WO2019013420A1 - Engine system enabling steam generation in association with electricity generation - Google Patents

Engine system enabling steam generation in association with electricity generation Download PDF

Info

Publication number
WO2019013420A1
WO2019013420A1 PCT/KR2018/002187 KR2018002187W WO2019013420A1 WO 2019013420 A1 WO2019013420 A1 WO 2019013420A1 KR 2018002187 W KR2018002187 W KR 2018002187W WO 2019013420 A1 WO2019013420 A1 WO 2019013420A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
unit
heating
heat exchanger
exhaust gas
Prior art date
Application number
PCT/KR2018/002187
Other languages
French (fr)
Korean (ko)
Inventor
류광년
함진기
김범주
이철희
Original Assignee
한국전력공사
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사, 현대중공업 주식회사 filed Critical 한국전력공사
Publication of WO2019013420A1 publication Critical patent/WO2019013420A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • F01K3/262Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine system in which generation and development of steam are linked.
  • the exhaust gas generated by burning fuel in the engine is discharged to the outside.
  • the heat released is not converted into useful form for the propulsion or power generation of the engine and is abandoned. If some of the waste heat discharged to the outside is recovered and can be recycled as useful energy, it is possible to save fuel, thereby contributing to saving energy.
  • the present invention has been conceived in order to solve such problems, and it is an object of the present invention to provide a method of producing electricity by heating supercritical carbon dioxide, which is a working oil used for driving a turbine, And the engine system in which generation and development of steam can be linked.
  • An object of the present invention is to provide an engine system in which exhaust gas is branched and utilized for generating steam, and generation and power generation of steam, which do not require a separate boiler, are linked.
  • the engine system in which the generation and the power generation of steam according to the present invention are connected includes a waste heat discharge unit having an engine and exhausting the exhaust gas, a steam generating steam using the waste heat of the exhaust gas discharged from the waste heat exhaust unit And a power generation unit for heating the working fluid used for driving the turbine by using the waste heat of the exhaust gas discharged from the waste heat discharge unit and generating power by driving the turbine.
  • a part of the exhaust gas can be utilized for power generation, and the remainder can be utilized for generating steam, so that energy can be efficiently used.
  • some of the exhaust gas can generate electricity by heating supercritical carbon dioxide, which is an operating oil used for driving the turbine, and driving a generator connected to the turbine.
  • supercritical carbon dioxide which is an operating oil used for driving the turbine
  • the exhaust gas can be branched to be used for generating steam, there is no need to provide a separate boiler for generating steam, so that the cost and the volume of the apparatus are not increased.
  • Embodiment 1 is a schematic diagram of an engine system in which steam generation and power generation according to Embodiment 1 of the present invention are associated.
  • FIG. 2 is a schematic diagram of an engine system in which generation and power generation of steam according to Embodiment 2 of the present invention are linked.
  • the engine system in which the generation and the power generation of steam according to the present invention are linked is a system in which a part of high temperature exhaust gas generated in various places such as a ship is used for power generation to generate electric power and the remainder is used for generating steam, As waste heat, there is a feature that can utilize renewable energy twice.
  • FIG. 1 is a schematic diagram of an engine system in which steam generation and power generation according to Embodiment 1 of the present invention are associated.
  • the engine system in which the generation and development of steam are linked includes a waste heat discharge unit 200, a steam generation unit 300, and a power generation unit 100.
  • the waste heat discharging unit 200 can be configured to discharge the hot exhaust gas.
  • the waste heat discharging unit 200 may include an engine 210, and the exhaust gas may be exhaust gas discharged from the engine 210.
  • the steam generating unit 300, and the power generating unit 100 can be configured to efficiently utilize the waste heat of the exhaust gas.
  • the steam generating unit 300 may be configured to generate steam by using the waste heat of the exhaust gas discharged from the waste heat discharging unit 200.
  • the power generating unit 100 may be configured to generate steam by using exhaust gas discharged from the waste heat discharging unit 200 Can be configured to heat the working fluid used to drive the turbine (40) and generate electricity by driving the turbine (40) using the waste heat of the turbine (40).
  • the power generation unit 100 includes a compression section 10 for compressing the working fluid, a heating section 20 for heating the working fluid discharged from the compression section 10 and supplying the heated working fluid to the turbine 40, And a cooling unit 50 for cooling the working fluid discharged from the turbine 40.
  • the power generation unit 100 may further include a circulation line 101.
  • the compression section 10, the heating section 20, the turbine 40, and the cooling section 50 are disposed in the circulation line 101, May be configured to compress, heat, expand, and cool the flowing working fluid along the circulation line (101).
  • the working fluid may include supercritical carbon dioxide.
  • the working fluid of the power generation unit 100 may be supercritical carbon dioxide and supercritical carbon dioxide may flow along the circulation line 101 to drive the generator 41 connected to the turbine 40 to produce electricity .
  • the compression section 10 may be configured to compress supercritical carbon dioxide, which is a hydraulic fluid, at an ultra-high pressure higher than a critical pressure.
  • the compression section may be configured to compress the supercritical carbon dioxide beyond 20 to 22 atmospheres.
  • the heating unit 20 may be provided to form supercritical carbon dioxide, which is an operating oil, at a predetermined temperature or higher.
  • the heating section 20 can be configured to heat the working fluid through the exhaust gas and compressed air having a high temperature by the air compressor 230 to be described later.
  • the working fluid after passing through the compression section 10, the working fluid is supplied to the heating section 20 to be in a supercritical state of high temperature and high pressure, and the working fluid may be configured to drive the turbine 40.
  • the predetermined temperature of supercritical carbon dioxide as the working oil may be in the range of 150 to 350 ° C.
  • the heating section 20 may include a first heating heat exchanger 21.
  • the first heating heat exchanger (21) receives a part of the exhaust gas discharged from the waste heat discharging unit (200) and can heat the working fluid through heat exchange with the working fluid.
  • the waste heat discharging unit 200 may include a turbocharger 220 and an air compressor 230.
  • the turbocharger 220 can be operated by receiving a part of the exhaust gas discharged from the engine 210.
  • the air compressor 230 receives the power of the turbocharger 220 and can compress the air used in the engine 210 included in the waste heat discharging unit 200.
  • the air compressor 230 and the turbocharger 220 may be connected by a shaft, and the turbocharger 220 may be driven by exhaust gas.
  • the air compressor 230 can compress the air used in the engine 210 by the rotation of the turbocharger 220.
  • the heating section 20 may further include a second heating heat exchanger 22.
  • the second heating heat exchanger 22 can receive the compressed air compressed by the turbo charger 220 to heat the working fluid.
  • the working fluid flowing through the circulation line 101 can be heat-exchanged with the compressed air through the second heating heat exchanger 22, and the compressed air is heat-exchanged with the working fluid, As shown in FIG.
  • the compressed air discharged from the air compressor 230 can be used as a heat source for driving the power generation unit 100 by being used to heat the working fluid.
  • the second heating heat exchanger 22 may be provided on the upstream side of the first heating heat exchanger 21 on the basis of the flow direction of the working fluid on the circulation line 101 on which the working fluid circulates.
  • the power generation unit 100 may further include a recovery unit 30.
  • the return heat exchanger 30 is provided with a working fluid before being discharged from the compression section 10 and flowing into the second heat exchanger 22 and a working fluid discharged from the turbine 40 and flowing into the cooling section 50 Heat exchange can be performed.
  • the working fluid flowing along the circulation line 101 may be branched and partly supplied to the recovery unit 30 and the remainder may be supplied to the second heating heat exchanger 22.
  • a first portion that is part of the working fluid discharged from the compression section 10 may be supplied to the recovery section 30 and the remaining second section may be supplied to the second heating heat exchanger 22.
  • the first and second portions may be joined together after the respective heat exchanges in the reheating section 30 and the second heating heat exchanger 22 and supplied together to the first heating heat exchanger 21.
  • the working fluid flowing along the circulation line 101 can reach the maximum temperature by being supplied to the first heating heat exchanger 21 after passing through the second heating heat exchanger 22 or the recovery unit 30.
  • the power generation unit 100 may further include a flow distribution valve 119.
  • the flow rate distribution valve 119 controls the amount of the working fluid to be supplied to the recovery unit 30 as the first portion and the amount of the working fluid to be supplied to the second heating heat exchanger 22 as the second portion among the working fluid discharged from the compression portion 10 The amount of working fluid to be controlled can be adjusted.
  • the flow rate distribution valve 119 may be provided at a branch point to the recovery unit 30 and the second heating heat exchanger 22 on the circulation line 101.
  • a first valve 102 may be provided upstream of the flow distribution valve 119 on the circulation line 101.
  • the first valve 102 may be configured to regulate the amount of working fluid flowing along the circulation line 101.
  • the amount of the working fluid discharged from the compression section 10 is supplied to the heating section 20 and the returning section 30 according to the degree of opening of the first valve 102.
  • the first valve 102 may perform a closing operation when the turbine 40, the engine 210, the turbocharger 220, etc. are one of a load fluctuation, an overload, and an emergency.
  • the emergency situation may be a leakage due to the breakage of the circulation line 101 near the connection point where the second heat exchanger 22 and the heat exchanger 30 are connected.
