WO2019014893A1 - Vortex ultra-short laser pulse amplification system and method - Google Patents

Vortex ultra-short laser pulse amplification system and method Download PDF

Info

Publication number
WO2019014893A1
WO2019014893A1 PCT/CN2017/093675 CN2017093675W WO2019014893A1 WO 2019014893 A1 WO2019014893 A1 WO 2019014893A1 CN 2017093675 W CN2017093675 W CN 2017093675W WO 2019014893 A1 WO2019014893 A1 WO 2019014893A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex
pulse
regenerative amplifier
laser pulse
mode
Prior art date
Application number
PCT/CN2017/093675
Other languages
French (fr)
Chinese (zh)
Inventor
徐世祥
黄佳
郑水钦
蔡懿
陈振宽
刘俊敏
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/093675 priority Critical patent/WO2019014893A1/en
Publication of WO2019014893A1 publication Critical patent/WO2019014893A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the invention belongs to the field of laser technology, and in particular relates to a vortex ultrashort laser pulse amplification system and method.
  • Vortex ultrashort laser pulses have broad application prospects in ultrafast imaging, femtosecond laser forming, higher harmonic generation, and laser supercontinuum.
  • achromatic techniques are required in the method of generating broadband ultrashort laser vortex pulses.
  • the commonly used prism method, 2f-2f system, 4f The system and the use of spatially varying optical wave plates and the like.
  • High-intensity femtosecond vortex pulses can be obtained by using these achromatic techniques in combination with a laser amplifier.
  • a millijoule-scale femtosecond laser pulse or the like can be obtained by using a chirped pulse amplification technique in combination with a vortex converter composed of a 4f system and a spatial light modulator.
  • the vortex pulses generated by these techniques are not the eigenmodes of free-space transmission, which means that during the free-space transmission, the spatial mode will change due to the diffraction effect, and the resulting vortex will eventually be generated. Pulse purity is often not high.
  • the technical problem to be solved by the present invention is to provide a vortex ultrashort laser pulse amplifying system and method, aiming at solving the problem of low purity of the ultrashort laser vortex pulse generated by the prior art.
  • the present invention provides a vortex ultrashort laser pulse amplifying system, the system comprising:
  • Pump pulse mode converter/shaper for mode conversion or spatial shaping of the initially incident pump pulse to achieve intensity distribution at the laser amplifying medium when the mode-switched or spatially shaped pump pulse enters the regenerative amplifier
  • the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier;
  • a wide-band vortex laser pulse converter for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplification
  • the intensity distribution at the medium matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier, the vortex ultrashort laser pulse entering the regenerative amplifier;
  • the regenerative amplifier for amplifying the vortex ultrashort laser pulse based on the mode-switched or spatially shaped pump pulse to generate and output a Laguerre-Gaussian eigenmode having the regenerative amplifier Distributed vortex ultrashort laser pulses.
  • the pump pulse mode converter/shaper includes an annular optical mode converter and a first coupling optical element
  • the annular optical mode converter is configured to perform mode conversion or spatial shaping on the initially incident pump pulse to convert a spatial light intensity distribution of the pump pulse into a ring distribution, mode conversion or spatial shaping a subsequent pump pulse enters the first coupling optical element;
  • the first coupling optical element is configured to adjust an intensity distribution at the laser amplifying medium by adjusting the first coupling optical element such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier
  • the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched.
  • the wide-band vortex laser pulse converter includes a wide-band vortex optical mode converter and a second coupling optical element;
  • the wide-band vortex optical mode converter is configured to perform vortex rotation on an initially incident ultrashort laser pulse and convert it into a vortex ultrashort laser pulse;
  • the second coupling optical element is configured to adjust an intensity distribution of the vortex ultrashort laser pulse at the laser amplifying medium by adjusting the second coupling optical element to enter the regenerative amplifier
  • the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched.
  • system further includes a compressor for temporally compressing the vortex ultrashort laser pulse having the Laguerre-Gaussian eigenmode distribution of the regenerative amplifier output by the regenerative amplifier.
  • system further includes a pulse stretcher for pulse broadening the initially incident ultrashort laser pulse, the pulsed broadened initial incident ultrashort laser pulse entering the wideband vortex laser pulse converter.
  • the invention also provides a vortex ultrashort laser pulse amplification method, the method comprising:
  • the pump pulse mode conversion/shaping device performs mode conversion or spatial shaping on the initially incident pump pulse to make the intensity distribution and the regeneration at the laser amplifying medium when the mode-switched or spatially shaped pump pulse enters the regenerative amplifier. Matching the intensity distribution of the Laguerre-Gaussian eigenmode of the amplifier, the mode-switched or spatially shaped pump pulse entering the regenerative amplifier;
  • a wide-band vortex laser pulse converter converts an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converts the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplifying medium
  • An intensity distribution is matched to an intensity distribution of a Laguerre-Gaussian eigenmode of the regenerative amplifier, the vortex ultrashort laser pulse entering the regenerative amplifier;
  • the regenerative amplifier amplifies the vortex ultrashort laser pulse based on the mode-switched or spatially shaped pump pulse to generate and output a vortex having a Laguerre-Gaussian eigenmode distribution of the regenerative amplifier Spin ultrashort laser pulses.
  • the pump pulse mode converter/shaper includes an annular optical mode converter and a first coupling optical element
  • the annular optical mode converter performs mode conversion or spatial shaping on the initially incident pump pulse to convert the spatial light intensity distribution of the pump pulse into a circular distribution, a mode conversion or a spatially shaped pump a pulse into the first coupling optical element;
  • Adjusting the intensity of the intensity distribution at the laser amplifying medium to the Laguerre-Gaussian of the regenerative amplifier by adjusting the first coupling optical element such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier
  • the intensity distribution of the sign mode matches.
  • the wide-band vortex laser pulse converter includes a wide-band vortex optical mode converter and a second coupling optical element;
  • the wide-band vortex optical mode converter vortex-rotates the initially incident ultrashort laser pulse and converts it into a vortex ultrashort laser pulse;
  • the invention has the following advantages:
  • the vortex ultrashort laser pulse amplifying system or method provided by the present invention makes the intensity distribution of the pump pulse after mode conversion or spatial shaping and the regenerative amplifier at the laser amplifying medium by spatial shaping or mode conversion of the pump pulse
  • the intensity distribution of the Laguerre-Gaussian eigenmode is matched; at the same time, the ultrashort laser pulse is sequentially converted by the wide-band vortex laser pulse converter, so that the intensity distribution of the obtained vortex ultrashort laser pulse is compared with that of the regenerative amplifier.
  • the intensity distribution of the Laguerre-Gaussian eigenmode at the laser amplifying medium is matched; the pump pulse after the mode conversion or spatial shaping enters the regenerative amplifier, and the vortex ultrashort laser pulse after the mode conversion enters the regenerative amplifier;
  • the regenerative amplifier amplifies the mode-converted vortex ultrashort laser pulse to finally generate and output an amplified vortex ultrashort laser pulse having a Laguerre-Gaussian eigenmode of the regenerative amplifier. Since the two modes have been switched before the two pulses enter the regenerative amplifier, the mode of the two pulses is matched with the Laguerre-Gaussian mode of the regenerative amplifier, so that the regenerative amplifier amplifies the vortex ultrashort laser pulse.
  • the final output vortex ultrashort laser pulse has a Laguerre-Gaussian eigenmode of the regenerative amplifier, thereby having a very high purity.
  • FIG. 1 is a schematic diagram of a vortex ultrashort laser pulse amplifying system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a vortex ultrashort laser pulse amplification system according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for amplifying a vortex ultrashort laser pulse according to an embodiment of the present invention.
  • the present invention provides a vortex ultrashort laser pulse amplifying system, the system comprising:
  • a pump pulse mode converter/shaper 10 for mode switching or spatial shaping of the initially incident pump pulse to cause the mode-switched or spatially shaped pump pulse to enter the regenerative amplifier 20 at the laser amplifying medium 201
  • the intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier 20.
  • a wide-band vortex laser pulse converter 30 for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier 20 at the laser amplifying medium 201
  • the intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the vortex ultrashort laser pulse enters the regenerative amplifier.
  • the regenerative amplifier 20 is configured to amplify the vortex ultrashort laser pulse based on the mode conversion or the spatially shaped pump pulse to generate and output an amplification of a Laguerre-Gaussian eigenmode distribution having the regenerative amplifier 20. Vortex ultrashort laser pulses.
  • the vortex ultrashort laser pulse amplifying system passes the pump pulse mode conversion/shaper 10 through the pump before the pump pulse and the ultrashort laser pulse enter the regenerative amplifier.
  • the spatial shaping or mode conversion of the pulse pulse, the wide-band vortex laser pulse converter 30 sequentially performs mode conversion on the ultrashort laser pulse, so that the modes of the two pulses are matched with the pattern of the regenerative amplifier, so that the regenerative amplifier vortex ultrashort laser
  • the amplified pulse is rapidly converted to the eigenmode of the regenerative amplifier having the vortex phase distribution, so that the finally generated output vortex ultrashort laser pulse has the eigenmode of the regenerative amplifier, thereby having a very high purity.
  • the present invention provides a vortex ultrashort laser pulse amplifying system, the system comprising:
  • the pump pulse mode converter/shaper 10 for mode switching or spatial shaping of the initially incident pump pulse to cause the mode-switched or spatially shaped pump pulse to enter the regenerative amplifier 20 at the laser amplifying medium 201
  • the intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier 20.
  • the pump pulse mode converter/shaper 10 includes an annular optical mode converter 101 and a first coupling optical element 102:
  • the annular optical mode converter 101 is configured to perform mode conversion or spatial shaping on the initially incident pump pulse to convert the spatial light intensity distribution of the pump pulse into a ring distribution, a mode conversion or a spatially shaped pump pulse. Entering the first coupling optical element 102.
  • the annular optical mode converter 101 can be any device capable of generating a ring-shaped intensity distribution for pump pulse shaping.
  • 101 is a conical lens, and the initial incident pump pulse is spatially shaped by a conical lens. .
  • the first coupling optical element 102 is configured to adjust the intensity distribution at the laser amplifying medium 201 and the regenerative amplifier 20 by adjusting the first coupling optical element 102 such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier 20
  • the intensity distribution of the Laguerre-Gaussian eigenmode is matched.
  • the first coupling optical element 102 is a coupling optical system.
  • the above matching means that the intensity distribution of the pump pulse after mode conversion or spatial shaping is the same as or close to the intensity distribution of the eigenmode of the regenerative amplifier.
  • the intensity distribution of the two is relatively difficult to achieve completely.
  • the degree of matching is that the closer the intensity distribution of the two is, the closer the intensity distribution of the pump pulse after mode conversion or spatial shaping is to the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20.
  • the purity of the amplified vortex ultrashort laser pulse that causes the final output of the regenerative amplifier 20 to be higher.
  • the pulse stretcher 40 is configured to pulse broaden the initially incident ultrashort laser pulse, and the pulsed broadened initial incident ultrashort laser pulse enters the wideband vortex laser pulse converter 30.
  • a wide-band vortex laser pulse converter 30 for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier 20 at the laser amplifying medium 201
  • the intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the vortex ultrashort laser pulse enters the regenerative amplifier 20.
  • the wideband vortex laser pulse converter 30 includes a wideband vortex optical mode converter 301 and a second coupling optical element 302:
  • the wide-band vortex optical mode converter 301 is configured to vortex the initial incident ultrashort laser pulse and convert it into a vortex ultrashort laser pulse.
  • the wide-band vortex optical mode converter 301 is any device capable of performing wide-band vortex light mode conversion.
  • the Q-chip is used as a wide-band vortex optical mode converter, and the Q-chip converts the initially incident ultrashort laser pulse into a carrier. The vortex pulse of the momentum of the corner of the road.
  • the second coupling optical element 302 for adjusting the intensity distribution at the laser amplifying medium 201 and the Laguerre of the regenerative amplifier 20 by adjusting the second coupling optical element 302 such that the vortex ultrashort laser pulse enters the regenerative amplifier 20 -
  • the intensity distribution of the Gaussian eigenmode matches.
  • the second coupling optical element 302 is a coupling optical system.
  • the above matching means that the intensity distribution of the vortex ultrashort laser pulse obtained by the mode conversion is the same as or close to the intensity distribution of the eigenmode of the regenerative amplifier.
  • the intensity distribution of the two is relatively difficult to achieve completely.
  • the degree of matching is that the closer the intensity distribution of the two is, the closer the vortex ultrashort laser pulse is to the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, which is within the regenerative amplifier 20.
  • the regenerative amplifier 20 is configured to amplify the vortex ultrashort laser pulse based on the mode switching or the spatially shaped pump pulse to generate and output an amplified vortex having a Laguerre-Gaussian eigenmode of the regenerative amplifier 20.
  • the laser amplifying medium 201 has the capability of wide-band laser amplification.
  • the laser amplifying medium 201 is a titanium sapphire crystal.
  • the compressor 50 is configured to temporally compress the amplified vortex ultrashort laser pulse of the Laguerre-Gaussian eigenmode with the regenerative amplifier output from the regenerative amplifier 20.
  • 60, 70, and 80 as shown in FIG. 1 are mirrors.
  • the pump pulse mode converter/shaper 10 passes the pump before the pump pulse and the ultrashort laser pulse enter the regenerative amplifier.
  • the spatial shaping or mode conversion of the pulse pulse, the wide-band vortex laser pulse converter 30 sequentially performs mode conversion on the ultrashort laser pulse, so that the modes of the two pulses are matched with the pattern of the regenerative amplifier, so that the regenerative amplifier vortex ultrashort laser
  • the amplified pulse vortex ultrashort laser pulse
  • the pulse has high purity, high stability and high strength.
  • the present invention provides a millijoule-level Laguerre-Gaussian femtosecond pulse generation system based on a titanium gemstone pulse regenerative amplification technique, the system
  • the working principle is as follows:
  • Ultra short laser pulse is 800 Nm femtosecond laser pulse, the ultrashort laser pulse first passes through a pulse stretcher, so that the time width is greatly broadened, and then converted into a vortex ultrashort laser pulse carrying orbital angular momentum after a Q piece; the vortex ultrashort laser The pulse is injected into the sapphire regenerative amplification cavity (i.e., the regenerative amplifier shown in FIG. 2) through the coupling optical system-1, and the vortex ultrashort laser pulse is applied to the titanium sapphire crystal by adjusting the coupling optical system-1 (Ti: The light field distribution within S) matches the Laguerre-Gaussian eigenmode distribution of the regenerative amplification cavity.
  • the pump pulse is a 532 or 527 nm nanosecond pulse.
  • the spatial intensity distribution of the pump pulse becomes a circular distribution, and then the pump pulse passes through the coupling optical system - 2 is then injected into the titanium gem regenerative amplification chamber, and by adjusting the optical system-2, the intensity distribution of the pump pulse at the titanium gemstone crystal matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplification cavity.
  • the vortex ultrashort laser pulse is amplified a plurality of times in the regenerative amplification cavity through a combination of a thin film polarizer and a Pockel coupling coupling system, since the vortex ultrashort laser pulse is close to the regenerative amplification cavity.
  • the eigenmode therefore, the vortex ultrashort laser pulse is transmitted back and forth in the regenerative amplification cavity.
  • the field intensity distribution is continuously close to the eigenmode of the regenerative amplification cavity.
  • the thin film polarizer is further used.
  • Pockel optical coupling system "pours" the amplified vortex ultrashort laser pulse out of the cavity of the regenerative amplifier, and finally outputs a Laguerre-Gaussian ultrashort laser pulse with a vortex phase after passing through the pulse compressor. .
  • the above-mentioned Pockel optical coupling system includes a cavity mirror-1 and a Puke box-1
  • another Pockel optical coupling system includes a cavity mirror-2 and a Puke box-2
  • the cavity mirror-1 It is used to make the pump pulse high
  • the cavity mirror-2 is used to make the vortex ultrashort laser pulse high reverse.
  • the Puke box-1 and the Puke box-2 are used to function as a pulse selection switch.
  • the system provided by the third embodiment of the present invention performs mode conversion on the pump pulse and the ultrashort laser pulse, so that the light intensity distribution when the two enter the regenerative amplification cavity is pulled with the regenerative amplification cavity.
  • the intensity distribution of the Gael-Gaussian eigenmode is matched, and finally a Laguerre-Gaussian ultrashort laser pulse having a vortex phase is outputted by the regenerative amplification cavity, and the output has a vortex phase of Laguerre- Gaussian ultrashort laser pulse with high purity, high stability and high strength.
  • the present invention provides a vortex ultrashort laser pulse amplification method, the method comprising:
  • Step S101 The pump pulse mode conversion/shaping device performs mode conversion or spatial shaping on the initially incident pump pulse to make the intensity distribution of the mode-transformed or spatially shaped pump pulse into the regenerative amplifier at the laser amplifying medium
  • the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched, and the pump pulse after mode conversion or spatial shaping enters the regenerative amplifier.
  • the pump pulse mode conversion/shaping device comprises an annular optical mode converter and a first coupling optical element: the annular optical mode converter performs mode conversion or spatial shaping on the initially incident pump pulse to make the pump pulse The spatial light intensity distribution is converted into a circular distribution, and the mode-transformed or spatially shaped pump pulse enters the first coupling optical element; the first coupling optical element is adjusted to enable the mode-switched or spatially shaped pump pulse to enter The intensity distribution at the laser amplifying medium at the time of regenerative amplifier matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier.
  • Step S102 The wide-band vortex laser pulse converter converts the initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converts the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplifying medium.
  • the intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier, and the vortex ultrashort laser pulse enters the regenerative amplifier.
  • the wide-band vortex laser pulse converter comprises a wide-band vortex optical mode converter and a second coupled optical component: the wide-band vortex optical mode converter vortex-rotates the initially incident ultrashort laser pulse, and converts into a vortex ultrashort laser pulse
  • the intensity distribution at the laser amplifying medium is matched to the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier by adjusting the second coupling optic such that the vortex ultrashort laser pulse enters the regenerative amplifier.
  • Step S103 The regenerative amplifier amplifies the vortex ultrashort laser pulse based on a mode conversion or a spatially shaped pump pulse, and generates and outputs an amplified vortex super with a Laguerre-Gaussian eigenmode of the regenerative amplifier. Short laser pulse.
  • the vortex ultrashort laser pulse amplifying method provided by the fourth embodiment of the present invention, by spatially shaping or mode-switching the pump pulse, simultaneously performs mode switching on the ultrashort laser pulse.
  • the mode of the two pulses is matched with the mode of the regenerative amplifier, so that in the process of amplifying the vortex ultrashort laser pulse by the regenerative amplifier, the diffraction loss caused by the spatial mode mismatch is avoided, so that the finally generated regenerative amplifier is pulled.
  • the amplified vortex ultrashort laser pulse of the Gael-Gaussian eigenmode has high purity, high stability, and high strength.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

Provided are a vortex ultra-short laser pulse amplification system and method. Before a pumping pulse and an ultra-short laser pulse enter a regenerative amplifier (20), a pumping pulse mode converter/shaper (10) carries out spatial shaping or mode conversion on the pumping pulse, and at the same time, a wide-band vortex laser pulse converter (30) carries out mode conversion on the ultra-short laser pulse, so that modes of the two pulses match a Laguerre-Gaussian mode of the regenerative amplifier (20), and thereby, during the process of the regenerative amplifier (20) amplifying the vortex ultra-short laser pulse, a Hermite-Gaussian mode is effectively suppressed, thus the finally generated vortex ultra-short pulse laser has the Laguerre-Gaussian intrinsic mode distribution of the regenerative amplifier (20), and the vortex ultra-short laser pulse has very high purity.

Description

一种涡旋超短激光脉冲放大系统及方法 Vortex ultrashort laser pulse amplifying system and method 技术领域Technical field
本发明属于激光技术领域,尤其涉及一种涡旋超短激光脉冲放大系统及方法。 The invention belongs to the field of laser technology, and in particular relates to a vortex ultrashort laser pulse amplification system and method.
背景技术Background technique
涡旋超短激光脉冲在超快成像、飞秒激光成丝、高次谐波产生以及激光超连续谱等方面有着广泛的应用前景。目前,产生宽带超短激光涡旋脉冲的方法中都需要有消色差特性,常用的有棱镜法、2f–2f系统、4f 系统以及使用空间变化的光学波片等。利用这些消色差技术结合激光放大器可获得高强度的飞秒涡旋脉冲。例如,利用啁啾脉冲放大技术结合由4f系统和空间光调制器组成的涡旋转换器可得到毫焦耳级的飞秒激光脉冲等。Vortex ultrashort laser pulses have broad application prospects in ultrafast imaging, femtosecond laser forming, higher harmonic generation, and laser supercontinuum. At present, achromatic techniques are required in the method of generating broadband ultrashort laser vortex pulses. The commonly used prism method, 2f-2f system, 4f The system and the use of spatially varying optical wave plates and the like. High-intensity femtosecond vortex pulses can be obtained by using these achromatic techniques in combination with a laser amplifier. For example, a millijoule-scale femtosecond laser pulse or the like can be obtained by using a chirped pulse amplification technique in combination with a vortex converter composed of a 4f system and a spatial light modulator.
但是,上述这些技术产生的涡旋脉冲都不是自由空间传输的本征模式,这意味着这些涡旋光在自由空间传输过程中,由于衍射效应其空间模式将会发生改变,最终所产生的涡旋脉冲纯度往往不高。However, the vortex pulses generated by these techniques are not the eigenmodes of free-space transmission, which means that during the free-space transmission, the spatial mode will change due to the diffraction effect, and the resulting vortex will eventually be generated. Pulse purity is often not high.
技术问题technical problem
本发明所要解决的技术问题为提供一种涡旋超短激光脉冲放大系统及方法,旨在解决现有技术产生的超短激光涡旋脉冲纯度低的问题。The technical problem to be solved by the present invention is to provide a vortex ultrashort laser pulse amplifying system and method, aiming at solving the problem of low purity of the ultrashort laser vortex pulse generated by the prior art.
技术解决方案Technical solution
为解决上述技术问题,本发明提供了一种涡旋超短激光脉冲放大系统,所述系统包括:In order to solve the above technical problems, the present invention provides a vortex ultrashort laser pulse amplifying system, the system comprising:
泵浦脉冲模式转换/整形器,用于对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述模式转换或空间整形后的泵浦脉冲进入再生放大器;Pump pulse mode converter/shaper for mode conversion or spatial shaping of the initially incident pump pulse to achieve intensity distribution at the laser amplifying medium when the mode-switched or spatially shaped pump pulse enters the regenerative amplifier The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier;
宽带涡旋激光脉冲转换器,用于将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的所述涡旋超短激光脉冲进入所述再生放大器时在所述激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述涡旋超短激光脉冲进入所述再生放大器;a wide-band vortex laser pulse converter for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplification The intensity distribution at the medium matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier, the vortex ultrashort laser pulse entering the regenerative amplifier;
所述再生放大器,用于基于所述模式转换或空间整形后的泵浦脉冲,对所述涡旋超短激光脉冲进行放大,生成并输出具有所述再生放大器的拉盖尔-高斯本征模式分布的涡旋超短激光脉冲。The regenerative amplifier for amplifying the vortex ultrashort laser pulse based on the mode-switched or spatially shaped pump pulse to generate and output a Laguerre-Gaussian eigenmode having the regenerative amplifier Distributed vortex ultrashort laser pulses.
进一步地,所述泵浦脉冲模式转换/整形器包括环状光模式转换器和第一耦合光学元件;Further, the pump pulse mode converter/shaper includes an annular optical mode converter and a first coupling optical element;
所述环状光模式转换器,用于对所述初始入射的泵浦脉冲进行模式转换或空间整形,以使所述泵浦脉冲的空间光强分布转换成环状分布,模式转换或空间整形后的泵浦脉冲进入所述第一耦合光学元件;The annular optical mode converter is configured to perform mode conversion or spatial shaping on the initially incident pump pulse to convert a spatial light intensity distribution of the pump pulse into a ring distribution, mode conversion or spatial shaping a subsequent pump pulse enters the first coupling optical element;
所述第一耦合光学元件,用于通过对所述第一耦合光学元件进行调节,以使所述模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。The first coupling optical element is configured to adjust an intensity distribution at the laser amplifying medium by adjusting the first coupling optical element such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched.
进一步地,所述宽带涡旋激光脉冲转换器包括宽带涡旋光模式转换器和第二耦合光学元件;Further, the wide-band vortex laser pulse converter includes a wide-band vortex optical mode converter and a second coupling optical element;
所述宽带涡旋光模式转换器,用于对初始入射的超短激光脉冲进行涡旋转换,转换成涡旋超短激光脉冲;The wide-band vortex optical mode converter is configured to perform vortex rotation on an initially incident ultrashort laser pulse and convert it into a vortex ultrashort laser pulse;
所述第二耦合光学元件,用于通过对所述第二耦合光学元件进行调节,以使所述涡旋超短激光脉冲进入所述再生放大器时在所述激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。The second coupling optical element is configured to adjust an intensity distribution of the vortex ultrashort laser pulse at the laser amplifying medium by adjusting the second coupling optical element to enter the regenerative amplifier The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched.
进一步地,所述系统还包括压缩器,用于对所述再生放大器输出的具有所述再生放大器的拉盖尔-高斯本征模式分布的涡旋超短激光脉冲进行时间压缩。Further, the system further includes a compressor for temporally compressing the vortex ultrashort laser pulse having the Laguerre-Gaussian eigenmode distribution of the regenerative amplifier output by the regenerative amplifier.
进一步地,所述系统还包括脉冲展宽器,用于对所述初始入射的超短激光脉冲进行脉冲展宽,脉冲展宽后的初始入射的超短激光脉冲进入所述宽带涡旋激光脉冲转换器。Further, the system further includes a pulse stretcher for pulse broadening the initially incident ultrashort laser pulse, the pulsed broadened initial incident ultrashort laser pulse entering the wideband vortex laser pulse converter.
本发明还提供了一种涡旋超短激光脉冲放大方法,所述方法包括:The invention also provides a vortex ultrashort laser pulse amplification method, the method comprising:
泵浦脉冲模式转换/整形器对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述模式转换或空间整形后的泵浦脉冲进入再生放大器;The pump pulse mode conversion/shaping device performs mode conversion or spatial shaping on the initially incident pump pulse to make the intensity distribution and the regeneration at the laser amplifying medium when the mode-switched or spatially shaped pump pulse enters the regenerative amplifier. Matching the intensity distribution of the Laguerre-Gaussian eigenmode of the amplifier, the mode-switched or spatially shaped pump pulse entering the regenerative amplifier;
宽带涡旋激光脉冲转换器将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的所述涡旋超短激光脉冲进入所述再生放大器时在所述激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述涡旋超短激光脉冲进入所述再生放大器;A wide-band vortex laser pulse converter converts an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converts the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplifying medium An intensity distribution is matched to an intensity distribution of a Laguerre-Gaussian eigenmode of the regenerative amplifier, the vortex ultrashort laser pulse entering the regenerative amplifier;
所述再生放大器基于所述模式转换或空间整形后的泵浦脉冲,对所述涡旋超短激光脉冲进行放大,生成并输出具有所述再生放大器的拉盖尔-高斯本征模式分布的涡旋超短激光脉冲。The regenerative amplifier amplifies the vortex ultrashort laser pulse based on the mode-switched or spatially shaped pump pulse to generate and output a vortex having a Laguerre-Gaussian eigenmode distribution of the regenerative amplifier Spin ultrashort laser pulses.
进一步地,所述泵浦脉冲模式转换/整形器包括环状光模式转换器和第一耦合光学元件;Further, the pump pulse mode converter/shaper includes an annular optical mode converter and a first coupling optical element;
所述环状光模式转换器对所述初始入射的泵浦脉冲进行模式转换或空间整形,以使所述泵浦脉冲的空间光强分布转换成环状分布,模式转换或空间整形后的泵浦脉冲进入所述第一耦合光学元件;The annular optical mode converter performs mode conversion or spatial shaping on the initially incident pump pulse to convert the spatial light intensity distribution of the pump pulse into a circular distribution, a mode conversion or a spatially shaped pump a pulse into the first coupling optical element;
通过对所述第一耦合光学元件进行调节,以使所述模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。Adjusting the intensity of the intensity distribution at the laser amplifying medium to the Laguerre-Gaussian of the regenerative amplifier by adjusting the first coupling optical element such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier The intensity distribution of the sign mode matches.
进一步地,所述宽带涡旋激光脉冲转换器包括宽带涡旋光模式转换器和第二耦合光学元件;Further, the wide-band vortex laser pulse converter includes a wide-band vortex optical mode converter and a second coupling optical element;
所述宽带涡旋光模式转换器对初始入射的超短激光脉冲进行涡旋转换,转换成涡旋超短激光脉冲;The wide-band vortex optical mode converter vortex-rotates the initially incident ultrashort laser pulse and converts it into a vortex ultrashort laser pulse;
通过对所述第二耦合光学元件进行调节,以使所述涡旋超短激光脉冲进入所述再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。Adjusting the intensity of the intensity distribution at the laser amplifying medium and the Laguerre-Gaussian eigenmode of the regenerative amplifier by adjusting the second coupling optical element such that the vortex ultrashort laser pulse enters the regenerative amplifier The intensity distribution matches.
有益效果Beneficial effect
本发明与现有技术相比,有益效果在于:Compared with the prior art, the invention has the following advantages:
本发明所提供的涡旋超短激光脉冲放大系统或方法,通过对泵浦脉冲的空间整形或者模式转换,使得模式转换或空间整形后的泵浦脉冲的强度分布与再生放大器在激光放大介质处的拉盖尔-高斯本征模式的强度分布匹配;同时,通过宽带涡旋激光脉冲转换器对超短激光脉冲依次进行模式转换,使得得到的涡旋超短激光脉冲的强度分布与再生放大器在激光放大介质处的拉盖尔-高斯本征模式的强度分布匹配;所述模式转换或空间整形后的泵浦脉冲进入再生放大器,,同时模式转换后的涡旋超短激光脉冲进入再生放大器;所述的再生放大器对所述模式转换后的涡旋超短激光脉冲进行放大,最终生成并输出具有所述再生放大器的拉盖尔-高斯本征模式的放大的涡旋超短激光脉冲。由于在两种脉冲进入再生放大器之前,均已进行了模式转换,使得两种脉冲的模式与再生放大器的拉盖尔-高斯模式匹配,这样在再生放大器对涡旋超短激光脉冲进行放大的过程中,最终输出的涡旋超短激光脉冲具有所述再生放大器的拉盖尔-高斯本征模式,从而具有非常高的纯度。The vortex ultrashort laser pulse amplifying system or method provided by the present invention makes the intensity distribution of the pump pulse after mode conversion or spatial shaping and the regenerative amplifier at the laser amplifying medium by spatial shaping or mode conversion of the pump pulse The intensity distribution of the Laguerre-Gaussian eigenmode is matched; at the same time, the ultrashort laser pulse is sequentially converted by the wide-band vortex laser pulse converter, so that the intensity distribution of the obtained vortex ultrashort laser pulse is compared with that of the regenerative amplifier. The intensity distribution of the Laguerre-Gaussian eigenmode at the laser amplifying medium is matched; the pump pulse after the mode conversion or spatial shaping enters the regenerative amplifier, and the vortex ultrashort laser pulse after the mode conversion enters the regenerative amplifier; The regenerative amplifier amplifies the mode-converted vortex ultrashort laser pulse to finally generate and output an amplified vortex ultrashort laser pulse having a Laguerre-Gaussian eigenmode of the regenerative amplifier. Since the two modes have been switched before the two pulses enter the regenerative amplifier, the mode of the two pulses is matched with the Laguerre-Gaussian mode of the regenerative amplifier, so that the regenerative amplifier amplifies the vortex ultrashort laser pulse. The final output vortex ultrashort laser pulse has a Laguerre-Gaussian eigenmode of the regenerative amplifier, thereby having a very high purity.
附图说明DRAWINGS
图1是本发明实施例提供的涡旋超短激光脉冲放大系统示意图;1 is a schematic diagram of a vortex ultrashort laser pulse amplifying system according to an embodiment of the present invention;
图2是本发明实施例提供的涡旋超短激光脉冲放大系统示意图;2 is a schematic diagram of a vortex ultrashort laser pulse amplification system according to an embodiment of the present invention;
图3是本发明实施例提供的涡旋超短激光脉冲放大方法流程图。3 is a flow chart of a method for amplifying a vortex ultrashort laser pulse according to an embodiment of the present invention.
本发明的实施方式Embodiments of the invention
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
作为本发明的第一个实施例,如图1所示,本发明提供的一种涡旋超短激光脉冲放大系统,该系统包括:As a first embodiment of the present invention, as shown in FIG. 1, the present invention provides a vortex ultrashort laser pulse amplifying system, the system comprising:
泵浦脉冲模式转换/整形器10,用于对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器20时在激光放大介质201处的强度分布与再生放大器20的拉盖尔-高斯本征模式的强度分布匹配,模式转换或空间整形后的泵浦脉冲进入再生放大器20。a pump pulse mode converter/shaper 10 for mode switching or spatial shaping of the initially incident pump pulse to cause the mode-switched or spatially shaped pump pulse to enter the regenerative amplifier 20 at the laser amplifying medium 201 The intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier 20.
宽带涡旋激光脉冲转换器30,用于将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的涡旋超短激光脉冲进入再生放大器20时在激光放大介质201处的强度分布与再生放大器20的拉盖尔-高斯本征模式的强度分布匹配,涡旋超短激光脉冲进入所述再生放大器。A wide-band vortex laser pulse converter 30 for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier 20 at the laser amplifying medium 201 The intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the vortex ultrashort laser pulse enters the regenerative amplifier.
再生放大器20,用于基于上述模式转换或空间整形后的泵浦脉冲,对上述涡旋超短激光脉冲进行放大,生成并输出具有再生放大器20的拉盖尔-高斯本征模式分布的放大的涡旋超短激光脉冲。The regenerative amplifier 20 is configured to amplify the vortex ultrashort laser pulse based on the mode conversion or the spatially shaped pump pulse to generate and output an amplification of a Laguerre-Gaussian eigenmode distribution having the regenerative amplifier 20. Vortex ultrashort laser pulses.
综上所述,本发明第一个实施例所提供的涡旋超短激光脉冲放大系统,在泵浦脉冲和超短激光脉冲进入再生放大器之前,泵浦脉冲模式转换/整形器10通过对泵浦脉冲的空间整形或者模式转换,宽带涡旋激光脉冲转换器30对超短激光脉冲依次进行模式转换,使得两种脉冲的模式与再生放大器的模式匹配,这样在再生放大器对涡旋超短激光脉冲进行放大的过程中,被放大脉冲迅速向具有涡旋相位分布的再生放大器的本征模式转化,使得最终生成输出的涡旋超短激光脉冲具有再生放大器的本征模式,从而具有非常高的纯度。In summary, the vortex ultrashort laser pulse amplifying system provided by the first embodiment of the present invention passes the pump pulse mode conversion/shaper 10 through the pump before the pump pulse and the ultrashort laser pulse enter the regenerative amplifier. The spatial shaping or mode conversion of the pulse pulse, the wide-band vortex laser pulse converter 30 sequentially performs mode conversion on the ultrashort laser pulse, so that the modes of the two pulses are matched with the pattern of the regenerative amplifier, so that the regenerative amplifier vortex ultrashort laser During the amplification of the pulse, the amplified pulse is rapidly converted to the eigenmode of the regenerative amplifier having the vortex phase distribution, so that the finally generated output vortex ultrashort laser pulse has the eigenmode of the regenerative amplifier, thereby having a very high purity.
作为本发明的第二个实施例,如图1所示,本发明提供了一种涡旋超短激光脉冲放大系统,该系统包括:As a second embodiment of the present invention, as shown in FIG. 1, the present invention provides a vortex ultrashort laser pulse amplifying system, the system comprising:
泵浦脉冲模式转换/整形器10,用于对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器20时在激光放大介质201处的强度分布与再生放大器20的拉盖尔-高斯本征模式的强度分布匹配,模式转换或空间整形后的泵浦脉冲进入再生放大器20。在本实施例中,泵浦脉冲模式转换/整形器10包括环状光模式转换器101和第一耦合光学元件102:a pump pulse mode converter/shaper 10 for mode switching or spatial shaping of the initially incident pump pulse to cause the mode-switched or spatially shaped pump pulse to enter the regenerative amplifier 20 at the laser amplifying medium 201 The intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier 20. In the present embodiment, the pump pulse mode converter/shaper 10 includes an annular optical mode converter 101 and a first coupling optical element 102:
环状光模式转换器101,用于对初始入射的泵浦脉冲进行模式转换或空间整形,以使泵浦脉冲的空间光强分布转换成环状分布,模式转换或空间整形后的泵浦脉冲进入第一耦合光学元件102。环状光模式转换器101可以为任何能够用于泵浦脉冲整形产生环状强度分布的器件,在本实施例中101采用的是圆锥透镜,通过圆锥透镜对初始入射的泵浦脉冲进行空间整形。The annular optical mode converter 101 is configured to perform mode conversion or spatial shaping on the initially incident pump pulse to convert the spatial light intensity distribution of the pump pulse into a ring distribution, a mode conversion or a spatially shaped pump pulse. Entering the first coupling optical element 102. The annular optical mode converter 101 can be any device capable of generating a ring-shaped intensity distribution for pump pulse shaping. In this embodiment, 101 is a conical lens, and the initial incident pump pulse is spatially shaped by a conical lens. .
第一耦合光学元件102,用于通过对第一耦合光学元件102进行调节,以使模式转换或空间整形后的泵浦脉冲进入再生放大器20时在激光放大介质201处的强度分布与再生放大器20的拉盖尔-高斯本征模式的强度分布匹配。在本实施例中,第一耦合光学元件102为一耦合光学系统。The first coupling optical element 102 is configured to adjust the intensity distribution at the laser amplifying medium 201 and the regenerative amplifier 20 by adjusting the first coupling optical element 102 such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier 20 The intensity distribution of the Laguerre-Gaussian eigenmode is matched. In the present embodiment, the first coupling optical element 102 is a coupling optical system.
需要说明的是,上述的匹配是指经过模式转换或空间整形后的泵浦脉冲的强度分布与再生放大器的本征模式的强度分布相同或者接近,理论上,两者的强度分布比较难达到完全相同的标准,因此,匹配的程度是两者的强度分布越接近越好,模式转换或空间整形后的泵浦脉冲的强度分布越接近再生放大器20的拉盖尔-高斯本征模式的强度分布,使得再生放大器20最终输出的放大的涡旋超短激光脉冲的纯度越高。It should be noted that the above matching means that the intensity distribution of the pump pulse after mode conversion or spatial shaping is the same as or close to the intensity distribution of the eigenmode of the regenerative amplifier. In theory, the intensity distribution of the two is relatively difficult to achieve completely. The same standard, therefore, the degree of matching is that the closer the intensity distribution of the two is, the closer the intensity distribution of the pump pulse after mode conversion or spatial shaping is to the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20. The purity of the amplified vortex ultrashort laser pulse that causes the final output of the regenerative amplifier 20 to be higher.
脉冲展宽器40,用于对初始入射的超短激光脉冲进行脉冲展宽,脉冲展宽后的初始入射的超短激光脉冲进入宽带涡旋激光脉冲转换器30。The pulse stretcher 40 is configured to pulse broaden the initially incident ultrashort laser pulse, and the pulsed broadened initial incident ultrashort laser pulse enters the wideband vortex laser pulse converter 30.
宽带涡旋激光脉冲转换器30,用于将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的涡旋超短激光脉冲进入再生放大器20时在激光放大介质201处的强度分布与再生放大器20的拉盖尔-高斯本征模式的强度分布匹配,涡旋超短激光脉冲进入再生放大器20。在本实施例中,宽带涡旋激光脉冲转换器30包括宽带涡旋光模式转换器301和第二耦合光学元件302:A wide-band vortex laser pulse converter 30 for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier 20 at the laser amplifying medium 201 The intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, and the vortex ultrashort laser pulse enters the regenerative amplifier 20. In the present embodiment, the wideband vortex laser pulse converter 30 includes a wideband vortex optical mode converter 301 and a second coupling optical element 302:
宽带涡旋光模式转换器301,用于对初始入射的超短激光脉冲进行涡旋转换,转换成涡旋超短激光脉冲。宽带涡旋光模式转换器301为任何可以进行宽带旋涡光模型转换的器件,在本实施例中,采用的Q片作为宽带涡旋光模式转换器,Q片将初始入射的超短激光脉冲转换为携带拐道角动量的涡旋脉冲。The wide-band vortex optical mode converter 301 is configured to vortex the initial incident ultrashort laser pulse and convert it into a vortex ultrashort laser pulse. The wide-band vortex optical mode converter 301 is any device capable of performing wide-band vortex light mode conversion. In this embodiment, the Q-chip is used as a wide-band vortex optical mode converter, and the Q-chip converts the initially incident ultrashort laser pulse into a carrier. The vortex pulse of the momentum of the corner of the road.
第二耦合光学元件302,用于通过对第二耦合光学元件302进行调节,以使涡旋超短激光脉冲进入再生放大器20时在激光放大介质201处的强度分布与再生放大器20的拉盖尔-高斯本征模式的强度分布匹配。在本实施例中,第二耦合光学元件302为一耦合光学系统。a second coupling optical element 302 for adjusting the intensity distribution at the laser amplifying medium 201 and the Laguerre of the regenerative amplifier 20 by adjusting the second coupling optical element 302 such that the vortex ultrashort laser pulse enters the regenerative amplifier 20 - The intensity distribution of the Gaussian eigenmode matches. In the present embodiment, the second coupling optical element 302 is a coupling optical system.
需要说明的是,上述的匹配是指经过模式转换得到的涡旋超短激光脉冲的强度分布与再生放大器的本征模式的强度分布相同或者接近,理论上,两者的强度分布比较难达到完全相同的标准,因此,匹配的程度是两者的强度分布越接近越好,涡旋超短激光脉冲越接近再生放大器20的拉盖尔-高斯本征模式的强度分布,其在再生放大器20内就越快速靠近拉盖尔-高斯本征模式,进而使得再生放大器20最终输出的放大的涡旋超短激光脉冲的纯度越高。It should be noted that the above matching means that the intensity distribution of the vortex ultrashort laser pulse obtained by the mode conversion is the same as or close to the intensity distribution of the eigenmode of the regenerative amplifier. In theory, the intensity distribution of the two is relatively difficult to achieve completely. The same standard, therefore, the degree of matching is that the closer the intensity distribution of the two is, the closer the vortex ultrashort laser pulse is to the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier 20, which is within the regenerative amplifier 20. The sooner the Laguerre-Gaussian eigenmode is approached, the higher the purity of the amplified vortex ultrashort laser pulse that the regenerative amplifier 20 ultimately outputs.
再生放大器20,用于基于上述模式转换或空间整形后的泵浦脉冲,对上述涡旋超短激光脉冲进行放大,生成并输出具有再生放大器20的拉盖尔-高斯本征模式的放大的涡旋超短激光脉冲。在再生放大器20中,激光放大介质201具有宽带激光放大的能力,在本实施例中,激光放大介质201采用的是钛宝石晶体。The regenerative amplifier 20 is configured to amplify the vortex ultrashort laser pulse based on the mode switching or the spatially shaped pump pulse to generate and output an amplified vortex having a Laguerre-Gaussian eigenmode of the regenerative amplifier 20. Spin ultrashort laser pulses. In the regenerative amplifier 20, the laser amplifying medium 201 has the capability of wide-band laser amplification. In the present embodiment, the laser amplifying medium 201 is a titanium sapphire crystal.
压缩器50,用于对再生放大器20输出的具有再生放大器的拉盖尔-高斯本征模式的放大的涡旋超短激光脉冲进行时间压缩。The compressor 50 is configured to temporally compress the amplified vortex ultrashort laser pulse of the Laguerre-Gaussian eigenmode with the regenerative amplifier output from the regenerative amplifier 20.
另外,如图1中所示的60、70、80均为反射镜。In addition, 60, 70, and 80 as shown in FIG. 1 are mirrors.
综上所述,本发明第二个实施例所提供的涡旋超短激光脉冲放大系统,在泵浦脉冲和超短激光脉冲进入再生放大器之前,泵浦脉冲模式转换/整形器10通过对泵浦脉冲的空间整形或者模式转换,宽带涡旋激光脉冲转换器30对超短激光脉冲依次进行模式转换,使得两种脉冲的模式与再生放大器的模式匹配,这样在再生放大器对涡旋超短激光脉冲进行放大的过程中,被放大脉冲(涡旋超短激光脉冲)迅速向再生放大器的模式,从而使得最终生成的具有再生放大器的拉盖尔-高斯本征模式的放大的涡旋超短激光脉冲具有高纯度、高稳定、高强度的特性。In summary, in the vortex ultrashort laser pulse amplifying system provided by the second embodiment of the present invention, the pump pulse mode converter/shaper 10 passes the pump before the pump pulse and the ultrashort laser pulse enter the regenerative amplifier. The spatial shaping or mode conversion of the pulse pulse, the wide-band vortex laser pulse converter 30 sequentially performs mode conversion on the ultrashort laser pulse, so that the modes of the two pulses are matched with the pattern of the regenerative amplifier, so that the regenerative amplifier vortex ultrashort laser During the process of amplifying the pulse, the amplified pulse (vortex ultrashort laser pulse) rapidly moves to the mode of the regenerative amplifier, thereby causing the finally generated amplified vortex ultrashort laser with the Laguerre-Gaussian eigenmode of the regenerative amplifier. The pulse has high purity, high stability and high strength.
作为本发明的第三个实施例,如图2所示,本发明提供了一种基于钛宝石啁啾脉冲再生放大技术的毫焦耳级拉盖尔-高斯模飞秒脉冲产生系统,该系统的工作原理如下:As a third embodiment of the present invention, as shown in FIG. 2, the present invention provides a millijoule-level Laguerre-Gaussian femtosecond pulse generation system based on a titanium gemstone pulse regenerative amplification technique, the system The working principle is as follows:
超短激光脉冲是800 nm飞秒激光脉冲,该超短激光脉冲首先经过脉冲展宽器,使得时间宽度得到大幅展宽,然后经过一Q片后转换为携带轨道角动量的涡旋超短激光脉冲;该涡旋超短激光脉冲通过耦合光学系统-1后注入到钛宝石再生放大腔(即图2中所示的再生放大器)中,通过调节耦合光学系统-1使得该涡旋超短激光脉冲在钛宝石晶体(Ti:S)内的光场分布与该再生放大腔的拉盖尔-高斯本征模分布匹配。Ultra short laser pulse is 800 Nm femtosecond laser pulse, the ultrashort laser pulse first passes through a pulse stretcher, so that the time width is greatly broadened, and then converted into a vortex ultrashort laser pulse carrying orbital angular momentum after a Q piece; the vortex ultrashort laser The pulse is injected into the sapphire regenerative amplification cavity (i.e., the regenerative amplifier shown in FIG. 2) through the coupling optical system-1, and the vortex ultrashort laser pulse is applied to the titanium sapphire crystal by adjusting the coupling optical system-1 (Ti: The light field distribution within S) matches the Laguerre-Gaussian eigenmode distribution of the regenerative amplification cavity.
同时,泵浦脉冲是532或527nm的纳秒脉冲,该泵浦脉冲首先经过一圆锥透镜后,该泵浦脉冲的空间光强分布变成环状分布,然后该泵浦脉通过耦合光学系统-2后注入到钛宝石再生放大腔,通过调节该光学系统-2使得泵浦脉冲在钛宝石晶体处的光强分布与该再生放大腔的拉盖尔-高斯本征模的强度分布匹配。At the same time, the pump pulse is a 532 or 527 nm nanosecond pulse. After the pump pulse first passes through a conical lens, the spatial intensity distribution of the pump pulse becomes a circular distribution, and then the pump pulse passes through the coupling optical system - 2 is then injected into the titanium gem regenerative amplification chamber, and by adjusting the optical system-2, the intensity distribution of the pump pulse at the titanium gemstone crystal matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplification cavity.
在再生放大腔内,涡旋超短激光脉冲经一薄膜偏振片和普克尔开光耦合系统的共同作用在再生放大腔内被多次放大,由于涡旋超短激光脉冲已接近再生放大腔的本征模,因此涡旋超短激光脉冲在再生放大腔中来回传输被不断放大过程中,其场强分布不断靠近再生放大腔的本征模,当放大达到饱和时,再借助上述薄膜偏振片和另一普克尔开光耦合系统将放大后涡旋超短激光脉冲“倒”出再生放大器的腔外,最后经过脉冲压缩器后即输出具有涡旋相位的拉盖尔-高斯超短激光脉冲。In the regenerative amplification cavity, the vortex ultrashort laser pulse is amplified a plurality of times in the regenerative amplification cavity through a combination of a thin film polarizer and a Pockel coupling coupling system, since the vortex ultrashort laser pulse is close to the regenerative amplification cavity. The eigenmode, therefore, the vortex ultrashort laser pulse is transmitted back and forth in the regenerative amplification cavity. The field intensity distribution is continuously close to the eigenmode of the regenerative amplification cavity. When the amplification is saturated, the thin film polarizer is further used. And another Pockel optical coupling system "pours" the amplified vortex ultrashort laser pulse out of the cavity of the regenerative amplifier, and finally outputs a Laguerre-Gaussian ultrashort laser pulse with a vortex phase after passing through the pulse compressor. .
如图2所示,上述一普克尔开光耦合系统包括腔镜-1和普克盒-1,另一普克尔开光耦合系统包括腔镜-2和普克盒-2,腔镜-1用于使泵浦脉冲高透,腔镜-2用于使旋涡超短激光脉冲高反,普克盒-1和普克盒-2用于起到脉冲选择开关的作用。As shown in FIG. 2, the above-mentioned Pockel optical coupling system includes a cavity mirror-1 and a Puke box-1, and another Pockel optical coupling system includes a cavity mirror-2 and a Puke box-2, and the cavity mirror-1 It is used to make the pump pulse high, and the cavity mirror-2 is used to make the vortex ultrashort laser pulse high reverse. The Puke box-1 and the Puke box-2 are used to function as a pulse selection switch.
综上所述,本发明第三个实施例所提供的系统,对泵浦脉冲和超短激光脉冲进行模式转换,使得两者进入再生放大腔时的光强分布均与该再生放大腔的拉盖尔-高斯本征模的强度分布匹配,最终经过再生放大腔的作用下,输出具有涡旋相位的拉盖尔-高斯超短激光脉冲,且该输出的具有涡旋相位的拉盖尔-高斯超短激光脉冲,具有高纯度、高稳定、高强度的特性。In summary, the system provided by the third embodiment of the present invention performs mode conversion on the pump pulse and the ultrashort laser pulse, so that the light intensity distribution when the two enter the regenerative amplification cavity is pulled with the regenerative amplification cavity. The intensity distribution of the Gael-Gaussian eigenmode is matched, and finally a Laguerre-Gaussian ultrashort laser pulse having a vortex phase is outputted by the regenerative amplification cavity, and the output has a vortex phase of Laguerre- Gaussian ultrashort laser pulse with high purity, high stability and high strength.
作为本发明的第四个实施例,如图3所示,本发明提供了一种涡旋超短激光脉冲放大方法,该方法包括:As a fourth embodiment of the present invention, as shown in FIG. 3, the present invention provides a vortex ultrashort laser pulse amplification method, the method comprising:
步骤S101:泵浦脉冲模式转换/整形器对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与该再生放大器的拉盖尔-高斯本征模式的强度分布匹配,模式转换或空间整形后的泵浦脉冲进入再生放大器。其中,泵浦脉冲模式转换/整形器包括环状光模式转换器和第一耦合光学元件:环状光模式转换器对初始入射的泵浦脉冲进行模式转换或空间整形,以使泵浦脉冲的空间光强分布转换成环状分布,模式转换或空间整形后的泵浦脉冲进入第一耦合光学元件;通过对第一耦合光学元件进行调节,以使模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与再生放大器的拉盖尔-高斯本征模式的强度分布匹配。Step S101: The pump pulse mode conversion/shaping device performs mode conversion or spatial shaping on the initially incident pump pulse to make the intensity distribution of the mode-transformed or spatially shaped pump pulse into the regenerative amplifier at the laser amplifying medium The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched, and the pump pulse after mode conversion or spatial shaping enters the regenerative amplifier. Wherein the pump pulse mode conversion/shaping device comprises an annular optical mode converter and a first coupling optical element: the annular optical mode converter performs mode conversion or spatial shaping on the initially incident pump pulse to make the pump pulse The spatial light intensity distribution is converted into a circular distribution, and the mode-transformed or spatially shaped pump pulse enters the first coupling optical element; the first coupling optical element is adjusted to enable the mode-switched or spatially shaped pump pulse to enter The intensity distribution at the laser amplifying medium at the time of regenerative amplifier matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier.
步骤S102:宽带涡旋激光脉冲转换器将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的涡旋超短激光脉冲进入该再生放大器时在所述激光放大介质处的强度分布与该再生放大器的拉盖尔-高斯本征模式的强度分布匹配,涡旋超短激光脉冲进入所述再生放大器。其中,宽带涡旋激光脉冲转换器包括宽带涡旋光模式转换器和第二耦合光学元件:宽带涡旋光模式转换器对初始入射的超短激光脉冲进行涡旋转换,转换成涡旋超短激光脉冲;通过对第二耦合光学元件进行调节,以使涡旋超短激光脉冲进入再生放大器时在激光放大介质处的强度分布与再生放大器的拉盖尔-高斯本征模式的强度分布匹配。Step S102: The wide-band vortex laser pulse converter converts the initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converts the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplifying medium. The intensity distribution matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier, and the vortex ultrashort laser pulse enters the regenerative amplifier. Wherein, the wide-band vortex laser pulse converter comprises a wide-band vortex optical mode converter and a second coupled optical component: the wide-band vortex optical mode converter vortex-rotates the initially incident ultrashort laser pulse, and converts into a vortex ultrashort laser pulse The intensity distribution at the laser amplifying medium is matched to the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier by adjusting the second coupling optic such that the vortex ultrashort laser pulse enters the regenerative amplifier.
步骤S103:再生放大器基于模式转换或空间整形后的泵浦脉冲,对所述涡旋超短激光脉冲进行放大,生成并输出具有再生放大器的拉盖尔-高斯本征模式的放大的涡旋超短激光脉冲。Step S103: The regenerative amplifier amplifies the vortex ultrashort laser pulse based on a mode conversion or a spatially shaped pump pulse, and generates and outputs an amplified vortex super with a Laguerre-Gaussian eigenmode of the regenerative amplifier. Short laser pulse.
综上所述,本发明第四个实施例所提供的涡旋超短激光脉冲放大方法,通过对泵浦脉冲的空间整形或者模式转换,同时,通过对超短激光脉冲依次进行模式转换,使得两种脉冲的模式与再生放大器的模式匹配,这样在再生放大器对涡旋超短激光脉冲进行放大的过程中,避免了空间模式不匹配而造成的衍射损耗,使得最终生成的具有再生放大器的拉盖尔-高斯本征模式的放大的涡旋超短激光脉冲具有高纯度、高稳定、高强度的特性。 In summary, the vortex ultrashort laser pulse amplifying method provided by the fourth embodiment of the present invention, by spatially shaping or mode-switching the pump pulse, simultaneously performs mode switching on the ultrashort laser pulse. The mode of the two pulses is matched with the mode of the regenerative amplifier, so that in the process of amplifying the vortex ultrashort laser pulse by the regenerative amplifier, the diffraction loss caused by the spatial mode mismatch is avoided, so that the finally generated regenerative amplifier is pulled. The amplified vortex ultrashort laser pulse of the Gael-Gaussian eigenmode has high purity, high stability, and high strength.
以上所述仅为本发明的较佳实施例而已,并不用以限制发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above is only the preferred embodiment of the present invention, and is not intended to limit the invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the scope of the present invention. within.

Claims (8)

  1. 一种涡旋超短激光脉冲放大系统,其特征在于,所述系统包括:A vortex ultrashort laser pulse amplification system, characterized in that the system comprises:
    泵浦脉冲模式转换/整形器,用于对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述模式转换或空间整形后的泵浦脉冲进入再生放大器;Pump pulse mode converter/shaper for mode conversion or spatial shaping of the initially incident pump pulse to achieve intensity distribution at the laser amplifying medium when the mode-switched or spatially shaped pump pulse enters the regenerative amplifier The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched, and the mode-switched or spatially shaped pump pulse enters the regenerative amplifier;
    宽带涡旋激光脉冲转换器,用于将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的所述涡旋超短激光脉冲进入所述再生放大器时在所述激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述涡旋超短激光脉冲进入所述再生放大器;a wide-band vortex laser pulse converter for converting an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converting the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplification The intensity distribution at the medium matches the intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier, the vortex ultrashort laser pulse entering the regenerative amplifier;
    所述再生放大器,用于基于所述模式转换或空间整形后的泵浦脉冲,对所述涡旋超短激光脉冲进行放大,生成并输出具有所述再生放大器的拉盖尔-高斯本征模式分布的涡旋超短激光脉冲。The regenerative amplifier for amplifying the vortex ultrashort laser pulse based on the mode-switched or spatially shaped pump pulse to generate and output a Laguerre-Gaussian eigenmode having the regenerative amplifier Distributed vortex ultrashort laser pulses.
  2. 如权利要求1所述的系统,其特征在于,所述泵浦脉冲模式转换/整形器包括环状光模式转换器和第一耦合光学元件;The system of claim 1 wherein said pump pulse mode converter/shaper comprises an annular optical mode converter and a first coupling optical element;
    所述环状光模式转换器,用于对所述初始入射的泵浦脉冲进行模式转换或空间整形,以使所述泵浦脉冲的空间光强分布转换成环状分布,模式转换或空间整形后的泵浦脉冲进入所述第一耦合光学元件;The annular optical mode converter is configured to perform mode conversion or spatial shaping on the initially incident pump pulse to convert a spatial light intensity distribution of the pump pulse into a ring distribution, mode conversion or spatial shaping a subsequent pump pulse enters the first coupling optical element;
    所述第一耦合光学元件,用于通过对所述第一耦合光学元件进行调节,以使所述模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。The first coupling optical element is configured to adjust an intensity distribution at the laser amplifying medium by adjusting the first coupling optical element such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched.
  3. 如权利要求1所述的系统,其特征在于,所述宽带涡旋激光脉冲转换器包括宽带涡旋光模式转换器和第二耦合光学元件;The system of claim 1 wherein said wideband vortex laser pulse converter comprises a wideband vortex optical mode converter and a second coupling optical element;
    所述宽带涡旋光模式转换器,用于对初始入射的超短激光脉冲进行涡旋转换,转换成涡旋超短激光脉冲;The wide-band vortex optical mode converter is configured to perform vortex rotation on an initially incident ultrashort laser pulse and convert it into a vortex ultrashort laser pulse;
    所述第二耦合光学元件,用于通过对所述第二耦合光学元件进行调节,以使所述涡旋超短激光脉冲进入所述再生放大器时在所述激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。The second coupling optical element is configured to adjust an intensity distribution of the vortex ultrashort laser pulse at the laser amplifying medium by adjusting the second coupling optical element to enter the regenerative amplifier The intensity distribution of the Laguerre-Gaussian eigenmode of the regenerative amplifier is matched.
  4. 如权利要求1所述的系统,其特征在于,所述系统还包括压缩器,用于对所述再生放大器输出的具有所述再生放大器的拉盖尔-高斯本征模式分布的涡旋超短激光脉冲进行时间压缩。The system of claim 1 wherein said system further comprises a compressor for outputting said regrowth of said regenerative amplifier having a Laguerre-Gaussian eigenmode distribution of said regenerative amplifier The laser pulse is time compressed.
  5. 如权利要求1所述的系统,其特征在于,所述系统还包括脉冲展宽器,用于对所述初始入射的超短激光脉冲进行脉冲展宽,脉冲展宽后的初始入射的超短激光脉冲进入所述宽带涡旋激光脉冲转换器。The system of claim 1 wherein said system further comprises a pulse stretcher for pulse broadening said initially incident ultrashort laser pulse, and initially expanding the ultrashort laser pulse after pulse broadening The wideband vortex laser pulse converter.
  6. 一种涡旋超短激光脉冲放大方法,其特征在于,所述方法包括:A vortex ultrashort laser pulse amplification method, characterized in that the method comprises:
    泵浦脉冲模式转换/整形器对初始入射的泵浦脉冲进行模式转换或空间整形,以使模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述模式转换或空间整形后的泵浦脉冲进入再生放大器;The pump pulse mode conversion/shaping device performs mode conversion or spatial shaping on the initially incident pump pulse to make the intensity distribution and the regeneration at the laser amplifying medium when the mode-switched or spatially shaped pump pulse enters the regenerative amplifier. Matching the intensity distribution of the Laguerre-Gaussian eigenmode of the amplifier, the mode-switched or spatially shaped pump pulse entering the regenerative amplifier;
    宽带涡旋激光脉冲转换器将初始入射的超短激光脉冲转换成涡旋超短激光脉冲,且转换成的所述涡旋超短激光脉冲进入所述再生放大器时在所述激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配,所述涡旋超短激光脉冲进入所述再生放大器;A wide-band vortex laser pulse converter converts an initially incident ultrashort laser pulse into a vortex ultrashort laser pulse, and converts the vortex ultrashort laser pulse into the regenerative amplifier at the laser amplifying medium An intensity distribution is matched to an intensity distribution of a Laguerre-Gaussian eigenmode of the regenerative amplifier, the vortex ultrashort laser pulse entering the regenerative amplifier;
    所述再生放大器基于所述模式转换或空间整形后的泵浦脉冲,对所述涡旋超短激光脉冲进行放大,生成并输出具有所述再生放大器的拉盖尔-高斯本征模式分布的涡旋超短激光脉冲。The regenerative amplifier amplifies the vortex ultrashort laser pulse based on the mode-switched or spatially shaped pump pulse to generate and output a vortex having a Laguerre-Gaussian eigenmode distribution of the regenerative amplifier Spin ultrashort laser pulses.
  7. 如权利要求6所述的方法,其特征在于,所述泵浦脉冲模式转换/整形器包括环状光模式转换器和第一耦合光学元件;The method of claim 6 wherein said pump pulse mode converter/shaper comprises an annular optical mode converter and a first coupling optical element;
    所述环状光模式转换器对所述初始入射的泵浦脉冲进行模式转换或空间整形,以使所述泵浦脉冲的空间光强分布转换成环状分布,模式转换或空间整形后的泵浦脉冲进入所述第一耦合光学元件;The annular optical mode converter performs mode conversion or spatial shaping on the initially incident pump pulse to convert the spatial light intensity distribution of the pump pulse into a circular distribution, a mode conversion or a spatially shaped pump a pulse into the first coupling optical element;
    通过对所述第一耦合光学元件进行调节,以使所述模式转换或空间整形后的泵浦脉冲进入再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。Adjusting the intensity of the intensity distribution at the laser amplifying medium to the Laguerre-Gaussian of the regenerative amplifier by adjusting the first coupling optical element such that the mode-switched or spatially shaped pump pulse enters the regenerative amplifier The intensity distribution of the sign mode matches.
  8. 如权利要求6所述的方法,其特征在于,所述宽带涡旋激光脉冲转换器包括宽带涡旋光模式转换器和第二耦合光学元件;The method of claim 6 wherein said wideband vortex laser pulse converter comprises a wideband vortex optical mode converter and a second coupling optical element;
    所述宽带涡旋光模式转换器对初始入射的超短激光脉冲进行涡旋转换,转换成涡旋超短激光脉冲;The wide-band vortex optical mode converter vortex-rotates the initially incident ultrashort laser pulse and converts it into a vortex ultrashort laser pulse;
    通过对所述第二耦合光学元件进行调节,以使所述涡旋超短激光脉冲进入所述再生放大器时在激光放大介质处的强度分布与所述再生放大器的拉盖尔-高斯本征模式的强度分布匹配。Adjusting the intensity of the intensity distribution at the laser amplifying medium and the Laguerre-Gaussian eigenmode of the regenerative amplifier by adjusting the second coupling optical element such that the vortex ultrashort laser pulse enters the regenerative amplifier The intensity distribution matches.
PCT/CN2017/093675 2017-07-20 2017-07-20 Vortex ultra-short laser pulse amplification system and method WO2019014893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093675 WO2019014893A1 (en) 2017-07-20 2017-07-20 Vortex ultra-short laser pulse amplification system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093675 WO2019014893A1 (en) 2017-07-20 2017-07-20 Vortex ultra-short laser pulse amplification system and method

