WO2019015389A1 - 色度预测的方法和设备 - Google Patents

色度预测的方法和设备 Download PDF

Info

Publication number
WO2019015389A1
WO2019015389A1 PCT/CN2018/087836 CN2018087836W WO2019015389A1 WO 2019015389 A1 WO2019015389 A1 WO 2019015389A1 CN 2018087836 W CN2018087836 W CN 2018087836W WO 2019015389 A1 WO2019015389 A1 WO 2019015389A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
transient
processed
processing information
resolution
Prior art date
Application number
PCT/CN2018/087836
Other languages
English (en)
French (fr)
Inventor
杨海涛
张红
刘杉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227001147A priority Critical patent/KR20220011216A/ko
Priority to EP18835884.0A priority patent/EP3633995B1/en
Priority to JP2020502227A priority patent/JP7011031B2/ja
Priority to EP22163847.1A priority patent/EP4117286A1/en
Priority to KR1020207001173A priority patent/KR102352085B1/ko
Publication of WO2019015389A1 publication Critical patent/WO2019015389A1/zh
Priority to US16/744,987 priority patent/US11082709B2/en
Priority to US17/303,886 priority patent/US20210297682A1/en
Priority to JP2022002794A priority patent/JP7461974B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present application relates to the field of image processing and, more particularly, to a method and apparatus for chromaticity prediction.
  • Digital video compression coding and decoding technology has a wide range of applications in the fields of broadcasting, communication, storage and multimedia services.
  • the amount of data of the original video content acquired by the collection device is large, and is not suitable for storage and transmission. It is necessary to compress the original data by using funny video compression coding technology. Downsampling an image as a whole may lose some of the details, resulting in inaccurate chromaticity prediction during video encoding and decoding, resulting in blurred image reconstruction.
  • the present application provides a method and device for chrominance prediction, which can improve the accuracy of chrominance prediction in the video codec process and improve the quality of the reconstructed image.
  • a first aspect provides a method for chrominance prediction, including: acquiring luminance information, chrominance information, first processing information, and second processing information of an image block to be processed, where the first processing information is used to indicate the to-be-processed a downsampling processing mode of the luminance component of the image block, where the second processing information is used to indicate a down sampling processing mode used by the chroma component of the image block to be processed;
  • the rate is the same as the resolution of the transient chroma block, and the resolution of the transient chroma block is determined by the sampling format of the image block to be processed and the second processing information.
  • the brightness information, the chrominance information, the first processing information, and the second processing information of the image block to be processed are first acquired, and then the image block to be processed is reconstructed according to the brightness information of the image block to be processed.
  • Transient luminance block and acquiring a prediction block of the transient chroma block of the to-be-processed image block according to the resolution of the transient luminance block, the sampling format of the to-be-processed image block, and the second processing information, because the The transient luminance block of the image block to be processed is used to predict the chroma of the image block to be processed, and the image processing mode is image block level, which better adapts to the characteristics of the image block of different regions of an image, and can improve the video.
  • the accuracy of chroma prediction in the codec process improves the quality of the reconstructed image.
  • the first processing information is used to indicate a downsampling processing mode used by the luminance component of the to-be-processed image block, including:
  • the first processing information is used to indicate that the luminance component of the image block to be processed is not downsampled; or the first processing information is used to indicate a filter that downsamples the luminance component of the image block to be processed.
  • the sampling mode of the luminance component of the image block to be processed can be obtained by using the first processing information, and the brightness characteristics of different image blocks to be processed may be different, and the brightness of different image blocks to be processed is selected by using different sampling modes.
  • the components are processed to reduce the quality loss of the image.
  • the second processing information is used to indicate a downsampling processing manner used by the chroma component of the to-be-processed image block, including:
  • the second processing information is used to indicate that the chroma component of the image block to be processed is not downsampled; or the second processing information is used to indicate a filter that downsamples the chroma component of the image block to be processed.
  • the sampling mode of the chrominance component of the image block to be processed can be obtained by using the second processing information, and the chrominance characteristics of different image blocks to be processed may be different, and different sampling modes are selected for different image blocks to be processed.
  • the chrominance components are processed to reduce the image quality loss.
  • the acquiring the transient of the to-be-processed image block according to the resolution of the transient luminance block, the sampling format of the to-be-processed image block, and the second processing information The prediction block of the chroma block, including:
  • the resolution of the chroma block is the same, and the adjusted transient luminance block is used as the target block of the transient chroma block;
  • the resolution of the transient chroma block is the same as the resolution of the transient luma block, maintaining the resolution of the transient luma block, and using the transient luma block as the target block of the transient chroma block;
  • a prediction block of the transient chroma block is obtained according to the target block of the transient chroma block.
  • the prediction block of the transient chroma block is obtained, and by using the correlation of the video image spatial domain, the purpose of removing the video space redundancy is achieved, and the coding institute is reduced.
  • the required bit rate is used.
  • the adjusting the resolution of the transient brightness block comprises:
  • the transient luma block is downsampled according to the resolution of the transient chroma block, so that the adjusted transient luma block
  • the resolution is the same as the resolution of the transient chroma block
  • the transient luma block is upsampled according to the resolution of the transient chroma block, so that the adjusted transient luma block
  • the resolution is the same as the resolution of the transient chroma block.
  • the resolution of the adjusted transient luminance block and the resolution of the transient chrominance block are adjusted by up-sampling or down-sampling the transient luminance block according to the resolution of the transient chrominance block.
  • the rate is the same.
  • Target blocks including:
  • the corrected transient luminance block is used as a target block of the transient chroma block.
  • the adjusting the resolution of the transient brightness block includes:
  • the vertical resolution of the transient luminance block is adjusted such that the adjusted vertical resolution of the transient luminance block and the vertical resolution of the transient chroma block are the same.
  • the predicting block of the transient chroma block is obtained according to the target block of the transient chroma block, including:
  • the predicted pixel value of the transient chroma block is obtained by using the video image.
  • the correlation of the spatial domain achieves the purpose of eliminating video spatial redundancy and reduces the bit rate required for encoding.
  • the method further includes:
  • the inverse processing of the downscaling process of the luminance component of the image block is processed.
  • the method further includes:
  • the method is used to decode the image block to be processed, where the brightness information, the chrominance information, the first processing information, and the second processing information of the image block to be processed are acquired, include:
  • the method is used to encode the to-be-processed image block, where the brightness information, the chrominance information, the first processing information, and the second processing information of the image block to be processed are obtained, include:
  • the image block to be processed is encoded according to the acquired first processing information and second processing information to obtain luminance information and chrominance information of the image block to be processed.
  • the second processing information is the acquired first processing information and second processing information, which reduces the bit rate required for encoding the current image to be processed, and saves storage space and network resources.
  • the method further includes:
  • the target first processing information, the target second processing information, the target luminance information, and the target chrominance information are encoded into a code stream.
  • a device for chromaticity prediction comprises an acquisition module and a reconstruction module, which can perform the method of the first aspect or any alternative implementation of the first aspect.
  • an apparatus for chrominance prediction comprising a memory, a transceiver, and a processor having stored thereon a program operable to indicate execution of any of the optional implementations of the first or first aspect described above
  • the code, the transceiver is configured to perform specific signal transceiving under the driving of the processor, and when the code is executed, the processor may implement the method in which the terminal device performs various operations.
  • a fourth aspect provides a computer storage medium having stored therein program code, the program code being operative to indicate a method of performing the above first aspect or any alternative implementation of the first aspect .
  • FIG. 1 is a schematic block diagram of a video codec system in accordance with the present application.
  • FIG. 2 is a schematic flow chart of a method of chromaticity prediction according to the present application.
  • FIG. 3 is a schematic illustration of the position of a YCbCr 4:4:4 sampling format in accordance with the present application.
  • FIG. 4 is a schematic illustration of the position of a YCbCr 4:2:2 sampling format in accordance with the present application.
  • Figure 5 is a schematic illustration of the position of the YCbCr 4:2:0 sampling format in accordance with the present application.
  • Figure 6 is a schematic flow diagram of a code in accordance with the present application.
  • Figure 7 is a schematic flow diagram of decoding in accordance with the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for chromaticity prediction in accordance with the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for chromaticity prediction in accordance with the present application.
  • FIG. 10 is a schematic block diagram of a video codec apparatus or an electronic device according to the present application.
  • FIG. 11 is a schematic diagram of an apparatus for video encoding in accordance with the present application.
  • FIG. 1 is a schematic block diagram of a video codec system 100 in accordance with an embodiment of the present application.
  • video codec system 100 includes source device 12 and destination device 14.
  • Source device 12 produces encoded video data.
  • source device 12 may be referred to as a video encoding device or a video encoding device.
  • Destination device 14 may decode the encoded video data produced by source device 12.
  • destination device 14 may be referred to as a video decoding device or a video decoding device.
  • Source device 12 and destination device 14 may be examples of video codec devices or video codec devices.
  • Source device 12 and destination device 14 may include a wide range of devices including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set top boxes, smart phones, etc., televisions, cameras, display devices , digital media player, video game console, on-board computer, or the like.
  • Channel 16 may include one or more media and/or devices capable of moving encoded video data from source device 12 to destination device 14.
  • channel 16 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
  • source device 12 may modulate the encoded video data in accordance with a communication standard (eg, a wireless communication protocol) and may transmit the modulated video data to destination device 14.
  • the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
  • RF radio frequency
  • the one or more communication media may form part of a packet-based network (eg, a local area network, a wide area network, or a global network (eg, the Internet)).
  • the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
  • channel 16 can include a storage medium that stores encoded video data generated by source device 12.
  • destination device 14 can access the storage medium via disk access or card access.
  • the storage medium may comprise a variety of locally accessible data storage media, such as Blu-ray Disc, DVD, CD-ROM, block flash, or other suitable digital storage medium for storing encoded video data.
  • channel 16 can include a file server or another intermediate storage device that stores encoded video data generated by source device 12.
  • destination device 14 may access the encoded video data stored at a file server or other intermediate storage device via streaming or download.
  • the file server may be a server type capable of storing encoded video data and transmitting the encoded video data to the destination device 14.
  • the instance file server includes a web server (eg, for a website), a file transfer protocol (FTP) server, a network attached storage (NAS), and a local disk drive.
  • FTP file transfer protocol
  • NAS network attached storage
  • Destination device 14 can access the encoded video data via a standard data connection (e.g., an internet connection).
  • the instance type of the data connection includes a wireless channel (eg, a Wireless Fidelity (Wi-Fi) connection), a wired connection (eg, a Digital Subscriber Line) suitable for accessing encoded video data stored on a file server. , DSL), cable modem, etc., or a combination of both.
  • the transmission of the encoded video data from the file server may be streaming, downloading, or a combination of both.
  • the technology of the present application is not limited to a wireless application scenario.
  • the technology can be applied to video codecs supporting various multimedia applications such as aerial television broadcasting, cable television transmission, satellite television transmission, and streaming video. Transmission (eg, via the Internet), encoding of video data stored on a data storage medium, decoding of video data stored on a data storage medium, or other application.
  • video codec system 10 may be configured to support one-way or two-way video transmission to support applications such as video streaming, video playback, video broadcasting, and/or video telephony.
  • source device 12 includes a video source 18, a video encoder 20, and an output interface 22.
  • output interface 22 can include a modulator/demodulator (modem) and/or a transmitter.
  • Video source 18 may include a video capture device (eg, a video camera), a video archive containing previously captured video data, a video input interface to receive video data from a video content provider, and/or a computer for generating video data.
  • Video encoder 20 may encode video data from video source 18.
  • source device 12 transmits the encoded video data directly to destination device 14 via output interface 22.
  • the encoded video data may also be stored on a storage medium or file server for later access by the destination device 14 for decoding and/or playback.
  • destination device 14 includes an input interface 28, a video decoder 30, and a display device 32.
  • input interface 28 includes a receiver and/or a modem.
  • Input interface 28 can receive the encoded video data via channel 16.
  • Display device 32 may be integral with destination device 14 or may be external to destination device 14. In general, display device 32 displays the decoded video data.
  • Display device 32 can include a variety of display devices, such as liquid crystal displays (LCDs), plasma displays, Organic Light-Emitting Diode (OLED) displays, or other types of display devices.
  • LCDs liquid crystal displays
  • OLED Organic Light-Emitting Diode
  • Video encoder 20 and video decoder 30 may operate in accordance with a video compression standard (eg, the High Efficiency Video Codec H.265 standard) and may conform to the HEVC Test Model (HM).
  • a video compression standard eg, the High Efficiency Video Codec H.265 standard
  • HM HEVC Test Model
  • FIG. 2 is a schematic flow diagram of a method 200 of chromaticity prediction in accordance with the present application. As shown in FIG. 2, the method 200 includes the following.
  • Step 210 Obtain luminance information, chrominance information, first processing information, and second processing information of the to-be-processed image block, where the first processing information is used to indicate a downsampling processing mode used by the luminance component of the to-be-processed image block, where the The second processing information is used to indicate a downsampling processing mode adopted by the chroma component of the image block to be processed.
  • the method further includes acquiring third processing information, where the second processing information is used to indicate that the first chroma component of the to-be-processed image block is used.
  • the downsampling processing mode is used to indicate a downsampling processing mode adopted by the first chroma component of the to-be-processed image block.
  • Y represents brightness, also referred to as Luma component
  • Cb and Cr represent chromaticity, which is used to represent hue and saturation of the pixel
  • Cb and Cr are collectively referred to as Chroma components
