WO2019013256A1 - Quality evaluation method for biological specimen and marker therefor - Google Patents

Quality evaluation method for biological specimen and marker therefor Download PDF

Info

Publication number
WO2019013256A1
WO2019013256A1 PCT/JP2018/026202 JP2018026202W WO2019013256A1 WO 2019013256 A1 WO2019013256 A1 WO 2019013256A1 JP 2018026202 W JP2018026202 W JP 2018026202W WO 2019013256 A1 WO2019013256 A1 WO 2019013256A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
stable
peptides
quality
variable
Prior art date
Application number
PCT/JP2018/026202
Other languages
French (fr)
Japanese (ja)
Inventor
毅 朝長
白水 崇
義男 小寺
七里 眞義
晃一郎 湯地
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
学校法人北里研究所
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017154566A external-priority patent/JP2020153661A/en
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所, 学校法人北里研究所, 国立大学法人東京大学 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Publication of WO2019013256A1 publication Critical patent/WO2019013256A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates generally to the field of evaluating the quality of conserved biological specimens.
  • the present invention relates to a method for evaluating the reliability of stored biological specimens, such as blood samples, plasma samples, serum samples etc., that can withstand the biological evaluation, markers used for the evaluation, It relates to a kit for making the evaluation.
  • Biobank Japan (BBJ: 4-6-1 Shirokanedai, Minato-ku, Tokyo) was established in 2003 in Japan. Since 2003, BBJ has collected and analyzed 51 diseases, 260,000 people and 420,000 cases, focusing on multifactorial diseases, and has built the world's largest disease biobank. Registered cases have 5,837 items of cleaned information and include 95% average follow-up rate and survival information spanning approximately 10 years of average follow-up.
  • the sample DNA, serum, and tissue have a track record of being applicable to omics analysis such as whole genome sequencing, metabolome, proteome, etc.
  • the sample distribution track record is about 16,000 DNA samples and about 10,000 serum samples. However, it is hard to say that the world's largest biobank specimen has been effectively utilized so far. One of the reasons is that the quality control of samples, in particular, the quality control of proteins that are more susceptible to collection and storage than DNA, has not been performed.
  • the present inventors have developed leading-edge proteomics technology to establish a method for developing and measuring a quality evaluation marker for stored serum and plasma samples.
  • Factors that affect the quality of stored blood, serum, and plasma samples include the time from blood collection to centrifugation, storage time and storage conditions for temperature, and the number of freeze-thaw cycles, etc.
  • the present inventors have found that some of the peptides produced by enzymatic treatment of proteins are unstable ones that cause quantitative and qualitative changes under the influence of storage conditions etc. We found that there was something, and focused on the quantitative change of these peptides.
  • the present inventors have found that it is possible to evaluate the quality of a sample by taking the ratio of a stable peptide that is stable in the sample and a variable peptide that is unstable in the sample, and completed the present invention.
  • the present invention includes the following aspects. ⁇ Method for evaluating the quality of stored samples obtained from Biobank etc.> [1] A method for evaluating the quality of a biological sample that has been isolated, wherein a peptide derived from a specific protein produced by treating the sample with an enzyme is used as an index for quality evaluation. [2] Among the peptides derived from the same specific protein in the enzyme-treated sample, the peptides are variable peptides that cause quantitative and / or qualitative changes due to factors affecting quality, and stable peptides that do not cause changes [, 1] The method described.
  • variable peptide and stable peptide derived from the same specific protein can also mean a combination of an individual stable peptide and a variable peptide when there are a plurality of variable peptides and stable peptides, respectively, and It can mean the combination as a set of each of a plurality of variable peptides.
  • variable peptide and the stable peptide derived from the same specific protein are quality evaluation markers shown in the following table: Table 3-1, Table 3-2, Table 3-3, Table 4-1, Table 4-2, Table 4-2, Table 4-3, Table 4-4, Table 5, Table 6, Table 8- described in the present specification. 1, Table 8-2, Table 8-3, Table 8-4, Table 8-5, Table 8-6, Table 8-7, Table 9-1, Table 9-2, Table 9-3, Table 9- 4, Table 9-5, Table 9-6, Table 9-7, Table 10, and Table 11.
  • variable peptide and the stable peptide derived from the same specific protein may be any of the quality evaluation markers derived from the same specific protein shown in the above table, and also the quality evaluation markers derived from the same specific protein shown in the table It may be all. [8] The method according to [7], wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel in the table.
  • variable peptide and stable peptide are shown in Table 3-1, Table 3-2, Table 3-3, Table 4-1, Table 4-2, Table 4-3, Table 4-4, Table 5
  • the variable peptide and the stable peptide derived from the same specific protein may be any of the quality evaluation markers derived from the same specific protein shown in the above table, and also the quality evaluation markers derived from the same specific protein shown in the table It may be all.
  • the method according to [9] wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel to the table.
  • variable peptide and the stable peptide derived from the same specific protein are quality evaluation markers shown in the following table: Table 13-1, Table 13-2, Table 13-3, Table 13-4, Table 13-5, Table 13-6, Table 13-7, Table 13-8, and Table 13-9 described in the present specification. , Table 13-10, Table 15-1, Table 15-2, Table 15-3, Table 15-4, Table 15-5, Table 15-6, Table 15-7, Table 15-8, Table 17-1. , And Table 17-2.
  • the variable peptide and the stable peptide derived from the same specific protein may be any of the quality evaluation markers derived from the same specific protein shown in the above table, and also the quality evaluation markers derived from the same specific protein shown in the table It may be all.
  • the method according to [11] wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel in the table.
  • a method of selecting a peptide derived from a protein present in a sample, which can evaluate the quality of a biological sample being isolated comprising: 1) Collect biological samples from animals including humans, 2) Load the biological samples collected with factors that affect their quality, 3) The factor-loaded sample is treated with an enzyme to cleave proteins present in the sample into peptides, 4) Among the obtained peptides, those which cause quantitative and / or qualitative changes due to factors affecting the quality and those which do not cause change are respectively identified as a variable peptide and a stable peptide, 5) Identify combinations of one or more variable peptides derived from the same specific protein and one or more stable peptides, 6) Use the identified combination as a marker that can assess the quality of the biological sample, or 6 ') The method, wherein at least one of the identified combinations is a marker capable of evaluating the quality of a biological sample.
  • a method of producing a marker capable of evaluating the quality of a biological sample being isolated comprising: 1) Collect biological samples from animals including humans, 2) Load the biological samples collected with factors that affect their quality, 3) The factor-loaded sample is treated with an enzyme to cleave proteins present in the sample into peptides, 4) Among the obtained peptides, identify peptides that cause quantitative and / or qualitative changes depending on factors affecting quality, and peptides that do not cause changes; 5) The method, wherein the identified peptide is used as a quality evaluation marker of a biological sample. [19] The method according to [18], wherein a biological sample is collected from healthy human in step 1).
  • a quality evaluation marker which is a variable peptide and a stable peptide derived from the same specific protein shown in the table described in [8] or [11].
  • a quality evaluation marker which is a combination of at least one variable peptide and stable peptide derived from the same specific protein shown in parallel to the table described in [8] or [11].
  • FIG. 1 shows an outline of analysis for identifying quality evaluation markers of the present invention.
  • FIG. 2-1 shows the results of verification of serum peptides by SRM / MRM method, which showed fluctuations with storage temperature and period.
  • the solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 2-2 shows the results of verification of serum peptides by SRM / MRM method, which showed fluctuations with storage temperature and period.
  • the solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 2-3 shows the results of verification of serum peptides by SRM / MRM method, which showed variation with storage temperature and period.
  • FIG. 3-1 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period.
  • the solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 3-2 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period.
  • the solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 3-3 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period.
  • the solid line shows the transition of the relative quantitative value of the variable peptide
  • the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 3-4 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period.
  • the solid line shows the transition of the relative quantitative value of the variable peptide
  • the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 4 shows the results of verification of serum peptides by SRM / MRM method in which fluctuations in time from blood collection to centrifugation were observed.
  • FIG. 5 shows the results of verification of plasma peptides by SRM / MRM method which fluctuated in time from blood collection to centrifugation.
  • the solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide.
  • FIG. 6 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions in plasma, at room temperature, and within one week.
  • FIG. 7-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 6 ° C. and 6 months in plasma.
  • FIG. 7-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 4 ° C. and 6 months or less in plasma.
  • FIG. 7-3 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 4 ° C. and 6 months or less in plasma.
  • FIG. 7-4 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 4 ° C. and 6 months or less in plasma.
  • FIG. 8-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of ⁇ 30 ° C. and 6 months or less in plasma.
  • FIG. 8-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of ⁇ 30 ° C. and 6 months or less in plasma.
  • FIG. 9-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of -80 ° C. and within 6 months in plasma.
  • FIG. 9-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of -80 ° C. and within 6 months in plasma.
  • FIG. 10 shows the results of selection of quality evaluation markers by shotgun quantitative analysis in serum, at room temperature, and under storage conditions within one week.
  • FIG. 11-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions at 4 ° C. and within 6 months.
  • FIG. 11-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions at 4 ° C. and within 6 months.
  • FIG. 12-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of ⁇ 30 ° C. and 6 months or less.
  • FIG. 12-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of ⁇ 30 ° C. and 6 months or less.
  • FIG. 13-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of ⁇ 80 ° C. and within 6 months.
  • FIG. 13-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of ⁇ 80 ° C. and within 6 months.
  • FIG. 14 shows the results of selection of quality evaluation markers in plasma and after freeze-thawing by shotgun quantitative analysis.
  • FIG. 15 shows the results of selection of quality evaluation markers in serum and after freeze thaw by shotgun quantitative analysis.
  • FIG. 16-1 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions.
  • AS etc. show a sample number.
  • AS 0 h 0 hours
  • AS 6 m_4 4 ° C., 6 months
  • AS 1 y 4 4 ° C., 1 year
  • AS 6 m 30 -30 ° C., 6 months
  • AS 1 y 30 -30 ° C., 1 year
  • AS 1 y 80: -80 ° C, 1 year AS 1 y 80: -80 ° C, 1 year.
  • FIG. 16-2 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions.
  • FIG. 16-3 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions.
  • FIG. 16-4 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions.
  • FIG. 17-1 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions.
  • AP etc. show a sample number.
  • FIG. 17-2 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions.
  • FIG. 17-3 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions.
  • FIG. 17-4 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions.
  • FIG. 18 shows the results of selection of quality evaluation markers in serum and each time until centrifugation by SRM / MRM quantitative analysis.
  • LS etc. show a sample number.
  • LS_CT10 After 10 minutes
  • LS_CT30 30 minutes
  • LS_CT2h After 2 hours
  • LS_CT6h After 6 hours.
  • the present invention is a method for evaluating the quality of an isolated biological sample, wherein a peptide derived from a specific protein produced by treating the sample with an enzyme is used as an indicator of quality evaluation.
  • the method more specifically, the presence of the variable peptide and the stable peptide, wherein the peptide is a variable peptide and a stable peptide among peptides derived from the same specific protein in the enzyme-treated sample It relates to the method, wherein the ratio is an index of quality assessment.
  • assessing the quality of a biological sample means a method of examining whether the quality of a biological sample has been degraded and evaluating whether it can be used with confidence. Do. Quality assessment is very important in that it prevents misdiagnosis caused by test results using specimens with degraded quality.
  • quality of the biological sample refers to the property of the biological sample that the sample is available or not available for the purpose of use of the biological sample.
  • the purpose of use of biological samples is, for example, early diagnosis of various diseases, understanding of pathological conditions, and determination of treatment guidelines by analysis such as genome analysis, transcriptome analysis, proteome analysis, peptidome analysis, metabolomic analysis, etc. is there.
  • biological sample refers to blood, serum, plasma, urine, tissue, saliva, lymph fluid, tissue fluid (inter-tissue fluid, obtained from humans or animals such as pets and livestock). It means a specimen of biological origin selected from intercellular fluid, wet and dry fluid) and body cavity fluid (joint fluid, cerebrospinal fluid, serosal fluid, aqueous humor).
  • blood, serum, plasma, urine, tissues, cerebrospinal fluid which are derived from human beings, are currently stored as being stored in a storage organization.
  • blood, serum, plasma, urine, tissue or cerebrospinal fluid is used as a biological sample, blood is more preferred, and its liquid component, serum or plasma is more preferred. Conventional known methods can be used as methods for preparing serum and plasma.
  • isolated is synonymous with being conserved and is meant to distinguish it from a sample in a living organism.
  • Biobank Japan Minato Ward, Tokyo
  • National Center Biobank Network Shinjuku Ward, Tokyo
  • preservation organizations such as Toyama 1-21-1), but it is not limited to these organizations.
  • the present invention can be applied to any sample such as a biological sample stored in a hospital, a clinic, a laboratory, or the like.
  • enzyme treatment refers to digesting a protein into peptide fragments using an enzyme, which includes, for example, sequence specific proteases, etc. be able to.
  • sequence-specific protease refers to a protease that cleaves a specific peptide bond, and examples thereof include trypsin, pepsin, chymotrypsin, glutamyl endopeptidase, lysyl endopeptidase and the like.
  • the enzyme treatment of the present invention is preferably performed by trypsin or a combination of trypsin and lysyl endopeptidase.
  • a peptide derived from a specific protein means a peptide produced by digesting a protein with an enzyme.
  • the phrase "peptide as an indicator for quality evaluation” means that the type of peptide body, its abundance, and if there are multiple types of peptides, the abundance ratio as an indicator for quality assessment. And “to make the abundance ratio of the variable peptide and the stable peptide an index of quality evaluation” described later.
  • the type of peptide body, its abundance, and the abundance ratio of multiple peptides can be confirmed, for example, by measuring the amount of change qualitatively and / or quantitatively for the peptide by mass spectrometry. Moreover, these can also be confirmed by ELISA using an antibody.
  • variable and stable peptides derived from the same specific protein are, among the peptides derived from the same specific protein, quantitative and / or quality depending on factors affecting the quality. Refers to peptides that cause a change and peptides that do not change, the said quantitative and / or qualitative changes being confirmed by measuring the peptide qualitatively and quantitatively, for example by mass spectrometry. Also, quantitative and / or qualitative changes may be confirmed by ELISA using antibodies.
  • the variable peptide and the stable peptide derived from the same specific protein are selected from the group of digested peptides obtained by enzymatic treatment of a biological sample.
  • variable peptide and a stable peptide derived from the same specific protein can also mean a combination of an individual stable peptide and a variable peptide, when there are a plurality of variable peptides and stable peptides respectively, It can mean the combination as a set of each of the peptide and the plurality of variable peptides. It will be clear to the person skilled in the art which of the two is meant, depending on the situation considered.
  • the abundance ratio of the variable peptide and the stable peptide means the ratio of the variable peptide to the stable peptide in the variable peptide and the stable peptide derived from the same specific protein, that is, the amount of the variable peptide / stable It means the amount of peptide.
  • the abundance ratio can be confirmed, for example, by measuring the amount of change qualitatively and / or quantitatively for the peptide by mass spectrometry. Moreover, these can also be confirmed by ELISA using an antibody. In practice, since the combination of individual stable peptides and variable peptides is complicated and inefficient when compared individually, the average value of the stable peptide of each protein can be compared with the average value of the variable peptides.
  • the threshold value of the abundance ratio for judging that the quality of the biological sample is not deteriorated, ie, the quality is guaranteed, varies depending on the combination of the variable peptide and the stable peptide, ie, the quality evaluation marker. If the abundance ratio of the fluctuating peptide to the stable peptide (amount of fluctuating peptide: amount of stable peptide) is within the threshold, the quality of the biological sample is evaluated as not deteriorating, and if it is outside the threshold , It can be evaluated that the quality has deteriorated.
  • the threshold of the abundance ratio in which the quality has not deteriorated in the quality evaluation marker is, for example, 0.77: 1 to 1.3: 1 (amount of variable peptide: amount of stable peptide), and if it falls within this threshold, It can be evaluated that the quality of the sample has not deteriorated.
  • a "quality assessment marker” is a peptide that combines one or more variable peptides and one or more stable peptides, and is a marker used to evaluate the quality of a biological sample.
  • a “quality assessment marker” is a peptide that combines one or more variable peptides and one or more stable peptides, and is a marker used to evaluate the quality of a biological sample.
  • combinations of variable and stable peptides shown in parallel to the tables described herein.
  • analysis of the peptide includes selected reaction monitoring (SRM).
  • SRM selected reaction monitoring
  • the SRM / MRM method using a mass spectrometer can simultaneously quantify hundreds of different peptides, for example, it is possible to quantify all of the variable and stable peptides shown in parallel in the table herein at one time. .
  • the ratio is calculated using the combination of the variable peptide and the stable peptide in the same quantified protein, the closer the value is to 1, it can be inferred that the protein is more stable.
  • variable peptide and the stable peptide as an index for quality evaluation.
  • those quality evaluation marker peptides are quantified all at once by the SRM / MRM method, and the abundance ratio of the variable peptide and the stable peptide is calculated.
  • the number of combinations of quality evaluation markers whose ratio is between, for example, 0.77 and 1 the quality of the sample is evaluated to be better (preserved state is better).
  • the quality of the sample is evaluated as good. Conversely, the more the number of combinations whose ratio is less than 0.77, the worse the quality of the sample (for example, the storage quality is poor), for example, in the case of 30 out of 50, preferably 50 to 40, more preferably 50 to 45 Evaluate).
  • the present invention is a method of selecting a peptide derived from a protein present in a sample capable of evaluating the quality of a biological sample being isolated, which is quantitative according to factors affecting the quality. And / or provide methods for identifying unstable peptides that cause qualitative changes and stable peptides that do not cause changes.
  • factors affecting quality include storage conditions such as storage temperature and duration, and time until centrifugation.
  • “To cause a quantitative and / or qualitative change” means to change quantitatively and / or qualitatively, and to decrease or increase the quantitative value.
  • Does not cause quantitative and / or qualitative change means that the quantitative value is constant or nearly constant without changing quantitatively and / or qualitatively.
  • Unstable peptides are referred to as "variable peptides" in the present invention.
  • the stable peptide is a peptide selected from the group of peptides derived from the same protein as the protein from which the specific unstable peptide is derived, and a peptide that does not undergo quantitative and / or qualitative changes under storage conditions and the like. It is.
  • Stable peptides are referred to as “stable peptides" in the present invention.
  • the quantitative value of a certain peptide in serum stored in the biobank is lower than the average value of healthy people, the quantitative value at the start of storage is unknown, so the quantitative value decreases during storage It is not possible to distinguish if the subject who collected the sample had a value lower than the average value of the healthy subject.
  • a stable peptide is used as a control, it can be distinguished whether the decrease in the quantitative value is the effect of storage or individual differences among subjects. Because the quantitative value of the stable peptide should not change before and after storage, it reflects the state before storage.
  • Each combination of variable and stable peptides according to the invention is composed of peptides derived from the same specific protein.
  • the quality of the biological sample can be evaluated without being affected by individual differences in the protein in the biological sample.
  • factor affecting quality refers to a factor that causes a change in the amount and / or quality of the sample, and can include, for example, storage conditions of the sample.
  • the storage conditions of the sample include, for example, storage temperature of the sample, storage period, time from collection of sample for storage of sample such as centrifugation to preparation, number of times of freezing and thawing of sample, and the like.
  • the storage temperature of the specimen for example, room temperature (20 to 30 ° C.), refrigeration (0 to 10 ° C.), freezing (-20 to 40 ° C.), ultra low temperature (-60 to -90 ° C.), liquid nitrogen etc. may be mentioned.
  • the storage period is, for example, 0 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 40 minutes, 60 minutes, 60 minutes, 90 minutes, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12 hours, 24 hours. Hours, 2 days, 4 days, 7 days, 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 4 months, 6 months, 6 months, 12 months, 18 months, 24 months, 30 months , 36 months, etc.
  • the time from sample collection to preparation for sample storage is 0 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 30 minutes, 40 minutes, 60 minutes, 90 minutes, 90 minutes, 2 hours, 3 hours, 4 hours, 6 hours , 8 hours, 12 hours, 24 hours, etc. can be mentioned.
  • As the number of times of freezing and thawing of the sample for example, 0 times, 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, 8 times, 10 times and the like can be mentioned.
  • the method for detecting and quantifying the quantitative and / or qualitative change of the peptide may be any method capable of specifically detecting the variable peptide and the stable peptide, and may include, for example, mass spectrometry.
  • mass spectrometry a peptide sample is converted to a gaseous ion (ionization) using an ion source, and in the analysis unit, the peptide sample is ionized by moving in vacuum and using electromagnetic force, or ionized according to the time of flight difference.
  • a separation method such as an ion cyclotron resonance type can be appropriately selected.
  • tandem mass spectrometry combining two or more mass spectrometry methods and triple quadrupole mass spectrometry can be used.
  • the sample when the sample is a sample containing a phosphorylated peptide, the sample can be concentrated using iron ion-immobilized affinity chromatography (Fe-IMAC) prior to sample introduction into the mass spectrometer.
  • Fe-IMAC iron ion-immobilized affinity chromatography
  • the variable peptide and the stable peptide according to the present invention can be separated and purified by liquid chromatography (LC) or HPLC to obtain a sample.
  • the detection unit and the data processing method can be selected appropriately.
  • the stable isotope labeled peptide is a stable isotope labeled peptide in which one or more of the amino acids in the variable peptide and the stable peptide according to the present invention contains any one or more of 15N, 13C, 18O, and 2H.
  • the type, position, number, etc. of amino acids can be appropriately selected, and the stable isotope-labeled peptide can be selected from the F-moc method (Amblard., Et al. Methods Mol Biol. Using an amino acid labeled with a stable isotope).
  • mass spectrometry that detects and quantitates quantitative and / or qualitative changes in peptides is SRM / MRM using stable isotope-labeled synthetic peptides.
  • Selected reaction monitoring is a quantitative analysis method using a triple quadrupole mass spectrometer and uses an analysis system coupled to a liquid chromatograph. When multiple molecules are targeted for measurement, it is called multiple reaction monitoring (MRM).
  • Mass spectrometry combining selective reaction monitoring (SRM) and multiple reaction monitoring (MRM) has high quantitativity and selectivity, and can quantify the target protein in the sample.
  • mass spectrometry for detecting and quantifying quantitative and / or qualitative changes in a peptide is an analytical method using an isotope tag or an isobaric tag.
  • isotope tags include dimethyl labeling reagent, ICAT (registered trademark) reagent, ICPL (registered trademark) reagent, NBS (registered trademark) reagent and the like
