WO2019013808A1 - Virtual reality headset stands - Google Patents
Virtual reality headset stands Download PDFInfo
- Publication number
- WO2019013808A1 WO2019013808A1 PCT/US2017/042064 US2017042064W WO2019013808A1 WO 2019013808 A1 WO2019013808 A1 WO 2019013808A1 US 2017042064 W US2017042064 W US 2017042064W WO 2019013808 A1 WO2019013808 A1 WO 2019013808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virtual reality
- reality headset
- stand
- stem
- headset
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/90—Constructional details or arrangements of video game devices not provided for in groups A63F13/20 or A63F13/25, e.g. housing, wiring, connections or cabinets
- A63F13/98—Accessories, i.e. detachable arrangements optional for the use of the video game device, e.g. grip supports of game controllers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/211—Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/24—Constructional details thereof, e.g. game controllers with detachable joystick handles
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/40—Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment
- A63F13/42—Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
- A63F13/428—Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving motion or position input signals, e.g. signals representing the rotation of an input controller or a player's arm motions sensed by accelerometers or gyroscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0176—Head mounted characterised by mechanical features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1632—External expansion units, e.g. docking stations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/012—Head tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/003—Navigation within 3D models or images
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/80—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
- A63F2300/8082—Virtual reality
Definitions
- Augmented reality / virtual reality continues to increase in popularity both for entertainment and commercial purposes.
- Virtual reality headsets are worn on a user's head and cover the user's eyes. The headsets display the virtual reality images to a user and may be transitional as the user moves his/her head.
- FIG. 1 A is a side view illustrating a schematic diagram of a virtual reality headset stand and virtual reality headset, according to an example.
- FIG. 1 B is a front view illustrating a schematic diagram of a virtual reality headset stand and virtual reality headset, according to an example.
- FIG. 1 C is a perspective front view illustrating a schematic diagram of a virtual reality headset stand and virtual reality headset, according to an example.
- FIG. 2A is a perspective front view illustrating a schematic diagram of a virtual reality headset stand, according to an example.
- FIG. 2B is a perspective side view illustrating a schematic diagram of a virtual reality headset stand, according to an example.
- FIG. 2C is a perspective rear view illustrating a schematic diagram of a virtual reality headset stand, according to an example.
- FIG. 3 is a perspective rear view illustrating a schematic diagram of a virtual reality headset stand and virtual reality headset, according to an example.
- FIG. 4 illustrates a schematic diagram of a virtual reality stand and virtual reality headset in use, according to an example.
- FIG. 5A is a perspective view illustrating a schematic diagram of a virtual reality headset stand connected to a body pack and a virtual reality headset, according to an example.
- FIG. 5B illustrates a schematic diagram of a system, according to an example.
- FIG. 6 is a flowchart illustrating a method, according to an example.
- FIG. 7 illustrates a system block diagram, according to an example.
- FIG. 8 is a flowchart illustrating another method, according to an example.
- FIG. 9A illustrates a schematic diagram of a first virtual reality image, according to an example.
- FIG. 9B illustrates a schematic diagram of a second virtual reality image, according to an example.
- FIG. 10A illustrates a schematic diagram of a virtual reality headset and controller, according to an example.
- FIG. 10B illustrates a schematic diagram of a virtual reality headset and controller, according to another example.
- FIG. 1 1 is a computer system diagram, according to an example.
- the examples described herein provide a mechanism to hold a virtual reality headset to allow a graphic designer, programmer, architect, engineer, etc. to be able to view virtual reality images/videos in through the headset without having to physically put the headset on over his/her head using traditional head mounts or straps, and which allows either no-handed or one- handed holding of the mechanism. Because the virtual reality headset is held in place by an attached stand, the user's hand or hands are free to be able to continue to work on the computer's keyboard or touchscreen, and to further allow the user to easily switch views between a conventional computer screen and a virtual reality headset.
- the stand has a small size so as to not consume much space on the user's workstation and be easily carried by a user in a desired utilization.
- FIGS. 1 A through 1 C are various views illustrating a virtual reality headset stand 5 and virtual reality headset 25, according to an example.
- the self-supporting stand 5 may sit on a user's desk, and next to the user's computer that is running the virtual reality software such that the stand 5 holds the virtual reality headset 25 in place.
- the user can lean into the headset 25 to view the virtual reality images/video but does not have to physically hold the stand 5 or headset 25.
