WO2019013227A1 - Composition, film, film-attached base material, method for producing film-attached base material, and modified base material - Google Patents

Composition, film, film-attached base material, method for producing film-attached base material, and modified base material Download PDF

Info

Publication number
WO2019013227A1
WO2019013227A1 PCT/JP2018/026100 JP2018026100W WO2019013227A1 WO 2019013227 A1 WO2019013227 A1 WO 2019013227A1 JP 2018026100 W JP2018026100 W JP 2018026100W WO 2019013227 A1 WO2019013227 A1 WO 2019013227A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
inorganic
supported
composition
inorganic substance
Prior art date
Application number
PCT/JP2018/026100
Other languages
French (fr)
Japanese (ja)
Inventor
三ツ井 哲朗
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019529745A priority Critical patent/JPWO2019013227A1/en
Priority to CN201880039420.7A priority patent/CN110809405A/en
Publication of WO2019013227A1 publication Critical patent/WO2019013227A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic System
    • D06M11/42Oxides or hydroxides of copper, silver or gold

Definitions

  • the present invention relates to a composition, a film, a film-coated substrate, a method of producing a film-coated substrate, and a modified substrate.
  • Antimicrobial films comprising antimicrobial particles and a binder are known.
  • the antibacterial film has a function of suppressing bacterial growth on its surface.
  • Patent Document 1 “1) glass particles, ceramic particles, or porous silica gel particles having metal ions having antibacterial activity, and 2) organosilane capable of hydrolysis and polycondensation or partial hydrolysis thereof A composition for antibacterial coating based on a substance.
  • the inventor of the present invention made and examined an antibacterial film formed using the composition for antibacterial coating described in Patent Document 1, and revealed that the deodorizing performance did not meet the recent requirement level. .
  • this invention makes it a subject to provide the composition which can form the film
  • Another object of the present invention is to provide a film, a film-coated substrate, a method of producing a film-coated substrate, and a modified substrate.
  • An inorganic substance containing a first metal An inorganic substance containing a second metal different from the first metal, and a component containing at least one second metal selected from the group consisting of an organic substance containing the second metal; A composition containing a solvent.
  • the inorganic substance containing the first metal includes the simple substance of the first metal, the oxide of the first metal, and the inorganic support and the first metal supported on the inorganic support.
  • the composition according to [1] which is at least one selected from the group consisting of metal-supported inorganic carriers.
  • the inorganic substance containing the second metal comprises the single substance of the second metal, the oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support
  • the composition according to [1] which is at least one selected from the group consisting of metal-supported inorganic carriers.
  • [4] The composition according to any one of [1] to [3], wherein the component containing the second metal is an inorganic material containing the second metal.
  • the inorganic substance containing the first metal and the inorganic substance containing the second metal are particles, and either the inorganic substance containing the first metal or the inorganic substance containing the second metal Any of the inorganic substance containing an average particle size of 1.2 ⁇ m or less and the other average particle size of 0.6 ⁇ m or less, or the inorganic substance containing the first metal and the inorganic substance containing the second metal
  • [6] The composition according to any one of [1] to [5], wherein the first metal is silver and the second metal is copper.
  • the inorganic material containing the first metal is silver-supporting glass having glass and silver supported on the glass, and the inorganic material containing the second metal is glass and the glass
  • the hydrophilic component contains at least one selected from the group consisting of a silicate compound, a monomer having a hydrophilic group, and a polymer having a hydrophilic group.
  • An inorganic substance containing a first metal An inorganic substance containing a second metal different from the first metal, and a component containing at least one second metal selected from the group consisting of an organic substance containing the second metal Do the membrane.
  • the inorganic substance containing the first metal includes the simple substance of the first metal, the oxide of the first metal, and the inorganic support and the first metal supported by the inorganic support.
  • the inorganic substance containing the second metal comprises the single substance of the second metal, the oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support
  • the membrane according to [14] which is at least one selected from the group consisting of metal-supported inorganic carriers.
  • the inorganic substance containing the first metal and the inorganic substance containing the second metal are particles, and either the inorganic substance containing the first metal or the inorganic substance containing the second metal Any of the inorganic substance containing an average particle size of 1.2 ⁇ m or less and the other average particle size of 0.6 ⁇ m or less, or the inorganic substance containing the first metal and the inorganic substance containing the second metal
  • the film according to [17] which also has an average particle size of 0.9 ⁇ m or less.
  • the inorganic material containing the first metal is silver-supporting glass having glass and silver supported on the glass, and the inorganic material containing the second metal is glass and the glass
  • the hydrophilic binder is at least one member selected from the group consisting of a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof, or a hydrophilic polymer [ 25] membrane.
  • a membrane-coated substrate comprising a substrate and the membrane according to any one of [14] to [26].
  • a composition layer is formed by applying the composition according to any one of [1] to [13] containing a hydrophilic binder precursor on the surface of a substrate, Curing the composition layer to obtain a film.
  • a method for producing a film-coated substrate comprising the step of applying the composition according to any one of [1] to [13] containing a hydrophilic binder on the surface of the substrate to form a film. .
  • a base material, an inorganic substance containing a first metal disposed on or in the base material, and an inorganic substance containing a second metal different from the first metal, and the above A modified substrate comprising: a component containing at least one second metal selected from the group consisting of organic substances containing a second metal.
  • the inorganic substance containing the first metal includes the simple substance of the first metal, the oxide of the first metal, and the inorganic support and the first metal supported by the inorganic support.
  • the inorganic substance containing the second metal comprises the simple substance of the second metal, the oxide of the second metal, and an inorganic support and the second metal supported by the inorganic support
  • the modified substrate according to [30] or [31] which is at least one selected from the group consisting of metal-supported inorganic carriers.
  • One of the inorganic substance containing the first metal and the inorganic substance containing the second metal is a particle, and the inorganic substance containing the first metal and the inorganic substance containing the second metal Any of the inorganic substance containing an average particle size of 1.2 ⁇ m or less and the other average particle size of 0.6 ⁇ m or less, or the inorganic substance containing the first metal and the inorganic substance containing the second metal
  • the modified substrate according to [34] which also has an average particle size of 0.9 ⁇ m or less.
  • the inorganic substance containing the first metal is silver-supporting glass having glass and silver supported on the glass, and the inorganic substance containing the second metal is glass and the glass.
  • membrane or modified base material which has the outstanding antimicrobial property and the outstanding deodorizing property can be provided. Further, according to the present invention, it is possible to provide a film, a film-coated substrate, a method of producing a film-coated substrate, and a modified substrate.
  • the present invention will be described in detail.
  • the description of the configuration requirements described below may be made based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the notation not describing substitution or non-substitution is one having a substituent together with one having no substituent within a range that does not impair the effect of the present invention.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). The same is true for each compound.
  • (meth) acrylate represents both or either of acrylate and / or methacrylate
  • (meth) acrylic represents both or either of acrylic and methacryl
  • Acryloyl represents either or both of acryloyl and methacryloyl.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit and the upper limit.
  • composition according to the embodiment is a first metal-containing inorganic substance (hereinafter also referred to as “inorganic substance (1)” or “first metal-containing substance”), and the above At least one first selected from the group consisting of an inorganic substance containing a second metal different from the first metal (hereinafter also referred to as “inorganic substance (2)”), and an organic substance containing the second metal It contains a metal-containing component (hereinafter also referred to as "second metal-containing material”) and a solvent.
  • metal a metal simple substance (metal simple particle), a metal ion, and the metal atom contained in a compound shall be included.
  • the film or modified substrate formed by the above composition is excellent in antibacterial property and deodorizing property by the presence of the above-mentioned inorganic substance (1) and the above-mentioned second metal-containing substance.
  • the second metal-containing substance is an inorganic substance (2), and at least one selected from the group consisting of the inorganic substance (1) and the inorganic substance (2) is in the form of particles, and the average When the particle size is 1.2 ⁇ m or less, a film or modified substrate having better antibacterial properties and better deodorizing properties can be obtained.
  • the inorganic substance (1) is a silver-supporting inorganic support having a first inorganic support and silver supported on the first inorganic support, and an inorganic (2) And a film or a modifying group having more excellent antibacterial properties and more excellent deodorizing properties, in the case where the carrier is a copper-supported inorganic carrier having a second inorganic carrier and copper supported on the second inorganic carrier.
  • the material is obtained.
  • urinary odor an enzyme generated from bacteria decomposes urea and becomes an ammonia source during the mechanism of urinary odor generation, and copper is presumed to exhibit excellent enzyme degradability and exhibits high deodorizing ability.
  • silver is known to exhibit high antibacterial properties.
  • the membrane or modified substrate contains a silver-supporting inorganic carrier and a copper-supporting inorganic carrier, it exhibits better antibacterial properties and better deodorizing.
  • copper is known not only to exhibit high deodorizing ability as described above but also to exhibit high antibacterial properties
  • the inventor of the present invention has made various investigations that silver and copper have different mechanisms. It is speculated that it exhibits antibacterial activity.
  • the membrane or the modified substrate contains a silver-supporting inorganic carrier and a copper-supporting inorganic carrier, each of the two antibacterial mechanisms of copper and silver simultaneously acts on the bacteria, and each is used alone and In comparison, it is considered that remarkably superior antibacterial properties can be obtained.
  • the inorganic support in at least one of the silver-supporting inorganic support and the copper-supporting inorganic support is amorphous (amorphous)
  • the metal ions are more easily released from the first metal and the second metal, and thus the above-mentioned effect is further enhanced.
  • the use in particular of the said composition is not restrict
  • Urine odor is caused by substances contained in urine, such as ammonia and trimethylamine. When the urine absorbed in the diaper is left for a long time, the odor of the diaper becomes stronger because the above-mentioned substances responsible for the urine odor are further increased by the action of bacteria.
  • the inorganic substance (1) is not particularly limited, but includes, but is not limited to, Escherichia (eg, E. coli etc.), Staphylococcus (eg, S. aureus etc.), Klebsiella (eg, K. oxytoca, K. pneumoniae etc.), Serratia (eg, S. marcescens), Citrobacter (eg, C. freundii, C. diversus etc.), Enterobacter (eg, E. aerogenes, E. cloacae), Proteus (eg, P. mirabilis, Those having a bactericidal (including bactericidal) and / or bacteriostatic effect against bacteria of P. vulgaris etc.), Pseudomonas sp. (Eg P. aeruginosa etc.), and Morganella sp. (Eg M. morganii etc.) preferable.
  • Escherichia eg, E. coli etc.
  • the inorganic substance (1) may be a solid substance or a liquid substance, but the inorganic substance (1) is preferably a solid substance from the viewpoint of being excellent by the effect of the present invention, and the solid substance is a particle (composition Among them, those present as particles) are more preferred.
  • the inorganic substance (1) contains a first metal.
  • the form of the inorganic substance (1) is not particularly limited, and a first metal simple substance (metal simple particle), an ion of the first metal, and an inorganic compound containing the first metal (definition of the compound: by chemical change
  • the pure substance which can be divided into two or more elements alone may be used, or a mixture thereof.
  • the inorganic substance (1) may be a complex of an inorganic compound and a first metal.
  • the complex for example, an inorganic carrier, and a first metal (for example, a first metal single particle (metal single particle), a first metal ion, and a first metal) supported on the inorganic carrier are mentioned.
  • a compound containing the first metal may specifically include an inorganic compound containing the first metal
  • a compound containing the first metal may be any one of the compounds containing the first metal.
  • first metal-supported inorganic carrier it may be referred to as "first metal-supported inorganic carrier".
  • the inorganic substance (1) is a simple substance (particle) of a first metal, an ion of a first metal, an oxide of a first metal, and an inorganic substance supporting a first metal, from the viewpoint that the effect of the present invention is more excellent.
  • At least one member selected from the group consisting of carriers is preferable, and at least one member selected from the group consisting of a single metal particle (particles) of a first metal, an oxide of a first metal, and a first metal-supported inorganic carrier is More preferably, the first metal-supported inorganic support is more preferred.
  • the first metal is not particularly limited, and silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like can be mentioned, among which silver, copper, zinc, Aluminum or zirconium is preferred, silver, copper, zinc or aluminum is more preferred, silver or copper is more preferred, and silver is particularly preferred.
  • the inorganic substance (1) may be, for example, an oxide, a nitride, a halide, a cyanide, a selenide, a sulfide, a telluride, a salt of the first metal and the like of the first metal.
  • the first metal salt for example, arsenate, hydrogen fluoride salt, bromate, chlorate, chromate, cyanate, hexafluoroantimonate, hexafluoroarsenate, hexafluoro Phosphate, iodate, isothiocyanate, molybdate, nitrate, nitrite, perchlorate, permanganate, perrhenate, phosphate, selenate, selenite, sulfuric acid And salts, sulfites, tetrafluoroborates, tetratungstates, thiocyanates, vanadates and the like.
  • the type of inorganic support of the first metal-supported inorganic support is not particularly limited, but zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated alumina, silicon oxide, silicate glass, borosilicate Salt glass, phosphate glass, zeolite (crystalline aluminosilicate salt), apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrated bismuth oxide, hydrated zirconium oxide, and hydrotalcite; activated carbon; metal; etc.
  • the inorganic support of the first metal-supported inorganic support may be referred to as the "first inorganic support”.
  • the inorganic carrier may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline, more preferably glass.
  • a material which can comprise glass a silicate, borosilicate, and phosphate etc. are mentioned, for example, Especially, a silicate is preferable and aluminum silicate is more preferable.
  • the aluminum silicate may be natural or synthetic.
  • the compound represented by following formula (A) is preferable.
  • n is a positive number of 6 or more (preferably, 6 to 50)
  • m is a positive number of 1 to 20.
  • n is preferably 8 to 15 and m is preferably 3 to 15.
  • inorganic substances (1) include silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like (for example, zirconium phosphate and the like) Aluminum silicate etc. can also be used.
  • metal-supported inorganic support metal-supported zeolite, metal-supported apatite, metal-supported glass, metal-supported zirconium phosphate, or metal-supported calcium silicate, on which the first metal is supported, is preferable, and metal-supported glass is more preferable. preferable.