  • isobaric tags include TMT reagent (registered trademark) And iTRAQ (registered trademark) reagent etc. can be mentioned.
  • Peptides derived from proteins in serum and plasma can be comprehensively analyzed by analytical methods using isotope tags or isobaric tags.
  • the analysis method is a candidate for a combination of a variable peptide and a stable peptide (quality evaluation marker) which can be used for quality evaluation of a biological specimen that satisfies a certain standard.
  • the combination of the selected variable peptide and the stable peptide can be used to further narrow down the quality evaluation markers by verifying whether the combination of the selected variable peptides and stable peptides can be further used for the quality evaluation of biological samples by the above-mentioned SRM / MRM method.
  • the method for detecting and quantifying the quantitative and / or qualitative change of a peptide may include a pretreatment step of obtaining the peptide from a biological sample prior to mass spectrometry.
  • a pretreatment step of obtaining the peptide from a biological sample prior to mass spectrometry for example, protein extraction from a biological sample, digestion of a protein into a peptide with an enzyme or the like, desalting / concentration of a peptide, etc. can be mentioned.
  • the present invention provides, in one aspect, a method of screening for peptides derived from proteins present in a sample, which can assess the quality of the biological sample being isolated.
  • the method is 1) collecting a biological sample from an animal including human; 2) loading a factor that affects the quality of the collected biological sample, 3) treating the sample loaded with the factor with an enzyme to divide proteins present in the sample into peptides, 4) identifying, among the obtained peptides, peptides that cause quantitative and / or qualitative changes due to factors affecting quality and those that do not cause changes as variable peptides and stable peptides, respectively; 5) identifying a combination of one or more variable peptides derived from the same specific protein and one or more stable peptides; 6) using the identified combination as a quality evaluation marker of a biological sample, or 6 ′)
  • a step of making at least one of the specified combinations a quality evaluation marker of a biological sample may be included.
  • 1) collecting a biological sample from an animal including human comprises collecting a biological sample selected from blood, serum, plasma, urine and tissue.
  • Animals, including humans include humans as well as companion animals such as dogs and cats and livestock such as cows and pigs.
  • it is a human being, preferably a healthy human being.
  • the biological sample is serum or plasma.
  • the step of loading the collected biological sample with a factor affecting its quality is the above-mentioned time from blood collection to centrifugation, storage as a factor affecting the quality It may include temperature, storage period and number of freeze-thaw cycles.
  • treating the factor-loaded sample with an enzyme and dividing the protein present in the sample into peptides comprises enzymatic treatment with trypsin or a combination of trypsin and lysyl endopeptidase
  • the enzyme treatment is with trypsin.
  • a peptide that causes a quantitative and / or qualitative change depending on factors affecting quality and a peptide that does not cause a change respectively, a variable peptide and a stable peptide
  • identifying the combination of one or more variable peptides derived from the same specific protein and one or more stable peptides is an isotopic tag or isobaric described herein. It may include mass spectrometry using tags and SRM / MRM identification using synthetic peptides with stable isotope labels.
  • the step of identifying the variable peptide and the stable peptide performs comprehensive analysis (shotgun quantitative proteomics) of the peptide using TMT labeling or dimethyl labeling, and the variable peptide and the stable peptide are determined based on certain criteria. It may involve selecting peptide candidates, followed by selection of variable peptides and stable peptide candidates suitable for target proteomics (SRM / MRM analysis), and further performing SRM / MRM analysis using stable isotope-labeled peptides.
  • comprehensive analysis shotgun quantitative proteomics
  • Selection criteria for peptides of variation peptide candidates from shotgun quantitative proteomics results include meeting one or more of the following: (1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage); (2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects; (3) The quantitative value fluctuates as time passes.
  • the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more.
  • the criteria may include meeting one or more of the following: (1) a peptide having a sequence unique to a protein; (2) Does not contain a cleavage error by trypsin; (3) Among the same proteins, shotgun quantitative proteomics has identified peptides with less variation (stable peptides).
  • the criteria it is also optional to add the criteria "it does not contain the amino acid (methionine) containing the unsuitable modification in quantification ;;" between the above-mentioned criteria (1) and (2).
  • the specified combination, or 6 ') at least one of the specified combinations is a quality evaluation marker of a biological sample
  • the step of validating a marker candidate by SRM / MRM analysis May be included.
  • the step of setting it as the quality evaluation marker is a step of SRM / MRM analyzing the variable peptide and the stable peptide candidate selected in step 5) above and setting a peptide meeting certain criteria as the quality evaluation marker. obtain.
  • Selection criteria of the variable peptide in the quality evaluation marker by SRM / MRM analysis include satisfying any one or more of the following: (1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage); (2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects. In a preferred embodiment, the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more.
  • the quality evaluation markers of the biological specimen obtained as described above are, for example, the quality evaluation markers shown in the table herein as the variable peptide and the stable peptide derived from the same specific protein. And at least one combination of
  • the present invention provides, in one aspect, a method of producing a quality assessment marker for a biological sample that has been isolated.
  • the method is 1) collecting a biological sample from an animal including human; 2) loading a factor that affects the quality of the collected biological sample, 3) treating the sample loaded with the factor with an enzyme to divide proteins present in the sample into peptides, 4) identifying, among the obtained peptides, peptides that cause quantitative and / or qualitative changes depending on factors affecting quality, and peptides that do not cause changes; 5) It may include the step of using the identified peptide as a quality evaluation marker of a biological sample.
  • 1) collecting a biological sample from an animal including human comprises collecting a biological sample selected from blood, serum, plasma, urine and tissue.
  • Animals, including humans include humans as well as companion animals such as dogs and cats and livestock such as cows and pigs.
  • it is a human being, preferably a healthy human being.
  • the biological samples are serum and plasma.
  • the step of loading the collected biological sample with a factor affecting its quality is the above-mentioned time from blood collection to centrifugation, storage as a factor affecting the quality It may include temperature, storage period and number of freeze-thaw cycles.
  • treating the factor-loaded sample with an enzyme and dividing the protein present in the sample into peptides comprises enzymatic treatment with trypsin or a combination of trypsin and lysyl endopeptidase
  • the enzyme treatment is with trypsin.
  • the step of identifying can comprise mass spectrometry using isotopic or isobaric tags as described herein and identification by SRM / MRM using synthetic peptides with stable isotope labels.
  • the step of identifying as a variable peptide and a stable peptide performs comprehensive analysis (shotgun quantitative proteomics) of the peptide using TMT labeling or dimethyl labeling, and based on certain criteria, the variable peptide and the stable peptide are stable. It may involve selecting peptide candidates, followed by selection of variable peptides and stable peptide candidates suitable for target proteomics (SRM / MRM analysis), and further performing SRM / MRM analysis using stable isotope-labeled peptides.
  • Selection criteria for peptides of variation peptide candidates from shotgun quantitative proteomics results include meeting one or more of the following: (1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage); (2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects; (3) The quantitative value fluctuates as time passes.
  • the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more.
  • the criteria may include meeting one or more of the following: (1) a peptide having a sequence unique to a protein; (2) Does not contain a cleavage error by trypsin; (3) Among the same proteins, shotgun quantitative proteomics has identified peptides with less variation (stable peptides).
  • the criteria it is also optional to add the criteria "it does not contain the amino acid (methionine) containing the unsuitable modification in quantification ;;" between the above-mentioned criteria (1) and (2).
  • the step of using the identified peptide as a quality evaluation marker of a biological sample may include verification of a marker candidate by SRM / MRM analysis.
  • the step of setting it as the quality evaluation marker is a step of SRM / MRM analyzing the variable peptide and the stable peptide candidate selected in step 5) above and setting a peptide meeting certain criteria as the quality evaluation marker. obtain.
  • Selection criteria of the variable peptide in the quality evaluation marker by SRM / MRM analysis include satisfying any one or more of the following: (1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage); (2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects. In a preferred embodiment, the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more. In SRM / MRM analysis performed on a partially narrowed peptide group that is shotgun quantitative proteomics, peptides can be widely selected by setting the quantitative value fluctuation to 1.3 times or more.
  • the quality assessment markers of biological specimens produced as described above are shown, for example, as variable peptides and stable peptides derived from the same specific protein in parallel in the table herein. And at least one combination of quality assessment markers.
  • the quality evaluation marker of the present invention includes other quality evaluation markers manufactured by the variation of the conditions described in the above-mentioned respective steps, and is not limited to the quality evaluation markers described in the table in the present specification. It is.
  • the present invention is a variable peptide and stable peptide derived from the same specific protein shown in the table herein as a quality evaluation marker capable of evaluating the quality of the biological specimen being isolated.
  • a quality assessment marker that can be used to assess the quality of the biological specimen being isolated, in combination and at least one combination of variable peptide and stable peptide from the same specific protein shown in parallel in the table herein
  • the present invention also provides, in one embodiment, an isolated biological comprising a variable peptide and a stable peptide derived from the same specific protein as shown in the Table herein, including stable isotopes.
  • kits are a combination of variable and stable peptides, ie, stable isotope labeled peptides corresponding to quality assessment markers, as well as separate protein solubilization reagents and protein digestion reagents, enzyme treatment reagents, etc. Or in a single container.
  • the kit may also be equipped with instructions for assessing the quality of the biological sample.
  • the kit of the present invention comprises a stable isotope labeled peptide of a quality assessment marker, which stable isotopically labeled peptide detects quantitative and / or qualitative changes in the peptide as described herein. It may be a peptide suitable for mass spectrometry to be quantified.
  • the present inventors In order to select and produce quality evaluation markers, the present inventors first changed the time to centrifugation of serum and plasma of 4 healthy persons, storage temperature and duration, and the number of freeze-thaw cycles to Identification of the unstable peptide to be received was performed using shotgun quantitative proteomics. Time to centrifugation is 15 minutes to 6 hours, Storage temperature and duration are room temperature, 4 ° C, -30 ° C, -80 ° C, several hours to 6 months with liquid nitrogen, freeze / thaw 1 to 5 times The effects of centrifugation conditions, storage conditions and freeze-thaw conditions were examined up to the number of times.
  • Serum and plasma were collected from 4 healthy persons and collected under various storage conditions (storage temperature, storage period, time from blood collection to centrifugation, number of freeze-thaw cycles).
  • the serum and plasma samples were searched for candidate peptides for quality evaluation markers by two types of shotgun quantitative proteomics, and among the peptides that varied the marker candidate peptides for storage temperature and period and for each time from blood collection to centrifugation, Selected.
  • verification experiments by target proteomics SRM / MRM method using stable isotope-labeled peptides
  • SRM / MRM method using stable isotope-labeled peptides are performed for selected marker candidate peptides, and the identified marker candidate peptides are certainly varied among the storage conditions of the sample. It was confirmed that it was or was stable.
  • the outline of the analysis which identified the quality evaluation marker is shown in FIG.
  • Example 1 Shotgun quantitative proteomics of serum and plasma samples 1
  • Example 1.1 Recovery Conditions of Serum and Plasma Specimens and Protein Extraction and Digestion from the Specimens Blood for four healthy subjects is collected, separated as serum and plasma respectively, and specimens are collected for each condition of storage temperature and storage period did. In addition, samples separated by time until centrifugation after blood collection are also collected. The sample recovery conditions are shown in Table 2.
  • Protein extraction and digestion from serum and plasma samples Protein extraction from serum and plasma samples stored under each condition and digestion to peptide fragments with digestive enzymes were performed by phase transfer extraction (PTS method: Phase transfer surfactant) (Ref. 4). The procedure is shown below. After dissolving each sample with MPEX PTS reagent (GL Science, Tokyo, Japan), incubate at 95 ° C for 10 minutes, add dithiothreitol to a final concentration of 5 mM or TCEP to a final concentration of 33.3 mM, and perform a reduction reaction for 30 minutes Further, iodoacetamide was added to a final concentration of 20 mM or 53 mM to carry out the alkylation reaction.
  • PTS method Phase transfer surfactant
  • Example 1.2 Shotgun comparative quantitative analysis using TMT labeling of digested peptides
  • the digested peptides prepared in Example 1.1 were stable isotope labeled with Tandem Mass Tag (TMT) reagent (Thermo Scientific, Bremen, Germany) After that, 7 fractions were performed with a C18-SCX StageTip column (Reference 6). Thereafter, each fraction was subjected to shotgun quantitative proteome analysis by LC-MS / MS.
  • TMT Tandem Mass Tag
  • Mass spectrometer Q-Exactive mass spectrometer (Thermo Scientific, Bremen, Germany), liquid chromatography: UltiMate 3000 Nano-flow high-performance LC (HPLC) system (Dionex, Sunnyvale, CA), autosampler: HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland). Further, for the introduction of the sample into the mass spectrometer, a self-made analytical column in which a C18-AQ resin of 1.9 ⁇ m was sealed in a needle with an inner diameter of 75 ⁇ m and a length of 300 mm was used.
  • the mobile phase of LC was constituted by mobile phase A (0.1% formic acid and 2% acetonitrile) and mobile phase B (0.1% formic acid and 90% acetonitrile).
  • the sample is dissolved in buffer A and loaded on a trap column (0.075 x 20 mm, Acclaim PepMap RSLC Nano-Trap Column; Thermo Scientific), then the mobile phase is 5-35 in 120 minutes at a flow rate of 280 nL / min of LC. Unfolded with a slope of% B.
  • the conditions for measurement of Full MS by Q-Exactive were as follows. Scan range: 350-1800 m / z, resolution: 70000, ion integration: 3 ⁇ 10 6 .
  • the MS / MS measurement conditions were as follows.
  • Example 1.3 Shotgun Comparative Quantitative Analysis of Digested Peptide Using Dimethyl Labeling The digested peptide of each sample prepared in Example 1.1 is divided into two, one of which is a stable isotope labeled dimethylation reagent (DM-H). The other was labeled with unlabeled dimethylating reagent (DM-L) (Ref. 7).
  • the reagents for dimethyl labeling used were formaldehyde P / N 252549 (Sigma Aldrich, St.
  • the configuration of the LC-MS / MS apparatus was as follows. Mass spectrometer: LTQ-Orbitrap Discoverer (Thermo Scientific), liquid chromatography: Nanospace SI-2 system (Shiseido, Tokyo). Further, for the introduction of the sample into the mass spectrometer, a capsule pack C18 MGIII-H column (Shiseido) with an inner diameter of 2.0 mm and a length of 50 mm was used.
  • the mobile phase of LC was constituted by mobile phase A (0.01% formic acid) and mobile phase B (0.01% formic acid and 90% acetonitrile). The samples were developed at a mobile phase flow rate of 200 ⁇ L / min, with a gradient of 0-27% (70 minutes), 27-55% (14 minutes).
  • the conditions for Full MS measurement by LTQ-Orbitrap Discoverer were as follows. Scan range: 400-2000 m / z, resolution: 30000, ion integration 5 x 105.
  • the MS / MS measurement conditions were as follows. Top 5 precursor ion, maximum ion time: 200 ms, ion integration: 105, ion selection threshold: 103, separation width: 2 Da.
  • Identification analysis of the measured RAW data file was performed by SEQUEST Search (Thermo Scientific) on Proteome Discoverer V3.1 (Thermo Scientific), and the database used UniProt human protein database. The threshold value of the identified protein was set to a precursor mass error range of 3 ppm and a fragment ion mass error range of 0.8 Da.
  • Identification proteins and peptides were determined with a Proteome Discoverer standard setting with a percent positive rate (FDR) of less than 1%.
  • the comparison analysis for the Full MS spectrum used LC-MS analysis software Skyline Ver. 3.6 (MacCoss Lab.). Comparative analysis by XIC (extracted-ion chromatogram) was performed using a peptide library identified by repeating similar measurement in advance.
  • peptides serving as marker candidates were selected. Among the total quantification peptides, those whose relative quantitative value with the control (0 hour) sample fluctuates 1.5 times or more for each condition are regarded as the peptide that has changed, and the change is common to 3 out of 4 people The candidate peptides were identified as Furthermore, peptides with inconsistent changes in the amount of peptide over time were excluded from candidates. These candidate peptides were selected for each serum and plasma, and were also selected for each condition of storage temperature and period and time after blood collection and centrifugation. The candidate marker that satisfies these conditions was 738 peptide (196 protein).
  • Example 2 LC-SRM / MRM Analysis
  • SRM / MRM analysis was performed according to the method previously reported (Ref. 8).
  • a peptide stabilized by PTS method is dissolved in a 2% acetonitrile solution containing 0.1% trifluoroacetic acid (TFA), and a synthetic stable isotope labeled peptide having the same sequence as the target peptide as an internal standard (SpikeTide L; JPT Peptide Technologies , Berlin, Germany). It was then analyzed using a triple quadrupole mass spectrometer coupled with nanoflow LC.
  • the configuration of the device was as follows.
  • Triple quadrupole mass spectrometer TSQ-Vantage (Thermo Fisher Scientific, Bremen, Germany), Nanoflow LC: Paradigm MS2 (Michrom BioResources, Auburn, CA), Autosampler: HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland) .
  • the sample was introduced into a mass spectrometer using a self-made analytical column in which a 1.9 ⁇ m C18-AQ resin was sealed on a needle with an inner diameter of 75 ⁇ m and a length of 100 mm.
  • the mobile phase of LC consisted of buffer A (0.1% formic acid and 2% acetonitrile) and B (0.1% formic acid and 90% acetonitrile).
  • the mobile phase is 5 to 45 min at a flow rate of 280 nL / min of LC. It was developed with a 35% B gradient.
  • the analysis in the SRM mode was performed under the following conditions. Q1 Peak Width: 0.7 FWHM, Cycle time: 1 sec, Collision Gass Pressure: 1.8 mTorr. The collision energy was optimized for each SRM transition, and the intensity of each transition was measured in schedule mode with a peak duration of 5 minutes.
  • SRM / MRM Target Peptide and Transition Evaluation As a target peptide of a biomarker candidate protein, peptides having a sequence suitable for SRM / MRM analysis were selected from peptides identified by shotgun proteomics. The criteria for selection were as follows. (1) A sequence unique to a protein (2) An amino acid (methionine) containing an inappropriate modification for quantification (methionine) is not included (3) A miss by cleavage with trypsin is not included.
  • transitions of SRM / MRM measurement of each peptide (combination of m / z of parent ion and daughter ion) were prepared from MS / MS spectrum library of shotgun proteomics using Skyline software (MacCoss Lab) .
  • the measurement transition of the selected peptide is performed by first selecting eight strong transitions per peptide, and performing SRM analysis of the selected peptide on the peptide prepared from the pooled serum, and finally the signal to noise ratio (S / N)
  • the peptide with three or more transitions whose>is> 10 was selected.
  • confirmation of whether or not the selected transition can correctly detect the target peptide can be made by using a stable isotope-labeled peptide (SItable) having the same sequence as the signal of the endogenous target peptide and the target peptide added as an internal standard. It was judged by the similarity of the peak area ratio in the transition with the peptide). This similarity is represented by "dotp" in Skyline software.
  • the SI-peptide was synthesized as isotopically labeled C-terminal Arg13C6; 15N4 or Lys 13C6; 15N2 heavy peptide (SpikeTide L, JPT Peptide Technologies, Berlin, Germany) (crude purity).
  • the quantitative value of target peptide by SRM / MRM was calculated as the peak area ratio (Peak Area Ratio) of the SI-peptide added to each sample as an internal standard and the endogenous target peptide .
  • the RAW data file output as a result of the measurement by the mass spectrometer was analyzed using Skyline software (freeware; MacCoss Lab.) To calculate the peak area detection and the area ratio.
  • variable peptide candidates and stable peptide candidates were identified.
  • those with higher peak intensity for identification were selected.
  • the number of candidate stable and variable peptides selected from these criteria was a total of 356 peptides.
  • results in shotgun quantitative proteome analysis were verified by SRM / MRM method.
  • a stable isotope-labeled peptide having the same sequence as the selected peptide was synthesized, and a synthetic peptide mix was added as an internal standard to serum / plasma samples for four as in shotgun quantitative proteome analysis.
  • SRM / MRM analysis was performed on the samples for each storage condition, and the quantitative value of each sample was compared with the quantitative value of the control sample as in the shotgun quantitative proteome analysis.
  • the criteria for verification of the fluctuation peptide candidate in the SRM / MRM method were 1.3 or more times the fluctuation of the quantitative value, and were common to 3 out of 4 persons. At the same time, it was confirmed that the stable peptide also did not fluctuate in the quantitative value, and in the same protein, a combination of the variable peptide and the stable peptide could be verified as a quality evaluation marker.
  • the marker candidates satisfying these criteria are 14 sets of serum variable peptides as stored at each storage temperature (Table 3-1, Table 3-2 and Table 3-3, and FIGS. 2-1, 2-2). And Figure 2-3), 32 sets of plasma (Table 4-1, Table 4-2, Table 4-3 and Table 4-4 and Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3- 3 4) There was.
  • Example 3 Shotgun quantitative proteomics and SRM / MRM quantitative analysis of serum and plasma samples 2
  • Candidate peptides for quality evaluation markers were selected according substantially to the procedure described in Example 1 except that the recovery conditions in the following table.
  • Example 4 Quality evaluation of biological samples using quality evaluation markers
  • quality evaluation markers In order to evaluate the quality of biological samples such as plasma or serum stored in storage institutions such as Biobank Japan, Table 3-1 to Table 6 and one or more combinations of quality assessment markers listed in Tables 8-1 to 11.
  • the quality evaluation marker peptides described in Tables 3-1 to 6 and Tables 8-1 to 11 are quantified for the obtained plasma or serum samples using SRM / MRM analysis.
  • the combination of the quality evaluation marker of the peptide and the stable peptide is 21 respectively There are 29 types.
  • SRM / MRM analysis is performed on the peptides of these quality evaluation markers all at once, and the ratio of variable peptide to stable peptide is calculated.
  • SRM / MRM analysis is performed on the peptides of these quality evaluation markers all at once, and the ratio of variable peptide to stable peptide is calculated.
  • Example 5 SRM / MRM quantitative analysis of serum samples
  • Candidate peptides for quality evaluation markers were selected substantially according to the procedure described in Example 1 except that recovery conditions in the following table.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 16-1 and 16-2.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 16-1 and 16-2.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 16-3 and 16-4.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 16-3 and 16-4.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 16-3 and 16-4.
  • Example 6 SRM / MRM quantitative analysis of plasma samples
  • Candidate peptides for quality evaluation markers were selected substantially in accordance with the procedure described in Example 1 except that the recovery conditions in the following table.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 17-1 and 17-2.
  • any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide. See Figures 17-1 and 17-2.
  • Example 7 SRM / MRM quantitative analysis of serum samples by time to centrifugation The serum is used according to the procedure substantially as described in Example 1, except that the recovery conditions of the table below are the recovery conditions.
  • Candidate peptides for quality evaluation markers were selected according to time, 10 minutes, 30 minutes, 2 hours and 6 hours.
  • any one of the individual stable peptides can be combined with each individual variable peptide.
  • any of the individual variable peptides can be individually set with each individual stable peptide. It can be put together.
  • any one of the individual stable peptides can be combined with the individual variable peptides. Either can be combined.) ”. This meaning is described, for example, with reference to Table 13-5 below.
  • Table 13-5 means the following nine combinations: Above, the same expressions are interpreted similarly.

