WO2019013232A1 - Helical belt and belt transmission gear - Google Patents

Helical belt and belt transmission gear Download PDF

Info

Publication number
WO2019013232A1
WO2019013232A1 PCT/JP2018/026105 JP2018026105W WO2019013232A1 WO 2019013232 A1 WO2019013232 A1 WO 2019013232A1 JP 2018026105 W JP2018026105 W JP 2018026105W WO 2019013232 A1 WO2019013232 A1 WO 2019013232A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
tooth
less
helical
pitch
Prior art date
Application number
PCT/JP2018/026105
Other languages
French (fr)
Japanese (ja)
Inventor
弘晃 池上
吉田 正邦
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018121700A external-priority patent/JP6648198B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP18832375.2A priority Critical patent/EP3653904B1/en
Priority to KR1020207000453A priority patent/KR102289189B1/en
Priority to CA3069294A priority patent/CA3069294C/en
Priority to US16/630,272 priority patent/US11460090B2/en
Priority to CN201880045726.3A priority patent/CN110869640B/en
Publication of WO2019013232A1 publication Critical patent/WO2019013232A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0094Belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/04Driving-belts made of fibrous material, e.g. textiles, whether rubber-covered or not
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • F16H7/023Gearings for conveying rotary motion by endless flexible members with belts; with V-belts with belts having a toothed contact surface or regularly spaced bosses or hollows for slipless or nearly slipless meshing with complementary profiled contact surface of a pulley
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes

Definitions

  • the present invention relates to a helical gear belt, and more particularly to a helical gear belt applied to a belt transmission driven by high load or high speed rotation, and a belt transmission.
  • Patent Document 1 and Patent Document 2 propose a technology for further reducing noise and vibration in a belt transmission driven by high load or high speed rotation using a helical belt. There is.
  • the tooth ridge angle ⁇ is set to a value that satisfies ⁇ 0.2 ⁇ 1 ⁇ W ⁇ tan ⁇ / Pt ⁇ 0.75.
  • the backlash (gap) between the teeth of the helical tooth belt and the teeth of the pulley is set to 1.6% to 3% of the tooth pitch Pt.
  • the tooth line angle ⁇ is 7 degrees or more and 10 degrees or less.
  • the ratio (100 ⁇ tb / hb) of the thickness tb to the tooth height hb is set to 120% or more and 240% or less.
  • the present invention can increase the rigidity without increasing the thickness of the helical belt, and can further reduce noise and vibration when used in a belt transmission driven by high load or high speed rotation. Intended to provide a belt.
  • One of the modes of the present invention is a back in which a core wire is embedded,
  • a helical tooth belt having a plurality of tooth portions provided on one surface of said back along the longitudinal direction of the belt at predetermined intervals and each inclined with respect to the belt width direction,
  • the surface of the teeth and a portion of the one surface of the back are made of a tooth cloth,
  • the tooth pitch of the plurality of teeth is 2 mm or more and less than 4 mm
  • the thickness of the back is 0.4 mm or more and 1.2 mm or less
  • the thickness of the back is 0.6 mm or more and 1.8 mm or less
  • the core wire is a twisted cord containing high-strength glass fiber or carbon fiber and having a diameter of 0.2 mm or more and 0.6 mm or less
  • each core wire pitch between the core wire and the core wire is 0.45
  • the surface on the tooth side of the back portion is reinforced by the tooth cloth, and the rigidity is enhanced.
  • the core wire embedded in the back is a twisted cord containing high strength glass fiber or carbon fiber which is a high strength (high elastic modulus) fiber material, and the diameter of the twisted cord is 0.2 mm or more. It is 6 mm or less. Therefore, the rigidity of the back can be further enhanced by the core wire while securing the flexibility of the back.
  • Vibration chord vibration
  • each core pitch between the cores is in the range of 0.45 mm or more and 0.6 mm or less.
  • the thickness of the back is 0.4 mm or more and 1.2 mm or less.
  • the thickness of the back is 0.6 mm or more and 1.8 mm or less.
  • the thicknesses of these are, for example, about the same as the thickness of the back of a conventional helical tooth belt used for a reduction gear of an electric power steering apparatus for automobiles.
  • the helical belt of the present invention can increase the rigidity of the back without increasing the thickness of the back. Therefore, vibration and noise can be further suppressed while securing sufficient bending fatigue resistance.
  • the above-mentioned core wire embedded in the above-mentioned back portion extends from one end to the other end of the helical belt in the belt width direction.
  • the core line pitch may be arranged to be a constant value in the range of 0.45 mm or more and 0.6 mm or less.
  • the rigidity of the helical tooth belt can be further enhanced without further increasing the thickness of the back or increasing the diameter of the core wire (without sacrificing flexibility). , Vibration and noise can be suppressed more.
  • the tooth height of the teeth when the tooth pitch of the plurality of teeth is 2 mm or more and less than 3 mm, the tooth height of the teeth is 0.7 mm or more 2 .0 mm or less, When the tooth pitch of the plurality of tooth portions is 3 mm or more and less than 4 mm, the tooth height of the tooth portions may be 1.0 mm or more and 2.3 mm or less.
  • the back may include a rubber component, and the rubber component may include an ethylene-propylene-diene terpolymer or a hydrogenated nitrile rubber.
  • the tooth cloth is made of a woven fabric including warp and weft, and the warp or weft is arranged to extend in the longitudinal direction of the belt.
  • the warp or weft disposed so as to extend in the longitudinal direction of the belt may include an elastic yarn having elasticity.
  • At least one fiber selected from the group consisting of nylon, aramid, polyester, polybenzoxazole, and cotton, which constitutes the tooth cloth May be included.
  • the other surface of the back is made of a backing cloth
  • the fibers constituting the back fabric may include at least one fiber selected from the group consisting of nylon, aramid, and polyester.
  • the other side of the back is made of the back cloth, and the fibers constituting the back cloth include at least one type of fiber selected from the group consisting of nylon, aramid, and polyester. It is further reinforced to increase its rigidity.
  • a belt elastic modulus of the helical belt may be 0.96 MPa or more per 1 mm of belt width.
  • a drive pulley rotationally driven by a drive source, Driven pulley, It may be a belt transmission provided with the above-mentioned helical tooth belt wound on the above-mentioned driving pulley and the above-mentioned driven pulley.
  • noise and vibration can be reduced in the belt transmission that transmits the driving force of the driving pulley to the driven pulley.
  • the rotational speed of the drive pulley may be 1000 rpm or more and 4000 rpm or less.
  • noise and vibration can be sufficiently reduced in the belt transmission driven at high speed.
  • the load of the driven pulley may be 0.5 kW or more and 3 kW or less.
  • noise and vibration can be sufficiently reduced in a belt drive driven at high load.
  • an outer diameter of the driven pulley is larger than an outer diameter of the drive pulley.
  • the belt transmission may be a reduction gear of an electric power steering apparatus for a car.
  • noise and vibration can be sufficiently reduced in the reduction gear of the electric power steering apparatus for a car.
  • a helical tooth belt capable of further reducing noise and vibration when it is used for a belt transmission driven by high load or high speed rotation without increasing the thickness of the helical tooth belt. it can.
  • FIG. 1 is a schematic view showing a schematic configuration of an electric power steering apparatus to which the helical belt of the present embodiment is applied.
  • FIG. 2 is a side view of the reduction gear of the electric power steering apparatus.
  • FIG. 3 is a partial perspective view of the helical tooth belt.
  • FIG. 4 is a view of the helical tooth belt as viewed from the inner peripheral side.
  • FIG. 5 is a cross-sectional view in the belt width direction of the helical tooth belt.
  • the helical belt 30 of this embodiment is used, for example, for the reduction gear 20 of the electric power steering apparatus 1 for a car shown in FIG.
  • the electric power steering (EPS) device 1 is connected to the steering shaft 3 connected to the steering wheel 2, the intermediate shaft 4 connected to the steering shaft 3, and the intermediate shaft 4 and interlocked with the rotation of the steering wheel 2. And a steering mechanism 5 for steering the wheels 9.
  • the steering mechanism 5 includes a pinion shaft 6 connected to the intermediate shaft 4 and a rack shaft 7 meshing with the pinion shaft 6.
  • the rack shaft 7 extends in the left-right direction of the vehicle.
  • a rack 7 a that meshes with a pinion 6 a provided on the pinion shaft 6 is formed in the middle of the rack shaft 7 in the axial direction.
  • the wheels 9 are connected to both ends of the rack shaft 7 via tie rods 8 and knuckle arms (not shown).
  • the rotation of the steering wheel 2 is transmitted to the pinion shaft 6 via the steering shaft 3 and the intermediate shaft 4.
  • the rotation of the pinion shaft 6 is converted into the axial movement of the rack shaft 7. Thereby, the wheel 9 is steered.
  • the electric power steering apparatus 1 can obtain a steering assist force according to the steering torque applied to the steering wheel 2.
  • the electric power steering apparatus 1 includes a torque sensor 13 for detecting a steering torque, a control device 14, an electric motor 15 (drive source) for steering assistance, and a driving force of the electric motor 15 as a steering mechanism 5. And a speed reduction gear 20 as a transmission gear.
  • the steering shaft 3 has an input shaft 10, a torsion bar 11 and an output shaft 12.
  • the torque sensor 13 detects the steering torque input to the steering wheel 2 based on the relative rotational displacement between the input shaft 10 and the output shaft 12.
  • the detection result of the torque sensor 13 is input to the control device 14.
  • the control device 14 controls the electric motor 15 based on the steering torque and the like detected by the torque sensor 13.
  • the reduction gear 20 has a drive pulley 21, a driven pulley 22, and a helical tooth belt 30 wound around the drive pulley 21 and the driven pulley 22.
  • the driven pulley 22 has an outer diameter larger than that of the drive pulley 21.
  • the drive pulley 21 is fixed to the rotation shaft of the electric motor 15.
  • the driven pulley 22 is fixed to the pinion shaft 6.
  • a plurality of helical teeth 21 a are formed on the outer peripheral surface of the drive pulley 21.
  • a plurality of helical teeth 22 a are formed on the outer peripheral surface of the driven pulley 22.
  • the rotational speed of the drive pulley 21 is, for example, 1000 rpm or more and 4000 rpm or less.
  • the load of the driven pulley 22 is, for example, 0.5 kW or more and 3 kW or less.
  • the control device 14 drives the electric motor 15.
  • the electric motor 15 rotates the drive pulley 21, the helical tooth belt 30 travels, and the driven pulley 22 and the pinion shaft 6 rotate.
  • the rotational force of the electric motor 15 is decelerated by the reduction gear 20 and transmitted to the pinion shaft 6.
  • the rotation of the steering wheel 2 is transmitted to the pinion shaft 6 via the steering shaft 3 and the intermediate shaft 4.
  • the rotation of the pinion shaft 6 is converted into the axial movement of the rack shaft 7, whereby the wheels 9 are steered.
  • the steering of the driver is assisted by the rotation of the pinion shaft 6 being assisted by the electric motor 15.
  • the configuration of the electric power steering apparatus 1 to which the helical tooth belt 30 of the present invention can be applied is not limited to the configuration shown in FIG.
  • the driven pulley 22 of the reduction gear 20 may be fixed to the intermediate shaft 4 or the steering shaft 3.
  • the driven pulley 22 of the reduction gear 20 may be coupled to the rack shaft 7 via the conversion mechanism.
  • the conversion mechanism is, for example, a ball screw mechanism or a bearing screw mechanism, and may convert the rotational force of the driven pulley 22 into a force in the axial direction of the rack shaft 7 and transmit it to the rack shaft 7.
  • the helical belt 30 has a back 31 in which a core wire 33 is embedded in a spiral along the longitudinal direction of the belt and an inner peripheral surface of the back 31 (corresponding to one surface of the back 31) And a plurality of teeth 32 provided at predetermined intervals along the longitudinal direction of the belt.
  • the plurality of teeth 32 are integrally formed on the inner peripheral surface of the back 31.
  • the teeth 32 extend obliquely with respect to the belt width direction.
  • the inner circumferential surface of the helical tooth belt 30, that is, the surface of the tooth portion 32 and a part of the inner circumferential surface of the back portion 31 are covered with a tooth cloth 35.
  • the outer peripheral surface of the back 31 (corresponding to the other surface of the back 31) is not covered with a cloth or the like, but may be covered with a back cloth.
  • the circumferential length of the helical belt 30 is, for example, 150 to 400 mm.
  • the numerical range represented by “X to Y” means X or more and Y or less.
  • the width W (see FIG. 4) of the helical belt 30 is, for example, 4 to 30 mm.
  • the tooth pitch P (see FIG. 3) of the tooth portion 32 is 2 mm or more and less than 4 mm.
  • the thickness tb (see FIG. 3) of the back 31 is 0.4 to 1.2 mm, preferably 0.6 mm or more and 0.9 mm or less.
  • the thickness tb of the back 31 is 0.6 to 1.8 mm, preferably 0.8 mm or more and 1.2 mm or less.
  • the tooth height hb (see FIG. 3) of the tooth portion 32 is, for example, 0.7 to 2.0 mm, preferably 0.8 mm or more and 1.0 mm or less is there.
  • the tooth height hb of the tooth portion 32 is, for example, 1.0 to 2.3 mm, preferably 1.1 mm or more and 2.0 mm or less.
  • the total thickness (maximum thickness) t see FIG.
  • the inclination angle ⁇ (see FIG. 4) of the teeth 32 with respect to the belt width direction is, for example, 2 to 7 °, preferably 2 to 6 °.
  • the back 31 and the teeth 32 are composed of a rubber composition, and as a rubber component of this rubber composition, chloroprene rubber (CR), nitrile rubber, hydrogenated nitrile rubber (HNBR), ethylene-propylene copolymer (EPM) And ethylene-propylene-diene terpolymer (EPDM), styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber and the like.
  • Particularly preferred rubber components are ethylene-propylene-diene terpolymers (EPDM), and chloroprene rubber and hydrogenated nitrile rubber (HNBR) are also suitably used.
  • the rubber composition which constitutes back part 31 and tooth part 32 is formed with the same rubber composition, it may be formed with different rubber compositions.
  • the rubber composition that constitutes the back 31 and the teeth 32 may contain various conventional additives (or compounding agents) as needed.
  • a vulcanizing agent or a crosslinking agent for example, oximes (such as quinone dioxime), guanidines (such as diphenyl guanidine), metal oxides (such as magnesium oxide and zinc oxide)), a vulcanization assistant, and a vulcanizing agent Vulcanization accelerator, vulcanization retarder, reinforcing agent (carbon black, silicon oxide such as hydrous silica), metal oxide (eg zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide) , Aluminum oxide etc., fillers (clay, calcium carbonate, talc, mica etc.), plasticizers, softeners (oils such as paraffin oil, naphthenic oil etc.), processing agents or processing aids (stearic acid, stearin, etc) Acid metal salt, wax, paraffin etc., anti-aging agent (aromatic
  • sealant can be exemplified antistatic agent.
  • stabilizers antioxidants, ultraviolet absorbers, heat stabilizers, etc.
  • lubricants flame retardants, etc.
  • flame retardants etc.
  • additives can be used alone or in combination, and can be selected according to the type of rubber component, application, performance and the like.
  • the core wire 33 is spirally embedded in the back portion 31 at a predetermined interval (0.45 mm or more and 0.6 mm or less) in the belt width direction along the belt longitudinal direction. More specifically, as shown in FIG. 3 and FIG. 5, cords 33 spirally embedded cords 33 and 33 from one end to the other end in the belt width direction of spine 31.
  • Each core pitch SP which is the distance between the centers of may be arranged so as to have a constant value in the range of 0.45 mm or more and 0.6 mm or less.
  • the apparent number in a cross sectional view of the cords arranged at a predetermined cord pitch SP in the belt width direction is treated as "the number of cords". . That is, the number of spirals of the core wire 33 embedded in a spiral shape is taken as the “number of core wires”.
  • the core wire 33 which is disposed at one end and the other end of the spine 31 of the helical belt 30 and is not cut in a circular cross-sectional view is not included in the effective number and is not cut in a cross sectional view It is desirable to count the core wire 33 as an effective number.
  • the core wire 33 is embedded in a spiral shape, the arrangement of the core wire 33 differs depending on the portion where the cross section is collected among the endless helical tooth belts 30, which is cut.
  • each core pitch SP is constant in the range of 0.45 mm or more and 0.6 mm or less
  • the value obtained by dividing the belt width by the core wire pitch SP (a constant value in the range of 0.45 mm to 0.6 mm) and rounding off the decimal point value is roughly calculated. It is regarded as "the number of cores" (the number of effective lines). For example, if the belt width is 25 mm and the core wire pitch SP is 0.56 mm, the calculated value is 44.64, and the “number of core wires” (the number of effective wires) is regarded as 44.
  • the calculated value is 48.07, and the “number of cores” (the number of effective cores) is considered to be 48. Further, if the belt width is 25 mm and the core pitch SP is 0.60 mm, the calculated value is 41.67, and the “number of core wires” (the number of effective wires) is regarded as 41.
  • the core wire 33 is comprised by the twist cord formed by twisting a plurality of strands.
  • One strand may be formed by bundling filaments (long fibers) and aligning them.
  • the diameter of the core wire 33 is 0.2 to 0.6 mm.
  • the material of the filament is high strength glass fiber or carbon fiber. Both high strength glass fibers and carbon fibers have high strength and low elongation, and are suitable as a material of the core wire 33, but high strength glass fibers are more preferable from the viewpoint of low cost.
  • high-strength glass fibers for example, those having a tensile strength of 300 kg / cm 2 or more, particularly glass fibers having a composition shown in the following Table 1 having more Si components than alkali-free glass fibers (E glass fibers) are suitably used. it can.
  • the composition of E glass fiber is also described in Table 1 below for comparison.
  • K glass fiber As such high-strength glass fibers, K glass fiber, U glass fiber (both manufactured by Nippon Glass Fiber Co., Ltd.), T glass fiber (manufactured by Nitto Boseki Co., Ltd.), R glass fiber (manufactured by VETROTEX), S glass fiber, S glass fiber -2 Glass fiber, ZENTRON glass fiber (all manufactured by Owens Corning Fiberglass) and the like.
  • the carbon fiber examples include pitch-based carbon fiber, polyacrylonitrile (PAN) -based carbon fiber, phenol resin-based carbon fiber, cellulose-based carbon fiber, polyvinyl alcohol-based carbon fiber and the like.
  • PAN polyacrylonitrile
  • carbon fiber for example, Toray Industries, Inc. "Toreca (registered trademark)", Toho Tenax Corporation “Tenax (registered trademark)", Mitsubishi Chemical Corporation “Dialed (registered trademark)” Can be used.
  • These carbon fibers can be used alone or in combination of two or more.
  • pitch-based carbon fibers and PAN-based carbon fibers are preferable, and PAN-based carbon fibers are particularly preferable.
  • the twist cords used as the core wire 33 may be subjected to an adhesion treatment in order to improve the adhesion to the back 31.
  • an adhesion treatment for example, a method is employed in which a twist cord is dipped in a resorcinol-formalin-latex treatment solution (RFL treatment solution) and then dried by heating to form an adhesion layer uniformly on the surface.
  • the RFL treatment solution is a mixture of an initial condensation product of resorcin and formalin in a latex, and as the latex used here, chloroprene, styrene butadiene vinylpyridine terpolymer (VP latex), hydrogenation A nitrile, NBR, etc. are mentioned.
  • VP latex chloroprene, sty
  • the tooth cloth 35 is preferably made of a woven fabric in which warp yarns and weft yarns are longitudinally and transversely crossed according to a predetermined rule.
  • the weave of the woven fabric may be twill weave, satin weave, or the like.
  • the form of warp yarn and weft yarn is any of multifilament yarns in which filaments (long fibers) are aligned and twisted, monofilament yarn which is one long fiber, and spun yarn (spun yarn) in which short fibers are twisted together. May be When the warp or weft is a multifilament yarn or a spun yarn, it may be a mixed twist yarn or mixed yarn using a plurality of types of fibers.
  • the weft yarn preferably includes an elastic yarn having stretchability.
  • the elastic yarn for example, a material having stretchability such as spandex made of polyurethane, or a processed yarn obtained by stretching (for example, wooly processing, crimping and the like) of a fiber is used. Normally, elastic yarns are not used for warp yarns. Therefore, weaving is easy.