  • the average particle diameter of the particles of the inorganic substance (1) is not particularly limited, but in general, it is 0.01 ⁇ m or more, preferably 0.2 ⁇ m or more. Further, the upper limit thereof is not particularly limited, and for example, 10 ⁇ m or less is mentioned, and 5.0 ⁇ m or less is preferable. Among them, 3.0 ⁇ m or less is preferable, 1.5 ⁇ m or less is more preferable, 1.2 ⁇ m or less is more preferable, 0.9 ⁇ m or less is further more preferable, 0.6 ⁇ m or less is particularly preferable, 0.5 ⁇ m or less is most preferable And 0.3 ⁇ m or less is more preferable.
  • 0.5 micrometer or less is preferable and, as for the average particle diameter of inorganic substance (1), 0.4 micrometer or less is more preferable.
  • the average particle size of the particles of the inorganic substance (1) can be measured by observation using an electron microscope.
  • the above-mentioned average particle diameter is a primary particle and a secondary particle (Note that “secondary particle” is an aggregate formed by fusion or contact of primary particles with each other) 90% of the total number of particles excluding the 5% of the number of particles on the small diameter side and the 5% of the particles on the large diameter side of the total particle number.
  • a diameter means the circumscribed circle equivalent diameter of particle
  • 50% volume cumulative diameter (D50) is measured three times using a laser diffraction / scattering type particle size distribution analyzer manufactured by Horiba, Ltd.
  • the average value of the values measured three times may be substituted as the average particle diameter.
  • the inorganic substance (1) When the average particle diameter of the inorganic substance (1) is in the above numerical range, the inorganic substance (1) is exposed from the hydrophilic binder in a film or a modified substrate formed using a composition containing a hydrophilic binder described later It is easy to be fixed in the state. For this reason, for example, when the inorganic substance (1) is a metal-supported carrier, the metal is more easily released from the carrier, and the effect of the present invention is more excellent.
  • any of a breakdown method (for example, a grinding method) and a buildup method may be used.
  • the method of grinding the inorganic substance (1) include dry grinding and wet grinding.
  • dry grinding for example, a mortar, a jet mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, and a bead mill are suitably used.
  • wet grinding various ball mills, high-speed rotary grinders, jet mills, bead mills, ultrasonic homogenizers, high-pressure homogenizers, and the like are suitably used.
  • the average particle size can be controlled by adjusting the diameter, type, and mixing amount of beads serving as media.
  • the buildup method is a method of directly forming the inorganic substance (1) by carrying out a reaction by mixing raw material components such as a hydroxide and an organic metal and the like, for example.
  • raw material components such as a hydroxide and an organic metal and the like
  • a build-up method a batch type may be used in which raw material components are added to the pod and stirred and mixed, or a method in which raw material components are continuously mixed and reacted in a flow path (for example, microreactor or double tube Although the mixing method may be used, the latter is preferable.
  • the inorganic substance (1) may be used alone or in combination of two or more.
  • the content of the inorganic substance (1) in the composition is not particularly limited, but 0.001 to 55 mass with respect to the total solid content of the composition % Is preferable, 0.001 to 50% by mass is more preferable, and 0.01 to 40% by mass is more preferable.
  • the content of the metal in the inorganic substance (1) is not particularly limited, but, for example, when the inorganic substance (1) is a metal-supported carrier, the content of the metal is 0.001 to 30% by mass is preferable, and 0.01 to 10% by mass is more preferable. In addition, when multiple inorganic substances (1) are contained in a composition, it is preferable that total content of a metal is the said numerical range.
  • the composition contains at least one selected from the group consisting of an inorganic substance (2) and an organic substance containing a second metal (a second metal-containing substance).
  • the content of the second metal-containing material in the composition is not particularly limited, but is preferably 0.01 to 50% by mass, preferably 0.01 to 40% by mass, and more preferably 0.1 to 35% by mass. 0.1 to 30% by mass is more preferable, and 0.1 to 10% by mass is particularly preferable.
  • the second metal-containing material may be used alone or in combination of two or more. When using 2 or more types of 2nd metal containing things together, it is preferable that total content is in the said range.
  • the second metal is different from the first metal.
  • “different” means that the types of metal elements are different.
  • the second metal is not particularly limited, and silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like can be mentioned, and silver, copper, zinc, aluminum or Zirconium is preferred, silver, copper, zinc or aluminum is more preferred, and copper is even more preferred.
  • the form of the inorganic substance (2) is not particularly limited, and may be any of a single metal (particle) of a second metal, an ion of a second metal, or an inorganic compound containing a second metal, and a mixture thereof It may be
  • the inorganic substance (2) may be a complex of an inorganic compound and a second metal.
  • the complex includes, for example, an inorganic carrier, and a second metal (second metal single particle (metal single particle) supported on the inorganic carrier, ions of the second metal, and a second metal.
  • a metal supported carrier hereinafter referred to as “any of the compounds (the compound containing the second metal may specifically include an inorganic compound containing the second metal)
  • second metal-supported inorganic carrier also referred to as "second metal-supported inorganic carrier”.
  • the inorganic substance (2) is at least one selected from the group consisting of a single metal (particle) of a second metal, an oxide of a second metal, and a second metal-supported inorganic carrier in the viewpoint of being superior by the effect of the present invention Is more preferable, and the second metal-supported inorganic carrier is more preferable.
  • the inorganic carrier of the second metal-supporting inorganic carrier the same one as the inorganic carrier of the first metal-supporting inorganic carrier can be used.
  • the inorganic support of the second metal-supported inorganic support may be referred to as "second inorganic support”.
  • the inorganic carrier may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline, more preferably glass.
  • a material which can comprise glass a silicate, borosilicate, and phosphate etc. are mentioned, for example, Especially, a silicate is preferable and aluminum silicate is more preferable.
  • the second metal-supporting inorganic support are preferably metal-supporting zeolite, metal-supporting apatite, metal-supporting glass, metal-supporting zirconium phosphate, or metal-supporting calcium silicate supporting a second metal, metal-supporting glass Is more preferred.
  • inorganic carriers those containing silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like as the inorganic substance (2) (for example, zirconium phosphate and the like) Aluminum silicate etc. can also be used.
  • Examples of the second metal-containing organic substance include salts of the second metal.
  • a second metal salt acetate, acetylacetonate, metal acetylide, (cis, cis-1,5-cyclooctadiene) -1,1,1,5,5,5-hexafluoroacetylacetonate Diethyldithiocarbamate, 7,7-dimethyl-1,1,1,2,2,3,3-heptafluoro-4,6-octanedionate, lactate, oxalate, perfluorobutyrate, perfluoro Propionate, picrate, propionate, sulfadiazine salt, p-toluenesulfonate, trifluoromethanesulfonate, trifluoroacetate and the like can be mentioned.
  • the organic substance containing the second metal may be a complex of an organic compound and the second metal.
  • the complex contains, for example, an organic carrier, and a second metal (second metal single particle (metal single particle) supported on the organic carrier, ions of the second metal, and a second metal.
  • a metal-supported carrier comprising any of the compounds (specifically, the second metal-containing compound includes an inorganic compound containing the second metal), or
  • An organic-inorganic composite comprising an inorganic compound containing a metal of 2 and an organic compound arranged so as to cover the above-mentioned inorganic compound is preferable, and in particular, a metal having an organic carrier and a second metal supported on the organic carrier A supported organic carrier (hereinafter also referred to as "second metal-supported organic carrier”) is more preferable.
  • the organic carrier of the second metal-supported organic carrier include polymer particles.
  • the second metal-supporting organic support for example, a polymer particle supporting a second metal selected from the group consisting of copper particles and copper oxide particles (hereinafter, also referred to as “copper-supporting polymer”) is It can be mentioned.
  • the average particle diameter of the copper particles and the copper oxide particles is preferably 90 nm or less, more preferably 70 nm or less, and still more preferably 50 nm or less, in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, and is, for example, 1 nm or more.
  • the average particle diameter of the said copper particle and said copper oxide particle can use the measuring method of the average particle diameter of the particle
  • the average particle size may be substituted by a measurement value by dynamic light scattering using a dispersion of particles only.
  • the average particle size can be measured by dynamic light scattering using a particle size distribution measuring device by laser diffraction or the like.
  • the average primary particle diameter of the copper particles and the copper oxide particles is preferably less than 100 nm.
  • the lower limit is not particularly limited, and is, for example, 1 nm or more.
  • the average primary particle diameter of the copper particles and the copper oxide particles is more preferably 5 to 90 nm, and still more preferably 5 to 50 nm, in that the effects of the present invention are more excellent.
  • the “average primary particle size” means that the diameter of each primary particle is measured from the image of the electron microscope, and the number of primary particles on the smallest diameter side among the total number of primary particles is 5% and the diameter is the largest. It is a value obtained by averaging the diameters of primary particles in the range of 90% excluding the primary particle number 5%.
  • the diameter means the circumscribed circle equivalent diameter of primary particles.
  • the average particle diameter of the polymer particles is preferably 100 to 1000 nm, and more preferably 100 to 800 nm.
  • the average particle diameter of the polymer particles can be measured using the method of measuring the average particle diameter of the particles of the inorganic substance (1) described above.
  • the resin material constituting the polymer particles is not particularly limited, and among them, polyurethane resin, (meth) acrylic resin, polystyrene resin, polystyrene- (meth) acrylic copolymer resin, or polyolefin resin is preferable.
  • the polymer particles for example, EPOPER 050W and 100W manufactured by Nippon Shokubai can be used.
  • the ratio of polymer particles to copper particles and copper oxide particles is not particularly limited, but it is more excellent in antibacterial properties.
  • mass ratio for example, the range of 1 / 0.00001 to 1 / 10,000 is preferable, and the range of 1 / 0.0001 to 1 / 10,000 is more preferable.
  • the copper-supporting polymer particles may have a coating formed of a silane compound formed on at least a part of the surface of the polymer particles as a carrier.
  • a silane compound it is obtained by condensing the silicate type compound mentioned later, for example.
  • the second metal-containing substance may be a solid or liquid, but the second metal-containing substance is preferably a solid, and particles (as solid) are preferable because they are superior by the effect of the present invention. Those which are present as particles in the composition are preferred.
  • the second metal-containing material the inorganic material (2) and the second metal-supporting organic carrier are preferable.
  • the second metal-supported inorganic support or the second metal-supported organic support is more preferable, and the second metal-supported inorganic support is more preferable.
  • the average particle diameter of the second metal-containing material is not particularly limited, but is, for example, 4.0 ⁇ m or less, preferably 2.0 ⁇ m or less, and more preferably 1.5 ⁇ m or less preferable.
  • the average particle diameter of the second metal-containing material is preferably 1.2 ⁇ m or less, more preferably 1.0 ⁇ m or less, still more preferably 0.9 ⁇ m or less, still more preferably 0.7 ⁇ m or less, 0.6 ⁇ m or less Is particularly preferably 0.5 ⁇ m or less, more preferably 0.3 ⁇ m or less, still more preferably 0.2 ⁇ m or less, and most preferably 0.15 ⁇ m or less.
  • the lower limit is preferably 0.01 ⁇ m or more, more preferably 0.10 ⁇ m or more.
  • grains of the inorganic substance (1) already demonstrated can be used for measurement and adjustment of the average particle diameter of the particle
  • the aspect ratio is not particularly limited, but is preferably 1 to 40, and more preferably 2 to 20.
  • the aspect ratio is calculated by the following method. First, using an electron microscope, of two parallel straight lines circumscribing the second metal inclusion, select two parallel straight lines with the largest distance between straight lines, and then select the distance between the two parallel straight lines. The major axis of the second metal inclusions. Next, among two parallel straight lines that are orthogonal to the major axis and circumscribed to the second metal inclusion, two parallel straight lines with the smallest distance between straight lines are selected, and between the two parallel straight lines Of the second metal inclusion as the minor axis of the second metal inclusion.
  • the ratio of the major axis to the obtained minor axis is taken as the specific aspect ratio.
  • the above aspect ratio can be obtained by performing this operation on arbitrary 100 or more second metal-containing substances and arithmetically averaging the obtained specific aspect ratios.
  • an inorganic substance (2) is included as the 2nd metal content thing of the above-mentioned, and the above-mentioned inorganic substance (1) and the above-mentioned inorganic substance (2) are particles.
  • the average particle size is preferably 1.5 ⁇ m or less for any of the above 2), and it is more preferable that the average particle size is 1.2 ⁇ m or less for both the inorganic substance (1) and the inorganic substance (2).
  • the average particle diameter of either one of the inorganic substance (2) or less is 1.2 ⁇ m or less and the average particle diameter of the other is 0.9 ⁇ m or less, and the inorganic substance (1) and the inorganic substance (2) Either one of the average particle sizes is 1.2 ⁇ m or less, and the other is 0.6 ⁇ m or less, or the average particle size of either the inorganic substance (1) or the inorganic substance (2) is 0 .9 ⁇ m or less is particularly preferable More preferably, the average particle size of either the inorganic substance (1) or the inorganic substance (2) is 0.5 ⁇ m or less, and the average particle size of either the inorganic substance (1) or the inorganic substance (2) is 0.
  • the average particle diameter is 5 ⁇ m or less, and the other is 0.3 ⁇ m or less, and it is more preferable that the average particle diameter of both the inorganic substance (1) and the inorganic substance (2) is 0.3 ⁇ m or less .
  • a form containing a silver content thing as the above-mentioned inorganic substance (1), and a copper content thing as the above-mentioned 2nd metal content thing is mentioned.
  • the mass ratio of the content of copper in the copper-containing material to the content of silver in the silver-containing material at the point where the deodorizing property and the antibacterial property are more excellent content of copper in copper-containing material 800 or less is preferable, 350 or less is more preferable, 300 or less is still more preferable, 0.1 or more is preferable, and 5.0 or more is more preferable, for example.
  • both the silver-containing material and the copper-containing material are in the form of particles from the viewpoint of deodorant and antibacterial properties.