Abstract

Provided is an assay method whereby the quality of a stored serum or plasma specimen can be highly accurately and quickly evaluated, said method comprising identifying a protein or peptide marker that can be used for the evaluation and using quantitative proteomics. In this method, which is used for evaluating the quality of an isolated biological specimen, a peptide derived from a specific protein, which is synthesized by treating the specimen with an enzyme, is used as an indicator of the quality evaluation.

Description

生物学的検体の品質評価方法およびそのためのマーカーMethod for evaluating quality of biological sample and marker therefor
 本発明は一般に、保存生物学的検体の品質を評価する分野に関する。詳細には、本発明は、血液試料、血漿試料、血清試料等の、保存生物学的検体がその生物学的評価に耐え得るかの信頼性を評価する方法、その評価に使用されるマーカー、その評価をするためのキットに関する。 The present invention relates generally to the field of evaluating the quality of conserved biological specimens. In particular, the present invention relates to a method for evaluating the reliability of stored biological specimens, such as blood samples, plasma samples, serum samples etc., that can withstand the biological evaluation, markers used for the evaluation, It relates to a kit for making the evaluation.
 オーダーメイド医療を実現するには、数多くの疾患を対象とした検体を体系的に収集し、疾患と遺伝子やタンパク質との関係を網羅的に解析する必要がある。そのために、日本では2003年にバイオバンクジャパン(BBJ:東京都港区白金台4-6-1)が設立された。BBJは、2003年以来、多因子疾患を中心に、51疾患、26万人、42万症例を収集・解析し、世界最大級の疾患バイオバンクを構築してきた。登録症例は、5,837項目のクリーニング済み情報を有し、平均追跡率95%、平均追跡期間約10年に及ぶ生存情報を含む。試料のDNA・血清・組織は、全ゲノムシークエンシング・メタボローム・プロテオーム等のオミックス解析に応用可能な実績を有し、試料配布実績はDNA 約16,000 検体、血清約10,000 検体である。しかしながら、これまでこの世界最大規模のバイオバンク検体が有効に活用されてきたとは言い難い。その理由の一つとして、検体の品質管理、特にDNAに比べて採取・保存の影響を受けやすいタンパク質の品質管理がなされていなかったことがあげられる。 In order to realize personalized medicine, it is necessary to systematically collect specimens for a large number of diseases and comprehensively analyze the relationship between diseases and genes and proteins. To that end, Biobank Japan (BBJ: 4-6-1 Shirokanedai, Minato-ku, Tokyo) was established in 2003 in Japan. Since 2003, BBJ has collected and analyzed 51 diseases, 260,000 people and 420,000 cases, focusing on multifactorial diseases, and has built the world's largest disease biobank. Registered cases have 5,837 items of cleaned information and include 95% average follow-up rate and survival information spanning approximately 10 years of average follow-up. The sample DNA, serum, and tissue have a track record of being applicable to omics analysis such as whole genome sequencing, metabolome, proteome, etc. The sample distribution track record is about 16,000 DNA samples and about 10,000 serum samples. However, it is hard to say that the world's largest biobank specimen has been effectively utilized so far. One of the reasons is that the quality control of samples, in particular, the quality control of proteins that are more susceptible to collection and storage than DNA, has not been performed.
 バイオバンクジャパン等の保存機関に保存されている検体の品質管理のため、その品質を評価するには、採取直後または保存前と、保存後との2者の検体比較が必要である。しかし、バイオバンクジャパン等では、保存後の検体が保管されているのみであり、採取直後の検体は存在し得ない。そのため、保存後の検体のみで品質評価を実施する必要がある。 For quality control of samples stored in storage institutions such as Biobank Japan, in order to evaluate the quality, it is necessary to compare two samples immediately after collection or before storage and after storage. However, in Biobank Japan etc., only samples after storage are stored, and samples immediately after collection can not exist. Therefore, it is necessary to carry out the quality evaluation only on the specimen after storage.
 これまでバイオバンクジャパン等に保存されている生物学的検体中のタンパク質の品質評価の指標やその測定方法については国際標準というものはなく、いくつかの文献が散見されるのみである(特許文献1、非特許文献1~3)。しかし、これらの測定方法は、生物学的検体中のタンパク質の品質評価に十分であるとは言い難い。 There is no international standard for the indicator of quality evaluation of proteins in biological samples that have been stored in Biobank Japan etc. so far, and there is no such thing as an international standard, and only a few documents are seen (patent documents 1, non-patent documents 1 to 3). However, these measurement methods can not be said to be sufficient for the quality evaluation of proteins in biological samples.
特表2017-512996公報Special table 2017-512996
 従って、バイオバンクジャパン等に保存されている検体の品質評価を実施するための、信頼性ある新たな指標が必要である。そこで本発明者らは、保存されている血清・血漿検体の品質評価マーカーの開発と測定法の確立を最先端のプロテオミクス技術を用いて行った。保存されている血液、血清、血漿検体の品質に影響を及ぼす要因として、採血から遠心分離までの時間、保存の時間および温度の保存条件や凍結融解の回数などが考えられるが、それらの影響を評価できるタンパク質・ペプチドマーカーを同定し、定量プロテオミクスを用いて、高精度かつ迅速に評価できる測定法の確立を目指した。 Therefore, there is a need for a reliable new indicator for conducting the quality evaluation of samples stored in Biobank Japan and the like. Therefore, the present inventors have developed leading-edge proteomics technology to establish a method for developing and measuring a quality evaluation marker for stored serum and plasma samples. Factors that affect the quality of stored blood, serum, and plasma samples include the time from blood collection to centrifugation, storage time and storage conditions for temperature, and the number of freeze-thaw cycles, etc. We identified protein and peptide markers that can be evaluated, and used quantitative proteomics to establish a measurement method that can be evaluated with high accuracy and speed.
 上記の通り、バイオバンクジャパン等では、採取直後の検体が存在しないため、保存後の検体のみで品質評価を実施する必要がある。そして、保存後の検体のみでその品質を評価する場合、検体におけるある指標の差異が保存条件や遠心分離までの時間等により生じたのか、あるいは個体差により生じたのか等の解釈が問題となっている。
 即ち、元来、血液中のタンパク質の量は個体差があるため、保存検体の品質評価のために検体におけるタンパク質の量的変化を指標にした場合、それが品質劣化によるものか、それとも個体差、即ち個体間変動、個体内変動によるものかの区別がつかない。そこで、本発明者らは、タンパク質を酵素処理して生成されるペプチドの中に、保存条件等の影響を受けて量的・質的変化を起こす不安定なものと、まったく影響を受けない安定なものが存在することを見出し、それらペプチドの量的変化に着目した。ここに、本発明者らは初めて、検体において安定である安定ペプチドと不安定である変動ペプチドの比を取ることによって、検体の品質評価が可能であることを見出し、本発明を完成した。
As described above, in Biobank Japan etc., since there is no sample immediately after collection, it is necessary to carry out the quality evaluation only with the sample after storage. And, when evaluating the quality of the sample only after storage, it is a problem to interpret whether the difference in a certain index in the sample is caused by the storage condition, the time until centrifugation, etc., or it is caused by the individual difference, etc. ing.
That is, originally, the amount of protein in the blood is different among individuals, so if quantitative change of protein in the sample is used as an indicator for quality evaluation of stored samples, is it due to quality deterioration or individual difference? That is, it can not be distinguished between inter-individual variation and intra-individual variation. Therefore, the present inventors have found that some of the peptides produced by enzymatic treatment of proteins are unstable ones that cause quantitative and qualitative changes under the influence of storage conditions etc. We found that there was something, and focused on the quantitative change of these peptides. Here, for the first time, the present inventors have found that it is possible to evaluate the quality of a sample by taking the ratio of a stable peptide that is stable in the sample and a variable peptide that is unstable in the sample, and completed the present invention.
 したがって、本発明は、以下の態様を含む。
<バイオバンク等から入手される保存検体の品質を評価する方法>
[1]
 単離されている生物学的検体の品質を評価するための方法であって、該検体を酵素で処理することによって生成される特定タンパク質由来のペプチドを品質評価の指標とする、該方法。
[2]
 ペプチドが、酵素処理済み検体における同一の特定タンパク質由来のペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こす変動ペプチド、および変化を起こさない安定ペプチドである、[1]記載の方法。「同一の特定タンパク質由来の変動ペプチドおよび安定ペプチド」は、変動ペプチドおよび安定ペプチドがそれぞれ複数存在する場合、個々の安定ペプチドと変動ペプチドの組み合わせを意味することもでき、また、複数の安定ペプチドと複数の変動ペプチドのそれぞれの集合としての組み合わせを意味することができる。
Therefore, the present invention includes the following aspects.
<Method for evaluating the quality of stored samples obtained from Biobank etc.>
[1]
A method for evaluating the quality of a biological sample that has been isolated, wherein a peptide derived from a specific protein produced by treating the sample with an enzyme is used as an index for quality evaluation.
[2]
Among the peptides derived from the same specific protein in the enzyme-treated sample, the peptides are variable peptides that cause quantitative and / or qualitative changes due to factors affecting quality, and stable peptides that do not cause changes [, 1] The method described. The “variable peptide and stable peptide derived from the same specific protein” can also mean a combination of an individual stable peptide and a variable peptide when there are a plurality of variable peptides and stable peptides, respectively, and It can mean the combination as a set of each of a plurality of variable peptides.
[3]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの存在比率を品質評価の指標とする、[1]または[2]記載の方法。
[4]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの存在比率を、同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドのそれぞれの平均を用いて算出する、[1]~[3]のいずれか記載の方法。「同一の特定タンパク質由来の変動ペプチドおよび安定ペプチド」がそれぞれ複数存在する場合、複数の安定ペプチドと複数の変動ペプチドそれぞれの集合としての平均を算出する意味である。また、「同一の特定タンパク質由来の変動ペプチドおよび安定ペプチド」の一方が1つであり、他方が複数存在する場合、一方の1つの値と他方の複数の値の平均値を算出する場合も含む。
[5]
 酵素処理をトリプシンによって行う、[1]~[4]のいずれか記載の方法。
[6]
 生物学的検体が血液、血清、血漿、尿、組織、脳脊髄液のなかから選ばれる、[1]~[5]のいずれか記載の方法。
[3]
The method according to [1] or [2], wherein the abundance ratio of the variable peptide and the stable peptide derived from the same specific protein is used as an index for quality evaluation.
[4]
The method according to any one of [1] to [3], wherein the abundance ratio of the variable peptide and the stable peptide derived from the same specific protein is calculated using the respective averages of the variable peptide and the stable peptide derived from the same specific protein . When there are a plurality of “the same variable protein and a plurality of variable peptides derived from a specific protein”, it means that the average of the plurality of stable peptides and the plurality of variable peptides as a set is calculated. In addition, when one of “the same variation protein and stable peptide derived from the specific protein” is one and the other is present in a plurality, it also includes the case of calculating the average value of one value of one and the plurality of other values. .
[5]
The method according to any one of [1] to [4], wherein the enzyme treatment is performed by trypsin.
[6]
The method according to any one of [1] to [5], wherein the biological sample is selected from blood, serum, plasma, urine, tissue and cerebrospinal fluid.
[7]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、以下の表に示される品質評価マーカーである、[1]~[6]のいずれか記載の方法:
 本明細書に記載の表3-1、表3-2、表3-3、表4-1、表4-2、表4-3、表4-4、表5、表6、表8-1、表8-2、表8-3、表8-4、表8-5、表8-6、表8-7、表9-1、表9-2、表9-3、表9-4、表9-5、表9-6、表9-7、表10、および表11。同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドは上記の表に示される同一の特定タンパク質由来の品質評価マーカーのいずれであってもよく、また表に示される同一の特定タンパク質由来の品質評価マーカーのすべてであってもよい。
[8]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表に並列して示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、[7]記載の方法。
[7]
The method according to any one of [1] to [6], wherein the variable peptide and the stable peptide derived from the same specific protein are quality evaluation markers shown in the following table:
Table 3-1, Table 3-2, Table 3-3, Table 4-1, Table 4-2, Table 4-2, Table 4-3, Table 4-4, Table 5, Table 6, Table 8- described in the present specification. 1, Table 8-2, Table 8-3, Table 8-4, Table 8-5, Table 8-6, Table 8-7, Table 9-1, Table 9-2, Table 9-3, Table 9- 4, Table 9-5, Table 9-6, Table 9-7, Table 10, and Table 11. The variable peptide and the stable peptide derived from the same specific protein may be any of the quality evaluation markers derived from the same specific protein shown in the above table, and also the quality evaluation markers derived from the same specific protein shown in the table It may be all.
[8]
The method according to [7], wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel in the table.
[9]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表3-1、表3-2、表3-3、表4-1、表4-2、表4-3、表4-4、表5、および表6に示される品質評価マーカーである、請求項7記載の方法。同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドは上記の表に示される同一の特定タンパク質由来の品質評価マーカーのいずれであってもよく、また表に示される同一の特定タンパク質由来の品質評価マーカーのすべてであってもよい。
[10]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表に並列して示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、[9]記載の方法。
[11]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、以下の表に示される品質評価マーカーである、[7]記載の方法:
 本明細書に記載の表13-1、表13-2、表13-3、表13-4、表13-5、表13-6、表13-7、表13-8、表13-9、表13-10、表15-1、表15-2、表15-3、表15-4、表15-5、表15-6、表15-7、表15-8、表17-1、および表17-2。同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドは上記の表に示される同一の特定タンパク質由来の品質評価マーカーのいずれであってもよく、また表に示される同一の特定タンパク質由来の品質評価マーカーのすべてであってもよい。
[12]
 同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表に並列して示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、[11]記載の方法。
[9]
The same specific protein-derived variable peptide and stable peptide are shown in Table 3-1, Table 3-2, Table 3-3, Table 4-1, Table 4-2, Table 4-3, Table 4-4, Table 5 The method according to claim 7, which is a quality evaluation marker shown in Table 6 and Table 6. The variable peptide and the stable peptide derived from the same specific protein may be any of the quality evaluation markers derived from the same specific protein shown in the above table, and also the quality evaluation markers derived from the same specific protein shown in the table It may be all.
[10]
The method according to [9], wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel to the table.
[11]
The method according to [7], wherein the variable peptide and the stable peptide derived from the same specific protein are quality evaluation markers shown in the following table:
Table 13-1, Table 13-2, Table 13-3, Table 13-4, Table 13-5, Table 13-6, Table 13-7, Table 13-8, and Table 13-9 described in the present specification. , Table 13-10, Table 15-1, Table 15-2, Table 15-3, Table 15-4, Table 15-5, Table 15-6, Table 15-7, Table 15-8, Table 17-1. , And Table 17-2. The variable peptide and the stable peptide derived from the same specific protein may be any of the quality evaluation markers derived from the same specific protein shown in the above table, and also the quality evaluation markers derived from the same specific protein shown in the table It may be all.
[12]
The method according to [11], wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel in the table.
<変動ペプチドおよび安定ペプチドの選別方法>
[13]
 単離されている生物学的検体の品質を評価できる、検体中に存在するタンパク質由来のペプチドを選別する方法であって、
1)ヒトを含む動物から生物学的検体を採取し、
2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷し、
3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断し、
4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドをそれぞれ、変動ペプチドおよび安定ペプチドと同定し、
5)同一の特定タンパク質に由来する1または複数の変動ペプチドと1または複数の安定ペプチドとの組合せを特定し、
6)特定した組合せを、生物学的検体の品質を評価できるマーカーとする、または
6’)特定した組合せの少なくとも1つを、生物学的検体の品質を評価できるマーカーとする、該方法。
[14]
 工程1)において、ヒトの健常者から生物学的検体を採取する、[13]記載の方法。
[15]
 酵素処理をトリプシンによって行う、[13]または[14]記載の方法。
[16]
 生物学的検体が血液、血清、血漿、尿、組織、脳脊髄液のなかから選ばれる、[13]~[15]のいずれか記載の方法。
[17]
 品質に影響を及ぼす要因が、採血から遠心分離までの時間、保存温度、保存期間のなかから選ばれる、[13]~[16]のいずれか記載の方法。
<Method of sorting variable peptides and stable peptides>
[13]
A method of selecting a peptide derived from a protein present in a sample, which can evaluate the quality of a biological sample being isolated, comprising:
1) Collect biological samples from animals including humans,
2) Load the biological samples collected with factors that affect their quality,
3) The factor-loaded sample is treated with an enzyme to cleave proteins present in the sample into peptides,
4) Among the obtained peptides, those which cause quantitative and / or qualitative changes due to factors affecting the quality and those which do not cause change are respectively identified as a variable peptide and a stable peptide,
5) Identify combinations of one or more variable peptides derived from the same specific protein and one or more stable peptides,
6) Use the identified combination as a marker that can assess the quality of the biological sample, or
6 ') The method, wherein at least one of the identified combinations is a marker capable of evaluating the quality of a biological sample.
[14]
The method according to [13], wherein a biological sample is collected from healthy human in step 1).
[15]
The method according to [13] or [14], wherein the enzyme treatment is performed by trypsin.
[16]
The method according to any of [13] to [15], wherein the biological sample is selected from blood, serum, plasma, urine, tissue, cerebrospinal fluid.
[17]
The method according to any one of [13] to [16], wherein the factor affecting quality is selected from time from blood collection to centrifugation, storage temperature, and storage period.
<変動ペプチドおよび安定ペプチドの製造方法>
[18]
 単離されている生物学的検体の品質を評価できるマーカーを製造する方法であって、
1)ヒトを含む動物から生物学的検体を採取し、
2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷し、
3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断し、
4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドを同定し、
5)同定されたペプチドを、生物学的検体の品質評価マーカーとする、該方法。
[19]
 工程1)において、ヒトの健常者から生物学的検体を採取する、[18]記載の方法。
[20]
 酵素処理をトリプシンによって行う、[18]または[19]記載の方法。
[21]
 生物学的検体が血液、血清、血漿、尿、組織、脳脊髄液のなかから選ばれる、[18]~[20]のいずれか記載の方法。
[22]
 品質に影響を及ぼす要因が、採血から遠心分離までの時間、保存温度、保存期間のなかから選ばれる、[18]~[21]のいずれか記載の方法。
<Method for producing variable peptide and stable peptide>
[18]
A method of producing a marker capable of evaluating the quality of a biological sample being isolated, comprising:
1) Collect biological samples from animals including humans,
2) Load the biological samples collected with factors that affect their quality,
3) The factor-loaded sample is treated with an enzyme to cleave proteins present in the sample into peptides,
4) Among the obtained peptides, identify peptides that cause quantitative and / or qualitative changes depending on factors affecting quality, and peptides that do not cause changes;
5) The method, wherein the identified peptide is used as a quality evaluation marker of a biological sample.
[19]
The method according to [18], wherein a biological sample is collected from healthy human in step 1).
[20]
The method according to [18] or [19], wherein the enzyme treatment is performed by trypsin.
[21]
The method according to any one of [18] to [20], wherein the biological sample is selected from blood, serum, plasma, urine, tissue and cerebrospinal fluid.
[22]
The method according to any one of [18] to [21], wherein the factor affecting quality is selected from time from blood collection to centrifugation, storage temperature, and storage period.
<バイオバンク等から入手される検体の品質評価に使用するペプチドの組合せに関連する発明>
[23]
 [8]または[11]記載の表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドである品質評価マーカー。
[24]
 [8]または[11]記載の表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つの組合せである品質評価マーカー。
[25]
 [8]または[11]記載の表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドにおける、単離されている生物学的検体の品質を評価できる品質評価マーカーとしての使用。
[26]
 [8]または[11]記載の表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つの組合せにおける、単離されている生物学的検体の品質を評価できる品質評価マーカーとしての使用。
[27]
 [8]または[11]記載の表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドであって安定同位体を含むものを含有する、単離されている生物学的検体の品質を評価するためのキット。
[28]
 [8]または[11]記載の表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つであって安定同位体を含むものを含有する、単離されている生物学的検体の品質を評価するためのキット。
<Invention related to the combination of peptides used to evaluate the quality of samples obtained from Biobank etc.>
[23]
A quality evaluation marker which is a variable peptide and a stable peptide derived from the same specific protein shown in the table described in [8] or [11].
[24]
A quality evaluation marker which is a combination of at least one variable peptide and stable peptide derived from the same specific protein shown in parallel to the table described in [8] or [11].
[25]
Use of a variable peptide and a stable peptide derived from the same specific protein shown in the table described in [8] or [11] as a quality evaluation marker capable of evaluating the quality of an isolated biological sample.
[26]
Quality evaluation that can evaluate the quality of the biological specimen being isolated in the combination of at least one of the variable peptide and the stable peptide derived from the same specific protein shown in parallel to the table described in [8] or [11] Use as a marker.
[27]
Assess the quality of the biological analyte being isolated, which contains the variable peptide and the stable peptide derived from the same specific protein shown in the table described in [8] or [11] and containing stable isotopes. Kit to do.
[28]
An isolated organism comprising at least one of a variable peptide and a stable peptide derived from the same specific protein shown in parallel in the table described in [8] or [11], which contains a stable isotope. For evaluating the quality of biological samples.
 現在、国内外で個別化医療や精密医療(プレシジョンメディスン)の重要性が叫ばれているが、その実現のためには多施設で収集された多検体での解析が必須であり、バイオバンクの必要性は日に日に増している。実際、日本各地の大学医学部附属病院でバイオバンクが設立され、多くの検体が収集され始めている。そこに保管されている血液や尿検体が有効利用されるためには、検体の品質評価は欠かせない。今回我々が見出した検体の品質評価方法、品質評価マーカー、品質評価マーカーの製造方法等の発明は、国内外を問わず、検体の品質管理に大きな威力を発揮する。本発明によれば、検体ごとの個体差に依存せず、客観的な評価結果を得ることができる。 At present, the importance of personalized medicine and precision medicine (Precision Medicine) is being called out at home and abroad, but in order to realize this, analysis with multiple specimens collected at multiple facilities is essential. The need is increasing day by day. In fact, biobanks have been established at university hospitals in various places in Japan, and many samples are beginning to be collected. In order to effectively use the blood and urine samples stored there, it is essential to evaluate the quality of the samples. The invention of the method for evaluating the quality of a sample, the quality evaluation marker, the method for producing a quality evaluation marker, etc., which we found this time, exerts great power in the quality control of a sample regardless of whether it is domestic or foreign. According to the present invention, it is possible to obtain an objective evaluation result without depending on individual differences among specimens.
図1は、本発明の品質評価マーカーを同定する解析の概略を示す。FIG. 1 shows an outline of analysis for identifying quality evaluation markers of the present invention. 図2-1は、保存温度・期間により変動がみられた血清中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 2-1 shows the results of verification of serum peptides by SRM / MRM method, which showed fluctuations with storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図2-2は、保存温度・期間により変動がみられた血清中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 2-2 shows the results of verification of serum peptides by SRM / MRM method, which showed fluctuations with storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図2-3は、保存温度・期間により変動がみられた血清中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 2-3 shows the results of verification of serum peptides by SRM / MRM method, which showed variation with storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図3-1は、保存温度・期間により変動がみられた血漿中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 3-1 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図3-2は、保存温度・期間により変動がみられた血漿中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 3-2 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図3-3は、保存温度・期間により変動がみられた血漿中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 3-3 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図3-4は、保存温度・期間により変動がみられた血漿中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 3-4 shows the results of verification of plasma peptide by SRM / MRM method, in which fluctuation was observed depending on storage temperature and period. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図4は、採血から遠心分離までの時間で変動の見られた血清中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 4 shows the results of verification of serum peptides by SRM / MRM method in which fluctuations in time from blood collection to centrifugation were observed. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図5は、採血から遠心分離までの時間で変動のみられた血漿中ペプチドのSRM/MRM法による検証結果を示す。実線が変動ペプチドの相対定量値の推移を示し、破線が安定ペプチドの相対定量値の推移を示す。FIG. 5 shows the results of verification of plasma peptides by SRM / MRM method which fluctuated in time from blood collection to centrifugation. The solid line shows the transition of the relative quantitative value of the variable peptide, and the broken line shows the transition of the relative quantitative value of the stable peptide. 図6は、血漿中、室温、1週間以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 6 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions in plasma, at room temperature, and within one week. 図7-1は、血漿中、4℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 7-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 6 ° C. and 6 months in plasma. 図7-2は、血漿中、4℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 7-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 4 ° C. and 6 months or less in plasma. 図7-3は、血漿中、4℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 7-3 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 4 ° C. and 6 months or less in plasma. 図7-4は、血漿中、4℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 7-4 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of 4 ° C. and 6 months or less in plasma. 図8-1は、血漿中、-30℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 8-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of −30 ° C. and 6 months or less in plasma. 図8-2は、血漿中、-30℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 8-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of −30 ° C. and 6 months or less in plasma. 図9-1は、血漿中、-80℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 9-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of -80 ° C. and within 6 months in plasma. 図9-2は、血漿中、-80℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 9-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under storage conditions of -80 ° C. and within 6 months in plasma. 図10は、血清中、室温、1週間以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 10 shows the results of selection of quality evaluation markers by shotgun quantitative analysis in serum, at room temperature, and under storage conditions within one week. 図11-1は、血清中、4℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 11-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions at 4 ° C. and within 6 months. 図11-2は、血清中、4℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 11-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions at 4 ° C. and within 6 months. 図12-1は、血清中、-30℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 12-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of −30 ° C. and 6 months or less. 図12-2は、血清中、-30℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 12-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of −30 ° C. and 6 months or less. 図13-1は、血清中、-80℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 13-1 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of −80 ° C. and within 6 months. 図13-2は、血清中、-80℃、6カ月以内の保存条件下、品質評価マーカーをショットガン定量解析により選択した結果を示す。FIG. 13-2 shows the results of selection of quality evaluation markers by shotgun quantitative analysis under serum storage conditions of −80 ° C. and within 6 months. 図14は、血漿中、凍結融解後における品質評価マーカーを、ショットガン定量解析により選択した結果を示す。FIG. 14 shows the results of selection of quality evaluation markers in plasma and after freeze-thawing by shotgun quantitative analysis. 図15は、血清中、凍結融解後における品質評価マーカーを、ショットガン定量解析により選択した結果を示す。FIG. 15 shows the results of selection of quality evaluation markers in serum and after freeze thaw by shotgun quantitative analysis. 図16-1は、血清中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。なお、AS等は検体番号を示す。AS0h:0時間、AS6m_4:4℃、6カ月、AS1y_4:4℃、1年、AS6m_30:-30℃、6カ月、AS1y_30:-30℃、1年、AS6m_80:-80℃、6カ月、AS1y_80:-80℃、1年。FIG. 16-1 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions. In addition, AS etc. show a sample number. AS 0 h: 0 hours, AS 6 m_4: 4 ° C., 6 months, AS 1 y 4: 4 ° C., 1 year, AS 6 m 30: -30 ° C., 6 months, AS 1 y 30: -30 ° C., 1 year, AS 6 m 80: -80 ° C., 6 months, AS 1 y 80: -80 ° C, 1 year. 図16-2は、血清中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。FIG. 16-2 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions. 図16-3は、血清中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。FIG. 16-3 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions. 図16-4は、血清中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。FIG. 16-4 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in serum under the following storage conditions. 図17-1は、血漿中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。なお、AP等は検体番号を示す。AP0h:0時間、AP6m_4:4℃、6カ月、AP1y_4:4℃、1年、AP6m_30:-30℃、6カ月、AP1y_30:-30℃、1年、AP6m_80:-80℃、6カ月、AP1y_80:-80℃、1年。FIG. 17-1 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions. In addition, AP etc. show a sample number. AP0h: 0 hour, AP6m_4: 4 ° C, 6 months, AP1y_4: 4 ° C, 1 year, AP6m_30: -30 ° C, 6 months, AP1y_30: -30 ° C, 1 year, AP6m_80: -80 ° C, 6 months, AP1y_80: -80 ° C, 1 year. 図17-2は、血漿中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。FIG. 17-2 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions. 図17-3は、血漿中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。FIG. 17-3 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions. 図17-4は、血漿中、以下の保存条件下、品質評価マーカーをSRM/MRM定量解析により選択した結果を示す。FIG. 17-4 shows the results of selection of quality evaluation markers by SRM / MRM quantitative analysis in plasma under the following storage conditions. 図18は、血清中、遠心分離までの時間ごとにおける品質評価マーカーを、SRM/MRM定量解析により選択した結果を示す。なお、LS等は検体番号を示す。LS_CT10:10分後、LS_CT30:30分後、LS_CT2h:2時間後、LS_CT6h:6時間後。FIG. 18 shows the results of selection of quality evaluation markers in serum and each time until centrifugation by SRM / MRM quantitative analysis. In addition, LS etc. show a sample number. LS_CT10: After 10 minutes, LS_CT30: 30 minutes, LS_CT2h: After 2 hours, LS_CT6h: After 6 hours.