  • the tooth cloth 35 it is preferable to arrange the warp of the woven fabric in the belt width direction and the weft so as to extend in the belt longitudinal direction. Thereby, the stretchability of the tooth cloth 35 in the belt longitudinal direction can be secured.
  • the tooth cloth 35 may be arranged so that the weft of the woven fabric extends in the belt width direction and the warp extends in the belt longitudinal direction. In this case, an elastic yarn having stretchability may be used as a warp.
  • a material of the fiber which comprises the tooth cloth 35 nylon, an aramid, polyester, polybenzoxazole, cotton etc. can use either or these combination.
  • the woven fabric used as the tooth cloth 35 may be subjected to an adhesion treatment in order to improve the adhesion to the back 31 and the teeth 32.
  • an adhesion treatment a method is generally used in which a woven fabric is dipped in resorcinol-formalin-latex (RFL solution) and then dried by heating to form a bonding layer uniformly on the surface.
  • RFL solution resorcinol-formalin-latex
  • the rubber composition is dissolved in an organic solvent such as methyl ethyl ketone, toluene, xylene, etc. besides the method of treating the woven fabric with an RFL solution.
  • the outer peripheral surface of the back 31 (corresponding to the other surface of the back 31) is not covered by a cloth or the like, but may be covered by a back cloth 36.
  • the back fabric 36 is a knitted fabric knitted with knitting yarn, or a woven fabric in which warp and weft yarns are intertwined longitudinally and laterally according to a certain rule It is preferred to be configured.
  • a knitted fabric is a fabric having a structure in which one or more yarns form a mesh (loop), and the next yarn is hooked on the loop to continuously form a new loop. That is, in a knitted fabric, it is formed by making a loop without crossing yarns in a straight line.
  • the knitted fabric (or knitting of the knitted fabric) may be either weft knitting (or knitted fabric knitted by weft knitting) or warp knitting (or knitted fabric knit by warp knitting) It may be The shape of the knitted fabric is not limited to a flat shape, a cylindrical shape (round knitting), and the like, and either the front or back stitch of the knitted fabric may be the adhesion surface of the belt body.
  • weft knitting examples include plain knitting (tendon knitting), rubber knitting, deer knitting, smooth knitting, jacquard knitting and the like.
  • warp knitting or knitting structure of warp knitting
  • a single denby, a single cord, a tricot, a half tricot etc. are mentioned, for example.
  • the weave of the woven fabric may be any of plain weave, twill weave, satin weave, and the like. From the viewpoint of securing the bendability of the helical belt 30, in order to make it easy to bend in the longitudinal direction of the belt, it is preferable to make the weave configuration or the knitting configuration easy to stretch in the longitudinal direction of the belt. Therefore, it is preferable to use a woven fabric containing elastic yarn having stretchability as the weft, and arrange the warp of the woven fabric to extend in the belt width direction and the weft to extend in the belt longitudinal direction.
  • multifilament yarns in which filaments (long fibers) are aligned and twisted, single filament monofilament yarn, and short fibers are twisted
  • It may be any of the spun yarns (spun yarns).
  • the warp or weft is a multifilament yarn or a spun yarn, it may be a mixed twist yarn or mixed yarn using a plurality of types of fibers.
  • the fiber which comprises the back fabric 36 any one of nylon, an aramid, polyester etc., or these combination is employable.
  • the back portion 31 is further reinforced to increase the rigidity of the helical tooth belt 30.
  • the woven or knitted fabric used as the back fabric 36 may be subjected to an adhesion treatment to enhance the adhesion to the back 31.
  • an adhesion treatment as in the case of the tooth cloth 35, it is preferable to immerse the cloth in resorcinol-formalin-latex (RFL solution) and then heat and dry to form an adhesion layer uniformly on the surface.
  • RFL solution resorcinol-formalin-latex
  • the rubber composition is dissolved in an organic solvent such as methyl ethyl ketone, toluene, xylene, etc., in addition to a method of treating the cloth with an RFL solution after pretreatment with an epoxy or isocyanate compound without being limited thereto.
  • a method of impregnating and adhering the rubber composition by dipping the cloth in the rubber paste may be employed. These methods may be performed alone or in combination, and the order of treatment and the number of treatments are not particularly limited.
  • the back cloth 36 is a knitted cloth
  • the unvulcanized rubber sheet wound on the knitted cloth is impregnated in the knitted cloth in the heat and pressure step in the method of manufacturing the helical tooth belt 30 described later. Therefore, it is not necessary to carry out the adhesion process.
  • the elastic modulus of the belt in the longitudinal direction of the helical belt 30 is preferably 0.96 MPa or more per 1 mm of the belt width, and more preferably in the range of 0.96 MPa to 1.4 MPa.
  • the elastic modulus of the belt in the longitudinal direction of the helical belt 30 is preferably 0.96 MPa or more per 1 mm of the belt width, and more preferably in the range of 0.96 MPa to 1.4 MPa.
  • it is preferably 24 MPa or more, and more preferably in the range of 24 MPa to 35 MPa.
  • the vibration of the helical tooth belt 30 is The rigidity of the helical tooth belt can be secured such that sufficient quietness can be obtained by suppression.
  • the helical belt 30 is manufactured, for example, in the following procedure. First, a woven fabric which has been subjected to adhesion processing for forming the tooth cloth 35 is wound around a cylindrical mold (not shown) having a plurality of grooves corresponding to the plurality of teeth 32 of the helical tooth belt 30. Subsequently, the twisted cords constituting the core wire 33 are helically spun on the outer circumferential surface of the wound woven fabric. Furthermore, an unvulcanized rubber sheet for forming the back portion 31 and the tooth portion 32 is wound around the outer periphery side to form an unvulcanized belt molded body.
  • a rubber jacket that is a vapor blocking material is further covered on the outer side thereof.
  • the jacketed belt molded body and the cylindrical mold are housed inside the vulcanized can.
  • the belt molded body is heated and pressurized inside the vulcanized can to vulcanize the rubber sheet.
  • the rubber composition of the rubber sheet is pressed into the groove of the mold to form the teeth 32.
  • a plurality of helical belts 30 are obtained by cutting the demolded sleeve-like molded body into a predetermined width.
  • the surface of the back portion 31 on the side of the tooth portion 32 is reinforced by the tooth cloth 35, so that the rigidity is enhanced.
  • the core wire 33 embedded in the back portion 31 is a twisted cord containing high strength glass fiber or carbon fiber which is a high strength (high elastic modulus) fiber material, and the diameter of the twisted cord is 0.2 mm or more It is 0.6 mm or less. Therefore, the rigidity of the back 31 can be further enhanced by the core wire 33 while securing the bendability of the back 31.
  • each core pitch SP between the cores is in the range of 0.45 mm or more and 0.6 mm or less.
  • the thickness of the back 31 is 0.4 mm or more and 1.2 mm or less.
  • the thickness of the back 31 is 0.6 mm or more and 1.8 mm or less.
  • the thickness of these is, for example, about the same as the thickness of the back of the conventional helical tooth belt used for the reduction gear 20 of the electric power steering apparatus 1 for automobiles.
  • the helical belt 30 of the present invention can increase the rigidity of the back 31 without increasing the thickness of the back 31. Therefore, vibration and noise can be further suppressed while securing sufficient bending fatigue resistance.
  • the helical belt 30 for the reduction gear 20 of the electric power steering apparatus 1 for an automobile in which the outer diameter of the driven pulley 22 is larger than the outer diameter of the drive pulley 21, noise and vibration are sufficiently made. It can be reduced.
  • helical tooth belts according to Examples 1 to 17 and Comparative Examples 1 to 6 were manufactured, and measurement of a belt elastic modulus, a sound pressure measurement test, and a cold resistance test described later were performed.
  • twist cords of A1 to A4 having the configurations shown in Table 2 below were prepared.
  • the twist cord of A1 was created in the following procedure.
  • the glass fiber filaments of the designation KCG150 described in JIS R 3413 (2012) were bundled and aligned to form three strands.
  • the three strands are immersed in an RFL solution (18-23 ° C.) having a composition shown in Table 3 below for 3 seconds and then dried by heating at 200-280 ° C. for 3 minutes to uniformly adhere to the surface A layer was formed.
  • the three strands were pretwisted with 12 twists / 10 cm, no overtwisting was given, and a twist cord having a diameter of 0.35 mm was prepared by single twisting.
  • the twist cords of A2 and A3 were prepared in the same manner as A1, except that the glass fibers were changed to UCG150 and ECG150.
  • the twist cord of A4 is prepared in the same procedure as the core wire of A1 to A3 except that the used strand is one strand obtained by bundling and aligning carbon fiber filaments (3K), and the diameter is single-twisted. Is a 0.53 mm twisted cord.
  • the tooth cloth used for the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6 was one type.
  • As the tooth cloth twill woven fabric was used, and the warp yarn of the woven fabric was disposed in the belt width direction and the weft yarn was extended in the belt longitudinal direction.
  • As the weft of the woven fabric a multifilament yarn of fineness of 155 dtex of 66 nylon and a multifilament yarn of fineness of 122 dtex of spandex (polyurethane elastic fiber) were used.
  • the warp of the woven fabric was a 66 nylon multifilament yarn having a fineness of 155 dtex.
  • dtex decitex is what expressed the mass of the thread of 10000 meters in a gram unit.
  • the woven fabric used for tooth cloth is dipped in RFL solution (18-23 ° C) shown in Table 10 for 10 seconds and then dried by heating at 150-170 ° C for 3 minutes to uniformly adhere the adhesive layer on the surface. Were treated to form an adhesive.
  • An unvulcanized rubber sheet having a composition C1 shown in Table 4 below was prepared as an unvulcanized rubber sheet for forming the spine and the tooth portion of the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6.
  • the belt elastic modulus (tensile elastic modulus) was measured for the helical tooth belt (belt longitudinal direction) of Examples 1 to 17 and Comparative Examples 1 to 6. The method of measuring the belt elastic modulus will be described.
  • a pair of pulleys (30 teeth outer diameter 18.6 mm) were attached to the lower fixed part and upper load cell connection part of Autograph ("AGS-J10kN" manufactured by Shimadzu Corporation), and the helical tooth belt was hooked on the pulleys .
  • the upper pulley was then raised and stressed (about 10 N) to the extent that the helical belt did not loosen.
  • the helical belt 30 is wound around two pulleys, the distance between the shafts is adjusted so that the belt tension is 90 N, a load of 5 Nm is applied to the driven pulley 22, and the driving pulley 21 has a rotational speed of 1200 rpm.
  • the helical tooth belt 30 was run by rotating.
  • the ambient temperature was 23 ° C.
  • the sound pressure was measured with the sound collection microphone M of the sound level meter.
  • the sound collection microphone M was displayed on the deceleration apparatus shown in FIG.
  • the sound collection microphone M is a straight line A which passes through the center position S of the drive pulley 21 and is perpendicular to a straight line T passing the center position S of the drive pulley 21 and the center position K of the driven pulley 22.
  • Tables 5 to 8 show the measurement results measured by the sound collection microphone M. When the sound pressure was 63 dBA or less, it was evaluated as acceptable as a noise level that causes no problem in the helical tooth belt.
  • Rank B is a case where the crack did not occur at the 500th cycle and the crack occurred at the 1000th cycle.
  • Rank C is a case where a crack has occurred at the 500th cycle.
  • the crack life tends to reach crack life in the order of ranks B and C in comparison with rank A belt It is positioned as a grade that is less durable. From the viewpoint of appropriate use in cold regions where the lowest temperature reaches -40.degree. C., belts of ranks A and B are preferred, and belts of rank A are particularly preferably used.
  • Comparative Example 2 is a high strength glass fiber having a large elastic modulus of core, but the core pitch is large (0.64 mm), so it is not possible to secure a belt elastic modulus that can suppress vibration (less than 24 MPa ), The effect of reducing the sound pressure was not enough. Therefore, it can be judged that the lower limit of the elastic modulus (tensile elastic modulus in the longitudinal direction) of the belt having an effect of suppressing the vibration is 24 MPa (0.96 MPa per 1 mm of the belt width).
  • Comparative Example 1 is an example using the same configuration as that of Example 2 except for the material of the core wire, and using the core wire A3 of E glass fiber which is not high strength glass fiber, and the sound pressure is 64 dBA. Exceeded.
  • the comparative example 2 is an example which has the same configuration as the comparative example 1 except for the material of the core and the core pitch SP (0.64 mm) is larger than that of the comparative example 1. In this case, the sound pressure was larger than the determination criterion (pass at 63 dBA or less).
  • the sound pressure was 63 dBA or less, which is the criterion.
  • the second, third, and seventh embodiments have the same configuration as the first embodiment, and the core pitch is smaller (0.52 mm) than the first embodiment (0.56 mm), and the seventh embodiment is the sixth embodiment.
  • Example 3 is an example (0.60 mm) which is smaller than Example 2 (0.48 mm), and Example 3 is larger than Example 1, and Example 7 has the lowest sound among Examples 7, 2, 1 and 3. Pressure (58 dBA).
  • Example 4 differs from Example 2 only in the type of fibers constituting the cord (U glass), and Example 5 differs from Example 1 only in the type of fibers constituting the cord ( Carbon)
  • Example 8 differs from Example 3 only in the type of fibers constituting the cord (carbon). In Examples 4, 5 and 8, no significant difference was found in the sound pressure.
  • Example 9 (0.45 mm) in which the back thickness is smaller than Example 1 (back thickness 0.85 mm) since the rigidity of the helical tooth belt is small, the sound pressure is the acceptance criterion. It has increased to 63dBA.
  • Example 10 (1.15 mm) in which the back thickness was large, the sound pressure was reduced and the quietness was improved, but the cold resistance was lowered (judgment B).
  • Comparative Example 3 (1.30 mm) having a large back thickness, the sound pressure was further reduced, but the cold resistance was further reduced (judgment C). Overall, the back thickness (0.85 mm) of the well-balanced Example 1 was the best.
  • a fall of cold resistance is that it becomes easy to produce malfunctions, such as a crack, when it uses (bending driving
  • cold resistance for use in cold regions eg -40 ° C
  • the sound pressure increases and the quietness decreases as the back thickness decreases, but on the other hand, the stiffness of the helical tooth belt decreases (flexibility improves).
  • the cold resistance is improved, while the sound pressure is reduced and the quietness is improved if the back thickness is increased, but the cold resistance is lowered due to the increase in rigidity (flexibility) of the helical tooth belt.
  • the upper limit and the lower limit of the thickness of the back become important, and according to Examples 1, 9, 10 and Comparative Example 3, when the tooth pitch is 2 mm or more and less than 3 mm, the thickness of the back is 0.4 to 1 2 mm is preferable, and 0.6 mm to 0.9 mm is considered to be preferable.
  • Comparative Example 5 is a high strength glass fiber having a large elastic modulus of core, but since the core pitch is large (0.64 mm), the belt elastic modulus that can suppress vibration can not be secured (less than 24 MPa ), The effect of reducing the sound pressure was not enough. Therefore, it can be judged that the lower limit of the elastic modulus (tensile elastic modulus in the longitudinal direction) of the belt having an effect of suppressing the vibration is 24 MPa (0.96 MPa per 1 mm of the belt width).
  • Comparative Example 4 is an example using the core A3 of E glass fiber which is not the high strength glass fiber in the same configuration as Example 6 except for the material of the core, and the sound pressure is determined to be 66 dBA Exceeded.
  • the comparative example 5 is an example which has the same configuration as the comparative example 4 except for the material of the core and the core pitch SP (0.64 mm) is larger than that of the comparative example 4. In this case, the sound pressure was larger than the determination criterion (pass at 63 dBA or less).
  • the sound pressure was 63 dBA or less, which is the criterion.
  • the sixth, thirteenth, and eleventh embodiments have the same configuration as the twelfth embodiment, and the core pitch is smaller (0.52 mm) than the twelfth embodiment (0.56 mm), and the eleventh embodiment is the sixth embodiment.
  • Example 13 is an example (0.60 mm) larger than Example 12 (0.40 mm), and Example 11 has the lowest sound pressure (Example 11 and Example 11 to 13). It became 60dBA).
  • Example 14 differs from Example 12 only in the type of fibers constituting the core wire (carbon), and Example 15 differs from Example 13 only in the type of fibers constituting the core line (carbon ). In Examples 14 and 15, a large difference was not found in the sound pressure, but the sound pressure was as low as that in Example 11.
  • Example 16 (0.65 mm) in which the thickness of the back is smaller than Example 6 (back thickness 1.00 mm), the rigidity of the helical tooth belt is small and therefore the sound pressure is the acceptance criterion. It has increased to 63dBA.
  • Example 17 (1.75 mm) in which the back thickness was large, the sound pressure was reduced and the quietness was improved, but the cold resistance was lowered (judgment B).
  • Comparative Example 6 (1.90 mm) having a large back thickness, the sound pressure was further reduced, but the cold resistance was further reduced (judgment C). Overall, the back thickness (1.00 mm) of the well-balanced Example 6 was the best.
  • the thickness of the back is preferably 0.6 to 1.8 mm, 0.8 mm to 1.2 mm. Is considered preferable.
  • Electric Power Steering Device 15 Electric Motor (Drive Source) 20 Reduction gear (belt transmission) 21 drive pulley 22 driven pulley 30 helical tooth belt 31 back 32 tooth portion 33 center line 35 tooth cloth P tooth pitch SP center line pitch

Abstract

The present invention pertains to a helical belt having a back part in which a core wire is embedded, and a plurality of teeth parts that are provided to one surface of the back part at prescribed intervals along a belt longitudinal direction and are each inclined relative to a belt width direction, wherein the helical belt is characterized in that: the surfaces of the teeth parts and part of the one surface of the back part are configured from tooth cloth; the tooth pitch of the plurality of teeth parts is at least 2 mm and less than 4 mm; when the tooth pitch of the plurality of teeth parts is at least 2 mm and less than 3 mm, the thickness of the back part is 0.4-1.2 mm; when the tooth pitch of the plurality of teeth parts is at least 3 mm and less than 4 mm, the thickness of the back part is 0.6-1.8 mm; the core wire is a twisted cord containing high-strength glass fibers or carbon fibers, the diameter of the cord being 0.2-0.6 mm; and the core wire is arranged so that the core wire pitch between two parts of the core wire is in a range of 0.45-0.6 mm.