- the virtual reality headset stand 5 comprises a base 10, a stem 15 extending from the base 10, and a docking station 20 attached to the stem 15.
- the stem 15 may be angled toward the base 10.
- the docking station 20 may be angled away from the stem 15.
- the docking station 20 may be angled away from the stem 15 of the stand 5 so as to not interfere with the user's body when looking downward and without requiring that the stem 15 be removed before the virtual reality headset 25 is used.
- the base 1 0 may be angled toward the stem 15 so as to counter the imbalance of the docking station 20 which is angled away from the stem 15, according to one example.
- the docking station 20 may be contoured to hold the virtual reality headset 25.
- the virtual reality headset 25 may be any type of virtual reality headset used in the industry, and while straps are typically incorporated into the virtual reality headset design, the examples herein do not require that the virtual reality headset 25 comprise head straps.
- the stand 5 operates equally with a virtual reality headset 25 containing head straps or strapless.
- the docking station 20 includes various attachment mechanisms including, but not limited to, a lip 30 connected to the stem 15, a body portion 35 connected to the lip 30, and a clip 40 connected to the body portion 35 and set to retain the virtual reality headset 25 in place when the stand 5 is lifted or moved with the virtual reality headset 25 attached.
- the stem 15 comprises a controller mechanism 45 to control actions presented in the virtual reality headset 25.
- the controller mechanism 45 may comprise one or more buttons, joysticks or other input control devices 46, 1 1 0 and be electrically connected to the virtual reality headset 25 wirelessly, or by way of wires, not shown in FIGS. 1 A through 1 C.
- the input control device 46 may be positioned along a first side 48 of the controller mechanism 45, while the input control device 1 10 is positioned along a second side 49 of the controller mechanism 45, wherein the first side 48 is oppositely positioned from the second side 49.
- FIGS. 2A through 2C are various views illustrating the virtual reality headset stand 5 isolated without the attached virtual reality headset 25.
- the stem 15 may comprise a contoured surface 65.
- the stem 15 may also comprise a retaining member 50 adjacent to the lip 30 of the docking station 20.
- multiple clips 40 may be provided on the docking station 20.
- an elongated single clip 40 may be utilized.
- the body portion 35 of the docking station 20 may comprise a contoured rear surface 33 and a contoured front surface 34 to properly align with and retain the virtual reality headset 5.
- the body portion 15 of the docking station 20 may also incorporate holes; e.g.
- a pair of clips 38 extending from the rear surface 33 of the body portion 35 may also be provided, according to one example. In an example, the clips 38 may also be used to accommodate and maintain the wires of the virtual reality headset 5.
- the base 10 is connected to the stem 15 and positioned at an opposite end from the docking station 20.
- the base 10 may be configured in any suitable manner to provide proper support for keeping the stand 5 upright when it is not being held by a user.
- the base 1 0 permits the stand 5 to be free-standing to also serve as a completely hands-free stand 5 to permit a user to view the images displayed in the virtual reality headset 25 without requiring the user to pick up the stand 5 or the virtual reality headset 25.
- the base 10 may comprise a pair of legs 55 outwardly protruding from the stem 15, as shown in FIGS, 1 A through 2C.
- FIG. 3 is a perspective rear view illustrating a schematic diagram of the virtual reality headset stand 5 and virtual reality headset 25, according to an example.
- the positioning of the input control devices 46 on the first side 48 of the controller mechanism 45, and the positioning of the input control device 1 10 on the second side 49 of the controller mechanism 45 allows a user to manipulate the one or more input control devices 46 using a thumb while manipulating the input control device 1 10 with another finger on the same hand, thereby eliminating the need to utilize two hands when operating the stand 5 or virtual reality headset 25.
- the input control device 1 1 0 may be configured as a push/squeeze button, in one example.
- the controller mechanism 45 is shown as a portion of the stem 15.
- the controller mechanism 45 may be detachable from the stem 15 whilst keeping the stem 15 mechanically intact, and allowing the stand 5 to still be used to support and retain the headset 25.
- the stand 5 may be set to accommodate one of the handheld controllers associated with the virtual reality headset 25 itself. In this latter case, the functionality of the handheld controller may change when a virtual reality system detects that it has been attached to the stand 5.