 本発明は、単離されている生物学的検体の品質を評価するための方法であって、該検体を酵素で処理することによって生成される特定タンパク質由来のペプチドを品質評価の指標とする、該方法、具体的には、ペプチドが、酵素処理済み検体における同一の特定タンパク質由来のペプチドのなかで変動ペプチドおよび安定ペプチドである、該方法、より具体的には、変動ペプチドおよび安定ペプチドの存在比率を品質評価の指標とする、該方法に関する。 The present invention is a method for evaluating the quality of an isolated biological sample, wherein a peptide derived from a specific protein produced by treating the sample with an enzyme is used as an indicator of quality evaluation. The method, more specifically, the presence of the variable peptide and the stable peptide, wherein the peptide is a variable peptide and a stable peptide among peptides derived from the same specific protein in the enzyme-treated sample It relates to the method, wherein the ratio is an index of quality assessment.
 本明細書に使用されている「生物学的検体の品質を評価」とは、生物学的検体の品質が劣化していないかを調べ、信頼を担保して利用できるかを評価する方法を意味する。品質評価は、品質が劣化した検体を用いた検査結果によって生じる誤診を防ぐ意味から、その重要性は高い。ここで「生物学的検体の品質」とは、生物学的検体の使用目的に対して検体が利用可能であるかまたは利用可能でないかという生物学的検体の特性を指す。生物学的検体の使用目的は、例えばゲノム解析、トランスクリプトーム解析、プロテオーム解析、ペプチドーム解析、メタボローム解析等の解析によって、種々の病気の早期診断、病態の把握、治療指針の決定を行うことである。 As used herein, "assessing the quality of a biological sample" means a method of examining whether the quality of a biological sample has been degraded and evaluating whether it can be used with confidence. Do. Quality assessment is very important in that it prevents misdiagnosis caused by test results using specimens with degraded quality. Here, "quality of the biological sample" refers to the property of the biological sample that the sample is available or not available for the purpose of use of the biological sample. The purpose of use of biological samples is, for example, early diagnosis of various diseases, understanding of pathological conditions, and determination of treatment guidelines by analysis such as genome analysis, transcriptome analysis, proteome analysis, peptidome analysis, metabolomic analysis, etc. is there.
 本明細書に使用されている「生物学的検体」とは、ヒトまたは、ペットや家畜等の動物から得られる、血液、血清、血漿、尿、組織、唾液、リンパ液、組織液(組織間液、細胞間液、乾湿液)、体腔液(関節液、脳脊髄液、漿膜腔液、眼房水)より選択される、生体由来の検体を意味する。保存機関に保存されているものとして、現状、実際に多いのは、ヒト由来の血液、血清、血漿、尿、組織、脳脊髄液である。好ましくは、血液、血清、血漿、尿、組織または脳脊髄液が生物学的検体として使用され、血液がより好ましく、その液体成分である血清または血漿であることがさらに好ましい。血清および血漿の調製方法としては従来の既知の方法を用いることができる。 As used herein, the term "biological sample" refers to blood, serum, plasma, urine, tissue, saliva, lymph fluid, tissue fluid (inter-tissue fluid, obtained from humans or animals such as pets and livestock). It means a specimen of biological origin selected from intercellular fluid, wet and dry fluid) and body cavity fluid (joint fluid, cerebrospinal fluid, serosal fluid, aqueous humor). At present, in practice, blood, serum, plasma, urine, tissues, cerebrospinal fluid, which are derived from human beings, are currently stored as being stored in a storage organization. Preferably, blood, serum, plasma, urine, tissue or cerebrospinal fluid is used as a biological sample, blood is more preferred, and its liquid component, serum or plasma is more preferred. Conventional known methods can be used as methods for preparing serum and plasma.
 本明細書に使用されている「単離されている」とは、保存されていると同義であり、生体における検体と区別する意味である。検体が保存されている機関としては、バイオバンクジャパン(東京都港区)、東北大学東北メディカル・メガバンク機構(仙台市青葉区星陵町 1-1)、ナショナルセンター・バイオバンクネットワーク(東京都新宿区戸山1-21-1)等の保存機関等があるが、これら機関に限定されない。例えば、本発明は、病院、診療所、検査機関等に保存されている生物学的検体等、いずれの検体にも適用できる。 As used herein, "isolated" is synonymous with being conserved and is meant to distinguish it from a sample in a living organism. As an organization where samples are stored, Biobank Japan (Minato Ward, Tokyo), Tohoku University Tohoku Medical Megabank Organization (1-1, Seiryocho, Aoba Ward, Sendai City), National Center Biobank Network (Shinjuku Ward, Tokyo) There are preservation organizations such as Toyama 1-21-1), but it is not limited to these organizations. For example, the present invention can be applied to any sample such as a biological sample stored in a hospital, a clinic, a laboratory, or the like.
 本明細書に使用されている「酵素処理」または「酵素で処理する」とは、酵素を使用してタンパク質をペプチド断片に消化することを指し、酵素としては、例えば配列特異的プロテアーゼなどを挙げることができる。配列特異的プロテアーゼとは、特定のペプチド結合を切断するプロテアーゼを指し、例えば、トリプシン、ペプシン、キモトリプシン、グルタミルエンドペプチダーゼ、リシルエンドペプチダーゼ等を挙げることができる。本発明の酵素処理としては、トリプシンまたはトリプシンとリシルエンドペプチダーゼとの組合せによって行うことが好ましい。 As used herein, "enzyme treatment" or "treating with an enzyme" refers to digesting a protein into peptide fragments using an enzyme, which includes, for example, sequence specific proteases, etc. be able to. The sequence-specific protease refers to a protease that cleaves a specific peptide bond, and examples thereof include trypsin, pepsin, chymotrypsin, glutamyl endopeptidase, lysyl endopeptidase and the like. The enzyme treatment of the present invention is preferably performed by trypsin or a combination of trypsin and lysyl endopeptidase.
 本明細書に使用されている「特定タンパク質由来のペプチド」とは、タンパク質を酵素によって消化処理することにより生成されるペプチドを意味する。 As used herein, "a peptide derived from a specific protein" means a peptide produced by digesting a protein with an enzyme.
 本明細書に使用されている「ペプチドを品質評価の指標とする」とは、ペプチド本体の種類、その存在量、ペプチドが複数種類ある場合はその存在比率を品質評価の指標とすることを意味し、後述する「変動ペプチドおよび安定ペプチドの存在比率を品質評価の指標とする」ことを含む。ペプチド本体の種類、その存在量、ペプチドが複数種類ある場合はその存在比率は例えば、質量分析によりペプチドを定性的および/または定量的に変化量を測定することにより確認できる。また、これらは、抗体を用いるELISA法により確認することもできる。 As used herein, the phrase "peptide as an indicator for quality evaluation" means that the type of peptide body, its abundance, and if there are multiple types of peptides, the abundance ratio as an indicator for quality assessment. And “to make the abundance ratio of the variable peptide and the stable peptide an index of quality evaluation” described later. The type of peptide body, its abundance, and the abundance ratio of multiple peptides can be confirmed, for example, by measuring the amount of change qualitatively and / or quantitatively for the peptide by mass spectrometry. Moreover, these can also be confirmed by ELISA using an antibody.
 本明細書に使用されている「同一の特定タンパク質由来の変動ペプチドおよび安定ペプチド」とは、それぞれ、同一の特定タンパク質由来のペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチド、および変化を起こさないペプチドを指し、当該量的および/または質的変化は、例えば質量分析によりペプチドを定性的および定量的に測定することにより確認される。また、量的および/または質的変化は、抗体を用いるELISA法により確認されてもよい。同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドは、生物学的検体を酵素処理することによって得られる消化ペプチド群より選択される。また、「同一の特定タンパク質由来の変動ペプチドおよび安定ペプチド」は、変動ペプチドおよび安定ペプチドがそれぞれ複数存在する場合、個々の安定ペプチドと変動ペプチドの組み合わせを意味することもでき、また、複数の安定ペプチドと複数の変動ペプチドのそれぞれの集合としての組み合わせを意味することができる。想定される状況により、どちらを意味するかは当業者には明らかである。 The “variable and stable peptides derived from the same specific protein” as used herein are, among the peptides derived from the same specific protein, quantitative and / or quality depending on factors affecting the quality. Refers to peptides that cause a change and peptides that do not change, the said quantitative and / or qualitative changes being confirmed by measuring the peptide qualitatively and quantitatively, for example by mass spectrometry. Also, quantitative and / or qualitative changes may be confirmed by ELISA using antibodies. The variable peptide and the stable peptide derived from the same specific protein are selected from the group of digested peptides obtained by enzymatic treatment of a biological sample. In addition, “a variable peptide and a stable peptide derived from the same specific protein” can also mean a combination of an individual stable peptide and a variable peptide, when there are a plurality of variable peptides and stable peptides respectively, It can mean the combination as a set of each of the peptide and the plurality of variable peptides. It will be clear to the person skilled in the art which of the two is meant, depending on the situation considered.
 本明細書に使用されている「変動ペプチドおよび安定ペプチドの存在比率」とは、同一の特定タンパク質に由来する変動ペプチドと安定ペプチドにおいて、安定ペプチドに対する変動ペプチドの割合、すなわち変動ペプチドの量/安定ペプチドの量を意味する。存在比率は例えば、質量分析によりペプチドを定性的および/または定量的に変化量を測定することにより確認できる。また、これらは、抗体を用いるELISA法により確認することもできる。実際上は、個々の安定ペプチドと変動ペプチドの組み合わせを個別に比較すると煩雑かつ非効率なるので、各タンパク質の安定ペプチドの平均値と変動ペプチドとの平均値とを比べることができる。 As used herein, "the abundance ratio of the variable peptide and the stable peptide" means the ratio of the variable peptide to the stable peptide in the variable peptide and the stable peptide derived from the same specific protein, that is, the amount of the variable peptide / stable It means the amount of peptide. The abundance ratio can be confirmed, for example, by measuring the amount of change qualitatively and / or quantitatively for the peptide by mass spectrometry. Moreover, these can also be confirmed by ELISA using an antibody. In practice, since the combination of individual stable peptides and variable peptides is complicated and inefficient when compared individually, the average value of the stable peptide of each protein can be compared with the average value of the variable peptides.
 生物学的検体の品質が劣化していない、即ちその品質が保証されていると判断する存在比率の閾値は、変動ペプチドと安定ペプチドの組合せ、すなわち品質評価マーカーに応じて変わる。変動ペプチドと安定ペプチドの存在比率(変動ペプチドの量:安定ペプチドの量)が閾値内に収まっている場合、その生物学的検体の品質は劣化していないと評価され、閾値から外れている場合、品質が劣化していると評価することができる。当該品質評価マーカーにおける、品質が劣化していない存在比率の閾値は、例えば0.77:1~1.3:1(変動ペプチドの量:安定ペプチドの量)が挙げられ、この閾値内に収まっていれば、その検体の品質は劣化していない、と評価できる。 The threshold value of the abundance ratio for judging that the quality of the biological sample is not deteriorated, ie, the quality is guaranteed, varies depending on the combination of the variable peptide and the stable peptide, ie, the quality evaluation marker. If the abundance ratio of the fluctuating peptide to the stable peptide (amount of fluctuating peptide: amount of stable peptide) is within the threshold, the quality of the biological sample is evaluated as not deteriorating, and if it is outside the threshold , It can be evaluated that the quality has deteriorated. The threshold of the abundance ratio in which the quality has not deteriorated in the quality evaluation marker is, for example, 0.77: 1 to 1.3: 1 (amount of variable peptide: amount of stable peptide), and if it falls within this threshold, It can be evaluated that the quality of the sample has not deteriorated.
 本明細書に使用されている「品質評価マーカー」とは、1または複数の変動ペプチドと1または複数の安定ペプチドを組み合わせたペプチドであって、生物学的検体の品質評価に用いられるマーカーである。例えば、本明細書に記載している表に並列して示される変動ペプチドおよび安定ペプチドの組合せが挙げられる。ただし、実際上は、個々の安定ペプチドと変動ペプチドの組み合わせを個別に比較すると煩雑かつ非効率なるので、各タンパク質の安定ペプチドの平均値と変動ペプチドとの平均値を比べることができる。 As used herein, a "quality assessment marker" is a peptide that combines one or more variable peptides and one or more stable peptides, and is a marker used to evaluate the quality of a biological sample. . For example, combinations of variable and stable peptides shown in parallel to the tables described herein. However, in practice, since the combination of individual stable peptides and variable peptides becomes complicated and inefficient when compared individually, it is possible to compare the average value of the stable peptide of each protein with the average value of the variable peptides.
 単離されている生物学的検体の品質を評価する、特定タンパク質由来のペプチドを品質評価の指標とする本発明の方法において、そのペプチドの分析には、選択反応モニタリング(Selected reaction monitoring, SRM)と多重反応モニタリング(Multiple reaction monitoring, MRM)を組み合わせた質量分析法SRM/MRM法が好適である。質量分析計を用いるSRM/MRM法は、数百種類にも及ぶ複数のペプチドを同時に定量できるため、例えば、本明細書における表に並列して示される変動ペプチドおよび安定ペプチドをすべて一度に定量できる。定量された同一タンパク質内の変動ペプチドと安定ペプチドの組み合わせを使って比を計算したときに、その値が1に近ければ近いほど、そのタンパク質は安定であると推測できる。そのようなタンパク質が多ければ多いほど、定量に用いた検体の品質が良好であると言える。
 以下、変動ペプチドおよび安定ペプチドの存在比率を品質評価の指標とする評価について例示する。
 例えば、変動ペプチドと安定ペプチドの品質評価マーカーの組み合わせが50ある場合、それらの品質評価マーカーのペプチドをすべて一度にSRM/MRM法で定量し、変動ペプチドと安定ペプチドの存在比率を計算する。その比が例えば0.77~1の間にある品質評価マーカーの組み合わせの数が多ければ多いほど、その検体の品質は良好である(保存状態がよい)と評価する。例えば50のうち30、好ましくは50ないしは40、より好ましくは50ないしは45の組み合わせで0.77~1の間の比率であれば、その検体の品質は良好であると評価する。逆に、その比率が0.77未満の組み合わせの数が多ければ多いほど、例えば50のうち30、好ましくは50ないしは40、より好ましくは50ないしは45の場合、その検体の品質は悪い(保存状態が悪い)と評価する。
In the method of the present invention, wherein the quality of a biological sample being isolated is evaluated, and a peptide derived from a specific protein is used as an indicator for quality evaluation, analysis of the peptide includes selected reaction monitoring (SRM). Mass spectrometric SRM / MRM method combining multiple reaction monitoring (MRM) and is preferable. The SRM / MRM method using a mass spectrometer can simultaneously quantify hundreds of different peptides, for example, it is possible to quantify all of the variable and stable peptides shown in parallel in the table herein at one time. . When the ratio is calculated using the combination of the variable peptide and the stable peptide in the same quantified protein, the closer the value is to 1, it can be inferred that the protein is more stable. The more such proteins, the better the quality of the sample used for quantification.
In the following, the evaluation using the abundance ratio of the variable peptide and the stable peptide as an index for quality evaluation will be exemplified.
For example, if there are 50 combinations of variable peptide and stable peptide quality evaluation markers, those quality evaluation marker peptides are quantified all at once by the SRM / MRM method, and the abundance ratio of the variable peptide and the stable peptide is calculated. As the number of combinations of quality evaluation markers whose ratio is between, for example, 0.77 and 1, the quality of the sample is evaluated to be better (preserved state is better). For example, if the ratio is between 0.77 and 1 in a combination of 30, 50, preferably 50 to 40, more preferably 50 to 45 out of 50, the quality of the sample is evaluated as good. Conversely, the more the number of combinations whose ratio is less than 0.77, the worse the quality of the sample (for example, the storage quality is poor), for example, in the case of 30 out of 50, preferably 50 to 40, more preferably 50 to 45 Evaluate).
 本発明は、別の態様として、単離されている生物学的検体の品質を評価できる、検体中に存在するタンパク質由来のペプチドを選別する方法であって、品質に影響を及ぼす要因によって量的および/または質的変化を起こす不安定なペプチド、および変化を起こさない安定なペプチドを同定する方法を提供する。「品質に影響を及ぼす要因」とは例えば、保存温度・期間等の保存条件、遠心分離までの時間が挙げられる。「量的および/または質的変化を起こす」とは、量的および/または質的に変化し、定量値が低下または増加することを意味する。「量的および/または質的変化を起こさない」とは、量的および/または質的に変化せず、定量値が一定または略一定であることを意味する。不安定なペプチドは、本発明において「変動ペプチド」と称される。ペプチドが不安定になる要因としては、例えば、プロテアーゼによる分解や修飾による質量数の変化等を挙げることができる。また、安定なペプチドは、特定の不安定なペプチドが由来するタンパク質と同じタンパク質に由来するペプチド群から選択されるペプチドであって、保存条件等により量的および/または質的変化を起こさないペプチドである。安定なペプチドは、本発明において「安定ペプチド」と称される。 In another aspect, the present invention is a method of selecting a peptide derived from a protein present in a sample capable of evaluating the quality of a biological sample being isolated, which is quantitative according to factors affecting the quality. And / or provide methods for identifying unstable peptides that cause qualitative changes and stable peptides that do not cause changes. Examples of the "factor affecting quality" include storage conditions such as storage temperature and duration, and time until centrifugation. “To cause a quantitative and / or qualitative change” means to change quantitatively and / or qualitatively, and to decrease or increase the quantitative value. “Does not cause quantitative and / or qualitative change” means that the quantitative value is constant or nearly constant without changing quantitatively and / or qualitatively. Unstable peptides are referred to as "variable peptides" in the present invention. As a factor which makes a peptide unstable, for example, a change in mass number due to decomposition or modification by protease can be mentioned. In addition, the stable peptide is a peptide selected from the group of peptides derived from the same protein as the protein from which the specific unstable peptide is derived, and a peptide that does not undergo quantitative and / or qualitative changes under storage conditions and the like. It is. Stable peptides are referred to as "stable peptides" in the present invention.
 本発明のように、生物学的検体の品質を評価するために「変動ペプチド」と「安定ペプチド」を選別するのは、生物学的検体の品質を不安定なペプチドのみの定量値により評価しようとした場合、ペプチドの定量値が保存温度・期間、遠心分離までの時間等の保存条件によって変動したのか、検体を採取した対象体の個体差、即ち個体間変動、個体内変動によるものかを判別できないため、目的とする生物学的検体の品質を評価することができないからである。より具体的には、バイオバンクに保存されている血清中のあるペプチドの定量値が健常者の平均値より低い場合、保存開始時の定量値が不明であるため、定量値が保存中に減少したのか、あるいは当該検体を採取した被験者において健常者の平均値より低い値しか有していなかったかを区別することができない。しかして、安定なペプチドをコントロールとして用いれば、定量値の減少が保存の影響なのか、被験者の個体差なのか、区別ができる。なぜなら、安定なペプチドの定量値は保存前と保存後で変わらないはずなので、保存前の状態を反映している。つまりは、安定なペプチドが健常者の平均値と同レベルである一方で、不安定なペプチドが減少した場合は、不安定なペプチドの定量値の低下は保存の影響であると判断できる。そこで、安定ペプチドをコントロールとして用いることにより、安定なペプチドが保存後においても健常者の平均値と同じ定量値であった場合、不安定なペプチドの定量値の低下は保存によるもの判断できる。一方、保存後において安定なペプチドと不安定なペプチドの定量値がともに健常者の平均値より低い一定の値である場合、不安定なペプチドの定量値の低下は個体差によるものと判断できる。 As in the present invention, in selecting "a variable peptide" and "a stable peptide" to evaluate the quality of a biological sample, let us evaluate the quality of the biological sample by quantitative values of only unstable peptides. If the quantitative value of the peptide fluctuates depending on the storage conditions such as storage temperature, duration, time to centrifugation, or individual differences among subjects from which the sample was collected, that is, due to inter-individual fluctuation or intra-individual fluctuation This is because the quality of the target biological sample can not be evaluated because it can not be determined. More specifically, when the quantitative value of a certain peptide in serum stored in the biobank is lower than the average value of healthy people, the quantitative value at the start of storage is unknown, so the quantitative value decreases during storage It is not possible to distinguish if the subject who collected the sample had a value lower than the average value of the healthy subject. Thus, if a stable peptide is used as a control, it can be distinguished whether the decrease in the quantitative value is the effect of storage or individual differences among subjects. Because the quantitative value of the stable peptide should not change before and after storage, it reflects the state before storage. That is, when stable peptides are at the same level as the average value of healthy people, but unstable peptides decrease, it can be judged that the decrease in quantitative value of unstable peptides is the effect of storage. Therefore, by using the stable peptide as a control, when the stable peptide is the same quantitative value as the average value of healthy people even after storage, the decrease of the quantitative value of the unstable peptide can be determined due to storage. On the other hand, when both quantitative values of stable peptide and unstable peptide after storage are constant values lower than the average value of healthy persons, it can be judged that the decrease in quantitative value of unstable peptide is due to individual difference.
 本発明に係る変動ペプチドと安定ペプチドの組合せの各々は、同一の特定のタンパク質に由来するペプチドから構成される。特定の組合せの変動ペプチドと安定ペプチドが同一のタンパク質に由来することにより、生物学的検体中タンパク質の個体差の影響を受けることなく、生物学的検体の品質を評価することができる。実際上は、個々の安定ペプチドと変動ペプチドの組み合わせを個別に比較すると煩雑かつ非効率なるので、各タンパク質の安定ペプチドの平均値と変動ペプチドの平均値を比べることができる。 Each combination of variable and stable peptides according to the invention is composed of peptides derived from the same specific protein. When the variable peptide and the stable peptide in a specific combination are derived from the same protein, the quality of the biological sample can be evaluated without being affected by individual differences in the protein in the biological sample. In practice, it is complicated and inefficient to compare combinations of individual stable peptides and variable peptides individually, so it is possible to compare the average value of the stable peptide of each protein with the average value of the variable peptides.
 本明細書に使用されている「品質に影響を及ぼす要因」とは、検体の量および/または質に変化を引き起こす因子を指し、例えば、検体の保存条件を挙げることができる。検体の保存条件としては、例えば、検体の保存温度、保存期間、遠心分離等の検体保存のための検体採取から調製までの時間、検体の凍結融解の回数等が挙げられる。検体の保存温度としては、例えば室温(20~30℃)、冷蔵(0~10℃)、冷凍(-20~-40℃)、超低温(-60~-90℃)、液体窒素中等を挙げることができ、好ましくは25℃±2℃、4℃±3℃、-30℃±5℃、-80℃±8℃および液体窒素中である。保存期間としては、例えば、0分間、5分間、10分間、15分間、30分間、40分間、60分間、90分間、2時間、3時間、4時間、6時間、8時間、12時間、24時間、2日間、4日間、7日間、2週間、4週間、6週間、8週間、3ヵ月間、4ヵ月間、6ヵ月間、12ヵ月間、18ヵ月間、24ヵ月間、30ヵ月間、36ヵ月間等を挙げることができる。検体保存のための検体採取から調製までの時間としては、0分間、5分間、10分間、15分間、30分間、40分間、60分間、90分間、2時間、3時間、4時間、6時間、8時間、12時間、24時間等を挙げることができる。検体の凍結融解回数としては、例えば0回、1回、2回、3回、4回、5回、6回、8回、10回等を挙げることができる。 As used herein, "factor affecting quality" refers to a factor that causes a change in the amount and / or quality of the sample, and can include, for example, storage conditions of the sample. The storage conditions of the sample include, for example, storage temperature of the sample, storage period, time from collection of sample for storage of sample such as centrifugation to preparation, number of times of freezing and thawing of sample, and the like. As the storage temperature of the specimen, for example, room temperature (20 to 30 ° C.), refrigeration (0 to 10 ° C.), freezing (-20 to 40 ° C.), ultra low temperature (-60 to -90 ° C.), liquid nitrogen etc. may be mentioned. Preferably 25 ° C. ± 2 ° C., 4 ° C. ± 3 ° C., −30 ° C. ± 5 ° C., −80 ° C. ± 8 ° C. and in liquid nitrogen. The storage period is, for example, 0 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 40 minutes, 60 minutes, 60 minutes, 90 minutes, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12 hours, 24 hours. Hours, 2 days, 4 days, 7 days, 2 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 4 months, 6 months, 6 months, 12 months, 18 months, 24 months, 30 months , 36 months, etc. The time from sample collection to preparation for sample storage is 0 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 30 minutes, 40 minutes, 60 minutes, 90 minutes, 90 minutes, 2 hours, 3 hours, 4 hours, 6 hours , 8 hours, 12 hours, 24 hours, etc. can be mentioned. As the number of times of freezing and thawing of the sample, for example, 0 times, 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, 8 times, 10 times and the like can be mentioned.