Description

はす歯ベルトおよびベルト伝動装置Spiral tooth belt and belt transmission
 本発明は、はす歯ベルトであって、特に、高負荷又は高速回転で駆動されるベルト伝動装置に適用されるはす歯ベルト、および、ベルト伝動装置に関する。 The present invention relates to a helical gear belt, and more particularly to a helical gear belt applied to a belt transmission driven by high load or high speed rotation, and a belt transmission.
 例えば、電動パワーステアリング装置の減速装置のように、高負荷または高速回転で駆動されるベルト伝動装置において、ベルト幅方向に平行に延びる歯部を有する直歯ベルトを使用すると、ベルトの歯部とプーリの歯部との噛み合いの開始時および終了時に、大きな騒音や振動が発生する。この問題の対策として、歯部がベルト幅方向に対して斜めに配置されたはす歯ベルトが使用されている。はす歯ベルトは、ベルトの歯部とプーリの歯部との噛み合わせが、それぞれの歯部の一端から他端へと順次進む。そのため、直歯ベルトを用いたベルト伝動装置に比べて、騒音および振動を低減できる。 For example, in a belt transmission driven at high load or high speed as in a reduction gear of an electric power steering apparatus, when a straight toothed belt having teeth extending parallel to the belt width direction is used, the belt teeth and At the start and end of meshing with the teeth of the pulleys, loud noises and vibrations occur. As a countermeasure against this problem, a helical tooth belt is used in which the teeth are arranged obliquely to the belt width direction. In the helical belt, meshing of the teeth of the belt and the teeth of the pulley sequentially advances from one end of each tooth to the other end. Therefore, noise and vibration can be reduced as compared to a belt transmission using a straight toothed belt.
 しかし、はす歯ベルトを用いても、必ずしも騒音および振動を充分に低減できない場合があった。これに対して、例えば特許文献1、および、特許文献2は、はす歯ベルトを用いた高負荷または高速回転で駆動されるベルト伝動装置において、騒音および振動をより低減する技術を提案している。 However, even with helical belts, noise and vibration may not always be reduced sufficiently. On the other hand, for example, Patent Document 1 and Patent Document 2 propose a technology for further reducing noise and vibration in a belt transmission driven by high load or high speed rotation using a helical belt. There is.
 特許文献1では、歯ピッチをPt、ベルト幅をWとして、歯筋角度θを、-0.2≦1-W・tanθ/Pt≦0.75を満たす値に設定している。加えて、はす歯ベルトの歯部とプーリの歯部との間のバックラッシ(隙間)を歯ピッチPtの1.6%~3%に設定している。 In Patent Document 1, assuming that the tooth pitch is Pt and the belt width is W, the tooth ridge angle θ is set to a value that satisfies −0.2 ≦ 1−W · tan θ / Pt ≦ 0.75. In addition, the backlash (gap) between the teeth of the helical tooth belt and the teeth of the pulley is set to 1.6% to 3% of the tooth pitch Pt.
 特許文献2では、歯筋角度θを7度以上且つ10度以下としている。加えて、背部の厚みをtb、歯部の歯高さをhbとして、厚みtbの歯高さhbに対する比率(100×tb/hb)を、120%以上240%以下に設定している。 In Patent Document 2, the tooth line angle θ is 7 degrees or more and 10 degrees or less. In addition, assuming that the thickness of the back is tb and the tooth height of the teeth is hb, the ratio (100 × tb / hb) of the thickness tb to the tooth height hb is set to 120% or more and 240% or less.
 近年、自動車の静粛化が進んでいるため、例えば、電動パワーステアリング装置の減速装置などのベルト伝動装置は、騒音をより低減することが求められている。しかしながら、特許文献1、および、特許文献2の技術では、満足できるレベルまで騒音および振動を低減することができない虞がある。 In recent years, since the quietness of automobiles has progressed, for example, belt transmission devices such as a reduction gear of an electric power steering device are required to further reduce noise. However, with the techniques of Patent Document 1 and Patent Document 2, there is a possibility that noise and vibration can not be reduced to a satisfactory level.
日本国特開2004-308702号公報Japanese Patent Application Laid-Open No. 2004-308702 国際公開第2014/024377号International Publication No. 2014/024377
 この点、騒音および振動を低減させるために、はす歯ベルトの剛性(弾性率)を高めることが考えられる。剛性を高める方法としては、はす歯ベルトの厚み(特に背部の厚み)を大きくする方法が挙げられる。しかし、この方法では振動や騒音を抑制できても、はす歯ベルトの屈曲性が悪くなるため、プーリ上での屈曲疲労が増大し、特に低温環境で亀裂が入りやすくなる。 In this regard, in order to reduce noise and vibration, it is conceivable to increase the rigidity (elastic modulus) of the helical belt. As a method of increasing the rigidity, there is a method of increasing the thickness of the helical tooth belt (especially the thickness of the back). However, even if vibration and noise can be suppressed by this method, the flexibility of the helical tooth belt is deteriorated, so that the bending fatigue on the pulley is increased, and in particular, the crack is likely to occur in a low temperature environment.
 そこで、本発明は、はす歯ベルトの厚みを大きくすることなく剛性を高め、高負荷又は高速回転で駆動されるベルト伝動装置に使用された場合に、騒音および振動をより低減できるはす歯ベルトを提供することを目的とする。 Therefore, the present invention can increase the rigidity without increasing the thickness of the helical belt, and can further reduce noise and vibration when used in a belt transmission driven by high load or high speed rotation. Intended to provide a belt.
 本発明の形態の一つは、心線が埋設された背部と、
 前記背部の一方の表面にベルト長手方向に沿って所定間隔で設けられ、それぞれがベルト幅方向に対して傾斜する複数の歯部と、を有するはす歯ベルトであって、
 前記歯部の表面および前記背部の前記一方の表面の一部が、歯布で構成されており、
 前記複数の歯部の歯ピッチが、2mm以上4mm未満であり、
 前記複数の歯部の歯ピッチが、2mm以上3mm未満の場合に、前記背部の厚みが、0.4mm以上1.2mm以下であって、
 前記複数の歯部の歯ピッチが、3mm以上4mm未満の場合に、前記背部の厚みが、0.6mm以上1.8mm以下であって、
 前記心線は、高強度ガラス繊維または炭素繊維を含み、径が0.2mm以上0.6mm以下の撚りコードであり、前記心線と心線との間の各心線ピッチが、0.45mm以上0.6mm以下の範囲になるように配列されていることを特徴としている。
One of the modes of the present invention is a back in which a core wire is embedded,
A helical tooth belt having a plurality of tooth portions provided on one surface of said back along the longitudinal direction of the belt at predetermined intervals and each inclined with respect to the belt width direction,
The surface of the teeth and a portion of the one surface of the back are made of a tooth cloth,
The tooth pitch of the plurality of teeth is 2 mm or more and less than 4 mm,
When the tooth pitch of the plurality of teeth is 2 mm or more and less than 3 mm, the thickness of the back is 0.4 mm or more and 1.2 mm or less,
When the tooth pitch of the plurality of teeth is 3 mm or more and less than 4 mm, the thickness of the back is 0.6 mm or more and 1.8 mm or less,
The core wire is a twisted cord containing high-strength glass fiber or carbon fiber and having a diameter of 0.2 mm or more and 0.6 mm or less, and each core wire pitch between the core wire and the core wire is 0.45 mm. It is characterized in that it is arranged in the range of not less than 0.6 mm.
 上記構成によれば、背部の歯部側の表面は、歯布で構成されていることから、補強されて剛性が高められる。また、背部に埋設される心線は、高強度(高弾性率)の繊維材である高強度ガラス繊維または炭素繊維を含む撚りコードであり、その撚りコードの径は、0.2mm以上0.6mm以下である。そのため、背部の屈曲性を確保しつつ、心線によって背部の剛性をより高めることができる。
 このように背部の剛性を高めたことで、はす歯ベルトが、高負荷又は高速回転で駆動されるベルト伝動装置に使用されても、はす歯ベルトの歯部がプーリの歯部と噛み合う際に生じる、はす歯ベルトの心線を中心とした振動(弦振動)を抑制できる。これにより、振動により生じる騒音を低減することができる。
According to the above configuration, the surface on the tooth side of the back portion is reinforced by the tooth cloth, and the rigidity is enhanced. Moreover, the core wire embedded in the back is a twisted cord containing high strength glass fiber or carbon fiber which is a high strength (high elastic modulus) fiber material, and the diameter of the twisted cord is 0.2 mm or more. It is 6 mm or less. Therefore, the rigidity of the back can be further enhanced by the core wire while securing the flexibility of the back.
Thus, even if the helical gear belt is used for a belt transmission driven by high load or high speed rotation, the teeth of the helical gear belt mesh with the teeth of the pulley because the rigidity of the spine is enhanced. Vibration (chord vibration) centered on the center line of the helical belt can be suppressed. Thereby, the noise generated by the vibration can be reduced.
 また、背部に埋設される心線は、心線間の各心線ピッチが、0.45mm以上0.6mm以下の範囲になるように配列される。これにより、背部の厚みを更に大きくしたり、心線の径を更に大きくしたりすることなく(屈曲性を犠牲にすることなく)、はす歯ベルトの剛性を更に高めることができる。 The cords embedded in the back are arranged such that each core pitch between the cores is in the range of 0.45 mm or more and 0.6 mm or less. Thereby, the stiffness of the helical tooth belt can be further enhanced without further increasing the thickness of the back or increasing the diameter of the core wire (without sacrificing the flexibility).
 また、歯ピッチが2mm以上3mm未満の場合、背部の厚みは0.4mm以上1.2mm以下である。歯ピッチが3mm以上4mm未満の場合に、背部の厚みは0.6mm以上1.8mm以下である。これらの厚みは、例えば、自動車用の電動パワーステアリング装置の減速装置に用いられる従来のはす歯ベルトの背部の厚みと同程度である。本発明のはす歯ベルトは、背部の厚みを大きくすることなく背部の剛性を高めることができる。そのため、耐屈曲疲労性を充分に確保しつつ、振動および騒音をより抑制できる。 When the tooth pitch is 2 mm or more and less than 3 mm, the thickness of the back is 0.4 mm or more and 1.2 mm or less. When the tooth pitch is 3 mm or more and less than 4 mm, the thickness of the back is 0.6 mm or more and 1.8 mm or less. The thicknesses of these are, for example, about the same as the thickness of the back of a conventional helical tooth belt used for a reduction gear of an electric power steering apparatus for automobiles. The helical belt of the present invention can increase the rigidity of the back without increasing the thickness of the back. Therefore, vibration and noise can be further suppressed while securing sufficient bending fatigue resistance.
 また、本発明の形態の一つは、上記はす歯ベルトにおいて、前記背部に埋設された前記心線は、当該はす歯ベルトのベルト幅方向の一方の端から他方の端にかけて、前記各心線ピッチが、0.45mm以上0.6mm以下の範囲の一定の値になるように配列されていてもよい。 Further, according to one aspect of the present invention, in the above-mentioned helical belt, the above-mentioned core wire embedded in the above-mentioned back portion extends from one end to the other end of the helical belt in the belt width direction. The core line pitch may be arranged to be a constant value in the range of 0.45 mm or more and 0.6 mm or less.
 上記構成によれば、背部の厚みを更に大きくしたり、心線の径を更に大きくしたりすることなく(屈曲性を犠牲にすることなく)、はす歯ベルトの剛性を更に高めることができ、振動および騒音をより抑制することができる。 According to the above configuration, the rigidity of the helical tooth belt can be further enhanced without further increasing the thickness of the back or increasing the diameter of the core wire (without sacrificing flexibility). , Vibration and noise can be suppressed more.
 また、本発明の形態の一つは、上記はす歯ベルトにおいて、前記複数の歯部の歯ピッチが、2mm以上3mm未満の場合に、前記歯部の歯高さが、0.7mm以上2.0mm以下であって、
 前記複数の歯部の歯ピッチが、3mm以上4mm未満の場合に、前記歯部の歯高さが、1.0mm以上2.3mm以下であってもよい。
In one aspect of the present invention, in the helical tooth belt, when the tooth pitch of the plurality of teeth is 2 mm or more and less than 3 mm, the tooth height of the teeth is 0.7 mm or more 2 .0 mm or less,
When the tooth pitch of the plurality of tooth portions is 3 mm or more and less than 4 mm, the tooth height of the tooth portions may be 1.0 mm or more and 2.3 mm or less.
 上記構成によれば、振動および騒音をより抑制することができる。 According to the above configuration, vibration and noise can be further suppressed.
 また、本発明の形態の一つは、上記はす歯ベルトにおいて、前記背部がゴム成分を含み、該ゴム成分がエチレン-プロピレン-ジエン三元共重合体または水素化ニトリルゴムを含んでもよい。 In one embodiment of the present invention, in the above-mentioned helical belt, the back may include a rubber component, and the rubber component may include an ethylene-propylene-diene terpolymer or a hydrogenated nitrile rubber.
 上記構成によれば、振動および騒音をより抑制することができる。 According to the above configuration, vibration and noise can be further suppressed.
 また、本発明の形態の一つは、上記はす歯ベルトにおいて、前記歯布が経糸および緯糸を含む織布で構成されており、経糸または緯糸がベルト長手方向に延びるように配置されており、該ベルト長手方向に延びるように配置された経糸または緯糸が伸縮性を有する弾性糸を含んでもよい。 Further, according to one aspect of the present invention, in the above-mentioned helical belt, the tooth cloth is made of a woven fabric including warp and weft, and the warp or weft is arranged to extend in the longitudinal direction of the belt. The warp or weft disposed so as to extend in the longitudinal direction of the belt may include an elastic yarn having elasticity.
 上記構成によれば、振動および騒音をより抑制することができる。 According to the above configuration, vibration and noise can be further suppressed.
 また、本発明の形態の一つは、上記はす歯ベルトにおいて、前記歯布を構成する繊維が、ナイロン、アラミド、ポリエステル、ポリベンゾオキサゾール、および綿からなる群から選択される少なくとも一種の繊維を含んでもよい。 Further, according to one aspect of the present invention, in the above-mentioned helical belt, at least one fiber selected from the group consisting of nylon, aramid, polyester, polybenzoxazole, and cotton, which constitutes the tooth cloth May be included.
 上記構成によれば、振動および騒音をより抑制することができる。 According to the above configuration, vibration and noise can be further suppressed.
 また、本発明の形態の一つは、上記はす歯ベルトにおいて、前記背部の他方の表面が、背布で構成されており、
 前記背布を構成する繊維が、ナイロン、アラミド、およびポリエステルからなる群から選択される少なくとも一種の繊維を含んでもよい。
Further, according to one aspect of the present invention, in the helical belt described above, the other surface of the back is made of a backing cloth,
The fibers constituting the back fabric may include at least one fiber selected from the group consisting of nylon, aramid, and polyester.
 上記構成によれば、背部の他方の面は背布で構成され、この背布を構成する繊維が、ナイロン、アラミド、およびポリエステルからなる群から選択される少なくとも一種の繊維を含むため、背部は、更に補強されて剛性が高められる。 According to the above configuration, the other side of the back is made of the back cloth, and the fibers constituting the back cloth include at least one type of fiber selected from the group consisting of nylon, aramid, and polyester. It is further reinforced to increase its rigidity.
 また、本発明の形態の一つは、前記はす歯ベルトのベルト弾性率が、ベルト幅1mmあたり0.96MPa以上であってもよい。 In one aspect of the present invention, a belt elastic modulus of the helical belt may be 0.96 MPa or more per 1 mm of belt width.
 上記構成によれば、振動を抑制して充分な静粛性が得られるほどの、はす歯ベルトの剛性を確保することができる。 According to the above configuration, it is possible to secure the rigidity of the helical tooth belt that can suppress vibration and obtain sufficient quietness.
 また、本発明の形態の一つは、駆動源によって回転駆動される駆動プーリと、
 従動プーリと、
 前記駆動プーリおよび前記従動プーリに巻き掛けられる、上記のはす歯ベルトと、を備えるベルト伝動装置であってもよい。
Further, according to one aspect of the present invention, there is provided a drive pulley rotationally driven by a drive source,
Driven pulley,
It may be a belt transmission provided with the above-mentioned helical tooth belt wound on the above-mentioned driving pulley and the above-mentioned driven pulley.
 上記構成によれば、駆動プーリの駆動力を従動プーリに伝動させるベルト伝動装置において、騒音および振動を低減することができる。 According to the above configuration, noise and vibration can be reduced in the belt transmission that transmits the driving force of the driving pulley to the driven pulley.
 また、本発明の形態の一つは、上記ベルト伝動装置において、前記駆動プーリの回転速度が1000rpm以上4000rpm以下であってもよい。 In one aspect of the present invention, in the above-described belt transmission, the rotational speed of the drive pulley may be 1000 rpm or more and 4000 rpm or less.
 上記構成によると、高速回転で駆動されるベルト伝動装置において、騒音および振動を充分に低減できる。 According to the above configuration, noise and vibration can be sufficiently reduced in the belt transmission driven at high speed.
 また、本発明の形態の一つは、上記ベルト伝動装置において、前記従動プーリの負荷が0.5kW以上3kW以下であってもよい。 In one aspect of the present invention, in the above-described belt transmission, the load of the driven pulley may be 0.5 kW or more and 3 kW or less.
 上記構成によると、高負荷で駆動されるベルト伝動装置において、騒音および振動を充分に低減できる。 According to the above configuration, noise and vibration can be sufficiently reduced in a belt drive driven at high load.
 また、本発明の形態の一つは、上記ベルト伝動装置において、前記従動プーリの外径が、前記駆動プーリの外径より大きく、
 前記ベルト伝動装置が、自動車用の電動パワーステアリング装置の減速装置であってもよい。
Further, according to one aspect of the present invention, in the above-described belt transmission, an outer diameter of the driven pulley is larger than an outer diameter of the drive pulley.
The belt transmission may be a reduction gear of an electric power steering apparatus for a car.
 上記構成によると、自動車用の電動パワーステアリング装置の減速装置において、騒音および振動を充分に低減できる。 According to the above configuration, noise and vibration can be sufficiently reduced in the reduction gear of the electric power steering apparatus for a car.
 はす歯ベルトの厚みを大きくすることなく剛性を高め、高負荷又は高速回転で駆動されるベルト伝動装置に使用された場合に、騒音および振動をより低減できるはす歯ベルトを提供することができる。 To provide a helical tooth belt capable of further reducing noise and vibration when it is used for a belt transmission driven by high load or high speed rotation without increasing the thickness of the helical tooth belt. it can.
図1は本実施形態のはす歯ベルトが適用される電動パワーステアリング装置の概略構成を示す模式図である。FIG. 1 is a schematic view showing a schematic configuration of an electric power steering apparatus to which the helical belt of the present embodiment is applied. 図2は電動パワーステアリング装置の減速装置の側面図である。FIG. 2 is a side view of the reduction gear of the electric power steering apparatus. 図3ははす歯ベルトの部分斜視図である。FIG. 3 is a partial perspective view of the helical tooth belt. 図4ははす歯ベルトを内周側から見た図である。FIG. 4 is a view of the helical tooth belt as viewed from the inner peripheral side. 図5ははす歯ベルトのベルト幅方向の断面図である。FIG. 5 is a cross-sectional view in the belt width direction of the helical tooth belt.
 以下、本発明の実施の形態の一例について説明する。本実施形態のはす歯ベルト30は、例えば図1に示す自動車用の電動パワーステアリング装置1の減速装置20に用いられる。 Hereinafter, an example of the embodiment of the present invention will be described. The helical belt 30 of this embodiment is used, for example, for the reduction gear 20 of the electric power steering apparatus 1 for a car shown in FIG.
 〔電動パワーステアリング装置の構成〕
 電動パワーステアリング(EPS)装置1は、ステアリングホイール2に連結されたステアリングシャフト3と、ステアリングシャフト3に連結された中間軸4と、中間軸4に連結されて、ステアリングホイール2の回転に連動して車輪9を操舵する操舵機構5とを有する。
[Configuration of Electric Power Steering Device]
The electric power steering (EPS) device 1 is connected to the steering shaft 3 connected to the steering wheel 2, the intermediate shaft 4 connected to the steering shaft 3, and the intermediate shaft 4 and interlocked with the rotation of the steering wheel 2. And a steering mechanism 5 for steering the wheels 9.