  • the power generation unit 100 may further include a first bypass line 111 and an inventory tank 110 for controlling the flow rate of the working fluid.
  • the first bypass line 111 can connect the outlet end of the compression section 10 and the inlet end of the cooling section 50 on the circulation line 101.
  • the inventory tank 110 may be installed on the first bypass line 111 and some of the working fluid may be supplied to the inventory tank 110.
  • the inventory tank 110 can regulate the temperature, pressure and flow rate of the working fluid circulating in the circulation line 101 and can receive a part of the working fluid.
  • the upper valve portion 112 provided at the upper end of the inventory tank 110 may be provided to adjust the amount of the working fluid to be accommodated in the inventory tank 110.
  • the outlet side of the compression section 10 on the circulation line 101 can be at a higher pressure than the outlet end of the turbine 40, and the temperature and pressure of the working fluid flowing along the circulation line 101 can be relatively high have.
  • the upper valve portion 112 according to the present invention can adjust the temperature and pressure of the working fluid flowing along the circulation line 101, the circulating flow rate, and the like.
  • the pressure of the working fluid may be changed.
  • the upper valve portion 112 is closed and the lower valve portion 118 is opened to circulate the working fluid accommodated in the inventory tank 110 Line 101 as shown in FIG.
  • the lower valve portion 118 may be closed and the upper valve portion 112 may be opened to supply the operating fluid to the inventory tank 110 have.
  • the inventory tank 110 can regulate the temperature, flow rate, and pressure of the working fluid flowing through the circulation line 101 by receiving a part of the working fluid.
  • the first valve 102 can perform the closing operation gradually when the load variation between the engine 210 and the turbocharger 220 is severe. At this time, the working fluid flowing along the circulation line 101 can flow to the second bypass line 113 to be described later, and then the first valve 102 can perform the opening operation gradually.
  • the power generation unit 100 may include a second bypass line 113 and a first control valve 114.
  • the second bypass line 113 can bypass the working fluid of the circulation line 101 by connecting the outlet end of the compression section 10 and the inlet end of the cooling section 50 on the circulation line 101.
  • the first control valve 114 is provided on the second bypass line 113, and the amount by which the working fluid discharged from the compression section 10 is bypassed to the second bypass line 113 can be adjusted.
  • the first valve 102 can control the flow rate of the working fluid supplied to the second heating heat exchanger 22 or the recovery unit 30 together with the first control valve 114.
  • the first valve 102 is closed and the first control valve 114 is opened for the step-up, so that the working fluid can be circulated to the second bypass line 113. Thereafter, when the pressure on the circulation line 101 increases to a predetermined pressure, the first valve 102 is opened and the first control valve 114 can be closed.
  • the pressure of the working fluid flowing on the circulation line 101 at the start of the engine system may be in the range of 1 to 50 barA, but the pressure of the first valve 102, The control valve 114 can be adjusted.
  • the power generation unit 100 may further include a third bypass line 115 and a second control valve 116.
  • the third bypass line 115 may connect the inlet end of the first heat exchanger 21 on the circulation line 101 and the outlet end of the turbine 40. Some of the working fluid flowing along the circulation line 101 may be bypassed through the third bypass line 115.
  • the second control valve 116 can be installed on the third bypass line 115 and the amount of working fluid bypassed through the third bypass line 115 can be adjusted. By the adjustment of the second control valve 116, part of the working fluid can be bypassed to the outlet end of the turbine 40 without being supplied to the first heating heat exchanger 21.
  • a second valve 103 may be provided to regulate the amount of working fluid exiting the first heat exchanger 21 on the circulation line 101 being fed to the turbine 40.
  • the second valve 103 may control the flow rate of the working fluid flowing into the turbine 40 together with the second control valve 116.
  • the turbine 40 may be subject to wear due to heat.
  • the second valve 103 performs a gradual close operation, and the second control valve 116 performs a gradual opening operation. Thereafter, the second valve 103 is opened and the second control valve 116 is closed slowly, thereby minimizing the impact of the heat that the turbine 40 receives.
  • the first valve 102 and the second valve 103 may be throttle valves, but are not limited thereto.
  • the first bypass line 111, the inventory tank 110 and the upper and lower valve units 112 and 118 are connected to the circulation line 101 for controlling the pressure, temperature and flow rate of the working fluid discharged from the compression unit 10.
  • the valves 102,103,114 and 116 and the second and third bypass lines 113 and 115 may be provided to cope with load fluctuations and emergency situations of the turbine 40, the turbocharger 220, the engine 210, and the like.
  • the turbine 40 may be connected to the generator 41 to drive the generator 41.
  • the power generation unit 100 can heat the working fluid through the waste heat to drive the generator 41 and the electric energy produced from the generator 41 can be used as electric power. That is, the present invention can recover the exhaust gas from the power generation unit 100 to produce electric power.
  • a part of the discharged exhaust gas may be supplied to the heating unit 20, and the remainder of the exhaust gas may be supplied to the steam generating unit 300.
  • Valves 212 and 213 or dampers may be provided at the inlet ends of the first heating heat exchanger 21 and the evaporator 330, respectively.
  • the valve units 212 and 213 or the damper can adjust the supply amount of the exhaust gas supplied to the first heat exchanger 21 and the evaporator 330 according to the degree of opening.
  • the steam generating unit 300 may include a drum 320, a separator 310, and an evaporator 330 so that the exhaust gas is utilized in generating steam.
  • the drum 320 can be supplied with liquid water. Further, the drum 320 can separate and discharge the steam in the stored liquid water and steam.
  • the burner 310 may be configured to heat the liquid water to be supplied to the drum 320.
  • the economizer 310 may be provided on a supply line that supplies liquid water to the drum.
  • the evaporator 330 may be provided on the flow line 321 that returns the liquid to the drum 320 after draining the liquid water from the drum 320.
  • a pump (not shown) may be provided on the flow line 321, and the liquid water can be forcedly circulated by the operation of a pump (not shown).
  • the evaporator 330 can evaporate at least a portion of the liquid water flowing out of the drum 320.
  • the evaporator 330 is disposed upstream of the absorbent unit 310 on the line through which the exhaust gas discharged from the waste heat discharging unit 200 is discharged so that the evaporator 330 is heated by the economizer 310 ). ≪ / RTI >
  • a part of the exhaust gas discharged from the waste heat discharging unit 200 is heat-exchanged with the liquid water through the evaporator 330 to heat the liquid water. Thereafter, the rubber band 310 can receive the exhaust gas heat-exchanged in the evaporator 330 and again heat the liquid water.
  • the drum 320, the cutlery 310, and the evaporator 330 may be installed on a line through which the exhaust gas is discharged, and the steam may be separated into high pressure and low pressure.
  • the waste heat discharging unit 200 and the steam generating unit 300 are linked, there is no need to install a separate boiler.
  • an engine system in which steam generation and power generation are linked can be applied to a ship, and a heat source of compressed air, which compresses the exhaust gas discharged from the engine 210 of the ship and the engine 210, (300) and the power generation unit (100).
  • FIG. 2 is a schematic diagram of an engine system in which generation and power generation of steam according to Embodiment 2 of the present invention are linked.
  • the same reference numerals are used for the same constituent elements, and redundant explanations are omitted.
  • the waste heat discharging unit 200 includes a turbocharger 220 that receives and operates a part of the exhaust gas discharged from the engine 210, a turbocharger 220 that is connected to the turbocharger 220, And an air cooler 250 for cooling the compressed air discharged from the air compressor 230.
  • the air compressor 230 is operated by the air compressor 230 and compresses the air used in the engine 210.
  • the engine 210 may be supplied with compressed air through an air compressor 230 connected to the turbocharger 220.
  • the air compressed in the air compressor 230 can be supplied to the engine 210 after the temperature rises in the compression process, cooled in the cooler 250 provided at the front end of the engine 210, and then cooled.
  • the heating section 20 may include a second heating heat exchanger 23.
  • the second heating heat exchanger 23 may be provided on the upstream side of the first heating heat exchanger 21 on the basis of the flow direction of the working fluid on the circulation line 101 on which the working fluid circulates.
  • the second heating heat exchanger (23) can receive the exhaust gas heat-exchanged in the first heating heat exchanger (21) and heat the working fluid.
  • first and second heat exchangers 21 and 23 are disposed on the exhaust line 211 through which the exhaust gas is exhausted so that the working fluid flowing in the circulating line 101 is heat- So that the generator 41 can be driven.
  • a first portion which is part of the working fluid discharged from the compression section 10 can be supplied to the recovery section 30 and a second part which is the remainder of the working fluid can be supplied to the second heating heat exchanger 23.
  • the recovery unit 30 is configured to heat the working fluid before being discharged from the compression unit 10 and flowing into the second heating heat exchanger 23 and the working fluid discharged from the turbine 40 and before flowing into the cooler 250 .
  • the first and second portions may be joined together after the respective heat exchanges in the reheating section 30 and the second heating heat exchanger 23 and supplied together to the first heating heat exchanger 21.
  • the first heating heat exchanger 21 may be disposed upstream of the second heating heat exchanger 23 on the exhaust line 211 to which the exhaust gas is supplied, The heat can be supplied to the first heating heat exchanger 21 after reaching the heat recovery unit 23 or the recovery unit 30 to reach the maximum temperature.
  • a part of the high temperature exhaust gas is utilized for power generation to generate electric power, and the remainder is utilized for generating steam, so that energy can be efficiently used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

An engine system enabling steam generation in association with electricity generation according to the present invention comprises: a waste heat discharge unit having an engine and discharging exhaust gas; a steam generation unit for generating steam by using the waste heat of the exhaust gas discharged by the waste heat discharge unit; and an electricity generation unit which heats an operation fluid used to drive a turbine by using the waste heat of the exhaust gas discharged by the waste heat discharge unit and generates electricity by the driving of the turbine.

Description

스팀의 생성과 발전이 연계된 엔진 시스템An engine system linked to the generation and development of steam
본 발명은 스팀의 생성과 발전이 연계된 엔진 시스템에 관한 것이다. The present invention relates to an engine system in which generation and development of steam are linked.
일반적으로, 엔진에서 연료를 연소하여 발생하는 배기가스는 외부로 배출된다. Generally, the exhaust gas generated by burning fuel in the engine is discharged to the outside.
배출되는 열은 기관의 추진이나 발전 등에 유용한 형태로 전환되지 못하고 버려진다. 외부로 배출되는 폐열 중 일부라도 회수하여 이를 유용한 에너지로 재활용할 수 있다면 그만큼 연료의 절약을 도모할 수 있으므로 에너지를 절감하는 데 크게 기여할 수 있게 된다. The heat released is not converted into useful form for the propulsion or power generation of the engine and is abandoned. If some of the waste heat discharged to the outside is recovered and can be recycled as useful energy, it is possible to save fuel, thereby contributing to saving energy.
본 발명은 이와 같은 문제들을 해결하기 위해 안출된 것으로서, 본 발명의 과제는 배기가스를 분기하여, 배기가스의 일부는 발전에 활용하고, 나머지는 스팀의 생성에 활용할 수 있는 스팀의 생성과 발전이 연계된 엔진 시스템을 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a steam generator capable of generating steam and generating steam which can be used to generate steam by branching exhaust gas, And to provide an associated engine system.
본 발명은 이와 같은 문제들을 해결하기 위해 안출된 것으로서, 본 발명의 과제는 배기가스의 일부가 터빈의 구동에 이용되는 작동유체인 초임계 이산화탄소를 가열하여, 터빈과 연결된 발전기를 구동시킴으로써, 전기를 생산할 수 있는 스팀의 생성과 발전이 연계된 엔진 시스템을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been conceived in order to solve such problems, and it is an object of the present invention to provide a method of producing electricity by heating supercritical carbon dioxide, which is a working oil used for driving a turbine, And the engine system in which generation and development of steam can be linked.
본 발명의 과제는 배기가스를 분기하여 스팀의 생성에 활용할 수 있어, 별도의 보일러를 설치하지 않아도 되는 스팀의 생성과 발전이 연계된 엔진 시스템을 제공하는 것이다.An object of the present invention is to provide an engine system in which exhaust gas is branched and utilized for generating steam, and generation and power generation of steam, which do not require a separate boiler, are linked.
일 예에서 본 발명에 따른 스팀의 생성과 발전이 연계된 엔진 시스템은 엔진을 구비하고 배기가스를 배출하는 폐열 배출유닛과, 폐열 배출유닛에서 배출된 배기가스의 폐열을 이용하여 스팀을 생성하는 스팀 생성유닛과, 폐열 배출유닛에서 배출된 배기가스의 폐열을 이용하여 터빈의 구동에 이용되는 작동유체를 가열하고, 터빈의 구동으로 발전하는 발전유닛을 포함한다. In one example, the engine system in which the generation and the power generation of steam according to the present invention are connected includes a waste heat discharge unit having an engine and exhausting the exhaust gas, a steam generating steam using the waste heat of the exhaust gas discharged from the waste heat exhaust unit And a power generation unit for heating the working fluid used for driving the turbine by using the waste heat of the exhaust gas discharged from the waste heat discharge unit and generating power by driving the turbine.
이에 따라, 배기가스의 일부는 발전에 활용되고, 나머지는 스팀의 생성에 활용될 수 있어, 에너지를 효율적으로 사용할 수 있다.Accordingly, a part of the exhaust gas can be utilized for power generation, and the remainder can be utilized for generating steam, so that energy can be efficiently used.
또한, 배기가스의 일부가 터빈의 구동에 이용되는 작동유체인 초임계 이산화탄소를 가열하여, 터빈과 연결된 발전기를 구동시킴으로써, 전기를 생산할 수 있다.Further, some of the exhaust gas can generate electricity by heating supercritical carbon dioxide, which is an operating oil used for driving the turbine, and driving a generator connected to the turbine.
또한, 배기가스를 분기하여 스팀의 생성에 활용할 수 있어, 스팀 생성을 위한 별도의 보일러를 설치하지 않아도 되어, 비용절감 및 장치의 부피가 커지지 않는 특징이 있다.In addition, since the exhaust gas can be branched to be used for generating steam, there is no need to provide a separate boiler for generating steam, so that the cost and the volume of the apparatus are not increased.
도 1은 본 발명의 실시예 1에 따른 스팀의 생성과 발전이 연계된 엔진 시스템의 개략도이다.1 is a schematic diagram of an engine system in which steam generation and power generation according to Embodiment 1 of the present invention are associated.
도 2는 본 발명의 실시예 2에 따른 스팀의 생성과 발전이 연계된 엔진 시스템의 개략도이다.2 is a schematic diagram of an engine system in which generation and power generation of steam according to Embodiment 2 of the present invention are linked.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference numerals even though they are shown in different drawings. In the following description of the embodiments of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the difference that the embodiments of the present invention are not conclusive.
본 발명에 따른 스팀의 생성과 발전이 연계된 엔진 시스템은 선박 등 다양한 곳에서 발생되는 고온의 배기가스의 일부를 발전에 활용하여, 전력을 생산하고, 나머지는 스팀의 생성에 활용시킴으로써, 배기되는 폐열로, 재생 에너지를 두 번 활용할 수 있는 특징이 있다.The engine system in which the generation and the power generation of steam according to the present invention are linked is a system in which a part of high temperature exhaust gas generated in various places such as a ship is used for power generation to generate electric power and the remainder is used for generating steam, As waste heat, there is a feature that can utilize renewable energy twice.
실시예Example 1 One
도 1은 본 발명의 실시예 1에 따른 스팀의 생성과 발전이 연계된 엔진 시스템의 개략도이다. 스팀의 생성과 발전이 연계된 엔진 시스템은 폐열 배출유닛(200), 스팀 생성유닛(300), 발전유닛(100)을 포함한다.1 is a schematic diagram of an engine system in which steam generation and power generation according to Embodiment 1 of the present invention are associated. The engine system in which the generation and development of steam are linked includes a waste heat discharge unit 200, a steam generation unit 300, and a power generation unit 100.
폐열 배출유닛(200)은 고온의 배기가스를 배출하도록 구성될 수 있다. 폐열 배출유닛(200)은 엔진(210)을 구비할 수 있으며, 배기가스는 엔진(210)에서 배출되는 배기가스일 수 있다. 스팀 생성유닛(300), 발전유닛(100)은 배기가스의 폐열을 효율적으로 활용하도록 구성될 수 있다.The waste heat discharging unit 200 can be configured to discharge the hot exhaust gas. The waste heat discharging unit 200 may include an engine 210, and the exhaust gas may be exhaust gas discharged from the engine 210. The steam generating unit 300, and the power generating unit 100 can be configured to efficiently utilize the waste heat of the exhaust gas.
폐열 배출유닛(200)에서 배출된 배기가스의 폐열을 이용하여, 스팀 생성유닛(300)은 스팀을 생성하도록 구성될 수 있으며, 발전유닛(100)은 폐열 배출유닛(200)에서 배출된 배기가스의 폐열을 이용하여, 터빈(40)의 구동에 이용되는 작동유체를 가열하여, 터빈(40)의 구동으로 발전하도록 구성될 수 있다.The steam generating unit 300 may be configured to generate steam by using the waste heat of the exhaust gas discharged from the waste heat discharging unit 200. The power generating unit 100 may be configured to generate steam by using exhaust gas discharged from the waste heat discharging unit 200 Can be configured to heat the working fluid used to drive the turbine (40) and generate electricity by driving the turbine (40) using the waste heat of the turbine (40).
발전유닛(100)은 작동유체를 압축하는 압축부(10)와, 압축부(10)에서 배출된 작동유체를 가열하고, 가열된 작동유체를 터빈(40)으로 공급하는 가열부(20)와, 터빈(40)에서 배출된 작동유체를 냉각하는 냉각부(50)를 포함할 수 있다. The power generation unit 100 includes a compression section 10 for compressing the working fluid, a heating section 20 for heating the working fluid discharged from the compression section 10 and supplying the heated working fluid to the turbine 40, And a cooling unit 50 for cooling the working fluid discharged from the turbine 40.
발전유닛(100)은 순환라인(101)을 더 포함할 수 있으며, 순환라인(101)에는 압축부(10), 가열부(20), 터빈(40), 냉각부(50)가 배치되어, 순환라인(101)을 따라, 유동하는 작동유체를 압축, 가열, 팽창, 냉각시키도록 구성될 수 있다. 여기에서의, 작동유체는 초임계 이산화탄소를 포함할 수 있다.The power generation unit 100 may further include a circulation line 101. The compression section 10, the heating section 20, the turbine 40, and the cooling section 50 are disposed in the circulation line 101, May be configured to compress, heat, expand, and cool the flowing working fluid along the circulation line (101). Here, the working fluid may include supercritical carbon dioxide.
발전유닛(100)의 작동유체는 초임계 이산화탄소일 수 있으며, 초임계 이산화탄소는 순환라인(101)을 따라 유동하여, 터빈(40)과 연결된 발전기(41)를 구동시킴으로써, 전기를 생산하도록 구성될 수 있다.The working fluid of the power generation unit 100 may be supercritical carbon dioxide and supercritical carbon dioxide may flow along the circulation line 101 to drive the generator 41 connected to the turbine 40 to produce electricity .
일예로, 압축부(10)는 작동유체인 초임계 이산화탄소를 임계압력 이상의 초고압으로 압축시키도록 구성될 수 있다. 일예로, 압축부는 초임계 이산화탄소를 20~22 기압으로 이상으로 압축시키도록 구성될 수 있다.For example, the compression section 10 may be configured to compress supercritical carbon dioxide, which is a hydraulic fluid, at an ultra-high pressure higher than a critical pressure. For example, the compression section may be configured to compress the supercritical carbon dioxide beyond 20 to 22 atmospheres.
이때, 작동유체인 초임계 이산화탄소를 기설정된 임계 온도 이상의 조건으로 형성시키기 위하여, 가열부(20)가 마련될 수 있다. 가열부(20)는 배기가스 및 후술할 공기 압축기(230)에 의하여, 온도가 높아진 압축공기를 통하여, 작동유체를 가열시키도록 구성될 수 있다. 일예로, 작동유체는 압축부(10)를 통과한 후, 가열부(20)로 공급되어, 고온고압의 초임계 상태가 되며, 작동유체가 터빈(40)을 구동시키도록 구성될 수 있다. 일예로, 작동유체인 초임계 이산화탄소의 기설정된 온도는 150~350℃ 범위일 수 있다.At this time, the heating unit 20 may be provided to form supercritical carbon dioxide, which is an operating oil, at a predetermined temperature or higher. The heating section 20 can be configured to heat the working fluid through the exhaust gas and compressed air having a high temperature by the air compressor 230 to be described later. For example, after passing through the compression section 10, the working fluid is supplied to the heating section 20 to be in a supercritical state of high temperature and high pressure, and the working fluid may be configured to drive the turbine 40. For example, the predetermined temperature of supercritical carbon dioxide as the working oil may be in the range of 150 to 350 ° C.
가열부(20)는 제1 가열 열교환기(21)를 포함할 수 있다. 제1 가열 열교환기(21)는 폐열 배출유닛(200)에서 배출된 배기가스 중의 일부를 공급받아, 작동유체와의 열교환을 통해서, 작동유체를 가열시킬 수 있다.The heating section 20 may include a first heating heat exchanger 21. The first heating heat exchanger (21) receives a part of the exhaust gas discharged from the waste heat discharging unit (200) and can heat the working fluid through heat exchange with the working fluid.
폐열 배출유닛(200)은 터보차저(220)와, 공기 압축기(230)를 포함할 수 있다. 터보차저(220)는 엔진(210)에서 배출된 배기가스 중의 일부를 공급받아 작동할 수 있다. The waste heat discharging unit 200 may include a turbocharger 220 and an air compressor 230. The turbocharger 220 can be operated by receiving a part of the exhaust gas discharged from the engine 210.
공기 압축기(230)는 터보차저(220)의 동력을 전달받아, 폐열 배출유닛(200)에 포함된 엔진(210)의 소기에 이용되는 공기를 압축시킬 수 있다. 일예로, 공기 압축기(230)와, 터보차저(220)는 샤프트에 의하여 연결될 수 있고, 터보차저(220)는 배기가스에 의해 구동될 수 있다. 공기 압축기(230)는 터보차저(220)의 회전에 의하여 엔진(210)의 소기에 이용되는 공기를 압축시킬 수 있다.The air compressor 230 receives the power of the turbocharger 220 and can compress the air used in the engine 210 included in the waste heat discharging unit 200. For example, the air compressor 230 and the turbocharger 220 may be connected by a shaft, and the turbocharger 220 may be driven by exhaust gas. The air compressor 230 can compress the air used in the engine 210 by the rotation of the turbocharger 220.
또한, 가열부(20)는 제2 가열 열교환기(22)를 더 포함할 수 있다. 제2 가열 열교환기(22)는 터보차저(220)에 의해 압축된 압축공기를 공급받아 작동유체를 가열시킬 수 있다. Further, the heating section 20 may further include a second heating heat exchanger 22. The second heating heat exchanger 22 can receive the compressed air compressed by the turbo charger 220 to heat the working fluid.
구체적으로 제2 가열 열교환기(22)를 통해, 순환라인(101)을 유동하는 작동유체는 압축공기와 열교환될 수 있고, 압축공기는 작동유체와 열교환 후에, 온도를 낮춘 후, 엔진(210)에 공급될 수 있다. 공기 압축기(230)로부터 배출된 압축공기는 작동유체를 가열시키는데 사용됨으로써, 발전유닛(100)을 구동시키기 위한 열원으로 사용될 수 있다. 여기서, 제2 가열 열교환기(22)는, 작동유체가 순환하는 순환라인(101) 상에서 작동유체의 유동방향을 기준으로 제1 가열 열교환기(21)보다 상류 측에 구비될 수 있다.Specifically, the working fluid flowing through the circulation line 101 can be heat-exchanged with the compressed air through the second heating heat exchanger 22, and the compressed air is heat-exchanged with the working fluid, As shown in FIG. The compressed air discharged from the air compressor 230 can be used as a heat source for driving the power generation unit 100 by being used to heat the working fluid. Here, the second heating heat exchanger 22 may be provided on the upstream side of the first heating heat exchanger 21 on the basis of the flow direction of the working fluid on the circulation line 101 on which the working fluid circulates.
발전유닛(100)은 복열부(30)를 더 포함할 수 있다. 복열부(30)는 압축부(10)에서 배출되어 제2 가열 열교환기(22)로 유입되기 전의 작동유체와, 터빈(40)에서 배출되어 냉각부(50)로 유입되기 전의 작동유체를 서로 열교환시킬 수 있다.The power generation unit 100 may further include a recovery unit 30. The return heat exchanger 30 is provided with a working fluid before being discharged from the compression section 10 and flowing into the second heat exchanger 22 and a working fluid discharged from the turbine 40 and flowing into the cooling section 50 Heat exchange can be performed.
순환라인(101)을 따라 유동하는 작동유체는 분기되어 일부는 복열부(30)로, 나머지는 제2 가열 열교환기(22)로 공급될 수 있다. 압축부(10)에서 배출된 작동유체의 일부인 제1 부분은 복열부(30)로 공급될 수 있으며, 나머지인 제2 부분은 제2 가열 열교환기(22)로 공급될 수 있다. The working fluid flowing along the circulation line 101 may be branched and partly supplied to the recovery unit 30 and the remainder may be supplied to the second heating heat exchanger 22. [ A first portion that is part of the working fluid discharged from the compression section 10 may be supplied to the recovery section 30 and the remaining second section may be supplied to the second heating heat exchanger 22. [
제1 및 제2 부분은, 복열부(30)와 제2 가열 열교환기(22)에서 각각의 열교환 후에 합류되어, 제1 가열 열교환기(21)로 함께 공급될 수 있다. 순환라인(101)을 따라 유동하는 작동유체는 제2 가열 열교환기(22) 혹은 복열부(30)를 거친 후, 제1 가열 열교환기(21)로 공급됨으로써 최고 온도에 도달할 수 있다.The first and second portions may be joined together after the respective heat exchanges in the reheating section 30 and the second heating heat exchanger 22 and supplied together to the first heating heat exchanger 21. The working fluid flowing along the circulation line 101 can reach the maximum temperature by being supplied to the first heating heat exchanger 21 after passing through the second heating heat exchanger 22 or the recovery unit 30. [
발전유닛(100)은, 유량분배밸브(119)를 더 포함할 수 있다. 유량분배밸브(119)는 압축부(10)에서 배출된 작동유체 중, 제1 부분으로서 복열부(30)로 공급될 작동유체의 양과, 제2 부분으로서 제2 가열 열교환기(22)로 공급될 작동유체의 양을 조절할 수 있다. 유량분배밸브(119)는 순환라인(101) 상의 복열부(30)와 제2 가열 열교환기(22)로 분기되는 지점에 마련될 수 있다.The power generation unit 100 may further include a flow distribution valve 119. The flow rate distribution valve 119 controls the amount of the working fluid to be supplied to the recovery unit 30 as the first portion and the amount of the working fluid to be supplied to the second heating heat exchanger 22 as the second portion among the working fluid discharged from the compression portion 10 The amount of working fluid to be controlled can be adjusted. The flow rate distribution valve 119 may be provided at a branch point to the recovery unit 30 and the second heating heat exchanger 22 on the circulation line 101. [
일예로, 순환라인(101) 상의 유량분배밸브(119)가 마련된 상류에, 제1 밸브(102)가 구비될 수 있다. 제1 밸브(102)는 순환라인(101)을 따라 유동하는 작동유체의 양을 조절하도록 구성될 수 있다. 제1 밸브(102)의 개방정도에 따라, 압축부(10)로부터 배출된 작동유체가 가열부(20) 및 복열부(30)로 공급되는 양을 조절할 수 있다.For example, a first valve 102 may be provided upstream of the flow distribution valve 119 on the circulation line 101. The first valve 102 may be configured to regulate the amount of working fluid flowing along the circulation line 101. The amount of the working fluid discharged from the compression section 10 is supplied to the heating section 20 and the returning section 30 according to the degree of opening of the first valve 102.
일예로, 제1 밸브(102)는 터빈(40), 엔진(210), 터보차저(220) 등이 부하 변동, 과부하, 비상상황 중의 하나일 경우, 폐쇄동작을 수행할 수 있다.For example, the first valve 102 may perform a closing operation when the turbine 40, the engine 210, the turbocharger 220, etc. are one of a load fluctuation, an overload, and an emergency.
일예로, 비상상황은 제 2 열교환기(22)와 복열기(30)가 연결된 연결지점 부근의 순환라인(101)의 파단에 의한 누수일 수 있다.For example, the emergency situation may be a leakage due to the breakage of the circulation line 101 near the connection point where the second heat exchanger 22 and the heat exchanger 30 are connected.
발전유닛(100)은, 작동유체의 유량 제어를 위하여, 제1 우회라인(111)과, 인벤토리 탱크(110)를 더 포함할 수 있다. 제1 우회라인(111)은 순환라인(101) 상의, 압축부(10)의 출구단과 냉각부(50)의 입구단을 연결할 수 있다. The power generation unit 100 may further include a first bypass line 111 and an inventory tank 110 for controlling the flow rate of the working fluid. The first bypass line 111 can connect the outlet end of the compression section 10 and the inlet end of the cooling section 50 on the circulation line 101.
인벤토리 탱크(110)는 제1 우회라인(111) 상에 설치될 수 있고, 작동유체의 일부는 인벤토리 탱크(110)로 공급될 수 있다. 인벤토리 탱크(110)는 순환라인(101)을 순환하는 작동유체의 온도, 압력, 유량 조절하고, 작동유체의 일부를 수용할 수 있다.The inventory tank 110 may be installed on the first bypass line 111 and some of the working fluid may be supplied to the inventory tank 110. The inventory tank 110 can regulate the temperature, pressure and flow rate of the working fluid circulating in the circulation line 101 and can receive a part of the working fluid.
일예로, 인벤토리 탱크(110)의 상단에 마련된 상단 밸브부(112)는 인벤토리 탱크(110)에 수용되기 위한 작동유체의 양을 조절하기 위해 마련될 수 있다.For example, the upper valve portion 112 provided at the upper end of the inventory tank 110 may be provided to adjust the amount of the working fluid to be accommodated in the inventory tank 110.
구체적으로, 순환라인(101) 상의 압축부(10)의 출구측은 터빈(40)의 출구단에 비하여 고압일 수 있고, 순환라인(101)을 따라 유동하는 작동유체의 온도 및 압력은 비교적 높아질 수 있다. 본 발명에 따른 상단 밸브부(112)는 순환라인(101)을 따라 유동하는 작동유체의 온도 및 압력, 순환유량 등을 조절할 수 있다. 여기서, 작동유체의 온도나 유량이 조절되면 작동유체의 압력이 변경될 수 있다. Specifically, the outlet side of the compression section 10 on the circulation line 101 can be at a higher pressure than the outlet end of the turbine 40, and the temperature and pressure of the working fluid flowing along the circulation line 101 can be relatively high have. The upper valve portion 112 according to the present invention can adjust the temperature and pressure of the working fluid flowing along the circulation line 101, the circulating flow rate, and the like. Here, when the temperature or the flow rate of the working fluid is adjusted, the pressure of the working fluid may be changed.
더욱 구체적으로, 순환라인(101) 상을 유동하는 작동유체의 압력을 높이기 위하여, 상단 밸브부(112)를 폐쇄시키고 하단 밸브부(118)을 개방시켜서 인벤토리 탱크(110)에 수용된 작동유체를 순환라인(101)상에 공급시킬 수 있다. 순환라인(101) 상을 따라 유동하는 작동유체의 압력이 높아지면 작동유체의 밀도와 질량유량도 높아질 수 있다. More specifically, in order to increase the pressure of the working fluid flowing on the circulation line 101, the upper valve portion 112 is closed and the lower valve portion 118 is opened to circulate the working fluid accommodated in the inventory tank 110 Line 101 as shown in FIG. The higher the pressure of the working fluid flowing along the circulation line 101, the higher the density of the working fluid and the mass flow rate.
반대로, 순환라인(101) 상을 유동하는 작동유체의 압력을 낮추기 위해, 하단 밸브부(118)를 폐쇄시키고 상단 밸브부(112)를 개방시켜서, 인벤토리 탱크(110)에 작동유체를 공급시킬 수 있다. 압력이 낮아지면 작동유체의 밀도와 질량유량이 낮아질 수 있다. 이와 같이 인벤토리 탱크(110)는 작동유체의 일부를 수용함으로써, 순환라인(101)을 유동하는 작동유체의 온도, 유량 및 압력을 조절시킬 수 있다.Conversely, to lower the pressure of the working fluid flowing on the circulation line 101, the lower valve portion 118 may be closed and the upper valve portion 112 may be opened to supply the operating fluid to the inventory tank 110 have. The lower the pressure, the lower the working fluid density and the mass flow rate. Thus, the inventory tank 110 can regulate the temperature, flow rate, and pressure of the working fluid flowing through the circulation line 101 by receiving a part of the working fluid.
한편 배기가스의 온도가 기설정된 온도(200~400℃)보다 높으면, 엔진(210)과 터보차저(220)의 부하가 변화되면서, 제1 가열 열교환기(21)와 제2 가열 열교환기(22)에서 열교환되는 온도에 영향을 줄 수 있다. 이에 본 발명에 따른 제1 밸브(102)는, 엔진(210)과 터보차저(220)의 부하 변동이 심한 경우, 서서히 폐쇄동작을 수행할 수 있다. 이때 순환라인(101)을 따라 유동하는 작동유체는 후술할 제2 우회라인(113)으로 유동될 수 있고, 이후에, 제1 밸브(102)는 서서히 개방동작을 수행할 수 있다.On the other hand, when the temperature of the exhaust gas is higher than a predetermined temperature (200 to 400 ° C), the load of the engine 210 and the turbocharger 220 is changed, and the first heating heat exchanger 21 and the second heating heat exchanger 22 Lt; RTI ID = 0.0 > heat exchange < / RTI > The first valve 102 according to the present invention can perform the closing operation gradually when the load variation between the engine 210 and the turbocharger 220 is severe. At this time, the working fluid flowing along the circulation line 101 can flow to the second bypass line 113 to be described later, and then the first valve 102 can perform the opening operation gradually.
발전유닛(100)은 제2 우회라인(113)과 제1 조절밸브(114)를 포함할 수 있다. 제2 우회라인(113)은, 순환라인(101) 상의 압축부(10)의 출구단과 냉각부(50)의 입구단을 연결하여, 순환라인(101)의 작동유체를 우회시킬 수 있다. 여기서 제1 조절밸브(114)는 제2 우회라인(113) 상에 설치되고, 압축부(10)로부터 배출된 작동유체가 제2 우회라인(113)으로 우회되는 양을 조절할 수 있다.The power generation unit 100 may include a second bypass line 113 and a first control valve 114. The second bypass line 113 can bypass the working fluid of the circulation line 101 by connecting the outlet end of the compression section 10 and the inlet end of the cooling section 50 on the circulation line 101. [ Here, the first control valve 114 is provided on the second bypass line 113, and the amount by which the working fluid discharged from the compression section 10 is bypassed to the second bypass line 113 can be adjusted.
제1 밸브(102)는, 제1 조절밸브(114)와 함께 제2 가열 열교환기(22)나 혹은 복열부(30)로 공급되는 작동유체의 유량을 제어할 수 있다. 구체적으로, 시스템의 시동 시에 승압을 위해 제1 밸브(102)가 폐쇄되고 제1 조절밸브(114)가 개방되어, 제2 우회라인(113)으로 작동유체가 순환될 수 있다. 이후에, 순환라인(101) 상의 압력이 기설정된 압력으로 높아지면, 제1 밸브(102)는 개방되고, 제1 조절밸브(114)는 폐쇄될 수 있다.The first valve 102 can control the flow rate of the working fluid supplied to the second heating heat exchanger 22 or the recovery unit 30 together with the first control valve 114. [ Specifically, at the start-up of the system, the first valve 102 is closed and the first control valve 114 is opened for the step-up, so that the working fluid can be circulated to the second bypass line 113. Thereafter, when the pressure on the circulation line 101 increases to a predetermined pressure, the first valve 102 is opened and the first control valve 114 can be closed.
일예로, 엔진 시스템의 시동 시 순환라인(101) 상에 유동하는 작동유체의 압력은 1 ~ 50 barA 범위 정도일 수 있으나, 압력을 70~250 barA 범위로 높이기 위하여 제1 밸브(102), 제1 조절밸브(114)가 조절될 수 있다.For example, the pressure of the working fluid flowing on the circulation line 101 at the start of the engine system may be in the range of 1 to 50 barA, but the pressure of the first valve 102, The control valve 114 can be adjusted.
발전유닛(100)은 제3 우회라인(115)과, 제2 조절밸브(116)를 더 포함할 수 있다. 제3 우회라인(115)은 순환라인(101) 상의 제1 가열 열교환기(21)의 입구단과, 터빈(40)의 출구단을 연결할 수 있다. 순환라인(101)을 따라 유동하는 작동유체 중의 일부는 제3 우회라인(115)을 통해 우회될 있다. The power generation unit 100 may further include a third bypass line 115 and a second control valve 116. The third bypass line 115 may connect the inlet end of the first heat exchanger 21 on the circulation line 101 and the outlet end of the turbine 40. Some of the working fluid flowing along the circulation line 101 may be bypassed through the third bypass line 115. [
제2 조절밸브(116)는 제3 우회라인(115) 상에 설치될 수 있고, 제3 우회라인(115)을 통해 우회되는 작동유체의 양이 조절할 수 있다. 제2 조절밸브(116)의 조절에 의하여, 작동유체의 일부는 제1 가열 열교환기(21)로 공급되지 않고, 터빈(40)의 출구단으로 우회될 수 있다. The second control valve 116 can be installed on the third bypass line 115 and the amount of working fluid bypassed through the third bypass line 115 can be adjusted. By the adjustment of the second control valve 116, part of the working fluid can be bypassed to the outlet end of the turbine 40 without being supplied to the first heating heat exchanger 21.
일예로, 순환라인(101) 상의 제1 가열 열교환기(21)로부터 배출된 작동유체가 터빈(40)으로 공급되는 양을 조절하기 위하여, 제2 밸브(103)가 구비될 수 있다.For example, a second valve 103 may be provided to regulate the amount of working fluid exiting the first heat exchanger 21 on the circulation line 101 being fed to the turbine 40.
일예로, 제2 밸브(103)는, 제2 조절밸브(116)와 함께 터빈(40)으로 유입되는 작동유체의 유량을 조절할 수 있다. 구체적으로, 갑자기 고온의 작동유체가 터빈(40)으로 공급될 경우, 터빈(40)은 열에 의한 마모가 발생할 수 있다. For example, the second valve 103 may control the flow rate of the working fluid flowing into the turbine 40 together with the second control valve 116. Specifically, when a sudden high temperature working fluid is supplied to the turbine 40, the turbine 40 may be subject to wear due to heat.
이에 본 발명에 따르면 엔진 시스템의 시동 시에, 제2 밸브(103)는 서서히 폐쇄 동작을 수행하고, 제2 조절밸브(116)는 서서히 개방동작을 수행할 수 있다. 이후에, 제2 밸브(103)는 개방되고, 제2 조절밸브(116)는 서서히 폐쇄됨으로써, 터빈(40)이 받는 열에 의한 충격을 최소화 시킬 수 있다. 일예로, 제1 밸브(102)와 제2 밸브(103)는 스로틀 밸브일 수 있으나, 이에 한정하는 것은 아니다. Therefore, according to the present invention, at the time of starting the engine system, the second valve 103 performs a gradual close operation, and the second control valve 116 performs a gradual opening operation. Thereafter, the second valve 103 is opened and the second control valve 116 is closed slowly, thereby minimizing the impact of the heat that the turbine 40 receives. For example, the first valve 102 and the second valve 103 may be throttle valves, but are not limited thereto.
제1 우회라인(111)과 인벤토리 탱크(110)와 상단 및 하단 밸브부(112,118)는, 압축부(10)로부터 배출된 작동유체의 압력, 온도, 유량조절을 위하여, 순환라인(101) 상에 마련될 수 있다. 밸브들(102,103,114,116)과 제2 및 제3 우회라인(113,115)은, 터빈(40), 터보차저(220), 엔진(210) 등의 부하변동과 비상상황에 대응하기 위해 마련될 수 있다.The first bypass line 111, the inventory tank 110 and the upper and lower valve units 112 and 118 are connected to the circulation line 101 for controlling the pressure, temperature and flow rate of the working fluid discharged from the compression unit 10. [ As shown in FIG. The valves 102,103,114 and 116 and the second and third bypass lines 113 and 115 may be provided to cope with load fluctuations and emergency situations of the turbine 40, the turbocharger 220, the engine 210, and the like.
터빈(40)은 발전기(41)와 연결되어 발전기(41)를 구동시킬 수 있다. 발전유닛(100)은 폐열을 통하여, 작동유체를 가열시켜, 발전기(41)를 구동시킬 수 있고, 발전기(41)로부터 생산된 전기에너지는 전력으로 사용될 수 있다. 즉 본 발명은 배기가스를 발전유닛(100)에서 회수하여 전력을 생산할 수 있다.The turbine 40 may be connected to the generator 41 to drive the generator 41. The power generation unit 100 can heat the working fluid through the waste heat to drive the generator 41 and the electric energy produced from the generator 41 can be used as electric power. That is, the present invention can recover the exhaust gas from the power generation unit 100 to produce electric power.
배출된 배기가스의 일부는 가열부(20)로 공급되고, 배기가스의 나머지는 스팀 생성유닛(300)으로 공급될 수 있다. 제1 가열 열교환기(21)와 증발기(330)의 입구단에는, 밸브부(212,213) 또는 댐퍼(미도시)가 각각 구비될 수 있다. 밸브부(212,213) 또는 댐퍼(미도시)는, 개방정도에 따라 제1 가열 열교환기(21)와 증발기(330)에 공급되는 배기가스의 공급량을 조절할 수 있다. A part of the discharged exhaust gas may be supplied to the heating unit 20, and the remainder of the exhaust gas may be supplied to the steam generating unit 300. Valves 212 and 213 or dampers (not shown) may be provided at the inlet ends of the first heating heat exchanger 21 and the evaporator 330, respectively. The valve units 212 and 213 or the damper (not shown) can adjust the supply amount of the exhaust gas supplied to the first heat exchanger 21 and the evaporator 330 according to the degree of opening.
도면에 도시된 바와 같이, 배기가스는 스팀의 생성에 활용되기 위하여, 스팀 생성유닛(300)은 드럼(320), 절탄기(310), 증발기(330)를 포함할 수 있다.As shown in the figure, the steam generating unit 300 may include a drum 320, a separator 310, and an evaporator 330 so that the exhaust gas is utilized in generating steam.
드럼(320)은 액상의 물을 공급받을 수 있다. 또한 드럼(320)은 저장된 액상의 물과 스팀 중에서 스팀을 분리시켜 배출할 수 있다.The drum 320 can be supplied with liquid water. Further, the drum 320 can separate and discharge the steam in the stored liquid water and steam.
절탄기(310)는 드럼(320)으로 공급될 액상의 물을 가열시키도록 구성될 수 있다. 절탄기(310)는 드럼으로 액상의 물을 공급하는 공급라인 상에 구비될 수 있다.The burner 310 may be configured to heat the liquid water to be supplied to the drum 320. The economizer 310 may be provided on a supply line that supplies liquid water to the drum.
증발기(330)는 드럼(320)에서 액상의 물을 유출시킨 후에 다시 드럼(320)으로 복귀시키는 유동라인(321) 상에 구비될 수 있다. 유동라인(321) 상에는 펌프(미도시)가 구비될 수 있으며, 펌프(미도시)의 작동에 의하여 액상의 물은 강제로 순환될 수 있다. 증발기(330)는 드럼(320)에서 유출된 액상의 물 중의 적어도 일부를 증발시킬 수 있다. The evaporator 330 may be provided on the flow line 321 that returns the liquid to the drum 320 after draining the liquid water from the drum 320. A pump (not shown) may be provided on the flow line 321, and the liquid water can be forcedly circulated by the operation of a pump (not shown). The evaporator 330 can evaporate at least a portion of the liquid water flowing out of the drum 320.
증발기(330)는, 폐열 배출유닛(200)에서 배출된 배기가스가 배출되는 라인 상에 절탄기(310)보다 상류에 배치됨으로써, 증발기(330)는 배기가스와 열교환시키는 온도가 절탄기(310)에 비해 더 높을 수 있다. The evaporator 330 is disposed upstream of the absorbent unit 310 on the line through which the exhaust gas discharged from the waste heat discharging unit 200 is discharged so that the evaporator 330 is heated by the economizer 310 ). ≪ / RTI >
폐열 배출유닛(200)에서 배출된 배기가스 중의 일부는, 증발기(330)를 통해 액상의 물과 열교환을 하여, 액상의 물을 가열시킬 수 있다. 이후에, 절탄기(310)는, 증발기(330)에서 열교환된 배기가스를 전달받아, 다시 액상의 물을 가열시킬 수 있다.A part of the exhaust gas discharged from the waste heat discharging unit 200 is heat-exchanged with the liquid water through the evaporator 330 to heat the liquid water. Thereafter, the rubber band 310 can receive the exhaust gas heat-exchanged in the evaporator 330 and again heat the liquid water.
여기서, 드럼(320), 절탄기(310), 증발기(330)는 배기가스가 배출되는 라인상에 복수 개로 설치될 수 있고, 스팀을 고압, 저압으로 분리하여 생산하는 것도 가능하다. Here, the drum 320, the cutlery 310, and the evaporator 330 may be installed on a line through which the exhaust gas is discharged, and the steam may be separated into high pressure and low pressure.
본 발명에 따르면, 폐열 배출유닛(200)과 스팀 생성유닛(300)이 연계됨으로써, 별도의 보일러를 설치하지 않아도 되는 특징이 있다.According to the present invention, since the waste heat discharging unit 200 and the steam generating unit 300 are linked, there is no need to install a separate boiler.
일예로, 스팀의 생성과 발전이 연계된 엔진 시스템은 선박에 적용될 수 있고, 선박의 엔진(210)으로부터 배출되는 배기가스와 엔진(210)의 소기를 압축한 압축공기의 열원을, 스팀 생성유닛(300)과 발전유닛(100)에 활용될 수 있다.For example, an engine system in which steam generation and power generation are linked can be applied to a ship, and a heat source of compressed air, which compresses the exhaust gas discharged from the engine 210 of the ship and the engine 210, (300) and the power generation unit (100).
실시예Example 2 2
도 2는 본 발명의 실시예 2에 따른 스팀의 생성과 발전이 연계된 엔진 시스템의 개략도이다. 이하에서 동일한 구성요소에 대해서는 동일한 참조번호를 사용하고, 중복되는 설명은 생략한다.2 is a schematic diagram of an engine system in which generation and power generation of steam according to Embodiment 2 of the present invention are linked. In the following, the same reference numerals are used for the same constituent elements, and redundant explanations are omitted.
도 2에 도시된 바와 같이, 폐열 배출유닛(200)은 엔진(210)에서 배출된 배기가스 중의 일부를 공급받아 작동하는 터보차저(220)와, 터보차저(220)에 연계되어 터보차저(220)에 의해 작동하고, 엔진(210)의 소기에 이용되는 공기를 압축하는 공기 압축기(230)와, 공기 압축기(230)에서 배출된 압축 공기를 냉각하는 공기 냉각기(250)를 포함할 수 있다. 2, the waste heat discharging unit 200 includes a turbocharger 220 that receives and operates a part of the exhaust gas discharged from the engine 210, a turbocharger 220 that is connected to the turbocharger 220, And an air cooler 250 for cooling the compressed air discharged from the air compressor 230. The air compressor 230 is operated by the air compressor 230 and compresses the air used in the engine 210.
엔진(210)은 터보차저(220)와 연결된 공기 압축기(230)를 통해 압축된 공기를 공급받을 수 있다. 공기 압축기(230)에서 압축되는 공기는, 압축과정에서 온도가 상승하고, 엔진(210)의 전단에 마련된 냉각기(250)에서 냉각된 후, 엔진(210)으로 공급될 수 있다.The engine 210 may be supplied with compressed air through an air compressor 230 connected to the turbocharger 220. The air compressed in the air compressor 230 can be supplied to the engine 210 after the temperature rises in the compression process, cooled in the cooler 250 provided at the front end of the engine 210, and then cooled.
가열부(20)는 제2 가열 열교환기(23)를 포함할 수 있다. 제2 가열 열교환기(23)는 작동유체가 순환하는 순환라인(101) 상에서 작동유체의 유동방향을 기준으로 제1 가열 열교환기(21)보다 상류 측에 구비될 수 있다.The heating section 20 may include a second heating heat exchanger 23. The second heating heat exchanger 23 may be provided on the upstream side of the first heating heat exchanger 21 on the basis of the flow direction of the working fluid on the circulation line 101 on which the working fluid circulates.
제2 가열 열교환기(23)는 제1 가열 열교환기(21)에서 열교환된 배기가스를 공급받아 작동유체를 가열시킬 수 있다. The second heating heat exchanger (23) can receive the exhaust gas heat-exchanged in the first heating heat exchanger (21) and heat the working fluid.
이는, 배기가스가 배기되는 배기라인(211) 상에, 복수 개의 제1 및 2 가열 열교환기(21,23)가 배치됨으로써, 순환라인(101)을 유동하는 작동유체를 배기가스와의 열교환에 의해 가열하여, 발전기(41)를 구동시킬 수 있다. This is because a plurality of first and second heat exchangers 21 and 23 are disposed on the exhaust line 211 through which the exhaust gas is exhausted so that the working fluid flowing in the circulating line 101 is heat- So that the generator 41 can be driven.
압축부(10)에서 배출된 작동유체의 일부인 제1 부분은 복열부(30)로 공급될 수 있고, 작동유체의 나머지인 제2 부분은 제2 가열 열교환기(23)로 공급될 수 있다. A first portion which is part of the working fluid discharged from the compression section 10 can be supplied to the recovery section 30 and a second part which is the remainder of the working fluid can be supplied to the second heating heat exchanger 23. [
복열부(30)는 압축부(10)에서 배출되어 제2 가열 열교환기(23)로 유입되기 전의 작동유체와, 터빈(40)에서 배출되어 냉각기(250)로 유입되기 전의 작동유체를 서로 열교환시킬 수 있다.The recovery unit 30 is configured to heat the working fluid before being discharged from the compression unit 10 and flowing into the second heating heat exchanger 23 and the working fluid discharged from the turbine 40 and before flowing into the cooler 250 .
제1 및 제2 부분은, 복열부(30)와 제2 가열 열교환기(23)에서 각각의 열교환 후에 합류되어, 제1 가열 열교환기(21)로 함께 공급될 수 있다. The first and second portions may be joined together after the respective heat exchanges in the reheating section 30 and the second heating heat exchanger 23 and supplied together to the first heating heat exchanger 21.
일예로, 제1 가열 열교환기(21)는, 배기가스가 공급되는 배기라인(211) 상에 제2 가열 열교환기(23)보다 상류에 배치될 수 있고, 이에 따라 작동유체는 제2 가열 열교환기(23) 혹은 복열부(30)를 거친 후에, 제1 가열 열교환기(21)로 공급되어 최고 온도에 도달할 수 있다.For example, the first heating heat exchanger 21 may be disposed upstream of the second heating heat exchanger 23 on the exhaust line 211 to which the exhaust gas is supplied, The heat can be supplied to the first heating heat exchanger 21 after reaching the heat recovery unit 23 or the recovery unit 30 to reach the maximum temperature.
이에 따라, 고온의 배기가스의 일부는 발전에 활용되어 전력을 생산하고, 나머지는 스팀의 생성에 활용됨으로써, 에너지를 효율적으로 사용할 수 있다.Accordingly, a part of the high temperature exhaust gas is utilized for power generation to generate electric power, and the remainder is utilized for generating steam, so that energy can be efficiently used.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

Claims (14)

  1. 엔진을 구비하고, 배기가스를 배출하는 폐열 배출유닛; A waste heat discharging unit having an engine and discharging exhaust gas;
    상기 폐열 배출유닛에서 배출된 배기가스의 폐열을 이용하여 스팀을 생성하는 스팀 생성유닛; 및A steam generating unit for generating steam by using waste heat of the exhaust gas discharged from the waste heat discharging unit; And
    상기 폐열 배출유닛에서 배출된 배기가스의 폐열을 이용하여 터빈의 구동에 이용되는 작동유체를 가열하고, 상기 터빈의 구동으로 발전하는 발전유닛을 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.Wherein the generation and the power generation of the steam including the power generation unit for heating the working fluid used for driving the turbine using the waste heat of the exhaust gas discharged from the waste heat discharge unit and generating power by driving the turbine are linked.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 발전유닛은, The power generation unit includes:
    상기 작동유체를 압축하는 압축부;A compression unit for compressing the working fluid;
    상기 압축부에서 배출된 작동유체를 가열하고, 가열된 작동유체를 상기 터빈으로 공급하는 가열부; 및A heating unit for heating the working fluid discharged from the compression unit and supplying the heated working fluid to the turbine; And
    상기 터빈에서 배출된 작동유체를 냉각하는 냉각부를 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.And a cooling unit for cooling the working fluid discharged from the turbine.
  3. 청구항 2에 있어서, The method of claim 2,
    상기 가열부는, 상기 폐열 배출유닛에서 배출된 배기가스 중의 일부를 공급받아, 열교환을 통해 상기 작동유체를 가열시키는 제1 가열 열교환기를 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.Wherein the heating unit includes a first heating heat exchanger that receives a part of the exhaust gas discharged from the waste heat discharging unit and heats the working fluid through heat exchange.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 폐열 배출유닛은, The waste heat discharging unit includes:
    상기 엔진에서 배출된 배기가스 중의 일부를 공급받아 작동하는 터보차저; 및A turbocharger for receiving and operating part of the exhaust gas discharged from the engine; And
    상기 터보차저에 연계되어 작동하고, 상기 엔진의 소기에 이용되는 공기를 압축하는 공기 압축기를 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.And an air compressor that operates in conjunction with the turbocharger and compresses the air used in the engine.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 가열부는, 상기 작동유체가 순환하는 순환라인 상에서 상기 작동유체의 유동방향을 기준으로 상기 제1 가열 열교환기보다 상류 측에 구비되고, 상기 공기 압축기에서 배출된 압축 공기를 공급받아 열교환을 통해 상기 작동유체를 가열시키는 제2 가열 열교환기를 더 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템 Wherein the heating unit is provided on an upstream side of the first heating heat exchanger with respect to a flow direction of the working fluid on a circulation line through which the working fluid circulates and is supplied with compressed air discharged from the air compressor, And a second heating heat exchanger for heating the working fluid.
  6. 청구항 5에 있어서, The method of claim 5,
    상기 발전유닛은, 상기 압축부에서 배출되어 상기 제1 가열 열교환기로 유입되기 전의 작동유체와, 상기 터빈에서 배출되어 상기 냉각부로 유입되기 전의 작동유체를 서로 열교환시키는 복열부를 더 포함하고, The power generation unit may further include a recovery unit for exchanging heat between the working fluid before being discharged from the compression unit and flowing into the first heating heat exchanger and the working fluid discharged from the turbine before flowing into the cooling unit,
    상기 압축부에서 배출된 작동유체의 일부인 제1 부분은 상기 복열부로 공급되고, 나머지인 제2 부분은 상기 제2 가열 열교환기로 공급되며, A first portion which is a part of the working fluid discharged from the compression portion is supplied to the recovery heat exchanger, and the remaining second portion is supplied to the second heating heat exchanger,
    상기 제1 및 제2 부분은, 상기 복열부와 상기 제2 가열 열교환기에서의 열교환 후에 상기 제1 가열 열교환기로 함께 공급되는 스팀의 생성과 발전이 연계된 엔진 시스템.Wherein the first and second portions are associated with generation and power generation of steam supplied together with the first heat exchanger after heat exchange in the second heat exchanger and the second heat exchanger.
  7. 청구항 6에 있어서, The method of claim 6,
    상기 발전유닛은, 상기 압축부에서 배출된 작동유체 중, 상기 제1 부분으로서 상기 복열부로 공급될 작동유체의 양과, 상기 제2 부분으로서 상기 제2 가열 열교환기로 공급될 작동유체의 양을 조절하는 유량분배밸브를 더 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.Wherein the power generation unit controls the amount of the working fluid to be supplied to the recovery unit as the first portion and the amount of the working fluid to be supplied to the second heating heat exchanger as the second portion among the working fluid discharged from the compression unit An engine system in which the generation and development of steam, further comprising a flow distribution valve, is associated.
  8. 청구항 3에 있어서, The method of claim 3,
    상기 가열부는, 상기 작동유체가 순환하는 순환라인 상에서 상기 작동유체의 유동방향을 기준으로 상기 제1 가열 열교환기보다 상류 측에 구비되고, 상기 제1 가열 열교환기에서 열교환 후에 배출된 배기가스를 공급받아 열교환을 통해 상기 작동유체를 가열시키는 제2 가열 열교환기를 더 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템The heating unit is provided on an upstream side of the first heating heat exchanger with respect to a flow direction of the working fluid on a circulation line through which the working fluid circulates, and supplies the exhaust gas discharged after heat exchange in the first heating heat exchanger And a second heat exchanger for heating the working fluid through heat exchange,
  9. 청구항 8에 있어서, The method of claim 8,
    상기 폐열 배출유닛은, 상기 폐열 배출유닛에서 배출된 배기가스 중의 일부를 공급받아 작동하는 터보차저;The waste heat discharging unit includes a turbo charger that receives and operates part of the exhaust gas discharged from the waste heat discharging unit;
    상기 터보차저에 연계되어 작동하고, 상기 엔진의 소기에 이용되는 공기를 압축하는 공기 압축기; 및An air compressor operating in conjunction with the turbocharger and compressing the air used in the engine; And
    상기 공기 압축기에서 배출된 압축 공기를 냉각하는 공기 냉각기를 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템And an air cooler for cooling the compressed air discharged from the air compressor.
  10. 청구항 2에 있어서,The method of claim 2,
    상기 발전유닛은, The power generation unit includes:
    상기 작동유체가 순환하는 순환라인;A circulation line through which the working fluid circulates;
    상기 순환라인 상의, 상기 압축부의 출구단과 상기 냉각부의 입구단을 연결하여, 상기 순환라인의 작동유체 중의 일부를 우회시키는 제1 우회라인; 및A first bypass line connecting the outlet end of the compression section and the inlet end of the cooling section on the circulation line to bypass some of the working fluid of the circulation line; And
    상기 제1 우회라인 상에 설치되어, 상기 순환라인을 순환하는 작동유체의 압력과 유량을 조절하는 인벤토리 탱크를 더 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템. Further comprising an inventory tank installed on the first bypass line for regulating the pressure and the flow rate of the working fluid circulating through the circulation line.
  11. 청구항 2에 있어서, The method of claim 2,
    상기 발전유닛은, The power generation unit includes:
    상기 작동유체가 순환하는 순환라인;A circulation line through which the working fluid circulates;
    상기 순환라인 상의, 상기 압축부의 출구단과 상기 냉각부의 입구단을 연결하여, 상기 순환라인의 작동유체 중의 일부를 우회시키는 제2 우회라인; 및A second bypass line connecting the outlet end of the compression section and the inlet end of the cooling section on the circulation line and bypassing a part of the working fluid of the circulation line; And
    상기 제2 우회라인 상에 설치되어, 상기 제2 우회라인을 통해 우회되는 작동유체의 양을 조절하는 제1 조절밸브를 더 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.Further comprising a first control valve disposed on the second bypass line for regulating the amount of working fluid bypassed through the second bypass line.
  12. 청구항 3에 있어서, The method of claim 3,
    상기 발전유닛은, The power generation unit includes:
    상기 작동유체가 순환하는 순환라인;A circulation line through which the working fluid circulates;
    상기 순환라인 상의, 상기 제1 가열 열교환기의 입구단과 상기 터빈의 출구단을 연결하여, 상기 순환라인의 작동유체 중의 일부가 상기 터빈으로 공급되지 않게 우회시키는 제3 우회라인; 및A third bypass line connecting the inlet end of the first heating heat exchanger and the outlet end of the turbine on the circulation line to bypass some of the working fluid of the circulation line to the turbine; And
    상기 제3 우회라인 상에 설치되어, 상기 제3 우회라인을 통해 우회되는 작동유체의 양을 조절하는 제2 조절밸브를 더 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.Further comprising a second control valve provided on the third bypass line for regulating the amount of working fluid bypassed through the third bypass line.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 스팀 생성유닛은,The steam generating unit includes:
    저장된 액상의 물과 스팀 중에서 스팀을 분리시켜 배출하는 드럼;A drum for separating and discharging steam from the stored liquid water and steam;
    상기 드럼으로 액상의 물을 공급하는 공급라인 상에 구비되어, 상기 드럼으로 공급되는 액상의 물을 가열하는 절탄기; 및An archer provided on a supply line for supplying liquid water to the drum and heating the liquid water supplied to the drum; And
    상기 드럼에서 액상의 물을 유출시킨 후에 다시 상기 드럼으로 복귀시키는 유동라인 상에 구비되어, 상기 드럼에서 유출된 액상의 물 중의 적어도 일부를 증발시키는 증발기를 포함하고, And an evaporator provided on a flow line for allowing the liquid to flow out of the drum and then returning to the drum to evaporate at least a portion of the liquid water flowing out of the drum,
    상기 증발기는, 상기 폐열 배출유닛에서 배출된 배기가스 중의 일부를 공급받아 열교환을 통해 상기 액상의 물을 가열시키고,The evaporator receives a part of the exhaust gas discharged from the waste heat discharging unit, heats the liquid water through heat exchange,
    상기 절탄기는, 상기 증발기에서 열교환 후에 배출된 배기가스를 공급받아, 열교환을 통해 상기 액상의 물을 가열시키는, 스팀의 생성과 발전이 연계된 엔진 시스템. Wherein the burner is connected to generation and power generation of steam, which receives the exhaust gas discharged from the evaporator after heat exchange and heats the liquid water through heat exchange.
  14. 청구항 1에 있어서, The method according to claim 1,
    상기 작동유체는 초임계 이산화탄소를 포함하는 스팀의 생성과 발전이 연계된 엔진 시스템.Wherein the working fluid is associated with the generation and development of steam including supercritical carbon dioxide.
PCT/KR2018/002187 2017-07-12 2018-02-22 Engine system enabling steam generation in association with electricity generation WO2019013420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0088594 2017-07-12
KR1020170088594A KR20190007301A (en) 2017-07-12 2017-07-12 Engine system linked to steam generation and power generation

Publications (1)

Publication Number Publication Date
WO2019013420A1 true WO2019013420A1 (en) 2019-01-17

Family

ID=65002519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002187 WO2019013420A1 (en) 2017-07-12 2018-02-22 Engine system enabling steam generation in association with electricity generation

Country Status (2)

Country Link
KR (1) KR20190007301A (en)
WO (1) WO2019013420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108574A3 (en) * 2020-11-22 2023-08-17 Ciftci Nevzat Multi cycle engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021397292A1 (en) * 2020-12-09 2023-07-06 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120128528A (en) * 2011-05-16 2012-11-27 삼성중공업 주식회사 Generating system of vessel
JP2014145521A (en) * 2013-01-29 2014-08-14 Hitachi Ltd Operation control method of coal gasification combined power generation plant, and coal gasification combined power generation plant
KR20150115650A (en) * 2014-04-04 2015-10-14 가부시키가이샤 고베 세이코쇼 Waste heat recovery system and waste heat recovery method
KR20160073355A (en) * 2016-05-27 2016-06-24 현대중공업 주식회사 Ship installed Supercritical Carbon Dioxide Power Generation System
KR101644942B1 (en) * 2016-05-09 2016-08-02 고등기술연구원연구조합 Power generation system for waste heat recovery and ship having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120128528A (en) * 2011-05-16 2012-11-27 삼성중공업 주식회사 Generating system of vessel
JP2014145521A (en) * 2013-01-29 2014-08-14 Hitachi Ltd Operation control method of coal gasification combined power generation plant, and coal gasification combined power generation plant
KR20150115650A (en) * 2014-04-04 2015-10-14 가부시키가이샤 고베 세이코쇼 Waste heat recovery system and waste heat recovery method
KR101644942B1 (en) * 2016-05-09 2016-08-02 고등기술연구원연구조합 Power generation system for waste heat recovery and ship having the same
KR20160073355A (en) * 2016-05-27 2016-06-24 현대중공업 주식회사 Ship installed Supercritical Carbon Dioxide Power Generation System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108574A3 (en) * 2020-11-22 2023-08-17 Ciftci Nevzat Multi cycle engine

Also Published As

Publication number Publication date
KR20190007301A (en) 2019-01-22

Similar Documents

Publication Publication Date Title
US4630436A (en) Air storage gas turbine power station with fluidized bed firing
CN206267896U (en) Combined cycle two-shipper condensing-back pressure formula is drawn gas cogeneration system
CN107956517B (en) Thermodynamic system and method for deep thermal decoupling
WO2016167445A1 (en) Hybrid generation system using supercritical carbon dioxide cycle
WO2018097450A1 (en) Parallel recuperative power generation system using supercritical carbon dioxide
WO2016178470A1 (en) Supercritical carbon dioxide power generation system
EP0636779B1 (en) Thermal power engine and its operating method
JP4540472B2 (en) Waste heat steam generator
US5267434A (en) Gas turbine topped steam plant
US20110239650A1 (en) Power plant comprising a turbine unit and a generator
WO2017065430A1 (en) Supercritical carbon dioxide power generation system using multiple heat sources
US8981583B2 (en) Method for stabilization of the network frequency of an electrical power network
CN206035553U (en) Cogeneration system of combined cycle
JPS58501473A (en) Method and apparatus for reducing start-up losses, increasing the available output and improving control capabilities of thermal power plants
WO2018225922A1 (en) Combined power generation apparatus
WO2011149191A2 (en) Small-scale combined heat and power system and method for controlling same
WO2020091299A1 (en) Air supply system for polar region vessel
WO2019013420A1 (en) Engine system enabling steam generation in association with electricity generation
CN206458511U (en) A kind of double mode therrmodynamic system of back pressure pure condensate and exhaust steam residual heat utilize system
CN107339128A (en) A kind of Double reheat steam turbine of ultra-high pressure cylinder in parallel
WO2012011730A2 (en) System for generating auxiliary power using excess steam from increased output of a generator
CN110793011A (en) Two-stage steam extraction type medium-temperature and medium-pressure waste incineration power generation system and use method thereof
CN103620167A (en) Waste heat recovery installation
WO2018105841A1 (en) Serial/recuperative supercritical carbon dioxide power generation system
JPH04234534A (en) Gas turbine device and method for driving same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831570

Country of ref document: EP

Kind code of ref document: A1