 本発明において、ペプチドの量的および/または質的変化を検出・定量する方法としては、変動ペプチドおよび安定ペプチドを特異的に検出できる任意の方法であり得、例えば質量分析法を挙げることができる。質量分析法とは、ペプチド試料を、イオン源を用いて気体状のイオンとし(イオン化)、分析部において、真空中で運動させ電磁気力を用いて、あるいは飛行時間差によりイオン化したペプチド試料を質量電荷比に応じて分離し、検出できる質量分析計を用いた測定方法のことをいい、イオン源を用いてイオン化する方法としては、EI法、CI法、FD法、FAB法、MALDI法、ESI法等の方法を適宜選択することができ、また、分析部において、イオン化したペプチド試料を分離する方法としては、磁場偏向型、四重極型、イオントラップ型、飛行時間(TOF)型、フーリエ変換イオンサイクロトロン共鳴型等の分離方法を適宜選択することができる。また、2以上の質量分析法を組み合わせたタンデム型質量分析(MS/MS)やトリプル四重極型質量分析を利用することができる。また、試料がリン酸化したペプチドを含む試料の場合、質量分析計への試料導入前に、試料を鉄イオン固定化アフィニティークロマトグラフィー(Fe-IMAC)を用いて濃縮することができる。また、液体クロマトグラフ(LC)やHPLCにより、本発明に係る変動ペプチドおよび安定ペプチドを分離・精製して試料とすることができる。また、検出部やデータ処理方法も適宜選択することができる。質量分析法を用いて変動ペプチドおよび安定ペプチドを質量分析法で検出・定量する場合、当該ペプチドと同一のアミノ酸配列からなる、濃度が既知の安定同位体で標識したペプチドを内部標準とすることができる。当該安定同位体標識ペプチドとしては、本発明に係る変動ペプチドおよび安定ペプチドにおけるアミノ酸の1つ以上が、15N、13C、18O、および2Hのいずれか1以上を含む安定同位体標識ペプチドであれば、アミノ酸の種類、位置、数などは適宜選択することができ、当該安定同位体標識ペプチドは、安定同位元素により標識されたアミノ酸を用いてF-moc法(Amblard., et al. Methods Mol Biol.298:3-24(2005))等の適当な手段で化学合成することができるが、iTRAQ(登録商標)試薬、ICAT(登録商標)試薬、ICPL(登録商標)試薬、NBS(登録商標)試薬、Tandem Mass Tag(TMT)(登録商標)試薬等の標識試薬を用いて作製することもできる。 In the present invention, the method for detecting and quantifying the quantitative and / or qualitative change of the peptide may be any method capable of specifically detecting the variable peptide and the stable peptide, and may include, for example, mass spectrometry. . In mass spectrometry, a peptide sample is converted to a gaseous ion (ionization) using an ion source, and in the analysis unit, the peptide sample is ionized by moving in vacuum and using electromagnetic force, or ionized according to the time of flight difference. This is a measurement method using a mass spectrometer that can separate and detect according to the ratio, and as a method of ionization using an ion source, EI method, CI method, FD method, FAB method, MALDI method, ESI method Methods such as magnetic field deflection type, quadrupole type, ion trap type, time of flight (TOF) type, Fourier transform as methods of separating ionized peptide samples in the analysis section. A separation method such as an ion cyclotron resonance type can be appropriately selected. In addition, tandem mass spectrometry (MS / MS) combining two or more mass spectrometry methods and triple quadrupole mass spectrometry can be used. In addition, when the sample is a sample containing a phosphorylated peptide, the sample can be concentrated using iron ion-immobilized affinity chromatography (Fe-IMAC) prior to sample introduction into the mass spectrometer. In addition, the variable peptide and the stable peptide according to the present invention can be separated and purified by liquid chromatography (LC) or HPLC to obtain a sample. Also, the detection unit and the data processing method can be selected appropriately. When detecting and quantifying a variable peptide and a stable peptide by mass spectrometry using mass spectrometry, using a stable isotope-labeled peptide having a known concentration and consisting of the same amino acid sequence as the peptide as an internal standard it can. The stable isotope labeled peptide is a stable isotope labeled peptide in which one or more of the amino acids in the variable peptide and the stable peptide according to the present invention contains any one or more of 15N, 13C, 18O, and 2H. The type, position, number, etc. of amino acids can be appropriately selected, and the stable isotope-labeled peptide can be selected from the F-moc method (Amblard., Et al. Methods Mol Biol. Using an amino acid labeled with a stable isotope). 298: 3-24 (2005)), which can be chemically synthesized, but iTRAQ (R) reagent, ICAT (R) reagent, ICPL (R) reagent, NBS (R) reagent It can also be prepared using a labeling reagent such as Tandem Mass Tag (TMT) (registered trademark) reagent.
 本発明の一実施態様において、ペプチドの量的および/または質的変化を検出・定量する質量分析法は、安定同位体標識の合成ペプチドを用いるSRM/MRM法である。選択反応モニタリング(Selected reaction monitoring, SRM)は、トリプル四重極型質量分析計を用いた定量分析法であり、液体クロマトグラフと連結した分析システムを使用する。複数の分子を測定の対象にする場合は多重反応モニタリング(Multiple reaction monitoring, MRM)と呼ばれる。選択反応モニタリング(SRM)と多重反応モニタリング(MRM)を組み合わせた質量分析法は、高い定量性と選択性を有して試料中の対象とするタンパク質を定量することができる。 In one embodiment of the present invention, mass spectrometry that detects and quantitates quantitative and / or qualitative changes in peptides is SRM / MRM using stable isotope-labeled synthetic peptides. Selected reaction monitoring (SRM) is a quantitative analysis method using a triple quadrupole mass spectrometer and uses an analysis system coupled to a liquid chromatograph. When multiple molecules are targeted for measurement, it is called multiple reaction monitoring (MRM). Mass spectrometry combining selective reaction monitoring (SRM) and multiple reaction monitoring (MRM) has high quantitativity and selectivity, and can quantify the target protein in the sample.
 本発明の別の一実施態様において、ペプチドの量的および/または質的変化を検出・定量する質量分析法は、同位体タグまたは同重体タグを用いる分析法である。同位体タグとしては、例えばジメチル標識試薬、ICAT(登録商標)試薬、ICPL(登録商標)試薬、NBS(登録商標)試薬等を挙げることができ、同重体タグとしては、例えばTMT試薬(登録商標)、iTRAQ(登録商標)試薬等を挙げることができる。同位体タグまたは同重体タグを用いる分析法により、血清および血漿中のタンパク質由来のペプチドを網羅的に解析することができる。本発明のまた別の一実施態様において、当該分析方法は、一定の基準を満たすものを、生物学的検体の品質評価に用いることができる変動ペプチドと安定ペプチドの組合せ(品質評価マーカー)の候補として選別するのに有用であり、選別した変動ペプチドと安定ペプチドの組合せを更に上記SRM/MRM法により生物学的検体の品質評価に用いることができるかを検証して品質評価マーカーを絞り込み得る。 In another embodiment of the present invention, mass spectrometry for detecting and quantifying quantitative and / or qualitative changes in a peptide is an analytical method using an isotope tag or an isobaric tag. Examples of isotope tags include dimethyl labeling reagent, ICAT (registered trademark) reagent, ICPL (registered trademark) reagent, NBS (registered trademark) reagent and the like, and examples of isobaric tags include TMT reagent (registered trademark) And iTRAQ (registered trademark) reagent etc. can be mentioned. Peptides derived from proteins in serum and plasma can be comprehensively analyzed by analytical methods using isotope tags or isobaric tags. In another embodiment of the present invention, the analysis method is a candidate for a combination of a variable peptide and a stable peptide (quality evaluation marker) which can be used for quality evaluation of a biological specimen that satisfies a certain standard. The combination of the selected variable peptide and the stable peptide can be used to further narrow down the quality evaluation markers by verifying whether the combination of the selected variable peptides and stable peptides can be further used for the quality evaluation of biological samples by the above-mentioned SRM / MRM method.
 本発明の一実施態様において、ペプチドの量的および/または質的変化を検出・定量する方法は、質量分析の前に生物学的検体からペプチドを得る前処理の工程を含み得る。前処理としては、例えば生物学的検体からのタンパク質抽出、タンパク質のペプチドへの酵素等による消化、ペプチドの脱塩・濃縮等を挙げることができる。 In one embodiment of the present invention, the method for detecting and quantifying the quantitative and / or qualitative change of a peptide may include a pretreatment step of obtaining the peptide from a biological sample prior to mass spectrometry. As the pretreatment, for example, protein extraction from a biological sample, digestion of a protein into a peptide with an enzyme or the like, desalting / concentration of a peptide, etc. can be mentioned.
<変動ペプチドおよび安定ペプチドの選別方法>
 本発明はある態様において、単離されている生物学的検体の品質を評価できる、検体中に存在するタンパク質由来のペプチドを選別する方法を提供する。当該方法は、
1)ヒトを含む動物から生物学的検体を採取する工程、
2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷する工程、
3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断する工程、
4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドをそれぞれ、変動ペプチドおよび安定ペプチドと同定する工程、
5)同一の特定タンパク質に由来する1または複数の変動ペプチドと1または複数の安定ペプチドとの組合せを特定する工程、および
6)特定した組合せを、生物学的検体の品質評価マーカーとする工程、または
6’)特定した組合せの少なくとも1つを、生物学的検体の品質評価マーカーとする工程を含み得る。
<Method of sorting variable peptides and stable peptides>
The present invention provides, in one aspect, a method of screening for peptides derived from proteins present in a sample, which can assess the quality of the biological sample being isolated. The method is
1) collecting a biological sample from an animal including human;
2) loading a factor that affects the quality of the collected biological sample,
3) treating the sample loaded with the factor with an enzyme to divide proteins present in the sample into peptides,
4) identifying, among the obtained peptides, peptides that cause quantitative and / or qualitative changes due to factors affecting quality and those that do not cause changes as variable peptides and stable peptides, respectively;
5) identifying a combination of one or more variable peptides derived from the same specific protein and one or more stable peptides;
6) using the identified combination as a quality evaluation marker of a biological sample, or
6 ′) A step of making at least one of the specified combinations a quality evaluation marker of a biological sample may be included.
 本発明の一実施態様において、1)ヒトを含む動物から生物学的検体を採取する工程は、血液、血清、血漿、尿および組織から選択される生物学的検体の採取を含む。ヒトを含む動物には、ヒトの他、イヌ、ネコ等の愛玩動物およびウシ、ブタ等の家畜が含まれる。具体的には、ヒトであり、好ましくはヒトの健常者である。また、好ましくは、生物学的検体は血清または血漿である。 In one embodiment of the present invention, 1) collecting a biological sample from an animal including human comprises collecting a biological sample selected from blood, serum, plasma, urine and tissue. Animals, including humans, include humans as well as companion animals such as dogs and cats and livestock such as cows and pigs. Specifically, it is a human being, preferably a healthy human being. Also preferably, the biological sample is serum or plasma.
 本発明の一実施態様において、2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷する工程は、品質に影響を及ぼす要因として、上記の採血から遠心分離までの時間、保存温度、保存期間および凍結融解の回数を含み得る。 In one embodiment of the present invention, 2) the step of loading the collected biological sample with a factor affecting its quality is the above-mentioned time from blood collection to centrifugation, storage as a factor affecting the quality It may include temperature, storage period and number of freeze-thaw cycles.
 本発明の一実施態様において、3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断する工程は、トリプシンまたはトリプシンとリシルエンドペプチダーゼとの組合せによる酵素処理を含み、好ましくは、酵素処理はトリプシンによる。 In one embodiment of the present invention, 3) treating the factor-loaded sample with an enzyme and dividing the protein present in the sample into peptides comprises enzymatic treatment with trypsin or a combination of trypsin and lysyl endopeptidase Preferably, the enzyme treatment is with trypsin.
 本発明の一実施態様において、4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドをそれぞれ、変動ペプチドおよび安定ペプチドと同定する工程、および5)同一の特定タンパク質に由来する1または複数の変動ペプチドと1または複数の安定ペプチドとの組合せを特定する工程は、本明細書に記載される同位体タグまたは同重体タグを用いる質量分析法および安定同位体標識の合成ペプチドを用いるSRM/MRM法による同定を含み得る。好ましい実施態様において、変動ペプチドおよび安定ペプチドを同定する工程は、TMTラベル化またはジメチル標識を用いてペプチドを網羅的な解析(ショットガン定量プロテオミクス)を行い、一定の基準に基づいて変動ペプチドおよび安定ペプチド候補を選択し、続いてターゲットプロテオミクス(SRM/MRM解析)に適した変動ペプチドおよび安定ペプチド候補を選択し、更に安定同位体標識ペプチドを用いてSRM/MRM解析を行うことを含み得る。 In one embodiment of the present invention, 4) among the obtained peptides, a peptide that causes a quantitative and / or qualitative change depending on factors affecting quality and a peptide that does not cause a change, respectively, a variable peptide and a stable peptide And 5) identifying the combination of one or more variable peptides derived from the same specific protein and one or more stable peptides is an isotopic tag or isobaric described herein. It may include mass spectrometry using tags and SRM / MRM identification using synthetic peptides with stable isotope labels. In a preferred embodiment, the step of identifying the variable peptide and the stable peptide performs comprehensive analysis (shotgun quantitative proteomics) of the peptide using TMT labeling or dimethyl labeling, and the variable peptide and the stable peptide are determined based on certain criteria. It may involve selecting peptide candidates, followed by selection of variable peptides and stable peptide candidates suitable for target proteomics (SRM / MRM analysis), and further performing SRM / MRM analysis using stable isotope-labeled peptides.
 ショットガン定量プロテオミクス結果からの変動ペプチド候補のペプチドの選択基準としては以下のいずれか1つ以上を満たすことが挙げられる:
(1)コントロール検体(保存開始時の検体)の定量値に対して各条件の定量値が1.3倍以上変動する;
(2)(1)の変動を有するペプチドのうち、その変動が複数の被験者中の一定の数の被験者に共通する、例えば、被験者10人中7から8人、被験者8人中5から6人、被験者4人中3人で共通して生じる;
(3)定量値が時間経過に従って変動する。
 好ましい実施態様において、定量値の変動は、2.0倍以上、1.7倍以上、1.5倍以上、または1.3倍以上であり得る。ショットガン定量プロテオミクスではある程度網羅的にペプチドが選択されるため、適当な数のペプチドに絞るため、1.3倍以上ではなく、1.5倍以上、1.7倍以上、2.0倍以上の定量値変動を適宜、採用する。
Selection criteria for peptides of variation peptide candidates from shotgun quantitative proteomics results include meeting one or more of the following:
(1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage);
(2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects;
(3) The quantitative value fluctuates as time passes.
In a preferred embodiment, the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more. Since shotgun quantitative proteomics selects peptides to a certain extent exhaustively, in order to narrow down to an appropriate number of peptides, quantitative value fluctuation of not less than 1.3 times but not less than 1.5 times, 1.7 times or more, 2.0 times or more is adopted appropriately Do.
 SRM/MRM解析に適したペプチドの選択基準としては基準としては以下のいずれか1つ以上を満たすことが挙げられる:
(1)タンパク質に固有の配列を有するペプチドである;
(2)トリプシンによる切断ミスを含まない;
(3)同一タンパク質の中にショットガン定量プロテオミクスで変動の少ないペプチド(安定ペプチド)が同定されている。なお、上述の基準の(1)および(2)の間に、「定量に不適切な修飾を含むアミノ酸(メチオニン)を含まない;」なる基準を加えることも任意である。
As selection criteria for peptides suitable for SRM / MRM analysis, the criteria may include meeting one or more of the following:
(1) a peptide having a sequence unique to a protein;
(2) Does not contain a cleavage error by trypsin;
(3) Among the same proteins, shotgun quantitative proteomics has identified peptides with less variation (stable peptides). In addition, it is also optional to add the criteria "it does not contain the amino acid (methionine) containing the unsuitable modification in quantification ;;" between the above-mentioned criteria (1) and (2).
 本発明の一実施態様において、6)特定した組合せを、または6’)特定した組合せの少なくとも1つを、生物学的検体の品質評価マーカーとする工程は、SRM/MRM解析によるマーカー候補の検証を含み得る。好ましい実施態様において、品質評価マーカーとする工程は、先の工程5)で選択される変動ペプチドおよび安定ペプチド候補をSRM/MRM解析し、一定の基準を満たすペプチドを品質評価マーカーとする工程であり得る。 In one embodiment of the present invention, 6) the specified combination, or 6 ') at least one of the specified combinations is a quality evaluation marker of a biological sample, the step of validating a marker candidate by SRM / MRM analysis May be included. In a preferred embodiment, the step of setting it as the quality evaluation marker is a step of SRM / MRM analyzing the variable peptide and the stable peptide candidate selected in step 5) above and setting a peptide meeting certain criteria as the quality evaluation marker. obtain.
 SRM/MRM解析による品質評価マーカーにおける変動ペプチドの選択基準としては以下のいずれか1つ以上を満たすことが挙げられる:
(1)コントロール検体(保存開始時の検体)の定量値に対して各条件の定量値が1.3倍以上変動する;
(2)(1)の変動を有するペプチドのうち、その変動が複数の被験者中の一定の数の被験者に共通する、例えば、被験者10人中7から8人、被験者8人中5から6人、被験者4人中3人で共通して生じる。
 好ましい実施態様において、定量値の変動は、2.0倍以上、1.7倍以上、1.5倍以上、または1.3倍以上であり得る。
Selection criteria of the variable peptide in the quality evaluation marker by SRM / MRM analysis include satisfying any one or more of the following:
(1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage);
(2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects.
In a preferred embodiment, the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more.
 本発明の一実施態様において、上記のようにして得られる生物学的検体の品質評価マーカーは例えば、同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドとして、本明細書における表で示される品質評価マーカーの少なくとも1つの組合せであり得る。 In one embodiment of the present invention, the quality evaluation markers of the biological specimen obtained as described above are, for example, the quality evaluation markers shown in the table herein as the variable peptide and the stable peptide derived from the same specific protein. And at least one combination of
<変動ペプチドおよび安定ペプチドの製造方法>
 本発明はある態様において、単離されている生物学的検体の品質評価マーカーを製造する方法を提供する。当該方法は、
1)ヒトを含む動物から生物学的検体を採取する工程、
2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷する工程、
3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断する工程、
4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドを同定する工程、および
5)同定されたペプチドを、生物学的検体の品質評価マーカーとする工程を含み得る。
<Method for producing variable peptide and stable peptide>
The present invention provides, in one aspect, a method of producing a quality assessment marker for a biological sample that has been isolated. The method is
1) collecting a biological sample from an animal including human;
2) loading a factor that affects the quality of the collected biological sample,
3) treating the sample loaded with the factor with an enzyme to divide proteins present in the sample into peptides,
4) identifying, among the obtained peptides, peptides that cause quantitative and / or qualitative changes depending on factors affecting quality, and peptides that do not cause changes;
5) It may include the step of using the identified peptide as a quality evaluation marker of a biological sample.
 本発明の一実施態様において、1)ヒトを含む動物から生物学的検体を採取する工程は、血液、血清、血漿、尿および組織から選択される生物学的検体の採取を含む。ヒトを含む動物には、ヒトの他、イヌ、ネコ等の愛玩動物およびウシ、ブタ等の家畜が含まれる。具体的には、ヒトであり、好ましくはヒトの健常者である。また、好ましくは、生物学的検体は血清および血漿である。 In one embodiment of the present invention, 1) collecting a biological sample from an animal including human comprises collecting a biological sample selected from blood, serum, plasma, urine and tissue. Animals, including humans, include humans as well as companion animals such as dogs and cats and livestock such as cows and pigs. Specifically, it is a human being, preferably a healthy human being. Also preferably, the biological samples are serum and plasma.
 本発明の一実施態様において、2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷する工程は、品質に影響を及ぼす要因として、上記の採血から遠心分離までの時間、保存温度、保存期間および凍結融解の回数を含み得る。 In one embodiment of the present invention, 2) the step of loading the collected biological sample with a factor affecting its quality is the above-mentioned time from blood collection to centrifugation, storage as a factor affecting the quality It may include temperature, storage period and number of freeze-thaw cycles.
 本発明の一実施態様において、3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断する工程は、トリプシンまたはトリプシンとリシルエンドペプチダーゼとの組合せによる酵素処理を含み、好ましくは、酵素処理はトリプシンによる。 In one embodiment of the present invention, 3) treating the factor-loaded sample with an enzyme and dividing the protein present in the sample into peptides comprises enzymatic treatment with trypsin or a combination of trypsin and lysyl endopeptidase Preferably, the enzyme treatment is with trypsin.
 本発明の一実施態様において、4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチド(変動ペプチド)および変化を起こさないペプチド(安定ペプチド)を同定する工程は、本明細書に記載される同位体タグまたは同重体タグを用いる質量分析法および安定同位体標識の合成ペプチドを用いるSRM/MRM法による同定を含み得る。好ましい実施態様において、変動ペプチドおよび安定ペプチドと同定する工程は、TMTラベル化またはジメチル標識を用いてペプチドを網羅的な解析(ショットガン定量プロテオミクス)を行い、一定の基準に基づいて変動ペプチドおよび安定ペプチド候補を選択し、続いてターゲットプロテオミクス(SRM/MRM解析)に適した変動ペプチドおよび安定ペプチド候補を選択し、更に安定同位体標識ペプチドを用いてSRM/MRM解析を行うことを含み得る。 In one embodiment of the present invention, 4) among the obtained peptides, peptides that cause quantitative and / or qualitative changes depending on factors affecting quality (variable peptides) and peptides that do not cause changes (stable peptides) The step of identifying can comprise mass spectrometry using isotopic or isobaric tags as described herein and identification by SRM / MRM using synthetic peptides with stable isotope labels. In a preferred embodiment, the step of identifying as a variable peptide and a stable peptide performs comprehensive analysis (shotgun quantitative proteomics) of the peptide using TMT labeling or dimethyl labeling, and based on certain criteria, the variable peptide and the stable peptide are stable. It may involve selecting peptide candidates, followed by selection of variable peptides and stable peptide candidates suitable for target proteomics (SRM / MRM analysis), and further performing SRM / MRM analysis using stable isotope-labeled peptides.
 ショットガン定量プロテオミクス結果からの変動ペプチド候補のペプチドの選択基準としては以下のいずれか1つ以上を満たすことが挙げられる:
(1)コントロール検体(保存開始時の検体)の定量値に対して各条件の定量値が1.3倍以上変動する;
(2)(1)の変動を有するペプチドのうち、その変動が複数の被験者中の一定の数の被験者に共通する、例えば、被験者10人中7から8人、被験者8人中5から6人、被験者4人中3人で共通して生じる;
(3)定量値が時間経過に従って変動する。
 好ましい実施態様において、定量値の変動は、2.0倍以上、1.7倍以上、1.5倍以上、または1.3倍以上であり得る。ショットガン定量プロテオミクスではある程度網羅的にペプチドが選択されるため、適当な数のペプチドに絞るため、1.3倍以上ではなく、1.5倍以上、1.7倍以上、2.0倍以上の定量値変動を適宜、採用する。
Selection criteria for peptides of variation peptide candidates from shotgun quantitative proteomics results include meeting one or more of the following:
(1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage);
(2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects;
(3) The quantitative value fluctuates as time passes.
In a preferred embodiment, the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more. Since shotgun quantitative proteomics selects peptides to a certain extent exhaustively, in order to narrow down to an appropriate number of peptides, quantitative value fluctuation of not less than 1.3 times but not less than 1.5 times, 1.7 times or more, 2.0 times or more is adopted appropriately Do.
 SRM/MRM解析に適したペプチドの選択基準としては基準としては以下のいずれか1つ以上を満たすことが挙げられる:
(1)タンパク質に固有の配列を有するペプチドである;
(2)トリプシンによる切断ミスを含まない;
(3)同一タンパク質の中にショットガン定量プロテオミクスで変動の少ないペプチド(安定ペプチド)が同定されている。なお、上述の基準の(1)および(2)の間に、「定量に不適切な修飾を含むアミノ酸(メチオニン)を含まない;」なる基準を加えることも任意である。
As selection criteria for peptides suitable for SRM / MRM analysis, the criteria may include meeting one or more of the following:
(1) a peptide having a sequence unique to a protein;
(2) Does not contain a cleavage error by trypsin;
(3) Among the same proteins, shotgun quantitative proteomics has identified peptides with less variation (stable peptides). In addition, it is also optional to add the criteria "it does not contain the amino acid (methionine) containing the unsuitable modification in quantification ;;" between the above-mentioned criteria (1) and (2).
 本発明の一実施態様において、5)同定されたペプチドを、生物学的検体の品質評価マーカーとする工程は、SRM/MRM解析によるマーカー候補の検証を含み得る。好ましい実施態様において、品質評価マーカーとする工程は、先の工程5)で選択される変動ペプチドおよび安定ペプチド候補をSRM/MRM解析し、一定の基準を満たすペプチドを品質評価マーカーとする工程であり得る。 In one embodiment of the present invention, 5) the step of using the identified peptide as a quality evaluation marker of a biological sample may include verification of a marker candidate by SRM / MRM analysis. In a preferred embodiment, the step of setting it as the quality evaluation marker is a step of SRM / MRM analyzing the variable peptide and the stable peptide candidate selected in step 5) above and setting a peptide meeting certain criteria as the quality evaluation marker. obtain.
 SRM/MRM解析による品質評価マーカーにおける変動ペプチドの選択基準としては以下のいずれか1つ以上を満たすことが挙げられる:
(1)コントロール検体(保存開始時の検体)の定量値に対して各条件の定量値が1.3倍以上変動する;
(2)(1)の変動を有するペプチドのうち、その変動が複数の被験者中の一定の数の被験者に共通する、例えば、被験者10人中7から8人、被験者8人中5から6人、被験者4人中3人で共通して生じる。
 好ましい実施態様において、定量値の変動は、2.0倍以上、1.7倍以上、1.5倍以上、または1.3倍以上であり得る。ショットガン定量プロテオミクスである程度絞ったペプチド群に対して行うSRM/MRM解析では、定量値変動1.3倍以上とすることで、広くペプチドを選択することができる。
Selection criteria of the variable peptide in the quality evaluation marker by SRM / MRM analysis include satisfying any one or more of the following:
(1) The quantitative value of each condition fluctuates by 1.3 or more times the quantitative value of the control sample (sample at the start of storage);
(2) Among the peptides having the variation of (1), the variation is common to a certain number of subjects among a plurality of subjects, for example, 7 to 8 out of 10 subjects, 5 to 6 out of 8 subjects , Common to 3 out of 4 subjects.
In a preferred embodiment, the variation of the quantitative value may be 2.0 times or more, 1.7 times or more, 1.5 times or more, or 1.3 times or more. In SRM / MRM analysis performed on a partially narrowed peptide group that is shotgun quantitative proteomics, peptides can be widely selected by setting the quantitative value fluctuation to 1.3 times or more.
<バイオバンク等から入手される検体の品質評価に使用するペプチドの組合せに関連する発明>
 本発明の一実施態様において、上記のようにして製造される生物学的検体の品質評価マーカーは例えば、同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドとして、本明細書における表に並列して示される品質評価マーカーの少なくとも1つの組合せであり得る。本発明の品質評価マーカーは上記各工程にて説明した条件の変動によって製造される他の品質評価マーカーを含むものであり、本明細書における表記載の品質評価マーカーに限定されないことに留意すべきである。
<Invention related to the combination of peptides used for quality evaluation of samples obtained from Biobank etc.>
In one embodiment of the present invention, the quality assessment markers of biological specimens produced as described above are shown, for example, as variable peptides and stable peptides derived from the same specific protein in parallel in the table herein. And at least one combination of quality assessment markers. It should be noted that the quality evaluation marker of the present invention includes other quality evaluation markers manufactured by the variation of the conditions described in the above-mentioned respective steps, and is not limited to the quality evaluation markers described in the table in the present specification. It is.
 また、本発明は一実施態様において、本明細書における表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドにおける、単離されている生物学的検体の品質を評価できる品質評価マーカーとしての使用、および本明細書における表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つの組合せにおける、単離されている生物学的検体の品質を評価できる品質評価マーカーとしての使用に関する。 In addition, in one embodiment, the present invention is a variable peptide and stable peptide derived from the same specific protein shown in the table herein as a quality evaluation marker capable of evaluating the quality of the biological specimen being isolated. As a quality assessment marker that can be used to assess the quality of the biological specimen being isolated, in combination and at least one combination of variable peptide and stable peptide from the same specific protein shown in parallel in the table herein On the use of
 また、本発明は一実施態様において、本明細書における表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドであって安定同位体を含むものを含有する、単離されている生物学的検体の品質を評価するためのキット、および本明細書における表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つであって安定同位体を含むものを含有する、単離されている生物学的検体の品質を評価するためのキットを提供する。本明細書に使用されている「キット」は、変動ペプチドおよび安定ペプチドの組合せ、すなわち品質評価マーカーに対応する安定同位体標識ペプチド、ならびにタンパク質可溶化試薬およびタンパク質消化試薬、酵素処理試薬等を別々または単一容器中に備える。また、キットは生物学的検体の品質を評価するための方法の説明書を備え得る。好ましくは、本発明のキットは、品質評価マーカーの安定同位体標識ペプチドを含み、当該安定同位体標識ペプチドは、本明細書に記載のようなペプチドの量的および/または質的変化を検出・定量する質量分析法に適したペプチドであり得る。 The present invention also provides, in one embodiment, an isolated biological comprising a variable peptide and a stable peptide derived from the same specific protein as shown in the Table herein, including stable isotopes. A kit for assessing the quality of an analyte, and at least one of a variable peptide and a stable peptide derived from the same specific protein shown in parallel in the table herein, containing stable isotopes, A kit is provided to assess the quality of the biological sample being isolated. As used herein, a “kit” is a combination of variable and stable peptides, ie, stable isotope labeled peptides corresponding to quality assessment markers, as well as separate protein solubilization reagents and protein digestion reagents, enzyme treatment reagents, etc. Or in a single container. The kit may also be equipped with instructions for assessing the quality of the biological sample. Preferably, the kit of the present invention comprises a stable isotope labeled peptide of a quality assessment marker, which stable isotopically labeled peptide detects quantitative and / or qualitative changes in the peptide as described herein. It may be a peptide suitable for mass spectrometry to be quantified.