  • luminance Y is established by inputting signals RGB by RGB (red, green, and blue) signals are superimposed together in a specific ratio.
  • Cb represents the difference between the blue portion of the RGB input signal and the signal luminance value
  • Cr represents the difference between the red portion of the RGB input signal and the luminance signal value.
  • a processing information is used to indicate a downsampling processing mode adopted by the chrominance components of the image block to be processed, for example, the second processing information is used to indicate the image block to be processed.
  • the down sampling processing mode adopted by the chroma component when the chroma components Cb and Cr are independently subjected to the downsampling process, the two processing information may be respectively used to indicate the downsampling processing mode adopted by the Cb chroma component of the to-be-processed image block.
  • the second processing information is used to indicate a downsampling processing mode adopted by the Cb chrominance component of the to-be-processed image block
  • the third processing information is used for Indicates a downsampling processing mode employed by the Cr chrominance component of the image block to be processed.
  • the first processing information is used to indicate a down sampling processing manner adopted by the luminance component of the to-be-processed image block, including:
  • the first processing information is used to indicate that the luminance component of the image block to be processed is not downsampled; or the first processing information is used to indicate a filter that downsamples the luminance component of the image block to be processed.
  • the first processing information carries the identifier information, where the identifier information may be used to indicate whether the luminance component of the image block to be processed is downsampled, for example, when the identifier information is 0, indicating that the The luminance component of the image block is processed for downsampling, and when the identification information is 1, it indicates that the luminance component of the image block to be processed is downsampled.
  • the first processing information when the identifier information of the first processing information indicates that the luminance component of the to-be-processed image block is downsampled, the first processing information further includes index information, where the index information is used to indicate the image block to be processed.
  • a filter for down-sampling the luminance component for example, when the index information is 1, the filter indicating that the luminance component of the image block to be processed is downsampled is a filter No. 1: when the index information is 2, the indication pair
  • the filter for down-sampling the luminance component of the image block to be processed is a No. 2 filter.
  • the luminance component of the to-be-processed image block may not be down-sampled and indicated by the index information.
  • the index information is 0, it indicates that the luminance component of the to-be-processed image block is not downsampled, if the The luminance component of the processed image block is downsampled by 2:1, and the index information is 1; when the luminance component of the image block to be processed is downsampled by 4:1, the index information is 2.
  • the first processing information is used to indicate a filter that downsamples a luminance component of the image block to be processed. And filtering a filter for upsampling the image block to be processed according to the filter that downsamples the luminance component of the image block to be processed indicated by the first processing information.
  • the relationship between the upsampling filter and the downsampling filter may be established in advance, where the sampling filter 1 corresponds to the upsampling filter 1 and the downsampling filter 2 corresponds to the downsampling filter 2, if the first processing
  • the information is the downsampling filter 1, and the upsampling filter 1 is selected to upsample the image according to the relationship between the first processing information and the pre-established upsampling filter and downsampling filter.
  • the first processing information may further be at least one of a filter type, a number of taps, and a coefficient
  • the model of the downsampling filter may be a 3-lobe Lanczos filter, a Bilinear filter, a Bicubic, a Gauss filter, or the like.
  • the upsampling filter may be a DCTIF filter, a bilinear interpolation filter, a sinc filter or the like.
  • the sampling mode of the luminance component of the image block to be processed can be obtained by using the first processing information, and the brightness characteristics of different image blocks to be processed may be different, and the brightness of different image blocks to be processed is selected by using different sampling modes.
  • the components are processed to reduce the quality loss of the image.
  • the second processing information is used to indicate a down sampling processing manner adopted by the chroma component of the to-be-processed image block, including:
  • the second processing information is used to indicate that the chroma component of the image block to be processed is not downsampled; or the second processing information is used to indicate a filter that downsamples the chroma component of the image block to be processed.
  • the second processing information carries the identifier information, where the identifier information may be used to indicate whether the chroma component of the to-be-processed image block is downsampled. For example, when the identifier information is 0, the identifier information is not The chroma component of the image block to be processed is downsampled, and when the identification information is 1, it indicates that the chroma component of the image block to be processed is downsampled.
  • the second processing information when the identifier information of the second processing information indicates that the chroma component of the to-be-processed image block is downsampled, the second processing information further includes index information, where the index information is used to indicate the image to be processed. a filter for down-sampling the chroma component of the block.
  • the filter indicating that the chroma component of the image block to be processed is downsampled is a filter No. 1: when the index information is 2
  • a filter indicating that the chroma component of the image block to be processed is downsampled is a No. 2 filter. .
  • the chroma component of the to-be-processed image block may be not down-sampled and indicated by the index information.
  • the index information When the index information is 0, it indicates that the chroma component of the to-be-processed image block is not downsampled.
  • the chroma component of the to-be-processed image block is downsampled by 2:1, and the index information is 1; when the chroma component of the to-be-processed image block is downsampled by 4:1, the index information is 2.
  • the second processing information is used to indicate a filter that downsamples the chrominance components of the image block to be processed. And filtering a filter for upsampling the image block to be processed according to the filter that downsamples the chroma component of the image block to be processed indicated by the second processing information.
  • the relationship between the upsampling filter and the downsampling filter may be established in advance, where the sampling filter 3 corresponds to the upsampling filter 3, and the downsampling filter 4 corresponds to the downsampling filter 4, if the first processing
  • the information is the downsampling filter 3, and the upsampling filter 3 is selected to upsample the image according to the relationship between the first processing information and the pre-established upsampling filter and downsampling filter.
  • the first processing information may further be at least one of a filter type, a number of taps, and a coefficient
  • the model of the downsampling filter may be a 3-lobe Lanczos filter, a Bilinear filter, a Bicubic, a Gauss filter, or the like.
  • the upsampling filter may be a DCTIF filter, a bilinear interpolation filter, a sinc filter or the like.
  • the sampling mode of the chrominance component of the image block to be processed can be obtained by using the second processing information, and the chrominance characteristics of different image blocks to be processed may be different, and different sampling modes are selected for different image blocks to be processed.
  • the chrominance components are processed to reduce the image quality loss.
  • the quantized coefficient of the luminance component of the to-be-processed image block is obtained, the quantized coefficient is inverse quantized to obtain a transform coefficient, and the transform coefficient is inversely transformed to obtain a reconstructed residual of the luminance component of the to-be-processed image block.
  • a predicted pixel of the to-be-processed image block luminance component is generated according to the to-be-processed image block luminance component adjacent to the reconstructed pixel.
  • the predicted pixel is added to the reconstructed residual to obtain a transient luminance block of the to-be-processed image block, and the transient luminance block of the to-be-processed image block is a reconstructed pixel of the to-be-processed image block.
  • FIG 3 is a schematic illustration of the position of a YCbCr 4:4:4 sampling format in accordance with the present application.
  • Y, Cb, and Cr components that is, regardless of the horizontal direction or the vertical direction, there are 4 Cb and 4 Cr chroma sampling points for every 4 Y luminance sampling points.
  • the chrominance component and the luminance component have the same spatial resolution. This format is suitable for video source devices and high quality video signal processing.
  • each of the two luminance Y sampling points corresponds to one Cb and one Cr chroma sampling point.
  • the position of the sampling point without Cb and Cr is calculated by interpolation of the adjacent adjacent Cb and Cr sampling points.
  • the chrominance component and the luminance component have the same vertical resolution, but the horizontal resolution of the chrominance component is only half of the luminance horizontal resolution. This is the standard format for color TV.
  • Figure 5 is a schematic illustration of the position of the YCbCr4:2:0 sampling format in accordance with the present application.
  • the chrominance components are sampled in the horizontal direction and the vertical direction by 2:1, that is, there are 1 Cb sampling point and 1 Cr sampling point for every 4 Y sampling points.
  • the resolution of the chrominance component in both the horizontal and vertical directions is 1/2 of the luminance component. This is the format commonly used in video coding.
  • the sampling format of the image block to be processed is 4:2:0
  • the first processing information is Instructing to downsample the luminance component of the image block to be processed, the downsampling rate in the horizontal direction and the vertical direction is 2:1, and the position of the down sampling point is the left sampling point and the upper sampling point, the image block to be processed
  • the transient luminance block has a resolution of 4x4.
  • the resolution is the same as the resolution of the transient chroma block, and the resolution of the transient chroma block is determined by the sampling format of the image block to be processed and the second processing information.
  • the obtaining, according to the resolution of the transient luma block, the sampling format of the to-be-processed image block, and the second processing information, the prediction block of the transient chroma block of the to-be-processed image block including:
  • the resolution of the chroma block is the same, and the adjusted transient luminance block is used as the target block of the transient chroma block;
  • the resolution of the transient chroma block is the same as the resolution of the transient luma block, maintaining the resolution of the transient luma block, and using the transient luma block as the target block of the transient chroma block;
  • a prediction block of the transient chroma block is obtained according to the target block of the transient chroma block.
  • the prediction block of the transient chroma block is obtained, and by using the correlation of the video image spatial domain, the purpose of removing the video space redundancy is achieved, and the coding institute is reduced.
  • the required bit rate is used.
  • the adjusting the resolution of the transient brightness block comprises:
  • the transient luma block is downsampled according to the resolution of the transient chroma block, so that the adjusted transient luma block
  • the resolution is the same as the resolution of the transient chroma block
  • the transient luma block is upsampled according to the resolution of the transient chroma block, so that the adjusted transient luma block
  • the resolution is the same as the resolution of the transient chroma block.
  • the resolution of the transient chroma block is 8 ⁇ 8 and the resolution of the transient luma block is 16 ⁇ 16
  • the resolution of the transient chroma block is smaller than the resolution of the transient luma block, according to the resolution.
  • the resolution of the transient chroma block is downsampled by the transient luminance block, the down sampling rate is 2:1, and the resolution of the transient luminance block after downsampling is 8x8, and the resolution of the transient chroma block is The rate is the same.
  • the resolution of the transient chroma block is 16x16 and the resolution of the transient luma block is 8x8, the resolution of the transient chroma block is greater than the resolution of the transient luma block, according to the transient chroma
  • the resolution of the block upsamples the transient luminance block, the upsampling rate is 1:2, and the resolution of the upsampled transient luminance block is 16x16, which is the same as the resolution of the transient chroma block.
  • the sampling format of the YCbCr of the image block to be processed is 4:2:0, and the luminance component of the image block to be processed is subjected to original resolution encoding, and the chroma component of the image block to be processed is sampled at a rate of 2 :1 is coded after downsampling (where the position of the sample point is the left sample point and the upper sample point).
  • the resolution of the transient chroma block is different from the resolution of the transient luma block, and the resolution of the transient chroma block is smaller than the resolution of the transient luma block, according to the transient color.
  • the resolution of the degree block downsamples the transient luminance block, and the down sampling rate is 4:1.
  • the resolution of the transient luminance block after downsampling is the same as the resolution of the transient chroma block.
  • the sampling format of the YCbCr of the to-be-processed image block is 4:2:0, and the luminance component of the to-be-processed image block is subjected to downsampling after a sampling rate of 4:1, wherein (the sampling point is The position is the left sampling point and the upper sampling point), and the chrominance component of the image block to be processed is subjected to original resolution encoding.
  • the resolution of the transient chroma block is different from the resolution of the transient luma block, and the resolution of the transient chroma block is greater than the resolution of the transient luma block, according to the transient color.
  • the resolution of the degree block upsamples the transient luminance block, the upsampling rate is 1:2, and the resolution of the upsampled transient luminance block is the same as the resolution of the transient chroma block.
  • the luminance component and the chrominance component of the first-generation coded image block may adaptively select the down-sampling coding mode, and each image block may have four coding modes: luminance chrominance original resolution, and luminance chrominance. Sampling, brightness downsampling chroma original resolution, brightness original resolution chroma downsampling.
  • Target blocks including:
  • the corrected transient luminance block is used as a target block of the transient chroma block.
  • the sampling format of the YCbCr of the to-be-processed image block is 4:2:0, and the luminance component of the to-be-processed image block is subjected to downsampling after a sampling rate of 2:1, (where the sampling point is located)
  • the chrominance component of the image block to be processed is subjected to original resolution encoding.
  • the resolution of the transient chroma block is the same as the resolution of the transient luma block, but the sampling point position of the transient chroma block is different from the sampling point of the transient luma block.
  • the corrected transient luminance block is used as a target block of the transient chroma block.
  • the format of the YCbCr of the to-be-coded image block is 4:2:0, and the format of the YCbCr of the image block to be encoded may also be 4:4:4 or 4. : 2: 2, the format of the YCbCr of the image block to be encoded is not limited in this application.
  • the sampling rate of the down sampling is 2:1, 4:1, and the up sampling rate is only used as an example, and the down sampling rate and the up sampling rate may also be other sampling rates.
  • Sampling rate This application is not limited.
  • sampling rate of the downsampling is the same in both the horizontal direction and the vertical direction, and is only used as an example. Whether the sampling rate of the downsampling is the same in the horizontal direction and the vertical direction, this application does not Make a limit.
  • the adjusting the resolution of the transient brightness block comprises:
  • the vertical resolution of the transient luminance block is adjusted such that the adjusted vertical resolution of the transient luminance block and the vertical resolution of the transient chroma block are the same.
  • adjusting the resolution of the transient luminance block includes adjusting a horizontal resolution of the transient luminance block and a vertical resolution of the transient luminance block, so that the adjusted horizontal resolution of the transient luminance block