- the stand 5 may include gimbals, not shown in the drawings, where the docking station 20 attaches to the stem 15, which allow some additional head movement relative to the portion of the stand 5 held by the user. Sensors may be attached to these gimbals allowing the motion of the virtual reality display 25 with respect to the rest of the stand 5 to be used as another input to the controller mechanism 45.
- FIG. 4 illustrates a schematic diagram of a virtual reality headset stand 5 and virtual reality headset 25 in use, according to an example.
- the dashed lines represent the potential positioning of a user 60.
- the stand 5 is configured as a stick-like stand 5 that sits on a surface, such as a desk, and which can be lifted and moved by the user 60.
- the base 10 may be provided in any suitable configuration to provide the stand 5 with proper support to stay upright in its free-standing position; i.e. without the user 60 having to hold the stand 5 in place and upright.
- the user 60 may pick up the stand 5 and place the virtual reality headset 25 against his/her head.
- the user 60 may simply keep the stand 5 resting on a surface, such as a desk or computer workstation, and may position his/her head against the virtual reality headset 25 that is retained and attached to the stand 5.
- the base 10 and stem 1 5 comprise a supporting force sufficient to keep the virtual reality headset 25 in position in the docking station 20 while the virtual reality headset 25 is placed in front of the eyes of the user 60.
- the virtual reality headset 25 is held in position in front of the eyes of the user 60 without requiring straps to be placed over a head of the user 60, according to an example.
- the contoured surface 65 of the stem 15 may allow the user 60 to hold the stem 15 and move the stand 5 while the virtual reality headset 25 is placed in front of eyes of the user 60.
- the wires 42 of the virtual reality headset 25 are illustrated in FIG. 4, and may connect the virtual reality headset 25 to a computer, which is not shown in FIG. 4.
- the stand 5 also contains wires 42, which are connected to the computer.
- the electronics relating to the controller mechanism 45 of the stand 5 are wirelessly connected to the computer.
- FIG. 5A is a perspective view illustrating a schematic diagram of another example of the virtual reality headset stand 105 that connects to a body pack 95 and a virtual reality headset 25, according to an example.
- the body pack 95 may contain a portable version of a computer used to run a virtual reality system 70.
- the system 70 may be set for use as a backpack, but, with at least one user attachment mechanism 100, as shown in FIG. 5B, the system 70 may be held against the front of the body of a user 60 for short duration use.
- the stand 105 is set to hold the virtual reality headset 25 in such a way that the user 60 may comfortably press their face against the virtual reality headset 25 when the body pack 95 is being held against the front of the body of the user 60.
- the stand 105 may incorporate various adjustment mechanisms (not shown) that allow the height etc. of the virtual reality headset 25 to be adjusted as required by the user 60.
- the dashed lines represent the potential positioning of the head of a user 60.
- straps 26 are shown connected to the virtual reality headset 25 in FIG. 5A, the examples described herein do not require that the user 60 place the straps 26 over his/her head for proper retention of the virtual reality headset 25 against the head of the user 60.
- the stand 105 includes a docking station 120 to retain the virtual reality headset 25.
- the stand 105 also includes a stem 1 1 5 and a connection member 75 that attaches to the body pack 95.
- FIG. 5B illustrates the virtual reality system 70 comprising the stand 105 comprising the connection member 75, a stem 1 15 extending from the connection member 75, and the docking station 120 attached to the stem 1 15, wherein the docking station 1 20 is contoured to hold a virtual reality headset 25.
- the stand 105 is mounted onto the body pack 95 that the user 60 wears by way of at least one user attachment mechanism 100.
- FIG. 5B illustrates a pair of user attachment mechanisms 1 00, according to one example.
- the stand 105 is held in place by the body pack 95 so that the user is not required to wear a head strap 26, but may do so if desired.
- the body pack 95 may also comprise a desktop dock, not shown, that holds the body pack 95 upright in such a way that the user 60 can simply press their face against the virtual reality headset 25 when the body pack 95 is not being worn and is docked on a desktop.
- FIG. 5B shows the user 60 using a handheld control device 77.
- the handheld control device 77 may be used to control actions presented in the virtual reality headset 25.
- the handheld control device 77 may be wirelessly connected to the virtual reality headset 25.
- a controller mechanism similar to controller mechanism 45 in FIGS. 1 B through 3, may be provided on the body pack 95 or on the stand 105 placed for easy access by the hand of the arm of the user 60 being used to grip the body pack 95.