 本発明者らは、品質評価マーカーを選別・製造するために、まず、健常者4名の血清と血漿を遠心分離までの時間、保存温度および期間ならびに凍結融解の回数を変化させて、影響を受ける不安定ペプチドの同定を、ショットガン定量プロテオミクスを用いて行った。遠心分離までの時間は15分から6時間まで、保存温度および期間は室温、4℃、-30℃、-80℃、液体窒素で数時間から6か月まで、凍結融解の回数は1回から5回までの、遠心分離条件、保存条件および凍結融解条件の影響を検討した。
 その結果、血清おおよび血漿の網羅的プロテオーム解析により約6千種類のペプチドが同定され、そのうち遠心分離条件、保存条件および凍結融解条件の影響を受ける不安定なペプチドが数百種類同定された。それらのペプチドが由来するタンパク質には安定なペプチド群が存在した。
 次に、それらの品質評価マーカーの候補ペプチドについて、SRM/MRM法を用いたターゲットプロテオミクスにより検証を行った。その結果、遠心分離までの時間や保存条件の影響を受けて量的および/または質的変化を生じる変動ペプチドおよび量的および/または質的変化を生じない安定ペプチドとして合計98種類が特定された。
 以下、本発明を実施例により、詳細に説明するが、これらは本発明の範囲を限定するものでなく、単なる例示であることに留意すべきである。
In order to select and produce quality evaluation markers, the present inventors first changed the time to centrifugation of serum and plasma of 4 healthy persons, storage temperature and duration, and the number of freeze-thaw cycles to Identification of the unstable peptide to be received was performed using shotgun quantitative proteomics. Time to centrifugation is 15 minutes to 6 hours, Storage temperature and duration are room temperature, 4 ° C, -30 ° C, -80 ° C, several hours to 6 months with liquid nitrogen, freeze / thaw 1 to 5 times The effects of centrifugation conditions, storage conditions and freeze-thaw conditions were examined up to the number of times.
As a result, comprehensive proteome analysis of serum and plasma identified about 6,000 kinds of peptides, and among them, hundreds of unstable peptides affected by centrifugation conditions, storage conditions and freeze-thaw conditions were identified. There were stable peptide groups in the proteins from which these peptides were derived.
Next, the candidate peptides of these quality evaluation markers were verified by target proteomics using SRM / MRM method. As a result, a total of 98 types were identified as fluctuating peptides that produced quantitative and / or qualitative changes under the influence of the time until centrifugation and storage conditions, and stable peptides that did not produce quantitative and / or qualitative changes. .
EXAMPLES The present invention will be described in detail by way of examples, but it should be noted that these do not limit the scope of the present invention and are merely illustrative.
 健常者4名から血清および血漿を採取し、各種保存条件(保存温度、保存期間、採血から遠心分離までの時間、凍結融解回数)に置いた後に回収した。当該血清および血漿検体について、2種類のショットガン定量プロテオミクスにより品質評価マーカーの候補ペプチドの探索を行い、保存温度・期間および採血から遠心分離までの時間毎にマーカー候補ペプチドを変動したペプチドの中から選択した。また選択されたマーカー候補のペプチドについて、ターゲットプロテオミクス(安定同位体標識ペプチドを用いるSRM/MRM法)による検証実験を行い、同定されたマーカー候補ペプチドが検体の各保存条件間で確かに変動しているかまたは安定であるかを確認した。品質評価マーカーを同定した解析の概略を図1に示す。 Serum and plasma were collected from 4 healthy persons and collected under various storage conditions (storage temperature, storage period, time from blood collection to centrifugation, number of freeze-thaw cycles). The serum and plasma samples were searched for candidate peptides for quality evaluation markers by two types of shotgun quantitative proteomics, and among the peptides that varied the marker candidate peptides for storage temperature and period and for each time from blood collection to centrifugation, Selected. In addition, verification experiments by target proteomics (SRM / MRM method using stable isotope-labeled peptides) are performed for selected marker candidate peptides, and the identified marker candidate peptides are certainly varied among the storage conditions of the sample. It was confirmed that it was or was stable. The outline of the analysis which identified the quality evaluation marker is shown in FIG.
実施例1:血清・血漿検体のショットガン定量プロテオミクス1
実施例1.1:血清および血漿検体の回収条件ならびに検体からのタンパク質抽出および消化
 健常者4名分の血液を採取し、それぞれ血清・血漿として分離後、保存温度および保存期間の条件毎に検体を回収した。また、採血後の遠心分離までの時間別検体もそれぞれ回収する。検体の回収条件を表2に示す。
Figure JPOXMLDOC01-appb-T000124
Example 1: Shotgun quantitative proteomics of serum and plasma samples 1
Example 1.1 Recovery Conditions of Serum and Plasma Specimens and Protein Extraction and Digestion from the Specimens Blood for four healthy subjects is collected, separated as serum and plasma respectively, and specimens are collected for each condition of storage temperature and storage period did. In addition, samples separated by time until centrifugation after blood collection are also collected. The sample recovery conditions are shown in Table 2.
Figure JPOXMLDOC01-appb-T000124
血清・血漿検体からのタンパク質抽出および消化
 各条件で保存された血清・血漿検体からのタンパク質抽出および消化酵素によるペプチド断片への消化は、相間移動抽出法(PTS法:Phase transfer surfactant)により行った(参考文献4)。以下に、その手順を示す。各検体をMPEX PTS試薬(GL Science, Tokyo, Japan)で溶解した後、95℃で10分間インキュベートを行い、ジチオトレイトールを終濃度5mMまたはTCEPを終濃度33.3mMで加え30分間還元反応を行い、さらにヨードアセトアミドを終濃度20mMまたは53mMで加えてアルキル化反応を行った。その後、検体に1%(w/w)トリプシン(proteomics grade; Roche Mannheim, Germany)または2%(w/w)リシルエンドペプチダーゼ(和光純薬工業、大阪、日本)と2%(w/w)トリプシン(Promega Corporation, Madison, USA)を加えて、抽出したタンパク質を12時間37℃にて消化させた。消化後、等量の酢酸エチルと終濃度1%の三フルオロ酢酸を加えてボルテックスし、液中の界面活性剤を有機相に分離した。遠心分離後、ペプチドを含んだ水相を回収し、Stage Tipsによる脱塩を行い、消化ペプチドを得た(参考文献5)。
Protein extraction and digestion from serum and plasma samples Protein extraction from serum and plasma samples stored under each condition and digestion to peptide fragments with digestive enzymes were performed by phase transfer extraction (PTS method: Phase transfer surfactant) (Ref. 4). The procedure is shown below. After dissolving each sample with MPEX PTS reagent (GL Science, Tokyo, Japan), incubate at 95 ° C for 10 minutes, add dithiothreitol to a final concentration of 5 mM or TCEP to a final concentration of 33.3 mM, and perform a reduction reaction for 30 minutes Further, iodoacetamide was added to a final concentration of 20 mM or 53 mM to carry out the alkylation reaction. Then, 1% (w / w) trypsin (proteomics grade; Roche Mannheim, Germany) or 2% (w / w) lysyl endopeptidase (Wako Pure Chemical Industries, Osaka, Japan) and 2% (w / w) to the sample Trypsin (Promega Corporation, Madison, USA) was added to digest the extracted protein for 12 hours at 37 ° C. After digestion, equal volumes of ethyl acetate and 1% final concentration of trifluoroacetic acid were added and vortexed to separate the surfactant in the solution into the organic phase. After centrifugation, the aqueous phase containing the peptide was recovered and desalted by Stage Tips to obtain a digested peptide (Reference 5).
実施例1.2:消化ペプチドのTMTラベル法を用いたショットガン比較定量分析
 実施例1.1で調製した消化ペプチドはTandem Mass Tag(TMT)試薬(Thermo Scientific, Bremen, Germany)により安定同位体標識を行った後、C18-SCX StageTipカラムによって7分画した(参考文献6)。その後、各分画をLC-MS/MSによるショットガン定量プロテオーム解析を行った。LC-MS/MS装置の構成は以下のとおりであった。質量分析器:Q-Exactive mass spectrometer(Thermo Scientific, Bremen, Germany)、液体クロマトグラフィー:UltiMate 3000 Nano-flow high-performance LC(HPLC)system(Dionex, Sunnyvale, CA)、オートサンプラー:HTC-PAL autosampler(CTC Analytics, Zwingen, Switzerland)。また、試料の質量分析器への導入は、内径75μm長さ300mmのニードルに1.9μmのC18-AQ樹脂を封入した自作の分析カラムを用いた。LCの移動相は、移動相A(0.1%ギ酸および2%アセトニトリル)および移動相B(0.1%ギ酸および90%アセトニトリル)により構成された。試料を緩衝液Aに溶解させ、トラップカラム(0.075 x 20mm, Acclaim PepMap RSLC Nano-Trap Column; Thermo Scientific)にロードした後、LCの流速280nL/minにて、移動相は120分で5~35%Bの勾配で展開された。Q-ExactiveによるFull MS測定条件は以下のとおりであった。スキャンレンジ:350-1800m/z、分解能:70000、イオン積算:3 x 106。またMS/MS測定条件は以下のとおりであった。Top10プリカーサーイオン、インジェクションタイム:120ms、分解能:35000、MS/MSイオン選択閾値:5 x 104カウント、分離幅:3.0Da。測定RAWデータファイルの解析は、MaxQuantソフトウェア(Ver 1.5.1.2)により行った。検索エンジンにはAndromeda、UniProtヒトタンパク質データベースを用いた。同定タンパク質の閾値は、プリカーサー質量誤差範囲を7ppm、断片イオン質量誤差範囲を0.01Daに設定した。同定タンパク質およびペプチドは、リバースデータベースに対する1%未満の偽陽性率(FDR)で判定した。
Example 1.2 Shotgun comparative quantitative analysis using TMT labeling of digested peptides The digested peptides prepared in Example 1.1 were stable isotope labeled with Tandem Mass Tag (TMT) reagent (Thermo Scientific, Bremen, Germany) After that, 7 fractions were performed with a C18-SCX StageTip column (Reference 6). Thereafter, each fraction was subjected to shotgun quantitative proteome analysis by LC-MS / MS. The configuration of the LC-MS / MS apparatus was as follows. Mass spectrometer: Q-Exactive mass spectrometer (Thermo Scientific, Bremen, Germany), liquid chromatography: UltiMate 3000 Nano-flow high-performance LC (HPLC) system (Dionex, Sunnyvale, CA), autosampler: HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland). Further, for the introduction of the sample into the mass spectrometer, a self-made analytical column in which a C18-AQ resin of 1.9 μm was sealed in a needle with an inner diameter of 75 μm and a length of 300 mm was used. The mobile phase of LC was constituted by mobile phase A (0.1% formic acid and 2% acetonitrile) and mobile phase B (0.1% formic acid and 90% acetonitrile). The sample is dissolved in buffer A and loaded on a trap column (0.075 x 20 mm, Acclaim PepMap RSLC Nano-Trap Column; Thermo Scientific), then the mobile phase is 5-35 in 120 minutes at a flow rate of 280 nL / min of LC. Unfolded with a slope of% B. The conditions for measurement of Full MS by Q-Exactive were as follows. Scan range: 350-1800 m / z, resolution: 70000, ion integration: 3 × 10 6 . The MS / MS measurement conditions were as follows. Top 10 precursor ions, injection time: 120 ms, resolution: 35000, MS / MS ion selection threshold: 5 × 10 4 counts, separation width: 3.0 Da. Analysis of the measured RAW data file was performed by MaxQuant software (Ver 1.5.1.2). Search engine Andromeda, UniProt human protein database was used. The threshold value of the identified protein was set to a precursor mass error range of 7 ppm and a fragment ion mass error range of 0.01 Da. Identification proteins and peptides were determined with a false positive rate (FDR) of less than 1% against the reverse database.
実施例1.3:消化ペプチドのジメチルラベル法を用いたショットガン比較定量分析
 実施例1.1で調製した各試料の消化ペプチドは2つに分け、一方を安定同位体標識ジメチル化試薬(DM-H)を用いて、他方を非標識のジメチル化試薬(DM-L)を用いて標識(参考文献7)した。使用したジメチル標識用試薬は、ホルムアルデヒドP/N 252549(シグマアルドリッチ, St.Louis, USA)、安定同位体標識ホルムアルデヒドP/N 596388(シグマアルドリッチ)、シアノ水素化ホウ酸ナトリウムP/N 714435(シグマアルドリッチ)、シアノ重水素化ホウ酸ナトリウムP/N SC258163(シグマアルドリッチ)であった。その後、比較対象の全試料を混合したDM-Hを内部標準として各試料のDM-Lに混合した。その後、終濃度5%でアセトニトリルを加え、続いて終濃度1%でTFAを加えて液中の界面活性剤を沈殿させて上清を試料として回収してLC-MS/MS用試料とした。LC-MS/MS装置の構成は以下のとおりであった。質量分析器:LTQ-Orbitrap Discoverer(Thermo Scientific)、液体クロマトグラフィー:ナノスペースSI-2システム(資生堂, 東京)。また、試料の質量分析器への導入は、内径2.0mm、長さ50mmのカプセルパックC18 MGIII-Hカラム(資生堂)を用いた。LCの移動相は、移動相A(0.01%ギ酸)、および移動相B(0.01%ギ酸および90%アセトニトリル)により構成された。試料は移動相の流速200μL/min、0~27%(70分)、27~55%(14分)の勾配で展開された。LTQ-Orbitrap DiscovererによるFull MS測定条件は以下のとおりであった。スキャンレンジ:400-2000m/z、分解能:30000、イオン積算 5 x 105。またMS/MS測定条件は以下のとおりであった。Top5プリカーサーイオン、最大イオンタイム:200ms、イオン積算:105、イオン選択閾値:103、分離幅:2Da。測定RAWデータファイルの同定解析は、Proteome Discoverer V3.1(Thermo Scientific)上のSEQUEST Search(Thermo Scientific)により行い、データベースはUniProtヒトタンパク質データベースを用いた。同定タンパク質の閾値は、プリカーサー質量誤差範囲を3ppm、断片イオン質量誤差範囲を0.8Daに設定した。同定タンパク質およびペプチドは、Proteome Discovererの標準設定で1%未満の儀陽性率(FDR)で判定した。Full MSスペクトルを対象とした比較解析は、LC-MS解析ソフトウェアSkyline Ver.3.6(MacCoss Lab.)を使用した。事前に同様の測定を反復して同定したペプチドライブラリーを用いてXIC(extracted-ion chromatogram)による比較解析を行った。
Example 1.3 Shotgun Comparative Quantitative Analysis of Digested Peptide Using Dimethyl Labeling The digested peptide of each sample prepared in Example 1.1 is divided into two, one of which is a stable isotope labeled dimethylation reagent (DM-H). The other was labeled with unlabeled dimethylating reagent (DM-L) (Ref. 7). The reagents for dimethyl labeling used were formaldehyde P / N 252549 (Sigma Aldrich, St. Louis, USA), stable isotope labeled formaldehyde P / N 596388 (Sigma Aldrich), sodium cyanoborohydride P / N 714435 (Sigma) Aldrich), cyano deuterated sodium borate P / N SC 258 163 (Sigma Aldrich). Thereafter, DM-H in which all samples to be compared were mixed was mixed in DM-L of each sample as an internal standard. Thereafter, acetonitrile was added to a final concentration of 5%, and then TFA was added to a final concentration of 1% to precipitate a surfactant in the solution, and the supernatant was collected as a sample to obtain a sample for LC-MS / MS. The configuration of the LC-MS / MS apparatus was as follows. Mass spectrometer: LTQ-Orbitrap Discoverer (Thermo Scientific), liquid chromatography: Nanospace SI-2 system (Shiseido, Tokyo). Further, for the introduction of the sample into the mass spectrometer, a capsule pack C18 MGIII-H column (Shiseido) with an inner diameter of 2.0 mm and a length of 50 mm was used. The mobile phase of LC was constituted by mobile phase A (0.01% formic acid) and mobile phase B (0.01% formic acid and 90% acetonitrile). The samples were developed at a mobile phase flow rate of 200 μL / min, with a gradient of 0-27% (70 minutes), 27-55% (14 minutes). The conditions for Full MS measurement by LTQ-Orbitrap Discoverer were as follows. Scan range: 400-2000 m / z, resolution: 30000, ion integration 5 x 105. The MS / MS measurement conditions were as follows. Top 5 precursor ion, maximum ion time: 200 ms, ion integration: 105, ion selection threshold: 103, separation width: 2 Da. Identification analysis of the measured RAW data file was performed by SEQUEST Search (Thermo Scientific) on Proteome Discoverer V3.1 (Thermo Scientific), and the database used UniProt human protein database. The threshold value of the identified protein was set to a precursor mass error range of 3 ppm and a fragment ion mass error range of 0.8 Da. Identification proteins and peptides were determined with a Proteome Discoverer standard setting with a percent positive rate (FDR) of less than 1%. The comparison analysis for the Full MS spectrum used LC-MS analysis software Skyline Ver. 3.6 (MacCoss Lab.). Comparative analysis by XIC (extracted-ion chromatogram) was performed using a peptide library identified by repeating similar measurement in advance.
(実施例1の結果)
ショットガン定量プロテオミクスによる品質評価マーカーの探索
 健常者4名より採取した血清・血漿検体を保存温度、保存期間、採血から遠心分離までの時間の条件別に置いたのちにTMT法およびジメチル標識法によるショットガン定量プロテオーム解析で条件別の変動ペプチドを探索した。各検体の定量値は、4名それぞれのコントロール検体(採血直後に消化した試料)のピーク面積を1とした相対ピーク面積(Peak Area Ratio)として算出した。血清・血漿のすべての保存条件で、合計272検体からペプチドを回収し、安定同位体標識を行った(TMTラベル化:48セット x 7分画の合計336 run、ジメチル標識56セットの327run)。合計663runの解析の結果、トータルで5905ペプチド(865タンパク質)を同定した。
(Result of Example 1)
Search for quality evaluation markers by shotgun quantitative proteomics Serum and plasma samples collected from 4 healthy subjects are placed under conditions of storage temperature, storage period, and time from blood collection to centrifugation, then shot by TMT method and dimethyl labeling method Conditional variation peptides were searched by cancer quantitative proteome analysis. The quantitative value of each sample was calculated as a relative peak area (Peak Area Ratio) where the peak area of four control samples (sample digested immediately after blood collection) was 1. Peptides were collected from a total of 272 samples under all storage conditions of serum and plasma, and stable isotope labeling was performed (TMT labeling: 336 runs of 48 sets × 7 fractions, 327 runs of 56 sets of dimethyl labels). As a result of analysis of 663 runs in total, 5905 peptides (865 proteins) were identified in total.
ショットガン定量解析結果からのマーカー候補ペプチドの選択
 定量値を算出したすべての同定ペプチドから、マーカー候補となるペプチドを選択した。全定量ペプチドの中から条件毎にコントロール(0時間)検体との相対定量値が1.5倍以上変動しているものを変化があったペプチドとし、その変化が4人中3人で共通して変化しているものを候補ペプチドとした。さらに、時間経過の途中でペプチド量の変化が一貫していないペプチドについては、候補から排除した。これらの候補ペプチドは、血清と血漿毎に選択し、保存温度・期間と採血後遠心分離までの時間のそれぞれの条件毎にも選択した。これらの条件を満たすマーカー候補は、738ペプチド(196タンパク質)あった。
Selection of Marker Candidate Peptides from Shotgun Quantitative Analysis Results From all identified peptides for which quantitative values were calculated, peptides serving as marker candidates were selected. Among the total quantification peptides, those whose relative quantitative value with the control (0 hour) sample fluctuates 1.5 times or more for each condition are regarded as the peptide that has changed, and the change is common to 3 out of 4 people The candidate peptides were identified as Furthermore, peptides with inconsistent changes in the amount of peptide over time were excluded from candidates. These candidate peptides were selected for each serum and plasma, and were also selected for each condition of storage temperature and period and time after blood collection and centrifugation. The candidate marker that satisfies these conditions was 738 peptide (196 protein).
実施例2:LC-SRM/MRM解析
 SRM/MRM解析の方法は以前に報告された方法に従って行った(参考文献8)。PTS法により消化したペプチドを0.1%のトリフルオロ酢酸(TFA)を含む2%のアセトニトリル溶液に溶解させ、内部標準として標的ペプチドと同じ配列を有する合成安定同位体標識ペプチド(SpikeTide L; JPT Peptide Technologies, Berlin, Germany)を加えた。その後これを、ナノフローLCを連結したトリプル四重極質量分析計を用いて分析した。装置の構成は以下の通りであった。トリプル四重極質量分析計:TSQ-Vantage(Thermo Fisher Scientific, Bremen, Germany)、ナノフローLC:Paradigm MS2(Michrom BioResources, Auburn, CA)、オートサンプラー:HTC-PAL autosampler(CTC Analytics, Zwingen, Switzerland)。試料の質量分析器への導入は、内径75μm長さ100mmのニードルに1.9μmのC18-AQ樹脂を封入した自作の分析カラムを用いた。LCの移動相は、緩衝液A(0.1%ギ酸および2%アセトニトリル)およびB(0.1%ギ酸および90%アセトニトリル)により構成された。試料を緩衝液Aに溶解させ、トラップカラム(0.075 x 20 mm, Acclaim PepMap RSLC Nano-Trap Column; Thermo Scientific)にロードした後、LCの流速280nL/minにて、移動相は45分で5~35%Bの勾配で展開された。SRMモードでの解析は以下の条件で行った。Q1 Peak Width:0.7 FWHM、Cycle time:1 sec、Collision Gass Pressure:1.8 mTorr。衝突エネルギーはSRMトランジションごとに最適化され、各トランジションの強度はピーク時間幅5分のスケジュールモードで測定した。
Example 2 LC-SRM / MRM Analysis The method of SRM / MRM analysis was performed according to the method previously reported (Ref. 8). A peptide stabilized by PTS method is dissolved in a 2% acetonitrile solution containing 0.1% trifluoroacetic acid (TFA), and a synthetic stable isotope labeled peptide having the same sequence as the target peptide as an internal standard (SpikeTide L; JPT Peptide Technologies , Berlin, Germany). It was then analyzed using a triple quadrupole mass spectrometer coupled with nanoflow LC. The configuration of the device was as follows. Triple quadrupole mass spectrometer: TSQ-Vantage (Thermo Fisher Scientific, Bremen, Germany), Nanoflow LC: Paradigm MS2 (Michrom BioResources, Auburn, CA), Autosampler: HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland) . The sample was introduced into a mass spectrometer using a self-made analytical column in which a 1.9 μm C18-AQ resin was sealed on a needle with an inner diameter of 75 μm and a length of 100 mm. The mobile phase of LC consisted of buffer A (0.1% formic acid and 2% acetonitrile) and B (0.1% formic acid and 90% acetonitrile). After dissolving the sample in buffer A and loading it on a trap column (0.075 x 20 mm, Acclaim PepMap RSLC Nano-Trap Column; Thermo Scientific), the mobile phase is 5 to 45 min at a flow rate of 280 nL / min of LC. It was developed with a 35% B gradient. The analysis in the SRM mode was performed under the following conditions. Q1 Peak Width: 0.7 FWHM, Cycle time: 1 sec, Collision Gass Pressure: 1.8 mTorr. The collision energy was optimized for each SRM transition, and the intensity of each transition was measured in schedule mode with a peak duration of 5 minutes.
SRM/MRM標的ペプチドの選択とトランジション評価
 バイオマーカー候補タンパク質の標的ペプチドとして、ショットガンプロテオミクスにより同定されたペプチドからSRM/MRM解析に適した配列を持つペプチドを選別した。選択の基準は、以下の通りであった。(1)タンパク質に固有の配列である、(2)定量に不適切な修飾を含むアミノ酸(メチオニン)を含まない、(3)トリプシンによる切断ミスを含まない。また、各々のペプチドのSRM/MRM測定のトランジション(親イオンと娘イオンのm/zの組合せ)は、Skylineソフトウェアソフトウェア(MacCoss Lab)を用いて、ショットガンプロテオミクスのMS/MSスペクトルライブラリから作成した。選択されたペプチドの測定トランジションは、ペプチドあたり強度の強い8トランジションをまず選択し、プール血清から調製したペプチドに対して選択したペプチドのSRM解析を行い、最終的に信号対雑音比(S/N)が>10であるトランジションが3つ以上あるペプチドを選択した。さらに選択したトランジションが正しく標的ペプチドを検出できているかどうかの確認は、内在性標的ペプチドのシグナルと内部標準として添加した標的ペプチドと同配列の安定同位体標識ペプチド(Stable isotope-labeled peptide; SI-ペプチド)との、トランジションにおけるピーク面積比の類似性により判定した。この類似性はSkylineソフトウェアで「dotp」によって表わされる。そして、dotp>0.9を内在性ペプチド検出の閾値にセットした。SI-ペプチドは、同位元素で標識されたC末端Arg13C6;15N4またはLys 13C6;15N2重いペプチドとして合成された(SpikeTide L, JPT Peptide Technologies, Berlin, Germany)(crude purity)。
Selection of SRM / MRM Target Peptide and Transition Evaluation As a target peptide of a biomarker candidate protein, peptides having a sequence suitable for SRM / MRM analysis were selected from peptides identified by shotgun proteomics. The criteria for selection were as follows. (1) A sequence unique to a protein (2) An amino acid (methionine) containing an inappropriate modification for quantification (methionine) is not included (3) A miss by cleavage with trypsin is not included. In addition, transitions of SRM / MRM measurement of each peptide (combination of m / z of parent ion and daughter ion) were prepared from MS / MS spectrum library of shotgun proteomics using Skyline software (MacCoss Lab) . The measurement transition of the selected peptide is performed by first selecting eight strong transitions per peptide, and performing SRM analysis of the selected peptide on the peptide prepared from the pooled serum, and finally the signal to noise ratio (S / N) The peptide with three or more transitions whose>is> 10 was selected. Furthermore, confirmation of whether or not the selected transition can correctly detect the target peptide can be made by using a stable isotope-labeled peptide (SItable) having the same sequence as the signal of the endogenous target peptide and the target peptide added as an internal standard. It was judged by the similarity of the peak area ratio in the transition with the peptide). This similarity is represented by "dotp" in Skyline software. And dotp> 0.9 was set to the threshold value of endogenous peptide detection. The SI-peptide was synthesized as isotopically labeled C-terminal Arg13C6; 15N4 or Lys 13C6; 15N2 heavy peptide (SpikeTide L, JPT Peptide Technologies, Berlin, Germany) (crude purity).
内部標準ペプチドを用いた標的ペプチドの定量
 SRM/MRMによる標的ペプチドの定量値は、内部標準として各試料に添加したSI-ペプチドと内在性の標的ペプチドのピーク面積比(Peak Area Ratio)として算出した。質量分析計での測定の結果出力されたRAWデータファイルはSkylineソフトウェア(フリーウェア; MacCoss Lab.)を用いて解析し、ピークエリアの検出とエリア比を算出した。
Quantification of target peptide using internal standard peptide The quantitative value of target peptide by SRM / MRM was calculated as the peak area ratio (Peak Area Ratio) of the SI-peptide added to each sample as an internal standard and the endogenous target peptide . The RAW data file output as a result of the measurement by the mass spectrometer was analyzed using Skyline software (freeware; MacCoss Lab.) To calculate the peak area detection and the area ratio.
(実施例2の結果)
SRM/MRM解析用マーカー候補ペプチドの選択
 次に、検体条件によって選ばれたマーカー候補ペプチドの中から、SRM/MRM解析に適したペプチドの絞り込みを行った。選択基準は、ペプチド配列がタンパク質に固有のものであり、メチオニンを含まず、トリプシンによる切断ミスを含まない配列とした。また、同一タンパク質の中にショットガン定量プロテオーム解析において変動が少なかったペプチド(安定ペプチド)が同定されているものを候補とした。安定ペプチドについても変動ペプチド候補と同様の選択基準を満たすものを選択した。同一タンパク質の中で変動ペプチド候補と安定ペプチド候補が複数同定されたものについては、同定のピーク強度がより強いものを選んだ。これらの基準から選ばれた安定ペプチドおよび変動ペプチドの候補数は合計356ペプチドであった。
(Result of Example 2)
Selection of Marker Candidate Peptides for SRM / MRM Analysis Next, among the marker candidate peptides selected according to the sample conditions, peptides suitable for SRM / MRM analysis were narrowed down. The selection criteria were those in which the peptide sequence was protein specific, did not contain methionine, and did not contain any trypsin cleavage errors. In addition, among the same proteins, those having identified peptides (stable peptides) which showed little fluctuation in shotgun quantitative proteome analysis were considered as candidates. Also for the stable peptides, those meeting the same selection criteria as the variable peptide candidates were selected. Among the same protein, for those in which a plurality of variable peptide candidates and stable peptide candidates were identified, those with higher peak intensity for identification were selected. The number of candidate stable and variable peptides selected from these criteria was a total of 356 peptides.
SRM/MRM解析でのマーカー候補の検証
 選択した356ペプチドについて、ショットガン定量プロテオーム解析での結果をSRM/MRM法にて検証した。選択したペプチドと同じ配列を有する安定同位体標識ペプチドを合成し、ショットガン定量プロテオーム解析と同様に4人分の血清・血漿検体に対して合成ペプチドミックスを内部標準として添加した。その後、保存条件毎の検体についてSRM/MRM解析を行い、それぞれの検体の定量値を、ショットガン定量プロテオーム解析と同様にコントロール検体の定量値と比較した。SRM/MRM法での変動ペプチド候補の検証の基準は、定量値の変動が1.3倍以上であり、かつ4人中3人で共通しているものとした。また同時に、安定ペプチドについても定量値が変動していないことを確認し、同一タンパク質において、変動ペプチドと安定ペプチドの組合せがともに検証できたものを品質評価マーカーとした。これらの基準を満たしたマーカー候補は、各保存温度における保存で変動するペプチドとしては血清で14組(表3-1、表3-2および表3-3ならびに図2-1、図2-2および図2-3)、血漿で32組(表4-1、表4-2、表4-3および表4-4ならびに図3-1、図3-2、図3-3および図3-4)あった。さらに採血から遠心分離までの時間で変動するペプチドとしては血清で12組(表5および図6)、血漿で9組(表6および図5)あった。これらすべての保存条件で検証されたペプチドは、合計で100ペプチド(34タンパク質)であった。なお、保存条件間で重複したペプチドは1と数えた。
Verification of Marker Candidates in SRM / MRM Analysis For selected 356 peptides, results in shotgun quantitative proteome analysis were verified by SRM / MRM method. A stable isotope-labeled peptide having the same sequence as the selected peptide was synthesized, and a synthetic peptide mix was added as an internal standard to serum / plasma samples for four as in shotgun quantitative proteome analysis. After that, SRM / MRM analysis was performed on the samples for each storage condition, and the quantitative value of each sample was compared with the quantitative value of the control sample as in the shotgun quantitative proteome analysis. The criteria for verification of the fluctuation peptide candidate in the SRM / MRM method were 1.3 or more times the fluctuation of the quantitative value, and were common to 3 out of 4 persons. At the same time, it was confirmed that the stable peptide also did not fluctuate in the quantitative value, and in the same protein, a combination of the variable peptide and the stable peptide could be verified as a quality evaluation marker. The marker candidates satisfying these criteria are 14 sets of serum variable peptides as stored at each storage temperature (Table 3-1, Table 3-2 and Table 3-3, and FIGS. 2-1, 2-2). And Figure 2-3), 32 sets of plasma (Table 4-1, Table 4-2, Table 4-3 and Table 4-4 and Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3- 3 4) There was. Furthermore, there were 12 pairs of serum (Table 5 and FIG. 6) and 9 pairs of plasma (Table 6 and FIG. 5) as peptides which fluctuate with time from blood collection to centrifugation. The peptides tested under all these storage conditions totaled 100 peptides (34 proteins). In addition, the peptide which overlapped between storage conditions was counted as 1.
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133