  • the average particle diameter is preferably 1.5 ⁇ m or less for both the silver-containing material and the copper-containing material, and it is more preferable that the average particle diameter is 1.2 ⁇ m or less for both the silver-containing material and the copper-containing material.
  • the average particle diameter of either the silver-containing material or the copper-containing material is 1.2 ⁇ m or less, and the other average particle diameter is 0.9 ⁇ m or less, and the silver-containing material and the copper-containing material
  • the average particle diameter of either one is 1.2 ⁇ m or less, and the other average particle diameter is 0.6 ⁇ m or less, or the average particle diameter of either of the silver-containing material and the copper-containing material is 0.
  • the thickness is 9 ⁇ m or less, and it is preferable to contain silver and copper.
  • the average particle size of any of the objects is particularly 0.5 .mu.m or less, and the average particle size of any one of the silver-containing material and the copper-containing material is 0.5 .mu.m or less and the other It is most preferable that the average particle diameter is 0.3 ⁇ m or less, and most preferable that the average particle diameter of any of the silver-containing material and the copper-containing material is 0.3 ⁇ m or less.
  • the silver-containing inorganic carrier having the first inorganic carrier and the silver supported on the first inorganic carrier is preferable, and the silver-containing glass as the inorganic material (1) is more preferable.
  • a copper-containing material as the second metal-containing material is supported by a copper-supporting inorganic carrier having a second inorganic carrier and copper supported by the second inorganic carrier, and an organic carrier and the organic carrier.
  • a copper-supporting inorganic carrier having a second inorganic carrier and copper supported by the second inorganic carrier is preferred, and copper-supporting inorganic supports having a second inorganic support and copper supported on the second inorganic support are more preferred.
  • a silver-supporting inorganic carrier is contained as the inorganic substance (1), and a copper-containing substance (preferably, the second inorganic carrier and the above-mentioned second metal-containing substance). And at least one selected from the group consisting of a copper-supported inorganic carrier having copper supported on the inorganic carrier of 2 and a copper-supported organic carrier having an organic carrier and copper supported on the organic carrier, More preferably, a form containing a copper-supported inorganic carrier having a second inorganic carrier and copper supported on the second inorganic carrier and zirconium phosphate can be mentioned.
  • the said inorganic substance (1) is a silver carrying
  • the average particle diameter of the inorganic substance (1) is preferably 0.01 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, particularly preferably 0.5 ⁇ m or more, and 10 ⁇ m or less Preferably, 5.0 ⁇ m or less is more preferable.
  • the average particle diameter of the second metal-containing material is preferably 4.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, still more preferably 1.5 ⁇ m or less, particularly preferably 1.0 ⁇ m or less, and most preferably 0.5 ⁇ m or less 0.01 ⁇ m or more is preferable, and 0.1 ⁇ m or more is more preferable.
  • the average particle diameter of the inorganic substance (1) and the second metal-containing material is preferably 0.9 ⁇ m or less (preferably 0.6 ⁇ m or less, more preferably 0.5 ⁇ m or less).
  • the said inorganic substance (1) is a zirconium phosphate or phosphate glass
  • a 2nd metal containing material is a copper containing material (preferably, 2nd inorganic support
  • carrier is mentioned.
  • the average particle diameter of the inorganic substance (1) is preferably 4.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, still more preferably 1.5 ⁇ m or less, particularly preferably 1.0 ⁇ m or less The following is most preferable, 0.01 ⁇ m or more is preferable, and 0.1 ⁇ m or more is more preferable.
  • the average particle diameter of the second metal-containing material is preferably 0.01 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, particularly preferably 0.5 ⁇ m or more, and preferably 10 ⁇ m or less. 0 ⁇ m or less is more preferable.
  • the average particle diameter of the inorganic substance (1) and the second metal-containing material is preferably 0.9 ⁇ m or less (preferably 0.6 ⁇ m or less, more preferably 0.5 ⁇ m or less).
  • the composition preferably contains a hydrophilic component selected from the group consisting of a hydrophilic binder precursor and a hydrophilic binder.
  • the content of the hydrophilic component in the composition is not particularly limited, but is preferably 20 to 99.8% by mass, more preferably 20 to 90% by mass, based on the total solid content of the composition. % By mass is more preferred.
  • the hydrophilic component may be used alone or in combination of two or more. When two or more hydrophilic components are used in combination, the total content is preferably within the above range.
  • the inorganic substance (1) and the second metal inclusion can be more firmly immobilized on the substrate by a hydrophilic binder.
  • the liquid suppresses the outflow of the inorganic substance (1) and the second metal inclusion from the membrane.
  • the outflow of the inorganic substance (1) and the second metal-containing substance to the outside is suppressed by the urine, and thus the antibacterial property and Deodorant property can be expressed continuously.
  • adverse effects on the skin due to the outflow of the inorganic substance (1) and the second metal-containing substance can be suppressed.
  • hydrophilic binder since the hydrophilic binder has hydrophilicity, it has high affinity with odorants such as ammonia and trimethylamine. Therefore, the hydrophilic binder also has the function of retaining and diffusing the odorous substance on the surface of the membrane to increase the chance of contact between the odorous substance and the inorganic substance (1) and the second metal-containing substance. Moreover, according to the composition containing a hydrophilic component, excellent deodorizing property is likely to be maintained for a long time.
  • a hydrophilic binder precursor means the material which can form a hydrophilic binder by hardening reactions, such as a condensation and superposition
  • a hydrophilic binder means the material which can form a hydrophilic film
  • a film made of the above hydrophilic binder is formed on a glass substrate as the hydrophilic binder, for example, one having a water contact angle of 60 ° or less is preferable, and one having a water contact angle of 50 ° or less is preferable.
  • the lower limit of the water contact angle is not particularly limited, but generally 5 ° or more is preferable.
  • the water contact angle is measured based on the static droplet method of JIS R 3257: 1999. For measurement, FAMMS DM-701 manufactured by Kyowa Interface Science Co., Ltd. is used.
  • the hydrophilic component is not particularly limited, but a silicate compound, a monomer having a hydrophilic group (hereinafter, also referred to as a "hydrophilic monomer”), and a polymer having a hydrophilic group (hereinafter referred to as "hydrophilic group") And at least one selected from the group consisting of "hydrophilic polymers".
  • the monomer which has a hydrophilic group means the compound which has a hydrophilic group and a polymeric group.
  • the hydrophilic monomer is polymerized to form a hydrophilic polymer when the composition contains a polymerization initiator described later. Below, a silicate type compound, a hydrophilic monomer, and a hydrophilic polymer are each demonstrated.
  • silicate compounds are a compound selected from the group consisting of a compound in which a hydrolyzable group is bonded to a silicon atom, a hydrolyzate thereof, and a hydrolytic condensate thereof, and, for example, At least 1 sort (s) selected from the group which consists of a compound represented by 1), its hydrolyzate, and its hydrolysis-condensation product is mentioned.
  • Formula (1) Si- (OR) 4 In the above formula (1), R represents an alkyl group having 1 to 4 carbon atoms, and may be the same or different.
  • Examples of the compound represented by the above formula (1) include tetramethyl silicate, tetraethyl silicate, tetra-n-propyl silicate, tetra-i-propyl silicate, tetra-n-butyl silicate, tetra-i-butyl silicate, tetra-t And butyl silicate, methyl ethyl silicate, methyl propyl silicate, methyl butyl silicate, ethyl propyl silicate, and propyl butyl silicate.
  • the compound obtained by hydrolyzing OR group in the compound represented by Formula (1) is intended.
  • the above hydrolyzate is one in which part of the OR group is hydrolyzed (partial hydrolyzate) even if all of the OR groups are hydrolyzed (completely hydrolyzed) May be That is, the hydrolyzate may be a complete hydrolyzate, a partial hydrolyzate, or a mixture thereof.
  • the hydrolysis condensation product of the compound represented by Formula (1) is a compound obtained by hydrolyzing OR group in the compound represented by Formula (1), and condensing the obtained hydrolyzate Intended.
  • hydrolytic condensate even if all OR groups are hydrolyzed and all the hydrolysates are condensed (completely hydrolytic condensate), some OR groups are hydrolysed. It may be decomposed and partially hydrolyzate condensed (partial hydrolytic condensate). That is, the hydrolytic condensate may be a complete hydrolytic condensate, a partial hydrolytic condensate, or a mixture thereof.
  • the degree of condensation of the hydrolytic condensate is preferably 1 to 100, more preferably 1 to 20, and still more preferably 3 to 15.
  • the compound represented by Formula (1) will be in the state by which at least one part was hydrolyzed by being mixed with a water component.
  • the hydrolyzate of the compound represented by Formula (1) can be obtained by reacting the compound represented by Formula (1) with a water component to convert the silicon-bonded OR group into a hydroxy group.
  • not all the OR groups need to react, but in order to exhibit hydrophilicity after application, it is preferable that as many OR groups as possible be hydrolyzed.
  • the minimum amount of water component necessary for hydrolysis is equal to the molar amount of the OR group of the compound represented by the formula (1), a large excess of water is present for the reaction to proceed smoothly. Is preferred.
  • the hydrolysis reaction of the said silicate type compound advances also at room temperature, you may heat for reaction promotion. The longer reaction time is preferable because the reaction proceeds more. Moreover, it is possible to obtain a hydrolyzate even in about half a day in the presence of a catalyst.
  • the hydrolysis reaction is a reversible reaction, and when water is removed from the system, the hydrolyzate of the silicate compound starts condensation between hydroxy groups. Therefore, when a large excess of water is reacted with the above-mentioned silicate compound to obtain an aqueous solution of hydrolyzate, it is preferable to use the aqueous solution as it is without forcibly isolating the hydrolyzate therefrom.
  • R 1 to R 4 each independently represent an alkyl group having 1 to 4 carbon atoms.
  • n represents an integer of 2 to 100.
  • n is preferably 3 to 15, and more preferably 5 to 10.
  • silicate type compound "Ethyl silicate 48" by Korkot company, "MKC silicate MS51” by Mitsubishi Chemical Corporation etc. are mentioned, for example.
  • the silicate compounds may be used alone or in combination of two or more.
  • the hydrophilic group is not particularly limited.
  • a polyoxyalkylene group for example, a polyoxyethylene group, a polyoxypropylene group, a polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are block or random bond
  • an amino group And carboxy group alkali metal salt of carboxy group, hydroxy group, alkoxy group, amido group, carbamoyl group, sulfonamide group, sulfamoyl group, sulfonic acid group, alkali metal salt of sulfonic acid group, and the like.
  • the number of hydrophilic groups in the hydrophilic monomer is not particularly limited, but is preferably 2 or more, more preferably 2 to 6, and even more preferably 2 to 3, from the viewpoint that the obtained film exhibits more hydrophilicity.
  • the polymerizable group is not particularly limited, and examples thereof include a radically polymerizable group, a cationically polymerizable group, and an anionically polymerizable group.
  • examples of the radically polymerizable group include (meth) acryloyl group, acrylamide group, vinyl group, styryl group and allyl group.
  • a cationically polymerizable group a vinyl ether group, oxiranyl group, oxetanyl group etc. are mentioned.
  • a (meth) acryloyl group is preferable.
  • the number of polymerizable groups in the hydrophilic monomer is not particularly limited, but is preferably 2 or more, more preferably 2 to 6, and still more preferably 2 to 3, in that the mechanical strength of the resulting film is more excellent. .
  • the structure of the main chain of the hydrophilic polymer formed by the polymerization of the hydrophilic monomer is not particularly limited, and examples thereof include polyurethane, poly (meth) acrylate, polystyrene, polyester, polyamide, polyimide, and polyurea.
  • the hydrophilic monomers may be used alone or in combination of two or more.
  • the hydrophilic polymer is not particularly limited, and known polymers can be used.
  • the definition of a hydrophilic group is as having mentioned above.
  • hydrophilic polymers include polymers obtained by polymerizing the above-mentioned hydrophilic monomers.
  • a cellulose compound is mentioned.
  • the cellulose-based compound is intended to be a compound having cellulose as a mother core, and examples thereof include carboxymethyl cellulose and nanofibers having triacetyl cellulose as a raw material.
  • the weight-average molecular weight of the hydrophilic polymer is not particularly limited, but is preferably 1,000 to 1,000,000, and more preferably 10,000 to 500,000, from the viewpoint of better handling such as solubility.
  • a weight average molecular weight is defined as a polystyrene conversion value in a gel permeation chromatography (GPC) measurement.
  • the hydrophilic polymer may be used alone or in combination of two or more.
  • the composition contains a solvent.
  • the content of the solvent in the composition is not particularly limited, but the solid content of the composition is preferably adjusted to 0.001 to 80% by mass in that the composition has more excellent coatability. And more preferably adjusted to 0.01 to 10% by mass, and further preferably adjusted to 0.1 to 5.0% by mass.
  • the solvents may be used alone or in combination of two or more. When two or more solvents are used in combination, the total content is preferably within the above range.
  • the solvent is not particularly limited and includes water and / or an organic solvent.
  • the organic solvent methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-pentanol, isopentanol, phenylethyl alcohol, capryl alcohol, lauryl alcohol, and Alcohol solvents such as myristyl alcohol; methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, ethylene Glycol monobutyl ether, diethylene glycol Glycol ether solvents such as butyl ether, triethylene glycol monobuty
  • the content of the alcohol is preferably 5% by mass or more based on the total mass of the composition, from the viewpoint of suppressing the sedimentation of the particulate matter and the point that the deodorizing property of the formed film is more excellent. 10 mass% or more is preferable.
  • the upper limit value is not particularly limited, for example, 99% by mass or less is preferable, 70% by mass or less is more preferable, 60% by mass or less is more preferable, and 45% by mass or less is particularly preferable.
  • the content of the alcohol in the solvent is not particularly limited, but is preferably 0.001 to 100% by mass, more preferably 0.01 to 90% by mass, based on the total mass of the solvent. Preferably, 5 to 90% by mass is more preferable, and 5 to 80% by mass is particularly preferable.
  • compositions may contain other components within the scope of the effects of the present invention.
  • other components for example, deodorant, antibacterial agent, ultraviolet light absorber, preservative, pH adjuster, antifoamer, polymerization initiator, catalyst, photocatalytic material, surfactant, filler, antiaging agent And well-known additives such as antistatic agent, flame retardant, adhesion imparting agent, leveling agent, matting agent, light stabilizer, dye, pigment, dispersing agent, fragrance, film forming agent, and dispersion stabilizer.
  • the composition preferably contains a surfactant as a stabilizer.
  • the composition When the composition contains a hydrophilic monomer, the composition preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, and known polymerization initiators can be used.
  • a polymerization initiator a thermal polymerization initiator, a photoinitiator, etc. are mentioned, for example.
  • polymerization initiator examples include aromatic ketones such as benzophenone and phenylphosphine oxide; ⁇ -hydroxyalkylphenone compounds (manufactured by BASF, IRGACURE 184, 127, 2959, and DAROCUR 1173); phenylphosphine oxide Compounds (monoacyl phosphine oxide: IRGACURE TPO manufactured by BASF, bisacyl phosphine oxide: IRGACURE 819 manufactured by BASF); Among them, a photopolymerization initiator is preferable from the viewpoint of reaction efficiency.
  • aromatic ketones such as benzophenone and phenylphosphine oxide
  • ⁇ -hydroxyalkylphenone compounds manufactured by BASF, IRGACURE 184, 127, 2959, and DAROCUR 1173
  • phenylphosphine oxide Compounds monoacyl phosphine oxide: IRGACURE TPO manufactured by BASF, bisacyl phosphine oxide: IRGACURE
  • the content of the polymerization initiator in the composition is not particularly limited, but is preferably 0.1 to 15 parts by mass, and more preferably 1 to 6 parts by mass with respect to 100 parts by mass of the hydrophilic monomer.
  • the polymerization initiator may be used alone or in combination of two or more. When using 2 or more types of polymerization initiators together, it is preferable that total content is in the said range.
  • the composition preferably contains a dispersant.
  • the dispersant is not particularly limited, and known dispersants can be used.
  • the dispersant is preferably a nonionic or anionic dispersant.
  • a dispersant (anionic dispersant) having an anionic polar group such as a carboxy group, a phosphate group, and a hydroxyl group is more preferable.
  • a commercial item can be used as an anionic dispersing agent.
  • the trade names DISPERBYK registered trademark
  • -110, -111, -116, -140, -161, -162, -163, -164, -170, -170, -171, -174,- Preferred are 180 and -182.
  • the content of the dispersant in the composition is not particularly limited, but is, for example, 70% by mass or less and preferably 50% by mass or less with respect to the total solid content of the composition.
  • the lower limit value is not particularly limited, but is, for example, 0.01% by mass or more, and preferably 1.0% by mass or more, and more preferably 15% by mass or more, in that the deodorizing property of the formed film is more excellent.
  • the dispersant may be used alone or in combination of two or more. When two or more dispersants are used in combination, the total content is preferably within the above range.
  • the composition may contain a catalyst that promotes the condensation of the silicate compound (hereinafter also referred to as a “reaction catalyst”).
  • reaction catalyst a catalyst that promotes the condensation of the silicate compound
  • the catalyst is not particularly limited, and examples thereof include alkali catalysts and organic metal catalysts.
  • alkali catalyst include sodium hydroxide, potassium hydroxide and tetramethyl ammonium hydroxide.
  • organic metal catalyst aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), and aluminum chelate compounds such as aluminum ethylacetoacetate diisopropylate, zirconium tetrakis (acetylacetonate), And zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate); and titanium bis (butoxy) bis (acetylacetonate); and dibutyltin diacetate And dibutyltin dilaurate, and organic tin compounds such as dibutyltin diacrylate and the like.
  • an organometallic catalyst is preferable as a catalyst in that a composition having more excellent effects of the present invention can be obtained, and among them, an aluminum chelate compound or a zirconium chelate compound is more preferable, and an aluminum chelate compound is further preferable. preferable.
  • the content of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 15 parts by mass, and still more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the composition. .
  • the catalyst may be used alone or in combination of two or more. When two or more types of catalysts are used in combination, the total content is preferably within the above range.
  • the composition may contain a surfactant.
  • the surfactant has the effect of improving the coatability of the composition.
  • the surfactant is not particularly limited, and examples thereof include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • the content of the surfactant is not particularly limited, but is preferably 0.01 parts by mass or more based on 100 parts by mass of the total solid content of the composition.
  • the upper limit of the content of the surfactant is not particularly limited, but 10 parts by mass or less is preferable, 5 parts by mass or less is more preferable, and 4 parts by mass or less with respect to 100 parts by mass of the total solid content of the composition. More preferable.
  • the surfactant may be used alone or in combination of two or more. When using 2 or more types together, it is preferable that those total content is in the said range.
  • nonionic surfactants include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, and polyethylene glycol monostearyl ester.
  • ionic surfactant examples include anionic surfactants such as alkyl sulfates, alkyl benzene sulfonates and alkyl phosphates; cationic surfactants such as alkyl trimethyl ammonium salts and dialkyl dimethyl ammonium salts; alkyl carboxy Amphoteric surfactants such as betaine may be mentioned.
  • the composition may contain a flavor.
  • a flavor As a flavor, flavor H-1, H-2, H-3, H-4, H-6, H-9, H-10, H-11, H-12, H-13, H manufactured by Hasegawa Fragrance Co., Ltd. -14, Flavor T-100, T-101, T-102, T-103, T-104, T-105, T-106, T-107, EDA-171 manufactured by Takasago International Corporation Flavor S-201, flavor DA-40 manufactured by Riken Perfume Industries Co., Ltd., etc. may be included.
  • the content of the fragrance is preferably 0.01 to 5% by mass with respect to the total mass of the composition.
  • the composition may contain a film-forming agent.
  • the film-forming agent does not include the above-described silicate-based compound, hydrophilic monomer, and hydrophilic polymer.
  • a thermoplastic resin is mentioned.
  • the film-forming agent functions as a binder, for example, when a film described later is formed.
  • the thermoplastic resin is described below.
  • As the thermoplastic resin a resin having a minimum film forming temperature of 0 to 35 ° C. is preferable, and a known thermoplastic resin can be used.
  • polyurethane resin polyester resin
  • (meth) acrylic resin or urethane resin is preferable.
  • thermoplastic resin may be used individually by 1 type, or may use 2 or more types together.
  • the content of the thermoplastic resin may be appropriately adjusted according to the type of the thermoplastic resin etc., but for example, it is preferably 30% by mass or less and more preferably 20% by mass or less based on the total solid content of the composition. .
  • the composition includes, for example, quaternary ammonium salts, phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, pyridine compounds, triazine compounds, benzoisothiazoline compounds as antibacterial agents And an organic antibacterial agent such as isothiazoline compound may be contained.
  • the composition contains, as a deodorant, inorganic acids such as phosphoric acid and nitric acid or salts thereof; organic acids such as malic acid, citric acid and ascorbic acid or salts thereof; dibutylhydroxytoluene; butylhydroxyanisole; hinokitiol Phenol; and compounds containing a phenolic hydroxyl group such as tannic acid, kakitannin and tea tannin may be included.
  • inorganic acids such as phosphoric acid and nitric acid or salts thereof
  • organic acids such as malic acid, citric acid and ascorbic acid or salts thereof
  • dibutylhydroxytoluene butylhydroxyanisole
  • hinokitiol Phenol hinokitiol Phenol
  • compounds containing a phenolic hydroxyl group such as tannic acid, kakitannin and tea tannin
  • Examples of the inorganic acid include phosphoric acid, sulfurous acid, sulfuric acid, and alkali metal salts thereof.
  • Examples of the organic acids include malic acid, citric acid, lactic acid, tartaric acid, salicylic acid, gluconic acid, adipic acid, phytic acid, fumaric acid, succinic acid, ascorbic acid, sorbic acid, glyoxylic acid, meldrum's acid, glutamic acid, ferula Examples thereof include acids, picric acid, and aspartic acid, and alkali metal salts thereof and the like.
  • organic acids the larger the molecular weight, the less likely it is to volatilize, so the pH of the film surface formed using the composition is easily maintained at 6.5 or less.
  • malic acid or citric acid is preferable, and malic acid is more preferable, from the viewpoint of being less volatile and being more deodorizing.
  • a compound having an antioxidant function for example, sulfite, ferulic acid, dibutylhydroxytoluene, butylhydroxyanisole, and ascorbic acid, etc.
  • the inorganic substances (1) and the second substances described above are used. Deterioration of the metal-containing component is more easily suppressed, and the antibacterial and deodorizing properties of the film are more excellent.
  • the deodorant which has an antioxidant function it is also preferable to use together the deodorant which has an antioxidant function, and deodorizers other than the deodorant which has an antioxidant function as a deodorant.
  • the deodorant having the antioxidant function and the deodorant other than the antioxidant having the antioxidant function are used in combination, the antibacterial property and the deodorizing property of the film are maintained for a longer period of time.
  • the pH of the composition is not particularly limited, but it is preferable to adjust the pH to an appropriate range in consideration of rough hands and the like in the actual use environment.
  • the pH of the composition is preferably 2.0 to 12.0, more preferably 3.0 to 11.0, and still more preferably 6.0 to 8.0.
  • the composition contains, for example, a component that dissolves in acid or alkali as the inorganic substance (1) and the second metal-containing component, or a component that easily deteriorates
  • the composition has a pH within the above range Has a better effect of the present invention.
  • blending an acid or an alkali with the said composition as a method of adjusting the pH of a composition is mentioned.
  • the pH can be measured under a 25 ° C. environment using a commercially available pH measurement meter (eg, pH meter HM-30R manufactured by Toa DK Co., Ltd.).
  • the specific gravity of the above composition is not particularly limited, but is preferably 0.5 to 1.2.
  • the viscosity in particular of the said composition is not restrict
  • the viscosity at 25 ° C. of the composition is preferably 250 cP or more, more preferably 300 cP or more, and still more preferably 400 cP or more.
  • the upper limit is, for example, 500 cP or less.
  • the viscosity can be measured using VISCOMETER TUB-10 manufactured by Toki Sangyo Co., Ltd. or SEKONIC VISCOMETER manufactured by Seconik.
  • the zeta potential of the composition is not particularly limited, but it is preferable to adjust the zeta potential to an appropriate range in consideration of the fact that the particles are appropriately dispersed in the composition to be more excellent in sedimentation resistance.
  • the zeta potential of the above composition is preferably 80 mV to -80 mV, more preferably 70 mV to -70 mV, still more preferably 60 mV to -60 mV.
  • the zeta potential can be measured using a known method, and a predetermined amount of the dispersion can be introduced into a glass dedicated measuring cell, and measured using ELSZ1 EAS manufactured by Otsuka Electronics Co., Ltd.
  • the said composition can contain other additives as needed in the range with the effect of this invention.
  • the composition can be prepared by appropriately mixing the above-described essential components and optional components. In addition, the order in particular of mixing of the said component is not restrict
  • the composition can be used to form a film.
  • the method for forming the film is not particularly limited, but a method (coating method) in which the composition is applied to a desired substrate or article to form a coating, and then dried or cured to form a film is preferable.
  • the method for applying the composition to the desired substrate or article is not particularly limited.
  • spray, roll coater, gravure coater, screen, spin coater, flow coater, inkjet, electrostatic coating, and wipe can be mentioned.
  • a spray or a wipe is preferable, and a wipe is more preferable, in that a film can be formed on the surface of an existing article to perform processing (on-demand processing) according to demand.
  • the composition is impregnated into a base fabric such as a non-woven fabric, and then the surface of the substrate or article is wiped with the base fabric. Thereby, the coating film by the said composition is formed in a base material or the article surface. Thereafter, the formed coating is dried or cured to obtain a film.
  • the modified base material excellent in deodorizing property and antibacterial property can be formed.
  • the composition may further contain a polymer, a curable compound and the like.
  • the polymer and the curable compound are not particularly limited, and examples thereof include sodium polyacrylate and the like.
  • the film of the present invention contains the inorganic substance (1) and the second metal inclusion.
  • Inorganic substance (1) As an inorganic substance (1), it is the same as that of the inorganic substance (1) contained in the said composition, and its preferable form is also the same.
  • the membrane preferably contains a hydrophilic binder.
  • the hydrophilic binder is not particularly limited, and examples thereof include a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof; At least one selected from the group consisting of a hydrolyzate of a compound having a degradable group bonded thereto, and a hydrolytic condensate thereof is preferred.
  • bonded with the silicon atom, and the preferable form of the polymer which has a hydrophilic group are as having mentioned above.
  • the membrane may further contain components other than the components described above.
  • the film of the present invention is obtained, for example, by drying or curing the above composition.
  • the above composition is as described above.
  • the said composition contains a hydrophilic binder precursor as a hydrophilic component
  • membrane is obtained by hardening the coating film (composition layer) of a composition.
  • the film can be obtained by curing the composition layer so that the hydrophilic binder precursor in the composition layer is a hydrophilic binder.
  • the hydrophilic component in the composition is a hydrophilic binder, it is not necessary to carry out the curing treatment on the composition.
  • the thickness of the film is not particularly limited, but is preferably 0.001 to 50 ⁇ m, and more preferably 0.01 to 10 ⁇ m.
  • membrane is embedded in resin, the cross section is cut off with a microtome, and the cross section cut out is observed and measured with a scanning electron microscope. The thickness at any 10 points of the film is measured, and their arithmetically averaged value is intended.
  • the membrane surface pH of the membrane is typically preferably 7.0 or less, and particularly preferably 6.5 or less, because it is more excellent in the deodorizing property against malodorous substances derived from urine and feces such as ammonia and trimethylamine. .0 or less is more preferable, and 4.5 or less is still more preferable.
  • the lower limit of the membrane surface pH of the membrane is not particularly limited, but is preferably 1.0 or more. In the present specification, for the film surface pH of the film, 0.02 mL of droplets (pure water) are dropped on the film surface, and after 1 minute, the pH of the droplets is adjusted to the pH of Horiba, Ltd. It is a value determined by measuring using a meter LAQUA F-72.
  • the membrane can be applied to applications such as diapers.
  • an odor substance-containing liquid such as urine adheres to the film surface
  • the film surface pH falls within the above numerical range (preferably, the film surface pH is 6.5 or less)
  • the inorganic substance (1 And the metal in the second metal-containing material are less likely to deteriorate, and the antibacterial property and the deodorizing property are more excellent.
  • membrane which contains an inorganic substance (1), a 2nd metal containing material, and an organic acid is mentioned, for example. Since the organic acid has low volatility, it adheres to the hydrophilic binder in the dry state. When an odor substance-containing liquid such as urine adheres to this film surface, the organic acid on the film surface is dissolved by the odor substance-containing liquid, and the film surface pH of the film tends to be in the above range. In this way, in the state before the odorant-containing liquid is attached, the film surface pH does not become too low, and the metal in the inorganic substance (1) and the second metal-containing substance contained in the film is less likely to deteriorate.
  • a film which is dissolved in the odorant-containing liquid, a compound having a pH adjusting function included in the film, etc. may be the above-mentioned organic acid
  • a method in which the microcapsules are contained in the membrane When the odorant-containing liquid adheres to the film surface of the film containing the above-mentioned microcapsule, the film of the microcapsule dissolves and the compound having a pH adjusting function is exposed on the film surface, and the film surface pH of the film tends to be in the above range.
  • the film surface pH does not become too low in the state before the odorant-containing liquid adheres, and the metal in the inorganic substance (1) and the second metal-containing substance contained in the film is less likely to deteriorate .
  • the film-coated substrate according to the embodiment of the present invention has a substrate and the above-mentioned film.
  • the film-coated substrate may be a laminate having a substrate and a film, and may have a film on the surface on one side of the substrate, or have a film on the surface on both sides of the substrate You may
  • the substrate plays a role of supporting the membrane, and the type is not particularly limited.
  • the shape of the substrate is not particularly limited, and examples thereof include plate, film, sheet, tube, fiber, and particles. It does not restrict
  • the method for producing a film of the present invention corresponds to a method for producing a film using the composition described above, and has the following steps.
  • a composition contains a hydrophilic binder precursor as a hydrophilic component, it has following process A and the following process B.
  • a composition contains a hydrophilic binder as a hydrophilic component, it has the following process A.
  • Step A A step of applying a composition to the surface of a substrate to form a composition layer
  • step B A step of curing the composition layer to obtain a film
  • Step A and Step B explain.
  • Step A is a step of applying the composition to the surface of the substrate to form a composition layer. It does not restrict
  • the thickness of the composition layer is not particularly limited, but a dry thickness of 0.001 to 10 ⁇ m is preferable.
  • heat treatment may be performed to remove the solvent.
  • the conditions for the heat treatment in that case are not particularly limited.
  • the heating temperature is preferably 50 to 200 ° C.
  • the heating time is preferably 15 to 600 seconds.
  • a base material which can be used in the process A it is the same as that of the form of the base material already demonstrated.
  • Step B is a step of curing the composition layer to obtain a film. That is, in this step, the hydrophilic binder precursor contained in the composition layer is converted to a hydrophilic binder by a curing reaction such as condensation or polymerization.
  • the method for curing the composition layer is not particularly limited, and examples thereof include heat treatment and / or exposure treatment.
  • the exposure treatment is not particularly limited, but includes, for example, a form in which the composition layer is cured by irradiation with ultraviolet rays of 100 to 600 mJ / cm 2 with an ultraviolet lamp.
  • ultraviolet light and the like emitted from light beams such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc and a metal halide lamp can be used.
  • the temperature of the heat treatment is not particularly limited, but for example, 50 to 150 ° C. is preferable, and 80 to 120 ° C. is more preferable.
  • the modified substrate of the present invention comprises a substrate, and the component containing the inorganic substance (1) and the second metal, which is disposed on or in the substrate.
  • the modified substrate of the present invention has the inorganic substance (1) and the component containing the second metal on the substrate
  • the modified substrate of the present invention is disposed on the substrate and the above substrate
  • the term "fiber-like” as used herein refers to fibers and structures such as a two-dimensional structure and a three-dimensional structure formed by fibers (for example, a cloth-like body such as a woven or knitted fabric and a non-woven fabric). It does not restrict
  • examples of the modified base material include a form having a fiber, an inorganic substance (1) attached to the surface of the fiber, and a second metal-containing component.
  • a base material is a fiber structure
  • the form which has an inorganic substance (1) and a 2nd metal containing component in the inside of the body and the said fiber structure is mentioned.
  • the content of the inorganic substance (1) and the second metal-containing component in the modified base material is 0.0001 to 10 mass based on the mass of the fiber or fiber structure % Is preferred.
  • the method of forming the modified substrate in which the substrate is a fiber or a fiber structure and for example, after applying the above-described composition to a fiber or a fiber structure by a method such as impregnation and spraying, Methods of drying to form a modified substrate are included.
  • the above composition contains a hydrophilic binder precursor, heat treatment and / or exposure treatment may be performed.
  • a slurry is prepared by mixing a fiber material such as pulp and the above-described composition, and wet sheet making using this slurry as a raw material
  • a method of forming a modified substrate having a fibrous structure, an inorganic substance (1) disposed in the fibrous structure, and a component containing a second metal there is a method of forming a modified substrate having a fibrous structure, an inorganic substance (1) disposed in the fibrous structure, and a component containing a second metal.
  • the modified substrate is, for example, a form having a molded body (for example, a sheet-like molded body) formed of a resin, an inorganic substance (1) disposed inside the molded body, and a second metal-containing component. It is also good.
  • the resin is not particularly limited, and examples thereof include synthetic resins (water-absorbent polymers such as sodium polyacrylate).
  • As a modification base material concerning the above-mentioned embodiment it can form using the composition mentioned above. As a specific manufacturing method, after casting the composition described above to form a cast film, drying, heating and / or curing may be carried out.
  • a composition contains a polymer, a curable compound, etc. further.
  • the polymer and the curable compound are not particularly limited, and examples thereof include sodium polyacrylate and the like.
  • ⁇ Inorganic substance (1) As an inorganic substance (1), it is the same as that of the inorganic substance (1) contained in the said composition, and its preferable form is also the same.
  • the modified substrate preferably contains a hydrophilic binder.
  • the hydrophilic binder is not particularly limited, and examples thereof include a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof; At least one selected from the group consisting of a hydrolyzate of a compound having a degradable group bonded thereto, and a hydrolytic condensate thereof is preferred.
  • bonded with the silicon atom, and the preferable form of the polymer which has a hydrophilic group are the same as what was demonstrated as a hydrophilic component which may be contained in a composition.
  • the modified substrate may further contain components other than the components described above.
  • a wet wiper according to an embodiment of the present invention has a base fabric and a composition impregnated in the base fabric.
  • the above composition is as described above.
  • the base fabric is not particularly limited, and may be formed of natural fibers or chemical fibers. Natural fibers include, for example, pulp, cotton, hemp, flax, wool, camel, cashmere, mohya, silk and the like. Materials for chemical fibers include rayon, polynozic, acetate, triacetate, nylon, polyester, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyalkylene para oxybenzoate, and polychlore, etc. . Among these base fabrics, hydrophilic base fabrics are preferable in that the composition is easily impregnated.
  • the hydrophilic base is, for example, a base containing a fiber having a hydrophilic group such as a hydroxyl group, an amino group, a carboxy group, an amido group, and a sulfonyl group.
  • a hydrophilic base cloth include vegetable fibers, cotton, pulp, animal fibers, rayon, nylon, polyester, polyacrylonitrile, and polyvinyl alcohol.
  • a base fabric of the said wet wiper a nonwoven fabric, cloth, a towel, gauze, absorbent cotton etc. may be used, and a nonwoven fabric is preferable.
  • the basis weight (mass per unit area) of the base fabric is preferably 100 g / m 2 or less.
  • the amount of impregnation at the time of impregnating the composition with the base fabric is preferably an amount of one or more times the mass of the base fabric.
  • the spray which concerns on embodiment of this invention has a spray container and the composition accommodated in the said spray container.
  • the above composition is as described above.
  • prescribed container is mentioned as an example.
  • the propellant to be used is not particularly limited, and examples thereof include liquefied petroleum gas and the like.
  • composition (Reference Example) In addition, the present inventor also has excellent antibacterial properties by a composition containing a first metal-supporting inorganic carrier, a first metal-supporting organic carrier, and a solvent (hereinafter also referred to as a “composition (reference example)”). It has been found that it is possible to form a film having good properties and excellent deodorizing properties.
  • the first metal is not particularly limited, but silver or copper is more preferable, and copper is particularly preferable.
  • the inorganic support of the first metal-supporting inorganic support is the same as the inorganic support of the first metal-supporting inorganic support that can be included in the composition of the embodiment described above, and the preferred form is also the same.
  • the inorganic carrier may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline, more preferably glass.
  • a material which can comprise glass a silicate, borosilicate, and phosphate etc. are mentioned, for example, Especially, a silicate is preferable and aluminum silicate is more preferable.
  • metal-supported inorganic support metal-supported zeolite, metal-supported apatite, metal-supported glass, metal-supported zirconium phosphate, or metal-supported calcium silicate, on which the first metal is supported, is preferable, and metal-supported glass is more preferable. preferable.
  • the average particle diameter of the first metal-supported inorganic carrier is not particularly limited, but is preferably 4.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, still more preferably 1.0 ⁇ m or less, particularly preferably 0.7 ⁇ m or less. The following is most preferable, 0.2 ⁇ m or less is more preferable, and 0.15 ⁇ m or less is even more preferable. The lower limit is preferably 0.01 ⁇ m or more, more preferably 0.10 ⁇ m or more.
  • the method of measuring the average particle diameter of the first metal-supported inorganic carrier and the method of adjusting the same are the method of measuring the average particle diameter of the inorganic substance (1) that can be contained in the composition of the embodiment described above It is similar.
  • the aspect ratio of the first metal-supported inorganic carrier is not particularly limited, but is preferably 1 to 40, and more preferably 2 to 20.
  • the aspect ratio is calculated by the method described above.
  • the content of the first metal-supported inorganic carrier in the composition is not particularly limited, but is preferably 0.01 to 40% by mass with respect to the total solid content of the composition. % By mass is more preferable, and 0.1 to 10% by mass is even more preferable.
  • the organic carrier of the first metal-supported organic carrier is not particularly limited, and examples thereof include polymer particles.
  • Specific examples of the first metal-supporting organic support include, for example, polymer particles (copper-supporting polymer) on which copper particles or copper oxide particles are supported.
  • the copper-supported polymer is the same as the copper-supported polymer mentioned as a specific example of the second metal-supported organic carrier that can be included in the composition of the embodiment described above.
  • the average particle size of the first metal-supporting organic carrier is not particularly limited, but generally 0.01 ⁇ m or more is preferable, 0.2 ⁇ m or more is more preferable, and 0.5 ⁇ m or more is more preferable.
  • the upper limit thereof is preferably 3.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the average particle diameter of the first metal-supported organic carrier is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and still more preferably 0.4 ⁇ m or less.
  • the composition (Reference Example) contains a hydrophilic binder described later by setting the average particle diameter of the first metal-supporting organic carrier to the above numerical range, in a film formed using the composition (Reference Example)
  • the first metal-supporting organic carrier can be easily fixed in the state of being exposed from the hydrophilic binder. Therefore, the metal is more easily released from the carrier, and the antibacterial property and the deodorizing property of the film are further excellent.
  • the measuring method of the average particle diameter of a 1st metal support organic carrier is the same as the measuring method of the average particle diameter of the inorganic substance (1) which may be contained in the composition of embodiment already demonstrated.
  • the content of the first metal-supporting organic carrier in the composition is not particularly limited, but is preferably 0.001 to 50% by mass, based on the total solid content of the composition, 0.01 to 40 % By mass is more preferred.
  • solvent is not particularly limited, but the same solvents as those described as the solvent that can be included in the composition of the embodiment described above can be used.
  • the composition may contain a hydrophilic component.
  • a hydrophilic component it is the same as that of what was demonstrated as a hydrophilic component which may be contained in the composition of embodiment already demonstrated, and the suitable form is also the same.
  • composition may contain other components.
  • the other components are the same as the other components that may be included in the composition of the embodiment described above, and the preferred form is also the same.
  • a film containing a first metal-supporting inorganic carrier and a first metal-supporting organic carrier (hereinafter also referred to as "film (reference example)) has excellent antibacterial properties and excellent deodorizing properties. We have found that it has sex.
  • the first metal is not particularly limited, but silver or copper is more preferable, and copper is particularly preferable.
  • the first metal-supported inorganic carrier is the same as the first metal-supported inorganic carrier contained in the composition (the reference example) described above, and the preferred embodiment is also the same.
  • the first metal-supporting organic carrier is the same as the first metal-supporting organic carrier contained in the composition (the reference example) described above, and the preferred embodiment is also the same.
  • the film preferably contains a hydrophilic binder.
  • the hydrophilic binder is not particularly limited, and examples thereof include a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof; At least one selected from the group consisting of a hydrolyzate of a compound having a degradable group bonded thereto, and a hydrolytic condensate thereof is preferred.
  • bonded with the silicon atom, and the preferable form of the polymer which has a hydrophilic group are the same as that of the composition of embodiment already demonstrated.
  • the membrane may further contain components other than the components described above.
  • the film of the present invention can be obtained, for example, by drying or curing the above composition (Reference Example).
  • the said composition (reference example) contains a hydrophilic binder precursor as a hydrophilic component
  • the said film (reference example) hardens the coating film (composition layer) of a composition (reference example).
  • the film (the reference example) is obtained by setting the hydrophilic binder precursor in the composition layer to a hydrophilic binder by curing treatment of the composition layer.
  • the hydrophilic component in the composition (Reference Example) is a hydrophilic binder, it is not necessary to carry out the curing treatment on the composition (Reference Example).
  • the thickness of the film is not particularly limited, but is preferably 0.001 to 50 ⁇ m, and more preferably 0.01 to 10 ⁇ m.
  • membrane is embedded in resin, the cross section is cut off with a microtome, and the cross section cut out is observed and measured with a scanning electron microscope. The thickness at any 10 points of the film is measured, and their arithmetically averaged value is intended.
  • the pH on the surface of the membrane is typically preferably 7.0 or less, and in particular 6.5 or less because it is more excellent in the deodorizing property against malodorous substances derived from urine and feces such as ammonia and trimethylamine. Is preferred, 5.0 or less is more preferred, and 4.5 or less is even more preferred.
  • the lower limit of the membrane surface pH of the membrane (Reference Example) is not particularly limited, but is preferably 1.0 or more.
  • the membrane can be applied to applications such as diapers.
  • the film surface pH falls within the above numerical range (preferably, the film surface pH is 6.5 or less), so that it is contained in the film (reference example)
  • the metal in the first metal-supporting inorganic carrier and the first metal-supporting organic carrier are less likely to deteriorate, and the antibacterial property and the deodorizing property are more excellent.
  • membrane whose film surface pH is the said numerical range the film
  • the film having a film surface pH in the above-mentioned numerical range a film which is dissolved in the odorant-containing liquid, a compound having a pH adjusting function included in the film, etc. (may be the above-mentioned organic acid) And a method in which the microcapsules are contained in the membrane.
  • the film of the microcapsule dissolves and the compound having a pH adjusting function is exposed on the film surface, and the film surface pH of the film tends to be in the above range.
  • the film surface pH does not become too low in the state before the odorant-containing liquid is attached, and the metal in the first metal-supported inorganic carrier and the first metal-supported organic carrier contained in the film is It is hard to deteriorate.
  • the film-coated substrate has a substrate and the above-mentioned film (Reference Example).
  • the film-coated substrate may be a laminate having a substrate and a film (reference example), and may have a film (reference example) on the surface of one side of the substrate. , And may have a film (Reference Example) on the surface on both sides of the substrate.
  • the substrate plays a role of supporting the membrane (reference example), and the type is not particularly limited.
  • a base material it is the same as that of the base material used with the film-coated base material of embodiment already demonstrated.
  • the method for producing a film-coated substrate corresponds to a method for producing a film (Reference Example) using the above-mentioned composition (Reference Example), and has the following steps.
  • a composition (reference example) contains a hydrophilic binder precursor as a hydrophilic component, it has the following process A and the following process B.
  • the composition (Reference Example) contains a hydrophilic binder as a hydrophilic component, the following process A is included.
  • Step A A step of applying a composition (reference example) to the surface of a substrate to form a composition layer (step B) curing the composition layer to obtain a film (reference example)
  • a composition reference example
  • step B curing the composition layer to obtain a film
  • the wet wiper (Reference example) has a base cloth and a composition (Reference Example) impregnated in the base cloth.
  • the specific configuration of the wet wiper (Reference Example) is the same as the specific configuration of the wet wiper according to the embodiment described above except that the composition to be used is different.
  • the spray (reference example) has a spray container and the composition (reference example) stored in the spray container. As said composition (reference example), it is as having already demonstrated.
  • the specific configuration of the spray (the reference example) is the same as the specific configuration of the spray according to the embodiment described above, except that the composition to be used is different.
  • Example 1 Preparation of Composition 1 60 g of pure water, 14 g of a silicate compound ("MKC (registered trademark) Silicate” MS 51 "manufactured by Mitsubishi Chemical Co., Ltd.) and aluminum chelate D (aluminium bis (ethyl acetoacetate) mono (acetyl aceto) while stirring 367 g of ethanol in a container ), Ethanol dilution: 15 g solid content concentration, 15 g nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., pure water dilution: 0.5 mass% solid concentration), anionic interface After sequentially adding 10 g of an activator (sodium di (2-ethylhexyl) sulfosuccinate, pure water dilution: solid concentration 0.2% by mass), 18 g of isopropanol, a dispersant (manufactured by BYK "DISPERBYK (registered trademark)-180" Silver
  • a copper-supporting glass (corresponding to “NS-20C” manufactured by Toagosei Co., Ltd. (inorganic substance (2). Inorganic carrier of “NS-20C” manufactured by Toagosei Co., Ltd.)
  • a composition 1 is obtained by adding and stirring 0.28 g of aluminum silicate (corresponding to aluminum silicate).
  • the obtained composition 1 of Example 1 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
  • the average particle diameter of the particles is measured by observation using an electron microscope. The specific measurement method is as described above.
  • composition 1 obtained above was evaluated for its deodorizing property based on the test shown below. First, a non-woven fabric was prepared, and the composition 1 was sprayed onto the non-woven fabric so that 1 g of the composition 1 adhered per 100 cm 2 of non-woven fabric. Next, the obtained non-woven fabric with composition 1 was dried at 25 ° C. for 2 days to produce a film-coated substrate 1.
  • Comparative Example 1 Preparation of Composition R1 Comparative Example was carried out in the same manner as Example 1, except that the second metal-containing substance was not used, and that the average particle size of the inorganic substance (1) was adjusted to the size ( ⁇ m) described in Table 1. Composition R1 of 1 was prepared. Various evaluation was implemented by the method similar to the composition 1 using obtained composition R1. The results are shown in Table 1.
  • Example 2 Preparation of Composition 2
  • Composition 2 was prepared and evaluated in the same manner as in Example 1 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 1. The results are shown in Table 1.
  • Example 3 Preparation of Composition 3
  • Composition 3 was prepared and evaluated in the same manner as Example 2, except that MKC Silicate MS51 was not used. The results are shown in Table 1.
  • Comparative Example 2 Preparation of Composition R2 Composition R2 was prepared and evaluated in the same manner as Comparative Example 1 except that MKC Silicate MS51 was not used. The results are shown in Table 1.
  • composition R3 was prepared and evaluated in the same manner as in Example 3 except that silver supporting glass was not used. The results are shown in Table 1.
  • Table 1 is shown below.
  • the “copper-supporting glass” in Table 1 is “NS-20C” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • the inorganic carrier of "NS-20C” manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate.
  • compositions of Examples 1 to 4 containing the inorganic substance (1), the second metal-containing substance, and the solvent have the effects of the present invention.
  • composition of Comparative Example 1 or 2 containing no second metal-containing material and the composition of Comparative Example 3 containing no inorganic substance (1) did not have the effects of the present invention.
  • Example 2 which contains a hydrophilic component, maintains superior deodorizing properties even after 8 hours as compared with the composition of Example 3.
  • Example 4 Preparation of Composition 4
  • Composition 4 was prepared in the same manner as Example 1, except that the average particle size of the inorganic substance (1) and the average particle size and aspect ratio of the second metal-containing substance were adjusted to the values described in Table 2.
  • the evaluation of ⁇ Evaluation B> described later was performed using the prepared composition 4 and the results are shown in Table 2. Note that ⁇ Evaluation B> described later is a more severe evaluation condition than ⁇ Evaluation A> described later.
  • ⁇ Evaluation B> (Preparation of test sample) The composition 4 obtained above was evaluated for its deodorizing property based on the test shown below. First, a non-woven fabric was prepared, and the composition 4 was jetted to the non-woven fabric so that 0.1 g of the composition 4 adhered per 100 cm 2 of non-woven fabric. Next, the obtained nonwoven fabric with composition 4 was dried at 25 ° C. for 2 days to produce a membrane-coated substrate 4.
  • Example 5 Preparation of Composition 5
  • the composition 5 was prepared and evaluated in the same manner as in Example 4 except that the average particle diameter and the aspect ratio of the second metal-containing material were adjusted to the values described in Table 2. The results are shown in Table 2.
  • Example 6 Preparation of Composition 6
  • the composition 6 was prepared and evaluated in the same manner as in Example 4 except that the average particle size and the aspect ratio of the second metal-containing material were adjusted to the values described in Table 2. The results are shown in Table 2.
  • Example 7 Preparation of Composition 7
  • Composition 7 was prepared in the same manner as Example 4, except that the average particle size of the inorganic substance (1) and the average particle size and aspect ratio of the second metal-containing substance were adjusted to the values described in Table 2. Prepared and evaluated. The results are shown in Table 2.
  • the “copper-supporting glass” in Table 2 is “NS-20C” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • the inorganic carrier "NS-20C” manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate glass.
  • the average particle diameter thereof is 1.5 ⁇ m or less (preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, still more preferably 0.15 ⁇ m or less). It was confirmed that the deodorizing property is further improved.
  • Example 8 Preparation of Composition 8
  • the water content was removed by drying the copper oxide particles ("Copper (II) COPPER OXIDE” manufactured by Kanto Chemical Co., Ltd.) under reduced pressure at 4 ° C. for 40 hours at a low temperature.
  • the dried copper oxide particles were dispersed by diluting with 10 times with water, and then wet-pulverized using a bead mill.
  • the obtained dispersion was dried at 50 ° C. for 5 hours under reduced pressure to prepare a CuO powder having an average particle diameter of 30 nm.
  • the method similar to copper oxide (II) used by the composition 8 except having varied the milling time and the kind of filter The particle size was controlled by
  • aqueous dispersion solid content concentration: 0.1% by mass
  • polymer particles Nippon Shokuhin “Epoler 100 W”, average particle diameter: 150 nm
  • a silicate compound MKC Corporation “MKC” 0.1 g of (registered trademark) Silicate MS 51 ”
  • 50 g of copper oxide (“Copper oxide (II) COPPER OXIDE” manufactured by Kanto Chemical Co., Ltd.) aqueous dispersion (solid content concentration 0.01 mass%: average particle size 30 nm) whose particle size is controlled is added to this stirred product,
  • the mixture was further stirred for 20 minutes to obtain dispersion C.
  • This dispersion liquid C contains copper-supporting polymer particles (corresponding to the organic substance containing the second metal) as the second metal-containing substance.
  • the average particle size of the copper oxide particles and the polymer particles in the copper-supporting polymer particles was substituted.
  • the average particle sizes of the copper oxide particles and the polymer particles in the dispersion liquid were measured by dynamic light scattering using a particle size distribution analyzer by laser diffraction. Specifically, it was measured using a dynamic light scattering measurement apparatus (Zetasizer ZS) manufactured by Marveln.
  • the average particle size was measured three times according to the method defined in ISO 13321 as an average value (Z-Average) of particle sizes by cumulant analysis, and an average value of values measured three times was used.
  • the obtained dispersion C was centrifuged to precipitate copper-supported polymer particles.
  • the copper-supported polymer particles were separated by filtration and naturally dried under reduced pressure to obtain copper-supported polymer particles.
  • the copper-supporting polymer particle has a structure in which copper oxide particles are supported on the surface of the polymer particle, and a silane is formed by condensation of a silicate compound in at least one region on the surface of the polymer particle. It confirmed that the film of the compound was formed.
  • the copper-supported polymer particles had an average particle size of 0.6 ⁇ m.
  • Composition 8 was obtained by adding 0.1 g of zirconium phosphate which controlled the average particle diameter to 0.3 micrometer as an inorganic substance (1) to the obtained dispersion liquid C, and stirring it.
  • the zirconium phosphate corresponds to one obtained by controlling “NS-10” manufactured by Toagosei Co., Ltd. to an average particle diameter of 0.3 ⁇ m.
  • the obtained composition 8 of Example 8 contains an inorganic substance (1), a second metal-containing substance (an organic substance containing a second metal), a silicate compound as a hydrophilic component, and a solvent.
  • composition 8 obtained above was evaluated for its deodorizing property based on the test shown below. First, a non-woven fabric was prepared, and the composition 8 was sprayed to the non-woven fabric so that 1 g of the composition 8 was adhered per 100 cm 2 . Next, the obtained nonwoven fabric with composition 8 was dried at 25 ° C. for 2 days to produce a membrane-coated substrate 8.
  • compositions 9 to 10 of Examples 9 to 10 were prepared in the same manner as Composition 8 of Example 8 except that the type of inorganic substance (1) and the average particle size were changed to those described in Table 3. did.
  • the obtained compositions 9 to 10 of Examples 9 to 10 contain the inorganic substance (1), the second metal-containing substance (the organic substance containing the second metal), the silicate compound as the hydrophilic component, and the solvent. Using the obtained compositions 9 to 10, various evaluations were carried out by the same method as the composition 8. The results are shown in Table 3.
  • compositions 16 and 20 of Examples 16 and 20 were respectively prepared by the same method as that of composition 8 of Example 8 except that additives were added in the compounding amounts described in Table 3.
  • the obtained composition 16 and composition 20 of Example 16 and Example 20 were the inorganic substance (1), the second metal-containing substance (the organic substance containing the second metal), the silicate compound as the hydrophilic component, and Contains solvent.
  • Various evaluations were performed by the method similar to the composition 8 using the obtained composition 16 and the composition 20. The results are shown in Table 3.
  • Example 11 Preparation of Composition 11 60 g of pure water, 14 g of a silicate compound ("MKC (registered trademark) Silicate” MS 51 "manufactured by Mitsubishi Chemical Co., Ltd.) and aluminum chelate D (aluminium bis (ethyl acetoacetate) mono (acetyl aceto) while stirring 367 g of ethanol in a container ), Ethanol dilution: 15 g solid content concentration, 15 g nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., pure water dilution: 0.5 mass% solid concentration), anionic interface After sequentially adding 10 g of an activator (sodium di (2-ethylhexyl) sulfosuccinate, pure water dilution: solid concentration 0.2% by mass), 18 g of isopropanol, a dispersant (manufactured by BYK "DISPERBYK (registered trademark)-180"
  • the zirconium phosphate corresponds to one obtained by controlling “NS-10” manufactured by Toagosei Co., Ltd. to an average particle diameter of 0.3 ⁇ m.
  • the obtained composition 11 of Example 11 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
  • Various evaluations were performed by the method similar to the composition 8 using the obtained composition 11. The results are shown in Table 3.
  • Example 12 to 13 Preparation of Compositions 12 to 13
  • Compositions 12 to 13 of Examples 12 to 13 were each prepared in the same manner as Composition 11 of Example 11 except that the type and average particle diameter of the second metal-containing material were changed to the compositions described in Table 3.
  • the resulting compositions 12 to 13 of Examples 12 to 13 include the inorganic substance (1), the second metal-containing substance (inorganic substance (2)), the silicate compound as a hydrophilic component, and a solvent.
  • various evaluations were carried out in the same manner as the composition 8. The results are shown in Table 3.
  • Example 14 Preparation of Composition 14 Dispersion C1 was obtained in the same manner as dispersion C, except that the average particle size of the copper-supported polymer particles was changed from 0.6 ⁇ m to 0.3 ⁇ m.
  • Composition 14 of Example 14 was prepared in the same manner as Composition 8 of Example 8, except that Dispersion C was replaced with Dispersion C1.
  • the obtained composition 14 of Example 14 contains an inorganic substance (1), a second metal-containing substance (organic substance containing a second metal), a silicate compound as a hydrophilic component, and a solvent.
  • Various evaluations were performed by the same method as that of composition 8 using composition 14 obtained. The results are shown in Table 3.
  • Example 15 Preparation of Composition 15 Dispersion D1 was obtained in the same manner as dispersion D, except that the average particle diameter of the inorganic substance (1) (silver-loaded glass) was changed from 0.6 ⁇ m to 0.3 ⁇ m.
  • Composition 15 of Example 15 was prepared in the same manner as Composition 11 of Example 11 except that Dispersion D was changed to Dispersion D1.
  • the obtained composition 15 of Example 15 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
  • various evaluations were carried out by the same method as that of the composition 8. The results are shown in Table 3.
  • Examples 17, 18, 21 Preparation of Compositions 17, 18, 21
  • the composition 17, the composition 18 of the example 17, the example 18, and the example 21 And Composition 23 was prepared respectively.
  • the obtained compositions 17, 18, 21 of Examples 17, 18, 21 contain an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
  • Various evaluations were performed by the method similar to the composition 8 using the obtained compositions 17, 18, and 21. The results are shown in Table 3.
  • Example 19 Preparation of Composition 19 Copper-supported glass whose average particle diameter is controlled to the size listed in Table 3 as a second metal-containing substance (“NS-20C” manufactured by Toagosei Co., Ltd .: inorganic support of “NS-20C” manufactured by Toagosei) Dispersion C2 was prepared in the same manner except that 0.1 g of aluminum glass was added.
  • the dispersion C2 contains, as a second metal-containing substance, copper-supporting glass (corresponding to the inorganic substance (2)) and copper-supporting polymer particles (corresponding to the organic substance containing the second metal). Do.
  • Example 19 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2), an organic substance containing a second metal), a silicate compound, and a solvent.
  • Various evaluations were performed by the same method as that of composition 8 using composition 19 obtained. The results are shown in Table 3.
  • Example 22 Preparation of Composition 22
  • 0.28 g of zirconium phosphate whose average particle diameter was controlled to 0.3 ⁇ m, and a copper-supported glass whose average particle diameter was controlled to the size described in the table
  • Toho Gosei "NS-20C” The inorganic carrier for Toho Gosei “NS-20C” corresponds to an aluminum silicate glass (0.1 g), and the mixture is stirred to obtain Composition 22.
  • the obtained composition 22 of Example 22 contains an inorganic substance (1), a second metal-containing substance (two kinds of inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
  • Various evaluations were performed by the same method as that of composition 8 using composition 22 obtained. The results are shown in Table 3.
  • Example 23 Preparation of Composition 23
  • 0.28 g of zirconium phosphate whose average particle diameter was controlled to 1.1 ⁇ m, and copper-supported glass whose average particle diameter was controlled to the size described in the table ( Toho Gosei "NS-20C”: The inorganic carrier for Toho Gosei “NS-20C” corresponds to aluminum silicate glass (0.28 g), and the mixture is stirred to obtain Composition 23.
  • the obtained composition 23 of Example 23 contains an inorganic substance (1), a second metal-containing substance (two kinds of inorganic substances (2)), a silicate compound as a hydrophilic component, and a solvent.
  • various evaluations were performed by the same method as the composition 8. The results are shown in Table 3.
  • Comparative Example 4 Preparation of Composition R4 Composition R4 of Comparative Example 4 was prepared in the same manner as in Example 8 except that the inorganic substance (1) was not used. Various evaluation was implemented by the method similar to the composition 8 using composition R4 obtained. The results are shown in Table 3.
  • Comparative Example 5 Preparation of Composition R5 Composition R5 of Comparative Example 5 was prepared in the same manner as in Example 11 except that the second metal-containing material was not used. Various evaluation was implemented by the method similar to the composition 8 using obtained composition R5. The results are shown in Table 3.
  • Comparative Example 6 Preparation of Composition R6 Example 7 is the same as Example 8, except that dispersant C is not used, and 0.1 g of a silicate compound ("MKC (registered trademark) Silicate” MS 51 "manufactured by Mitsubishi Chemical Corporation) and 200 g of pure water are used instead of dispersant C
  • MKC registered trademark
  • Silicate MS 51 "manufactured by Mitsubishi Chemical Corporation
  • 200 g of pure water are used instead of dispersant C
  • the composition R6 of Comparative Example 6 was prepared by the method of Various evaluation was implemented by the method similar to the composition 8 using obtained composition R6. The results are shown in Table 3.
  • Comparative Example 7 Preparation of Composition R7 The same method as in Example 11 except that Dispersant D was not used, and 14 g of a silicate compound ("MKC (registered trademark) Silicate" MS 51 "manufactured by Mitsubishi Chemical Corp.) and 536 g of pure water were used instead of Dispersant D. Thus, composition R7 of Comparative Example 7 was prepared. Various evaluation was implemented by the method similar to the composition 8 using obtained composition R7. The results are shown in Table 3.
  • MKC registered trademark Silicate
  • BHT in the table is an abbreviation of dibutyl hydroxytoluene.
  • Zirconium phosphate in the table is “NS-10” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • Phosphate glass in the table is manufactured by Fuji Chemical Co., Ltd. whose average particle size is controlled to the size described in the table.
  • the “copper-supported glass” in the table has an average particle diameter controlled to the size described in the table “Tosoh Synthetic“ NS-20C: Inorganic carrier of Toago Synthetic “NS-20C” is aluminum silicate glass Applicable ".
  • Example 8 and Example 19 when 2 or more types of metal carrying
  • Example 24 Preparation of Composition 24 While stirring 52 g of ethanol in a container, 38 g of pure water, 0.41 g of a silicate compound ("MKC (registered trademark) Silicate” MS 51 "manufactured by Mitsubishi Chemical Corporation), 0.41 g of aluminum chelate D (aluminium bis (ethyl acetoacetate) mono ( Acetyl acetonate), Ethanol dilution: 1.3 g solid content concentration, 1.3 g, nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5 mass%) After sequentially adding 3 g, 0.8 g of an anionic surfactant (“Rabisol A-90” manufactured by NOF Corporation, pure water dilution: solid content concentration 0.2 mass%), 2.7 g of isopropanol, an inorganic substance (1 ) (Silver-loaded glass whose average particle diameter is controlled to 1.1 ⁇ m
  • composition 24 corresponds to phosphate glass
  • ethanol / water solvent dilution solid content concentration 25.3 mass%) 0.039 g
  • Dispersing agent BYK “DISPERBYK (registered trademark)-180" 0.04 g
  • ethanol 1.4 g second metal-containing substance (average particle diameter is controlled to 3.1 ⁇ m copper-supported glass (Toagosei "NS" It corresponds to what controlled the average particle diameter of "-20C” to 3.1 micrometers.
  • the inorganic carrier of "Tosoh Synthetic" NS-20C corresponds to aluminum silicate glass.): Solid content concentration 100 mass%) 0.489 g was added and stirred for 20 minutes to obtain composition 24.
  • the obtained composition 24 of Example 24 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
  • Various evaluations were performed using the obtained composition 24 according to the following ⁇ Evaluation D>. Incidentally, the following evaluation D was set to a more severe evaluation condition than the above-mentioned evaluations A to C.
  • ⁇ Evaluation D> (Preparation of test sample) The composition 24 obtained above was evaluated for its deodorizing property based on the test shown below. First, a non-woven non-woven fabric was prepared, and the composition 24 was jetted to the non-woven fabric so that 0.06 g of the composition 24 adhered per 100 cm 2 of non-woven fabric. Next, the obtained non-woven fabric with composition 24 was dried at 25 ° C. for 2 days to produce a film-coated substrate 24.
  • Examples 25 to 30 Preparation of Compositions 25 to 30] Compositions 25 to 30 were prepared and evaluated in the same manner as in Example 24 except that the contents of the inorganic substance (1) and the second metal-containing substance were adjusted to the amounts described in Table 4. The results are shown in Table 4.
  • Examples 31 to 37 Preparation of Compositions 31 to 37] Compositions 31 to 37 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4. The results are shown in Table 4.
  • Examples 38-44 Preparation of Compositions 38-44 Compositions 38 to 44 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4. The results are shown in Table 4.
  • Example 45 to 51 Preparation of Compositions 45 to 51] Compositions 45 to 51 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle diameter of the second metal-containing material was adjusted to the size described in Table 4. The results are shown in Table 4.
  • Example 52 to 58 Preparation of Compositions 52 to 58
  • Compositions 52 to 58 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle diameter of the second metal-containing material was adjusted to the size described in Table 4. The results are shown in Table 4.
  • Example 59 to 65 Preparation of Compositions 59 to 65
  • Compositions 59 to 65 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the second metal-containing material was adjusted to the size described in Table 4. The results are shown in Table 4.
  • Example 73 to 79 Preparation of Compositions 73 to 79
  • Compositions 73 to 79 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
  • Examples 80-86 Preparation of Compositions 80-86 Compositions 80 to 86 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
  • Example 87 to 93 Preparation of Compositions 87 to 93
  • Compositions 87 to 93 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
  • Example 94 to 100 Preparation of Compositions 94 to 100
  • Compositions 94 to 100 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
  • Example 101 to 107 Preparation of Compositions 101 to 107
  • Compositions 101 to 102 were prepared in the same manner as in Examples 24 to 30, except that the type and content of the inorganic substance (1) and the average particle diameter of the second metal-containing material were changed to the types and content described in Table 4. 107 were each prepared and evaluated. The results are shown in Table 4.
  • the inorganic substance (1) used in Examples 101 to 107 has a silver-supported zeolite whose average particle diameter is controlled to 0.3 ⁇ m (“Zeol 4A” manufactured by Nakamura Cement Co., Ltd., water dilution: solid content concentration 19 mass%) It is.
  • Examples 108 to 114 Preparation of Compositions 108 to 114 The type and content of the inorganic substance (1) were changed to the type and content described in Table 4, and the content of the inorganic substance (2) and the average particle size were changed to the content and average particle size described in Table 4. Compositions 108-114 were prepared and evaluated as in Examples 24-30, respectively, except for the following. The results are shown in Table 4.
  • the inorganic substance (1) used in Examples 108 to 114 is a silver-supported zirconium phosphate ("Novalon AG300" manufactured by Toagosei Co., Ltd .; solid content concentration: 100% by mass) whose average particle diameter is controlled to 1.0 ⁇ m. .
  • Example 115 to 121 Preparation of Compositions 115 to 121
  • Compositions 115 to 121 were respectively prepared and evaluated in the same manner as in Examples 31 to 37 except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
  • Examples 129 to 135 Preparation of Compositions 129 to 135 Compositions 129 to 135 were prepared and evaluated in the same manner as in Examples 101 to 107, respectively, except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
  • Examples 136 to 142 Preparation of Compositions 136 to 142 Compositions 136 to 142 were respectively prepared and evaluated in the same manner as in Examples 108 to 114 except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
  • Example 143 to 149 Preparation of Compositions 143 to 149
  • Compositions 143-149 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
  • the second metal-containing material used in Examples 143 to 149 is a copper-supported polymer particle (corresponding to an organic material containing a second metal) whose average particle diameter is controlled to 0.6 ⁇ m.
  • the copper-supported polymer particles were produced and used by the following method.
  • aqueous dispersion solid content concentration: 0.1% by mass
  • polymer particles Nippon Shokuhin “Epoler 100 W”, average particle diameter: 150 nm
  • a silicate compound MKC Corporation “MKC” 0.1 g of (registered trademark) Silicate MS 51 ”
  • 50 g of copper oxide (“Copper oxide (II) COPPER OXIDE” manufactured by Kanto Chemical Co., Ltd.) aqueous dispersion (solid content concentration 0.01 mass%: average particle size 30 nm) whose particle size is controlled is added to this stirred product, The mixture was further stirred for 20 minutes to obtain a dispersion F.
  • the obtained dispersion F was centrifuged to precipitate copper-supported polymer particles.
  • the copper-supported polymer particles were separated by filtration and naturally dried under reduced pressure to obtain copper-supported polymer particles.
  • the copper-supporting polymer particle has a structure in which copper oxide particles are supported on the surface of the polymer particle, and a silane is formed by condensation of a silicate compound in at least one region on the surface of the polymer particle. It confirmed that the film of the compound was formed.
  • support polymer particle produced two types of sizes, average particle diameter 0.6 micrometer, and average particle diameter 0.3 micrometer, by adjusting dispersion time.
  • Examples 150 to 156 Preparation of Compositions 150 to 156 Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 150-156 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
  • the second metal-containing material used in Examples 150 to 156 is a copper-supported polymer particle (corresponding to an organic material containing a second metal) whose average particle diameter is controlled to 0.3 ⁇ m.
  • Examples 157-163 Preparation of Compositions 157-163 Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 157-163 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
  • the second metal-containing material used in Examples 157 to 163 is a copper oxide particle (corresponding to the inorganic material (2)) whose average particle diameter is controlled to be 0.03 ⁇ m.