- the stand 1 15 may comprise gimbals, not shown in the drawings, which allows some additional head movement. Sensors may be attached to these gimbals allowing the motion of the virtual reality display with respect to the body pack to be used as another input to the controller mechanism 45.
- a processor 80 is communicatively linked to the control device 77, and to the controller mechanism 45, if present.
- the control device 77 may be communicatively linked by a wireless connection, in one example, or a wired connection in another example.
- a memory 85 is provided comprising instructions executable by the processor 80 to perform method 200 described in FIG. 6.
- a display device 90 is communicatively linked to the processor 80 to display the computer-simulated images and the converted computer-simulated images generated by method 200.
- block 201 is provided to store computer-simulated images.
- Block 203 is provided to store motion events identified by the virtual reality headset 25.
- Block 205 is provided to use the motion events to convert the computer- simulated images into converted computer-simulated images.
- Block 207 is provided to transform the converted computer-simulated images into virtual reality events.
- Block 209 is provided to present the virtual reality events in the virtual reality headset 25.
- the instructions cause the processor 80 to edit the virtual reality events presented in the virtual reality headset 25.
- the control device 77 is set to edit the virtual reality events presented in the virtual reality headset 25.
- FIG. 7, with reference to FIGS. 1 A through 6, illustrates a block diagram of a system 70, according to an example.
- the system 70 comprises stand 5, 1 05 comprising the docking station 20, 120, respectively, to hold the virtual reality headset 25.
- the system 70 also includes the controller mechanism 45, which in this example is used to control navigation in the virtual reality application.
- the controller mechanism 45 is set to navigate motion events within a virtual reality space presented in the virtual reality headset 25.
- a computer 130 is communicatively linkable to the controller mechanism 45 and virtual reality headset 25, wherein the computer 130 comprises the processor 80, and the memory 85 comprising instructions executable by the processor 80 to perform method 250 shown in FIG. 8.
- block 251 is provided to operate a virtual reality computer application 140.
- Block 253 is provided to store the motion events identified by the virtual reality headset 25.
- Block 255 is provided to convert the motion events as virtual reality images.
- Block 257 is provided to modify the virtual reality images.
- Block 259 is provided to present the modified virtual reality images in the virtual reality headset 25.
- a virtual reality headset 25 is attached to a stand 5, 105, which stands on its own or otherwise does not require a user 60 to physically hold the stand 5, 105.
- a plugin utility takes in the in-progress CAD data and automatically converts it into a virtual reality-viewable 3D data.
- the user 60 is able to see the in-progress design in the virtual reality environment, by viewing the images through the virtual reality headset 25.
- the CAD operator which may or may not be the user 60, may make adjustments using the computer 1 30 and visually depicted on display 90, and the adjusted images are automatically updated on the virtual reality model presented in the virtual reality headset 25.
- the controller mechanism 45 is displayed in the modified virtual reality images in the virtual reality headset 25.
- some limited headset motions could be detected by sensors in the stand 5, 105.
- sensors in the stand 5, 105 For example, rotation sensors on gimbals connecting the display docking station 20, 120 to the stem 15, 1 15, or an inertial measurement unit in the docking station 20, 120.
- orientation information can typically be obtained from the sensors, such as magnetometers and accelerometers, included in the virtual reality headset 25. Rotation encoders at each rotation point may be used to augment this information.
- the controller mechanism 45 may be used.
- the controller mechanism 45 may be set to provide at least five degree of freedom with translation in the three spatial dimensions, plus view pitch (/elevation) and yaw (/azimuth). This may be achieved through some combination of joysticks, trackballs, directional pads, thumbwheels etc. at the positions of the input control devices 46, 1 10 in FIGS. 1 B through 3.
- Another manner for translation in virtual reality is "teleporting"; i.e., pointing to a location and activating some control that causes the user's viewpoint to move to that location.
- a control dedicated to this operation may be included in the controller mechanism 45.
- FIGS. 9A and 9B illustrate schematic diagrams of virtual reality images 147, according to various examples.
- the controller mechanism 45 may include sensors to indicate when the control is touched. As soon as this happens the view seen by the user 60 in the virtual reality headset 25 is changed so as to obscure or suppress motion in the peripheral field of view 150.
- FIGS. 9A and 9B may comprise virtual reality images 147 with peripheral visual motion cues removed or masked 150 from the virtual reality images 147.
- a masking software module 125 as shown in FIG. 7, may be used in conjunction with the computer 130 to remove the peripheral visual motion cues 150 of FIGS. 9A and 9B.
- FIG. 9A the view is irised down to eliminate the view of peripheral features 150.
- FIG. 9B a high contrast static chaperone-like grid 151 is superimposed on the peripheral imagery 150, with has the effect of suppressing the motion cues due to the motion of the lower contrast imagery behind the grid 151 .
- FIGS. 10A and 10B with reference to FIGS.
- FIGS. 10A and 1 0B illustrate schematic diagrams of a virtual reality headset 25 and associated virtual reality system handheld controller 77, according to various examples.
- Some virtual reality applications benefit from input from two handheld controllers, one held in each hand of a user.
- the controller in the non-dominant hand may be triggered to display a menu palette from which the user may make selections with the controller in the dominant hand.
- avatars representing both controllers are generated by the virtual reality system at virtual locations corresponding to their physical locations in the user's hands as a useful reference for the user.
- the dashed lines in the shape of a user 60 represent the potential positioning of the user 60.
- the controller mechanism 45 in the stand 5, 105 may be set to mimic the controls used on the non-dominant hand's virtual reality system controller.
- the virtual reality system 74 may generate an avatar 177 corresponding to the handheld controller 77 being held by the dominant hand 61 b of the user 60 and displayed in a corresponding location in the virtual scene 62.
- the system 74 may display the avatar 145 for the non-dominant handheld controller that controller mechanism 45 is mimicking.
- the controller mechanism 45 may be attached to the stand 5, 105 holding the virtual reality headset 25, its location will typically be outside of the user's virtual field of view 62.
- the avatar 145 may be displayed in a fixed location within the virtual view 62, for example, as shown in FIG. 10B, in a position equivalent to where it would normally be held at arm's length in front of the user 60. Display of the controller avatar 145 may also be controlled by a dedicated switch; e.g., input control devices 46, 1 1 0 on the controller mechanism 45. The avatar's position would be fixed with respect to the virtual reality headset 25, but many control functions would still be possible.
- Various examples described herein may include both hardware and software elements.
- the examples that are implemented in software include but are not limited to, firmware, resident software, microcode, etc.
- Other examples may comprise a computer program product configured to include a pre-configured set of instructions, which when performed, may result in actions as stated in conjunction with the methods described above.
- the pre- configured set of instructions may be stored on a tangible non-transitory computer readable medium or a program storage device containing software code.
- FIG. 1 1 A representative hardware environment for practicing the software examples herein is depicted in FIG. 1 1 , with reference to FIGS. 1 A through 10B.
- This block diagram illustrates a hardware configuration of an information handling/computer system 300 according to an example herein.
- the system 300 comprises one or more processors or central processing units (CPU) 31 0, which may communicate with processor 80.
- the CPUs 31 0 are interconnected via system bus 312 to at least one memory device 309 such as a RAM 314 and a ROM 316.
- the at least one memory device 309 may be configured as the memory 85.
- the at least one memory device 309 may include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.
- An I/O adapter 318 may connect to peripheral devices, such as disk units 31 1 and storage drives 31 3, or other program storage devices that are readable by the system 300.
- the system 300 includes a user interface adapter 319 that may connect the bus 31 2 to a keyboard 315, mouse 317, speaker 324, microphone 322, and/or other user interface devices such as a touch screen device to gather user input and display information from/to a user 60.
- a communication adapter 320 connects the bus 312 to a data processing network 325
- a display adapter 321 connects the bus 31 2 to a display device 323, which may be configured as display device 90, and which may provide a graphical user interface (GUI) 329 for a user 60 to interact with.
- GUI graphical user interface
- a transceiver 326, a signal comparator 327, and a signal converter 328 may be connected to the bus 312 for processing, transmission, receipt, comparison, and conversion of electric or electronic signals, respectively.
- the stand 5, 105 may permit a user 60 to bring 3D contents from the display device 90 to review in virtual reality through the virtual reality headset 25 in a seamless manner.
- the controller mechanism 45 and controller 77 may permit the user 60 to simultaneously view the images in virtual reality and modify the original file on CAD software running on the computer 130.
- the virtual reality headset stand 5 may incorporate joysticklike controls using the controller mechanism 45 to manipulate the virtual reality model views, or may utilize haptic feedback to indicate limits and snaps of the 3D model.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Optics & Photonics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Graphics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/042064 WO2019013808A1 (en) | 2017-07-14 | 2017-07-14 | Virtual reality headset stands |
KR1020207000679A KR102371288B1 (en) | 2017-07-14 | 2017-07-14 | virtual reality headset stands |
BR112020000722-6A BR112020000722A2 (en) | 2017-07-14 | 2017-07-14 | virtual reality headset supports |
JP2020501158A JP6959703B2 (en) | 2017-07-14 | 2017-07-14 | Virtual reality headset stand |
CN201780093175.3A CN111107912B (en) | 2017-07-14 | 2017-07-14 | Virtual reality head-mounted equipment support |
US16/611,980 US11331588B2 (en) | 2017-07-14 | 2017-07-14 | Virtual reality headset stands |
EP17917641.7A EP3621709B1 (en) | 2017-07-14 | 2017-07-14 | Virtual reality headset stands |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/042064 WO2019013808A1 (en) | 2017-07-14 | 2017-07-14 | Virtual reality headset stands |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019013808A1 true WO2019013808A1 (en) | 2019-01-17 |
Family
ID=65002272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/042064 WO2019013808A1 (en) | 2017-07-14 | 2017-07-14 | Virtual reality headset stands |
Country Status (7)
Country | Link |
---|---|
US (1) | US11331588B2 (en) |
EP (1) | EP3621709B1 (en) |
JP (1) | JP6959703B2 (en) |
KR (1) | KR102371288B1 (en) |
CN (1) | CN111107912B (en) |
BR (1) | BR112020000722A2 (en) |
WO (1) | WO2019013808A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020115576A1 (en) * | 2018-12-04 | 2020-06-11 | Eden Immersive Limited | A virtual reality or augmented reality headset accessory |
WO2021140356A1 (en) * | 2020-01-07 | 2021-07-15 | Eden Immersive Limited | A virtual reality or augmented reality headset accessory for facilitating controlled viewing experiences in mobile environments |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6959703B2 (en) * | 2017-07-14 | 2021-11-05 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Virtual reality headset stand |
USD936074S1 (en) * | 2019-04-01 | 2021-11-16 | Igt | Display screen or portion thereof with graphical user interface |
JP2020204977A (en) * | 2019-06-18 | 2020-12-24 | 株式会社ジャパンディスプレイ | Display with detection function |
US10951736B1 (en) * | 2019-10-21 | 2021-03-16 | Disney Enterprises, Inc. | Augmented reality (AR)-capable headset and visually detected controller devices |
US20230127034A1 (en) * | 2021-07-02 | 2023-04-27 | David Black | Mountable virtual reality station and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205340096U (en) * | 2015-11-06 | 2016-06-29 | 王丽 | Rotatory virtual reality simulator |
US20170039881A1 (en) | 2015-06-08 | 2017-02-09 | STRIVR Labs, Inc. | Sports training using virtual reality |
WO2017057771A1 (en) | 2015-10-02 | 2017-04-06 | 株式会社クリュートメディカルシステムズ | Head-mounted display unit and head-mounted display fixing apparatus |
CN206594627U (en) * | 2017-03-30 | 2017-10-27 | 北京蓝数工坊数字科技有限公司 | A kind of virtual reality educates V Learing systems |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4007221A1 (en) * | 1990-03-07 | 1991-09-12 | Gao Ges Automation Org | TEST HEAD FOR CONTACT AREAS OF VALUE CARDS WITH STORED SEMICONDUCTOR CHIP |
US5577981A (en) * | 1994-01-19 | 1996-11-26 | Jarvik; Robert | Virtual reality exercise machine and computer controlled video system |
JPH0838743A (en) * | 1994-07-29 | 1996-02-13 | Masanori Takasugi | Vr simulator |
US5864346A (en) * | 1994-09-12 | 1999-01-26 | Nintendo Co., Ltd. | Picture display unit and image display system |
TW269094B (en) * | 1994-11-11 | 1996-01-21 | Nitendo Kk | Three dimensional visual image display device and electric game apparatus, memory device thereof |
JPH08136855A (en) * | 1994-11-11 | 1996-05-31 | Nintendo Co Ltd | Image display device, image display system and program cartridge used therefor |
JP3504361B2 (en) | 1995-01-23 | 2004-03-08 | オリンパス株式会社 | Head mounted video display |
US6919867B2 (en) * | 2001-03-29 | 2005-07-19 | Siemens Corporate Research, Inc. | Method and apparatus for augmented reality visualization |
JP3085720U (en) | 2001-10-31 | 2002-05-17 | 株式会社 英技研 | Display stand |
US7684694B2 (en) * | 2005-05-10 | 2010-03-23 | Fromm Wayne G | Apparatus for supporting a camera and method for using the apparatus |
CA2636159C (en) | 2006-01-06 | 2014-06-03 | Marcio Marc Abreu | Biologically fit wearable electronics apparatus and methods |
US8941989B2 (en) * | 2010-09-29 | 2015-01-27 | James W. Pollex | Tablet computer holder and stand |
CN202587096U (en) * | 2012-03-22 | 2012-12-05 | 上海市宝山区青少年科学技术指导站 | Convenient head-mounted handset rack |
US9378028B2 (en) | 2012-05-31 | 2016-06-28 | Kopin Corporation | Headset computer (HSC) with docking station and dual personality |
US9001511B2 (en) * | 2012-10-19 | 2015-04-07 | 2236008 Ontario Inc. | Portable docking station for portable electronic device |
US20140168264A1 (en) * | 2012-12-19 | 2014-06-19 | Lockheed Martin Corporation | System, method and computer program product for real-time alignment of an augmented reality device |
US20150253574A1 (en) * | 2014-03-10 | 2015-09-10 | Ion Virtual Technology Corporation | Modular and Convertible Virtual Reality Headset System |
US9740010B2 (en) * | 2014-11-28 | 2017-08-22 | Mahmoud A. ALHASHIM | Waterproof virtual reality goggle and sensor system |
WO2016182504A1 (en) * | 2015-05-08 | 2016-11-17 | Chow Bryan Shwo-Kang | A virtual reality headset |
US10176638B2 (en) * | 2015-05-18 | 2019-01-08 | Dreamworks Animation L.L.C. | Method and system for calibrating a virtual reality system |
US10335083B2 (en) | 2015-07-21 | 2019-07-02 | Courtland Keith Keteyian | Systems and methods for detecting and analyzing biosignals |
JP6172228B2 (en) | 2015-09-01 | 2017-08-02 | 株式会社ニコン | Head mounted display |
CN105138135B (en) * | 2015-09-15 | 2018-08-28 | 北京国承万通信息科技有限公司 | Wear-type virtual reality device and virtual reality system |
US20170084084A1 (en) * | 2015-09-22 | 2017-03-23 | Thrillbox, Inc | Mapping of user interaction within a virtual reality environment |
CN205594231U (en) * | 2016-04-19 | 2016-09-21 | 深圳聚众创科技有限公司 | Virtual reality glass |
US10780358B1 (en) * | 2017-03-22 | 2020-09-22 | Intuitive Research And Technology Corporation | Virtual reality arena system |
JP6959703B2 (en) * | 2017-07-14 | 2021-11-05 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Virtual reality headset stand |
US10305720B1 (en) * | 2017-09-08 | 2019-05-28 | Daniel Sherbondy | Virtual reality gaming apparatus |
JP7027109B2 (en) * | 2017-10-13 | 2022-03-01 | 任天堂株式会社 | Posture position estimation system, attitude position estimation method, and attitude position estimation device |
JP6353994B1 (en) * | 2018-01-17 | 2018-07-04 | 任天堂株式会社 | Information processing system, information processing program, information processing method, and information processing apparatus |
US10946272B2 (en) * | 2019-07-26 | 2021-03-16 | Arkade, Inc. | PC blaster game console |
US10773157B1 (en) * | 2019-07-26 | 2020-09-15 | Arkade, Inc. | Interactive computing devices and accessories |
-
2017
- 2017-07-14 JP JP2020501158A patent/JP6959703B2/en active Active
- 2017-07-14 US US16/611,980 patent/US11331588B2/en active Active
- 2017-07-14 WO PCT/US2017/042064 patent/WO2019013808A1/en unknown
- 2017-07-14 BR BR112020000722-6A patent/BR112020000722A2/en active Search and Examination
- 2017-07-14 EP EP17917641.7A patent/EP3621709B1/en active Active
- 2017-07-14 KR KR1020207000679A patent/KR102371288B1/en active IP Right Grant
- 2017-07-14 CN CN201780093175.3A patent/CN111107912B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170039881A1 (en) | 2015-06-08 | 2017-02-09 | STRIVR Labs, Inc. | Sports training using virtual reality |
WO2017057771A1 (en) | 2015-10-02 | 2017-04-06 | 株式会社クリュートメディカルシステムズ | Head-mounted display unit and head-mounted display fixing apparatus |