Figure JPOXMLDOC01-appb-I000134
Figure JPOXMLDOC01-appb-T000133


Figure JPOXMLDOC01-appb-I000134
実施例3:血清・血漿検体のショットガン定量プロテオミクスおよびSRM/MRM定量解析2
 以下の表の回収条件である点以外は、実施例1に記載の手法に実質的に従い、品質評価マーカーの候補ペプチドを選択した。
Figure JPOXMLDOC01-appb-T000135
Example 3: Shotgun quantitative proteomics and SRM / MRM quantitative analysis of serum and plasma samples 2
Candidate peptides for quality evaluation markers were selected according substantially to the procedure described in Example 1 except that the recovery conditions in the following table.
Figure JPOXMLDOC01-appb-T000135
 得られた結果は以下の表の通りである。各種条件下、品質評価マーカーをショットガン定量解析およびSRM/MRM定量解析により選択した結果を示す図番号も同時に示す。
Figure JPOXMLDOC01-appb-T000136

Figure JPOXMLDOC01-appb-I000137

Figure JPOXMLDOC01-appb-I000138
Figure JPOXMLDOC01-appb-T000139

Figure JPOXMLDOC01-appb-I000140
The obtained results are as shown in the following table. The figure number which shows the result of having selected the quality evaluation marker by shotgun quantitative analysis and SRM / MRM quantitative analysis is also shown simultaneously under various conditions.
Figure JPOXMLDOC01-appb-T000136

Figure JPOXMLDOC01-appb-I000137

Figure JPOXMLDOC01-appb-I000138
Figure JPOXMLDOC01-appb-T000139

Figure JPOXMLDOC01-appb-I000140
Figure JPOXMLDOC01-appb-T000141

Figure JPOXMLDOC01-appb-I000142

Figure JPOXMLDOC01-appb-I000143
Figure JPOXMLDOC01-appb-T000144

Figure JPOXMLDOC01-appb-I000145
Figure JPOXMLDOC01-appb-T000141

Figure JPOXMLDOC01-appb-I000142

Figure JPOXMLDOC01-appb-I000143
Figure JPOXMLDOC01-appb-T000144

Figure JPOXMLDOC01-appb-I000145
Figure JPOXMLDOC01-appb-T000146

Figure JPOXMLDOC01-appb-I000147

Figure JPOXMLDOC01-appb-I000148
Figure JPOXMLDOC01-appb-T000149

Figure JPOXMLDOC01-appb-I000150

Figure JPOXMLDOC01-appb-I000151
Figure JPOXMLDOC01-appb-T000152

Figure JPOXMLDOC01-appb-I000153
Figure JPOXMLDOC01-appb-T000154

Figure JPOXMLDOC01-appb-I000155
Figure JPOXMLDOC01-appb-T000156

Figure JPOXMLDOC01-appb-I000157

Figure JPOXMLDOC01-appb-I000158
Figure JPOXMLDOC01-appb-T000159

Figure JPOXMLDOC01-appb-I000160

Figure JPOXMLDOC01-appb-I000161
Figure JPOXMLDOC01-appb-T000162

Figure JPOXMLDOC01-appb-I000163

Figure JPOXMLDOC01-appb-I000164
Figure JPOXMLDOC01-appb-T000165

Figure JPOXMLDOC01-appb-I000166

Figure JPOXMLDOC01-appb-I000167
Figure JPOXMLDOC01-appb-T000168

Figure JPOXMLDOC01-appb-I000169

Figure JPOXMLDOC01-appb-I000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000146

Figure JPOXMLDOC01-appb-I000147

Figure JPOXMLDOC01-appb-I000148
Figure JPOXMLDOC01-appb-T000149

Figure JPOXMLDOC01-appb-I000150

Figure JPOXMLDOC01-appb-I000151
Figure JPOXMLDOC01-appb-T000152

Figure JPOXMLDOC01-appb-I000153
Figure JPOXMLDOC01-appb-T000154

Figure JPOXMLDOC01-appb-I000155
Figure JPOXMLDOC01-appb-T000156

Figure JPOXMLDOC01-appb-I000157

Figure JPOXMLDOC01-appb-I000158
Figure JPOXMLDOC01-appb-T000159

Figure JPOXMLDOC01-appb-I000160

Figure JPOXMLDOC01-appb-I000161
Figure JPOXMLDOC01-appb-T000162

Figure JPOXMLDOC01-appb-I000163

Figure JPOXMLDOC01-appb-I000164
Figure JPOXMLDOC01-appb-T000165

Figure JPOXMLDOC01-appb-I000166

Figure JPOXMLDOC01-appb-I000167
Figure JPOXMLDOC01-appb-T000168

Figure JPOXMLDOC01-appb-I000169

Figure JPOXMLDOC01-appb-I000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000172

Figure JPOXMLDOC01-appb-I000173

Figure JPOXMLDOC01-appb-I000174
Figure JPOXMLDOC01-appb-T000172

Figure JPOXMLDOC01-appb-I000173

Figure JPOXMLDOC01-appb-I000174
Figure JPOXMLDOC01-appb-T000175

Figure JPOXMLDOC01-appb-I000176
Figure JPOXMLDOC01-appb-T000177

Figure JPOXMLDOC01-appb-I000178

Figure JPOXMLDOC01-appb-I000179
Figure JPOXMLDOC01-appb-T000175

Figure JPOXMLDOC01-appb-I000176
Figure JPOXMLDOC01-appb-T000177

Figure JPOXMLDOC01-appb-I000178

Figure JPOXMLDOC01-appb-I000179
Figure JPOXMLDOC01-appb-T000180

Figure JPOXMLDOC01-appb-I000181
Figure JPOXMLDOC01-appb-T000182

Figure JPOXMLDOC01-appb-I000183
Figure JPOXMLDOC01-appb-T000184

Figure JPOXMLDOC01-appb-I000185

Figure JPOXMLDOC01-appb-I000186
Figure JPOXMLDOC01-appb-T000180

Figure JPOXMLDOC01-appb-I000181
Figure JPOXMLDOC01-appb-T000182

Figure JPOXMLDOC01-appb-I000183
Figure JPOXMLDOC01-appb-T000184

Figure JPOXMLDOC01-appb-I000185

Figure JPOXMLDOC01-appb-I000186
Figure JPOXMLDOC01-appb-T000187

Figure JPOXMLDOC01-appb-I000188
Figure JPOXMLDOC01-appb-T000189

Figure JPOXMLDOC01-appb-I000190
Figure JPOXMLDOC01-appb-T000187

Figure JPOXMLDOC01-appb-I000188
Figure JPOXMLDOC01-appb-T000189

Figure JPOXMLDOC01-appb-I000190
Figure JPOXMLDOC01-appb-T000191

Figure JPOXMLDOC01-appb-I000192
Figure JPOXMLDOC01-appb-T000191

Figure JPOXMLDOC01-appb-I000192
Figure JPOXMLDOC01-appb-T000193
Figure JPOXMLDOC01-appb-T000193
Figure JPOXMLDOC01-appb-T000194

P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
141
ALYLQYTDETFR
P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
297
EVGPTNADPVCLAK
P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
55
GAYPLSIEPIGVR
P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
140
DLYSGLIGPLIVCR
Figure JPOXMLDOC01-appb-T000194

P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
141
ALYLQYTDETFR
P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
297
EVGPT NADPVCLAK
P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
55
GAYPLSIEPIGVR
P00450
Ceruloplasmin
143
NNEGTYYSPNYNPQSR
140
DLYSGLIGPLIVCR
Figure JPOXMLDOC01-appb-T000195

Figure JPOXMLDOC01-appb-I000196
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-T000195

Figure JPOXMLDOC01-appb-I000196
Figure JPOXMLDOC01-appb-T000197
Figure JPOXMLDOC01-appb-T000198

Figure JPOXMLDOC01-appb-I000199
Figure JPOXMLDOC01-appb-T000198

Figure JPOXMLDOC01-appb-I000199
Figure JPOXMLDOC01-appb-T000200

Figure JPOXMLDOC01-appb-I000201
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000200

Figure JPOXMLDOC01-appb-I000201
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000203
Figure JPOXMLDOC01-appb-T000203
Figure JPOXMLDOC01-appb-T000204

Figure JPOXMLDOC01-appb-I000205
Figure JPOXMLDOC01-appb-T000204

Figure JPOXMLDOC01-appb-I000205
Figure JPOXMLDOC01-appb-T000206
Figure JPOXMLDOC01-appb-T000206
実施例4:品質評価マーカーを用いる生物学的検体の品質評価
 バイオバンクジャパン等の保存機関に保存されている血漿または血清等の生物学的検体の品質を評価するため、表3-1から表6および表8-1から表11に記載している品質評価マーカーの1つまたはそれ以上の組合せを用いる。入手した血漿または血清検体に対し、SRM/MRM解析を用い、表3-1から表6および表8-1から表11に記載している品質評価マーカーペプチドの定量を行う。
 表3-1から表3-3のSerum_Tempまたは表4-1から表4-4のPlasma_Temp(血清または血漿の保存状態の品質評価マーカー)の変動ペプチドと安定ペプチドの品質評価マーカーの組み合わせはそれぞれ21種類、29種類ある。それらの品質評価マーカーのペプチドをすべて一度にSRM/MRM解析を行い、変動ペプチドと安定ペプチドの比を計算する。その比が0.77~1の間にある品質評価マーカーの組み合わせの数が多ければ多いほど、その検体の品質は良好であると評価される。逆に、その比が0.77未満の組み合わせの数が多ければ多いほど、その検体の品質は悪いと評価される。
 さらに、表5のSerum_CTまたは表6のPlasma_CT(血清または血漿の採血から遠心分離までの時間のマーカー)の変動ペプチドと安定ペプチドの品質評価マーカーの組み合わせはそれぞれ12種類、8種類ある。それらの品質評価マーカーのペプチドをすべて一度にSRM/MRM解析を行い、変動ペプチドと安定ペプチドの比を計算する。その比が0.77~1.3の間にある品質評価マーカーの組み合わせの数が多ければ多いほど、その検体の遠心分離までの時間は短いといえる。逆に、その比が0.77未満または1.3以上の組み合わせの数が多ければ多いほど、その検体の遠心分離までの時間は長いといえる。
Example 4: Quality evaluation of biological samples using quality evaluation markers In order to evaluate the quality of biological samples such as plasma or serum stored in storage institutions such as Biobank Japan, Table 3-1 to Table 6 and one or more combinations of quality assessment markers listed in Tables 8-1 to 11. The quality evaluation marker peptides described in Tables 3-1 to 6 and Tables 8-1 to 11 are quantified for the obtained plasma or serum samples using SRM / MRM analysis.
Variation of Serum_Temp in Table 3-1 to Table 3-3 or Plasma_Temp (quality evaluation marker of storage condition of serum or plasma) in Table 4-1 to Table 4-4 The combination of the quality evaluation marker of the peptide and the stable peptide is 21 respectively There are 29 types. SRM / MRM analysis is performed on the peptides of these quality evaluation markers all at once, and the ratio of variable peptide to stable peptide is calculated. The higher the number of combinations of quality evaluation markers whose ratio is between 0.77 and 1, the better the quality of the sample is. Conversely, the more the number of combinations whose ratio is less than 0.77, the worse the quality of the sample is.
Furthermore, there are 12 kinds and 8 kinds of combinations of quality evaluation markers of fluctuation peptide and stable peptide, respectively, of Serum_CT of Table 5 or Plasma_CT (marker of time from blood sampling of blood or plasma to centrifugation) of Table 6. SRM / MRM analysis is performed on the peptides of these quality evaluation markers all at once, and the ratio of variable peptide to stable peptide is calculated. The greater the number of combinations of quality assessment markers whose ratio is between 0.77 and 1.3, the shorter the time to centrifugation of the sample. Conversely, the more the number of combinations whose ratio is less than 0.77 or 1.3 or more, the longer the time to centrifugation of the sample.
実施例5:血清検体のSRM/MRM定量解析
 以下の表の回収条件である点以外は、実施例1に記載の手法に実質的に従い、品質評価マーカーの候補ペプチドを選択した。
Figure JPOXMLDOC01-appb-T000207
Example 5: SRM / MRM quantitative analysis of serum samples Candidate peptides for quality evaluation markers were selected substantially according to the procedure described in Example 1 except that recovery conditions in the following table.
Figure JPOXMLDOC01-appb-T000207
 得られた結果は以下の表の通りである。変動ペプチドおよび安定ペプチドが由来する特定タンパク質ごとにまとめる。 The obtained results are as shown in the following table. Put together for each specific protein from which the variable and stable peptides are derived.
 図16-1、16-2参照。
Figure JPOXMLDOC01-appb-T000208
See Figures 16-1 and 16-2.
Figure JPOXMLDOC01-appb-T000208
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチ
ドのいずれかを組合わせることができる。
 図16-1、16-2参照。
Figure JPOXMLDOC01-appb-T000209

Figure JPOXMLDOC01-appb-I000210

Figure JPOXMLDOC01-appb-I000211
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 16-1 and 16-2.
Figure JPOXMLDOC01-appb-T000209

Figure JPOXMLDOC01-appb-I000210

Figure JPOXMLDOC01-appb-I000211
 図16-1、16-2参照。
Figure JPOXMLDOC01-appb-T000212

Figure JPOXMLDOC01-appb-I000213
See Figures 16-1 and 16-2.
Figure JPOXMLDOC01-appb-T000212

Figure JPOXMLDOC01-appb-I000213
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。
 図16-1、16-2参照。
Figure JPOXMLDOC01-appb-T000214
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 16-1 and 16-2.
Figure JPOXMLDOC01-appb-T000214
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。
 図16-3、16-4参照。
Figure JPOXMLDOC01-appb-T000215
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 16-3 and 16-4.
Figure JPOXMLDOC01-appb-T000215
 図16-3、16-4参照。
Figure JPOXMLDOC01-appb-T000216
See Figures 16-3 and 16-4.
Figure JPOXMLDOC01-appb-T000216
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。
 図16-3、16-4参照。
Figure JPOXMLDOC01-appb-T000217
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 16-3 and 16-4.
Figure JPOXMLDOC01-appb-T000217
 図16-3、16-4参照。
Figure JPOXMLDOC01-appb-T000218

Figure JPOXMLDOC01-appb-I000219
See Figures 16-3 and 16-4.
Figure JPOXMLDOC01-appb-T000218

Figure JPOXMLDOC01-appb-I000219
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。
 図16-3、16-4参照。
Figure JPOXMLDOC01-appb-T000220

Figure JPOXMLDOC01-appb-I000221
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 16-3 and 16-4.
Figure JPOXMLDOC01-appb-T000220

Figure JPOXMLDOC01-appb-I000221
 図16-3、16-4参照。
Figure JPOXMLDOC01-appb-T000222

Figure JPOXMLDOC01-appb-I000223
See Figures 16-3 and 16-4.
Figure JPOXMLDOC01-appb-T000222

Figure JPOXMLDOC01-appb-I000223
実施例6:血漿検体のSRM/MRM定量解析
 以下の表の回収条件である点以外は、実施例1に記載の手法に実質的に従い、品質評価マーカーの候補ペプチドを選択した。
Figure JPOXMLDOC01-appb-T000224
Example 6: SRM / MRM quantitative analysis of plasma samples Candidate peptides for quality evaluation markers were selected substantially in accordance with the procedure described in Example 1 except that the recovery conditions in the following table.
Figure JPOXMLDOC01-appb-T000224
 得られた結果は以下の表の通りである。変動ペプチドおよび安定ペプチドが由来する特定タンパク質ごとにまとめる。
 図17-1、17-2参照。
Figure JPOXMLDOC01-appb-T000225
The obtained results are as shown in the following table. The specific peptides from which the variable and stable peptides are derived are summarized.
See Figures 17-1 and 17-2.
Figure JPOXMLDOC01-appb-T000225
Figure JPOXMLDOC01-appb-T000226
Figure JPOXMLDOC01-appb-T000226
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。
 図17-1、17-2参照。

Figure JPOXMLDOC01-appb-T000227
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 17-1 and 17-2.

Figure JPOXMLDOC01-appb-T000227
 以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。
 図17-1、17-2参照。
Figure JPOXMLDOC01-appb-T000228

Figure JPOXMLDOC01-appb-I000229

Figure JPOXMLDOC01-appb-I000230

Figure JPOXMLDOC01-appb-I000231
In the following table, any of the individual stable peptides can be combined with the individual variable peptides. Also, any of the individual variable peptides can be combined with the individual stable peptide.
See Figures 17-1 and 17-2.
Figure JPOXMLDOC01-appb-T000228

Figure JPOXMLDOC01-appb-I000229

Figure JPOXMLDOC01-appb-I000230

Figure JPOXMLDOC01-appb-I000231
 図17-1、17-2参照。
Figure JPOXMLDOC01-appb-T000232

Figure JPOXMLDOC01-appb-I000233
See Figures 17-1 and 17-2.
Figure JPOXMLDOC01-appb-T000232

Figure JPOXMLDOC01-appb-I000233
 図17-3、17-4参照。
Figure JPOXMLDOC01-appb-T000234

Figure JPOXMLDOC01-appb-I000235
See Figures 17-3 and 17-4.
Figure JPOXMLDOC01-appb-T000234

Figure JPOXMLDOC01-appb-I000235
 図17-3、17-4参照。
Figure JPOXMLDOC01-appb-T000236

Figure JPOXMLDOC01-appb-I000237

Figure JPOXMLDOC01-appb-I000238
See Figures 17-3 and 17-4.
Figure JPOXMLDOC01-appb-T000236

Figure JPOXMLDOC01-appb-I000237

Figure JPOXMLDOC01-appb-I000238
 図17-3、17-4参照。
Figure JPOXMLDOC01-appb-T000239
See Figures 17-3 and 17-4.
Figure JPOXMLDOC01-appb-T000239
実施例7:遠心分離までの時間による血清検体のSRM/MRM定量解析
 以下の表の回収条件である点以外は、実施例1に記載の手法に実質的に従い、血清を用い、遠心分離までの時間、10分、30分、2時間、6時間に応じた、品質評価マーカーの候補ペプチドを選択した。

Figure JPOXMLDOC01-appb-T000240
Example 7: SRM / MRM quantitative analysis of serum samples by time to centrifugation The serum is used according to the procedure substantially as described in Example 1, except that the recovery conditions of the table below are the recovery conditions. Candidate peptides for quality evaluation markers were selected according to time, 10 minutes, 30 minutes, 2 hours and 6 hours.

Figure JPOXMLDOC01-appb-T000240
 得られた結果は以下の表の通りである。変動ペプチドおよび安定ペプチドが由来する特定タンパク質ごとにまとめる。
 図18参照。
Figure JPOXMLDOC01-appb-T000241
The obtained results are as shown in the following table. The specific peptides from which the variable and stable peptides are derived are summarized.
See FIG.
Figure JPOXMLDOC01-appb-T000241
 図18参照。
Figure JPOXMLDOC01-appb-T000242
See FIG.
Figure JPOXMLDOC01-appb-T000242
 上記実施例において、「以下の表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。」と説明している。また、請求の範囲では、「(ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)」と説明している。この意味を、例えば、以下の表13-5を例に説明する。
Figure JPOXMLDOC01-appb-T000243
In the above example, “In the following table, any one of the individual stable peptides can be combined with each individual variable peptide. Also, any of the individual variable peptides can be individually set with each individual stable peptide. It can be put together. " Also, in the claims, “but in the above table, any one of the individual stable peptides can be combined with the individual variable peptides. Either can be combined.) ”. This meaning is described, for example, with reference to Table 13-5 below.
Figure JPOXMLDOC01-appb-T000243
 表13-5は、すなわち、次の9つの組み合わせを意味している。
Figure JPOXMLDOC01-appb-T000244
 上記、同じ表現は同様に解釈される。
Table 13-5 means the following nine combinations:
Figure JPOXMLDOC01-appb-T000244
Above, the same expressions are interpreted similarly.
参考文献
1. Rai AJ et al., HUPO Plasma Proteome Project specimen collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics, 5:3262-3277 (2005).
2. Elliott P et al., The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. International Journal of Epidemiology, 37:234-244 (2008).
3. Hubel A et al., Storage of Human Biospecimens: Selection of the Optimal Storage Temperature. BIOPRESERVATION AND BIOBANKING, 12:1-11 (2014).
4. Masuda, T., Tomita, M. & Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 7, 731-740 (2008).
5. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896-1906 (2007).
6. Adachi, J. et al. Improved proteome and phosphoproteome analysis on a cation exchanger by a combined acid and salt gradient. Anal. Chem. 88, 7899-7903 (2016).
7. J. L. Hsu, S. Y. Huang, N. H. Chow, S. H. Chen. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843-6852, 2003.
8. Kume, H. et al. Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol. Cell. Proteomics 13, 1471-1484 (2014).
References
1. Rai AJ et al., HUPO Plasma Proteome Project sample collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics, 5: 3262-3277 (2005).
2. Elliott P et al., The UK Biobank Sample handling and storage protocol for the collection, processing and archiving of human blood and urine. International Journal of Epidemiology, 37: 234-244 (2008).
3. Hubel A et al., Storage of Human Biospecimens: Selection of the Optimal Storage Temperature. BIOPRESERVATION AND BIOBANKING, 12: 1-11 (2014).
4. Masuda, T., Tomita, M. & Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteinome analysis. J. Proteome Res. 7, 731-740 (2008).
5. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896-1906 (2007).
6. Adachi, J. et al. Improved proteinome and phosphoproteome analysis on a cation exchanger by a combined acid and salt gradient. Anal. Chem. 88, 7899-7903 (2016).
Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843-6852, 2003. 7. J. L. Hsu, S. Y. Huang, N. H. Chow, S. H. Chen.
8. Kume, H. et al. Discovery of color cancer cancer candidates by membrane proteomics analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis. Mol. Cell. Proteomics 13, 147-1484 (2014) .
 個別化医療や精密医療(プレシジョンメディスン)を適切に実現するためには、バイオバンクジャパン等の多くの施設に収集されている多検体の解析が必須である。そこに保管されている検体が有効利用されるためには、検体の品質評価は欠かせない。今回我々が見出した検体の品質評価方法、品質評価マーカー、品質評価マーカーの製造方法等の発明は、国内外を問わず、検体の品質管理に大きな威力を発揮する。将来的に、国内の臨床検査会社がその測定を国内外から受託することで、日本の医薬品産業の国際的競争力が強化され、医療経済の活性化につながると考えられる。 In order to properly realize personalized medicine and precision medicine (precision medicine), analysis of multiple specimens collected at many facilities such as Biobank Japan is essential. Quality assessment of specimens is essential for effective use of specimens stored there. The invention of the method for evaluating the quality of a sample, the quality evaluation marker, the method for producing a quality evaluation marker, etc., which we found this time, exerts great power in the quality control of a sample regardless of whether it is domestic or foreign. In the future, by consigning the measurement from domestic and foreign clinical laboratory companies, it is thought that the international competitiveness of the Japanese pharmaceutical industry will be strengthened, leading to the revitalization of the medical economy.

