WO2019015039A1 - 一种基于物联网中继器的选择加密方法及装置 - Google Patents

一种基于物联网中继器的选择加密方法及装置 Download PDF

Info

Publication number
WO2019015039A1
WO2019015039A1 PCT/CN2017/100754 CN2017100754W WO2019015039A1 WO 2019015039 A1 WO2019015039 A1 WO 2019015039A1 CN 2017100754 W CN2017100754 W CN 2017100754W WO 2019015039 A1 WO2019015039 A1 WO 2019015039A1
Authority
WO
WIPO (PCT)
Prior art keywords
internet
data packet
things
encryption
encryption unit
Prior art date
Application number
PCT/CN2017/100754
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2019015039A1 publication Critical patent/WO2019015039A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/14Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload

Definitions

  • the present invention claims the prior application priority of the application No. 201710598683.9, entitled “Selection and Encryption Method and Apparatus Based on Internet of Things Repeater", filed on July 21, 2017, the contents of the above-mentioned prior application are incorporated by reference. The way is incorporated into this text.
  • the present application relates to the field of communications, and in particular, to a selective encryption method and apparatus based on an Internet of Things repeater.
  • the Internet of Things is an important part of the new generation of information technology, and an important stage of development in the era of "informatization.” Its English name is: “Internet of things (IoT)". As the name suggests, the Internet of Things is the Internet that connects things. This has two meanings: First, the core and foundation of the Internet of Things is still the Internet, which is an extended and extended network based on the Internet; Second, its client extends and extends to any item and item for information. Exchange and communication, that is, things and things. The Internet of Things is widely used in the convergence of networks through communication-aware technologies such as intelligent sensing, identification technology and pervasive computing. It is also called the third wave of the development of the world information industry after computers and the Internet.
  • the Internet of Things is the application expansion of the Internet. It is not so much that the Internet of Things is a network, but the Internet of Things is a business and application. Therefore, application innovation is the core of the development of the Internet of Things. Innovation 2.0 with user experience as the core is the soul of the development of the Internet of Things.
  • the Internet of Things solves the interconnection between objects and the exchange of data between objects.
  • the existing Internet of Things is connected to the Internet based on the Internet of Things (AP). After receiving the data of the Internet of Things terminal, the Internet of Things repeater cannot separately encrypt the data of the Internet of Things terminal, so the existing security is not high.
  • the application provides a selective encryption method based on an Internet of Things repeater. It can improve the security of IoT data and improve the user experience.
  • a method for selecting an encryption based on an Internet of Things repeater comprising the steps of:
  • the Internet of Things relay receives a data packet sent by the Internet of Things terminal
  • the IoT repeater receives a first encryption unit selected by a user input through a human-computer interaction interface
  • the Internet of Things repeater invokes the first encryption unit to perform encryption processing on the data packet
  • the Internet of Things repeater invokes the first encryption unit to perform encryption processing on the data packet
  • the IoT repeater sends the encrypted data packet to an IoT access point.
  • the method may further include: before the IoT repeater sends the encrypted data packet to the gateway:
  • the alternate encryption unit of the first encryption unit is invoked to encrypt the data packet.
  • the requesting, by the IoT access point, the first encryption unit to perform encryption processing on the data packet includes:
  • the IoT repeater acquires a signal modulation manner of the data packet sent by the Internet of Things terminal, determines a secret key according to the signal modulation manner, and invokes the first encryption unit to encrypt the data packet by using the secret key. Handle working hours.
  • the determining the secret key according to the modulation manner specifically includes:
  • the determining the secret key according to the modulation manner specifically includes: if the data packet of the data packet is parsed by using the quadrature phase shift keying QPSK, the energy of the QPSK is obtained.
  • a phase number which is a value obtained by sequentially sorting the phase numbers as the secret key.
  • a selective encryption device based on an Internet of Things repeater comprising:
  • a receiving unit configured to receive a data packet sent by the Internet of Things terminal
  • a processing unit configured to receive a first encryption unit selected by a user input through a human-computer interaction interface; and invoke the first encryption unit to perform encryption processing on the data packet;
  • the sending unit is configured to send the encrypted data packet to the Internet of Things access point.
  • the processing unit is further configured to: if the first encryption unit encrypts the data packet, If it is defeated, the alternate encryption unit of the first encryption unit is called to encrypt the data packet.
  • the processing unit is configured to acquire a signal modulation manner of the data packet sent by the Internet of Things terminal, determine a secret key according to the signal modulation manner, and invoke the first encryption unit to use the secret key pair
  • the data packet is subjected to an encryption processing working period.
  • the working period processing unit is configured to parse the data packet to obtain a signal modulation manner of the data packet, and query, according to the mapping manner between the modulation mode and the key, the signal modulation mode. Secret key.
  • the processing unit is further configured to: if the signal modulation mode of the data packet is obtained by parsing the data packet is quadrature phase shift keying QPSK, acquiring a phase number with energy in the QPSK, The phase number is sorted in order to obtain the value as the secret key.
  • a computer storage medium is provided, wherein the computer storage medium can store a program, the program execution comprising some or all of the steps of the selective encryption method of any one of the Internet of Things repeaters described in the above first aspect. .
  • a repeater device comprising: one or more processors, a memory, a bus system, a transceiver, and one or more programs, the processor, the memory, and The transceiver is coupled by the bus system; wherein the one or more programs are stored in the memory, the one or more programs including instructions that, when executed by the access point, cause the repeater to perform the In one aspect and in the first aspect, it is entirely possible to design any of the methods provided.
  • the AP selects an encryption unit corresponding to the Internet of Things terminal according to the serial number of the Internet of Things terminal, and encrypts the data through the encryption unit.
  • the IoT terminal does not need to configure encryption. All encryption settings are in the repeater. This method can effectively reduce the cost of the IoT terminal, and for the entire Internet of Things, it can be connected under one repeater.
  • the IoT terminal can only reduce the cost of the Internet of Things as a whole for the repeater configuration.
  • the computing power of the repeater is generally stronger than that of the IoT terminal, so the data transmission can be reduced when the encryption unit is operated. Delay, reduce network latency and improve user experience.
  • 1 is a schematic flow chart of a data routing method based on an Internet of Things repeater
  • FIG. 2 is a flow chart of transmission of a packet sent by an Internet of Things terminal to an Internet of Things repeater
  • 3 is a flow chart of a method for selecting an encryption method based on an Internet of Things repeater
  • FIG. 4 is a schematic diagram of a technical scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a mapping relationship provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for selecting and encrypting an Internet of Things based repeater according to another embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an IoT-based repeater device provided by the present application.
  • FIG. 8 is a schematic structural diagram of hardware of an Internet of Things repeater provided by the present application.
  • Computer device also referred to as “computer” in the context, is meant an intelligent electronic device that can perform predetermined processing, such as numerical calculations and/or logical calculations, by running a predetermined program or instruction, which can include a processor and The memory is executed by the processor to execute a predetermined process pre-stored in the memory to execute a predetermined process, or is executed by hardware such as an ASIC, an FPGA, a DSP, or the like, or a combination of the two.
  • Computer devices include, but are not limited to, servers, personal computers, notebook computers, tablets, smart phones, and the like.
  • an uplink data transmitting method of an Internet of Things repeater is provided.
  • the method is applied to the Internet of Things network as shown in FIG. 1.
  • the Internet of Things includes: an Internet of Things terminal 10, an Internet of Things access point AP20, a gateway 30, and an Internet of Things terminal 40.
  • the Internet of Things terminal can have different manifestations according to different situations.
  • the Internet of Things terminal can be: a mobile phone, a tablet computer, a computer, etc., of course, it can also include other devices with networking functions, such as smart TV, smart.
  • the air conditioner, the smart water bottle or some Internet of Things terminal devices, the above-mentioned Internet of Things terminal 10 is connected to the Internet of Things terminal 40 by wireless, the Internet of Things terminal 40 is connected to the AP 20, and the AP 20 is connected to the AP 20 by another means (ie, a wireless connection method).
  • the gateway 30 is connected to the Internet.
  • the foregoing wireless methods include, but are not limited to, Bluetooth, WIFI, etc., and the other manner may be LTE or wired.
  • the foregoing gateway may specifically be a mobile base station, a mobile relay station, a switch, or the like. .