CN205340096U (en) * | 2015-11-06 | 2016-06-29 | 王丽 | Rotatory virtual reality simulator |
CN206594627U (en) * | 2017-03-30 | 2017-10-27 | 北京蓝数工坊数字科技有限公司 | A kind of virtual reality educates V Learing systems |
Non-Patent Citations (1)
Title |
---|
REED D A ET AL., VIRTUAL REALITY AND PARALLEL SYSTEMS PERFORMANCE ANALYSIS, 1995 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020115576A1 (en) * | 2018-12-04 | 2020-06-11 | Eden Immersive Limited | A virtual reality or augmented reality headset accessory |
WO2021140356A1 (en) * | 2020-01-07 | 2021-07-15 | Eden Immersive Limited | A virtual reality or augmented reality headset accessory for facilitating controlled viewing experiences in mobile environments |
Also Published As
Publication number | Publication date |
---|---|
JP6959703B2 (en) | 2021-11-05 |
EP3621709B1 (en) | 2022-03-09 |
KR102371288B1 (en) | 2022-03-07 |
US11331588B2 (en) | 2022-05-17 |
CN111107912A (en) | 2020-05-05 |
KR20200016962A (en) | 2020-02-17 |
CN111107912B (en) | 2023-08-25 |
BR112020000722A2 (en) | 2020-07-14 |
EP3621709A4 (en) | 2021-03-17 |
US20200197822A1 (en) | 2020-06-25 |
EP3621709A1 (en) | 2020-03-18 |
JP2020527304A (en) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11331588B2 (en) | Virtual reality headset stands | |
US10534431B2 (en) | Tracking finger movements to generate inputs for computer systems | |
CN110794958B (en) | Input device for use in an augmented/virtual reality environment | |
EP3400499B1 (en) | Two-handed object manipulations in virtual reality | |
WO2020122665A1 (en) | Systems and methods for virtual displays in virtual, mixed, and augmented reality | |
JP5609416B2 (en) | Information processing apparatus, information processing method, and program | |
EP3814876B1 (en) | Placement and manipulation of objects in augmented reality environment | |
JP6260613B2 (en) | Head mounted display system, head mounted display, head mounted display control program, image display method, and image display apparatus | |
US20180039341A1 (en) | Methods and systems for determining positional data for three-dimensional interactions inside virtual reality environments | |
JP6481057B1 (en) | Character control method in virtual space | |
EP3488321A1 (en) | Detecting user range of motion for virtual reality user interfaces | |
US20190050132A1 (en) | Visual cue system | |
CN108621155B (en) | Control device, teaching device, and robot system | |
Caruso et al. | Interactive augmented reality system for product design review | |
WO2021020143A1 (en) | Image-processing device, image-processing method, and recording medium | |
Gonzalez et al. | XDTK: A Cross-Device Toolkit for Input & Interaction in XR | |
Vanoni | Human-centered interfaces for large, high-resolution visualization systems | |
McDonald et al. | SmartVR Pointer: Using Smartphones and Gaze Orientation for Selection and Navigation in Virtual Reality | |
WO2024026024A1 (en) | Devices and methods for processing inputs to a three-dimensional environment | |
JP2024529848A (en) | Method and device for dynamically selecting an object's motion modality - Patents.com | |
JP2024533952A (en) | Method and device for managing user interface-directed interactions with physical objects - Patents.com | |
WO2024020061A1 (en) | Devices, methods, and graphical user interfaces for providing inputs in three-dimensional environments | |
JP2019133676A (en) | Method of controlling character in virtual space | |
JP2019133677A (en) | Method of controlling character in virtual space |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17917641 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017917641 Country of ref document: EP Effective date: 20191210 |
|
ENP | Entry into the national phase |
Ref document number: 20207000679 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020501158 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020000722 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020000722 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200113 |