 操舵機構5は、中間軸4に連結されたピニオン軸6と、ピニオン軸6に噛み合うラック軸7とを含む。ラック軸7は、車両の左右方向に沿って延びている。ラック軸7の軸方向の途中部には、ピニオン軸6に設けられたピニオン6aと噛み合うラック7aが形成されている。ラック軸7の両端部には、タイロッド8およびナックルアーム(図示せず)を介して車輪9が連結されている。ステアリングホイール2の回転は、ステアリングシャフト3および中間軸4を介してピニオン軸6に伝達される。ピニオン軸6の回転は、ラック軸7の軸方向への移動に変換される。これにより、車輪9が転舵される。 The steering mechanism 5 includes a pinion shaft 6 connected to the intermediate shaft 4 and a rack shaft 7 meshing with the pinion shaft 6. The rack shaft 7 extends in the left-right direction of the vehicle. A rack 7 a that meshes with a pinion 6 a provided on the pinion shaft 6 is formed in the middle of the rack shaft 7 in the axial direction. The wheels 9 are connected to both ends of the rack shaft 7 via tie rods 8 and knuckle arms (not shown). The rotation of the steering wheel 2 is transmitted to the pinion shaft 6 via the steering shaft 3 and the intermediate shaft 4. The rotation of the pinion shaft 6 is converted into the axial movement of the rack shaft 7. Thereby, the wheel 9 is steered.
 電動パワーステアリング装置1は、ステアリングホイール2に加えられる操舵トルクに応じて操舵補助力を得られるようになっている。そのための手段として、電動パワーステアリング装置1は、操舵トルクを検出するトルクセンサ13と、制御装置14と、操舵補助用の電動モータ15(駆動源)と、電動モータ15の駆動力を操舵機構5に伝動する伝動装置としての減速装置20とを含む。 The electric power steering apparatus 1 can obtain a steering assist force according to the steering torque applied to the steering wheel 2. As means for that purpose, the electric power steering apparatus 1 includes a torque sensor 13 for detecting a steering torque, a control device 14, an electric motor 15 (drive source) for steering assistance, and a driving force of the electric motor 15 as a steering mechanism 5. And a speed reduction gear 20 as a transmission gear.
 トルクセンサ13で操舵トルクを検出するために、ステアリングシャフト3は、入力軸10と、トーションバー11と、出力軸12を有する。ステアリングホイール2が操作されて、入力軸10に操舵トルクが入力されると、トーションバー11がねじり変形して、入力軸10と出力軸12が相対回転する。トルクセンサ13は、入力軸10と出力軸12との相対回転変位量に基づいて、ステアリングホイール2に入力された操舵トルクを検出する。トルクセンサ13の検出結果は、制御装置14に入力される。制御装置14は、トルクセンサ13によって検出された操舵トルク等に基づいて、電動モータ15を制御する。 In order to detect the steering torque by the torque sensor 13, the steering shaft 3 has an input shaft 10, a torsion bar 11 and an output shaft 12. When the steering wheel 2 is operated and a steering torque is input to the input shaft 10, the torsion bar 11 is torsionally deformed and the input shaft 10 and the output shaft 12 rotate relative to each other. The torque sensor 13 detects the steering torque input to the steering wheel 2 based on the relative rotational displacement between the input shaft 10 and the output shaft 12. The detection result of the torque sensor 13 is input to the control device 14. The control device 14 controls the electric motor 15 based on the steering torque and the like detected by the torque sensor 13.
 減速装置20は、駆動プーリ21と、従動プーリ22と、駆動プーリ21および従動プーリ22に巻き掛けられるはす歯ベルト30とを有する。従動プーリ22は、駆動プーリ21よりも外径が大きい。駆動プーリ21は、電動モータ15の回転軸に固定される。従動プーリ22は、ピニオン軸6に固定される。図2に示すように、駆動プーリ21の外周面には、複数のはす歯21aが形成されている。従動プーリ22の外周面には、複数のはす歯22aが形成されている。駆動プーリ21の回転速度は、例えば、1000rpm以上4000rpm以下である。従動プーリ22の負荷は、例えば、0.5kW以上3kW以下である。 The reduction gear 20 has a drive pulley 21, a driven pulley 22, and a helical tooth belt 30 wound around the drive pulley 21 and the driven pulley 22. The driven pulley 22 has an outer diameter larger than that of the drive pulley 21. The drive pulley 21 is fixed to the rotation shaft of the electric motor 15. The driven pulley 22 is fixed to the pinion shaft 6. As shown in FIG. 2, a plurality of helical teeth 21 a are formed on the outer peripheral surface of the drive pulley 21. A plurality of helical teeth 22 a are formed on the outer peripheral surface of the driven pulley 22. The rotational speed of the drive pulley 21 is, for example, 1000 rpm or more and 4000 rpm or less. The load of the driven pulley 22 is, for example, 0.5 kW or more and 3 kW or less.
 ステアリングホイール2が操作されると、操舵トルクがトルクセンサ13により検出されて、制御装置14が電動モータ15を駆動する。電動モータ15が駆動プーリ21を回転させると、はす歯ベルト30が走行して、従動プーリ22およびピニオン軸6が回転する。電動モータ15の回転力は、減速装置20によって減速されて、ピニオン軸6に伝達される。また、上述したように、ステアリングホイール2の回転は、ステアリングシャフト3および中間軸4を介してピニオン軸6に伝達される。そして、ピニオン軸6の回転は、ラック軸7の軸方向移動に変換されて、これにより、車輪9が操舵される。このように、電動モータ15によって、ピニオン軸6の回転が補助されることで、運転者の操舵が補助される。 When the steering wheel 2 is operated, a steering torque is detected by the torque sensor 13, and the control device 14 drives the electric motor 15. When the electric motor 15 rotates the drive pulley 21, the helical tooth belt 30 travels, and the driven pulley 22 and the pinion shaft 6 rotate. The rotational force of the electric motor 15 is decelerated by the reduction gear 20 and transmitted to the pinion shaft 6. Further, as described above, the rotation of the steering wheel 2 is transmitted to the pinion shaft 6 via the steering shaft 3 and the intermediate shaft 4. Then, the rotation of the pinion shaft 6 is converted into the axial movement of the rack shaft 7, whereby the wheels 9 are steered. Thus, the steering of the driver is assisted by the rotation of the pinion shaft 6 being assisted by the electric motor 15.
 なお、本発明のはす歯ベルト30を適用可能な電動パワーステアリング装置1の構成は、図1に示す構成に限定されない。例えば、減速装置20の従動プーリ22が、中間軸4またはステアリングシャフト3に固定されていてもよい。また、例えば、減速装置20の従動プーリ22が、変換機構を介してラック軸7に連結されていてもよい。変換機構は、例えば、ボールねじ機構またはベアリングねじ機構であって、従動プーリ22の回転力をラック軸7の軸方向の力に変換してラック軸7に伝達してもよい。 The configuration of the electric power steering apparatus 1 to which the helical tooth belt 30 of the present invention can be applied is not limited to the configuration shown in FIG. For example, the driven pulley 22 of the reduction gear 20 may be fixed to the intermediate shaft 4 or the steering shaft 3. Also, for example, the driven pulley 22 of the reduction gear 20 may be coupled to the rack shaft 7 via the conversion mechanism. The conversion mechanism is, for example, a ball screw mechanism or a bearing screw mechanism, and may convert the rotational force of the driven pulley 22 into a force in the axial direction of the rack shaft 7 and transmit it to the rack shaft 7.
 〔はす歯ベルトの構成〕
 図3に示すように、はす歯ベルト30は、心線33がベルト長手方向に沿って螺旋状に埋設された背部31と、背部31の内周面(背部31の一方の表面に相当)にベルト長手方向に沿って所定間隔で設けられた複数の歯部32とを有する。本実施形態では、複数の歯部32は、背部31の内周面に一体成形されている。また、図4に示すように、歯部32は、ベルト幅方向に対して傾斜して延びている。また、はす歯ベルト30の内周面、即ち、歯部32の表面および背部31の内周面の一部は、歯布35で被覆されている。なお、本実施形態では、背部31の外周面(背部31の他方の表面に相当)は、布等では被覆されていないが、背布によって被覆されていてもよい。
[Configuration of helical tooth belt]
As shown in FIG. 3, the helical belt 30 has a back 31 in which a core wire 33 is embedded in a spiral along the longitudinal direction of the belt and an inner peripheral surface of the back 31 (corresponding to one surface of the back 31) And a plurality of teeth 32 provided at predetermined intervals along the longitudinal direction of the belt. In the present embodiment, the plurality of teeth 32 are integrally formed on the inner peripheral surface of the back 31. Further, as shown in FIG. 4, the teeth 32 extend obliquely with respect to the belt width direction. Further, the inner circumferential surface of the helical tooth belt 30, that is, the surface of the tooth portion 32 and a part of the inner circumferential surface of the back portion 31 are covered with a tooth cloth 35. In the present embodiment, the outer peripheral surface of the back 31 (corresponding to the other surface of the back 31) is not covered with a cloth or the like, but may be covered with a back cloth.
 はす歯ベルト30の周長は、例えば、150~400mmである。なお、本明細書において、「X~Y」で表した数値範囲は、X以上Y以下を意味する。はす歯ベルト30の幅W(図4参照)は、例えば、4~30mmである。歯部32の歯ピッチP(図3参照)は、2mm以上、4mm未満である。歯ピッチPが2mm以上3mm未満の場合、背部31の厚みtb(図3参照)は、0.4~1.2mmであり、好ましくは0.6mm以上、0.9mm以下である。歯ピッチPが3mm以上4mm未満の場合、背部31の厚みtbは、0.6~1.8mmであり、好ましくは0.8mm以上、1.2mm以下である。歯ピッチPが2mm以上3mm未満の場合、歯部32の歯高さhb(図3参照)は、例えば、0.7~2.0mmであり、好ましくは0.8mm以上、1.0mm以下である。歯ピッチPが3mm以上4mm未満の場合、歯部32の歯高さhbは、例えば、1.0~2.3mmであり、好ましくは1.1mm以上、2.0mm以下である。はす歯ベルト30の総厚(最大厚さ)t(図3参照)は、背部31の厚みtbと歯高さhbとの合計である。歯部32のベルト幅方向に対する傾斜角度θ(図4参照)は、例えば、2~7°、好ましくは2~6°である。 The circumferential length of the helical belt 30 is, for example, 150 to 400 mm. In the present specification, the numerical range represented by “X to Y” means X or more and Y or less. The width W (see FIG. 4) of the helical belt 30 is, for example, 4 to 30 mm. The tooth pitch P (see FIG. 3) of the tooth portion 32 is 2 mm or more and less than 4 mm. When the tooth pitch P is 2 mm or more and less than 3 mm, the thickness tb (see FIG. 3) of the back 31 is 0.4 to 1.2 mm, preferably 0.6 mm or more and 0.9 mm or less. When the tooth pitch P is 3 mm or more and less than 4 mm, the thickness tb of the back 31 is 0.6 to 1.8 mm, preferably 0.8 mm or more and 1.2 mm or less. When the tooth pitch P is 2 mm or more and less than 3 mm, the tooth height hb (see FIG. 3) of the tooth portion 32 is, for example, 0.7 to 2.0 mm, preferably 0.8 mm or more and 1.0 mm or less is there. When the tooth pitch P is 3 mm or more and less than 4 mm, the tooth height hb of the tooth portion 32 is, for example, 1.0 to 2.3 mm, preferably 1.1 mm or more and 2.0 mm or less. The total thickness (maximum thickness) t (see FIG. 3) of the helical belt 30 is the sum of the thickness tb of the back portion 31 and the tooth height hb. The inclination angle θ (see FIG. 4) of the teeth 32 with respect to the belt width direction is, for example, 2 to 7 °, preferably 2 to 6 °.
 〔背部及び歯部〕
 背部31及び歯部32は、ゴム組成物で構成され、このゴム組成物のゴム成分としては、クロロプレンゴム(CR)、ニトリルゴム、水素化ニトリルゴム(HNBR)、エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)、スチレン-ブタジエンゴム、ブチルゴム、クロロスルフォン化ポリエチレンゴム等が用いられる。特に好ましいゴム成分は、エチレン-プロピレン-ジエン三元共重合体(EPDM)であり、クロロプレンゴム、水素化ニトリルゴム(HNBR)も好適に用いられる。本実施形態では、背部31及び歯部32を構成するゴム組成物は、同じゴム組成物で形成されているが、異なるゴム組成物で形成されていてもよい。
[Back and teeth]
The back 31 and the teeth 32 are composed of a rubber composition, and as a rubber component of this rubber composition, chloroprene rubber (CR), nitrile rubber, hydrogenated nitrile rubber (HNBR), ethylene-propylene copolymer (EPM) And ethylene-propylene-diene terpolymer (EPDM), styrene-butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber and the like. Particularly preferred rubber components are ethylene-propylene-diene terpolymers (EPDM), and chloroprene rubber and hydrogenated nitrile rubber (HNBR) are also suitably used. In this embodiment, although the rubber composition which constitutes back part 31 and tooth part 32 is formed with the same rubber composition, it may be formed with different rubber compositions.
 背部31及び歯部32を構成するゴム組成物は、必要に応じて、慣用の各種添加剤(または配合剤)を含んでいてもよい。添加剤としては、加硫剤または架橋剤(例えば、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、金属酸化物(酸化マグネシウム、酸化亜鉛など))、加硫助剤、加硫促進剤、加硫遅延剤、補強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、可塑剤、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤または加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤(芳香族アミン系老化防止剤、ベンズイミダゾール系老化防止剤など)、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などが例示できる。これらの添加剤は、単独または組み合わせて使用でき、ゴム成分の種類や用途、性能などに応じて選択できる。 The rubber composition that constitutes the back 31 and the teeth 32 may contain various conventional additives (or compounding agents) as needed. As an additive, a vulcanizing agent or a crosslinking agent (for example, oximes (such as quinone dioxime), guanidines (such as diphenyl guanidine), metal oxides (such as magnesium oxide and zinc oxide)), a vulcanization assistant, and a vulcanizing agent Vulcanization accelerator, vulcanization retarder, reinforcing agent (carbon black, silicon oxide such as hydrous silica), metal oxide (eg zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide) , Aluminum oxide etc., fillers (clay, calcium carbonate, talc, mica etc.), plasticizers, softeners (oils such as paraffin oil, naphthenic oil etc.), processing agents or processing aids (stearic acid, stearin, etc) Acid metal salt, wax, paraffin etc., anti-aging agent (aromatic amine anti-aging agent, benzimidazole based aging) Etc. sealant), stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), lubricants, flame retardants, etc. can be exemplified antistatic agent. These additives can be used alone or in combination, and can be selected according to the type of rubber component, application, performance and the like.
 〔心線〕
 心線33は、背部31に、ベルト長手方向に沿って、ベルト幅方向に所定の間隔(0.45mm以上0.6mm以下)を空けて螺旋状に埋設されている。より詳細には、心線33は、図3及び図5に示すように、背部31のベルト幅方向の一方の端から他方の端にかけて、螺旋状に埋設された心線33と心線33との中心間の距離である各心線ピッチSPが、0.45mm以上0.6mm以下の範囲の一定の値になるように配列されていてもよい。なお、本明細書では、図5に示すように、ベルト幅方向に所定の心線ピッチSPで配列された心線の断面視での見かけ上の数を「心線の本数」として扱っている。即ち、螺旋状に埋設された心線33の螺旋数を「心線の本数」としている。
[Heart]
The core wire 33 is spirally embedded in the back portion 31 at a predetermined interval (0.45 mm or more and 0.6 mm or less) in the belt width direction along the belt longitudinal direction. More specifically, as shown in FIG. 3 and FIG. 5, cords 33 spirally embedded cords 33 and 33 from one end to the other end in the belt width direction of spine 31. Each core pitch SP which is the distance between the centers of may be arranged so as to have a constant value in the range of 0.45 mm or more and 0.6 mm or less. In this specification, as shown in FIG. 5, the apparent number in a cross sectional view of the cords arranged at a predetermined cord pitch SP in the belt width direction is treated as "the number of cords". . That is, the number of spirals of the core wire 33 embedded in a spiral shape is taken as the “number of core wires”.
 ここで、「心線の本数」とは、ベルトの強度(弾性率)に影響のある本数(有効本数)のみ数えることが望ましい。従って、はす歯ベルト30の背部31の一方の端及び他方の端に配置された、裁断されて、断面視が円形でない心線33は有効本数には入れず、断面視で裁断されていない心線33を有効本数として数えることが望ましい。
 もっとも、実際は、心線33は螺旋状に埋設されていることから、1本の無端状のはす歯ベルト30の中でも断面を採取する部位により、心線33の配置態様が異なること、裁断されて断面視が円形でない心線33もベルトの強力(弾性率)へ与える影響は無視できないことから、実用的には、各心線ピッチSPが、0.45mm以上0.6mm以下の範囲の一定の値である場合には、ベルト幅を心線ピッチSP(0.45mm以上0.6mm以下の範囲の一定の値)で割った計算値から小数点以下の値を切り捨てた値を、概算的な「心線の本数」(有効本数)と見做している。例えば、ベルト幅25mm、心線ピッチSPが0.56mmならば、計算値は44.64となり、「心線の本数」(有効本数)は44本と見做している。また、ベルト幅25mm、心線ピッチSPが0.52mmならば、計算値は48.07となり、「心線の本数」(有効本数)は48本と見做している。また、ベルト幅25mm、心線ピッチSPが0.60mmならば、計算値は41.67となり、「心線の本数」(有効本数)は41本と見做している。
Here, it is desirable to count only the number (effective number) having an influence on the strength (elastic modulus) of the belt, as the "number of core wires". Therefore, the core wire 33 which is disposed at one end and the other end of the spine 31 of the helical belt 30 and is not cut in a circular cross-sectional view is not included in the effective number and is not cut in a cross sectional view It is desirable to count the core wire 33 as an effective number.
However, in fact, since the core wire 33 is embedded in a spiral shape, the arrangement of the core wire 33 differs depending on the portion where the cross section is collected among the endless helical tooth belts 30, which is cut. Since the influence of the non-circular cross section view 33 on the strength (elastic modulus) of the belt can not be ignored, practically, each core pitch SP is constant in the range of 0.45 mm or more and 0.6 mm or less In the case of the value of, the value obtained by dividing the belt width by the core wire pitch SP (a constant value in the range of 0.45 mm to 0.6 mm) and rounding off the decimal point value is roughly calculated. It is regarded as "the number of cores" (the number of effective lines). For example, if the belt width is 25 mm and the core wire pitch SP is 0.56 mm, the calculated value is 44.64, and the “number of core wires” (the number of effective wires) is regarded as 44. If the belt width is 25 mm and the core pitch SP is 0.52 mm, the calculated value is 48.07, and the “number of cores” (the number of effective cores) is considered to be 48. Further, if the belt width is 25 mm and the core pitch SP is 0.60 mm, the calculated value is 41.67, and the “number of core wires” (the number of effective wires) is regarded as 41.
 また、心線33は、複数本のストランドを撚り合わせて形成された撚りコードで構成される。1本のストランドは、フィラメント(長繊維)を束ねて引き揃えて形成されていてよい。心線33の径は、0.2~0.6mmである。撚りコードを形成するフィラメントの太さ、フィラメントの収束本数、ストランドの本数、および撚り方などの撚り構成については特に制限されない。フィラメントの材質は、高強度ガラス繊維または炭素繊維である。高強度ガラス繊維および炭素繊維は、共に、高強度かつ低伸度であり、心線33の材質として好適であるが、低コストの観点から、高強度ガラス繊維がより好ましい。 Moreover, the core wire 33 is comprised by the twist cord formed by twisting a plurality of strands. One strand may be formed by bundling filaments (long fibers) and aligning them. The diameter of the core wire 33 is 0.2 to 0.6 mm. There are no particular limitations on the thickness of the filaments that form the twist cord, the number of converged filaments, the number of strands, and the twist configuration such as how to twist. The material of the filament is high strength glass fiber or carbon fiber. Both high strength glass fibers and carbon fibers have high strength and low elongation, and are suitable as a material of the core wire 33, but high strength glass fibers are more preferable from the viewpoint of low cost.
 高強度ガラス繊維としては、例えば、引張り強度が300kg/cm以上のもの、特に、無アルカリガラス繊維(Eガラス繊維)よりもSi成分の多い下記表1に示す組成のガラス繊維を好適に使用できる。なお、下記表1には比較のためEガラス繊維の組成も記載している。このような高強度ガラス繊維としては、Kガラス繊維、Uガラス繊維(共に日本硝子繊維社製)、Tガラス繊維(日東紡績社製)、Rガラス繊維(VETROTEX社製)、Sガラス繊維、S-2ガラス繊維、ZENTRONガラス繊維(すべてOwens Corning Fiberglass社製)等があげられる。 As high-strength glass fibers, for example, those having a tensile strength of 300 kg / cm 2 or more, particularly glass fibers having a composition shown in the following Table 1 having more Si components than alkali-free glass fibers (E glass fibers) are suitably used. it can. The composition of E glass fiber is also described in Table 1 below for comparison. As such high-strength glass fibers, K glass fiber, U glass fiber (both manufactured by Nippon Glass Fiber Co., Ltd.), T glass fiber (manufactured by Nitto Boseki Co., Ltd.), R glass fiber (manufactured by VETROTEX), S glass fiber, S glass fiber -2 Glass fiber, ZENTRON glass fiber (all manufactured by Owens Corning Fiberglass) and the like.
Figure JPOXMLDOC01-appb-T000001
   
Figure JPOXMLDOC01-appb-T000001
   
 炭素繊維としては、例えば、ピッチ系炭素繊維、ポリアクリロニトリル(PAN)系炭素繊維、フェノール樹脂系炭素繊維、セルロース系炭素繊維、ポリビニルアルコール系炭素繊維などが挙げられる。炭素繊維の市販品としては、例えば、東レ(株)製「トレカ(登録商標)」、東邦テナックス(株)製「テナックス(登録商標)」、三菱ケミカル(株)製「ダイアリード(登録商標)」などを利用できる。これらの炭素繊維は、単独で又は二種以上組み合わせて使用できる。これらの炭素繊維のうち、ピッチ系炭素繊維、PAN系炭素繊維が好ましく、PAN系炭素繊維が特に好ましい。 Examples of the carbon fiber include pitch-based carbon fiber, polyacrylonitrile (PAN) -based carbon fiber, phenol resin-based carbon fiber, cellulose-based carbon fiber, polyvinyl alcohol-based carbon fiber and the like. As a commercial item of carbon fiber, for example, Toray Industries, Inc. "Toreca (registered trademark)", Toho Tenax Corporation "Tenax (registered trademark)", Mitsubishi Chemical Corporation "Dialed (registered trademark)" Can be used. These carbon fibers can be used alone or in combination of two or more. Among these carbon fibers, pitch-based carbon fibers and PAN-based carbon fibers are preferable, and PAN-based carbon fibers are particularly preferable.
 心線33として用いる撚りコードには、背部31との接着性を高めるために接着処理が施されてもよい。接着処理としては、例えば、撚りコードを、レゾルシン-ホルマリン-ラテックス処理液(RFL処理液)に浸漬後、加熱乾燥して、表面に均一に接着層を形成する方法が採用される。RFL処理液は、レゾルシンとホルマリンとの初期縮合体をラテックスに混合したものであり、ここで使用するラテックスとしては、クロロプレン、スチレン・ブタジエン・ビニルピリジン三元共重合体(VPラテックス)、水素化ニトリル、NBR等が挙げられる。なお、接着処理としては、エポキシまたはイソシアネート化合物で前処理を行った後に、RFL処理液で処理する方法等もある。 The twist cords used as the core wire 33 may be subjected to an adhesion treatment in order to improve the adhesion to the back 31. As the adhesion treatment, for example, a method is employed in which a twist cord is dipped in a resorcinol-formalin-latex treatment solution (RFL treatment solution) and then dried by heating to form an adhesion layer uniformly on the surface. The RFL treatment solution is a mixture of an initial condensation product of resorcin and formalin in a latex, and as the latex used here, chloroprene, styrene butadiene vinylpyridine terpolymer (VP latex), hydrogenation A nitrile, NBR, etc. are mentioned. In addition, as a bonding process, after pre-processing with an epoxy or an isocyanate compound, there also exists a method etc. which process with a RFL process liquid.
 〔歯布〕
 歯布35は、経糸と緯糸を一定の規則によって縦横に交錯させて織られた織布で構成されることが好ましい。織布の織り方は、綾織り、朱子織等のいずれでもよい。経糸および緯糸の形態は、フィラメント(長繊維)を引き揃えたり、撚り合せたマルチフィラメント糸、1本の長繊維であるモノフィラメント糸、短繊維を撚り合せたスパン糸(紡績糸)のいずれであってもよい。経糸または緯糸がマルチフィラメント糸またはスパン糸の場合、複数種類の繊維を用いた混撚糸または混紡糸であってもよい。緯糸は、伸縮性を有する弾性糸を含むことが好ましい。弾性糸としては、例えば、ポリウレタンからなるスパンデックスのように材質自体が伸縮性を有するものや、繊維を伸縮加工(例えばウーリー加工、巻縮加工等)した加工糸が用いられる。通常、経糸には弾性糸を用いない。そのため、製織が容易である。そして、歯布35としては、織布の経糸をベルト幅方向に、緯糸をベルト長手方向に延びるように配置するのが好ましい。それにより、歯布35のベルト長手方向の伸縮性を確保できる。なお、歯布35は、織布の緯糸をベルト幅方向に、経糸をベルト長手方向に延びるように配置してもよい。この場合、経糸として、伸縮性を有する弾性糸を用いてもよい。歯布35を構成する繊維の材質としては、ナイロン、アラミド、ポリエステル、ポリベンゾオキサゾール、綿等の何れかまたはこれらの組み合わせを採用できる。
Tooth cloth
The tooth cloth 35 is preferably made of a woven fabric in which warp yarns and weft yarns are longitudinally and transversely crossed according to a predetermined rule. The weave of the woven fabric may be twill weave, satin weave, or the like. The form of warp yarn and weft yarn is any of multifilament yarns in which filaments (long fibers) are aligned and twisted, monofilament yarn which is one long fiber, and spun yarn (spun yarn) in which short fibers are twisted together. May be When the warp or weft is a multifilament yarn or a spun yarn, it may be a mixed twist yarn or mixed yarn using a plurality of types of fibers. The weft yarn preferably includes an elastic yarn having stretchability. As the elastic yarn, for example, a material having stretchability such as spandex made of polyurethane, or a processed yarn obtained by stretching (for example, wooly processing, crimping and the like) of a fiber is used. Normally, elastic yarns are not used for warp yarns. Therefore, weaving is easy. As the tooth cloth 35, it is preferable to arrange the warp of the woven fabric in the belt width direction and the weft so as to extend in the belt longitudinal direction. Thereby, the stretchability of the tooth cloth 35 in the belt longitudinal direction can be secured. The tooth cloth 35 may be arranged so that the weft of the woven fabric extends in the belt width direction and the warp extends in the belt longitudinal direction. In this case, an elastic yarn having stretchability may be used as a warp. As a material of the fiber which comprises the tooth cloth 35, nylon, an aramid, polyester, polybenzoxazole, cotton etc. can use either or these combination.
 歯布35として用いる織布は、背部31及び歯部32との接着性を高めるために、接着処理が施されていてもよい。接着処理としては、織布をレゾルシン-ホルマリン-ラテックス(RFL液)に浸漬後、加熱乾燥して、表面に均一に接着層を形成する方法が一般的である。しかし、これに限ることなく、エポキシまたはイソシアネート化合物で前処理を行った後に、織布をRFL液で処理する方法のほかに、ゴム組成物をメチルエチルケトン、トルエン、キシレン等の有機溶媒に溶解してゴム糊を調製し、このゴム糊に織布を浸漬処理して、ゴム組成物を含浸、付着させる方法も採用することができる。これらの方法は、単独または組み合わせて行うこともでき、処理順序や処理回数は特に限定されない。 The woven fabric used as the tooth cloth 35 may be subjected to an adhesion treatment in order to improve the adhesion to the back 31 and the teeth 32. As a bonding treatment, a method is generally used in which a woven fabric is dipped in resorcinol-formalin-latex (RFL solution) and then dried by heating to form a bonding layer uniformly on the surface. However, without being limited to this, after the pretreatment with an epoxy or isocyanate compound, the rubber composition is dissolved in an organic solvent such as methyl ethyl ketone, toluene, xylene, etc. besides the method of treating the woven fabric with an RFL solution. It is also possible to employ a method of preparing a rubber paste, and subjecting the woven fabric to an immersion treatment to impregnate and adhere the rubber composition. These methods may be performed alone or in combination, and the order of treatment and the number of treatments are not particularly limited.
 〔背布〕
 なお、本実施形態では、背部31の外周面(背部31の他方の表面に相当)は、布等によって被覆されていないが、背布36によって被覆されていてもよい。背部31の外周面を、背布36で被覆する場合、背布36は、編糸で編まれた編布、または、経糸と緯糸を一定の規則によって縦横に交錯させて織られた織布で構成されることが好ましい。
[Back cloth]
In the present embodiment, the outer peripheral surface of the back 31 (corresponding to the other surface of the back 31) is not covered by a cloth or the like, but may be covered by a back cloth 36. When covering the outer peripheral surface of the back 31 with the back fabric 36, the back fabric 36 is a knitted fabric knitted with knitting yarn, or a woven fabric in which warp and weft yarns are intertwined longitudinally and laterally according to a certain rule It is preferred to be configured.
 編布は、1本又は2本以上の編糸が網目(ループ)をつくり、そのループに次の糸を引っ掛けて新しいループを連続的に作って編成された構造を有する布である。すなわち、編布では、糸を直線状に交錯させることなく、ループを作ることで形成される。背布36に編布を用いる場合、編布(又は編布の編成)は、緯編(又は緯編で編成された編布)、経編(又は経編で編成された編布)のいずれであってもよい。編布の形状としては、平面形状、円筒形状(丸編み)など制限されず、また編地は表目と裏目どちらがベルト本体の被着面となってもよい。緯編(又は緯編の編組織)としては、例えば、平編(天竺編)、ゴム編、鹿の子編、スムース編、ジャガード編などが挙げられる。また、経編(又は経編の編組織)としては、例えば、シングルデンビー、シングルコード、トリコット、ハーフトリコットなどが挙げられる。 A knitted fabric is a fabric having a structure in which one or more yarns form a mesh (loop), and the next yarn is hooked on the loop to continuously form a new loop. That is, in a knitted fabric, it is formed by making a loop without crossing yarns in a straight line. When a knitted fabric is used as the back fabric 36, the knitted fabric (or knitting of the knitted fabric) may be either weft knitting (or knitted fabric knitted by weft knitting) or warp knitting (or knitted fabric knit by warp knitting) It may be The shape of the knitted fabric is not limited to a flat shape, a cylindrical shape (round knitting), and the like, and either the front or back stitch of the knitted fabric may be the adhesion surface of the belt body. Examples of the weft knitting (or weft knitting) include plain knitting (tendon knitting), rubber knitting, deer knitting, smooth knitting, jacquard knitting and the like. Moreover, as a warp knitting (or knitting structure of warp knitting), a single denby, a single cord, a tricot, a half tricot etc. are mentioned, for example.
 背布36に織布を用いる場合、織布の織り方は、平織り、綾織り、朱子織等のいずれでもよい。はす歯ベルト30の屈曲性を確保する観点から、ベルト長手方向に曲がり易くするため、織り構成または編み構成をベルト長手方向に伸縮し易い形態にすることが好ましい。そのため、緯糸に伸縮性を有する弾性糸を含む織布を用い、織布の経糸をベルト幅方向に、緯糸をベルト長手方向に延びるように配置するのが好ましい。編布の編糸、または、織布の経糸および緯糸の形態は、フィラメント(長繊維)を引き揃えたり、撚り合せたマルチフィラメント糸、1本の長繊維であるモノフィラメント糸、短繊維を撚り合せたスパン糸(紡績糸)のいずれであってもよい。経糸または緯糸がマルチフィラメント糸またはスパン糸の場合、複数種類の繊維を用いた混撚糸または混紡糸であってもよい。背布36を構成する繊維の材質としては、ナイロン、アラミド、ポリエステル等の何れかまたはこれらの組み合わせを採用できる。この場合、背部31は、更に補強されて、はす歯ベルト30の剛性が高められる。 When a woven fabric is used as the back fabric 36, the weave of the woven fabric may be any of plain weave, twill weave, satin weave, and the like. From the viewpoint of securing the bendability of the helical belt 30, in order to make it easy to bend in the longitudinal direction of the belt, it is preferable to make the weave configuration or the knitting configuration easy to stretch in the longitudinal direction of the belt. Therefore, it is preferable to use a woven fabric containing elastic yarn having stretchability as the weft, and arrange the warp of the woven fabric to extend in the belt width direction and the weft to extend in the belt longitudinal direction. In the form of warp yarns and weft yarns of knitted fabrics or woven fabrics, multifilament yarns in which filaments (long fibers) are aligned and twisted, single filament monofilament yarn, and short fibers are twisted It may be any of the spun yarns (spun yarns). When the warp or weft is a multifilament yarn or a spun yarn, it may be a mixed twist yarn or mixed yarn using a plurality of types of fibers. As a material of the fiber which comprises the back fabric 36, any one of nylon, an aramid, polyester etc., or these combination is employable. In this case, the back portion 31 is further reinforced to increase the rigidity of the helical tooth belt 30.
 背布36として用いる織布または編布は、背部31との接着性を高めるために接着処理が施されていてもよい。接着処理としては、歯布35の場合と同様に、布をレゾルシン-ホルマリン-ラテックス(RFL液)に浸漬後、加熱乾燥して表面に均一に接着層を形成するのが好ましい。しかし、これに限ることなくエポキシまたはイソシアネート化合物で前処理を行った後に、布をRFL液で処理する方法のほかに、ゴム組成物をメチルエチルケトン、トルエン、キシレン等の有機溶媒に溶解してゴム糊を調製し、このゴム糊に布を浸漬処理して、ゴム組成物を含浸、付着させる方法も採用することができる。これらの方法は、単独または組み合わせて行うこともでき、処理順序や処理回数は特に限定されない。なお、背布36が編布である場合は、後述するはす歯ベルト30の製造方法において、加熱・加圧工程で編布の上に巻き付けられた未加硫ゴムシートが編布に含浸されることから、接着処理を施さなくてもよい。 The woven or knitted fabric used as the back fabric 36 may be subjected to an adhesion treatment to enhance the adhesion to the back 31. As the adhesion treatment, as in the case of the tooth cloth 35, it is preferable to immerse the cloth in resorcinol-formalin-latex (RFL solution) and then heat and dry to form an adhesion layer uniformly on the surface. However, the rubber composition is dissolved in an organic solvent such as methyl ethyl ketone, toluene, xylene, etc., in addition to a method of treating the cloth with an RFL solution after pretreatment with an epoxy or isocyanate compound without being limited thereto. A method of impregnating and adhering the rubber composition by dipping the cloth in the rubber paste may be employed. These methods may be performed alone or in combination, and the order of treatment and the number of treatments are not particularly limited. In the case where the back cloth 36 is a knitted cloth, the unvulcanized rubber sheet wound on the knitted cloth is impregnated in the knitted cloth in the heat and pressure step in the method of manufacturing the helical tooth belt 30 described later. Therefore, it is not necessary to carry out the adhesion process.
 [はす歯ベルトのベルト弾性率]
 はす歯ベルト30のベルト長手方向に係るベルト弾性率は、ベルト幅1mmあたり0.96MPa以上であることが好ましく、更には、0.96MPa~1.4MPaの範囲であることがより好ましい。例えば、幅が25mmのはす歯ベルトの場合、24MPa以上であることが好ましく、更には、24MPa~35MPaの範囲であることがより好ましい。はす歯ベルト30のベルト弾性率をベルト幅1mmあたり0.96MPa以上にすることにより、プーリ間に巻き掛けた、はす歯ベルト30を走行させた際に、はす歯ベルト30の振動を抑制して充分な静粛性が得られるほどの、はす歯ベルトの剛性を確保することができる。
Belt elastic modulus of helical tooth belt
The elastic modulus of the belt in the longitudinal direction of the helical belt 30 is preferably 0.96 MPa or more per 1 mm of the belt width, and more preferably in the range of 0.96 MPa to 1.4 MPa. For example, in the case of a helical belt having a width of 25 mm, it is preferably 24 MPa or more, and more preferably in the range of 24 MPa to 35 MPa. When the helical tooth belt 30 wound between the pulleys is made to travel by making the belt elastic modulus of the helical tooth belt 30 be 0.96 MPa or more per 1 mm of belt width, the vibration of the helical tooth belt 30 is The rigidity of the helical tooth belt can be secured such that sufficient quietness can be obtained by suppression.
 〔はす歯ベルトの製造方法〕
 はす歯ベルト30は、例えば以下の手順で製造される。
 先ず、はす歯ベルト30の複数の歯部32に対応する複数の溝部を有する円筒状モールド(図示せず)に、歯布35を形成する接着処理が施された織布を巻き付ける。続いて、巻き付けられた織布の外周面に、心線33を構成する撚りコードを螺旋状にスピニングする。さらにその外周側に、背部31及び歯部32を形成するための未加硫のゴムシートを巻き付けて、未加硫のベルト成形体を形成する。
[Method of manufacturing helical tooth belt]
The helical belt 30 is manufactured, for example, in the following procedure.
First, a woven fabric which has been subjected to adhesion processing for forming the tooth cloth 35 is wound around a cylindrical mold (not shown) having a plurality of grooves corresponding to the plurality of teeth 32 of the helical tooth belt 30. Subsequently, the twisted cords constituting the core wire 33 are helically spun on the outer circumferential surface of the wound woven fabric. Furthermore, an unvulcanized rubber sheet for forming the back portion 31 and the tooth portion 32 is wound around the outer periphery side to form an unvulcanized belt molded body.
 なお、背布36を被覆する場合は、背部31及び歯部32を形成するための未加硫のゴムシートを巻き付けた後、背布36を形成する編布または織布を巻き付ける。背布36として織布を用いる場合には、巻き付ける前に、織布に接着処理を施しておく。一方、背布36に編布を用いる場合には、接着処理を施さなくてもよい。 When the back cloth 36 is covered, an unvulcanized rubber sheet for forming the back 31 and the teeth 32 is wound, and then a knitted cloth or a woven cloth forming the back cloth 36 is wound. In the case of using a woven fabric as the back cloth 36, the woven fabric is subjected to an adhesion treatment before being wound. On the other hand, in the case of using a knitted fabric as the back fabric 36, the bonding process may not be performed.
 次に、未加硫のベルト成形体が、円筒状モールドの外周に配置された状態で、更にその外側に、蒸気遮断材であるゴム製のジャケットが被せられる。続いて、ジャケットが被せられたベルト成形体および円筒状モールドは、加硫缶の内部に収容される。そして、加硫缶の内部でベルト成形体を加熱加圧して、ゴムシートを加硫する。それにより、ゴムシートのゴム組成物がモールドの溝部に圧入されて、歯部32が形成される。そして、脱型したスリーブ状の成形体を所定の幅に切断することにより、複数のはす歯ベルト30が得られる。 Next, in a state where the unvulcanized belt molded body is disposed on the outer periphery of the cylindrical mold, a rubber jacket that is a vapor blocking material is further covered on the outer side thereof. Subsequently, the jacketed belt molded body and the cylindrical mold are housed inside the vulcanized can. Then, the belt molded body is heated and pressurized inside the vulcanized can to vulcanize the rubber sheet. Thereby, the rubber composition of the rubber sheet is pressed into the groove of the mold to form the teeth 32. Then, a plurality of helical belts 30 are obtained by cutting the demolded sleeve-like molded body into a predetermined width.
 上記はす歯ベルト30によれば、背部31の歯部32側の表面は、歯布35で構成されていることから、補強されて剛性が高められる。また、背部31に埋設される心線33は、高強度(高弾性率)の繊維材である高強度ガラス繊維または炭素繊維を含む撚りコードであり、その撚りコードの径は、0.2mm以上0.6mm以下である。そのため、背部31の屈曲性を確保しつつ、心線33によって背部31の剛性をより高めることができる。 According to the helical tooth belt 30, the surface of the back portion 31 on the side of the tooth portion 32 is reinforced by the tooth cloth 35, so that the rigidity is enhanced. Moreover, the core wire 33 embedded in the back portion 31 is a twisted cord containing high strength glass fiber or carbon fiber which is a high strength (high elastic modulus) fiber material, and the diameter of the twisted cord is 0.2 mm or more It is 0.6 mm or less. Therefore, the rigidity of the back 31 can be further enhanced by the core wire 33 while securing the bendability of the back 31.
 このように背部31の剛性を高めたことで、はす歯ベルト30が、高負荷又は高速回転で駆動される減速装置20に使用されても、歯部32が駆動プーリ21や従動プーリ22の歯部と噛み合う際に生じる、はす歯ベルト30の心線33を中心とした振動(弦振動)を抑制できる。これにより、振動により生じる騒音を低減することができる。 Thus, even if the helical tooth belt 30 is used for the reduction gear 20 driven by high load or high speed rotation by increasing the rigidity of the back portion 31, the tooth portion 32 of the drive pulley 21 or the driven pulley 22 Vibration (chord vibration) around the center line 33 of the helical tooth belt 30 which occurs when meshing with the tooth portion can be suppressed. Thereby, the noise generated by the vibration can be reduced.
 また、背部31に埋設される心線33は、心線間の各心線ピッチSPが、0.45mm以上0.6mm以下の範囲になるように配列されている。これにより、背部31の厚みを更に大きくしたり、心線33の径を更に大きくしたりすることなく(屈曲性を犠牲にすることなく)、はす歯ベルト30の剛性を更に高めることができる。 The cords 33 embedded in the back 31 are arranged such that each core pitch SP between the cores is in the range of 0.45 mm or more and 0.6 mm or less. Thereby, the rigidity of the helical belt 30 can be further enhanced without further increasing the thickness of the back portion 31 or increasing the diameter of the core wire 33 (without sacrificing flexibility). .
 また、歯ピッチPが2mm以上3mm未満の場合、背部31の厚みは0.4mm以上1.2mm以下である。歯ピッチPが3mm以上4mm未満の場合に、背部31の厚みは0.6mm以上1.8mm以下である。これらの厚みは、例えば、自動車用の電動パワーステアリング装置1の減速装置20に用いられる従来のはす歯ベルトの背部の厚みと同程度である。本発明のはす歯ベルト30は、背部31の厚みを大きくすることなく背部31の剛性を高めることができる。そのため、耐屈曲疲労性を充分に確保しつつ、振動および騒音をより抑制できる。 Moreover, when the tooth pitch P is 2 mm or more and less than 3 mm, the thickness of the back 31 is 0.4 mm or more and 1.2 mm or less. When the tooth pitch P is 3 mm or more and less than 4 mm, the thickness of the back 31 is 0.6 mm or more and 1.8 mm or less. The thickness of these is, for example, about the same as the thickness of the back of the conventional helical tooth belt used for the reduction gear 20 of the electric power steering apparatus 1 for automobiles. The helical belt 30 of the present invention can increase the rigidity of the back 31 without increasing the thickness of the back 31. Therefore, vibration and noise can be further suppressed while securing sufficient bending fatigue resistance.
 また、従動プーリ22の外径が、駆動プーリ21の外径より大きい、自動車用の電動パワーステアリング装置1の減速装置20に上記はす歯ベルト30を使用することにより、騒音および振動を充分に低減することができる。 Further, by using the helical belt 30 for the reduction gear 20 of the electric power steering apparatus 1 for an automobile, in which the outer diameter of the driven pulley 22 is larger than the outer diameter of the drive pulley 21, noise and vibration are sufficiently made. It can be reduced.
 以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。 As mentioned above, although the preferred embodiment of the present invention was described, the present invention is not limited to the above-mentioned embodiment, and various modifications can be made within the scope of the claims.
 次に、実施例1~17、及び、比較例1~6に係る、はす歯ベルトを作製し、後述するベルト弾性率の測定、音圧測定試験、耐寒性試験を行った。 Next, helical tooth belts according to Examples 1 to 17 and Comparative Examples 1 to 6 were manufactured, and measurement of a belt elastic modulus, a sound pressure measurement test, and a cold resistance test described later were performed.
 実施例1~17、及び、比較例1~6のはす歯ベルトに使用する心線として、下記表2に示す構成のA1~A4の撚りコードを作成した。 As cords for use in the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6, twist cords of A1 to A4 having the configurations shown in Table 2 below were prepared.
 A1の撚りコードは、以下の手順で作成した。JIS R 3413(2012)に記載されている呼称KCG150のガラス繊維のフィラメントを束ねて引き揃えて、3本のストランドとした。この3本のストランドを、下記表3に示す組成のRFL液(18~23℃)に3秒間通過させることにより浸漬した後、200~280℃で3分間加熱乾燥して、表面に均一に接着層を形成した。この接着処理の後に、3本のストランドを、撚り数12回/10cmで下撚りして、上撚りは与えず、片撚りで径が0.35mmの撚りコードを用意した。A2およびA3の撚りコードは、ガラス繊維をUCG150およびECG150に変更した以外はA1と同様に作成した。A4の撚りコードは、用いたストランドを、炭素繊維のフィラメント(3K)を束ねて引き揃えた1本のストランドとした以外は、A1~A3の心線と同じ手順で作成し、片撚りで径が0.53mmの撚りコードとした。 The twist cord of A1 was created in the following procedure. The glass fiber filaments of the designation KCG150 described in JIS R 3413 (2012) were bundled and aligned to form three strands. The three strands are immersed in an RFL solution (18-23 ° C.) having a composition shown in Table 3 below for 3 seconds and then dried by heating at 200-280 ° C. for 3 minutes to uniformly adhere to the surface A layer was formed. After this adhesion treatment, the three strands were pretwisted with 12 twists / 10 cm, no overtwisting was given, and a twist cord having a diameter of 0.35 mm was prepared by single twisting. The twist cords of A2 and A3 were prepared in the same manner as A1, except that the glass fibers were changed to UCG150 and ECG150. The twist cord of A4 is prepared in the same procedure as the core wire of A1 to A3 except that the used strand is one strand obtained by bundling and aligning carbon fiber filaments (3K), and the diameter is single-twisted. Is a 0.53 mm twisted cord.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (心線の弾性率)
 ここで、表2に示した心線(長手方向)の弾性率(引張弾性率)の測定方法について説明する。オートグラフ((株)島津製作所製「AGS-J10kN」)の下側固定部と上側ロードセル連結部にチャックを取り付け、心線を固定する。次に、上側チャックを上昇させて、心線が緩まない程度に応力(約10N)を掛けた。この状態にある上側チャック位置を初期位置とし、250mm/分の速度で上側チャックを上昇させて、心線の応力が200Nに到達後、直ちに上側チャックを下降させて、初期位置まで戻した。このとき測定された応力-歪み曲線において比較的直線関係にある領域(100~200N)の直線の傾き(平均傾斜)を心線の引張弾性率として算出した。
 
(Elastic modulus of core wire)
Here, the method of measuring the elastic modulus (tensile modulus) of the core wire (longitudinal direction) shown in Table 2 will be described. Attach a chuck to the lower fixed part and the upper load cell connection part of Autograph ("AGS-J10kN" manufactured by Shimadzu Corporation) and fix the core wire. Next, the upper chuck was raised and stressed (about 10 N) to the extent that the core did not loosen. With the upper chuck position in this state as the initial position, the upper chuck was raised at a speed of 250 mm / min, and immediately after the stress of the core wire reached 200 N, the upper chuck was lowered and returned to the initial position. The slope (average slope) of the straight line in the region (100 to 200 N) having a relatively linear relationship in the stress-strain curve measured at this time was calculated as the tensile modulus of elasticity of the core.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~17および比較例1~6のはす歯ベルトに用いる歯布は、1種類とした。歯布には、綾織りの織布を用い、織布の経糸をベルト幅方向に、緯糸をベルト長手方向に延びるように配置した。織布の緯糸としては、66ナイロンの繊度155dtexのマルチフィラメント糸と、スパンデックス(ポリウレタン弾性繊維)の繊度122dtexのマルチフィラメント糸を用いた。織布の経糸は、繊度が155dtexの66ナイロンのマルチフィラメント糸を用いた。なお、dtex(デシテックス)とは、10000メートルの糸の質量をグラム単位で表したものである。 The tooth cloth used for the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6 was one type. As the tooth cloth, twill woven fabric was used, and the warp yarn of the woven fabric was disposed in the belt width direction and the weft yarn was extended in the belt longitudinal direction. As the weft of the woven fabric, a multifilament yarn of fineness of 155 dtex of 66 nylon and a multifilament yarn of fineness of 122 dtex of spandex (polyurethane elastic fiber) were used. The warp of the woven fabric was a 66 nylon multifilament yarn having a fineness of 155 dtex. In addition, dtex (decitex) is what expressed the mass of the thread of 10000 meters in a gram unit.
 歯布に用いる織布には、表3に示すRFL液(18~23℃)に10秒間通過させることにより浸漬した後、150~170℃で3分間加熱乾燥して、表面に均一に接着層を形成する接着処理を施した。 The woven fabric used for tooth cloth is dipped in RFL solution (18-23 ° C) shown in Table 10 for 10 seconds and then dried by heating at 150-170 ° C for 3 minutes to uniformly adhere the adhesive layer on the surface. Were treated to form an adhesive.
 実施例1~17および比較例1~6のはす歯ベルトの背部及び歯部を形成する未加硫ゴムシートとして、下記表4に示す組成C1の未加硫ゴムシートを作成した。 An unvulcanized rubber sheet having a composition C1 shown in Table 4 below was prepared as an unvulcanized rubber sheet for forming the spine and the tooth portion of the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ※1 三井化学社製「EPT」
 ※2 大内新興化学工業社製「ノクラックMB」
 ※3 大内新興化学工業社製「N-シクロヘキシル-2ベンゾチアゾールスルフェンアミド」
 ※4 東海カーボン社製「シースト3」
 ※5 正同化学工業社製「酸化亜鉛3種」
* 1 "EPT" manufactured by Mitsui Chemicals, Inc.
※ 2 Nocchi MB manufactured by Ouchi Shinko Chemical Co., Ltd.
* 3 "N-Cyclohexyl-2 benzothiazole sulfenamide" manufactured by Ouchi Shinko Chemical Co., Ltd.
※ 4 "Seast 3" manufactured by Tokai Carbon Co., Ltd.
※ 5 “Zinc oxide 3” manufactured by Shodo Chemical Industry Co., Ltd.
 撚りコード(心線)A1~A4、歯布、および、組成C1の未加硫ゴムシートを用いて、上記実施形態に記載した手順で、実施例1~17および比較例1~6のはす歯ベルトを作成した。加硫は、161℃で25分間行った。実施例1~17および比較例1~6のはす歯ベルトの構成を下記表5~表8に示す。実施例1~17および比較例1~6のはす歯ベルトのベルト幅は、全て25mmとし、歯部のベルト幅方向に対する傾斜角度は、全て5°とした。 Using the unvulcanized rubber sheet of twist cord (core) A1 to A4, tooth cloth and composition C1, the procedure of Examples 1 to 17 and Comparative Examples 1 to 6 is carried out according to the procedure described in the above embodiment. I made a tooth belt. The vulcanization was carried out at 161 ° C. for 25 minutes. The structures of the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6 are shown in Tables 5 to 8 below. The belt widths of the helical belts of Examples 1 to 17 and Comparative Examples 1 to 6 were all 25 mm, and the inclination angles of the tooth portions with respect to the belt width direction were all 5 °.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
 
 
Figure JPOXMLDOC01-appb-T000007
 
 
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 (ベルト弾性率の測定)
 実施例1~17および比較例1~6のはす歯ベルト(ベルト長手方向)についてベルト弾性率(引張弾性率)を測定した。ベルト弾性率の測定方法について説明する。オートグラフ((株)島津製作所製「AGS-J10kN」)の下側固定部と上側ロードセル連結部に一対のプーリ(30歯 外径18.6mm)を取り付け、はす歯ベルトをプーリに掛けた。次に、上側プーリを上昇させて、はす歯ベルトが緩まない程度に応力(約10N)を掛けた。この状態にある上側プーリの位置を初期位置とし、50mm/分の速度で上側プーリを上昇させて、はす歯ベルトの応力が500Nに到達後、直ちに上側プーリを下降させて、初期位置まで戻した。このとき測定された応力-歪み曲線において比較的直線関係にある領域(100~500N)の直線の傾き(平均傾斜)をベルトの引張弾性率として算出した。そして、ベルト弾性率が24MPa以上(ベルト幅1mmあたり0.96MPa以上)の場合には、はす歯ベルトの剛性が高いと評価した。
(Measurement of belt elastic modulus)
The belt elastic modulus (tensile elastic modulus) was measured for the helical tooth belt (belt longitudinal direction) of Examples 1 to 17 and Comparative Examples 1 to 6. The method of measuring the belt elastic modulus will be described. A pair of pulleys (30 teeth outer diameter 18.6 mm) were attached to the lower fixed part and upper load cell connection part of Autograph ("AGS-J10kN" manufactured by Shimadzu Corporation), and the helical tooth belt was hooked on the pulleys . The upper pulley was then raised and stressed (about 10 N) to the extent that the helical belt did not loosen. Taking the position of the upper pulley in this state as the initial position, raise the upper pulley at a speed of 50 mm / min. Immediately after the stress of the helical tooth belt reaches 500 N, lower the upper pulley and return it to the initial position. The The slope (average slope) of the straight line in the region (100 to 500 N) having a relatively linear relationship in the stress-strain curve measured at this time was calculated as the tensile modulus of elasticity of the belt. And when the belt elastic modulus is 24 MPa or more (0.96 MPa or more per 1 mm of belt width), it was evaluated that the rigidity of the helical tooth belt is high.
 (音圧測定試験)
 また、実施例1~17および比較例1~6のはす歯ベルトについて音圧測定試験を行って、ベルト走行中の騒音の評価を行った。試験には2軸走行試験機を使用した。この2軸走行試験機は、図2に示す減速装置と同様に、駆動プーリ21と、駆動プーリ21よりも大径の従動プーリ22とを有する構成とした。駆動プーリ21には、歯数が40のプーリを使用し、従動プーリ22には、歯数が107のプーリを使用した。2つのプーリにはす歯ベルト30を巻き掛けて、ベルト張力が90Nとなるようにプーリの軸間距離を調整し、従動プーリ22に5Nmの負荷をかけて、駆動プーリ21を回転速度1200rpmで回転させて、はす歯ベルト30を走行させた。雰囲気温度は23℃とした。そして、騒音計の集音マイクMで音圧(騒音レベル)を測定した。なお、集音マイクMの位置を説明するために、図2に示す減速装置に集音マイクMを表示した。具体的には、集音マイクMは、駆動プーリ21の中心位置Sを通り、且つ、駆動プーリ21の中心位置Sと従動プーリ22の中心位置Kを通る直線Tに対して垂直な、直線Aを従動プーリ22の方向に25mm平行移動させて、はす歯ベルト30の外周面と接した部分Bから、はす歯ベルト30の外周面に対して垂直方向外側に30mm離れた位置に配置した。集音マイクMで測定した測定結果を表5~表8に示す。音圧が63dBA以下の場合には、はす歯ベルトの実用上問題がない騒音レベルとして合格と評価した。
(Sound pressure measurement test)
In addition, sound pressure measurement tests were conducted on the helical tooth belts of Examples 1 to 17 and Comparative Examples 1 to 6 to evaluate noise during running of the belts. A two-axis running test machine was used for the test. Like the reduction gear shown in FIG. 2, this two-axis running test machine is configured to have a drive pulley 21 and a driven pulley 22 larger in diameter than the drive pulley 21. As the drive pulley 21, a pulley having 40 teeth was used, and for the driven pulley 22, a pulley having 107 teeth was used. The helical belt 30 is wound around two pulleys, the distance between the shafts is adjusted so that the belt tension is 90 N, a load of 5 Nm is applied to the driven pulley 22, and the driving pulley 21 has a rotational speed of 1200 rpm. The helical tooth belt 30 was run by rotating. The ambient temperature was 23 ° C. Then, the sound pressure (noise level) was measured with the sound collection microphone M of the sound level meter. In addition, in order to demonstrate the position of the sound collection microphone M, the sound collection microphone M was displayed on the deceleration apparatus shown in FIG. Specifically, the sound collection microphone M is a straight line A which passes through the center position S of the drive pulley 21 and is perpendicular to a straight line T passing the center position S of the drive pulley 21 and the center position K of the driven pulley 22. Are parallelly moved in the direction of the driven pulley 22 by 25 mm, and are disposed at a position spaced 30 mm vertically outward from the outer peripheral surface of the helical tooth belt 30 from the portion B in contact with the outer peripheral surface of the helical tooth belt 30 . Tables 5 to 8 show the measurement results measured by the sound collection microphone M. When the sound pressure was 63 dBA or less, it was evaluated as acceptable as a noise level that causes no problem in the helical tooth belt.
 (耐寒性試験)
 また、上記音圧測定試験と同じレイアウトの2軸走行試験機を使用して、耐寒性(低温耐久性)の試験を実施した。雰囲気温度は-40℃として、無負荷で、駆動プーリ21を回転速度2000rpmで回転させた。6秒間走行させた後、10分間停止させる動作を、1サイクルとして、1000サイクル行った。そして、500サイクル目と1000サイクル目に、はす歯ベルトの背部の表面にクラックが生じているかどうかを目視で確認した。
 その確認結果を、ランクA、B、Cを使って表5~表8に示した。ランクAは、1000サイクル目でもクラックが発生していなかった場合である。ランクBは、500サイクル目ではクラックが発生しておらず、1000サイクル目でクラックが発生していた場合である。ランクCは、500サイクル目でクラックが発生していた場合である。耐寒性(低温耐久性)の指標としては、最低気温が-40℃に達するような寒冷地域でベルトを使用する場合、ランクAのベルトに比べ、ランクB、Cの順にクラック寿命に達しやすい低温耐久性に劣るグレードの位置づけになる。最低気温が-40℃に達するような寒冷地域での実使用に対する適正の観点からは、ランクA、Bのベルトが好適であり、特にランクAのベルトが好適に用いられる。
(Cold resistance test)
Moreover, the test of cold resistance (low temperature durability) was implemented using the 2-axis driving test machine of the same layout as the said sound pressure measurement test. The driving pulley 21 was rotated at a rotational speed of 2000 rpm with no load and an atmospheric temperature of -40.degree. After running for 6 seconds, an operation of stopping for 10 minutes was performed for 1000 cycles as one cycle. Then, at the 500th and 1000th cycles, it was visually confirmed whether or not the surface of the back of the helical tooth belt had a crack.
The confirmation results are shown in Tables 5 to 8 using ranks A, B, and C. Rank A is a case where no crack has occurred even at the 1000th cycle. Rank B is a case where the crack did not occur at the 500th cycle and the crack occurred at the 1000th cycle. Rank C is a case where a crack has occurred at the 500th cycle. As an indicator of cold resistance (low temperature durability), when using a belt in a cold area where the lowest temperature reaches -40 ° C, the crack life tends to reach crack life in the order of ranks B and C in comparison with rank A belt It is positioned as a grade that is less durable. From the viewpoint of appropriate use in cold regions where the lowest temperature reaches -40.degree. C., belts of ranks A and B are preferred, and belts of rank A are particularly preferably used.
 (歯ピッチ2mmで心線ピッチを変更した場合の検証)
 表5に示す、実施例1~5、7、8では、振動を抑制して充分な静粛性(音圧が63dBA以下)が得られるほどの、ベルトの剛性(ベルト弾性率;24MPa以上)が確保されていた。比較例1は、心線ピッチは密であるが心線の弾性率が小さいガラス繊維の場合、振動を抑制できるほどのベルト弾性率が確保できず(24MPa未満)、音圧を低下させる効果が十分でなかった。また、比較例2は、心線の弾性率の大きい高強度ガラス繊維であるが心線ピッチが大きい(0.64mm)ことから、振動を抑制できるほどのベルト弾性率が確保できず(24MPa未満)、音圧を低下させる効果が十分でなかった。従って、振動を抑制する効果のあるベルトの弾性率(長手方向の引張弾性率)の下限が24MPa(ベルト幅1mmあたり0.96MPa)であると判断することができた。
(Verification when core pitch is changed with 2 mm tooth pitch)
In Examples 1 to 5, 7 and 8 shown in Table 5, the rigidity (belt elastic modulus: 24 MPa or more) of the belt is sufficient to suppress vibration and obtain sufficient quietness (sound pressure is 63 dBA or less). It was secured. In Comparative Example 1, in the case of a glass fiber having a dense core pitch but a small modulus of elasticity of the core wire, the belt elastic modulus enough to suppress the vibration can not be secured (less than 24 MPa). It was not enough. In addition, Comparative Example 2 is a high strength glass fiber having a large elastic modulus of core, but the core pitch is large (0.64 mm), so it is not possible to secure a belt elastic modulus that can suppress vibration (less than 24 MPa ), The effect of reducing the sound pressure was not enough. Therefore, it can be judged that the lower limit of the elastic modulus (tensile elastic modulus in the longitudinal direction) of the belt having an effect of suppressing the vibration is 24 MPa (0.96 MPa per 1 mm of the belt width).
 また、比較例1は、心線の材質以外は、実施例2と同じ構成で、高強度ガラス繊維ではないEガラス繊維の心線A3を用いた例であり、音圧が64dBAと判定基準を上回った。
 比較例2は、心線の材質以外は、比較例1と同じ構成で、心線ピッチSP(0.64mm)を比較例1より大きくした例である。この場合、音圧が判定基準(63dBA以下で合格)より大きかった。
Further, Comparative Example 1 is an example using the same configuration as that of Example 2 except for the material of the core wire, and using the core wire A3 of E glass fiber which is not high strength glass fiber, and the sound pressure is 64 dBA. Exceeded.
The comparative example 2 is an example which has the same configuration as the comparative example 1 except for the material of the core and the core pitch SP (0.64 mm) is larger than that of the comparative example 1. In this case, the sound pressure was larger than the determination criterion (pass at 63 dBA or less).
 実施例1~5、7、8は、いずれも音圧が判定基準である63dBA以下となった。
 実施例2、3、7は、実施例1と同じ構成で、心線ピッチを実施例2は、実施例1(0.56mm)より小さくし(0.52mm)、実施例7は、実施例2よりも更に小さくし(0.48mm)、実施例3は実施例1より大きくした例(0.60mm)であり、実施例7、2、1、3の中では実施例7が最も低い音圧(58dBA)となった。
In all of the examples 1 to 5, 7 and 8, the sound pressure was 63 dBA or less, which is the criterion.
The second, third, and seventh embodiments have the same configuration as the first embodiment, and the core pitch is smaller (0.52 mm) than the first embodiment (0.56 mm), and the seventh embodiment is the sixth embodiment. Example 3 is an example (0.60 mm) which is smaller than Example 2 (0.48 mm), and Example 3 is larger than Example 1, and Example 7 has the lowest sound among Examples 7, 2, 1 and 3. Pressure (58 dBA).
 実施例4は、実施例2と心線を構成する繊維の種類だけが異なっており(Uガラス)、実施例5は、実施例1と心線を構成する繊維の種類だけが異なっており(炭素)、実施例8は、実施例3と心線を構成する繊維の種類だけが異なっている(炭素)。実施例4、5、8では、音圧に大きな差は見られなかった。 Example 4 differs from Example 2 only in the type of fibers constituting the cord (U glass), and Example 5 differs from Example 1 only in the type of fibers constituting the cord ( Carbon) Example 8 differs from Example 3 only in the type of fibers constituting the cord (carbon). In Examples 4, 5 and 8, no significant difference was found in the sound pressure.
 以上から、歯ピッチ2mmの場合、心線ピッチが0.45~0.6mmの範囲で、騒音を抑制できることが確認できた。 From the above, it has been confirmed that noise can be suppressed in the core wire pitch range of 0.45 to 0.6 mm in the case of a tooth pitch of 2 mm.
 (歯ピッチ2mmで背部厚さを変更した場合の検証)
 表6に示すように、実施例1(背部厚み0.85mm)よりも、背部厚みの小さい実施例9(0.45mm)では、はす歯ベルトの剛性が小さいため音圧が合格基準ギリギリの63dBAまで大きくなった。一方、背部厚みの大きい実施例10(1.15mm)では音圧が低減し静粛性は向上したものの耐寒性が低下した(判定B)。更に背部厚みの大きい比較例3(1.30mm)では、更に音圧は低減したものの、耐寒性は更に低下した(判定C)。総合的にはバランスのとれた実施例1の背部厚み(0.85mm)がベストであった。
(Verification when changing back thickness with 2 mm tooth pitch)
As shown in Table 6, in Example 9 (0.45 mm) in which the back thickness is smaller than Example 1 (back thickness 0.85 mm), since the rigidity of the helical tooth belt is small, the sound pressure is the acceptance criterion. It has increased to 63dBA. On the other hand, in Example 10 (1.15 mm) in which the back thickness was large, the sound pressure was reduced and the quietness was improved, but the cold resistance was lowered (judgment B). Furthermore, in Comparative Example 3 (1.30 mm) having a large back thickness, the sound pressure was further reduced, but the cold resistance was further reduced (judgment C). Overall, the back thickness (0.85 mm) of the well-balanced Example 1 was the best.
 なお、耐寒性の低下とは、低温環境下で使用(屈曲走行)した際に亀裂などの不具合が生じやすくなることである。はす歯ベルトを自動車用途で使用する場合、寒冷地域(例えば-40℃)での使用を想定した耐寒性も重要になる。上記実施例1、9、10及び比較例3によれば、背部厚みが小さくなれば音圧が増大し静粛性が低下するが、その反面、はす歯ベルトの剛性低下(屈曲性向上)によって耐寒性が向上し、一方で、背部厚みが大きくなれば音圧が低減し静粛性が向上するが、その反面、はす歯ベルトの剛性増加(屈曲性低下)によって耐寒性が低下する。従って、背部厚みについてはその上限下限が重要になり、上記実施例1、9、10及び比較例3によれば、歯ピッチが2mm以上3mm未満の場合、背部の厚みは、0.4~1.2mmがよく、0.6mm~0.9mmが好ましいと考えられる。 In addition, a fall of cold resistance is that it becomes easy to produce malfunctions, such as a crack, when it uses (bending driving | running | working) in a low temperature environment. When using helical belts in automotive applications, cold resistance for use in cold regions (eg -40 ° C) is also important. According to the above Examples 1, 9, 10 and Comparative Example 3, the sound pressure increases and the quietness decreases as the back thickness decreases, but on the other hand, the stiffness of the helical tooth belt decreases (flexibility improves). The cold resistance is improved, while the sound pressure is reduced and the quietness is improved if the back thickness is increased, but the cold resistance is lowered due to the increase in rigidity (flexibility) of the helical tooth belt. Therefore, the upper limit and the lower limit of the thickness of the back become important, and according to Examples 1, 9, 10 and Comparative Example 3, when the tooth pitch is 2 mm or more and less than 3 mm, the thickness of the back is 0.4 to 1 2 mm is preferable, and 0.6 mm to 0.9 mm is considered to be preferable.
 (歯ピッチ3mmで心線ピッチを変更した場合の検証)
 表7に示す、実施例6、11~15では、振動を抑制して充分な静粛性(音圧が63dBA以下)が得られるほどの、ベルトの剛性(ベルト弾性率;24MPa以上)が確保されていた。比較例4は、心線ピッチは密であるが心線の弾性率が小さいガラス繊維の場合、振動を抑制できるほどのベルト弾性率が確保できず(24MPa未満)、音圧を低下させる効果が十分でなかった。また、比較例5は、心線の弾性率の大きい高強度ガラス繊維であるが心線ピッチが大きい(0.64mm)ことから、振動を抑制できるほどのベルト弾性率が確保できず(24MPa未満)、音圧を低下させる効果が十分でなかった。従って、振動を抑制する効果のあるベルトの弾性率(長手方向の引張弾性率)の下限が24MPa(ベルト幅1mmあたり0.96MPa)であると判断することができた。
(Verification when core pitch is changed with 3 mm tooth pitch)
In Examples 6 and 11 to 15 shown in Table 7, the rigidity (belt elastic modulus: 24 MPa or more) of the belt is secured such that sufficient quietness (sound pressure of 63 dBA or less) can be obtained by suppressing vibration. It was In Comparative Example 4, in the case of a glass fiber having a dense core pitch but a small elastic modulus of the core wire, the belt elastic modulus enough to suppress the vibration can not be secured (less than 24 MPa). It was not enough. In addition, Comparative Example 5 is a high strength glass fiber having a large elastic modulus of core, but since the core pitch is large (0.64 mm), the belt elastic modulus that can suppress vibration can not be secured (less than 24 MPa ), The effect of reducing the sound pressure was not enough. Therefore, it can be judged that the lower limit of the elastic modulus (tensile elastic modulus in the longitudinal direction) of the belt having an effect of suppressing the vibration is 24 MPa (0.96 MPa per 1 mm of the belt width).
 また、比較例4は、心線の材質以外は、実施例6と同じ構成で、高強度ガラス繊維ではないEガラス繊維の心線A3を用いた例であり、音圧が66dBAと判定基準を上回った。
 比較例5は、心線の材質以外は、比較例4と同じ構成で、心線ピッチSP(0.64mm)を比較例4より大きくした例である。この場合、音圧が判定基準(63dBA以下で合格)より大きかった。
Further, Comparative Example 4 is an example using the core A3 of E glass fiber which is not the high strength glass fiber in the same configuration as Example 6 except for the material of the core, and the sound pressure is determined to be 66 dBA Exceeded.
The comparative example 5 is an example which has the same configuration as the comparative example 4 except for the material of the core and the core pitch SP (0.64 mm) is larger than that of the comparative example 4. In this case, the sound pressure was larger than the determination criterion (pass at 63 dBA or less).
 実施例6、11~15は、いずれも音圧が判定基準である63dBA以下となった。
 実施例6、13、11は、実施例12と同じ構成で、心線ピッチを実施例6は、実施例12(0.56mm)より小さくし(0.52mm)、実施例11は、実施例6よりも更に小さくし(0.48mm)、実施例13は実施例12より大きくした例(0.60mm)であり、実施例6、11~13の中では実施例11が最も低い音圧(60dBA)となった。
In all of the sixth and eleventh to fifteenth embodiments, the sound pressure was 63 dBA or less, which is the criterion.
The sixth, thirteenth, and eleventh embodiments have the same configuration as the twelfth embodiment, and the core pitch is smaller (0.52 mm) than the twelfth embodiment (0.56 mm), and the eleventh embodiment is the sixth embodiment. Example 13 is an example (0.60 mm) larger than Example 12 (0.40 mm), and Example 11 has the lowest sound pressure (Example 11 and Example 11 to 13). It became 60dBA).
 実施例14は、実施例12と心線を構成する繊維の種類だけが異なっており(炭素)、実施例15は、実施例13と心線を構成する繊維の種類だけが異なっている(炭素)。実施例14、15では、音圧に大きな差は見られなかったが、いずれも実施例11と同等に低い音圧となった。 Example 14 differs from Example 12 only in the type of fibers constituting the core wire (carbon), and Example 15 differs from Example 13 only in the type of fibers constituting the core line (carbon ). In Examples 14 and 15, a large difference was not found in the sound pressure, but the sound pressure was as low as that in Example 11.
 以上から、歯ピッチ3mmの場合、心線ピッチが0.45~0.6mmの範囲で、騒音を抑制できることが確認できた。 From the above, it has been confirmed that noise can be suppressed in the core wire pitch range of 0.45 to 0.6 mm when the tooth pitch is 3 mm.
 (歯ピッチ3mmで背部厚さを変更した場合の検証)
 表8に示すように、実施例6(背部厚み1.00mm)よりも、背部厚みの小さい実施例16(0.65mm)では、はす歯ベルトの剛性が小さいため音圧が合格基準ギリギリの63dBAまで大きくなった。一方、背部厚みの大きい実施例17(1.75mm)では音圧が低減し静粛性は向上したものの耐寒性が低下した(判定B)。更に背部厚みの大きい比較例6(1.90mm)では、更に音圧は低減したものの、耐寒性は更に低下した(判定C)。総合的にはバランスのとれた実施例6の背部厚み(1.00mm)がベストであった。
(Verification when changing back thickness with 3 mm tooth pitch)
As shown in Table 8, in Example 16 (0.65 mm) in which the thickness of the back is smaller than Example 6 (back thickness 1.00 mm), the rigidity of the helical tooth belt is small and therefore the sound pressure is the acceptance criterion. It has increased to 63dBA. On the other hand, in Example 17 (1.75 mm) in which the back thickness was large, the sound pressure was reduced and the quietness was improved, but the cold resistance was lowered (judgment B). Furthermore, in Comparative Example 6 (1.90 mm) having a large back thickness, the sound pressure was further reduced, but the cold resistance was further reduced (judgment C). Overall, the back thickness (1.00 mm) of the well-balanced Example 6 was the best.
 従って、上記実施例6、16、17及び比較例6によれば、歯ピッチが3mm以上4mm未満の場合、背部の厚みは、0.6~1.8mmがよく、0.8mm~1.2mmが好ましいと考えられる。 Therefore, according to Examples 6, 16, 17 and Comparative Example 6, when the tooth pitch is 3 mm or more and less than 4 mm, the thickness of the back is preferably 0.6 to 1.8 mm, 0.8 mm to 1.2 mm. Is considered preferable.
 以上、本発明の好適な実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能なものである。本出願は、2017年7月11日出願の日本国特許出願2017-135270号、2018年4月6日出願の日本国特許出願2018-073854号、及び2018年6月27日出願の日本国特許出願2018-121700号に基づくものであり、その内容はここに参照として取り込まれる。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made within the scope of the claims. It is. The present application is based on Japanese Patent Application No. 2017-135270 filed on Jul. 11, 2017, Japanese Patent Application No. 2018-073854 filed on Apr. 6, 2018, and Japanese Patent Application filed on Jun. 27, 2018. No. 2018-121700, the contents of which are incorporated herein by reference.
 1 電動パワーステアリング装置
15 電動モータ(駆動源)
20 減速装置(ベルト伝動装置)
21 駆動プーリ
22 従動プーリ
30 はす歯ベルト
31 背部
32 歯部
33 心線
35 歯布
 P 歯ピッチ
SP 心線ピッチ
1 Electric Power Steering Device 15 Electric Motor (Drive Source)
20 Reduction gear (belt transmission)
21 drive pulley 22 driven pulley 30 helical tooth belt 31 back 32 tooth portion 33 center line 35 tooth cloth P tooth pitch SP center line pitch

Claims (12)

  1.  心線が埋設された背部と、
     前記背部の一方の表面にベルト長手方向に沿って所定間隔で設けられ、それぞれがベルト幅方向に対して傾斜する複数の歯部と、を有するはす歯ベルトであって、
     前記歯部の表面および前記背部の前記一方の表面の一部が、歯布で構成されており、
     前記複数の歯部の歯ピッチが、2mm以上4mm未満であり、
     前記複数の歯部の歯ピッチが、2mm以上3mm未満の場合に、前記背部の厚みが、0.4mm以上1.2mm以下であって、
     前記複数の歯部の歯ピッチが、3mm以上4mm未満の場合に、前記背部の厚みが、0.6mm以上1.8mm以下であって、
     前記心線は、高強度ガラス繊維または炭素繊維を含み、径が0.2mm以上0.6mm以下の撚りコードであり、前記心線と心線との間の各心線ピッチが、0.45mm以上0.6mm以下の範囲になるように配列されていることを特徴とする、はす歯ベルト。
    With the back where the heart cord is buried,
    A helical tooth belt having a plurality of tooth portions provided on one surface of said back along the longitudinal direction of the belt at predetermined intervals and each inclined with respect to the belt width direction,
    The surface of the teeth and a portion of the one surface of the back are made of a tooth cloth,
    The tooth pitch of the plurality of teeth is 2 mm or more and less than 4 mm,
    When the tooth pitch of the plurality of teeth is 2 mm or more and less than 3 mm, the thickness of the back is 0.4 mm or more and 1.2 mm or less,
    When the tooth pitch of the plurality of teeth is 3 mm or more and less than 4 mm, the thickness of the back is 0.6 mm or more and 1.8 mm or less,
    The core wire is a twisted cord containing high-strength glass fiber or carbon fiber and having a diameter of 0.2 mm or more and 0.6 mm or less, and each core wire pitch between the core wire and the core wire is 0.45 mm. A helical tooth belt characterized in that it is arranged to be in the range of not less than 0.6 mm.
  2.  前記背部に埋設された前記心線は、当該はす歯ベルトのベルト幅方向の一方の端から他方の端にかけて、前記各心線ピッチが、0.45mm以上0.6mm以下の範囲の一定の値になるように配列されていることを特徴とする、請求項1に記載のはす歯ベルト。 The core wires embedded in the back have a constant core pitch in the range of 0.45 mm to 0.6 mm from one end to the other end in the belt width direction of the helical belt. The helical tooth belt according to claim 1, characterized in that it is arranged to be a value.
  3.  前記複数の歯部の歯ピッチが、2mm以上3mm未満の場合に、前記歯部の歯高さが、0.7mm以上2.0mm以下であって、
     前記複数の歯部の歯ピッチが、3mm以上4mm未満の場合に、前記歯部の歯高さが、1.0mm以上2.3mm以下であることを特徴とする請求項1又は2に記載のはす歯ベルト。
    When the tooth pitch of the plurality of tooth portions is 2 mm or more and less than 3 mm, the tooth height of the tooth portions is 0.7 mm or more and 2.0 mm or less,
    The tooth height of the tooth portion is 1.0 mm or more and 2.3 mm or less when the tooth pitch of the plurality of tooth portions is 3 mm or more and less than 4 mm. Lotus tooth belt.
  4.  前記背部がゴム成分を含み、該ゴム成分がエチレン-プロピレン-ジエン三元共重合体または水素化ニトリルゴムを含む、請求項1~3の何れか一項に記載のはす歯ベルト。 The helical tooth belt according to any one of claims 1 to 3, wherein the back portion contains a rubber component, and the rubber component contains an ethylene-propylene-diene terpolymer or a hydrogenated nitrile rubber.
  5.  前記歯布が経糸および緯糸を含む織布で構成されており、経糸または緯糸がベルト長手方向に延びるように配置されており、該ベルト長手方向に延びるように配置された経糸または緯糸が伸縮性を有する弾性糸を含む、請求項1~4のいずれか一項に記載のはす歯ベルト。 The tooth cloth is made of a woven fabric including warps and wefts, and the warps or wefts are arranged to extend in the longitudinal direction of the belt, and the warps or wefts arranged to extend in the longitudinal direction of the belt are elastic. The helical tooth belt according to any one of claims 1 to 4, comprising an elastic yarn having
  6.  前記歯布を構成する繊維が、ナイロン、アラミド、ポリエステル、ポリベンゾオキサゾール、および綿からなる群から選択される少なくとも一種の繊維を含む、請求項1~5のいずれか一項に記載のはす歯ベルト。 The fiber according to any one of claims 1 to 5, wherein the fiber constituting the tooth cloth comprises at least one fiber selected from the group consisting of nylon, aramid, polyester, polybenzoxazole, and cotton. Tooth belt.
  7.  前記背部の他方の表面が、背布で構成されており、
     前記背布を構成する繊維が、ナイロン、アラミド、およびポリエステルからなる群から選択される少なくとも一種の繊維を含む、請求項1~6のいずれか一項に記載のはす歯ベルト。
    The other surface of the back is made of a backing cloth,
    The helical tooth belt according to any one of claims 1 to 6, wherein the fibers constituting the back fabric include at least one fiber selected from the group consisting of nylon, aramid and polyester.
  8.  前記はす歯ベルトのベルト弾性率は、ベルト幅1mmあたり0.96MPa以上である、請求項1~7のいずれか一項に記載のはす歯ベルト。 The helical tooth belt according to any one of claims 1 to 7, wherein a belt elastic modulus of the helical tooth belt is 0.96 MPa or more per 1 mm of belt width.
  9.  駆動源によって回転駆動される駆動プーリと、
     従動プーリと、
     前記駆動プーリおよび前記従動プーリに巻き掛けられる、請求項1~8のいずれか一項に記載のはす歯ベルトと、を備えるベルト伝動装置。
    A drive pulley rotationally driven by a drive source;
    Driven pulley,
    A helical transmission according to any one of the preceding claims, wherein the helical belt is wound around the drive pulley and the driven pulley.
  10.  前記駆動プーリの回転速度が1000rpm以上4000rpm以下である、請求項9に記載のベルト伝動装置。 The belt transmission according to claim 9, wherein a rotational speed of the drive pulley is 1000 rpm or more and 4000 rpm or less.
  11.  前記従動プーリの負荷が0.5kW以上3kW以下である、請求項9または10に記載のベルト伝動装置。 The belt transmission according to claim 9, wherein a load of the driven pulley is 0.5 kW or more and 3 kW or less.
  12.  前記従動プーリの外径が、前記駆動プーリの外径より大きく、
     前記ベルト伝動装置が、自動車用の電動パワーステアリング装置の減速装置である、請求項9~11のいずれか一項に記載のベルト伝動装置。
    The outer diameter of the driven pulley is larger than the outer diameter of the drive pulley,
    The belt transmission according to any one of claims 9 to 11, wherein the belt transmission is a reduction gear of an electric power steering apparatus for a car.
PCT/JP2018/026105 2017-07-11 2018-07-10 Helical belt and belt transmission gear WO2019013232A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18832375.2A EP3653904B1 (en) 2017-07-11 2018-07-10 Helical belt and belt transmission gear
KR1020207000453A KR102289189B1 (en) 2017-07-11 2018-07-10 Helical toothed belt and transmission
CA3069294A CA3069294C (en) 2017-07-11 2018-07-10 Helical belt and belt transmission gear
US16/630,272 US11460090B2 (en) 2017-07-11 2018-07-10 Helical belt and belt transmission gear
CN201880045726.3A CN110869640B (en) 2017-07-11 2018-07-10 Skewed tooth belt and belt transmission device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-135270 2017-07-11
JP2017135270 2017-07-11
JP2018-073854 2018-04-06
JP2018073854 2018-04-06
JP2018-121700 2018-06-27
JP2018121700A JP6648198B2 (en) 2017-07-11 2018-06-27 Helical belt and belt transmission

Publications (1)

Publication Number Publication Date
WO2019013232A1 true WO2019013232A1 (en) 2019-01-17

Family

ID=65002080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026105 WO2019013232A1 (en) 2017-07-11 2018-07-10 Helical belt and belt transmission gear

Country Status (3)

Country Link
CN (1) CN110869640B (en)
TW (1) TWI697634B (en)
WO (1) WO2019013232A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019212056A1 (en) * 2019-08-12 2021-02-18 Contitech Antriebssysteme Gmbh Helical drive belt
CN115485488A (en) * 2020-07-03 2022-12-16 阪东化学株式会社 Transmission belt
EP4141286A4 (en) * 2020-07-03 2023-10-25 Bando Chemical Industries, Ltd. Transmission belt

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308702A (en) 2003-04-03 2004-11-04 Gates Unitta Asia Co Helical toothed belt transmission device
JP2005098470A (en) * 2002-10-17 2005-04-14 Mitsuboshi Belting Ltd Toothed belt
JP2012225456A (en) * 2011-04-21 2012-11-15 Mitsuboshi Belting Ltd Transmission belt
WO2014024377A1 (en) 2012-08-09 2014-02-13 バンドー化学株式会社 Toothed belts and belt reduction gears provided with same
WO2014091672A1 (en) * 2012-12-11 2014-06-19 バンドー化学株式会社 Toothed belt
EP2803879A1 (en) * 2013-05-16 2014-11-19 Dayco Europe S.R.L. Toothed transmission belt.
JP2017135270A (en) 2016-01-28 2017-08-03 株式会社ディスコ Processing method of wafer
WO2017164135A1 (en) * 2016-03-25 2017-09-28 三ツ星ベルト株式会社 Helical belt and belt transmission gear
JP2018073854A (en) 2016-10-24 2018-05-10 Tdk株式会社 Laminated common mode filter
JP2018121700A (en) 2017-01-30 2018-08-09 Simplex Quantum株式会社 Electrocardiographic sensor, electrocardiographic data management system, and vehicle management system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980739B (en) * 2014-02-14 2018-09-11 阪东化学株式会社 Bidentate V-type band
CN106170640B (en) * 2014-06-20 2017-04-26 阪东化学株式会社 Transmission belt and belt transmission device equipped with same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098470A (en) * 2002-10-17 2005-04-14 Mitsuboshi Belting Ltd Toothed belt
JP2004308702A (en) 2003-04-03 2004-11-04 Gates Unitta Asia Co Helical toothed belt transmission device
JP2012225456A (en) * 2011-04-21 2012-11-15 Mitsuboshi Belting Ltd Transmission belt
WO2014024377A1 (en) 2012-08-09 2014-02-13 バンドー化学株式会社 Toothed belts and belt reduction gears provided with same
WO2014091672A1 (en) * 2012-12-11 2014-06-19 バンドー化学株式会社 Toothed belt
EP2803879A1 (en) * 2013-05-16 2014-11-19 Dayco Europe S.R.L. Toothed transmission belt.
JP2017135270A (en) 2016-01-28 2017-08-03 株式会社ディスコ Processing method of wafer
WO2017164135A1 (en) * 2016-03-25 2017-09-28 三ツ星ベルト株式会社 Helical belt and belt transmission gear
JP2018073854A (en) 2016-10-24 2018-05-10 Tdk株式会社 Laminated common mode filter
JP2018121700A (en) 2017-01-30 2018-08-09 Simplex Quantum株式会社 Electrocardiographic sensor, electrocardiographic data management system, and vehicle management system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653904A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019212056A1 (en) * 2019-08-12 2021-02-18 Contitech Antriebssysteme Gmbh Helical drive belt
CN115485488A (en) * 2020-07-03 2022-12-16 阪东化学株式会社 Transmission belt
EP4141286A4 (en) * 2020-07-03 2023-10-25 Bando Chemical Industries, Ltd. Transmission belt

Also Published As

Publication number Publication date
TWI697634B (en) 2020-07-01
CN110869640B (en) 2022-04-08
TW201908619A (en) 2019-03-01
CN110869640A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
JP6641513B2 (en) Helical belt and belt transmission
JP6553107B2 (en) Spiral tooth belt and belt transmission
JP6648198B2 (en) Helical belt and belt transmission
JP6748131B2 (en) Helical tooth belt transmission
WO2017164135A1 (en) Helical belt and belt transmission gear
TWI697634B (en) Helical belt and belt transmission device
EP3617551B1 (en) Helically toothed belt power transmitting device
WO2019194057A1 (en) Helical tooth belt and belt transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3069294

Country of ref document: CA

Ref document number: 20207000453

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018832375

Country of ref document: EP

Effective date: 20200211