  • the wired mode is taken as an example, and for convenience of representation, only one solid line is shown here.
  • the above-mentioned gateway 30 may be a personal computer (PC) according to the size of the Internet of Things. In practice, it may be a plurality of PCs, servers, or server groups. The specific embodiment of the present invention is not limited. The specific manifestation of the above gateway 30.
  • PC personal computer
  • FIG. 2 is a flow chart of data reception and transmission of an Internet of Things repeater. As shown in FIG. 2, the process includes:
  • Step S201 the Internet of Things terminal 10 sends the data packet to be sent to the Internet of Things repeater 40 by wireless;
  • Step S202 the Internet of Things repeater 40 sends the data packet to the AP20;
  • Step S203 AP20 forwards the data packet to the gateway 30;
  • Step S204 The gateway 30 transmits the data packet to the Internet.
  • FIG. 3 is a method for selecting and encrypting an Internet of Things based repeater according to the present invention.
  • the method is implemented in the network architecture as shown in FIG. 4, as shown in FIG.
  • An IoT terminal can connect multiple IoT access terminals under the Internet of Things terminal.
  • the AP can be a mobile phone that opens a hotspot, a personal computer or a router that provides a wireless connection, and the method is as shown in FIG. step:
  • Step S301 The Internet of Things terminal sends a data packet to the Internet of Things relay.
  • the object-to-network terminal in the above step S301 may specifically be: a mobile phone, a tablet computer, a computer, etc., of course, it may also include other devices with networking functions, such as a smart TV, a smart air conditioner, a smart water bottle, a smart light, a smart switch, or Some IoT smart devices.
  • the manner in which the Internet of Things terminal sends a data packet to the Internet of Things relay may be a method of transmitting a data packet by using a wireless connection, including but not limited to: Bluetooth, Wireless Fidelity (WIFI) Or a wireless method such as Zigbee, wherein the above WIFI needs to comply with the IEEE802.11b standard.
  • a wireless connection including but not limited to: Bluetooth, Wireless Fidelity (WIFI) Or a wireless method such as Zigbee, wherein the above WIFI needs to comply with the IEEE802.11b standard.
  • the Internet of Things and the Internet of Things terminal are only for wireless IoT terminals, because for the Internet of Things, the number of devices accessed by it is large.
  • the connection is through a wired connection, the terminal is first. The number of accesses is limited, and for the home, the wired connection is unimaginable for the wiring of the home user, and the cost of the cable is also very high, so in the technical solution of the present invention
  • the connection between the IoT terminal and the IoT terminal is limited to wireless connection.
  • Step S302 Receive a first encryption unit selected by a user input through a human-computer interaction interface.
  • the type of the Internet of Things terminal in the above step S302 can be set according to the situation of the device.
  • the IoT terminal can specifically include: a smart electric light, a smart television, and a smart cleaning device.
  • Equipment, intelligent sleep equipment, intelligent monitoring equipment, etc. can be in various forms, for example, for smart lights, including but not limited to: smart table lamps, smart ceiling lamps, smart wall lamps, etc., for example, for smart TV
  • it can be a Samsung smart TV.
  • it can also be a Sharp smart TV.
  • a smart cleaning device it can be a smart sweeping robot.
  • it can also include a smart vacuum cleaner, a smart garbage disposer, etc.
  • the device for example, for a smart sleep device, may be: a smart mattress, a smart sofa, etc., for example, for an intelligent monitoring device, or it may be an intelligent blood pressure meter, a smart thermometer, etc.
  • the present invention is related to the Internet of Things
  • the specific form and number or type of terminals are not limited.
  • the user selection and encryption unit mapping table in the above steps is as shown in FIG. 5, and the mapping may be a one-to-one mapping, or may be a one-to-many mapping.
  • the cryptographic unit in the foregoing step S302 may specifically be a hardware cryptographic unit disposed in the Internet of Things repeater, and includes an encryption algorithm preset by the manufacturer.
  • the cryptographic unit may also be configured in the Internet of Things relay.
  • the software encryption unit in the device does not limit the specific expression of the above encryption unit.
  • the foregoing encryption algorithms include, but are not limited to, triple data encryption algorithm block cipher (English: riple Data Encryption Algorithm, 3DES), message digest algorithm (English: Message Digest Algorithm, MD5) or RSA (Rivest, Shamir, Adleman) and other encryption algorithms.
  • the invention is not limited to specific encryption algorithms.
  • 3DES is a generic term for triple-data encryption algorithm block ciphers. It is equivalent to applying three DES encryption algorithms to each data block. Due to the increased computing power of the computer, the key length of the original DES password becomes vulnerable to brute force; 3DES is designed to provide a relatively simple method to avoid similar attacks by increasing the key length of DES.
  • Step S303 The Internet of Things repeater invokes the first encryption unit to perform encryption processing on the data packet.
  • the implementation method of the foregoing step S303 may specifically be:
  • the first encryption unit is a 3DES encryption unit, and the Internet of Things relay invokes the 3DES encryption unit to perform 3DES encryption processing on the data packet.
  • the first encryption unit is a RAS encryption unit, and the Internet of Things relay invokes the RAS encryption unit to perform RAS encryption processing on the data packet.
  • the Internet of Things relay invokes the MD5 encryption unit to perform MD5 encryption processing on the data packet.
  • the implementation method of the foregoing step S303 may specifically be:
  • the IoT repeater invokes the first encryption unit to perform encryption processing on the data packet. If the encryption is successful, the subsequent step S304 is performed. If the encryption is unsuccessful, the standby encryption unit of the first encryption unit is called to encrypt the data packet. The alternate encryption unit identifier is added to the header extension field of the encrypted packet.
  • Step S304 The Internet of Things repeater sends the encrypted data packet to the Internet of Things access point.
  • the implementation method of the above step S304 can be:
  • the encrypted data packet is sent to the gateway in another way.
  • the IoT terminal is connected to the Internet of Things relay through WIFI, and the IoT repeater can send the data packet to the gateway through the wire, of course, in practice.
  • the Internet of Things repeater can also send the encrypted data packet to the gateway through Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the above LTE or limited mode and the manner in which the Internet of Things terminal is connected to the Internet of Things through WIFI are merely for illustrative purposes, and the present invention is not limited to the specific manner of the above connection.
  • the Internet of Things repeater selects an encryption unit corresponding to the Internet of Things terminal according to the serial number of the Internet of Things terminal, and encrypts the data through the encryption unit.
  • the Internet of Things terminal does not need to be Encryption is configured, all encryption settings are in the IoT repeater, which can effectively reduce the cost of the IoT terminal, and for the entire Internet of Things, because of its IoT repeater can connect a large number of things Networked terminals, only the IoT repeater configuration can also reduce the overall cost of the Internet of Things.
  • the computing power is generally stronger than the IoT terminal, so the data can be reduced when running the encryption unit. The delay of sending reduces the delay of the network and improves the user experience.
  • FIG. 6 is a method for selecting and encrypting an IoT repeater according to the present invention.
  • the method is implemented in the network architecture as shown in FIG. 4, as shown in FIG.
  • An IoT terminal can connect multiple IoT access terminals under the Internet of Things terminal.
  • the AP can be a mobile phone that opens a hotspot, a personal computer or a router that provides wireless connection, and the method is as shown in the figure. As shown in 6, it includes the following steps:
  • Step S601 The Internet of Things terminal sends a data packet to the Internet of Things relay.
  • the IoT terminal in the above step S601 may specifically be: a mobile phone, a tablet computer, a computer, etc., of course, it may also include other devices with networking functions, such as a smart TV, a smart air conditioner, a smart water bottle, a smart light, a smart switch, or Some IoT smart devices.
  • the manner in which the Internet of Things terminal sends a data packet to the Internet of Things relay may be a method of sending a data packet by using a wireless connection, including but not limited to: Bluetooth, Wireless Fidelity (WIFI) Or a wireless method such as Zigbee, wherein the above WIFI needs to comply with the IEEE802.11b standard.
  • a wireless connection including but not limited to: Bluetooth, Wireless Fidelity (WIFI) Or a wireless method such as Zigbee, wherein the above WIFI needs to comply with the IEEE802.11b standard.
  • the Internet of Things and the Internet of Things terminal are only for wireless IoT terminals, because for the Internet of Things, the number of devices accessed by it is large.
  • the connection is through a wired connection, the terminal is first. The number of accesses is limited, and for the home, the wired connection is unimaginable for the wiring of the home user, and the cost of the cable is also very high, so in the technical solution of the present invention
  • the connection between the IoT terminal and the IoT terminal is limited to wireless connection.
  • Step S602 The Internet of Things repeater receives a first encryption unit selected by a user input through a human-computer interaction interface, and the IoT repeater acquires a signal modulation mode of the data packet sent by the Internet of Things terminal, according to the signal modulation manner. Determining a secret key, invoking the first encryption unit to perform encryption processing on the data packet by using the secret key.
  • the type of the Internet of Things terminal in the above step S602 can be set according to the situation of the device.
  • the IoT terminal can include: a smart light, a smart TV, a smart cleaning device, a smart sleep device, an intelligent monitoring device, etc.
  • the form of performance can be various, for example, for a smart electric lamp, including but not limited to: a smart table lamp, a smart ceiling lamp, a smart wall lamp, etc., for example, for a smart TV, it can be a Samsung smart TV, of course It can also be a Sharp smart TV.
  • a smart cleaning device it can be a smart sweeping robot.
  • a smart vacuum cleaner for example, for a smart sleep device, For: smart mattress, smart sofa and other equipment, for example, for intelligent monitoring equipment, or it can be, smart blood pressure meter, smart thermometer, etc., the specific form of the above object to the Internet of Things terminal And the quantity or type is not limited.
  • step S602 may be specifically:
  • the IoT repeater obtains a signal modulation mode of the IOT terminal transmitting the data packet, and queries a key corresponding to the signal modulation mode from the modulation mode and the key mapping table, and invokes the first encryption unit to use the secret key. Encrypting the data packet.
  • the acquired modulation mode is Binary Phase Shift Keying (BPSK)
  • the first key is used, for example, the acquired modulation mode is Quadrature Phase Shift Keying (Quadrature Phase Shift Keying). , QPSK)
  • the second key is used.
  • the purpose of the modulation mode of the signal here is that, for the repeater, the modulation mode of the signal is constant, so that the subsequent device can acquire the modulation mode of the signal transmission of the Internet of Things terminal, so it can be modulated. Different ways to choose different keys to further improve security.
  • the implementation method of the foregoing step S602 may specifically be:
  • phase number with energy in the QPSK is obtained, and the value obtained by sequentially sorting the phase number is used as the secret. key.
  • the phase number with energy refers to the energy of the QPSK subcarrier, that is, the subcarrier transmits the number 1, and the corresponding phase number may specifically be the phase number of the phase, for example, the first phase row number is 1, the second The phase number is 2, and the 15th phase has a row number of 15. In this way, it is difficult to obtain a secret key to be decrypted, and the security is further improved.
  • mapping between the Internet of Things terminal and the encryption unit in the above steps is as shown in FIG. 5, and the mapping may be a one-to-one mapping, or may be a one-to-many mapping.
  • the cryptographic unit in the above step S602 may specifically be a hardware cryptographic unit disposed in the Internet of Things repeater, and includes an encryption algorithm preset by the manufacturer.
  • the cryptographic unit may also be configured in the Internet of Things relay.
  • the software encryption unit in the device does not limit the specific expression of the above encryption unit.
  • the foregoing encryption algorithm includes, but is not limited to, an encryption algorithm such as 3DES, MD5 or RSA, and the present invention is not limited to a specific encryption algorithm.
  • the implementation method of the foregoing step S602 may specifically be:
  • the first encryption unit is a 3DES encryption unit, and the Internet of Things repeater invokes 3DES encryption.
  • the unit performs 3DES encryption on the data packet.
  • the first encryption unit is a RAS encryption unit, and the Internet of Things relay invokes the RAS encryption unit to perform RAS encryption processing on the data packet.
  • the Internet of Things relay invokes the MD5 encryption unit to perform MD5 encryption processing on the data packet.
  • the implementation method of the foregoing step S602 may specifically be:
  • the IoT access point invokes the first encryption unit to perform encryption processing on the data packet. If the encryption is successful, the subsequent steps are performed. If the encryption is unsuccessful, the alternate encryption unit of the first encryption unit is called to encrypt the data packet, and the data packet is encrypted. The header extension field added to the encrypted packet is identified by the alternate encryption unit.
  • Step S603 The Internet of Things repeater sends the encrypted data packet to the Internet of Things access point.
  • the implementation method of the above step S603 may be:
  • the encrypted data packet is sent to the gateway in another way.
  • the IoT terminal is connected to the Internet of Things relay through WIFI, and the IoT repeater can send the data packet to the gateway through the wire, of course, in practice.
  • the Internet of Things repeater can also send the encrypted data packet to the gateway through Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the above LTE or limited mode and the manner in which the Internet of Things terminal is connected to the Internet of Things through WIFI are merely for illustrative purposes, and the present invention is not limited to the specific manner of the above connection.
  • the Internet of Things repeater encrypts the data by using the encryption unit corresponding to the encryption unit corresponding to the Internet of Things terminal.
  • the Internet of Things terminal does not need to perform encryption.
  • Configuration, all encryption settings are in the IoT repeater this method can effectively reduce the cost of the IoT terminal, and for the entire Internet of Things, because of its IoT repeater can connect a large number of IoT terminals Only the configuration of the Internet of Things repeater can also reduce the overall cost of the Internet of Things.
  • the computing power is generally stronger than that of the IoT terminal, so the data transmission can be reduced when the encryption unit is operated. Delay, reduce network latency and improve user experience.
  • FIG. 7 is an IoT-based repeater device 700, the device comprising:
  • the receiving unit 701 is configured to receive a data packet sent by the Internet of Things terminal;
  • the processing unit 702 is configured to receive a first encryption unit selected by a user input through a human-computer interaction interface, and invoke the first encryption unit to perform encryption processing on the data packet.
  • the sending unit 703 is configured to send the encrypted data packet to the gateway.
  • processing unit 702 is further configured to: if the first encryption unit fails to encrypt the data packet, call the alternate encryption unit of the first encryption unit to encrypt the data packet.
  • the processing unit 702 is configured to obtain a signal modulation manner of the data packet sent by the Internet of Things terminal, determine a secret key according to the signal modulation manner, and invoke the first encryption unit to use the secret key pair.
  • the packet is encrypted.
  • the processing unit 702 is configured to parse the data packet to obtain a signal modulation manner of the data packet, and query, from the mapping manner of the modulation mode and the key, a secret key corresponding to the signal modulation mode.
  • the processing unit 702 is further configured to: when parsing the data packet to obtain a signal modulation manner of the data packet, which is a quadrature phase shift keying QPSK, obtain a phase number with energy in the QPSK, and obtain the phase
  • the value obtained by sequentially sorting the numbers is used as the key.
  • the computer storage medium may be stored in the computer storage medium, and the program includes any one of the above-mentioned first aspects.
  • FIG. 8 is an IoT repeater 800 provided by the present invention.
  • the IoT repeater may be a node deployed in an Internet system, and the Internet system may further include: an Internet of Things terminal and an Internet of Things.
  • the relay, the Internet of Things access point and the gateway, the Internet of Things repeater 800 includes but is not limited to: a computer, a server, etc., as shown in FIG. 8, the Internet of Things repeater 800 includes: a processor 801, a memory 802 Transceiver 803 and bus 804.
  • the transceiver 803 is configured to transmit and receive data with an external device (such as other devices in the interconnection system, including but not limited to: an Internet of Things terminal, a core network device, etc.).
  • the number of processors 801 in the Internet of Things repeater 800 can be one or more.
  • processor 801, memory 802, and transceiver 803 may be connected by a bus system or other means.
  • bus system or other means.
  • the program code can be stored in the memory 802.
  • the processor 801 is configured to call program code stored in the memory 802 for performing the following operations:
  • the transceiver 803 is configured to receive a data packet sent by the Internet of Things terminal;
  • the processor 801 is configured to receive a first encryption unit selected by a user input through a human-computer interaction interface, and invoke the first encryption unit to perform encryption processing on the data packet.
  • the transceiver 803 is further configured to send the encrypted data packet to the gateway.
  • processor 801 and the transceiver 803 are further configured to perform the refinement and the steps of the steps and steps in the embodiment shown in FIG. 3 or FIG. 6.
  • the processor 801 herein may be a processing component or a general term of multiple processing components.
  • the processing component may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 803 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the application running device to operate.
  • the memory 903 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 804 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the user equipment may also include input and output devices coupled to bus 804 for connection to other portions, such as processor 801, via a bus.
  • the input/output device can provide an input interface for the operator, so that the operator can select the control item through the input interface, and can also be other interfaces through which other devices can be externally connected.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, read-only memory (English: Read-Only Memory, referred to as: ROM), random accessor (English: Random Access Memory, referred to as: RAM), disk or optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种基于物联网中继器的选择加密方法及装置,所述方法包括如下步骤:所述物联网中继器接收物联网终端发送的数据包;所述物联网中继器接收用户通过人机交互接口输入的用户选择的第一加密单元;所述物联网中继器调用所述第一加密单元对所述数据包进行加密处理;所述物联网中继器将加密处理后的数据包向物联网接入点发送。本发明提供的技术方案具有安全性高,用户体验度高的优点。

Description

一种基于物联网中继器的选择加密方法及装置
本发明要求2017年7月21日递交的发明名称为“一种基于物联网中继器的选择加密方法及装置”的申请号201710598683.9的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及通信领域,尤其涉及一种基于物联网中继器的选择加密方法及装置。
背景技术
物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。其英文名称是:“Internet of things(IoT)”。顾名思义,物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新2.0是物联网发展的灵魂。
物联网解决的是物物之间的互联以及物物之间的数据交换,现有的物联网在联网时均基于物联网中继器(英文:access point,AP)来接入互联网,现有的物联网中继器接收到物联网终端的数据以后,无法对物联网终端的数据进行分开加密处理,所以现有的安全性不高。
发明内容
本申请提供一种基于物联网中继器的选择加密方法。可以提高物联网数据的安全性,提高用户体验。
第一方面,提供一种基于物联网中继器的选择加密方法,所述方法包括如下步骤:
所述物联网中继器接收物联网终端发送的数据包;
所述物联网中继器接收用户通过人机交互接口输入的用户选择的第一加密单元;
所述物联网中继器调用所述第一加密单元对所述数据包进行加密处理;
所述物联网中继器调用所述第一加密单元对所述数据包进行加密处理;
所述物联网中继器将加密处理后的数据包向物联网接入点发送。
可选的,所述方法在所述物联网中继器将加密处理后的数据包发送至网关之前还可以包括:
如第一加密单元对所述数据包加密处理失败,则调用第一加密单元的备用加密单元对所述数据包加密处理。
可选的,所述物联网接入点调用所述第一加密单元对所述数据包进行加密处理具体包括:
所述物联网中继器获取所述物联网终端发送数据包的信号调制方式,依据所述信号调制方式确定秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理工作时段。
可选的,所述依据所述调制方式确定秘钥具体包括:
解析所述数据包得到所述数据包的信号调制方式,从所述调制方式与密钥的映射表中查询出所述信号调制方式对应的秘钥工作时段。
可选的,所述依据所述调制方式确定秘钥具体包括:如解析所述数据包得到所述数据包的信号调制方式为正交相移键控QPSK,则获取所述QPSK中具有能量的相位编号,将该相位编号按顺序排序得到的值作为所述秘钥。
第二方面,提供一种基于物联网中继器的选择加密装置,所述装置包括:
接收单元,用于接收物联网终端发送的数据包;
处理单元,用于接收用户通过人机交互接口输入的用户选择的第一加密单元;调用所述第一加密单元对所述数据包进行加密处理;
发送单元,用于将加密处理后的数据包向物联网接入点发送。
可选的,所述处理单元,还用于如第一加密单元对所述数据包加密处理失 败,则调用第一加密单元的备用加密单元对所述数据包加密处理。
可选的,所述处理单元具体,用于获取所述物联网终端发送数据包的信号调制方式,依据所述信号调制方式确定秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理工作时段。
可选的,所述工作时段处理单元具体,用于解析所述数据包得到所述数据包的信号调制方式,从所述调制方式与密钥的映射表中查询出所述信号调制方式对应的秘钥。
可选的,所述处理单元,还用于如解析所述数据包得到所述数据包的信号调制方式为正交相移键控QPSK,则获取所述QPSK中具有能量的相位编号,将该相位编号按顺序排序得到的值作为所述秘钥。第三方面,提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述第一方面记载的任何一种物联网中继器的选择加密方法的部分或全部步骤。
第四方面,提供一种中继器设备,所述中继器设备包括:一个或多个处理器、存储器、总线系统、收发器以及一个或多个程序,所述处理器、所述存储器和所述收发器通过所述总线系统相连;其中所述一个或多个程序被存储在所述存储器中,一个或多个程序包括指令,指令当被接入点执行时使中继器执行上述第一方面及第一方面全部可能设计提供的方法中的任意一种。
本发明提供的技术方案的物联网终端将数据包发送至AP以后,AP依据物联网终端的序号选择与该物联网终端对应的加密单元,通过该加密单元对数据进行加密,对于物联网来说,物联网终端无需对加密进行配置,所有的加密设置均在中继器,此方式能够有效的降低物联网终端的成本,并且对于整个物联网来说,由于其一个中继器下面可以连接众多的物联网终端,仅仅对中继器配置也可以降低物联网整体的成本,另外,对于中继器来说其计算的能力一般强于物联网终端,那么对运行加密单元时能够减少数据发送的延时,减少网络的时延,提高用户的体验。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些 实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种基于物联网中继器的数据路由方法的流程示意图;
图2是一种物联网终端向物联网中继器发送数据包的传输流程图;
图3为基于物联网中继器的选择加密方法的流程图
图4是本申请一实施例提供的技术场景示意图;
图5是本申请一实施例的提供的映射关系示意图;
图6是本申请另一实施例提供的基于物联网中继器的选择加密方法的流程示意图;
图7是本申请提供的一种基于物联网中继器装置的结构示意图;
图8为本申请提供的一种物联网中继器的硬件结构示意图。
具体实施方式
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
在上下文中所称“计算机设备”,也称为“电脑”,是指可以通过运行预定程序或指令来执行数值计算和/或逻辑计算等预定处理过程的智能电子设备,其可以包括处理器与存储器,由处理器执行在存储器中预存的存续指令来执行预定处理过程,或是由ASIC、FPGA、DSP等硬件执行预定处理过程,或是由上述二者组合来实现。计算机设备包括但不限于服务器、个人电脑、笔记本电脑、平板电脑、智能手机等。
后面所讨论的方法(其中一些通过流程图示出)可以通过硬件、软件、固件、中间件、微代码、硬件描述语言或者其任意组合来实施。当用软件、固件、中间件或微代码来实施时,用以实施必要任务的程序代码或代码段可以被存储在机器或计算机可读介质(比如存储介质)中。(一个或多个)处理器可以实施必要的任务。
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本发明的示例性实施例的目的。但是本发明可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
还应当提到的是,在一些替换实现方式中,所提到的功能/动作可以按照不同于附图中标示的顺序发生。举例来说,取决于所涉及的功能/动作,相继示出的两幅图实际上可以基本上同时执行或者有时可以按照相反的顺序来执 行。
下面结合附图对本发明作进一步详细描述。
根据本发明的一个方面,提供了一种物联网中继器的上行数据发送方法。其中,该方法应用在如图1所示的物联网络中,如图1所示,该物联网络包括:物联网终端10、物联网接入点AP20、网关30以及物联网终端40,上述物联网终端根据不同的情况可以具有不同的表现形式,例如该物联网终端具体可以为:手机、平板电脑、计算机等设备,当然其也可以包含带有联网功能的其他设备,例如智能电视、智能空调、智能水壶或一些物联网的终端设备,上述物联网终端10通过无线方式与物联网终端40连接,物联网终端40与AP20连接,AP20通过另一种方式(即与无线方式不同的连接方式)与网关30接入互联网,上述无线方式包括但不限于:蓝牙、WIFI等方式,上述另一种方式可以为,LTE或有线方式,上述网关具体可以为,移动基站、移动中继站、交换机等设备。图1中以有线方式为示例,为了方便表示,这里仅以一根实线表示。
上述网关30根据物联网的大小可以是一台个人电脑(英文:Personal computer,PC),当然在实际应用中,也可以是多台PC、服务器或服务器群组,本发明具体实施方式并不局限上述网关30的具体表现形式。
参阅图2,图2为物联网中继器的数据接收的传输流程图,如图2所示,该流程包括:
步骤S201、物联网终端10将需要发送的数据包通过无线方式发送至物联网中继器40;
步骤S202、物联网中继器40将数据包发送至AP20;
步骤S203、AP20将该数据包转发给网关30;
步骤S204、网关30将数据包传输至互联网。
通过上述图1和图2的表示,在数据包的实际传输中,如果AP20与物联网中继器40之间出现泄密,那么对于发送的数据包由于没有经过相应的加密处理,所以很容易导致数据的泄漏,容易出现安全性问题。
参阅图3,图3为本发明提供的一种基于物联网中继器的选择加密方法,该方法在如图4所示的网络构架下实现,如图4所示,一个AP20下可以连接多个物联网终端,物联网终端下可以连接多个物联网接入终端,该AP具体可以为开通热点的手机、提供无线连接的个人电脑或路由器等设备,该方法如图3所示,包括如下步骤:
步骤S301、物联网终端向物联网中继器发送数据包。
上述步骤S301中的物联网终端具体可以为:手机、平板电脑、计算机等设备,当然其也可以包含带有联网功能的其他设备,例如智能电视、智能空调、智能水壶、智能灯、智能开关或一些物联网的智能设备。
上述步骤S301中物联网终端向物联网中继器发送数据包的方式可以为通过无线连接的方式发送数据包,该无线方式包括但不限于:蓝牙、无线保真(英文:Wireless Fidelity,WIFI)或Zigbee等无线方式,其中,上述WIFI需要遵守IEEE802.11b的标准。
需要说明的是,这里的物联网以及物联网终端仅仅只是针对无线物联网终端,因为对于物联网来说,其接入的设备数量众多,对于物联网终端来说,如果通过有线连接,首先终端的接入数量会有所限制,并且对于家庭来说,均用有线连接,对于家庭用户的布线来说是无法想象的,另外此有线的成本也非常高,所以本发明的技术方案中的中物联网终端与物联网终端之间的连接仅限无线连接。
步骤S302、接收用户通过人机交互接口输入的用户选择的第一加密单元。
上述步骤S302中的物联网终端的类型各个厂家可以根据自行的情况进行设置,例如,该物联网终端具体可以包括:智能电灯、智能电视、智能清扫设 备、智能睡眠设备,智能监控设备等,其表现的形式可以为多种多样,例如对于智能电灯,该智能电灯包括但不限于:智能台灯,智能吸顶灯,智能壁灯等设备,例如对于智能电视来说,其可以为三星牌智能电视,当然其也可以为夏普牌智能电视,例如对于智能清扫设备来说,其可以为,智能扫地机器人,当然其还可以包括智能吸尘器、智能垃圾处理器等设备,例如对于智能睡眠设备来说,其可以为:智能床垫、智能沙发等设备,例如对智能监控设备来说或,其可以为,智能血压计,智能温度计等,本发明对上述物联网终端的具体形式以及数量或种类并不限定。
上述步骤中的用户选择与加密单元映射表如图5所示,上述映射可以为一一映射,当然也可以为一对多映射等方式。
上述步骤S302中的加密单元具体可以为设置在物联网中继器的硬件加密单元,其包含厂家预设设置的加密算法,当然在实际应用中,上述加密单元还可以为配置在物联网中继器内的软件加密单元,本发明并不限制上述加密单元的具体表现形式。
上述加密算法包括但不限于:三重数据加密算法块密码(英文:riple Data Encryption Algorithm,3DES)、消息摘要算法(英文:Message Digest Algorithm,MD5)或RSA(Rivest,Shamir,Adleman)等加密算法,本发明并不局限具体的加密算法。例如3DES是三重数据加密算法块密码的通称。它相当于是对每个数据块应用三次DES加密算法。由于计算机运算能力的增强,原版DES密码的密钥长度变得容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击。步骤S303、物联网中继器调用第一加密单元对该数据包进行加密处理;
上述步骤S303的实现方法具体可以为:
例如,第一加密单元为3DES加密单元,则物联网中继器调用3DES加密单元对数据包进行3DES加密处理。例如第一加密单元为RAS加密单元,则物联网中继器调用RAS加密单元对数据包进行RAS加密处理。例如第一加密单元为MD5加密单元,则物联网中继器调用MD5加密单元对数据包进行MD5加密处理。
上述加密处理的具体方式可以参见3DES、RSA以及MD5的相关描述, 这里不再赘述。
上述步骤S303的实现方法具体可以为:
物联网中继器调用第一加密单元对该数据包进行加密处理,如加密成功,进行后续步骤S304,如加密不成功,则调用第一加密单元的备用加密单元对该数据包进行加密处理,将采用备用加密单元标识添加到加密处理后的数据包的包头扩展字段。
步骤S304、物联网中继器将该加密处理后的数据包向物联网接入点发送。
上述步骤S304的实现方法可以为:
通过另一种方式将加密处理的数据包发送至网关,例如,物联网终端通过WIFI与物联网中继器连接,那么物联网中继器可以通过有线方式将数据包发送至网关,当然在实际应用中,物联网中继器也可以通过长期演进(英文:Long Term Evolution,LTE)将加密处理后的数据包发送至网关。当然上述LTE或有限方式以及物联网终端通过WIFI与物联网中继器连接的方式仅仅为了举例说明,本发明并不局限上述连接的具体方式。
依据如图3提供的方法,物联网中继器依据物联网终端的序号选择与该物联网终端对应的加密单元,通过该加密单元对数据进行加密,对于物联网来说,物联网终端无需对加密进行配置,所有的加密设置均在物联网中继器,此方式能够有效的降低物联网终端的成本,并且对于整个物联网来说,由于其一个物联网中继器下面可以连接众多的物联网终端,仅仅对物联网中继器配置也可以降低物联网整体的成本,另外,对于物联网中继器来说其计算的能力一般强于物联网终端,那么对运行加密单元时能够减少数据发送的延时,减少网络的时延,提高用户的体验。
参阅图6,图6为本发明提供的一种基于物联网中继器的选择加密方法,该方法在如图4所示的网络构架下实现,如图4所示,一个AP20下可以连接多个物联网终端,物联网终端下可以连接多个物联网接入终端,该AP具体可以为开通热点的手机、提供无线连接的个人电脑或路由器等设备,该方法如图 6所示,包括如下步骤:
步骤S601、物联网终端向物联网中继器发送数据包;
上述步骤S601中的物联网终端具体可以为:手机、平板电脑、计算机等设备,当然其也可以包含带有联网功能的其他设备,例如智能电视、智能空调、智能水壶、智能灯、智能开关或一些物联网的智能设备。
上述步骤S601中物联网终端向物联网中继器发送数据包的方式可以为通过无线连接的方式发送数据包,该无线方式包括但不限于:蓝牙、无线保真(英文:Wireless Fidelity,WIFI)或Zigbee等无线方式,其中,上述WIFI需要遵守IEEE802.11b的标准。
需要说明的是,这里的物联网以及物联网终端仅仅只是针对无线物联网终端,因为对于物联网来说,其接入的设备数量众多,对于物联网终端来说,如果通过有线连接,首先终端的接入数量会有所限制,并且对于家庭来说,均用有线连接,对于家庭用户的布线来说是无法想象的,另外此有线的成本也非常高,所以本发明的技术方案中的中物联网终端与物联网终端之间的连接仅限无线连接。
步骤S602、物联网中继器接收用户通过人机交互接口输入的用户选择的第一加密单元,物联网中继器获取所述物联网终端发送数据包的信号调制方式,依据所述信号调制方式确定秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理。
上述步骤S602中的物联网终端的类型各个厂家可以根据自行的情况进行设置,例如,该物联网终端具体可以包括:智能电灯、智能电视、智能清扫设备、智能睡眠设备,智能监控设备等,其表现的形式可以为多种多样,例如对于智能电灯,该智能电灯包括但不限于:智能台灯,智能吸顶灯,智能壁灯等设备,例如对于智能电视来说,其可以为三星牌智能电视,当然其也可以为夏普牌智能电视,例如对于智能清扫设备来说,其可以为,智能扫地机器人,当然其还可以包括智能吸尘器、智能垃圾处理器等设备,例如对于智能睡眠设备来说,其可以为:智能床垫、智能沙发等设备,例如对智能监控设备来说或,其可以为,智能血压计,智能温度计等,本发明对上述物联网终端的具体形式 以及数量或种类并不限定。
可选的,上述步骤S602的实现方式具体可以为:
物联网中继器获取该物联网终端发送数据包的信号调制方式,从调制方式与秘钥映射表中查询出该信号调制方式对应的秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理。
具体实现例如:如获取的调制方式为二进制相移键控(英文:Binary Phase Shift Keying,BPSK),则采用第一秘钥,如获取的调制方式为正交相移键控(Quadrature Phase Shift Keying,QPSK),则采用第二秘钥。这里采用信号的调制方式的目的在于,因为对于中继器来说,其信号的调制方式是不变的,这样对于后续的设备是能够获取物联网终端信号发送的调制方式的,所以能够通过调制方式的不同来选择不同的秘钥,从而进一步提高安全性。
可选的,上述步骤S602的实现方法具体可以为:
如解析所述数据包得到所述数据包的信号调制方式为正交相移键控QPSK,则获取所述QPSK中具有能量的相位编号,将该相位编号按顺序排序得到的值作为所述秘钥。上述具有能量的相位编号指的是QPSK子载波的具有能量,即该子载波传递数字1,其对应的相位编号具体可以为,其相位的排号,例如第一相位排号为1,第二相位排号为2,第15相位的排号为15,采用此方式得到秘钥增加秘钥被破译的难度,进一步提高安全性。
上述步骤中的物联网终端与加密单元映射表如图5所示,上述映射可以为一一映射,当然也可以为一对多映射等方式。
上述步骤S602中的加密单元具体可以为设置在物联网中继器的硬件加密单元,其包含厂家预设设置的加密算法,当然在实际应用中,上述加密单元还可以为配置在物联网中继器内的软件加密单元,本发明并不限制上述加密单元的具体表现形式。
上述加密算法包括但不限于:3DES、MD5或RSA等加密算法,本发明并不局限具体的加密算法。
上述步骤S602的实现方法具体可以为:
例如,第一加密单元为3DES加密单元,则物联网中继器调用3DES加密 单元对数据包进行3DES加密处理。例如第一加密单元为RAS加密单元,则物联网中继器调用RAS加密单元对数据包进行RAS加密处理。例如第一加密单元为MD5加密单元,则物联网中继器调用MD5加密单元对数据包进行MD5加密处理。
上述加密处理的具体方式可以参见3DES、RSA以及MD5的相关描述,这里不再赘述。
上述步骤S602的实现方法具体可以为:
物联网接入点调用第一加密单元对该数据包进行加密处理,如加密成功,进行后续步骤,如加密不成功,则调用第一加密单元的备用加密单元对该数据包进行加密处理,将采用备用加密单元标识添加到加密处理后的数据包的包头扩展字段。
步骤S603、物联网中继器将该加密处理后的数据包向物联网接入点发送。
上述步骤S603的实现方法可以为:
通过另一种方式将加密处理的数据包发送至网关,例如,物联网终端通过WIFI与物联网中继器连接,那么物联网中继器可以通过有线方式将数据包发送至网关,当然在实际应用中,物联网中继器也可以通过长期演进(英文:Long Term Evolution,LTE)将加密处理后的数据包发送至网关。当然上述LTE或有限方式以及物联网终端通过WIFI与物联网中继器连接的方式仅仅为了举例说明,本发明并不局限上述连接的具体方式。
依据如图6提供的方法,物联网中继器依据用户对的选择与该物联网终端对应的加密单元,通过该加密单元对数据进行加密,对于物联网来说,物联网终端无需对加密进行配置,所有的加密设置均在物联网中继器,此方式能够有效的降低物联网终端的成本,并且对于整个物联网来说,由于其一个物联网中继器下面可以连接众多的物联网终端,仅仅对物联网中继器配置也可以降低物联网整体的成本,另外,对于物联网中继器来说其计算的能力一般强于物联网终端,那么对运行加密单元时能够减少数据发送的延时,减少网络的时延,提高用户的体验。
参阅图7,图7为一种基于物联网中继器装置700,所述装置包括:
接收单元701,用于接收物联网终端发送的数据包;
处理单元702,用于接收用户通过人机交互接口输入的用户选择的第一加密单元;调用所述第一加密单元对所述数据包进行加密处理;
发送单元703,用于将加密处理后的数据包发送至网关。
可选的,处理单元702,还用于如第一加密单元对所述数据包加密处理失败,则调用第一加密单元的备用加密单元对所述数据包加密处理。
可选的,处理单元702具体,用于获取所述物联网终端发送数据包的信号调制方式,依据所述信号调制方式确定秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理。
可选的,处理单元702,具体用于解析所述数据包得到所述数据包的信号调制方式,从所述调制方式与密钥的映射表中查询出所述信号调制方式对应的秘钥。
可选的,处理单元702,还用于如解析所述数据包得到所述数据包的信号调制方式为正交相移键控QPSK,则获取所述QPSK中具有能量的相位编号,将该相位编号按顺序排序得到的值作为所述秘钥本发明具体实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述第一方面记载的任何一种物联网中继器接收数据的分时段加密方法的部分或全部步骤。
参阅图8,图8为本发明提供的一种物联网中继器800,该物联网中继器可以为部署在互联网系统中的一个节点,互联网系统还可以包括:物联网终端、物联网中继器、物联网接入点和网关,该物联网中继器800包括但不限于:计算机、服务器等设备,如图8所示,该物联网中继器800包括:处理器801、存储器802、收发器803和总线804。收发器803用于与外部设备(例如互联系统中的其他设备,包括但不限于:物联网终端,核心网设备等)之间收发数据。物联网中继器800中的处理器801的数量可以是一个或多个。本申请的一些实施例中,处理器801、存储器802和收发器803可通过总线系统或其他方式连接。关于本实施例涉及的术语的含义以及举例,可以参考图3或图6对应的实施例,此处不再赘述。
其中,存储器802中可以存储程序代码。处理器801用于调用存储器802中存储的程序代码,用于执行以下操作:
收发器803,用于接收物联网终端发送的数据包;
处理器801,用于接收用户通过人机交互接口输入的用户选择的第一加密单元;调用所述第一加密单元对所述数据包进行加密处理。
收发器803,还用于将加密处理后的数据包发送至网关。
可选的,处理器801、收发器803,还可以用于执行如图3或如图6所示实施例中的步骤以及步骤的细化方案以及可选方案。
需要说明的是,这里的处理器801可以是一个处理元件,也可以是多个处理元件的统称。例如,该处理元件可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器803可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或应用程序运行装置运行所需要参数、数据等。且存储器903可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线804可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该用户设备还可以包括输入输出装置,连接于总线804,以通过总线与处理器801等其它部分连接。该输入输出装置可以为操作人员提供一输入界面,以便操作人员通过该输入界面选择布控项,还可以是其它接口,可通过该接口外接其它设备。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优 选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例所提供的内容下载方法及相关设备、系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种基于物联网中继器的选择加密方法,其特征在于,所述方法包括如下步骤:
    所述物联网中继器接收物联网终端发送的数据包;
    所述物联网中继器接收用户通过人机交互接口输入的用户选择的第一加密单元;
    所述物联网中继器调用所述第一加密单元对所述数据包和进行加密处理;
    所述物联网中继器将加密处理后的数据包向物联网接入点发送。
  2. 根据权利要求1所述的方法,其特征在于,所述方法在所述物联网中继器将加密处理后的数据包发送至网关之前还可以包括:
    如第一加密单元对所述数据包加密处理失败,则调用第一加密单元的备用加密单元对所述数据包加密处理。
  3. 根据权利要求1所述的方法,其特征在于,所述物联网中继器调用所述第一加密单元对所述数据包进行加密处理具体包括:
    所述物联网中继器获取所述物联网终端发送数据包的信号调制方式,依据所述信号调制方式确定秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理。
  4. 根据权利要求3所述的方法,其特征在于,所述依据所述调制方式确定秘钥具体,包括:
    解析所述数据包得到所述数据包的信号调制方式,从所述调制方式与密钥的映射表中查询出所述信号调制方式对应的秘钥。
  5. 根据权利要求3所述的方法,其特征在于,所述依据所述调制方式确定秘钥具体,包括:
    如解析所述数据包得到所述数据包的信号调制方式为正交相移键控QPSK,则获取所述QPSK中具有能量的相位编号,将该相位编号按顺序排序得到的值作为所述秘钥。
  6. 一种基于物联网中继器的选择加密装置,其特征在于,所述装置包括:
    接收单元,用于接收物联网终端发送的数据包;
    处理单元,用于接收用户通过人机交互接口输入的用户选择的第一加密单元;调用所述第一加密单元对所述数据包进行加密处理;
    发送单元,用于将加密处理后的数据包向物联网接入点发送。
  7. 根据权利要求6所述的装置,其特征在于,所述处理单元,还用于如第一加密单元对所述数据包加密处理失败,则调用第一加密单元的备用加密单元对所述数据包加密处理。
  8. 根据权利要求6所述的装置,其特征在于,所述处理单元具体,用于获取所述物联网终端发送数据包的信号调制方式,依据所述信号调制方式确定秘钥,调用所述第一加密单元采用所述秘钥对所述数据包进行加密处理工作时段。
  9. 根据权利要求8所述的装置,其特征在于,所述处理单元,具体用于解析所述数据包得到所述数据包的信号调制方式,从所述调制方式与密钥的映射表中查询出所述信号调制方式对应的秘钥。
  10. 根据权利要求8所述的装置,其特征在于,所述处理单元,具体用于如解析所述数据包得到所述数据包的信号调制方式为正交相移键控QPSK,则获取所述QPSK中具有能量的相位编号,将该相位编号按顺序排序得到的值作为所述秘钥。
  11. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-5任一项所述的方法。
  12. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如权利要求1-5任一项所述的方法。
PCT/CN2017/100754 2017-07-21 2017-09-06 一种基于物联网中继器的选择加密方法及装置 WO2019015039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710598683.9 2017-07-21
CN201710598683.9A CN107483202A (zh) 2017-07-21 2017-07-21 一种基于物联网中继器的选择加密方法及装置

Publications (1)

Publication Number Publication Date
WO2019015039A1 true WO2019015039A1 (zh) 2019-01-24

Family

ID=60595340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100754 WO2019015039A1 (zh) 2017-07-21 2017-09-06 一种基于物联网中继器的选择加密方法及装置

Country Status (2)

Country Link
CN (1) CN107483202A (zh)
WO (1) WO2019015039A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014561B (zh) * 2021-02-18 2022-09-06 支付宝(杭州)信息技术有限公司 一种dns请求报文的隐私保护方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605330A (zh) * 2009-07-03 2009-12-16 中兴通讯股份有限公司 无线分布系统连接的建立方法及装置
CN102202296A (zh) * 2010-03-25 2011-09-28 巴比禄股份有限公司 无线局域网中继装置、无线通信系统、无线局域网中继装置的控制方法
US20160081133A1 (en) * 2014-08-10 2016-03-17 Belkin International, Inc. Setup of multiple iot network devices
CN106375390A (zh) * 2016-08-29 2017-02-01 北京爱接力科技发展有限公司 一种物联网中数据传输方法、系统及其装置
CN106899562A (zh) * 2016-04-21 2017-06-27 中国移动通信有限公司研究院 物联网的安全算法协商方法、网元及物联网终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540960A (zh) * 2009-02-19 2009-09-23 周向进 一种免费的无中继移动通信方法
CN201869219U (zh) * 2010-10-13 2011-06-15 李畅 基于物联网技术的安防数据采集装置
US20160337322A1 (en) * 2015-05-12 2016-11-17 Samsung Electronics Co., Ltd. Semiconductor device for managing user data according to security level and method of operating the same
CN106850797A (zh) * 2017-01-25 2017-06-13 江苏徐工信息技术股份有限公司 一种基于物联网通信基站的通信网络及通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605330A (zh) * 2009-07-03 2009-12-16 中兴通讯股份有限公司 无线分布系统连接的建立方法及装置
CN102202296A (zh) * 2010-03-25 2011-09-28 巴比禄股份有限公司 无线局域网中继装置、无线通信系统、无线局域网中继装置的控制方法
US20160081133A1 (en) * 2014-08-10 2016-03-17 Belkin International, Inc. Setup of multiple iot network devices
CN106899562A (zh) * 2016-04-21 2017-06-27 中国移动通信有限公司研究院 物联网的安全算法协商方法、网元及物联网终端
CN106375390A (zh) * 2016-08-29 2017-02-01 北京爱接力科技发展有限公司 一种物联网中数据传输方法、系统及其装置

Also Published As

Publication number Publication date
CN107483202A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US20220303276A1 (en) Network connection method, hotspot terminal and management terminal
US11943695B2 (en) Network channel switching method and apparatus, device, and storage medium
US11864263B2 (en) Wireless connection establishing methods and wireless connection establishing apparatuses
EP3748928A1 (en) Method and system for apparatus awaiting network configuration to access hot spot network apparatus
WO2018120247A1 (zh) 一种终端匹配方法、装置
CN112566113B (zh) 密钥生成以及终端配网方法、装置、设备
CN108353442B (zh) 使用网络来委托第二网络
US9750067B2 (en) Communication method, information processing apparatus, and non-transitory computer-readable recording medium
WO2018053894A1 (zh) 物联网基于传输速率的接入点切换方法及装置
WO2019041371A1 (zh) 物联网基于连接数量的路由器切换方法及装置
WO2023001082A1 (zh) 一种配网方法及装置
WO2019019280A1 (zh) 物联网终端数据的分时段加密方法及装置
WO2019019282A1 (zh) 物联网终端数据的按顺序加密方法及装置
WO2018053895A1 (zh) 物联网接入点基于类型的上行数据加密控制方法及装置
CN113301563A (zh) 网络配置方法、装置、设备和存储介质
WO2024109874A1 (zh) 一种机顶盒连网方法、装置、设备及可读存储介质
WO2019015041A1 (zh) 一种物联网中继器数据的分时段加密方法及装置
WO2019010793A1 (zh) 物联网接入点接收数据的分时段加密方法及装置
CN106488483B (zh) 一种配置wifi网关设备的方法及相应的网关设备
WO2019015039A1 (zh) 一种基于物联网中继器的选择加密方法及装置
CN107360566B (zh) 物联网终端基于类型的上行数据加密控制方法及装置
WO2019015038A1 (zh) 物联网中继器基于类型的上行数据加密控制方法及装置
WO2019019287A1 (zh) 一种物联网终端数据的随机加密方法及装置
WO2019015037A1 (zh) 一种基于物联网接入点的选择加密方法及装置
WO2019010796A1 (zh) 物联网ap接收数据的分设备加密方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918593

Country of ref document: EP

Kind code of ref document: A1