Claims (28)

  1.  単離されている生物学的検体の品質を評価するための方法であって、該検体を酵素で処理することによって生成される特定タンパク質由来のペプチドを品質評価の指標とする、該方法。 A method for evaluating the quality of a biological sample that has been isolated, wherein a peptide derived from a specific protein produced by treating the sample with an enzyme is used as an index for quality evaluation.
  2.  ペプチドが、酵素処理済み検体における同一の特定タンパク質由来のペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こす変動ペプチド、および変化を起こさない安定ペプチドである、請求項1記載の方法。 Among the peptides derived from the same specific protein in the enzyme-treated sample, the peptides are variable peptides that cause quantitative and / or qualitative changes due to factors affecting quality, and stable peptides that do not cause changes. Item 2. The method according to Item 1.
  3.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの存在比率を品質評価の指標とする、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the abundance ratio of the variable peptide and the stable peptide derived from the same specific protein is used as an index for quality evaluation.
  4.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの存在比率を、同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドのそれぞれの平均を用いて算出する、請求項1から3のいずれか記載の方法。 The method according to any one of claims 1 to 3, wherein the abundance ratio of the variable peptide and the stable peptide derived from the same specific protein is calculated using an average of each of the variable peptide derived from the same specific protein and the stable peptide.
  5.  酵素処理をトリプシンによって行う、請求項1から4までのいずれか記載の方法。 5. The method according to any one of claims 1 to 4, wherein the enzyme treatment is performed by trypsin.
  6.  生物学的検体が血液、血清、血漿、尿、組織、脳脊髄液のなかから選ばれる、請求項1から5までのいずれか記載の方法。 The method according to any one of claims 1 to 5, wherein the biological sample is selected from blood, serum, plasma, urine, tissue and cerebrospinal fluid.
  7.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、以下の表に示される品質評価マーカーである、請求項1から6のいずれか記載の方法:
    Figure JPOXMLDOC01-appb-T000001

    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-T000004

    Figure JPOXMLDOC01-appb-I000005
    Figure JPOXMLDOC01-appb-T000006

    Figure JPOXMLDOC01-appb-I000007

    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-T000009
    Figure JPOXMLDOC01-appb-T000010

    Figure JPOXMLDOC01-appb-I000011
    Figure JPOXMLDOC01-appb-T000012

    Figure JPOXMLDOC01-appb-I000013

    Figure JPOXMLDOC01-appb-I000014
    Figure JPOXMLDOC01-appb-T000015

    Figure JPOXMLDOC01-appb-I000016
    Figure JPOXMLDOC01-appb-T000017

    Figure JPOXMLDOC01-appb-I000018
    Figure JPOXMLDOC01-appb-T000019

    Figure JPOXMLDOC01-appb-I000020

    Figure JPOXMLDOC01-appb-I000021
    Figure JPOXMLDOC01-appb-T000022

    Figure JPOXMLDOC01-appb-I000023

    Figure JPOXMLDOC01-appb-I000024
    Figure JPOXMLDOC01-appb-T000025

    Figure JPOXMLDOC01-appb-I000026

    Figure JPOXMLDOC01-appb-I000027
    Figure JPOXMLDOC01-appb-T000028

    Figure JPOXMLDOC01-appb-I000029

    Figure JPOXMLDOC01-appb-I000030
    Figure JPOXMLDOC01-appb-T000031

    Figure JPOXMLDOC01-appb-I000032

    Figure JPOXMLDOC01-appb-I000033
    Figure JPOXMLDOC01-appb-T000034


    Figure JPOXMLDOC01-appb-I000035

    Figure JPOXMLDOC01-appb-I000036

    Figure JPOXMLDOC01-appb-I000037
    Figure JPOXMLDOC01-appb-T000038

    Figure JPOXMLDOC01-appb-I000039

    Figure JPOXMLDOC01-appb-I000040
    Figure JPOXMLDOC01-appb-T000041

    Figure JPOXMLDOC01-appb-I000042

    Figure JPOXMLDOC01-appb-I000043
    Figure JPOXMLDOC01-appb-T000044
    Figure JPOXMLDOC01-appb-T000045

    Figure JPOXMLDOC01-appb-I000046

    Figure JPOXMLDOC01-appb-I000047
    Figure JPOXMLDOC01-appb-T000048

    Figure JPOXMLDOC01-appb-I000049
    Figure JPOXMLDOC01-appb-T000050

    Figure JPOXMLDOC01-appb-I000051
    Figure JPOXMLDOC01-appb-T000052

    Figure JPOXMLDOC01-appb-I000053

    Figure JPOXMLDOC01-appb-I000054
    Figure JPOXMLDOC01-appb-T000055

    Figure JPOXMLDOC01-appb-I000056
    Figure JPOXMLDOC01-appb-T000057

    Figure JPOXMLDOC01-appb-I000058
    Figure JPOXMLDOC01-appb-T000059

    Figure JPOXMLDOC01-appb-I000060
    Figure JPOXMLDOC01-appb-T000061

    Figure JPOXMLDOC01-appb-I000062
    Figure JPOXMLDOC01-appb-T000063

    Figure JPOXMLDOC01-appb-I000064
    Figure JPOXMLDOC01-appb-T000065
    Figure JPOXMLDOC01-appb-T000066

    Figure JPOXMLDOC01-appb-I000067
    Figure JPOXMLDOC01-appb-T000068

    Figure JPOXMLDOC01-appb-I000069

    Figure JPOXMLDOC01-appb-I000070
    Figure JPOXMLDOC01-appb-T000071
    Figure JPOXMLDOC01-appb-T000072

    Figure JPOXMLDOC01-appb-I000073
    Figure JPOXMLDOC01-appb-T000074

    Figure JPOXMLDOC01-appb-I000075
    Figure JPOXMLDOC01-appb-T000076

    Figure JPOXMLDOC01-appb-I000077
    Figure JPOXMLDOC01-appb-T000078
    Figure JPOXMLDOC01-appb-T000079

    Figure JPOXMLDOC01-appb-I000080
    Figure JPOXMLDOC01-appb-T000081
    The method according to any one of claims 1 to 6, wherein the variable peptide and the stable peptide derived from the same specific protein are the quality evaluation markers shown in the following table:
    Figure JPOXMLDOC01-appb-T000001

    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-T000004

    Figure JPOXMLDOC01-appb-I000005
    Figure JPOXMLDOC01-appb-T000006

    Figure JPOXMLDOC01-appb-I000007

    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-T000009
    Figure JPOXMLDOC01-appb-T000010

    Figure JPOXMLDOC01-appb-I000011
    Figure JPOXMLDOC01-appb-T000012

    Figure JPOXMLDOC01-appb-I000013

    Figure JPOXMLDOC01-appb-I000014
    Figure JPOXMLDOC01-appb-T000015

    Figure JPOXMLDOC01-appb-I000016
    Figure JPOXMLDOC01-appb-T000017

    Figure JPOXMLDOC01-appb-I000018
    Figure JPOXMLDOC01-appb-T000019

    Figure JPOXMLDOC01-appb-I000020

    Figure JPOXMLDOC01-appb-I000021
    Figure JPOXMLDOC01-appb-T000022

    Figure JPOXMLDOC01-appb-I000023

    Figure JPOXMLDOC01-appb-I000024
    Figure JPOXMLDOC01-appb-T000025

    Figure JPOXMLDOC01-appb-I000026

    Figure JPOXMLDOC01-appb-I000027
    Figure JPOXMLDOC01-appb-T000028

    Figure JPOXMLDOC01-appb-I000029

    Figure JPOXMLDOC01-appb-I000030
    Figure JPOXMLDOC01-appb-T000031

    Figure JPOXMLDOC01-appb-I000032

    Figure JPOXMLDOC01-appb-I000033
    Figure JPOXMLDOC01-appb-T000034


    Figure JPOXMLDOC01-appb-I000035

    Figure JPOXMLDOC01-appb-I000036

    Figure JPOXMLDOC01-appb-I000037
    Figure JPOXMLDOC01-appb-T000038

    Figure JPOXMLDOC01-appb-I000039

    Figure JPOXMLDOC01-appb-I000040
    Figure JPOXMLDOC01-appb-T000041

    Figure JPOXMLDOC01-appb-I000042

    Figure JPOXMLDOC01-appb-I000043
    Figure JPOXMLDOC01-appb-T000044
    Figure JPOXMLDOC01-appb-T000045

    Figure JPOXMLDOC01-appb-I000046

    Figure JPOXMLDOC01-appb-I000047
    Figure JPOXMLDOC01-appb-T000048

    Figure JPOXMLDOC01-appb-I000049
    Figure JPOXMLDOC01-appb-T000050

    Figure JPOXMLDOC01-appb-I000051
    Figure JPOXMLDOC01-appb-T000052

    Figure JPOXMLDOC01-appb-I000053

    Figure JPOXMLDOC01-appb-I000054
    Figure JPOXMLDOC01-appb-T000055

    Figure JPOXMLDOC01-appb-I000056
    Figure JPOXMLDOC01-appb-T000057

    Figure JPOXMLDOC01-appb-I000058
    Figure JPOXMLDOC01-appb-T000059

    Figure JPOXMLDOC01-appb-I000060
    Figure JPOXMLDOC01-appb-T000061

    Figure JPOXMLDOC01-appb-I000062
    Figure JPOXMLDOC01-appb-T000063

    Figure JPOXMLDOC01-appb-I000064
    Figure JPOXMLDOC01-appb-T000065
    Figure JPOXMLDOC01-appb-T000066

    Figure JPOXMLDOC01-appb-I000067
    Figure JPOXMLDOC01-appb-T000068

    Figure JPOXMLDOC01-appb-I000069

    Figure JPOXMLDOC01-appb-I000070
    Figure JPOXMLDOC01-appb-T000071
    Figure JPOXMLDOC01-appb-T000072

    Figure JPOXMLDOC01-appb-I000073
    Figure JPOXMLDOC01-appb-T000074

    Figure JPOXMLDOC01-appb-I000075
    Figure JPOXMLDOC01-appb-T000076

    Figure JPOXMLDOC01-appb-I000077
    Figure JPOXMLDOC01-appb-T000078
    Figure JPOXMLDOC01-appb-T000079

    Figure JPOXMLDOC01-appb-I000080
    Figure JPOXMLDOC01-appb-T000081
  8.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、並列して示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、請求項7記載の方法。 The method according to claim 7, wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel.
  9.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表3-1、表3-2、表3-3、表4-1、表4-2、表4-3、表4-4、表5、表6に示される品質評価マーカーである、請求項7記載の方法。 The same specific protein-derived variable peptide and stable peptide are shown in Table 3-1, Table 3-2, Table 3-3, Table 4-1, Table 4-2, Table 4-3, Table 4-4, Table 5 The method according to claim 7, which is a quality evaluation marker shown in Table 6.
  10.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表に並列して示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、請求項9記載の方法。 The method according to claim 9, wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel in the table.
  11.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、以下の表に示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、請求項7記載の方法:
    Figure JPOXMLDOC01-appb-T000082

    Figure JPOXMLDOC01-appb-I000083
    Figure JPOXMLDOC01-appb-T000084

    Figure JPOXMLDOC01-appb-I000085

    Figure JPOXMLDOC01-appb-I000086
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000087

    Figure JPOXMLDOC01-appb-I000088
    Figure JPOXMLDOC01-appb-T000089

    Figure JPOXMLDOC01-appb-I000090
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000091

    Figure JPOXMLDOC01-appb-I000092
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000093
    Figure JPOXMLDOC01-appb-T000094

    Figure JPOXMLDOC01-appb-I000095
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000096

    Figure JPOXMLDOC01-appb-I000097
    Figure JPOXMLDOC01-appb-T000098

    Figure JPOXMLDOC01-appb-I000099
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000100

    Figure JPOXMLDOC01-appb-I000101
    Figure JPOXMLDOC01-appb-T000102

    Figure JPOXMLDOC01-appb-I000103
    Figure JPOXMLDOC01-appb-T000104

    Figure JPOXMLDOC01-appb-I000105
    Figure JPOXMLDOC01-appb-T000106
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000107

    Figure JPOXMLDOC01-appb-I000108

    Figure JPOXMLDOC01-appb-I000109

    Figure JPOXMLDOC01-appb-I000110
    (ただし、上記表において、個々の変動ペプチドに対して個々の安定ペプチドのいずれかを組合わせることができる。また、個々の安定ペプチドに対して個々の変動ペプチドのいずれかを組合わせることができる。)
    Figure JPOXMLDOC01-appb-T000111

    Figure JPOXMLDOC01-appb-I000112
    Figure JPOXMLDOC01-appb-T000113

    Figure JPOXMLDOC01-appb-I000114

    Figure JPOXMLDOC01-appb-I000115
    Figure JPOXMLDOC01-appb-T000116

    Figure JPOXMLDOC01-appb-I000117

    Figure JPOXMLDOC01-appb-I000118
    Figure JPOXMLDOC01-appb-T000119

    Figure JPOXMLDOC01-appb-I000120
    Figure JPOXMLDOC01-appb-T000121

    Figure JPOXMLDOC01-appb-I000122
    Figure JPOXMLDOC01-appb-T000123
    The method according to claim 7, wherein the variable peptide and the stable peptide derived from the same specific protein are selected from among at least one combination of quality evaluation markers shown in the following table:
    Figure JPOXMLDOC01-appb-T000082

    Figure JPOXMLDOC01-appb-I000083
    Figure JPOXMLDOC01-appb-T000084

    Figure JPOXMLDOC01-appb-I000085

    Figure JPOXMLDOC01-appb-I000086
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000087

    Figure JPOXMLDOC01-appb-I000088
    Figure JPOXMLDOC01-appb-T000089

    Figure JPOXMLDOC01-appb-I000090
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000091

    Figure JPOXMLDOC01-appb-I000092
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000093
    Figure JPOXMLDOC01-appb-T000094

    Figure JPOXMLDOC01-appb-I000095
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000096

    Figure JPOXMLDOC01-appb-I000097
    Figure JPOXMLDOC01-appb-T000098

    Figure JPOXMLDOC01-appb-I000099
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000100

    Figure JPOXMLDOC01-appb-I000101
    Figure JPOXMLDOC01-appb-T000102

    Figure JPOXMLDOC01-appb-I000103
    Figure JPOXMLDOC01-appb-T000104

    Figure JPOXMLDOC01-appb-I000105
    Figure JPOXMLDOC01-appb-T000106
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000107

    Figure JPOXMLDOC01-appb-I000108

    Figure JPOXMLDOC01-appb-I000109

    Figure JPOXMLDOC01-appb-I000110
    (However, in the above table, any one of individual stable peptides can be combined with each individual variation peptide. Also, any individual variation peptide can be combined with each individual stable peptide. .)
    Figure JPOXMLDOC01-appb-T000111

    Figure JPOXMLDOC01-appb-I000112
    Figure JPOXMLDOC01-appb-T000113

    Figure JPOXMLDOC01-appb-I000114

    Figure JPOXMLDOC01-appb-I000115
    Figure JPOXMLDOC01-appb-T000116

    Figure JPOXMLDOC01-appb-I000117

    Figure JPOXMLDOC01-appb-I000118
    Figure JPOXMLDOC01-appb-T000119

    Figure JPOXMLDOC01-appb-I000120
    Figure JPOXMLDOC01-appb-T000121

    Figure JPOXMLDOC01-appb-I000122
    Figure JPOXMLDOC01-appb-T000123
  12.  同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドが、表に並列して示される品質評価マーカーの少なくとも1つの組合せのなかから選ばれる、請求項11記載の方法。 The method according to claim 11, wherein the variable peptide and the stable peptide derived from the same specific protein are selected from at least one combination of quality evaluation markers shown in parallel to the table.
  13.  単離されている生物学的検体の品質を評価できる、検体中に存在するタンパク質由来のペプチドを選別する方法であって、
    1)ヒトを含む動物から生物学的検体を採取し、
    2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷し、
    3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断し、
    4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドをそれぞれ、変動ペプチドおよび安定ペプチドと同定し、
    5)同一の特定タンパク質に由来する1または複数の変動ペプチドと1または複数の安定ペプチドとの組合せを特定し、
    6)特定した組合せを、生物学的検体の品質評価マーカーとする、該方法。
    A method of selecting a peptide derived from a protein present in a sample, which can evaluate the quality of a biological sample being isolated, comprising:
    1) Collect biological samples from animals including humans,
    2) Load the biological samples collected with factors that affect their quality,
    3) The factor-loaded sample is treated with an enzyme to cleave proteins present in the sample into peptides,
    4) Among the obtained peptides, those which cause quantitative and / or qualitative changes due to factors affecting the quality and those which do not cause change are respectively identified as a variable peptide and a stable peptide,
    5) Identify combinations of one or more variable peptides derived from the same specific protein and one or more stable peptides,
    6) The method, wherein the identified combination is a quality evaluation marker of a biological sample.
  14.  工程1)において、ヒトの健常者から生物学的検体を採取する、請求項13記載の方法。 The method according to claim 13, wherein in step 1), a biological sample is collected from healthy human subjects.
  15.  酵素処理をトリプシンによって行う、請求項13または14記載の方法。 The method according to claim 13 or 14, wherein the enzyme treatment is performed by trypsin.
  16.  生物学的検体が血液、血清、血漿、尿、組織、脳脊髄液のなかから選ばれる、請求項13から15までのいずれか記載の方法。 The method according to any one of claims 13 to 15, wherein the biological sample is selected from blood, serum, plasma, urine, tissue and cerebrospinal fluid.
  17.  品質に影響を及ぼす要因が、採血から遠心分離までの時間、保存温度、保存期間のなかから選ばれる、請求項13から16までのいずれか記載の方法。 The method according to any one of claims 13 to 16, wherein the factor affecting quality is selected from time from blood collection to centrifugation, storage temperature, and storage period.
  18.  単離されている生物学的検体の品質評価マーカーを製造する方法であって、
    1)ヒトを含む動物から生物学的検体を採取し、
    2)採取した生物学的検体に、その品質に影響を及ぼす要因を負荷し、
    3)要因を負荷した試料を酵素で処理し、試料中に存在するタンパク質をペプチドに分断し、
    4)得られたペプチドのなかで、品質に影響を及ぼす要因によって量的および/または質的変化を起こすペプチドおよび変化を起こさないペプチドを同定し、
    5)同定されたペプチドを、生物学的検体の品質評価マーカーとする、該方法。
    A method of producing a quality assessment marker for an isolated biological sample, comprising:
    1) Collect biological samples from animals including humans,
    2) Load the biological samples collected with factors that affect their quality,
    3) The factor-loaded sample is treated with an enzyme to cleave proteins present in the sample into peptides,
    4) Among the obtained peptides, identify peptides that cause quantitative and / or qualitative changes depending on factors affecting quality, and peptides that do not cause changes;
    5) The method, wherein the identified peptide is used as a quality evaluation marker of a biological sample.
  19.  工程1)において、ヒトの健常者から生物学的検体を採取する、請求項18記載の方法。 The method according to claim 18, wherein in step 1), a biological sample is collected from healthy human subjects.
  20.  酵素処理をトリプシンによって行う、請求項18または19記載の方法。 20. The method according to claim 18 or 19, wherein the enzyme treatment is performed by trypsin.
  21.  生物学的検体が血液、血清、血漿、尿、組織、脳脊髄液のなかから選ばれる、請求項18から20までのいずれか記載の方法。 21. The method according to any of claims 18 to 20, wherein the biological sample is selected from blood, serum, plasma, urine, tissue, cerebrospinal fluid.
  22.  品質に影響を及ぼす要因が、採血から遠心分離までの時間、保存温度、保存期間のなかから選ばれる、請求項18から21までのいずれか記載の方法。 The method according to any one of claims 18 to 21, wherein the factor affecting quality is selected from time from blood collection to centrifugation, storage temperature, and storage period.
  23.  請求項8または11記載の表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドである品質評価マーカー。 A quality evaluation marker which is a variable peptide and a stable peptide derived from the same specific protein shown in the table of claim 8 or 11.
  24.  請求項8または11記載の表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つの組合せである品質評価マーカー。 A quality evaluation marker which is a combination of at least one variable peptide and stable peptide derived from the same specific protein shown in parallel in the table according to claim 8 or 11.
  25.  請求項8または11記載の表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドにおける、単離されている生物学的検体の品質を評価できる品質評価マーカーとしての使用。 Use as a quality evaluation marker which can evaluate the quality of the biological specimen isolated in the variation peptide and stable peptide derived from the same specific protein shown by the table of Claim 8 or 11.
  26.  請求項8または11記載の表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つの組合せにおける、単離されている生物学的検体の品質を評価できる品質評価マーカーとしての使用。 A quality evaluation marker capable of evaluating the quality of an isolated biological specimen in at least one combination of a variable peptide and a stable peptide derived from the same specific protein shown in parallel to the table according to claim 8 or 11. Use of.
  27.  請求項8または11記載の表に示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドであって安定同位体を含むものを含有する、単離されている生物学的検体の品質を評価するためのキット。 12. To assess the quality of the biological analyte being isolated, comprising variable peptides and stable peptides derived from the same specific protein as indicated in the table according to claim 8 or 11, comprising stable isotopes. Kit.
  28.  請求項8または11記載の表に並列して示される同一の特定タンパク質由来の変動ペプチドおよび安定ペプチドの少なくとも1つであって安定同位体を含むものを含有する、単離されている生物学的検体の品質を評価するためのキット。 12. An isolated biological comprising at least one of a variable peptide and a stable peptide derived from the same specific protein, shown in parallel in the table according to claim 8 or 11, comprising stable isotopes. A kit for evaluating the quality of specimens.
PCT/JP2018/026202 2017-07-11 2018-07-11 Quality evaluation method for biological specimen and marker therefor WO2019013256A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017135808 2017-07-11
JP2017-135808 2017-07-11
JP2017-154566 2017-08-09
JP2017154566A JP2020153661A (en) 2017-07-11 2017-08-09 Quality evaluation method for biological specimen and marker for that purpose

Publications (1)

Publication Number Publication Date
WO2019013256A1 true WO2019013256A1 (en) 2019-01-17

Family

ID=65001399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026202 WO2019013256A1 (en) 2017-07-11 2018-07-11 Quality evaluation method for biological specimen and marker therefor

Country Status (1)

Country Link
WO (1) WO2019013256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111955667A (en) * 2020-08-27 2020-11-20 河南农业大学 Method for rapidly evaluating influence of specific auxiliary material addition on quality of pork chop and application of method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087401A1 (en) * 2011-06-07 2014-03-27 Alexander Oliver Vortmeyer Biomarkers for Assessment of the Molecular Quality in Biospecimens
JP2014531046A (en) * 2011-10-24 2014-11-20 ソマロジック・インコーポレーテッド Selection of preferred sample handling and processing protocols for disease biomarker identification and sample quality assessment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087401A1 (en) * 2011-06-07 2014-03-27 Alexander Oliver Vortmeyer Biomarkers for Assessment of the Molecular Quality in Biospecimens
JP2014531046A (en) * 2011-10-24 2014-11-20 ソマロジック・インコーポレーテッド Selection of preferred sample handling and processing protocols for disease biomarker identification and sample quality assessment

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANTON, GABRIELE: "Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples", PLOS ONE, vol. 10, no. 3, 2015, pages e0121495, XP055569897 *
HARTMANN, PETER: "Metabolites in human breastmilk identified as markers for sample storage quality", FASEB JOURNAL, vol. 26, 2012 *
SHIROMIZU, TAKASHI: "Development of quality control markers for serum/plasma samples", PROGRAMS AND ABSTRACTS OF THE CONFERENCE OF JAPANESE PROTEOMICS SOCIETV, vol. 2017, July 2017 (2017-07-01), pages 132 *
THUMFART, J. 0: "SYSTEMATIC IDENTIFICATION OF ENDOGENOUS DECAY-MARKERS FOR QUALITY ASSESMENT OF SERUM SPECIMENS", CLINICAL CHEMISTRY AND LABORATORY MEDICINE, vol. 49, no. 1, 2011, pages S221 *
THUMFART, JOERG: "LC/MS based monitoring of endogenous decay markers for quality assessment of serum specimens", JOURNAL OF PROTEOMICS & BIOINFORMATICS, vol. 8, no. 5, 2015, pages 91 - 97 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111955667A (en) * 2020-08-27 2020-11-20 河南农业大学 Method for rapidly evaluating influence of specific auxiliary material addition on quality of pork chop and application of method

Similar Documents

Publication Publication Date Title
Koomen et al. Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins
JP6596555B2 (en) SRM assay to indicate cancer therapy
Mischak et al. Technical aspects and inter-laboratory variability in native peptide profiling: The CE–MS experience
Dayon et al. Relative protein quantification by MS/MS using the tandem mass tag technology
Selevsek et al. Systematic quantification of peptides/proteins in urine using selected reaction monitoring
JP6670288B2 (en) SRM assay for chemotherapeutic targets
JP7285215B2 (en) Biomarkers for detecting colorectal cancer
Percy et al. Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies
JP5468073B2 (en) Protein quantification method
US20170299605A1 (en) Srm methods in alzheimer&#39;s disease and neurological disease assays
Zhang et al. Evaluation of sample preparation methods for label-free quantitative profiling of salivary proteome
US11740245B2 (en) Mass spectrometry-based methods for the detection of circulating histones H3 and H2B in plasma from sepsis or septic shock (SS) patients
Thierolf et al. Towards a comprehensive proteome of normal and malignant human colon tissue by 2‐D‐LC‐ESI‐MS and 2‐DE proteomics and identification of S100A12 as potential cancer biomarker
WO2019013256A1 (en) Quality evaluation method for biological specimen and marker therefor
JP5867834B2 (en) Lung cancer marker complement C3dg molecule and method for analyzing lung cancer marker
US20180136218A1 (en) Secreted Protein Acidic and Rich in Cysteine (SPARC) Protein SRM/MRM Assay
US20160216268A1 (en) SRM/MRM Assay for the Fatty Acid Synthase Protein
JP2020153661A (en) Quality evaluation method for biological specimen and marker for that purpose
JP6742235B2 (en) Protein detection method using mass spectrometry
JP2013542453A (en) Albumin binding protein / peptide complex as a biomarker for disease
KR102099567B1 (en) A method of isolation of protein and lipid using zwitterionic detergents and the use thereof
US20160313344A1 (en) MRM/SRM Assay for Death Receptor 5 Protein
Yu et al. Multiple and Single Reaction Monitoring Mass Spectrometry for Absolute Quantitation of Proteins
Henry et al. Introduction to sample preparation for proteomics and mass spectrometry
Reisdorph et al. Proteomics methods and applications for the practicing clinician

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP