对应的子网信息(例如端到端子网标识的信息、CN子域子网标识的信息、CN认证的子网标识的相关信息中的至少一种)。
操作504:端到端子网传输。
基于在操作503中获得的子网标识的相关信息,在本操作中,RAN为该数据流连接关联了RAN子域子网,并为该数据流连接分配对应的空口传输资源(例如DRB)。CN和RAN通过管理面接口获知该子网对应的TN子网的信息(比如,获知TN子网的信息的方式可以参考前述方法400中的操作403,404及405的部分),以便于能够将用户数据放到对应的TN子网中传输。
参考前述方法200,方法300,方法400以及方法500,本申请提出了一种通信系统,即如图6所示例的系统600。基于该系统600,本实施例分成两个部分来描述:第一部分(见图示Part 1),主要从该系统600的管理面信令流程的角度来描述网络管理器和各个子域的管理器进行参数配置和协同;第二部分(见图示Part 2),主要描述该系统中RAN和CN部分的信令流程,使得属于同一个端到端子网的用户数据能够在RAN、CN和TN这三个子域中承载在属于该端到端子网的子域子网,其中,Part 1部分的管理面信令流程既可以作为独立的系统管理面的流程设计,完成管理面的相关信令配置,也可以可以作为本申请实施例各个方案的共有部分,比如作为Part 2中各个方案的共有部分;而Part 2部分需要考虑核心网配 置网络切片采用的不同设计方案,在RAN侧可以有相应的不同的配套处理。图6仅示出了该系统600中的part 1和part 2,尚未对part 1和part 2分别具有的各种可能的流程设计作进一步描述,具体的描述将在下文中逐步示出。可以理解,在系统600虚线框Part 1部分中,示出了网络管理器,RAN管理器,TN管理器以及CN管理器这四者的任意两者之间可以设置信息交互的接口,但应理解,该网络管理器,RAN管理器,TN管理器以及CN管理器涉及的管理面具体的信令交互流程存在各种可能的实现方式,只要能实现在网络管理器,RAN管理器,TN管理器以及CN管理器任意两者之间能够传递RAN,TN以及CN等各子域子网相关的信息即可,这些需要传递的信息包括但不限于如下任一种或者任意几种:至少一个子域的子网标识相关的信息,任意两个子域子网之间的对应/映射关系的信息,各子域子网分别与系统创建的端到端网络子网之间的对应/映射关系的信息,以及在切片管理和切片映射中可能应用到的如下信息的至少一种:UE ID、Session ID、Tunnel ID、子网标识相关信息、核心网用户面IP地址、QoS流标识信息、DRB标识、IP数据流标识信息等。在图6中,Part 2部分目前示出了终端设备,无线接入设备,传输网以及核心网之间通过信令交互,实现数据在各个子域的传输的概要流程。进一步的,RAN管理器和无线接入网之间存在信令接口,TN管理器和传输网设备之间存在信令接口,CN管理器和核心网存在信令接口,这些信令接口中的每一个,都可以用来交互所述的需要传递的信息。
对于系统600中Part 1部分,具体的信令流程设计可按照如下多种可选实现方式运行:
如图7所示,Part 1的可选方式一提供了一种通信方法700,其中,基于该方法700的一种实现流程,包括:
操作701:创建端到端子网。
网络管理器基于输入的参数,例如,与服务等级协议(service level agreement,SLA)相关的服务质量(quality of service,QoS)参数(客户对某种业务类型的服务质量需求)创建端到端子网,并将对该端到端子网的能力需求分解为各个子域的配置参数。其中,配置参数可以包括对各子域的具体配置,如资源的使用方式、使用策略以及使用限制中的至少一个,配置参数还可以包括对各子域的关键性能指标要求(具体的参数可由各子域灵活配置,只要各子域配置的参数满足该指标要求即可)。
操作702:配置各子域子网参数。
网络管理器将涉及到的各子域的配置参数发送给各子域管理器,该操作中,该网络管理器也可以将该端到端子网标识的相关信息发给各子域管理器。其中,该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网的标识信息(例如:RAN子网的标识,CN子网的标识和TN子网的标识中的至少一种)。
其中,可选的,网络管理器给RAN管理器发送的用于RAN子域的配置参数,可以包括对应的TN子网标识信息,和/或,RAN子域子网和TN子网的对应关系。
其中,可选的,网络管理器给CN管理器发送的用于CN子域的配置参数包括对应的TN子网标识信息,和/或,RAN子域子网和TN子网的对应关系。
操作703:各子域创建子网,分别向网络管理器反馈创建结果和/或其创建的子域子网的标识的信息。
在本操作中,涉及到的各子域管理器分别收到来自网络管理器的与该端到端子网的创建相关的配置信息后,各子域管理器分别创建本子域相应的子网,然后各子域管理器分别向该网络管理器反馈其创建的子域子网的标识信息,比如通过发送响应消息来反馈该标识信息。与该端到端子网创建相关的配置信息可以是操作702中管理管理器给各子域管理器 分别下发的各类信息,这些配置信息也可以是该网络管理器发给某一个子域管理器,然后由该子域管理器通过互联接口转发给其他涉及的子域管理器。TN管理器回复给网络管理器的响应消息可以包括如下至少一种或者任意几种组合:TN管理器为RAN/CN分别创建的TN子网的标识信息,TN管理器为RAN-CN接口创建的TN子网的标识信息,不区分CN、RAN以及RAN-CN接口的情况下TN管理器创建的全局TN子网的标识的信息。可选的,TN管理器创建的TN子网还可以进一步区分控制面和用户面的传输承载,即TN管理器还可以创建不同的TN子网分别用于传输控制面数据包和用户面数据包;可选的,TN管理器创建的TN子网还可以进一步区分子网内的数据流,例如为IP数据流、多个IP数据流、QoS流、多个QoS流创建的TN子网。这些TN子网的标识信息也可以反馈给网络管理器,比如这些TN子网的标识信息也包含在前述的响应消息中,相应的,与TN子网对应的端到端子网的标识信息也可以携带在该响应消息中。本实施例所称响应消息,是指具有能携带上述各类配置信息的消息,具体名称不做限定,也可以命名为别的消息名称。在本操作中,该TN子网的标识信息基于创建TN子网(即,端到端子网对应的TN域子网部分)的不同方式可能有不同表达。例如,若TN域的网络切片方式为创建虚拟局域网(virtual local area network,VLAN),则TN子网标识可以为VLAN ID;若TN域的网络切片方式为其他创建虚拟子网的方法和技术,则TN子网标识为相应的能够区分各虚拟子网的标识,此处不再一一限定。
可选的,TN若创建了多个TN子网,该TN子网的标识的信息包含用于区分不同TN子网的信息,如端口号、IP地址等。
可选的,若TN子网可用于区分承载信令面或者数据面的传输,则该TN子网的标识信息可包含用于区分信令面和数据面传输的信息,这样可以区分用于承载信令面或者数据面传输的不同子网。
可选的,若TN子网可用于区分同一子网中的不同数据流,则该TN子网的标识信息科包含用于区分不同数据流的信息,如IP数据流的标识信息、多个IP数据流的组标识信息、QoS流的标识信息、多个QoS流的组标识信息等。
操作704:将TN子网的标识的信息通知RAN/CN管理器。
操作704的可选实现方式1:网络管理器将TN管理器配置的TN子网的标识的信息通过接口消息分别发送给RAN管理器/CN管理器,该TN子网的标识的信息可以在操作703中由所述网络管理器所获得。该接口消息还可以携带该TN子网的标识信息对应的端到端子网标识的信息。可选的,TN管理器如果为同一端到端子网创建了多个TN子网,则TN子网标识信息中还需包括用于区分同一端到端子网中各个TN子网的参数。
操作704的可选实现方式2:TN管理器可通过TN管理器与RAN管理器/CN管理器之间的接口发送接口消息,该接口消息中携带为该RAN/CN配置的TN子网的标识信息,使得TN为RAN/CN配置的TN子网的标识信息能够分别发送给RAN管理器/CN管理器。TN管理器还可以在该接口消息中携带该TN子网标识信息对应的端到端子网的标识信息。可选的,TN管理器若为同一端到端子网创建了多个TN子网,则TN子网的标识信息中还需包括用于区分同一端到端子网中各个TN子网的参数。
操作705:RAN/CN关联TN子网。
RAN/CN基于获取到的子网标识的相关信息(比如在操作702和/或704中获取的信息),将RAN/CN自身为该端到端子网创建的RAN/CN子域子网与相应的TN子网进行关联,从而使得RAN/CN和TN对应到同一个端到端子网。
操作706:TN管理器为涉及的TN子网配置TN参数。
TN管理器基于该端到端子网对TN域的要求,为涉及的对应TN子网配置相应的TN参数。该TN参数可以包括如下至少一种:拓扑表的配置,路由表的配置,转发优先级与RAN内/CN内/RAN-CN接口上参数的映射关系,其中,该映射关系可以包括:某一个VLAN的转发优先级分别与RAN内/CN内/RAN-CN接口上数据包QoS参数的映射关系(RAN内,CN内和RAN-CN接口中的至少一个),和/或,某一个VLAN的转发优先级与RAN内/CN内/RAN-CN 接口上数据包IP承载的差分服务码点(differentiated services code point,DSCP)的映射关系(RAN内,CN内和RAN-CN接口中的至少一个)。可选的,TN管理器将TN子网参数配置发送给对应的TN域节点。可选的,操作706中对TN子网进行配置的动作,可以在该方法700中操作702以后的任意时间执行。
需要说明的是,上述方法中的某些操作可以省略,如操作706。
参考系统600,如图8所示,Part 1的可选方式二提供了一种通信方法800,其中,基于该方法800的一种实现流程,包括:
操作801:创建端到端子网,确定各子域配置参数。
操作801和操作701类似,此处不再赘述。
操作802:配置TN子网参数。
网络管理器将TN域的配置参数发送给TN管理器,该操作中,该网络管理器也可以将该端到端子网标识的相关信息发给TN域管理器。其中,该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网的标识信息(例如:RAN子网标识,CN子网标识和TN子网标识中的至少一种)。
操作803:创建TN子域子网,向网络管理器反馈创建结果和/或创建的TN域子网的标识的信息。
在操作803中,TN子域管理器收到来自网络管理器的与该端到端子网的创建相关的配置信息后,TN管理器创建TN子域子网,然后TN管理器向网络管理器反馈其创建的子域子网的标识信息,比如通过发送响应消息来反馈该标识信息。TN管理器给网络管理器发送的响应消息可以包括如下至少一种或者任意几种组合:TN管理器为RAN/CN分别创建的TN子网的标识信息,TN管理器为RAN-CN接口创建的TN子网标识信息,不区分CN、RAN以及RAN-CN接口的情况下的情况下TN管理器创建的全局TN子网的标识的信息。可选的,TN管理器创建的TN子网还可以进一步区分控制面和用户面的传输承载,即管理器还可以创建不同的TN子网分别用于传输控制面数据包和用户面数据包;另一种可选的,TN管理器创建的TN子网还可以进一步区分子网内的数据流,例如为IP数据流、多个IP数据流、QoS流、多个QoS流创建的TN子网。这些TN子网的标识信息也可以反馈给网络管理器,比如这些TN子网的标识信息也包含在前述的响应消息中反馈,相应的,与这些TN子网对应的端到端子网的标识信息也可以携带在该响应消息中。本实施例所称响应消息,是指具有能携带上述各类配置信息的消息,具体名称不做限定,也可以命名为别的消息名称。在本操作中,该TN子网的标识信息基于创建TN子网(即,端到端子网对应的TN域子网部分)的不同方式可能有不同表达。例如,若TN域的网络切片方式为创建虚拟局域网(virtual local area network,VLAN),则TN子网标识可以为VLAN ID;若TN域的网络切片方式为其他创建虚拟子网的方法和技术,则TN子网标识为相应的能够区分各虚拟子网的标识,此处不再一一限定。
在操作803中,可选的,TN若创建了多个TN子网,该TN子网的标识的信息中包含用于区分不同TN子网的信息,如端口号、IP地址等;可选的,若TN子网可用于区分承载信令面或者数据面的传输,则该TN子网的标识信息中可包含用于区分信令面和数据面传输的信息,这样可以区分用于承载信令面或者数据面传输的不同子网;可选的,若TN子网可用于区分同一子网中的不同数据流,则该TN子网的标识信息科包含用于区分不同数据流的信息,如IP数据流的标识信息、多个IP数据流的组标识信息、QoS流的标识信息、多个QoS流的组标识信息等。
操作804:将TN子网标识的信息通知RAN/CN管理器。
可选的,在操作804中,网络管理器将与前述端到端子网对应的RAN子域配置参数和/或TN管理器为RAN配置的TN子网的标识的信息,通过网络管理器和RAN管理器之间的接口消息发送给该RAN管理器。该接口消息中还可以携带RAN子域配置和/或该TN子网标识对应的该端到端子网标识的信息;
可选的,操作804中,网络管理器将前述端到端子网标识的相关信息对应的CN子域配置参数和/或TN管理器为CN配置的TN子网的标识信息,通过网络管理器和CN管理器之间的接口消息,发送给CN管理器。该接口消息中还可以携带该CN子域的配置信息和/或该TN子网对应的该端到端子网的标识的信息。
操作805:RAN/CN关联TN子网。
RAN/CN基于获取到的子网标识的相关信息(比如在操作804中获取的信息),将RAN/CN自身为该端到端子网创建的RAN/CN子域部分子网与相应的TN子网进行关联,从而使得RAN/CN和TN对应到同一个端到端子网。
操作806:TN管理器为TN子网配置TN参数。
TN管理器基于该端到端子网对TN子域的要求,为涉及的对应TN子网配置相应的TN参数。该TN参数可以包括如下至少一种:拓扑表的配置,路由表的配置,转发优先级与RAN内/CN内/RAN-CN接口上参数的映射关系,其中,该映射关系可以包括:某一个VLAN的转发优先级分别与RAN内/CN内/RAN-CN接口上数据包QoS参数的映射关系(RAN内,CN内和RAN-CN接口中的至少一个),和/或,某一个VLAN的转发优先级与RAN内/CN内/RAN-CN接口上数据包IP承载的差分服务码点(differentiated services code point,DSCP)的映射关系(RAN内,CN内和RAN-CN接口中的至少一个)。操作806中对TN子网进行配置的动作,可以在该方法800中操作802以后的任意时间执行。
需要说明的是,上述方法中的某些操作可以省略,如操作806。
参考系统600,如图9所示,Part 1的可选方式三提供了一种通信方法900,其中,基于该方法900的一种实现流程,包括:
操作901:创建端到端子网。
网络管理器基于输入的参数(例如,客户对某种业务类型的服务质量需求有关的参数)创建端到端子网,并将对该端到端子网的能力需求分解为各个子域的配置参数。其中,配置参数可以是对各子域的具体配置,如资源的使用方式、使用策略以及使用限制,配置参数还可以包括对各子域的关键性能指标要求(具体参数可由各子域灵活配置,只要各子域配置的参数满足该指标要求即可)。此处操作901和前述方法700中的操作701或方法800中的操作801类似。
一种可能的设计中,TN子域的配置参数可以包括如下信息的至少一种或者任意几种:该端到端网络子网在RAN域/CN域配置的TN子网的标识信息,和为RAN与CN的接口创建的TN子网的标识信息,在不区分CN、RAN以及RAN-CN接口的情况下创建的全局TN子网的标识信息。可选的,TN子域的配置参数还可以包括为各个TN子网配置的TN参数,该TN参数可以包括如下至少一种:拓扑表的配置,路由表的配置,转发优先级与RAN内/CN内/RAN-CN接口上参数的映射关系。其中,该映射关系可以包括:某一个VLAN的转发优先级分别与RAN内/CN内/RAN-CN接口上数据包QoS参数的映射关系(RAN内,CN内和RAN-CN接口中的至少一个),和/或,某一个VLAN的转发优先级与RAN内/CN内/RAN-CN接口上数据包IP承载的差分服务码点(differentiated services code point,DSCP)的映射关系(RAN内,CN内和RAN-CN接口中的至少一个)。
可选的,基于创建TN子网(即,端到端子网对应的TN域子网部分)的不同方式,该TN子网标识信息可以有不同表达。例如,若TN域的子网创建的方式为创建虚拟局域网(virtual local area network,VLAN),则TN子网的标识信息为VLAN ID;若TN域的子网的创建方式为其他创建虚拟子网的方法和技术,则TN子网标识信息为相应的能够区分各虚拟子网的标识,此处不再一一限定。
可选的,TN若创建了多个TN子网,该TN子网的标识的信息包含用于区分不同TN子网的信息,如端口号、IP地址等。
可选的,若TN子网可用于区分承载信令面或者数据面的传输,则该TN子网的标识信息可包含用于区分信令面和数据面传输的信息,这样可以区分用于承载信令面或者数据面传输的不同子网。
可选的,若TN子网可用于区分同一子网中的不同数据流,则该TN子网的标识信息科包含用于区分不同数据流的信息,如IP数据流的标识信息、多个IP数据流的组标识信息、QoS流的标识信息、多个QoS流的组标识信息等。
操作902:配置各子域子网参数。
网络管理器将涉及到的各子域的配置参数通过接口消息发给各子域管理器,可选的,接口消息中还可以携带该端到端子网的标识的相关信息。
其中,可选的,该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网的标识信息(例如:RAN子网标识,CN子网标识和TN子网标识中的至少一种)。
其中,可选的,网络管理器给RAN管理器发送的用于RAN子域的配置参数,可以包括对应的TN子网标识信息,和/或,RAN子域子网和TN子网的对应关系。
其中,可选的,网络管理器给CN管理器发送的用于CN子域的配置参数包括对应的TN子网标识信息,和/或,RAN子域子网和TN子网的对应关系。
其中,可选的,网络管理器给TN管理器发送的用于TN子域的配置参数包括:为该端到端子网创建的TN子网的标识的信息(可选的,可以分别对应为RAN内/CN内/RAN-CN接口配置的TN子网),和/或涉及的各TN子网所需的配置参数。
(可选)操作903:各子域创建子网,分别向网络管理器反馈其创建的子网的标识信息。
在本操作中,涉及到的各子域管理器分别收到来自网络管理器的与该端到端子网的创建相关的配置信息后,各子域管理器分别创建本子域相应的子网,然后各子域管理器分别向该网络管理器反馈其创建的子域子网的标识信息,比如通过发送响应消息来反馈该标识信息。与该端到端子网创建相关的配置信息可以是操作902中管理管理器确定的各子域管理器相关的各类配置信息,这些配置信息也可以是该网络管理器发给某一个子域管理器,然后由该子域管理器通过互联接口转发给其他涉及的子域管理器。本操作903可以和方法700中的操作703相类似。
(可选)操作904:将TN子网的标识的信息通知RAN/CN管理器。
操作904的可选实现方式1:通过网络管理器将TN管理器配置的TN子网的标识的信息通过接口消息分别发送给RAN管理器/CN管理器,该TN子网的标识的信息可以在操作903中由所述网络管理器所获得。该接口消息还可以携带该TN子网的标识信息对应的端到端子网标识的信息。可选的,TN管理器如果为同一端到端子网创建了多个TN子网,则TN子网标识信息中还需包括用于区分同一端到端子网中各个TN子网的参数。
操作904的可选实现方式2:TN管理器可通过TN管理器与RAN管理器/CN管理器之间的接口发送接口消息,该接口消息中携带为该RAN/CN配置的TN子网的标识的信息,使得TN为RAN/CN配置的TN子网的标识的信息能够分别发送给RAN管理器/CN管理器。TN管理器还可以在该接口消息中携带该TN子网标识信息对应的端到端子网的标识的信息。可选的,TN管理器若为同一端到端子网创建了多个TN子网,则TN子网的标识的信息中还需包括用于区分同一端到端子网中各个TN子网的参数。本操作904可以和方法700中的操作704相类 似。
操作905:RAN/CN关联TN子网。
基于操作902获得的子网标识的相关信息,RAN子域/CN子域可基于获得的子网标识的相关信息,能够将其自身为该端到端子网创建的RAN/CN部分与TN子网进行关联,使得RAN子域子网/CN子域子网和TN子网能对应同一个端到端网络子网。该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网的标识信息(例如:RAN子网标识,CN子网标识和TN子网标识中的至少一种)。可选的,也可以基于操作904中获得的相关信息RAN/CN能够将其自身为该端到端子网创建的RAN/CN子网与相应的TN子网进行关联,使得RAN子域子网/CN子域子网和TN子网能对应同一个端到端网络子网,以便于在RAN-TN-CN之间传输数据。
操作906:相应配置TN域节点。
本操作中,TN管理器将TN子网参数发送给对应的TN域设备。
可选的,TN管理器基于该端到端子网对TN域的要求,为涉及的对应TN子网配置相应的TN参数。该TN参数可以包括如下至少一种:拓扑表的配置,路由表的配置,转发优先级与RAN内/CN内/RAN-CN接口上参数的映射关系,其中,该映射关系可以包括:某一个VLAN的转发优先级分别与RAN内/CN内/RAN-CN接口上数据包QoS参数的映射关系(RAN内,CN内和RAN-CN接口中的至少一个),和/或,某一个VLAN的转发优先级与RAN内/CN内/RAN-CN接口上数据包IP承载的差分服务码点(differentiated services code point,DSCP)的映射关系(RAN内,CN内和RAN-CN接口中的至少一个)。可选的,操作906中对TN子网进行配置的动作,可以在该方法900中操作902以后的任意时间执行。
需要说明的是,上述方法中的某些操作可以省略,如操作906。
结合前述关于系统600的Part 1中的任一管理面信令配置流程(如:前述方法700,方法800以及方法900),本发明实施例提供了一种通信方法及其系统1000),其核心要点之一可以表述为:核心网设备通过RAN与CN之间的会话连接的标识信息来区分RAN和CN之间传输的数据所属的子网。一个示例为:无线接入网设备可以获得子网与隧道ID,传输网子网(如VLAN)之间的对应关系,和/或,核心网设备建立子网与隧道ID,传输网子网(如VLAN)的对应关系。如图10所示,该方法1000的一种实现流程,包括:
操作1001:终端设备发起业务请求。
在操作1001中,终端设备以UE为例,如图10中1001a所示,UE向RAN发送业务请求,1001b中,RAN将该业务请求转发给核心网,或者RAN将该业务请求中的内容提取出来后通过RAN和核心网之间的信令消息,把该业务请求中的内容发给核心网。
在操作1001中,该业务请求中包含用于辅助网络切片选择的参考信息。该参考信息可以是如下参数中任一种或任意组合:(1)UE标识信息,其中,UE标识信息可以包括国际移动用户标识符(international mobile subscriber identifier,IMSI),或者,UE标识信息可以包括临时移动台标识(temporary mobile subscriber identity,TMSI),或者,UE标识信息可以包括临时UE标识(temp UE ID);(2)网络切片选择辅助信息(network slice selection assistance information,NSSAI);(3)切片类型标识(slice type ID);(4)业务管理相关的NSSAI(session management NSSAI,SM-NSSAI);(5)某子域的业务类型标识(service type ID);(6)租户标识(tenant ID);(7)用户分组标识(user group ID);(8)单NSSAI(single NSSAI);(9)用于表征切片类型或者切片标识的索引值(slice index);(10)端到端子网标识(subnet work ID);(11)子域子网的标识的信息(例如:RAN子网标识,CN子网标 识和TN子网标识中的至少一种)。
操作1002:为终端设备关联切片。
核心网设备收到操作1001中该的该业务请求后,为该UE关联切片,和/或,为该UE选择对应的核心网功能实体,例如选择核心网接入和移动性管理功能实体,会话管理功能实体,用户面功能实体等,其中,会话管理功能实体负责创建会话,并选择对应的用户面功能功能实体。
操作1003:反馈响应。
在本操作中,如1003a所示,CN设备向该UE反馈响应信息,发送该响应信息的方式可以是CN直接通过RAN转发给该UE,或者,CN将响应信息发给RAN后,RAN获取该响应信息的内容,然后在RAN和UE之间的空口消息中将该响应信息的内容发送给UE。在本步骤所涉及的响应信息中,可以包含:CN为该UE关联的子网标识的信息和/或Session ID等。
可选的(用虚线及箭头表示),在操作1003中,如1003b所示,CN还可以通过上述1003a中的响应信息,或者通过RAN和CN之间的接口消息,把CN为该UE关联的子网标识的相关信息,和/或,核心网用户面IP地址、Session ID,以及Tunnel ID(上行和/或下行)等信息中的任一种或任意几种发给RAN。其中,在1003a和1003b中,如果采用不同的消息传递信息,则1003a和1003b这两个动作的时间先后顺序在此不作限定。
其中,在1003a和/或1003b中,该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网的标识的信息(例如:RAN子网标识,CN子网标识和TN子网标识中的至少一个)。
(可选)操作1004:反馈信息。
作为一种可选的设计,UE收到操作1003中CN反馈的响应信息后,该UE可通过空口信令消息,比如Uu口的消息,将CN为该UE关联的子网标识的相关信息,和/或,核心网用户面IP地址、Session ID,以及Tunnel ID(上行和/或下行)等信息中的任一种或任意几种发给RAN设备。其中,该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网的标识的信息(例如:RAN子网标识,CN子网标识和TN子网标识中的至少一个)。
操作1005:关联TN子网。
在操作1005中,在RAN侧,如1005a所示,无线接入网设备将RAN子域子网(或者数据)与TN子域子网进行关联的一种可选设计为:无线接入网设备基于UE上报(例如:操作1004)或CN提供的(例如:操作1003b或1003a)的子网标识的相关信息,关联到系统创建的端到端子网以及对应的RAN子网。结合RAN获得的TN子网标识的信息(如VLAN ID),从而获得RAN子网的信息,会话连接的标识信息,隧道建立相关的信息以及TN子网标识的信息等这几个信息的映射关系。比如,该映射关系的一种具体表示为:(子网标识的相关信息,会话连接的标识信息,隧道建立相关信息,TN子网标识信息(例如VLAN ID)),示例性的,其中,会话连接标识,可以是一种分组数据连接标识;隧道建立相关的信息可以是GPRS隧道协议用户面部分隧道端点标识(GPRS Tunneling Protocol-User Plane tunnel endpoint identifier,GTP-U TEID)和/或IP地址;VLAN ID是与RAN侧关联的TN子网VLAN标识,或者,TN子网标识信息可以包含侧的网络切片实例标识(TN slice instance ID)。
关于RAN获取TN子网标识的信息的方式,一种方案设计为:可通过本申请前述Part 1中的各种可行的管理面信令流程的实现,使得无线接入网设备获得该TN子网标识的信息。
在操作1005中,在CN侧,如1005b所示,核心网设备将CN子域子网(或者数据)与TN子域子网进行关联的一种可选设计为:核心网设备基于UE上报(例如:操作1001a和/或1001b)中的业务请求中包含的网络切片选择辅助信息,获得子网标识的相关信息,结合CN获得的TN子网标识的信息(如VLAN ID),从而获得CN子网标识的相关信息,会话连接的标识信息,隧道建立相关信息以及TN子网标识的信息等这几个信息的映射关系。比如,该映射关系的一种具体表示为:(子网标识的相关信息,会话连接的标识信息,隧道建立相关信息,TN子网标识信息(例如VLAN ID)),示例性的,其中,会话连接标识,是一种分组数据连接标识;隧道建立相关信息可以为GTP-U TEID和/或IP地址;VLAN ID是与CN侧关联的TN子网VLAN标识,或者,TN子网标识信息可以包含侧的网络切片实例标识(TN slice instance ID)。
关于CN设备获取TN子网标识的信息的方式,一种方案设计为:可通过本申请前述Part1中的各种可行的管理面信令流程的实现,使得CN获得该TN子网标识的信息。
通过1005a及1005b,可建立属于同一端到端子网的RAN子域子网,CN子域子网和TN子域子网的对应关系,基于子网的上下行数据传输在各子域得到协同并提升端到端传输的性能。
操作1006:数据传输。
对于RAN-CN之间的数据传输,对于该UE的一个会话连接,RAN侧设备建立了会话连接标识信息,隧道标识信息和TN子网标识信息这三者或者任意几者之间的关联关系,对于来自该UE的该会话连接的上行数据包,RAN将其封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地址。进一步地,RAN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。在操作1006中,如1006b所示,对于UE的一个会话连接,CN建立了会话连接标识信息,隧道标识信息和TN子网标识信息这三者或者任意几者之间的关联关系,对于来自该UE该会话连接的下行数据包,CN将其封装为相应的隧道协议数据包,携带GTP-U TEID和/或IP地址,CN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。
可选的,对于RAN内部基站之间(例如通过RAN中基站之间的X2/Xn接口)的数据传输:一种可能的实现方式为:对于该UE的一个会话连接,第一基站通过第一基站与第二基站之间的接口消息,获知第二基站为该UE的该会话连接建立的隧道相关的信息(例如GTP-U TEID和/或IP地址),由此第一基站建立了向第二基站转发数据时需使用的会话连接标识信息,隧道标识信息和TN子网标识信息这三者或其中任意两者之间的关联关系,第一基站向第二基站发送该UE该会话连接的数据时,第一基站RAN将数据包封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地址。进一步地,RAN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。
另一种可能的实现方式为:对于该UE的一个会话连接,当其在RAN内部传输时,RAN为其分配一个或多个无线数据承载资源(例如DRB)。第一基站通过第一基站与第二基站之间的接口消息,获知第二基站为该UE一个无线数据承载建立的隧道信息(例如GTP-U TEID和/或IP地址),因此第一基站建立了向第二基站转发数据时需使用的会话连接标识信息,无线数据承载标识信息,隧道标识信息和TN子网标识信息这四者或者其中任意几者之间的关联关系,第一基站向第二基站转发该UE该无线数据承载的数据时,第一基站RAN将数据包封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地址。进一步地,RAN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。
需要说明的是在本实施例方案中,对于一个会话连接与数据传输隧道的对应关系并未限定,即可能有如下实现方式:为一个会话连接建立一个数据传输隧道,或者为一个会话连接建立多个数据传输隧道,或者为多个会话连接建立一个数据传输隧道。
通过本实施例方案的实施,在创建一个端到端网络切片时,创建各个子域子网,将UE关联一个端到端子网后,各个子域能够使用一致的子网配置为该UE提供服务,实现了RAN,CN和TN之间的子网映射,尤其是RAN子域子网与TN子域子网的映射,和/或,RAN/CN子网内部的映射,比如,RAN/CN子网内部QoS的映射方法。其中,通过管理面信令传递端到端子网的信息和各子域子网的映射方式,为RAN侧对数据包进行RAN子网TN子网的传输转换提供了有效的流程支持,具体的,核心网设备通过RAN与CN之间的会话连接的标识信息区分子网(或网络切片),无线接入网设备获得会话连接标识信息和VLAN(RAN侧)之间的对应关系,和/或,核心网设备建立会话连接标识信息和VLAN(CN侧)的对应关系,从而建立RAN、CN、TN之间的切片映射。
结合Part 1所示的各种可行的管理面信令配置流程,本发明实施例还提供了一种通信方法1100,该方法可应用在系统1000中,需要说明的是,在系统1000虚线框Part 1部分中,仅示出了网络管理器,RAN管理器,TN管理器以及CN管理器之间互相存在信息交互的接口,但应理解,该网络管理器,RAN管理器,TN管理器以及CN管理器涉及的管理面信令交互流程存在各种可能的实现方式,只要能实现在网络管理器,RAN管理器,TN管理器以及CN管理器之间能够传递RAN,TN以及CN各子域子网进行关联所需的的信息,这些信息包括但不限于:各子域子网标识相关的信息,各子域切片中任意两者之间的对应/映射关系的信息,各子域子网分别与系统创建的端到端网络子网之间的对应/映射关系的信息,以及在切片管理和切片映射中可能应用到的如下信息的至少一种:UE ID、Session ID、Tunnel ID、子网标识相关信息、核心网用户面IP地址、QoS流标识信息、DRB ID、IP数据流标识信息、IP数据流组标识信息等。系统1000中涉及的具体的管理面流程的一些实现场景,可以参考前述方法700,方法800以及方法900任一该的方式来运行。该方法1100从终端设备接入端到端子网的流程角度进行描述,其核心要点之一可以表述为:核心网通过具备相同或类似服务质量要求的数据流来区分传输的数据所属的子网,RAN侧获得RAN子域子网(传输数据)与该数据流,以及TN子网的对应关系。当相同或类似服务质量要求的数据流为QoS流,传输网切片为VLAN时,则,该方案的一个示例为:RAN获得子网标识的相关信息与QoS流标识信息,以及VLAN ID的对应关系。可选的,如果该数据流的标识信息携带在用户面隧道的标识信息中,比如,数据流标识为QoS流的标识,该QoS流的标识包含在GTP-U包头中,则方法1100与方法900在这一点上相类似。
该方法1100的一种实现流程,如图11所示,该方法1100包括:操作1101,操作1102,操作1103,操作1104,操作1105和操作1106,分别与图10中的操作1001,操作1002,操作1003,操作1004,操作1005和操作1006具有流程上的相似性,但需要说明的是,具体流程中各个执行主体之间传递的信息可以有不同,以及有些操作还存在替代涉及。其中:
操作1101:终端设备发起业务请求/业务修改请求;或者,核心网设备发起业务修改请求。
可选的,如1101a所示,终端设备发起业务请求的操作与操作1001类似,可参考操作1001实现,此处不再一一赘述。
可选的,如1101b所示,终端设备向核心网发送请求消息,该请求消息用于对已经建立的会话连接进行修改,例如添加一个或多个或一组QoS流。可选的,与操作1001类似,该请求消息中可以包含用于辅助网络切片选择的参考信息,该参考信息可以是如下参数中任一种或任意组合:(1)UE标识信息,其中,UE标识信息可以包括国际移动用户标识符(international mobile subscriber identifier,IMSI),或者,UE标识信息可以包括临时移动台标识(temporary mobile subscriber identity,TMSI),或者,UE标识信息可以包括临时UE标识(temp UE ID);(2)网络切片选择辅助信息(network slice selection assistance information, NSSAI);(3)切片类型标识(slice type ID);(4)业务管理相关的NSSAI(session management NSSAI,SM-NSSAI);(5)某子域的业务类型标识(service type ID);(6)租户标识(tenant ID);(7)用户分组标识(user group ID);(8)单NSSAI(single NSSAI);(9)用于表征切片类型或者切片标识的索引值(slice index);(10)端到端子网标识(subnet work ID);(11)子域子网的标识的信息(例如RAN子网标识,CN子网标识和TN子网标识中的至少一个)。
可选的,如1101c所示,核心网设备可以发送请求消息,该请求消息用于针对UE已经建立的会话连接进行修改,例如添加一个或多个或一组QoS流。可选的,该请求消息中还可以包含UE的业务信息,核心网和运营商策略信息等中的至少一种,以用于辅助核心网为UE关联子网。
操作1102:为终端设备关联子网。
核心网设备收到操作1101中所述的该业务请求后,相应的创建会话和/或Qos流,或者,核心网设备收到操作1101中所述的该业务修改请求后,相应的修改会话和/或修改QoS流,为该UE关联子网,为该子网分配相应的QoS参数,该QoS参数包括:QoS流标识的信息。一种实现方式为,将该QoS流标识的信息承载在GTP-U的包头中。
操作1103:反馈响应。
可选的,如1103a所示,CN给UE反馈信息,该信息包括但不限于如下任一种或任几种信息:CN为该UE关联的子网标识的相关信息、会话连接标识信息,以及QoS流标识信息等。可选的,如1103b所示,在CN给RAN反馈信息,该信息包括但不限于如下任一种或任几种信息:CN为该UE关联的子网标识的相关信息,核心网用户面IP地址的信息,会话连接标识的信息,隧道建立相关信息(上行和/或下行)以及Qos流标识信息等。
其中,该子网标识的相关信息可以包括以下参数中的任一种或任意几种的组合:网络切片选择辅助信息(network slice selection assistance information,NSSAI),切片类型标识(slice type ID),业务管理相关的NSSAI(session management NSSAI,SM-NSSAI),单NSSAI(single NSSAI),业务类型标识(service type ID),某子域的业务类型标识,租户标识(tenant ID),用户分组标识(user group ID),用于表征切片类型或者切片标识的索引值(slice index),端到端子网标识(subnet work ID),子域子网标识(例如RAN子网标识、CN子网标识、TN子网标识)。
(可选)操作1104:反馈信息。
本操作和前述操作1004的流程类似。作为一种可选的设计,该UE可通过空口信令消息,比如Uu口的消息,将CN为该UE关联的子网标识的相关信息、会话连接标识信息,以及QoS流标识信息等信息中的任一种或任意几种发给RAN侧设备。
操作1105:关联TN子网。
在RAN侧,如1105a所示,无线接入网设备将RAN侧的子网(或者数据)与TN侧的子网进行关联的一种可选设计为:无线接入网设备基于UE上报(例如:操作1104)或CN提供的(例如:操作1103)的子网标识的相关信息,关联到系统创建的端到端网络子网以及对应的RAN子域子网。结合RAN获得的TN子网标识的信息(如在part 1的各种流程中获取的VLAN ID),从而获得子网标识的相关信息,Qos流标识的信息,TN子网标识的信息等这几个信息的映射关系。比如,该映射关系的一种具体表示为:子网标识的相关信息,会话连接标识信息,TN子网标识信息(例如VLAN ID),QoS range之间的映射,其中,该子网标识的相关信息,可以是系统创建的端到端子网的标识的信息,也可以是对应端到端子网的RAN子域子网的标识的信息,还可以是与该端到端子网或该RAN子域子网相关的信息,此处不做限定;所述QoS range为Qos流相关的参数,比如存在多个QoS流属于同一个切片时,那么用QoS range来描述这多个QoS流的相关信息,此时该QoS range相当于用来表示一个QoS流的集合,如果只有一个QoS流的情况下,则QoS range可用QoS流的标识信息或者数量信息来替换;VLAN ID是与RAN侧关联的TN子网的VLAN标识。
在CN侧,如1105b所示,核心网设备将CN侧的子网(或者数据)与TN侧的子网进行关联的一种可选设计为:核心网设备基于UE上报或其他核心网设备上报的消息中获得子网标识的相关信息,结合CN获得的TN子网标识的信息(如,通过part 1的各种可行的流程获取的VLAN ID),以及子网标识的相关信息与TN子网标识的信息之间的关联关系,从而获得子网标识的相关信息,QoS流流标识信息相关信息,TN子网标识的信息等这几个信息的映射关系。比如,该映射关系的一种具体表示为:子网标识的相关信息,会话连接标识信息,隧道建立相关信息,TN子网标识信息(例如VLAN ID),QoS range之间的映射关系。其中,该子网标识的相关信息,可以是系统创建的端到端子网的标识的信息,也可以是对应端到端子网的RAN子域子网的标识的信息,还可以是与该端到端子网或该RAN子域子网相关的信息,此处不做限定;QoS range为QoS流相关的参数,比如当存在多个QoS流属于同一个切片时,那么QoS range表示了这多个QoS流的信息,此时该QoS range相当于用来表示一个QoS流的集合,如果只有一个QoS流的情况下,则QoS range可用Qos流的标识信息或者数量信息来替换,VLAN ID是与CN侧关联的TN子网VLAN标识。通过1105的操作,可获得属于同一端到端子网的RAN子网,CN子网和TN子网的对应关系,基于网络子网的上下行数据传输在各子域得到协同,提升了端到端传输的性能。
操作1106:数据传输。
可选的,对于RAN-CN之间的数据传输,RAN/CN进行上下行数据转发时,可至少基于Qos流相关的信息,比如QoS range,QoS流标识信息等,将一个子网对应的数据包承载在对应的TN子网中发送。示例性地,具体实现方法可以为:对于该UE的一个QoS流,RAN建立了会话连接标识的信息,隧道标识的信息,QoS流标识的信息和TN子网标识的信息这四者或者任意几者之间的关联关系,对于来自该UE的该QoS流的上行数据包,RAN将其封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地址。进一步地,RAN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。对于UE的一个QoS流,CN建立了会话连接标识信息,隧道标识信息,QoS流标识信息,TN子网标识信息这四者或者任意几者的关联关系,对于来自该UE的该QoS流的下行数据包,CN将其封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地址。进一步地,CN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。
可选的,对于RAN内部基站之间(例如通过RAN中基站之间的X2/Xn接口)的数据传输,
一种可能的实现方式为:对于该UE的一个/一组QoS流,第一基站通过第一基站与第二基站之间的接口消息,获知第二基站为该UE的QoS流/QoS流集合建立的隧道信息(例如GTP-U TEID和/或IP地址),由此第一基站建立了向第二基站转发数据时需使用的会话连接标识信息,隧道标识信息,QoS range信息和TN子网标识信息这四者或者其中任意几者之间的关联关系,第一基站向第二基站发送该UE的该QoS流/QoS流集合的数据时,第一基站将数据包封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地址。进一步地,RAN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。
另一种可能的实现方式为:对于该UE的一个/一组QoS流,当其在RAN内部传输时,RAN为其分配一个或多个无线数据承载资源(例如DRB)。第一基站通过第一基站与第二基站之间的接口消息,获知第二基站为该UE一个无线数据承载建立的隧道信息(例如GTP-U TEID和/或IP地址),由此第一基站建立了向第二基站转发数据时需使用的会话连接标识信息,无线数据承载标识信息,隧道标识信息,TN子网标识信息这四者或者其中任意几者之间的关联关系,第一基站向第二基站转发该UE该无线数据承载的数据时,第一基站RAN将数据包封装为相应的隧道协议数据包,示例性地,其中携带GTP-U TEID和/或IP地 址。进一步地,RAN将该隧道协议数据包在对应的TN子网中传输,示例性地,对上述隧道协议数据包进行处理,令其携带TN子网标识(如VLAN标识)。
需要说明的是在本实施例方案中,对于一个/一组QoS流与数据传输隧道的对应关系并未限定,即可能有如下实现方式:为一个/一组QoS流建立一个数据传输隧道,或者为一个/一组QoS流建立多个数据传输隧道,或者为多个/多组QoS流建立一个数据传输隧道。
通过本实施例方案的实施,在创建一个端到端子网时,创建各个子域子网,将UE关联一个端到端子网后,各个子域能够使用一致的子网配置为该UE提供服务,实现了RAN、CN、TN之间的子域子网映射,尤其是RAN子域子网与TN子域子网的映射,和/或RAN/CN子网内部QoS的映射。其中,通过管理面信令传递端到端子网的信息和各域子网部分的映射方式,为RAN侧对数据包进行RAN子网TN子网的传输转换提供了有效的流程支持,从而便于RAN建立RAN slice instance(或子网)与TN slice instance(或子网)的关联关系,具体的,核心网通过具备相同或类似服务质量要求的数据流来区分传输的数据所属的子网,RAN侧获得RAN侧子网(传输数据)与该数据流,以及传输网子网的对应关系,和/或,核心网设备获得CN侧子网(传输数据)与该数据流,以及传输网子网的对应关系,从而建立RAN、CN、TN之间的子网映射。
结合前述part 1和part 2的各种可能实现的方式,本申请实施例还提供了一种通信方法1200,该方法及系统1200可以作为独立的方案,在无线接入网设备侧对数据的传输进行RAN子网与TN子网之间的映射,解决RAN和TN之间基于网络切片传输的数据映射的问题,也可以结合前述part 1和part 2的各种可能实现的方式,在系统的相对更宏观的流程中协助解决整个系统端到端子网在各个子域之间协同传输的问题。
以用会话(session)为粒度区分端到端切片为视角,描述无线接入网设备将用户的数据包在RAN-CN接口上传输时进行RAN-TN子域间切片映射的过程,该方法1200的一个设计,包括:
操作1201:建立协议数据单元会话。
无线接入网设备在为UE建立协议数据单元会话(protocol data unit session,PDU session),并获取该PDU session对应的子网(切片)的信息,从而与核心网的子网(切片)进行对齐,例如,Session x的数据属于Slice y,Session x在空口映射为DRB m+DRB n,同时,通过管理面配置,无线接入网设备可以得知slice y的TN切片为VLAN k。
操作1202:标识数据包。
对于上行数据,无线接入网设备收到用户在DRBm的数据,将其承载到到GTP-U隧道中,比如,在GTP-U数据包中添加标识TE ID z(对应session x),以便核心网设备区分出不同子网(切片)的数据。为了给TN传递对应的子网信息,需要在数据包中携带VLAN ID,具体的方法,可以有如下两种:
如图13所示,图13为无线接入网设备(比如:基站)在RAN-CN接口的协议栈1300,其中User plane PDUs是用户面协议数据单元,UDP为用户数据报协议(user datagram protocol),GTP-U是GPRS隧道协议用户面协议,Data link layer为数据链路层,Physical layer为物理层。
可选方式一:可在如图13(a)所示的协议栈中IP层,或者数据链路层,或者物理层数据包中携带传输子网的标识,比如:VLAN ID;
可选方式二:如示例的,可在图13(b)中新增加协议层以便标识传输子网的标识(比如:VLAN ID),可选的,如图所示,在IP层上新增协议层,并在该层协议数据中添加传输子网的标识(比如VLAN k)。
操作1203:上行传输承载。
通过无线接入网设备(基站)的物理端口将数据包发送出去。可选的,若还需要基于传输物理端口区分子网(或切片),则在该子网(切片)对应的物理端口上发送该数据包,以将数据包承载到对应的TN子网上。可选的,若还需要基于IP地址区分子网(或切片), 则在数据包中携带对应的IP地址,以将数据包承载到对应的TN子网上。
其中,m,n,k,z可以均为自然数。
本申请实施例还提供了一种通信方法1400,如图14所示,该方法的一个实现流程,包括:
操作1401:获取每个传输承载网子网的业务负载传输情况。
本操作中,无线接入网设备(比如基站)检测和统计每个传输子网的业务负载传输情况,从而RAN系统可以获知传输子网(例如VLAN)的负载情况;
操作1402:通过无线接入网系统内部接口交互承载网切片的负载信息。
RAN内部接口,通常是基站之间的接口,此处所称基站,可以是属于2G、3G、4G、5G以及未来演进的无线网络的基站。
在操作1402中,一种设计为:在RAN内部接口,比如X2或Xn接口上交互承载网切片的负载信息。该信息涉及承载网切片,包括如下信息的至少一个:(1)至少一个TN子网标识信息;(2)子网标识的相关信息;(3)所述至少一个TN子网的负载信息(示例性地,该负载信息可以为具体的数值,或者为定性的描述,如低/中/高);(4)用于标识相关的TN子网的覆盖范围,例如RAN内/CN内/RAN-CN接口上/整网。
其中,该Xn接口为5G无线接入网设备之间的接口,比如gNB和gNB之间的接口,gNB是5G系统中的基站设备,一般来说eNB可以认为是4G LTE系统中的基站设备,通过Xn接口互联的eNB和gNB可以和5G系统的核心网相连接;其中,X2接口也是无线接入网设备之间的接口,比如eNB和eNB之间的接口。
还可以根据需要定义其他类型无线接入网设备之间的接口,本实施例的一个目的即,在RAN系统内部接口中能够交互TN子网的负载信息,以便于提升后续的切换流程,负载均衡以及SON流程的系统效率,因此具体的接口名称和类别,此处不做限定。
在无线接入网中,基站和基站之间需要通过接口消息互联互通,以完成切换流程、双/多连接过程,同时,基站之间可能存在干扰,需要进行干扰协调,或者建立和维护自组织网络,为了完成上述流程,基站需要和邻居基站交互自身的资源使用情况,所述资源包括空口资源、接口资源等。通过本实施例方案的实施,基站之间的资源使用情况可以按照子网/TN子网的维度进行报告,便于无线接入网中按照子网进行网络管理、切换判决和负载均衡决策等。
本实施例所提供的方法和系统1400,既可以独立执行,也可以结合前述方法/系统200至1200任一所述的实施例来执行。
如图15所示,本申请实施例还提供了一种通信方法1500,该方法1500包括:
1501:通知RAN系统内部接口信息。
本操作中,RAN侧设备(比如基站),可以将RAN内部的接口建立的信息通过RAN与CN设备的接口告知CN设备。
在RAN侧的内部接口,一般是指基站之间的接口,此处所称基站,可以是属于2G、3G、4G、5G以及未来演进的无线网络的基站。
以Xn/X2接口为例,其中,Xn接口是gNB和gNB之间的接口,gNB是5G系统中的基站设备,eNB通常是4G LTE系统中的基站设备,通过Xn接口互联的eNB和gNB可以和5G系统的核心网相连接;其中,X2接口是eNB和eNB之间的接口,当接口为X2时,该接口建立的信息可以是通信协议版本3GPP TS36.423中章节9.2.3.29 X2 TNL Configuration Info中定义的信息。
通过将上述RAN自身的内部接口建立的信息通知给CN,可以支持自组织网络(self-organizing network,SON)中的自动RAN内部接口建立的流程,比如Xn/X2控制面的流控制传输协议连接建立过程(Xn/X2 SCTP association)。可选的,上述RAN内部接口建立的信息,还可以包含如下信息的至少一种:控制面TN子网的标识的信息、(与该控制面TN子网对应的)子网标识的相关信息,该接口控制面所用的TN传输资源的信息(例如每 个TN子网对应的传输层地址),以及对应的控制面指示信息(若控制面没有切片,则无此信息)。
可选的,上述RAN自身的接口建立的信息,可以包括如下信息的至少一种:用户面TN子网标识、(与该用户面TN子网对应的)子网标识的相关信息,该接口用户面所用的TN传输资源的信息(例如每个TN子网对应的传输层地址和/或隧道建立信息等),以及对应的用户面指示信息。
可选的,上述RAN内部接口建立的信息,也可以在RAN内部接口控制面建立的时候进行交互,比如在RAN内部接口建立控制面时(如X2/Xn接口相关的SCTP association流程),通过基站之间的接口,交互如下至少一个信息:用户面TN子网标识的信息,以及(与用户面TN子网标识相对应的)子网标识的相关信息。
在无线接入网中,基站与核心网之间需要建立接口,用于交互控制信息/传输用户数据,另一方面,基站之间也需要建立接口,基站之间建立接口的传输层信息可以由核心网中转,因此,基站需要将与邻居基站建立接口(包括控制面与用户面)的必要信息告知核心网。通过本实施例方案的实施,考虑到未来网络中可能引入网络切片的场景,为了实现网络切片之间的隔离,可以在基站之间的接口上为不同的网络切片配置不同传输层建立信息(例如不同的传输层地址),从而在基站之间的接口上,建立属于不同网络切片的控制面连接,和/或用户数据传输隧道。
本实施例所提供的方法和系统1500,既可以独立执行,也可以结合前述方法/系统200至1400任一所述的实施例来执行。
以上,结合图3至图15详细说明了本申请实施例的通信方法和系统,以下,结合图16至图22详细说明本申请实施例的装置。
本申请实施例提供了一种无线接入网设备1600。下面结合图16对该无线接入网设备1600的结构和功能进行描述。图16是本申请实施例提供的无线接入网设备1600的示意性框图。如图16所示,该无线接入网设备1600包括第一收发装置1601、第二收发装置1602和至少一个处理器1603,可选地,还可以包括存储器1604。其中,第一收发装置1601、第二收发装置1602和至少一个处理器1603和存储器1604之间通过内部连接通路(比如图示中的系统总线1605)互相通信,传递控制和/或数据信号,该存储器1604用于存储计算机程序,该处理器1603用于从该存储器1604中调用并运行该计算机程序,以控制该第一收发装置1601、第二收发装置1602接收发送信号,使得该无线接入网设备通过该第一收发装置,与网络侧设备相通信,该无线接入网设备通过该第二收发装置,与终端设备相通信,使得该无线接入网设备1600进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在无线接入网设备进行的操作。为了简洁,在此不再赘述。
可选的,上述处理器1603和存储器1604可以合成一个处理装置,处理器1603用于执行存储器1604中存储的程序代码来实现上述功能。具体实现时,该存储器1604也可以集成在处理器1603中,或者独立于处理器1603。
可选的,无线接入网设备1600中所称第一收发装置,具体实现可以是有线的通信接口,也可以是基于无线空口技术的通信接口,此处所称第二收发装置,具体实现可以是基于无线空口技术的通信接口。可选的,如果第一收发装置和第二收发装置都是基于无线空口技术的通信接口的话,第一收发装置和第二收发装置可以通过共用一个无线收发装置实现,也可以通过分列的两个无线收发装置来实现。
本申请实施例提供了一种无线接入网设备1700。下面结合图17对该无线接入网设备1700的结构和功能进行描述。图17是本申请实施例提供的无线接入网设备1700的示意性框图。如图17所示,该无线接入网设备1700包括收发模块1701和处理模块1702,其中,收发模块1701和处理模块1702之间通过内部连接通路互相通信,传递控制和/或数据信号,该处理模块1702用于控制该收发模块1701接收发送信号,以使该无线接入网设备通过该收发模块1701与网络侧设备相通信和/或终端设备相通信,通过该处理模块1702的控制操作,使得 该无线接入网设备1700进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在无线接入网设备进行的操作。可选的,无线接入网设备1700中收发模块1701,可以包括有线的通信接口模块,也可以包括基于无线空口技术的通信接口模块,还可以包括具有有线通信和无线通信功能的通信接口模块。比如,当收发模块1701包括具有有线通信和无线通信功能的通信接口模块时,有线通信功能模块用于和网络侧设备相通信,无线通信功能模块用于和终端设备相通信;当收发模块1701为无线通信功能的通信接口模块时,该收发模块1701还可以包括第一收发装置和第二收发装置,该第一收发装置和第二收发装置都是基于无线空口技术的通信接口,第一收发装置和第二收发装置可以通过共用一个无线收发装置实现,也可以通过分列的两个无线收发装置来实现。
本申请实施例提供了一种系统芯片1800。下面结合图18对该系统芯片1800的结构和功能进行描述,该系统芯片1800可以应用在前述无线接入网设备1600或无线接入网设备1700中,通过该系统芯片的处理,使得无线接入网设备能够进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在无线接入网设备进行的操作。图18是本申请实施例提供的系统芯片1800的示意性框图。如图18所示,该系统芯片1800包括至少一个处理器1801,存储器1802,接口电路1803和总线1804;该至少一个处理器1801,存储器1802,接口电路1803通过该总线1804耦合;该系统芯片1800通过该接口电路1803和该无线接入网设备/网络中其他设备进行交互;该存储器1802存储有程序指令,该至少一个处理器1801,调用该存储器1802中存储的所述程序指令,使得前述无线接入网设备1600或前述无线接入网设备1700进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在无线接入网设备进行的操作。为了简洁,在此不再赘述。可选的,上述处理器1801和存储器1802可以合成一个处理装置,处理器1801用于执行存储器1802中存储的程序代码来实现上述功能。具体实现时,该存储器1802也可以集成在处理器1801中,或者独立于处理器1801。
本申请实施例提供了一种核心网设备1900。下面结合图19对该核心网设备1900的结构和功能进行描述。图19是本申请实施例提供的核心网设备1900的示意性框图。如图19所示,该核心网设备1900包括至少一个处理器1901,存储器1902,收发装置1903和系统总线1904;该至少一个处理器1901,存储器1902和收发装置1903通过该系统总线1904耦合;该一个处理器1901控制收发装置1903,以使该核心网设备通过该收发装置1903与网络侧设备相通信;该存储器1902存储有程序指令,该至少处理器1901,调用该存储器1902中存储的所述程序指令,以进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在核心网设备进行的操作。为了简洁,在此不再赘述。
可选的,上述处理器1901和存储器1902可以合成一个处理装置,处理器1901用于执行存储器1902中存储的程序代码来实现上述功能。具体实现时,该存储器1902也可以集成在处理器1901中,或者独立于处理器1901。
本申请实施例提供了一种核心网设备2000。下面结合图20对该核心网设备2000的结构和功能进行描述。图20是本申请实施例提供的核心网设备2000的示意性框图。如图20所示,该核心网设备2000包括收发模块2001和处理模块2002,其中,收发模块2001和处理模块2002之间通过内部连接通路互相通信,传递控制和/或数据信号,该处理模块2002用于控制该收发模块2001接收发送信号,以使该核心网设备2000通过该收发模块2001与网络侧设备相通信和/或终端设备相通信,通过该处理模块2002的控制操作,使得该核心网设备2000进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在核心网设备进行的操作。可选的,核心网设备2000中收发模块2001,可以包括有线的通信接口模块,也可以包括基于无线空口技术的通信接口模块,还可以包括具有有线通信和无线通信功能的通信接口模块。
本申请实施例提供了一种系统芯片2100。下面结合图21对该系统芯片2100的结构和功能进行描述,该系统芯片2100可以应用在前述该核心网设备1900或该核心网设备2000中, 通过该系统芯片2100的处理,使得核心网设备能够进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在核心网设备进行的操作。图21是本申请实施例提供的系统芯片2100的示意性框图。如图21所示,该系统芯片2100包括至少一个处理器2101,存储器2102,接口电路2103和总线2104;该至少一个处理器2101,存储器2102,接口电路2103通过该总线2104耦合;该系统芯片2100通过该接口电路2103和该核心网设备/网络中其他设备进行交互;该存储器2102存储有程序指令,该至少一个处理器2101,调用该存储器2102中存储的所述程序指令,使得前述核心网设备1900或前述核心网设备2000进行本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中在核心网设备进行的操作。为了简洁,在此不再赘述。可选的,上述处理器2101和存储器2102可以设置成一个处理装置,处理器2101用于执行存储器2102中存储的程序代码来实现上述功能。具体实现时,该存储器2102也可以集成在处理器2101中,或者独立于处理器2101。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。本申请实施例还提供一种无线通信系统2200。图22是本申请实施例的无线通信系统2200的示意图。如图22所示,该无线通信系统2200包括第一网络节点2201和第二网络节点2202。其中,该第一网络节点2201可以本申请实施例所提供的通信方法/系统200至1500中任一可能的设计方案中的无线接入网设备,该第二网络节点2202为,与通信方法/系统200至1500中任一可能的设计方案的无线接入网设备相配合的核心网设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    无线接入网设备接收来自于终端设备的上行数据包;
    所述无线接入网设备获知所述上行数据包的身份信息;
    所述无线接入网设备根据所述上行数据包的身份信息和传输网络子网的对应关系,将所述上行数据包承载在所述传输网络子网。
  2. 如权利要求1所述的通信方法,其特征在于,
    所述上行数据包的身份信息,包括:与所述上行数据包关联的分组数据连接标识的信息,与所述上行数据包关联的GPRS隧道协议用户面部分的标识的信息,与所述上行数据包关联的数据流标识的信息,以及与所述上行数据包关联的数据无线承载(DRB)标识的信息中的至少一个。
  3. 如权利要求1或2任一所述的通信方法,其特征在于,
    所述身份信息和无线接入网子网具有对应关系,或者,所述无线接入网子网的标识的信息包含所述身份信息;
    所述无线接入网子网和所述传输网络子网之间具有对应关系,从而所述身份信息与所述传输网络子网之间具有对应关系。
  4. 如权利要求1-3任一所述的通信方法,其特征在于,包括:
    所述无线接入网子网和所述传输网络子网之间的对应关系的信息,由传输网络管理器发给无线接入网管理器,由所述无线接入网管理器将所述无线接入网子网和所述传输网络子网之间的对应关系的信息发给所述无线接入网设备;
    或者,
    所述无线接入网子网和所述传输网络子网之间的对应关系的信息,由网络管理器经由所述无线接入网管理器发送给所述无线接入网设备。
  5. 如权利要求4所述的通信方法,其特征在于,包括:
    所述无线接入网子网与所述传输网络子网分别与所述网络管理器创建的端到端子网具有对应关系,从而所述无线接入网子网与所述传输网络子网之间具有对应关系。
  6. 如权利要求5所述的通信方法,其特征在于,
    所述端到端子网与网络切片选择辅助信息NSSAI具有对应关系;
    或者,
    所述端到端子网的标识为网络切片选择辅助信息。
  7. 如权利要求5或6任一所述的通信方法,其特征在于,包括:
    所述无线接入网子网与核心网子网具有对应关系,所述核心网子网与所述端到端子网具有对应关系;
    所述无线接入网设备根据获知的所述核心网子网,获知所述无线接入网子网。
  8. 如权利要求1-7任一所述的通信方法,其特征在于,所述将所述上行数据包承载在所述传输网络子网,包括:
    所述上行数据包携带所述传输网络子网的标识的信息。
  9. 如权利要求1-8任一所述的通信方法,其特征在于,所述传输网络子网为虚拟局域网,所述传输网络子网的标识的信息包括所述虚拟局域网的标识。
  10. 如权利要求1-9任一所述的通信方法,其特征在于,所述传输网络子网的标识信息,包括如下至少一种:IP网络的端口号,以及互联网协议地址。
  11. 一种无线接入网设备,其特征在于,所述无线接入网设备包括:
    至少一个处理器,存储器,第一收发装置,第二收发装置和系统总线;
    所述至少一个处理器,存储器,第一收发装置和第二收发装置通过所述系统总线耦合;
    所述无线接入网设备通过所述第一收发装置,与网络侧设备相通信,所述无线接入网 设备通过所述第二收发装置,与终端设备相通信;
    所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-10任一所述方法中所述无线接入网设备的操作。
  12. 一种系统芯片,所述系统芯片应用在无线接入网设备,其特征在于,所述系统芯片包括:
    至少一个处理器,存储器,接口电路和总线;
    所述至少一个处理器,存储器,接口电路通过所述总线耦合;
    所述系统芯片通过所述接口电路和所述无线接入网设备交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求1-10任一所述方法中所述无线接入网设备的操作。
  13. 一种通信方法,其特征在于,包括:
    核心网设备获知下行数据包的身份信息;
    所述核心网设备根据所述下行数据包的身份信息和传输网络子网的对应关系,将所述下行数据包承载在所述传输网络子网。
  14. 如权利要求13所述的通信方法,其特征在于,包括:
    所述下行数据包的身份信息,包括:与所述下行数据包关联的分组数据连接(Session)标识的信息,与所述下行数据包关联的GPRS隧道协议用户面部分的标识的信息,与所述下行数据包关联的数据流标识的信息中的至少一个。
  15. 如权利要求13或14任一所述的通信方法,其特征在于,
    所述身份信息和核心网子网具有对应关系;或者,所述核心网子网的标识的信息包含所述身份信息;
    所述核心网子网的标识和所述传输网络子网之间具有对应关系,从而所述身份信息与所述传输网络子网之间具有对应关系。
  16. 如权利要求13-15任一所述的通信方法,其特征在于,包括:
    所述核心网子网和所述传输网络子网之间的对应关系的信息,由传输网络管理器发给核心网管理器,由所述核心网管理器将所述核心网子网和所述传输网络子网之间的对应关系的信息发给所述核心网设备;
    或者,
    所述核心网子网和所述传输网络子网之间的对应关系的信息,由网络管理器经由核心网管理器发给所述核心网设备。
  17. 如权利要求16所述的通信方法,其特征在于,包括:
    所述核心网子网与所述传输网络子网分别与所述网络管理器创建的端到端子网具有对应关系,从而所述核心网子网与所述传输网络子网之间具有对应关系。
  18. 如权利要求17所述的通信方法,其特征在于,
    所述端到端子网与网络切片选择辅助信息具有对应关系;
    或者,
    所述端到端子网的标识为网络切片选择辅助信息。
  19. 如权利要求13-18任一所述的通信方法,其特征在于,所述将所述下行数据包承载在所述传输网络切片上,包括:
    所述下行数据包携带所述传输网络子网的标识的信息。
  20. 如权利要求13-19任一所述的通信方法,其特征在于,所述传输网络子网为虚拟局域网,所述传输网络子网的标识的信息包括所述虚拟局域网的标识。
  21. 如权利要求13-20任一所述的通信方法,其特征在于,所述传输网络子网的标识信息,包括如下至少一种:IP网络的端口号,以及互联网协议地址。
  22. 一种核心网设备,其特征在于,所述核心网设备包括:
    至少一个处理器,存储器,收发装置和系统总线;
    所述至少一个处理器,存储器和收发装置通过所述系统总线耦合;
    所述核心网设备通过所述收发装置,与网络侧设备相通信;
    所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求13-21任一所述方法中所述核心网设备的操作。
  23. 一种系统芯片,所述系统芯片应用在核心网设备,其特征在于,所述系统芯片包括:
    至少一个处理器,存储器,接口电路和总线;
    所述至少一个处理器,存储器,接口电路通过所述总线耦合;
    所述系统芯片通过所述接口电路和所述核心网设备交互;所述存储器存储有程序指令,所述至少一个处理器,调用所述存储器中存储的所述程序指令,以进行根据权利要求13-21任一所述方法中在所述核心网设备的操作。
  24. 一种通信系统,其特征在于,所述系统包括:
    如权利要求11所述的无线接入网设备,和/或,如权利要求22所述的核心网设备。
  25. 一种计算机存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,所述程序指令在计算机上运行时,进行根据权利要求1-10任一所述方法中在所述无线接入网设备的操作,或者,所述程序指令在计算机上运行时,进行根据权利要求13-21任一所述方法中在所述核心网设备的操作。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包含程序指令,所述程序指令被调用时,进行根据权利要求1-10任一所述方法中在所述无线接入网设备的操作,或者,当所述程序指令被调用时,进行根据权利要求13-21任一所述方法中在所述核心网设备的操作。
PCT/CN2018/093993 2017-07-17 2018-07-02 一种通信方法、设备和系统 WO2019015472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18836155.4A EP3567896B1 (en) 2017-07-17 2018-07-02 Communication method, device and system
US16/574,769 US20200015293A1 (en) 2017-07-17 2019-09-18 Communication Method, Device, And System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710582415.8 2017-07-17
CN201710582415.8A CN109275151B (zh) 2017-07-17 2017-07-17 一种通信方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/574,769 Continuation US20200015293A1 (en) 2017-07-17 2019-09-18 Communication Method, Device, And System

Publications (1)

Publication Number Publication Date
WO2019015472A1 true WO2019015472A1 (zh) 2019-01-24

Family

ID=65015417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093993 WO2019015472A1 (zh) 2017-07-17 2018-07-02 一种通信方法、设备和系统

Country Status (4)

Country Link
US (1) US20200015293A1 (zh)
EP (1) EP3567896B1 (zh)
CN (1) CN109275151B (zh)
WO (1) WO2019015472A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055423A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 一种通信方法及相关设备
EP3993465A4 (en) * 2019-07-18 2022-08-10 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING DATA UNDER A NETWORK SLICES ARCHITECTURE

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10986041B2 (en) * 2018-08-07 2021-04-20 Futurewei Technologies, Inc. Method and apparatus for virtual network functions and packet forwarding
US10909067B2 (en) 2018-08-07 2021-02-02 Futurewei Technologies, Inc. Multi-node zero-copy mechanism for packet data processing
US11477289B2 (en) * 2018-10-09 2022-10-18 Nokia Solutions And Networks Oy Supporting a routing protocol with a transport layer protocol
US10992385B2 (en) * 2019-04-08 2021-04-27 Netsia, Inc. Apparatus and method for joint profile-based slicing of mobile access and optical backhaul
CN110581776B (zh) * 2019-06-10 2022-06-21 阿里巴巴集团控股有限公司 QoS处理及控制方法及网络接口控制器
US11070422B2 (en) * 2019-09-16 2021-07-20 Cisco Technology, Inc. Enabling enterprise segmentation with 5G slices in a service provider network
CN110730478B (zh) * 2019-10-18 2021-12-21 腾讯科技(深圳)有限公司 切片关联方法、装置、端到端切片编排器及存储介质
BR112022012787A2 (pt) * 2020-05-21 2022-12-13 Zte Corp Relatório e balanceamento de carga de nível de fatia em comunicações sem fio
CN114125888A (zh) * 2020-09-01 2022-03-01 中国移动通信有限公司研究院 标识分配方法、装置、设备及存储介质
CN114615352A (zh) * 2020-12-09 2022-06-10 中国移动通信有限公司研究院 业务数据报文的传输方法及网络设备
WO2022126437A1 (zh) * 2020-12-16 2022-06-23 华为技术有限公司 通信方法及装置
CN115226163A (zh) * 2021-04-20 2022-10-21 华为技术有限公司 一种通信方法及装置
CN115701035A (zh) * 2021-07-15 2023-02-07 北京车和家信息技术有限公司 数据传输方法、装置及汽车
WO2023155100A1 (en) * 2022-02-17 2023-08-24 Nokia Shanghai Bell Co., Ltd. Method and apparatus for subnetwork configuration and procedures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044483A1 (zh) * 2011-09-29 2013-04-04 华为技术有限公司 一种接入处理方法、设备和系统
CN103533090A (zh) * 2013-10-23 2014-01-22 中国科学院声学研究所 单个物理网口模拟为多个逻辑网口的映射方法与装置
CN103533536A (zh) * 2012-07-06 2014-01-22 深圳市共进电子股份有限公司 无线ap隔离方法及无线ap
EP3113421A1 (en) * 2015-06-30 2017-01-04 Fujitsu Limited Application based routing device, method, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499683C (zh) * 2006-10-18 2009-06-10 中国移动通信集团公司 个性化呼叫提示系统及方法
CN101094237B (zh) * 2007-07-30 2010-06-16 中兴通讯股份有限公司 一种ip多媒体子系统中网元间的负荷分担方法
US9106711B2 (en) * 2012-09-04 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Minimizing mapping and signaling for data path aggregation
WO2015026315A1 (en) * 2013-08-19 2015-02-26 Nokia Siemens Networks Oy Radio access network (ran) transport evolved packet core (epc) synergy
CN106487695B (zh) * 2015-08-25 2019-10-01 华为技术有限公司 一种数据传输方法、虚拟网络管理装置及数据传输系统
CN106550410B (zh) * 2015-09-17 2020-07-07 华为技术有限公司 一种通信控制方法和控制器、用户设备、相关装置
CN106953849B (zh) * 2017-02-28 2021-01-12 华为技术有限公司 一种基于IPv6地址的数据报文匹配方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044483A1 (zh) * 2011-09-29 2013-04-04 华为技术有限公司 一种接入处理方法、设备和系统
CN103533536A (zh) * 2012-07-06 2014-01-22 深圳市共进电子股份有限公司 无线ap隔离方法及无线ap
CN103533090A (zh) * 2013-10-23 2014-01-22 中国科学院声学研究所 单个物理网口模拟为多个逻辑网口的映射方法与装置
EP3113421A1 (en) * 2015-06-30 2017-01-04 Fujitsu Limited Application based routing device, method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567896A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055423A (zh) * 2019-06-06 2020-12-08 华为技术有限公司 一种通信方法及相关设备
WO2020244652A1 (zh) * 2019-06-06 2020-12-10 华为技术有限公司 一种通信方法及相关设备
CN112055423B (zh) * 2019-06-06 2022-09-02 华为技术有限公司 一种通信方法及相关设备
EP3993465A4 (en) * 2019-07-18 2022-08-10 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING DATA UNDER A NETWORK SLICES ARCHITECTURE

Also Published As

Publication number Publication date
EP3567896A4 (en) 2020-01-15
EP3567896B1 (en) 2021-09-01
EP3567896A1 (en) 2019-11-13
CN109275151A (zh) 2019-01-25
CN109275151B (zh) 2020-12-08
US20200015293A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2019015472A1 (zh) 一种通信方法、设备和系统
US11882027B2 (en) End point to edge node interaction in wireless communication networks
CN113038528B (zh) 用于在无线通信系统中将数据分组路由到用户设备的基站
US10412650B2 (en) Data transmission method, apparatus and system
CN102405610B (zh) 在无线通信系统中使用中继节点的方法
WO2017148387A1 (zh) 通信方法、终端设备和网络侧设备
KR20190036555A (ko) 셀 구성 방법 및 장치
JP2022550865A (ja) 無線アクセスネットワーク通信システムにおけるe2インタフェースを介するサービス加入のための装置及び方法
CN112997576B (zh) Iab系统中的ipv6地址管理
EP3734858A1 (en) Node and communication method
US20170347251A1 (en) Signaling method in mobile communication core network and system thereof
WO2019157985A1 (zh) 一种无线回传通信处理方法和相关设备
CN112636884B (zh) 一种消息传输方法和装置
US20240089706A1 (en) Access agnostic delivery of broadcast, multicast, or unicast content
WO2022143373A1 (zh) 一种通信方法及节点
JP6219500B2 (ja) 電気通信方法、電気通信システム、1次ノード、2次ノードおよびユーザ機器
US20230239940A1 (en) Data transmission method and apparatus
CN111147426A (zh) 一种承载侧网络系统、移固共存融合系统及其部署方法
CN114071510A (zh) 一种通信方法及装置
CN109964492A (zh) 向设备组提供蜂窝接入
WO2015144196A1 (en) Solution for critical communication security based on mbms security
WO2015113283A1 (zh) 节点间通信处理方法及路由确定节点
CN116097890A (zh) 通信设备、数据传输的方法和装置
CN113853773B (zh) 将承载标识映射到IPv6架构
WO2022183497A1 (zh) 一种通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18836155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018836155

Country of ref document: EP

Effective date: 20190805

NENP Non-entry into the national phase

Ref country code: DE