  • the rate and the horizontal resolution of the transient chroma block are the same and the adjusted vertical resolution of the transient luminance block is the same as the vertical resolution of the transient chroma block.
  • the prediction block of the transient chroma block is obtained according to the target block of the transient chroma block, including:
  • CCLM cross-component linear model prediction
  • a luminance chrominance correlation model of the image block to be encoded is established, that is, values of the parameters ⁇ and ⁇ are determined.
  • the resolution of the luminance reconstruction pixel of the image block of the upper row of the target block and the position of the sampling point, and the resolution of the chroma reconstruction pixel of the image block of the adjacent upper row of the transient chroma block The rate is the same as the position of the sample point, the resolution of the image reconstructed pixel of the adjacent left column of the target block and the position of the sample point, and the image block of the adjacent left column of the transient chroma block
  • the resolution of the chroma reconstructed pixel is the same as the position of the sample point.
  • the brightness of the image block of the adjacent upper row of the target block reconstructs the resolution of the pixel and the position of the sampling point, and the chrominance reconstructed pixel of the image block of the adjacent upper row of the transient chroma block
  • the resolution and the position of the sampling point are different.
  • the resolution and sampling point of the brightness reconstruction pixel of the image block of the adjacent upper row of the target block should be adjusted so that the adjusted upper side of the target block is adjusted.
  • the resolution of the image block of one line and the position of the sample point, and the resolution of the chrominance reconstructed pixel of the image block of the adjacent upper line of the transient chrominance block are the same as the position of the sample point.
  • the adjustment can be upsampling, downsampling, or interpolation based on the position of the sample point.
  • the resolution of the reconstructed pixel and the position of the sample point are adjusted.
  • the predicted pixel value of the transient chroma block is obtained according to the established chroma luminance correlation model and the reconstructed pixel value according to the target block.
  • the reconstructed pixel value of the target block is used as the reference pixel rec L , and the reference pixel rec L and the values of ⁇ and ⁇ are substituted into the equation (1) to obtain the predicted pixel value of the transient chroma block.
  • the predicted pixel value of the transient chroma block is obtained by using the video image.
  • the correlation of the spatial domain achieves the purpose of eliminating video spatial redundancy and reduces the bit rate required for encoding.
  • the method further includes:
  • the inverse processing of the downscaling process of the luminance component of the image block is processed.
  • the first processing information indicates a down sampling processing manner adopted by the luminance component of the to-be-processed image block, and in order to obtain a luminance reconstruction block of the to-be-processed image block, the transient luminance block is subjected to upsampling processing, where The sampling processing method is performed in a completely reversed process with downsampling.
  • the down-sampling processing mode of the luminance component of the to-be-processed image block is 2:1.
  • the up-sampling block is upsampled by a sampling rate of 1:2, and the waiting is obtained.
  • the brightness reconstruction block of the image block is processed.
  • the upsampling processing method is completely reversed from the downsampling, and further includes that the upsampled sample point position is completely reversed from the downsampled sample point position.
  • the method further includes:
  • the second processing information indicates a downsampling processing mode used by the chroma component of the to-be-processed image block, and in order to obtain the chroma reconstruction block of the to-be-processed image block, the transient chroma block is subjected to upsampling processing.
  • the upsampling processing is performed in a completely reversed process from downsampling.
  • the method is used to decode the image block to be processed, and the brightness information, the chrominance information, the first processing information, and the second processing information of the image block to be processed are obtained, including:
  • the first processing information and the second processing information include identification information of the image area, where the identification information is used to indicate a range of the first processing information and the second processing information, and the range may be a partial image. A region, or an image block or an image sub-block.
  • the method is used to encode the image block to be processed, and the brightness information, the chrominance information, the first processing information, and the second processing information of the image block to be processed are obtained, including:
  • the image block to be processed is encoded according to the acquired first processing information and second processing information to obtain luminance information and chrominance information of the image block to be processed.
  • the second processing information is the acquired first processing information and second processing information, which reduces the bit rate required for encoding the current image to be processed, and saves storage space and network resources.
  • the method further includes:
  • the target first processing information, the target second processing information, the target luminance information, and the target chrominance information are encoded into a code stream.
  • the brightness information, the chrominance information, the first processing information, and the second processing information of the image block to be processed are first acquired, and then the image block to be processed is reconstructed according to the brightness information of the image block to be processed.
  • Transient luminance block and acquiring a prediction block of the transient chroma block of the to-be-processed image block according to the resolution of the transient luminance block, the sampling format of the to-be-processed image block, and the second processing information, because the The transient luminance block of the image block to be processed is used to predict the chroma of the image block to be processed, and the image processing mode is image block level, which better adapts to the characteristics of the image block of different regions of an image, and can improve the video.
  • the accuracy of chroma prediction in the codec process improves the quality of the reconstructed image.
  • Figure 6 is a schematic flow diagram of a code in accordance with the present application. As shown in FIG. 6, the following mainly includes the following.
  • the prediction signal is a prediction signal obtained by using the reconstructed pixel of the luminance component of the current image block to be processed by the adjacent reconstructed pixel of the current image block to be processed as a reference pixel, and includes 603 pairs of the current image block to be processed.
  • the adjacent reconstructed pixels generate quantized coefficients of the luminance components of the current image block to be inversely quantized to obtain transform coefficients, and inversely transform the transform coefficients to obtain a residual signal of the luminance component of the current image block to be processed; And filtering the added prediction signal and the residual signal; 605, obtaining reconstructed pixels of the luminance component of the current image block to be processed.
  • Entropy coding techniques such as variable length coding and binary coding may be used to entropy encode the quantized coefficients to obtain a compressed code stream.
  • the luminance component of the image block to be processed is not downsampled, the original resolution is encoded, the encoding cost of the original resolution is obtained, and the original resolution of the current image block to be processed is compared.
  • the coding cost and the coding cost of the downsampling are selected, and the compressed code stream of the coding mode with a small coding cost is selected.
  • the chrominance component of the image block to be processed may be predicted using the reconstructed pixels of the luminance component of the image block to be processed. It should be noted that, when predicting, it is necessary to ensure that the resolution of the chroma component of the image block to be processed is the same as the resolution of the luma component of the image block to be processed, if the resolution of the chroma component of the image block to be processed is The resolution of the luminance component of the image block to be processed is different, and the resolution of the luminance component should be adjusted according to the resolution of the chrominance component, so that the adjusted resolution of the luminance component of the image block to be processed and the The resolution of the chroma component of the image block to be processed is the same, and the chroma component of the image block to be processed can be predicted according to the reconstructed pixel of the luminance component of the image block to be processed.
  • FIG. 7 is a schematic flow diagram of a decoding side in accordance with the present application. As shown in FIG. 7, the following mainly includes the following.
  • the resolution of the reconstructed luminance component is a low resolution
  • the current low resolution luminance reconstructed pixel should be upsampled to obtain a current image block to be processed.
  • the original resolution luminance component reconstructs the pixel.
  • the upsampling process is completely reversible with the downsampling process.
  • the same process is used to obtain the current image block to be processed.
  • the residual signal of the chroma component, and then applying the luma chroma correlation model to the low resolution luma reconstruction to obtain the prediction of the original resolution chroma component of the image block to be processed, and then based on the original resolution color of the current image block to be processed The signal obtained by adding the residual component and the residual signal is filtered to obtain the original resolution chroma component reconstruction of the current image block to be processed.
  • FIG. 8 is a schematic block diagram of an apparatus 800 for chromaticity prediction in accordance with the present application. As shown in FIG. 8, the color prediction device 800 includes:
  • the obtaining module 810 is configured to obtain brightness information, chrominance information, first processing information, and second processing information of the image block to be processed, where the first processing information is used to indicate a down sampling process used by the luminance component of the image block to be processed.
  • the second processing information is used to indicate a downsampling processing mode adopted by the chroma component of the to-be-processed image block.
  • the reconstruction module 820 is configured to reconstruct a transient luminance block of the to-be-processed image block according to the luminance information of the to-be-processed image block, where a resolution of the transient luminance block is determined by a sampling format of the to-be-processed image block and the first Processing information determination;
  • the obtaining module 810 is further configured to acquire, according to a resolution of the transient luma block, a sampling format of the to-be-processed image block, and the second processing information, a prediction block of the transient chroma block of the to-be-processed image block, where
  • the resolution of the transient luminance block is the same as the resolution of the transient chroma block, and the resolution of the transient chroma block is determined by the sampling format of the image block to be processed and the second processing information.
  • the determining module 810 and the sending module 820 are used to perform various operations of the method 200 for chromaticity prediction of the present application. For brevity, details are not described herein again.
  • the chrominance prediction device 800 is configured to decode the to-be-processed image block
  • the obtaining module 810 is specifically configured to: acquire the luminance information and the chrominance information from the code stream; and acquire the chrominance information from the code stream.
  • First processing information and the second processing information or acquiring the first processing information from the code stream and acquiring the preset second processing information, or acquiring the second processing information from the code stream and acquiring Presetting the first processing information, or acquiring the preset first processing information and the second processing information.
  • the chrominance prediction device 800 is configured to encode the to-be-processed image block, and the obtaining module 810 is specifically configured to:
  • the image block to be processed is encoded according to the acquired first processing information and second processing information to obtain luminance information and chrominance information of the image block to be processed.
  • the chromaticity prediction device 800 corresponds to the chromaticity prediction device in the method embodiment, and the corresponding module performs the corresponding steps. For details, refer to the corresponding method embodiment.
  • FIG. 9 shows a schematic block diagram of a chromaticity prediction device 900 in accordance with the present application.
  • the chromaticity prediction device 900 includes:
  • a memory 910 configured to store a program, where the program includes a code
  • transceiver 920 configured to communicate with other devices
  • the processor 930 is configured to execute program code in the memory 910.
  • the processor 930 may implement various operations of the method 200 when the code is executed, and details are not described herein for brevity.
  • the transceiver 920 is configured to perform specific signal transceiving under the driving of the processor 930.
  • the chrominance prediction device 900 corresponds to the chrominance prediction device in the method embodiment, and the corresponding steps are performed by the corresponding module. For details, refer to the corresponding method embodiment.
  • FIG. 10 is a schematic block diagram of a video codec device or electronic device 1000 that may incorporate a codec in accordance with an embodiment of the present application.
  • 11 is a schematic diagram of an apparatus for video encoding in accordance with an embodiment of the present application. The units in Figs. 10 and 11 will be explained below.
  • the electronic device 1000 can be, for example, a mobile terminal or a user device of a wireless communication system. It should be understood that embodiments of the present application may be implemented in any electronic device or device that may require encoding and decoding, or encoding, or decoding of a video image.
  • Device 1000 can include a housing 30 for incorporating and protecting the device.
  • Device 1000 can also include display 32 in the form of a liquid crystal display.
  • the display may be any suitable display technology suitable for displaying images or video.
  • Device 1000 can also include a keypad 34.
  • any suitable data or user interface mechanism can be utilized.
  • the user interface can be implemented as a virtual keyboard or data entry system as part of a touch sensitive display.
  • the device may include a microphone 36 or any suitable audio input, which may be a digital or analog signal input.
  • the device 1000 may also include an audio output device, which in the embodiment of the present application may be any of the following: an earphone 38, a speaker, or an analog audio or digital audio output connection.
  • Device 1000 may also include battery 40, and in other embodiments of the present application, the device may be powered by any suitable mobile energy device, such as a solar cell, fuel cell, or clock mechanism generator.
  • the device may also include an infrared port 42 for short-range line of sight communication with other devices.
  • device 1000 may also include any suitable short range communication solution, such as a Bluetooth wireless connection or a USB/FireWire wired connection.
  • Apparatus 1000 can include a controller 56 or processor for controlling apparatus 1000.
  • the controller 56 can be coupled to a memory 58, which in the embodiments of the present application can store data in the form of data and audio in the form of images, and/or can also store instructions for execution on the controller 56.
  • Controller 56 may also be coupled to codec circuitry 54 suitable for implementing encoding and decoding of audio and/or video data or assisted encoding and decoding by controller 56.
  • the apparatus 1000 may also include a card reader 48 and a smart card 46, such as a UICC and a UICC reader, for providing user information and for providing authentication information for authenticating and authorizing users on the network.
  • a card reader 48 and a smart card 46 such as a UICC and a UICC reader, for providing user information and for providing authentication information for authenticating and authorizing users on the network.
  • Apparatus 1000 can also include a radio interface circuit 52 coupled to the controller and adapted to generate, for example, a wireless communication signal for communicating with a cellular communication network, a wireless communication system, or a wireless local area network.
  • Apparatus 1000 can also include an antenna 44 coupled to radio interface circuitry 52 for transmitting radio frequency signals generated at radio interface circuitry 52 to other apparatus(s) and for receiving radio frequency signals from other apparatus(s).
  • apparatus 1000 includes a camera capable of recording or detecting a single frame, and codec 54 or controller receives the individual frames and processes them.
  • the device may receive video image data to be processed from another device prior to transmission and/or storage.
  • device 1000 may receive images for encoding/decoding via a wireless or wired connection.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Color Television Systems (AREA)

Abstract

本申请提供了一种色度预测的方法和设备,提高了视频编解码过程中的色度预测的准确度,改善了重建图像的品质。该方法包括:获取待处理图像块亮度信息、色度信息、第一处理信息和第二处理信息,第一处理信息指示待处理图像块亮度分量下采样处理方式,第二处理信息指示待处理图像块色度分量下采样处理方式;根据待处理图像块亮度信息,重建待处理图像块的暂态亮度块,暂态亮度块的分辨率由待处理图像块采样格式和第一处理信息确定;根据暂态亮度块的分辨率、待处理图像块采样格式、第二处理信息,获取待处理图像块暂态色度块的预测块,暂态亮度块的分辨率和暂态色度块的分辨率相同,暂态色度块的分辨率由待处理图像块采样格式和第二处理信息确定。

Description

色度预测的方法和设备
本申请要求于2017年07月17日提交中国专利局、申请号为201710582094.1、申请名称为“色度预测的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像处理领域,并且更具体地,涉及一种色度预测的方法和设备。
背景技术
数字视频压缩编码解码技术在广播,通信,存储以及多媒体服务领域都有着广泛的应用。通过采集设备获取到的原始视频内容的数据量较大,不适合存储和传输,需要利用搞笑的视频压缩编码技术来压缩原始数据。对一幅图像整体进行下采样,可能会丢失掉部分细节,致使视频编解码过程中的色度预测不够准确,导致重建图像模糊。
因此,如何提高视频编解码过程中的色度预测的准确度,改善重建图像的品质是一项亟待解决的问题。
发明内容
本申请提供一种色度预测的方法和设备,能够提高视频编解码过程中的色度预测的准确度,改善重建图像的品质。
第一方面,提供了一种色度预测的方法,包括:获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,该第一处理信息用于指示该待处理图像块的亮度分量采用的下采样处理方式,该第二处理信息用于指示该待处理图像块的色度分量采用的下采样处理方式;
根据该待处理图像块的亮度信息,重建该待处理图像块的暂态亮度块,其中,该暂态亮度块的分辨率由该待处理图像块的采样格式和该第一处理信息确定;
根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,其中,该暂态亮度块的分辨率和暂态色度块的分辨率相同,该暂态色度块的分辨率由该待处理图像块的采样格式和该第二处理信息确定。
因此,在本申请中,首先获取的待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,然后根据该待处理图像块的亮度信息,重建该待处理图像块的暂态亮度块,再根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,因为利用该待处理图像块的暂态亮度块来对该待处理图像块色度进行预测,图像处理方式为图像块级的,更好地适应了一幅图像的不同区域的图像块的特性,能够提高视频编解码过程中的色度预测的准确度,改善重建图像的品质。
可选地,在第一方面的一种实现方式中,该第一处理信息用于指示该待处理图像块的 亮度分量采用的下采样处理方式,包括:
该第一处理信息用于指示不对该待处理图像块的亮度分量进行下采样;或者,该第一处理信息用于指示对该待处理图像块的亮度分量进行下采样的滤波器。
此时,通过该第一处理信息可以获知该待处理图像块的亮度分量的采样方式,不同的待处理图像块的亮度特性可能不一样,选用不同的采样方式对不同的待处理图像块的亮度分量进行处理,减小了图像的质量损失。
可选地,在第一方面的一种实现方式中,该第二处理信息用于指示该待处理图像块的色度分量采用的下采样处理方式,包括:
该第二处理信息用于指示不对该待处理图像块的色度分量进行下采样;或者,该第二处理信息用于指示对该待处理图像块的色度分量进行下采样的滤波器。
此时,通过该第二处理信息可以获知该待处理图像块的色度分量的采样方式,不同的待处理图像块的色度特性可能不一样,选用不同的采样方式对不同的待处理图像块的色度分量进行处理,减小了图像的质量损失。
可选地,在第一方面的一种实现方式中,该根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,包括:
根据该待处理图像块的采样格式和该第二处理信息,确定该暂态色度块的分辨率;
当该暂态色度块的分辨率和该暂态亮度块的分辨率不相同时,调整该暂态亮度块的分辨率,以使该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同,将该调整后的暂态亮度块作为该暂态色度块的目标块;
当该暂态色度块的分辨率和该暂态亮度块的分辨率相同时,保持该暂态亮度块的分辨率,将该暂态亮度块作为该暂态色度块的目标块;
根据该暂态色度块的目标块,获得该暂态色度块的预测块。
此时,通过根据该暂态色度块的目标块,获得该暂态色度块的预测块,通过利用视频图像空间域的相关性,达到去除视频空间冗余的目的,减小了编码所需的比特率。
可选地,该调整该暂态亮度块的分辨率,包括:
当该暂态色度块的分辨率小于该暂态亮度块的分辨率时,根据该暂态色度块的分辨率对该暂态亮度块进行下采样,使得该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同;或
当该暂态色度块的分辨率大于该暂态亮度块的分辨率时,根据该暂态色度块的分辨率对该暂态亮度块进行上采样,使得该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同。
此时,通过根据该暂态色度块的分辨率对该暂态亮度块进行上采样或下采样的调整,使得该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同。
可选地,当该暂态色度块的分辨率和该暂态亮度块的分辨率相同时,保持该暂态亮度块的分辨率,将该暂态亮度块作为该暂态色度块的目标块,包括:
当该暂态色度块的采样点的位置和该暂态亮度块的采样点的位置不同时,根据该暂态色度块的采样点位置和该暂态亮度块的采样点的位置,对该暂态亮度块的进行插值运算,得到修正后的该暂态亮度块;
将该修正后的暂态亮度块作为该暂态色度块的目标块。
可选地,在第一方面的一种实现方式中,该调整该暂态亮度块的分辨率,包括:
调整该暂态亮度块的水平分辨率,以使调整后的该暂态亮度块的水平分辨率和暂态色度块的水平分辨率相同;并且,
调整该暂态亮度块的竖直分辨率,以使调整后的该暂态亮度块的竖直分辨率和暂态色度块的竖直分辨率相同。
可选地,在第一方面的一种实现方式中,该根据该暂态色度块的目标块,获得该暂态色度块的预测块,包括:
根据该目标块的重建像素值、该目标块的邻接重建像素值和该暂态色度块的邻接重建像素值,获取该暂态色度块的预测像素值。
此时,通过根据该目标块的重建像素值、该目标块的邻接重建像素值和该暂态色度块的邻接重建像素值,获取该暂态色度块的预测像素值,通过利用视频图像空间域的相关性,达到去除视频空间冗余的目的,减小了编码所需的比特率。
可选地,在第一方面的一种实现方式中,该方法还包括:
根据该第一处理信息,对该暂态亮度块进行第一上采样处理,以得到该待处理图像块的亮度重建块,其中,该第一上采样处理为该第一处理信息指示的该待处理图像块的亮度分量下采样处理的逆处理。
可选地,在第一方面的一种实现方式中,该方法还包括:
根据该待处理图像块的色度信息和该预测块,重建该暂态色度块;
根据该第二处理信息,对该暂态色度块进行第二上采样处理,以得到该待处理图像块的色度重建块,其中,该第二上采样处理为该第二处理信息指示的该待处理图像块的色度分量下采样处理的逆处理。
可选地,在第一方面的一种实现方式中,该方法用于解码该待处理图像块,该获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,包括:
从码流中获取该亮度信息和该色度信息;并且,
从该码流中获取该第一处理信息和该第二处理信息,或者,
从该码流中获取该第一处理信息并获取预设的该第二处理信息,或者,
从该码流中获取该第二处理信息并获取预设的该第一处理信息,或者,
获取预设的该第一处理信息和该第二处理信息。
可选地,在第一方面的一种实现方式中,该方法用于编码该待处理图像块,该获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,包括:
分别计算该待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价;
确定最小的该编码代价对应的候选的第一处理信息和候选的第二处理信息为该获取的第一处理信息和第二处理信息;
根据该获取的第一处理信息和第二处理信息编码该待处理图像块,以获取该待处理图像块的亮度信息和色度信息。
此时,通过确定该待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价,确定最小的该编码代价对应的候选的第一处理信息和候选的第二处理信息为该获取的第一处理信息和第二处理信息,减小了对当前该待处理图像的 编码所需的比特率,节省了存储空间和网络资源。
可选地,在第一方面的一种实现方式中,该方法还包括:
将该目标第一处理信息、该目标第二处理信息、该目标亮度信息和该目标色度信息编入码流。
第二方面,提供了一种色度预测的设备,其特征在于,包括获取模块和重建模块,可以执行第一方面或第一方面的任一可选的实现方式中的方法。
第三方面,提供了一种色度预测的设备,包括存储器、收发器和处理器,所述存储器上存储有可以用于指示执行上述第一或第一方面的任意可选的实现方式的程序代码,收发器用于在处理器的驱动下执行具体的信号收发,当所述代码被执行时,所述处理器可以实现方法中终端设备执行各个操作。
第四方面,提供了一种计算机存储介质,所述计算机存储介质中存储有程序代码,所述程序代码可以用于指示执行上述第一方面或第一方面的任意可选的实现方式中的方法。
附图说明
图1是根据本申请的视频编解码系统的示意性框图。
图2是根据本申请的一种色度预测的方法的示意性流程图。
图3是根据本申请的YCbCr 4:4:4采样格式的位置示意图。
图4是根据本申请的YCbCr 4:2:2采样格式的位置示意图。
图5是根据本申请的YCbCr 4:2:0采样格式的位置示意图。
图6是根据本申请的编码示意性流程图。
图7是根据本申请的解码示意性流程图。
图8是根据本申请的色度预测的设备的示意性框图。
图9是根据本申请的色度预测的设备的示意性框图。
图10是根据本申请的视频编解码装置或电子设备的示意性框图。
图11是根据本申请的用于视频编码的示意性装置图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是根据本申请实施例的视频编解码系统100的示意性框图。如图1所示,视频编解码系统100包含源装置12及目的地装置14。源装置12产生经编码视频数据。因此,源装置12可被称作视频编码装置或视频编码设备。目的地装置14可解码由源装置12产生的经编码视频数据。因此,目的地装置14可被称作视频解码装置或视频解码设备。源装置12及目的地装置14可为视频编解码装置或视频编解码设备的实例。源装置12及目的地装置14可包括广泛范围的装置,包含台式计算机、移动计算装置、笔记本(例如,膝上型)计算机、平板计算机、机顶盒、智能电话等手持机、电视、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机,或其类似者。
目的地装置14可经由信道16接收来自源装置12的编码后的视频数据。信道16可包括能够将经编码视频数据从源装置12移动到目的地装置14的一个或多个媒体及/或装置。在一个实例中,信道16可包括使源装置12能够实时地将编码后的视频数据直接发射到目 的地装置14的一个或多个通信媒体。在此实例中,源装置12可根据通信标准(例如,无线通信协议)来调制编码后的视频数据,且可将调制后的视频数据发射到目的地装置14。所述一个或多个通信媒体可包含无线及/或有线通信媒体,例如射频(RF)频谱或一根或多根物理传输线。所述一个或多个通信媒体可形成基于包的网络(例如,局域网、广域网或全球网络(例如,因特网))的部分。所述一个或多个通信媒体可包含路由器、交换器、基站,或促进从源装置12到目的地装置14的通信的其它设备。
在另一实例中,信道16可包含存储由源装置12产生的编码后的视频数据的存储媒体。在此实例中,目的地装置14可经由磁盘存取或卡存取来存取存储媒体。存储媒体可包含多种本地存取式数据存储媒体,例如蓝光光盘、DVD、CD-ROM、块闪存储器,或用于存储经编码视频数据的其它合适数字存储媒体。
在另一实例中,信道16可包含文件服务器或存储由源装置12产生的编码后的视频数据的另一中间存储装置。在此实例中,目的地装置14可经由流式传输或下载来存取存储于文件服务器或其它中间存储装置处的编码后的视频数据。文件服务器可以是能够存储编码后的视频数据且将所述编码后的视频数据发射到目的地装置14的服务器类型。实例文件服务器包含web服务器(例如,用于网站)、文件传送协议(FTP)服务器、网络附加存储装置(Network Attached Storage,NAS),及本地磁盘驱动器。
目的地装置14可经由标准数据连接(例如,因特网连接)来存取编码后的视频数据。数据连接的实例类型包含适合于存取存储于文件服务器上的编码后的视频数据的无线信道(例如,(Wireless Fidelity,Wi-Fi)连接)、有线连接(例如,数字用户线路(Digital Subscriber Line,DSL)、缆线调制解调器等),或两者的组合。编码后的视频数据从文件服务器的发射可为流式传输、下载传输或两者的组合。
本申请的技术不限于无线应用场景,示例性的,可将所述技术应用于支持以下应用等多种多媒体应用的视频编解码:空中电视广播、有线电视发射、卫星电视发射、流式传输视频发射(例如,经由因特网)、存储于数据存储媒体上的视频数据的编码、存储于数据存储媒体上的视频数据的解码,或其它应用。在一些实例中,视频编解码系统10可经配置以支持单向或双向视频发射,以支持例如视频流式传输、视频播放、视频广播及/或视频电话等应用。
在图1的示例中,源装置12包含视频源18、视频编码器20及输出接口22。在一些实例中,输出接口22可包含调制器/解调器(调制解调器)及/或发射器。视频源18可包含视频俘获装置(例如,视频相机)、含有先前俘获的视频数据的视频存档、用以从视频内容提供者接收视频数据的视频输入接口,及/或用于产生视频数据的计算机图形系统,或上述视频数据源的组合。
视频编码器20可编码来自视频源18的视频数据。在一些实例中,源装置12经由输出接口22将编码后的视频数据直接发射到目的地装置14。编码后的视频数据还可存储于存储媒体或文件服务器上以供目的地装置14稍后存取以用于解码及/或播放。
在图1的示例中,目的地装置14包含输入接口28、视频解码器30及显示装置32。在一些实例中,输入接口28包含接收器及/或调制解调器。输入接口28可经由信道16接收编码后的视频数据。显示装置32可与目的地装置14整合或可在目的地装置14外部。一般来说,显示装置32显示解码后的视频数据。显示装置32可包括多种显示装置,例如 液晶显示器(Liquid Crystal Display,LCD)、等离子体显示器、有机发光二极管(Organic Light-Emitting Diode,OLED)显示器或其它类型的显示装置。
视频编码器20及视频解码器30可根据视频压缩标准(例如,高效率视频编解码H.265标准)而操作,且可遵照HEVC测试模型(HM)。
为了更好地理解本申请,以下将结合图2-图11,以与图1所示的系统相同或相似的系统为例对本申请进行说明。
图2是根据本申请的一种色度预测的方法200的示意性流程图。如图2所示,该方法200包括以下内容。
210,获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,该第一处理信息用于指示该待处理图像块的亮度分量采用的下采样处理方式,该第二处理信息用于指示该待处理图像块的色度分量采用的下采样处理方式。
可选地,当该待处理图像块的色分量度独立处理时,该方法还包括获取第三处理信息,其中,该第二处理信息用于指示该待处理图像块的第一色度分量采用的下采样处理方式,该第三处理信息用于指示该待处理图像块的第一色度分量采用的下采样处理方式。
具体而言,当该待处理图像块的色彩信息由YCbCr色彩空间表示,其中,Y表示亮度,也叫作Luma分量;Cb和Cr表示的是色度,用于表示像素的色调与饱和度,Cb和Cr统称为Chroma分量,亮度Y是通过输入信号RGB来建立的,方法是将RGB(红绿蓝)信号按特定比例叠加到一起。Cb表示的是RGB输入信号蓝色部分与信号亮度值之间的差异,Cr表示的是RGB输入信号红色部分与亮度信号值之间的差异。
当色度分量Cb、Cr整体进行下采样处理时,用一个处理信息指示该待处理图像块的色度分量采用的下采样处理方式,例如,第二处理信息用于指示该待处理图像块的色度分量采用的下采样处理方式;当色度分量Cb、Cr独立进行下采样处理时,可以分别通过两个处理信息用于指示该待处理图像块的Cb色度分量采用的下采样处理方式和该待处理图像块的Cr色度分量采用的下采样处理方式,例如,第二处理信息用于指示该待处理图像块的Cb色度分量采用的下采样处理方式,第三处理信息用于指示该待处理图像块的Cr色度分量采用的下采样处理方式。
可选地,该第一处理信息用于指示该待处理图像块的亮度分量采用的下采样处理方式,包括:
该第一处理信息用于指示不对该待处理图像块的亮度分量进行下采样;或者,该第一处理信息用于指示对该待处理图像块的亮度分量进行下采样的滤波器。
具体而言,该第一处理信息中携带标识信息,该标识信息可以用于指示是否对该待处理图像块的亮度分量进行了下采样,例如,当该标识信息为0时,表示不对该待处理图像块的亮度分量进行下采样,当该标识信息为1时,表示对该待处理图像块的亮度分量进行下采样。
可选地,当该第一处理信息的标识信息表示对该待处理图像块的亮度分量进行下采样时,该第一处理信息还包括索引信息,该索引信息用于指示对该待处理图像块的亮度分量进行下采样的滤波器,例如,该索引信息为1时,指示对该待处理图像块的亮度分量进行下采样的滤波器为1号滤波器;该索引信息为2时,指示对该待处理图像块的亮度分量进行下采样的滤波器为2号滤波器。
可选地,可以将该待处理图像块的亮度分量不进行下采样也用该索引信息指示,当该索引信息为0时,表示该待处理图像块的亮度分量不进行下采样,如果该待处理图像块的亮度分量进行2:1的下采样,该索引信息为1;当该待处理图像块的亮度分量进行4:1的下采样,该索引信息为2。
可选地,该第一处理信息用于指示对该待处理图像块的亮度分量进行下采样的滤波器。根据该第一处理信息指示的对该待处理图像块的亮度分量进行下采样的滤波器,确定对该待处理图像块进行上采样的滤波器。
具体而言,可以预先建立上采样滤波器与下采样滤波器之间的关系,如下采样滤波器1对应上采样滤波器1,下采样滤波器2对应下采样滤波器2,如果该第一处理信息为下采样滤波器1,则根据该第一处理信息和该预先建立的上采样滤波器与下采样滤波器之间的关系,选择上采样滤波器1对该图像进行上采样。该第一处理信息还可以是滤波器的型号、抽头数以及系数中的至少一种,该下采样滤波器的型号可以是3-lobe Lanczos滤波器,Bilinear滤波器,Bicubic,Gauss滤波器等,该上采样滤波器可以是DCTIF滤波器,双线性插值滤波器,sinc滤波器等。
此时,通过该第一处理信息可以获知该待处理图像块的亮度分量的采样方式,不同的待处理图像块的亮度特性可能不一样,选用不同的采样方式对不同的待处理图像块的亮度分量进行处理,减小了图像的质量损失。
可选地,该第二处理信息用于指示该待处理图像块的色度分量采用的下采样处理方式,包括:
该第二处理信息用于指示不对该待处理图像块的色度分量进行下采样;或者,该第二处理信息用于指示对该待处理图像块的色度分量进行下采样的滤波器。
具体而言,该第二处理信息中携带标识信息,该标识信息可以用于指示是否对该待处理图像块的色度分量进行了下采样,例如,当该标识信息为0时,表示不对该待处理图像块的色度分量进行下采样,当该标识信息为1时,表示对该待处理图像块的色度分量进行下采样。
可选地,当该第二处理信息的标识信息表示对该待处理图像块的色度分量进行下采样时,该第二处理信息还包括索引信息,该索引信息用于指示对该待处理图像块的色度分量进行下采样的滤波器,例如,该索引信息为1时,指示对该待处理图像块的色度分量进行下采样的滤波器为1号滤波器;该索引信息为2时,指示对该待处理图像块的色度分量进行下采样的滤波器为2号滤波器。。
可选地,可以将该待处理图像块的色度分量不进行下采样也用该索引信息指示,当该索引信息为0时,表示该待处理图像块的色度分量不进行下采样,如果该待处理图像块的色度分量进行2:1的下采样,该索引信息为1;当该待处理图像块的色度分量进行4:1的下采样,该索引信息为2。
可选地,该第二处理信息用于指示对该待处理图像块的色度分量进行下采样的滤波器。根据该第二处理信息指示的对该待处理图像块的色度分量进行下采样的滤波器,确定对该待处理图像块进行上采样的滤波器。
具体而言,可以预先建立上采样滤波器与下采样滤波器之间的关系,如下采样滤波器3对应上采样滤波器3,下采样滤波器4对应下采样滤波器4,如果该第一处理信息为下 采样滤波器3,则根据该第一处理信息和该预先建立的上采样滤波器与下采样滤波器之间的关系,选择上采样滤波器3对该图像进行上采样。该第一处理信息还可以是滤波器的型号、抽头数以及系数中的至少一种,该下采样滤波器的型号可以是3-lobe Lanczos滤波器,Bilinear滤波器,Bicubic,Gauss滤波器等,该上采样滤波器可以是DCTIF滤波器,双线性插值滤波器,sinc滤波器等。
此时,通过该第二处理信息可以获知该待处理图像块的色度分量的采样方式,不同的待处理图像块的色度特性可能不一样,选用不同的采样方式对不同的待处理图像块的色度分量进行处理,减小了图像的质量损失。
220,根据该待处理图像块的亮度信息,重建该待处理图像块的暂态亮度块,其中,该暂态亮度块的分辨率由该待处理图像块的采样格式和该第一处理信息确定。
具体而言,获取解析该待处理图像块亮度分量的量化系数,对该量化系数进行反量化得到变换系数,对变换系数进行反变换,得到该待处理图像块亮度分量的重建残差。根据该待处理图像块亮度分量相邻已重建像素生成该待处理图像块亮度分量的预测像素。将预测像素与重建残差相加,得到该待处理图像块的暂态亮度块,该待处理图像块的暂态亮度块为该待处理图像块的重建像素。
由于人眼对色度信号的敏感程度比亮度信号低,一般应用中会对图像的色度进行下采样。利用该方法可以把图像中表达颜色的信息去掉一些而不被人察觉,从而达到数据压缩的目的。常见的YCbCr采样格式有:4:4:4、4:2:2和4:2:0。
图3是根据本申请的YCbCr 4:4:4采样格式的位置示意图。在每个像素位置,都有Y、Cb和Cr分量,即不论水平方向还是竖直方向,每4个Y亮度采样点都对应有4个Cb和4个Cr色度采样点。在这种格式中,色度分量和亮度分量具有相同的空间分辨率。这种格式适用于视频源设备和高质量视频信号处理。
图4是根据本申请的YCbCr4:2:2采样格式的位置示意图。在水平方向上,每两个亮度Y采样点对应有1个Cb和1个Cr色度采样点。显示图像时,对于没有Cb和Cr的采样点位置,是用周围相邻的Cb和Cr采样点插值计算得到。在这种格式中,色度分量和亮度分量具有相同的竖直分辨率,但色度分量的水平分辨率仅为亮度水平分辨率的一半。这是彩色电视的标准格式。
图5是根据本申请的YCbCr4:2:0采样格式的位置示意图。在水平方向和竖直方向上对色度分量都进行了2:1的抽样,即每4个Y采样点对应有1个Cb采样点和1个Cr采样点。在这种格式中,色度分量在水平和竖直方向上的分辨率均是亮度分量的1/2。这是视频编码中常使用的格式。
例如,如果当前该待处理图像块的原分辨率为8x8(此处仅用来举例,实际分辨率很大),该待处理图像块的采样格式为4:2:0,该第一处理信息指示对该待处理图像块的亮度分量进行了下采样,水平方向和竖直方向的下采样率为2:1,下采样点的位置为左侧采样点和上方采样点,该待处理图像块的暂态亮度块的分辨率为4x4。
230,根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,其中,该暂态亮度块的分辨率和暂态色度块的分辨率相同,该暂态色度块的分辨率由该待处理图像块的采样格式和该第二处理信息确定。
可选地,该根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,包括:
根据该待处理图像块的采样格式和该第二处理信息,确定该暂态色度块的分辨率;
当该暂态色度块的分辨率和该暂态亮度块的分辨率不相同时,调整该暂态亮度块的分辨率,以使该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同,将该调整后的暂态亮度块作为该暂态色度块的目标块;
当该暂态色度块的分辨率和该暂态亮度块的分辨率相同时,保持该暂态亮度块的分辨率,将该暂态亮度块作为该暂态色度块的目标块;
根据该暂态色度块的目标块,获得该暂态色度块的预测块。
此时,通过根据该暂态色度块的目标块,获得该暂态色度块的预测块,通过利用视频图像空间域的相关性,达到去除视频空间冗余的目的,减小了编码所需的比特率。
可选地,该调整该暂态亮度块的分辨率,包括:
当该暂态色度块的分辨率小于该暂态亮度块的分辨率时,根据该暂态色度块的分辨率对该暂态亮度块进行下采样,使得该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同;或
当该暂态色度块的分辨率大于该暂态亮度块的分辨率时,根据该暂态色度块的分辨率对该暂态亮度块进行上采样,使得该调整后的暂态亮度块的分辨率和该暂态色度块的分辨率相同。
具体而言,当该暂态色度块的分辨率为8x8,该暂态亮度块的分辨率为16x16时,该暂态色度块的分辨率小于该暂态亮度块的分辨率,根据该暂态色度块的分辨率对该暂态亮度块进行下采样,下采样率为2:1,下采样后的该暂态亮度块的分辨率为8x8,与该暂态色度块的分辨率相同。
当该暂态色度块的分辨率为16x16,该暂态亮度块的分辨率为8x8时,该暂态色度块的分辨率大于该暂态亮度块的分辨率,根据该暂态色度块的分辨率对该暂态亮度块进行上采样,上采样率为1:2,上采样后的该暂态亮度块的分辨率为16x16,与该暂态色度块的分辨率相同。
例如,该待处理图像块的YCbCr的采样格式为4:2:0,对该待处理图像块的亮度分量进行原分辨率编码,对该待处理图像块的色度分量进行了采样率为2:1的下采样之后进行编码,(其中,采样点的位置为左侧采样点和上方采样点)。由图5可知,该暂态色度块的分辨率和该暂态亮度块的分辨率不同,并且该暂态色度块的分辨率小于该暂态亮度块的分辨率,根据该暂态色度块的分辨率对该暂态亮度块进行下采样,下采样率为4:1,下采样后的该暂态亮度块的分辨率和该暂态色度块的分辨率相同。
又例如,该待处理图像块的YCbCr的采样格式为4:2:0,对该待处理图像块的亮度分量进行了采样率为4:1的下采样之后进行编码,(其中,采样点的位置为左侧采样点和上方采样点),对该待处理图像块的色度分量进行原分辨率编码。由图5可知,该暂态色度块的分辨率和该暂态亮度块的分辨率不同,并且该暂态色度块的分辨率大于该暂态亮度块的分辨率,根据该暂态色度块的分辨率对该暂态亮度块进行上采样,上采样率为1:2,上采样后的该暂态亮度块的分辨率和该暂态色度块的分辨率相同。
应理解,该第一代编图像块的亮度分量和色度分量可以分别自适应选择下采样编码模 式,每个图像块可能的编码模式有四种:亮度色度原分辨率,亮度色度下采样,亮度下采样色度原分辨率,亮度原分辨率色度下采样。
可选地,当该暂态色度块的分辨率和该暂态亮度块的分辨率相同时,保持该暂态亮度块的分辨率,将该暂态亮度块作为该暂态色度块的目标块,包括:
当该暂态色度块的采样点的位置和该暂态亮度块的采样点的位置不同时,根据该暂态色度块的采样点位置和该暂态亮度块的采样点的位置,对该暂态亮度块的进行插值运算,得到修正后的该暂态亮度块;
将该修正后的暂态亮度块作为该暂态色度块的目标块。
例如,该待处理图像块的YCbCr的采样格式为4:2:0,对该待处理图像块的亮度分量进行了采样率为2:1的下采样之后进行编码,(其中,采样点的位置为左侧采样点和上方采样点),对该待处理图像块的色度分量进行原分辨率编码。由图5可知,该暂态色度块的分辨率和该暂态亮度块的分辨率相同,但是该暂态色度块的采样点位置和该暂态亮度块的采样点的位置不同。
根据该暂态色度块的采样点位置和该暂态亮度块的采样点的位置,对该暂态亮度块的亮度分量重建像素进行插值运算,得到修正后的该暂态亮度块的亮度分量的重建像素。将该修正后的暂态亮度块作为该暂态色度块的目标块。
应理解,在本申请实施例中,该待编码像块的YCbCr的格式为4:2:0,仅用作举例,该待编码图像块的YCbCr的格式还可以是4:4:4或者4:2:2,对于该待编码图像块的YCbCr的格式,本申请并不做限定。
应理解,在本申请实施例中,下采样的采样率为2:1,4:1,以及上采样率仅用作举例,该下采样率、上采样率还可以为其他的采样率,对于采样率本申请并不做限定。
还应理解,下采样的采样率在水平方向和竖直方向的采样率均一样,仅用来举例,对于下采样的采样率在水平方向和竖直方向的采样率是否一样,本申请并不做限定。
可选地,该调整该暂态亮度块的分辨率,包括:
调整该暂态亮度块的水平分辨率,以使调整后的该暂态亮度块的水平分辨率和暂态色度块的水平分辨率相同;并且,
调整该暂态亮度块的竖直分辨率,以使调整后的该暂态亮度块的竖直分辨率和暂态色度块的竖直分辨率相同。
具体而言,调整该暂态亮度块的分辨率包括对该暂态亮度块的水平分辨率和该暂态亮度块的竖直分辨率进行调整,使得调整后的该暂态亮度块的水平分辨率和暂态色度块的水平分辨率相同且,调整后的该暂态亮度块的竖直分辨率和暂态色度块的竖直分辨率相同。
可选地,该根据该暂态色度块的目标块,获得该暂态色度块的预测块,包括:
根据该目标块的重建像素值、该目标块的邻接重建像素值和该暂态色度块的邻接重建像素值,获取该暂态色度块的预测像素值。
具体而言,在下一代视频标准的研究过程中,新的色度预测技术跨组件线性模型预测(cross-component linear model prediction,CCLM)被提出,该技术利用当前图像块亮度重建像素来预测色度像素,可以去除亮度分量和色度分量之间的冗余。CCLM首先根据当前待编码图像块相邻已重建的亮度像素值和色度像素值建立出当前待编码图像块的亮度色度相关性模型,该相关性模型为线性模型,用参数α和β来表示。根据建立的当前待编 码图像块的亮度色度相关性模型以及当前待编码图像块的亮度重建像素值,生成当前待编码图像块色度的预测像素值。
首先,建立该待编码图像块的亮度色度相关性模型,即确定参数α和β的数值。获取该目标块的邻接重建像素值和该暂态色度块的邻接重建像素值,其中,该目标块的邻接重建像素值包括该目标块的相邻的上边一行的图像块的亮度重建像素值和该目标块的相邻的左边一列的图像块的亮度重建像素值,该暂态色度块的邻接重建像素值包括该暂态色度块的相邻的上边一行的图像块的色度重建像素值和该目标块的相邻的左边一列的图像块的色度重建像素值。
其中,该目标块的相邻的上边一行的图像块的亮度重建像素的分辨率和采样点的位置,以及该暂态色度块的相邻的上边一行的图像块的色度重建像素的分辨率和采样点的位置相同,该目标块的相邻的左边一列的图像块的亮度重建像素的分辨率和采样点的位置,以及该暂态色度块的相邻的左边一列的图像块的色度重建像素的分辨率和采样点的位置相同。
应理解,如果该目标块的相邻的上边一行的图像块的亮度重建像素的分辨率和采样点的位置,以及该暂态色度块的相邻的上边一行的图像块的色度重建像素的分辨率和采样点的位置不相同,应该对该目标块的相邻的上边一行的图像块的亮度重建像素的分辨率和采样点进行调整,使得调整后的该目标块的相邻的上边一行的图像块的亮度重建像素的分辨率和采样点的位置,以及该暂态色度块的相邻的上边一行的图像块的色度重建像素的分辨率和采样点的位置相同。该调整可以是上采样、下采样或者根据采样点的位置进行的插值运算。同理,对左边一列的该目标块的相邻的左边一列的图像块的亮度重建像素的分辨率和采样点的位置,以及该暂态色度块的相邻的左边一列的图像块的色度重建像素的分辨率和采样点的位置进行调整。
根据该目标块的相邻的上边一行的图像块的亮度重建像素值和该暂态色度块的相邻的上边一行的图像块的色度重建像素值,该目标块的相邻的左边一列的图像块的亮度重建像素值和该目标块的相邻的左边一列的图像块的色度重建像素值,确定参数α和β的数值。
其次,根据建立的色度亮度相关性模型与根据该目标块的重建像素值,获取该暂态色度块的预测像素值。
将该目标块的重建像素值作为参考像素rec L,将该参考像素rec L以及α和β的数值,代入式(1),获取该暂态色度块的预测像素值。
pred c=α·rec L+β(1)
此时,通过根据该目标块的重建像素值、该目标块的邻接重建像素值和该暂态色度块的邻接重建像素值,获取该暂态色度块的预测像素值,通过利用视频图像空间域的相关性,达到去除视频空间冗余的目的,减小了编码所需的比特率。
可选地,该方法还包括:
根据该第一处理信息,对该暂态亮度块进行第一上采样处理,以得到该待处理图像块的亮度重建块,其中,该第一上采样处理为该第一处理信息指示的该待处理图像块的亮度分量下采样处理的逆处理。
具体而言,该第一处理信息指示该待处理图像块的亮度分量采用的下采样处理方式, 为了得到该待处理图像块的亮度重建块,对该暂态亮度块进行上采样处理,该上采样处理方式按照与下采样完全逆向的过程进行。
例如,该待处理图像块的亮度分量采用的下采样处理方式为2:1,获得该暂态亮度块后,对该暂态亮度块进行上采样率为1:2的上采样,得到该待处理图像块的亮度重建块。
应理解,该上采样处理方式与下采样完全逆向,还包括该上采样的采样点位置与该下采样的采样点位置完全逆向。
可选地,该方法还包括:
根据该待处理图像块的色度信息和该预测块,重建该暂态色度块;
根据该第二处理信息,对该暂态色度块进行第二上采样处理,以得到该待处理图像块的色度重建块,其中,该第二上采样处理为该第二处理信息指示的该待处理图像块的色度分量下采样处理的逆处理。
具体而言,该第二处理信息指示该待处理图像块的色度分量采用的下采样处理方式,为了得到该待处理图像块的色度重建块,对该暂态色度块进行上采样处理,该上采样处理方式按照与下采样完全逆向的过程进行。
可选地,该方法用于解码该待处理图像块,该获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,包括:
从码流中获取该亮度信息和该色度信息;并且,
从该码流中获取该第一处理信息和该第二处理信息,或者,
从该码流中获取该第一处理信息并获取预设的该第二处理信息,或者,
从该码流中获取该第二处理信息并获取预设的该第一处理信息,或者,
获取预设的该第一处理信息和该第二处理信息。
具体而言,该第一处理信息和该第二处理信息包括了图像区域的标识信息,该标识信息用于指示该第一处理信息和该第二处理信息的作用范围,该范围可以是部分图像区域、或者某个图像块或者某个图像子块。
可选地,该方法用于编码该待处理图像块,该获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,包括:
分别计算该待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价;
确定最小的该编码代价对应的候选的第一处理信息和候选的第二处理信息为该获取的第一处理信息和第二处理信息;
根据该获取的第一处理信息和第二处理信息编码该待处理图像块,以获取该待处理图像块的亮度信息和色度信息。
此时,通过确定该待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价,确定最小的该编码代价对应的候选的第一处理信息和候选的第二处理信息为该获取的第一处理信息和第二处理信息,减小了对当前该待处理图像的编码所需的比特率,节省了存储空间和网络资源。
可选地,该方法还包括:
将该目标第一处理信息、该目标第二处理信息、该目标亮度信息和该目标色度信息编入码流。
因此,在本申请中,首先获取的待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,然后根据该待处理图像块的亮度信息,重建该待处理图像块的暂态亮度块,再根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,因为利用该待处理图像块的暂态亮度块来对该待处理图像块色度进行预测,图像处理方式为图像块级的,更好地适应了一幅图像的不同区域的图像块的特性,能够提高视频编解码过程中的色度预测的准确度,改善重建图像的品质。
为了更好地理解本申请的一种色度预测的方法,下面从编码侧和解码侧分别结合本申请的一种色度预测的方法进行描述。
图6是根据本申请的编码示意性流程图。如图6所示,主要包括以下内容。
601,输入图像,将图像划分成图像块。对当前待处理图像块的亮度分量进行下采样得到初始信号。
602,将该初始信号与预测信号相减,得到当前待处理图像块的亮度分量的残差信号。
应注意,该预测信号是该当前待处理图像块的相邻的已重建像素生成当前待处理图像块的亮度分量的重建像素作为参考像素获得的预测信号,其中包括了603对当前待处理图像块的相邻的已重建像素生成当前待处理图像块的亮度分量的量化系数进行反量化得到变换系数,对该变换系数进行反变换,得到当前待处理图像块的亮度分量的残差信号;604,对相加后的该预测信号和残差信号进行滤波;605,得到该当前待处理图像块的亮度分量的重建像素。
606,对该当前待处理图像块的亮度分量的残差信号进行空间变换操作得到变化系数,再对变换系数做量化操作,得到量化系数。
607,可采用变长编码、二进制编码等熵编码技术对量化系数做熵编码得到压缩码流。
应理解,在编码时,按照上述流程,对该待处理图像块的亮度分量不进行下采样,原分辨率进行编码,得到原分辨率的编码代价,比较当前待处理图像块的原分辨率的编码代价和下采样的编码代价,选择编码代价小的编码方式的压缩码流。
当对该待处理图像块的色度分量进行编码时,可以利用该待处理图像块的亮度分量的重建像素对该待处理图像块的色度分量进行预测。需要注意的是,预测时,必须保证该待处理图像块的色度分量的分辨率和该待处理图像块的亮度分量的分辨率相同,如果该待处理图像块的色度分量的分辨率和该待处理图像块的亮度分量的分辨率不同,应该根据该色度分量的分辨率对该亮度分量的分辨率进行调整,使得调整后的该待处理图像块的亮度度分量的分辨率和该待处理图像块的色度分量的分辨率相同,进而可以根据该待处理图像块的亮度分量的重建像素对该待处理图像块的色度分量进行预测。
图7是根据本申请的解码侧示意性流程图。如图7所示,主要包括以下内容。
701,通过熵解码从当前码流中得到当前待处理图像块的亮度分量是否采用了下采样的编码模式(这里假设当前待处理图像块采用了下采样的模式)以及变化/量化系数。
702,对当前待处理图像块的亮度分量的量化系数进行反量化得到变换系数,对该变换系数进行反变换,得到当前待处理图像块的亮度分量的残差信号。
703,根据当前待处理图像块的亮度分量相邻的已重建像素生成当前待处理图像块的亮度分量的预测像素。
704,对相加后的该预测信号和残差信号进行滤波。
705,得到该当前待处理图像块的亮度分量的重建图像,应注意,该重建亮度分量的分辨率为低分辨率,还应对当前低分辨率的亮度重建像素进行上采样得到当前待处理图像块的原分辨率亮度分量重建像素。该上采样的过程与下采样的过程完全可逆。
当从码流中解析到当前待处理图像块的色度分量的没有经过下采样时,即当前待处理图像块的色度分量为原分辨率时,经过同样的过程得到当前待处理图像块的色度分量的残差信号,然后对低分辨率亮度重建应用亮度色度相关性模型获得待处理图像块的原分辨率色度分量的预测,然后在基于当前待处理图像块的原分辨率色度分量的预测与残差信号相加后的信号,进行滤波,获得当前待处理图像块的原分辨率色度分量重建。
图8是根据本申请的色度预测的设备800的示意性框图。如图8所示,该色度预测的设备800包括:
获取模块810,用于获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,该第一处理信息用于指示该待处理图像块的亮度分量采用的下采样处理方式,该第二处理信息用于指示该待处理图像块的色度分量采用的下采样处理方式。
重建模块820,用于根据该待处理图像块的亮度信息,重建该待处理图像块的暂态亮度块,其中,该暂态亮度块的分辨率由该待处理图像块的采样格式和该第一处理信息确定;
该获取模块810,还用于根据该暂态亮度块的分辨率、该待处理图像块的采样格式、该第二处理信息,获取该待处理图像块的暂态色度块的预测块,其中,该暂态亮度块的分辨率和暂态色度块的分辨率相同,该暂态色度块的分辨率由该待处理图像块的采样格式和该第二处理信息确定。
可选地,该确定模块810和该发送模块820用于执行本申请的一种色度预测的方法200的各个操作,为了简洁,在此不再赘述。
可选地,色度预测的设备800用于解码该待处理图像块,该获取模块810具体用于:从码流中获取该亮度信息和该色度信息;并且,从该码流中获取该第一处理信息和该第二处理信息,或者,从该码流中获取该第一处理信息并获取预设的该第二处理信息,或者,从该码流中获取该第二处理信息并获取预设的该第一处理信息,或者,获取预设的该第一处理信息和该第二处理信息。
可选地,色度预测的设备800用于编码该待处理图像块,该获取模块810具体用于:
分别计算该待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价;
确定最小的该编码代价对应的候选的第一处理信息和候选的第二处理信息为该获取的第一处理信息和第二处理信息;
根据该获取的第一处理信息和第二处理信息编码该待处理图像块,以获取该待处理图像块的亮度信息和色度信息。
上述色度预测的设备800与方法实施例中的色度预测的设备完全对应,由相应的模块执行相应的步骤,具体可以参考相应的方法实施例。
图9示出了是根据本申请的色度预测设备900的示意性框图。如图9所示,该色度预测的设备900包括:
存储器910,用于存储程序,所述程序包括代码;
收发器920,用于和其他设备进行通信;
处理器930,用于执行存储器910中的程序代码。
可选地,当所述代码被执行时,所述处理器930可以实现方法200的各个操作,为了简洁,在此不再赘述。收发器920用于在处理器930的驱动下执行具体的信号收发。
色度预测的设备900与方法实施例中的色度预测的设备完全对应,由相应的模块执行相应的步骤,具体可以参考相应的方法实施例。
图10是视频编解码装置或电子设备1000的示意性框图,该装置或者电子设备可以并入根据本申请的实施例的编码解码器。图11是根据本申请的实施例的用于视频编码的示意性装置图。下面将说明图10和图11中的单元。
电子设备1000可以例如是无线通信系统的移动终端或者用户设备。应理解,可以在可能需要对视频图像进行编码和解码,或者编码,或者解码的任何电子设备或者装置内实施本申请的实施例。
装置1000可以包括用于并入和保护设备的壳30。装置1000还可以包括形式为液晶显示器的显示器32。在本申请的其它实施例中,显示器可以是适合于显示图像或者视频的任何适当的显示器技术。装置1000还可以包括小键盘34。在本申请的其它实施例中,可以运用任何适当的数据或者用户接口机制。例如,可以实施用户接口为虚拟键盘或者数据录入系统作为触敏显示器的一部分。装置可以包括麦克风36或者任何适当的音频输入,该音频输入可以是数字或者模拟信号输入。装置1000还可以包括如下音频输出设备,该音频输出设备在本申请的实施例中可以是以下各项中的任何一项:耳机38、扬声器或者模拟音频或者数字音频输出连接。装置1000也可以包括电池40,在本申请的其它实施例中,设备可以由任何适当的移动能量设备,比如太阳能电池、燃料电池或者时钟机构生成器供电。装置还可以包括用于与其它设备的近程视线通信的红外线端口42。在其它实施例中,装置1000还可以包括任何适当的近程通信解决方案,比如蓝牙无线连接或者USB/火线有线连接。
装置1000可以包括用于控制装置1000的控制器56或者处理器。控制器56可以连接到存储器58,该存储器在本申请的实施例中可以存储形式为图像的数据和音频的数据,和/或也可以存储用于在控制器56上实施的指令。控制器56还可以连接到适合于实现音频和/或视频数据的编码和解码或者由控制器56实现的辅助编码和解码的编码解码器电路54。
装置1000还可以包括用于提供用户信息并且适合于提供用于在网络认证和授权用户的认证信息的读卡器48和智能卡46,例如UICC和UICC读取器。
装置1000还可以包括无线电接口电路52,该无线电接口电路连接到控制器并且适合于生成例如用于与蜂窝通信网络、无线通信系统或者无线局域网通信的无线通信信号。装置1000还可以包括天线44,该天线连接到无线电接口电路52用于向其它(多个)装置发送在无线电接口电路52生成的射频信号并且用于从其它(多个)装置接收射频信号。
在本申请的一些实施例中,装置1000包括能够记录或者检测单帧的相机,编码解码器54或者控制器接收到这些单帧并对它们进行处理。在本申请的一些实施例中,装置可以在传输和/或存储之前从另一设备接收待处理的视频图像数据。在本申请的一些实施例中,装置1000可以通过无线或者有线连接接收图像用于编码/解码。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (22)

  1. 一种色度预测的方法,其特征在于,包括:
    获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,所述第一处理信息用于指示所述待处理图像块的亮度分量采用的下采样处理方式,所述第二处理信息用于指示所述待处理图像块的色度分量采用的下采样处理方式;
    根据所述待处理图像块的亮度信息,重建所述待处理图像块的暂态亮度块,其中,所述暂态亮度块的分辨率由所述待处理图像块的采样格式和所述第一处理信息确定;
    根据所述暂态亮度块的分辨率、所述待处理图像块的采样格式、所述第二处理信息,获取所述待处理图像块的暂态色度块的预测块,其中,所述暂态亮度块的分辨率和暂态色度块的分辨率相同,所述暂态色度块的分辨率由所述待处理图像块的采样格式和所述第二处理信息确定。
  2. 根据权利要求1所述的方法,其特征在于,所述第一处理信息用于指示所述待处理图像块的亮度分量采用的下采样处理方式,包括:
    所述第一处理信息用于指示不对所述待处理图像块的亮度分量进行下采样;或者,所述第一处理信息用于指示对所述待处理图像块的亮度分量进行下采样的滤波器。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二处理信息用于指示所述待处理图像块的色度分量采用的下采样处理方式,包括:
    所述第二处理信息用于指示不对所述待处理图像块的色度分量进行下采样;或者,所述第二处理信息用于指示对所述待处理图像块的色度分量进行下采样的滤波器。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述暂态亮度块的分辨率、所述待处理图像块的采样格式、所述第二处理信息,获取所述待处理图像块的暂态色度块的预测块,包括:
    根据所述待处理图像块的采样格式和所述第二处理信息,确定所述暂态色度块的分辨率;
    当所述暂态色度块的分辨率和所述暂态亮度块的分辨率不相同时,调整所述暂态亮度块的分辨率,以使所述调整后的暂态亮度块的分辨率和所述暂态色度块的分辨率相同,将所述调整后的暂态亮度块作为所述暂态色度块的目标块;
    当所述暂态色度块的分辨率和所述暂态亮度块的分辨率相同时,保持所述暂态亮度块的分辨率,将所述暂态亮度块作为所述暂态色度块的目标块;
    根据所述暂态色度块的目标块,获得所述暂态色度块的预测块。
  5. 根据权利要求4所述的方法,其特征在于,所述调整所述暂态亮度块的分辨率,包括:
    调整所述暂态亮度块的水平分辨率,以使调整后的所述暂态亮度块的水平分辨率和暂态色度块的水平分辨率相同;并且,
    调整所述暂态亮度块的竖直分辨率,以使调整后的所述暂态亮度块的竖直分辨率和暂态色度块的竖直分辨率相同。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据所述暂态色度块的目标 块,获得所述暂态色度块的预测块,包括:
    根据所述目标块的重建像素值、所述目标块的邻接重建像素值和所述暂态色度块的邻接重建像素值,获取所述暂态色度块的预测像素值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一处理信息,对所述暂态亮度块进行第一上采样处理,以得到所述待处理图像块的亮度重建块,其中,所述第一上采样处理为所述第一处理信息指示的所述待处理图像块的亮度分量下采样处理的逆处理。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述待处理图像块的色度信息和所述预测块,重建所述暂态色度块;
    根据所述第二处理信息,对所述暂态色度块进行第二上采样处理,以得到所述待处理图像块的色度重建块,其中,所述第二上采样处理为所述第二处理信息指示的所述待处理图像块的色度分量下采样处理的逆处理。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法用于解码所述待处理图像块,所述获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,包括:
    从码流中获取所述亮度信息和所述色度信息;并且,
    从所述码流中获取所述第一处理信息和所述第二处理信息,或者,
    从所述码流中获取所述第一处理信息并获取预设的所述第二处理信息,或者,
    从所述码流中获取所述第二处理信息并获取预设的所述第一处理信息,或者,
    获取预设的所述第一处理信息和所述第二处理信息。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法用于编码所述待处理图像块,所述获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,包括:
    分别计算所述待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价;
    确定最小的所述编码代价对应的候选的第一处理信息和候选的第二处理信息为所述获取的第一处理信息和第二处理信息;
    根据所述获取的第一处理信息和第二处理信息编码所述待处理图像块,以获取所述待处理图像块的亮度信息和色度信息。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    将所述目标第一处理信息、所述目标第二处理信息、所述目标亮度信息和所述目标色度信息编入码流。
  12. 一种色度预测的设备,其特征在于,包括:
    获取模块,用于获取待处理图像块的亮度信息、色度信息、第一处理信息和第二处理信息,所述第一处理信息用于指示所述待处理图像块的亮度分量采用的下采样处理方式,所述第二处理信息用于指示所述待处理图像块的色度分量采用的下采样处理方式;
    重建模块,用于根据所述待处理图像块的亮度信息,重建所述待处理图像块的暂态亮度块,其中,所述暂态亮度块的分辨率由所述待处理图像块的采样格式和所述第一处理信息确定;
    所述获取模块,还用于根据所述暂态亮度块的分辨率、所述待处理图像块的采样格式、所述第二处理信息,获取所述待处理图像块的暂态色度块的预测块,其中,所述暂态亮度块的分辨率和暂态色度块的分辨率相同,所述暂态色度块的分辨率由所述待处理图像块的采样格式和所述第二处理信息确定。
  13. 根据权利要求12所述的设备,其特征在于,所述第一处理信息用于指示所述待处理图像块的亮度分量采用的下采样处理方式,包括:
    所述第一处理信息用于指示不对所述待处理图像块的亮度分量进行下采样;或者,所述第一处理信息用于指示对所述待处理图像块的亮度分量进行下采样的滤波器。
  14. 根据权利要求12或13所述的设备,其特征在于,所述第二处理信息用于指示所述待处理图像块的色度分量采用的下采样处理方式,包括:
    所述第二处理信息用于指示不对所述待处理图像块的色度分量进行下采样;或者,所述第二处理信息用于指示对所述待处理图像块的色度分量进行下采样的滤波器。
  15. 根据权利要求12至14中任一项所述的设备,其特征在于,所述获取模块具体用于:
    根据所述待处理图像块的采样格式和所述第二处理信息,确定所述暂态色度块的分辨率;
    当所述暂态色度块的分辨率和所述暂态亮度块的分辨率不相同时,调整所述暂态亮度块的分辨率,以使所述调整后的暂态亮度块的分辨率和所述暂态色度块的分辨率相同,将所述调整后的暂态亮度块作为所述暂态色度块的目标块;
    当所述暂态色度块的分辨率和所述暂态亮度块的分辨率相同时,保持所述暂态亮度块的分辨率,将所述暂态亮度块作为所述暂态色度块的目标块;
    根据所述暂态色度块的目标块,获得所述暂态色度块的预测块。
  16. 根据权利要求15所述的设备,其特征在于,所述获取模块具体用于:
    调整所述暂态亮度块的水平分辨率,以使调整后的所述暂态亮度块的水平分辨率和暂态色度块的水平分辨率相同;并且,
    调整所述暂态亮度块的竖直分辨率,以使调整后的所述暂态亮度块的竖直分辨率和暂态色度块的竖直分辨率相同。
  17. 根据权利要求15或16所述的设备,其特征在于,所述获取模块具体用于:
    根据所述目标块的重建像素值、所述目标块的邻接重建像素值和所述暂态色度块的邻接重建像素值,获取所述暂态色度块的预测像素值。
  18. 根据权利要求12至17中任一项所述的设备,其特征在于,所述设备还包括:
    处理模块,用于根据所述第一处理信息,对所述暂态亮度块进行第一上采样处理,以得到所述待处理图像块的亮度重建块,其中,所述第一上采样处理为所述第一处理信息指示的所述待处理图像块的亮度分量下采样处理的逆处理。
  19. 根据权利要求12至18中任一项所述的设备,其特征在于,所述处理模块还用于:
    根据所述待处理图像块的色度信息和所述预测块,重建所述暂态色度块;
    根据所述第二处理信息,对所述暂态色度块进行第二上采样处理,以得到所述待处理图像块的色度重建块,其中,所述第二上采样处理为所述第二处理信息指示的所述待处理图像块的色度分量下采样处理的逆处理。
  20. 根据权利要求12至19中任一项所述的设备,其特征在于,所述设备用于解码所述待处理图像块,所述获取模块具体用于:
    从码流中获取所述亮度信息和所述色度信息;并且,
    从所述码流中获取所述第一处理信息和所述第二处理信息,或者,
    从所述码流中获取所述第一处理信息并获取预设的所述第二处理信息,或者,
    从所述码流中获取所述第二处理信息并获取预设的所述第一处理信息,或者,
    获取预设的所述第一处理信息和所述第二处理信息。
  21. 根据权利要求12至19任一项所述的设备,其特征在于,所述设备用于编码所述待处理图像块,所述获取模块具体用于:
    分别计算所述待处理图像块的由至少一个候选的第一处理信息和至少一个候选的第二处理信息确定的编码代价;
    确定最小的所述编码代价对应的候选的第一处理信息和候选的第二处理信息为所述获取的第一处理信息和第二处理信息;
    根据所述获取的第一处理信息和第二处理信息编码所述待处理图像块,以获取所述待处理图像块的亮度信息和色度信息。
  22. 根据权利要求21所述的设备,其特征在于,所述设备还包括:
    写入模块,用于将所述目标第一处理信息、所述目标第二处理信息、所述目标亮度信息和所述目标色度信息编入码流。
PCT/CN2018/087836 2017-07-17 2018-05-22 色度预测的方法和设备 WO2019015389A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020227001147A KR20220011216A (ko) 2017-07-17 2018-05-22 크로마 예측 방법 및 디바이스
EP18835884.0A EP3633995B1 (en) 2017-07-17 2018-05-22 Method and device for chroma prediction
JP2020502227A JP7011031B2 (ja) 2017-07-17 2018-05-22 クロマ予測方法及びデバイス
EP22163847.1A EP4117286A1 (en) 2017-07-17 2018-05-22 Image block prediction method and device
KR1020207001173A KR102352085B1 (ko) 2017-07-17 2018-05-22 크로마 예측 방법 및 디바이스
US16/744,987 US11082709B2 (en) 2017-07-17 2020-01-16 Chroma prediction method and device
US17/303,886 US20210297682A1 (en) 2017-07-17 2021-06-09 Chroma prediction method and device
JP2022002794A JP7461974B2 (ja) 2017-07-17 2022-01-12 クロマ予測方法及びデバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710582094.1A CN109274969B (zh) 2017-07-17 2017-07-17 色度预测的方法和设备
CN201710582094.1 2017-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/744,987 Continuation US11082709B2 (en) 2017-07-17 2020-01-16 Chroma prediction method and device

Publications (1)

Publication Number Publication Date
WO2019015389A1 true WO2019015389A1 (zh) 2019-01-24

Family

ID=65015986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087836 WO2019015389A1 (zh) 2017-07-17 2018-05-22 色度预测的方法和设备

Country Status (7)

Country Link
US (2) US11082709B2 (zh)
EP (2) EP4117286A1 (zh)
JP (2) JP7011031B2 (zh)
KR (2) KR102352085B1 (zh)
CN (1) CN109274969B (zh)
TW (1) TWI663880B (zh)
WO (1) WO2019015389A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045654A3 (en) * 2019-12-30 2021-07-15 Huawei Technologies Co., Ltd. Method and apparatus of filtering for cross-component linear model prediction
WO2021086237A3 (en) * 2020-04-01 2021-07-29 Huawei Technologies Co., Ltd. Sample fetching and padding for downsampling filtering

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3711047B1 (en) * 2017-11-17 2022-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding or decoding directional audio coding parameters using different time/frequency resolutions
KR20210087928A (ko) 2018-11-06 2021-07-13 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 인트라 예측을 위한 파라미터 유도의 복잡성 감소
CN113170122B (zh) 2018-12-01 2023-06-27 北京字节跳动网络技术有限公司 帧内预测的参数推导
KR20230170146A (ko) 2018-12-07 2023-12-18 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 컨텍스트 기반 인트라 예측
EP3903482A4 (en) 2019-02-22 2022-06-01 Beijing Bytedance Network Technology Co., Ltd. SELECTING ADJACENT SAMPLES FOR INTRA PREDICTION
CA3128769C (en) 2019-02-24 2023-01-24 Beijing Bytedance Network Technology Co., Ltd. Parameter derivation for intra prediction
KR20210100739A (ko) * 2019-03-06 2021-08-17 엘지전자 주식회사 Cclm 예측에 기반한 영상 디코딩 방법 및 그 장치
CN111698501B (zh) * 2019-03-11 2022-03-01 杭州海康威视数字技术股份有限公司 解码方法及装置
WO2020192642A1 (en) 2019-03-24 2020-10-01 Beijing Bytedance Network Technology Co., Ltd. Conditions in parameter derivation for intra prediction
CN113412621A (zh) * 2019-03-25 2021-09-17 Oppo广东移动通信有限公司 图像分量的预测方法、编码器、解码器及计算机存储介质
CN114827612B (zh) 2019-06-25 2023-04-11 北京大学 视频图像编码和解码方法、设备及介质
CN110267043B (zh) * 2019-06-28 2023-02-07 广东中星微电子有限公司 解码方法、解码装置和电子设备
CN110557621B (zh) * 2019-08-27 2022-06-14 咪咕文化科技有限公司 参数获取方法、像素点对选择方法及相关设备
CN110677676B (zh) * 2019-09-27 2024-02-09 腾讯科技(深圳)有限公司 视频编码方法和装置、视频解码方法和装置及存储介质
CN113497937B (zh) * 2020-03-20 2023-09-05 Oppo广东移动通信有限公司 图像编码方法、图像解码方法及相关装置
CN111784708B (zh) * 2020-07-03 2021-03-12 上海骏聿数码科技有限公司 图像防篡改检验方法和装置
WO2022191553A1 (ko) * 2021-03-08 2022-09-15 현대자동차주식회사 행렬 기반 크로스 컴포넌트 예측을 이용하는 비디오 코딩방법 및 장치
CN114025168B (zh) * 2021-09-30 2023-08-04 浙江大华技术股份有限公司 视频图像的处理方法、处理设备、电子设备以及存储介质
CN114501007B (zh) * 2021-12-20 2024-01-09 杭州当虹科技股份有限公司 基于422视频的快速编码方法及编码器
EP4300955A1 (en) * 2022-06-29 2024-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Encoding/decoding video picture data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394565A (zh) * 2008-10-20 2009-03-25 成都九洲电子信息系统有限责任公司 一种帧内预测方法
CN103220508A (zh) * 2012-01-20 2013-07-24 华为技术有限公司 编解码方法和装置
CN103688533A (zh) * 2011-06-20 2014-03-26 联发科技(新加坡)私人有限公司 可减少行存储器的色度帧内预测方法及装置
US20160241861A1 (en) * 2013-09-30 2016-08-18 University-Industry Foundation (Uif), Yonsei University Method, device and system for encoding and decoding image

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359953C (zh) * 2004-09-08 2008-01-02 华为技术有限公司 基于帧内编码的图像色度预测方法
CN101159874A (zh) * 2004-09-08 2008-04-09 华为技术有限公司 基于帧内编码的图像色度预测方法
CN101742301B (zh) * 2008-11-24 2017-04-19 北京中星微电子有限公司 一种块模式编码方法及装置
US20110002554A1 (en) 2009-06-11 2011-01-06 Motorola, Inc. Digital image compression by residual decimation
US20110002391A1 (en) 2009-06-11 2011-01-06 Motorola, Inc. Digital image compression by resolution-adaptive macroblock coding
US9288500B2 (en) * 2011-05-12 2016-03-15 Texas Instruments Incorporated Luma-based chroma intra-prediction for video coding
JP2013034162A (ja) 2011-06-03 2013-02-14 Sony Corp 画像処理装置及び画像処理方法
GB2492130A (en) * 2011-06-22 2012-12-26 Canon Kk Processing Colour Information in an Image Comprising Colour Component Sample Prediction Being Based on Colour Sampling Format
US9693070B2 (en) * 2011-06-24 2017-06-27 Texas Instruments Incorporated Luma-based chroma intra-prediction for video coding
TW201309036A (zh) * 2011-06-28 2013-02-16 Samsung Electronics Co Ltd 使用亮度成分影像的預測色度成分影像用的裝置與方法
CN103650512B (zh) 2011-07-12 2017-04-19 英特尔公司 基于亮度的色度帧内预测
JP2015508250A (ja) * 2012-01-19 2015-03-16 マグナム セミコンダクター, インコーポレイテッド 適応低解像度アップデートモードを提供するための方法および機器
GB2501535A (en) * 2012-04-26 2013-10-30 Sony Corp Chrominance Processing in High Efficiency Video Codecs
JP6060394B2 (ja) * 2012-06-27 2017-01-18 インテル・コーポレーション クロスレイヤー・クロスチャネル残差予測
EP3697090B1 (en) * 2013-03-29 2022-01-05 JVCKENWOOD Corporation Image decoding device, image decoding method, and image decoding program
AU2014385774B2 (en) 2014-03-04 2019-01-17 Microsoft Technology Licensing, Llc Adaptive switching of color spaces, color sampling rates and/or bit depths
US10455249B2 (en) * 2015-03-20 2019-10-22 Qualcomm Incorporated Downsampling process for linear model prediction mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394565A (zh) * 2008-10-20 2009-03-25 成都九洲电子信息系统有限责任公司 一种帧内预测方法
CN103688533A (zh) * 2011-06-20 2014-03-26 联发科技(新加坡)私人有限公司 可减少行存储器的色度帧内预测方法及装置
CN103220508A (zh) * 2012-01-20 2013-07-24 华为技术有限公司 编解码方法和装置
US20160241861A1 (en) * 2013-09-30 2016-08-18 University-Industry Foundation (Uif), Yonsei University Method, device and system for encoding and decoding image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045654A3 (en) * 2019-12-30 2021-07-15 Huawei Technologies Co., Ltd. Method and apparatus of filtering for cross-component linear model prediction
WO2021086237A3 (en) * 2020-04-01 2021-07-29 Huawei Technologies Co., Ltd. Sample fetching and padding for downsampling filtering

Also Published As

Publication number Publication date
JP7011031B2 (ja) 2022-01-26
CN109274969B (zh) 2020-12-22
CN109274969A (zh) 2019-01-25
TW201909623A (zh) 2019-03-01
EP3633995A4 (en) 2020-05-27
TWI663880B (zh) 2019-06-21
KR20220011216A (ko) 2022-01-27
JP7461974B2 (ja) 2024-04-04
JP2020526994A (ja) 2020-08-31
JP2022050585A (ja) 2022-03-30
US11082709B2 (en) 2021-08-03
EP3633995A1 (en) 2020-04-08
KR20200019201A (ko) 2020-02-21
EP4117286A1 (en) 2023-01-11
US20210297682A1 (en) 2021-09-23
KR102352085B1 (ko) 2022-01-17
EP3633995B1 (en) 2022-04-06
US20200154118A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
TWI663880B (zh) 色度預測的方法和設備
US11463700B2 (en) Video picture processing method and apparatus
US10182235B2 (en) Hardware efficient sparse FIR filtering in layered video coding
CN110300301B (zh) 图像编解码方法和装置
KR20150010903A (ko) 모바일 단말 화면을 위한 3k해상도를 갖는 디스플레이 영상 생성 방법 및 장치
WO2018170801A1 (zh) 图像滤波方法及装置
EP4060990A1 (en) Video encoding method, video decoding method, and corresponding apparatuses
WO2019128716A1 (zh) 图像的预测方法、装置及编解码器
US10674163B2 (en) Color space compression
CN110572673A (zh) 视频编解码方法和装置、存储介质及电子装置
WO2019091302A1 (en) Image prediction method and apparatus
WO2019091372A1 (zh) 图像预测方法和装置
WO2018120230A1 (zh) 图像滤波方法、装置以及设备
CN110582022B (zh) 视频编解码方法和装置及存储介质
CN114222127A (zh) 一种视频编码方法、视频解码方法及装置
CN110572677A (zh) 视频编解码方法和装置、存储介质及电子装置
WO2014163903A1 (en) Integrated spatial downsampling of video data
WO2023246655A1 (zh) 一种图像编码、解码方法及编码、解码装置
CN110636295A (zh) 视频编解码方法和装置、存储介质及电子装置
KR20180054623A (ko) Hdr 코딩/디코딩을 위한 컬러 성분 샘플의 코-로케이팅된 루미넌스 샘플의 결정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207001173

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020502227

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018835884

Country of ref document: EP

Effective date: 20200102

NENP Non-entry into the national phase

Ref country code: DE