Publications (1)

Publication Number Publication Date
WO2019014893A1 true WO2019014893A1 (en) 2019-01-24

Family

ID=65016076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093675 WO2019014893A1 (en) 2017-07-20 2017-07-20 Vortex ultra-short laser pulse amplification system and method

Country Status (1)

Country Link
WO (1) WO2019014893A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120418A1 (en) * 2004-12-07 2006-06-08 Imra America, Inc. Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems
CN102544986A (en) * 2011-04-07 2012-07-04 北京国科世纪激光技术有限公司 Pump coaxiality adjusting method for double-end-face pump laser device
CN102820612A (en) * 2012-06-05 2012-12-12 中国科学院半导体研究所 Ultra-short pulse solid laser with continuous adjustable repetition frequency
CN105576488A (en) * 2014-10-11 2016-05-11 中国科学院理化技术研究所 Regenerative laser amplifier based on slab gain medium
CN105762636A (en) * 2016-04-21 2016-07-13 上海交通大学 Method for generating femtosecond vortex beam with high spactial intensity contrast
CN107357113A (en) * 2017-07-20 2017-11-17 深圳大学 A kind of vortex ultrashort laser pulse amplification system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120418A1 (en) * 2004-12-07 2006-06-08 Imra America, Inc. Yb: and Nd: mode-locked oscillators and fiber systems incorporated in solid-state short pulse laser systems
CN102544986A (en) * 2011-04-07 2012-07-04 北京国科世纪激光技术有限公司 Pump coaxiality adjusting method for double-end-face pump laser device
CN102820612A (en) * 2012-06-05 2012-12-12 中国科学院半导体研究所 Ultra-short pulse solid laser with continuous adjustable repetition frequency
CN105576488A (en) * 2014-10-11 2016-05-11 中国科学院理化技术研究所 Regenerative laser amplifier based on slab gain medium
CN105762636A (en) * 2016-04-21 2016-07-13 上海交通大学 Method for generating femtosecond vortex beam with high spactial intensity contrast
CN107357113A (en) * 2017-07-20 2017-11-17 深圳大学 A kind of vortex ultrashort laser pulse amplification system and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN, YUCHIEN ET AL.: "Generation of Intense Femtosecond Optical Vortex Pulses with Blazed-Phase Grating in Chirped-Pulse Amplification System of Ti: Sapphire Laser", APPLIED PHYSICS B-LASERS AND OPTICS, vol. 122, no. 11, 30 November 2016 (2016-11-30), XP036089853, ISSN: 0946-2171 *
YAMANE, K. ET AL.: "Ultrashort optical-vortex pulse generation in few-cycle regime", OPTICS EXPRESS, vol. 20, no. 17, 13 August 2012 (2012-08-13), XP055562204, ISSN: 1094-4087 *

Similar Documents

Publication Publication Date Title
TWI636660B (en) A class d amplifier
WO2018129675A1 (en) Periodically polarized crystal and optical parameter amplifier
WO2018205441A1 (en) Broadband optical parametric chirped-pulse amplifier
US7446603B2 (en) Differential input Class D amplifier
CN102801390A (en) POP noise suppression circuit in D audio frequency amplifier
WO2018045701A1 (en) Spectrum regulation apparatus for mid-infrared pulse laser light
CN107357113B (en) Vortex ultrashort laser pulse amplification system and method
WO2001086806A3 (en) Apparatus and method for efficiently amplifying wideband envelope signals
WO2018161428A1 (en) Optically-controlled optical pam signal regeneration device
CN103605249B (en) A kind of double pumping action chirp compensation optically erasing method and device
EP2575309B1 (en) A method for pulse width modulation, and a transmitter therefor
TW200836480A (en) Low distortion switching amplifier circuits and methods
US8373924B2 (en) Frequency-tripled fiber MOPA
WO2019075983A1 (en) Fast on/off pulse laser
WO2019014893A1 (en) Vortex ultra-short laser pulse amplification system and method
CN103217851A (en) Collinear opticalparametricamplification method and device
CO4650106A1 (en) DEVICE AND METHOD TO COMPENSATE PHASE DISTORTION
Su et al. Efficient generation of UV-enhanced intense supercontinuum in solids: Toward sub-cycle transient
GB2413004A (en) Method and apparatus for generating mid and long ir wavelength radiation
JP2016524864A (en) Burst mode laser generator and method
WO2003044944A1 (en) A new tyre digital audio power amplifier
CN104113307A (en) All-optical clock frequency multiplication device and frequency multiplication method based on device
CA2273210C (en) Class d amplifier
CN103296572B (en) Gas laser amplifying system with annular cavity structure
CN207352326U (en) A kind of vortex ultrashort laser pulse amplification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17918282

Country of ref document: EP

Kind code of ref document: A1