  • Examples 164 to 170 Preparation of Compositions 164 to 170 Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 164-170 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
  • the second metal-containing material used in Examples 164 to 170 is a copper-supported polymer particle (corresponding to an organic material containing a second metal) whose average particle diameter is controlled to 0.6 ⁇ m.
  • Example 171 to 177 Preparation of Compositions 171 to 177
  • Compositions 171-177 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
  • the second metal-containing substance used in Examples 171 to 177 is a copper-supported polymer particle (corresponding to an organic substance containing a second metal) whose average particle diameter is controlled to 0.3 ⁇ m.
  • Examples 178 to 184 Preparation of Compositions 178 to 184 Compositions 178 to 184 were respectively prepared and evaluated in the same manner as in Examples 94 to 100 except that the content of the hydrophilic component (MKC silicate) was adjusted to the amount described in Table 4. The results are shown in Table 4.
  • MKC silicate hydrophilic component
  • Example 192 to 198 Preparation of Compositions 192 to 198
  • Compositions 192 to 198 were respectively prepared and evaluated in the same manner as in Examples 94 to 100 except that the content of the dispersant was adjusted to the amount described in Table 4. The results are shown in Table 4.
  • Examples 199 to 205 Preparation of Compositions 199 to 205 Compositions 199 to 205 were respectively prepared and evaluated in the same manner as in Examples 94 to 100 except that the content of the dispersant was adjusted to the amount described in Table 4. The results are shown in Table 4.
  • Examples 206 to 212 Preparation of Compositions 206 to 212 As the second metal-containing substance, zirconium phosphate ("NS-10" manufactured by Toagosei Co., Ltd.) whose average particle size is controlled to 0.8 ⁇ m is further added in the amount described in Table 4, and the ethanol concentration is shown in Table 4 Compositions 206 to 212 were respectively prepared and evaluated in the same manner as in Examples 31 to 37 except that the concentration was adjusted to that described in. The results are shown in Table 4.
  • zirconium phosphate (“NS-10" manufactured by Toagosei Co., Ltd.) whose average particle size is controlled to 0.8 ⁇ m is further added in the amount described in Table 4, and the ethanol concentration is shown in Table 4
  • Compositions 206 to 212 were respectively prepared and evaluated in the same manner as in Examples 31 to 37 except that the concentration was adjusted to that described in. The results are shown in Table 4.
  • Example 87 Preparation of Compositions 213 to 219
  • Example 87 except that as the second metal-containing substance, zirconium phosphate (“NS-10” manufactured by Toagosei Co., Ltd.) whose average particle diameter was controlled to 0.8 ⁇ m was further added in the amount described in Table 4
  • Compositions 213-219 were respectively prepared and evaluated in the same manner as -93. The results are shown in Table 4.
  • Example 220 Preparation of Composition 220
  • the second metal inclusion 1 uses aluminum silicate (“NS-20” manufactured by Toagosei Co., Ltd.) whose average particle diameter is controlled to 0.15 ⁇ m, and the second metal inclusion 2 has an average particle diameter of 0.8 ⁇ m
  • the composition 220 was prepared and evaluated in the same manner as in Example 219 except that controlled zirconium phosphate (“NS-10” manufactured by Toagosei Co., Ltd.) was not added. The results are shown in Table 4.
  • Comparative Examples 20 and 21 Preparation of Compositions R20 and R21 The composition R20 and the composition R21 were respectively prepared and evaluated in the same manner as in Example 143 and Example 145 except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
  • compositions R24 and R25 Preparation of Compositions R24 and R25
  • the composition R24 and the composition R25 were respectively prepared and evaluated in the same manner as in Example 157 and Example 159 except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. .
  • the results are shown in Table 4.
  • Composition R26 was prepared in the same manner as in Example 206, except that silver-supporting glass ("Bacterite MP-103DV” manufactured by Fuji Chemical Co., Ltd.) and copper-supporting glass ("NS-20C” manufactured by Toagosei Co., Ltd.) were not blended. Prepared and evaluated. The results are shown in Table 4.
  • Comparative Example 27 Preparation of Composition R27 Composition R27 was prepared in the same manner as in Comparative Example 26 except that aluminum silicate (“NS-20” manufactured by Toagosei Co., Ltd., whose average particle size was controlled to the size described in the table, was blended instead of zirconium phosphate). It was prepared and evaluated, and the results are shown in Table 4.
  • NS-20 aluminum silicate manufactured by Toagosei Co., Ltd.
  • Table 4 is shown below.
  • “silver-supporting glass” is “Bacterite MP-103DV (solid content 25.3 mass%)” manufactured by Fuji Chemical Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • the inorganic carrier of "Bacterite MP-103DV” manufactured by Fuji Chemical Co., Ltd. corresponds to phosphate glass.
  • “copper-supporting glass” is “NS-20C” (solid content: 100% by mass) manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • the inorganic carrier "NS-20C” manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate glass.
  • “Silver-loaded zeolite” in the table is “Zeool 4A” (solid content 19%) manufactured by Nakamura Cemented Carbide in which the average particle diameter is controlled to the size described in the table.
  • “Silver-supported zirconium phosphate” in the table is "Novalon AG300” (solid content: 100% by mass) manufactured by Toagosei Co., Ltd. whose average particle diameter is controlled to the size described in the table.
  • “Copper oxide” in the table is copper oxide (solid content: 100% by mass) whose average particle diameter is controlled to the size described in the table.
  • Zero phosphate in the table is "NS-10" (solid content: 100% by mass) manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • “Aluminum silicate” in the table is "NS-20” (solid content: 100% by mass) manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • the average particle diameter of one of the silver-supporting glass and the copper-supporting glass is 1.2 ⁇ m or less and the other is 0.6 ⁇ m or less, It was confirmed that the deodorizing property of the formed film is more excellent when the average particle diameter is 0.9 ⁇ m or less for any of the copper-supporting glass.
  • Reference Example 1 Preparation of Reference Composition 1
  • the water content was removed by drying the copper oxide particles ("Copper (II) COPPER OXIDE” manufactured by Kanto Chemical Co., Ltd.) under reduced pressure at 4 ° C. for 40 hours at a low temperature.
  • the dried copper oxide particles were dispersed by diluting with 10 times with water, and then wet-pulverized using a bead mill.
  • the obtained dispersion was dried at 50 ° C. for 5 hours under reduced pressure to prepare a CuO powder having an average particle diameter of 30 nm.
  • aqueous dispersion solid content concentration: 0.1% by mass
  • polymer particles Nippon Shokuhin “Epoler 100 W”, average particle diameter: 150 nm
  • a silicate compound MKC Corporation “MKC” 0.1 g of (registered trademark) Silicate MS 51 ”
  • 50 g of copper oxide (“Copper oxide (II) COPPER OXIDE” manufactured by Kanto Chemical Co., Ltd.) aqueous dispersion (solid content concentration 0.01 mass%: average particle size 30 nm) whose particle size is controlled is added to this stirred product, The mixture was further stirred for 20 minutes to obtain a dispersion G.
  • the obtained dispersion G was centrifuged to precipitate copper-supported polymer particles.
  • the copper-supported polymer particles were separated by filtration and naturally dried under reduced pressure to obtain copper-supported polymer particles.
  • the copper-supporting polymer particle has a structure in which copper oxide particles are supported on the surface of the polymer particle, and a silane is formed by condensation of a silicate compound in at least one region on the surface of the polymer particle. It confirmed that the film of the compound was formed.
  • the copper-supported polymer particles had an average particle size of 0.6 ⁇ m.
  • the obtained dispersion liquid G copper-supporting glass (“NS-20C” manufactured by Toagosei Co., Ltd.) as a first metal inorganic carrier: the inorganic carrier “NS-20C” manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate glass.
  • Reference composition 1 was obtained by adding and stirring 0.1 g.
  • the obtained Reference Composition 1 of Reference Example 1 includes a first metal organic carrier, a second metal inorganic carrier, a silicate compound as a hydrophilic component, and a solvent.
  • the average particle diameter of the first metal inorganic carrier and the first metal organic carrier was measured by observation using an electron microscope. The specific measurement method is as described above.
  • Reference Composition 1 of Reference Example 1 obtained was evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • Reference Example 2 Reference Composition 2 of Reference Example 2 was prepared in the same manner as Reference Composition 1 of Reference Example 1 except that MKC Silicate MS51 was not used. Reference Composition 1 of Reference Example 1 obtained was evaluated in the same manner as in Example 1. The results are shown in Table 5.
  • the “copper-supporting glass” in Table 5 is “NS-20C” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
  • the inorganic carrier of "NS-20C” manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate.

Abstract

A problem to be solved by the present invention is to provide a composition which makes it possible to form a film having excellent antibacterial properties and excellent deodorant properties and a modified base material. Another problem to be solved by the present invention is to provide a film, a film-attached base material, a method for producing a film-attached base material, and a modified base material. The composition according to the present invention contains: an inorganic material containing a first metal; at least one component containing a second metal that is different from the first metal, wherein the component is selected from the group consisting of an inorganic material containing the second metal and an organic material containing the second metal; and a solvent.

Description

組成物、膜、膜付き基材、膜付き基材の製造方法、及び、修飾基材Composition, film, film-coated substrate, method of producing film-coated substrate, and modified substrate
 本発明は、組成物、膜、膜付き基材、膜付き基材の製造方法、及び、修飾基材に関する。 The present invention relates to a composition, a film, a film-coated substrate, a method of producing a film-coated substrate, and a modified substrate.
 抗菌剤粒子と、バインダーと、を含む抗菌膜が知られている。抗菌膜は、その表面上で細菌が増殖するのを抑制する機能を有する。
 例えば、特許文献1には、「1)抗菌作用をもつ金属イオンをそれぞれ有するガラス粒子、セラミックス粒子、又は多孔質シリカゲル粒子と、2)加水分解及び重縮合が可能なオルガノシラン又はその部分加水分解物を主成分とする抗菌性コーティング用組成物。」が記載されている。
Antimicrobial films comprising antimicrobial particles and a binder are known. The antibacterial film has a function of suppressing bacterial growth on its surface.
For example, in Patent Document 1, “1) glass particles, ceramic particles, or porous silica gel particles having metal ions having antibacterial activity, and 2) organosilane capable of hydrolysis and polycondensation or partial hydrolysis thereof A composition for antibacterial coating based on a substance.
特開平8-27404号公報JP-A-8-27404
 本発明者は、特許文献1に記載された抗菌性コーティング用組成物を用いて形成される抗菌膜を作製し検討したところ、消臭性能が昨今の要求レベルを満たしていないことを明らかとした。 The inventor of the present invention made and examined an antibacterial film formed using the composition for antibacterial coating described in Patent Document 1, and revealed that the deodorizing performance did not meet the recent requirement level. .
 そこで、本発明は、優れた抗菌性及び優れた消臭性を有する膜又は修飾基材を形成できる組成物を提供することを課題とする。
 また、本発明は、膜、膜付き基材、膜付き基材の製造方法、及び修飾基材を提供することも課題とする。
Then, this invention makes it a subject to provide the composition which can form the film | membrane or modified base material which has the outstanding antimicrobial property and the outstanding deodorizing property.
Another object of the present invention is to provide a film, a film-coated substrate, a method of producing a film-coated substrate, and a modified substrate.
 本発明者は、上記課題を達成すべく鋭意検討した結果、以下の構成により課題を達成できることを見出した。 As a result of intensive studies to achieve the above problems, the present inventor has found that the problems can be achieved by the following configuration.
 〔1〕 第1の金属を含有する無機物と、
 上記第1の金属とは異なる第2の金属を含有する無機物、及び上記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、
 溶媒と、を含有する、組成物。
 〔2〕 上記第1の金属を含有する無機物が、上記第1の金属の単体、上記第1の金属の酸化物、及び無機担体と上記無機担体に担持された上記第1の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、〔1〕に記載の組成物。
 〔3〕 上記第2の金属を含有する無機物が、上記第2の金属の単体、上記第2の金属の酸化物、及び無機担体と上記無機担体に担持された上記第2の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、〔1〕に記載の組成物。
 〔4〕 上記第2の金属を含有する成分が、上記第2の金属を含有する無機物である、〔1〕~〔3〕のいずれかに記載の組成物。
 〔5〕 上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物が粒子であり、上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物のいずれについても平均粒径が0.9μm以下である、〔4〕に記載の組成物。
 〔6〕 上記第1の金属が銀であり、上記第2の金属が銅である、〔1〕~〔5〕のいずれかに記載の組成物。
 〔7〕 上記第1の金属を含有する無機物が、第1の無機担体と、上記第1の無機担体に担持された銀とを有する銀担持無機担体である、〔1〕~〔6〕のいずれかに記載の組成物。
 〔8〕 上記第2の金属を含有する無機物が、第2の無機担体と、上記第2の無機担体に担持された銅とを有する銅担持無機担体である、〔1〕~〔7〕のいずれかに記載の組成物。
 〔9〕 上記第1の無機担体が、ガラスである、〔7〕に記載の組成物。
 〔10〕 上記第2の無機担体が、ガラスである、〔8〕に記載の組成物。
 〔11〕 上記第1の金属を含有する無機物が、ガラスと、上記ガラスに担持された銀とを有する銀担持ガラスであり、上記第2の金属を含有する無機物が、ガラスと、上記ガラスに担持された銅とを有する銅担持ガラスである、〔4〕~〔6〕のいずれかに記載の組成物。
 〔12〕 更に、親水性バインダー前駆体及び親水性バインダーからなる群から選択される親水性成分を含有する、〔1〕~〔11〕のいずれかに記載の組成物。
 〔13〕 上記親水性成分が、シリケート系化合物、親水性基を有するモノマー、及び親水性基を有するポリマーからなる群から選択される少なくとも1種を含有する、〔12〕に記載の組成物。
 〔14〕 第1の金属を含有する無機物と、
 上記第1の金属とは異なる第2の金属を含有する無機物、及び上記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、を含有する、膜。
 〔15〕 上記第1の金属を含有する無機物が、上記第1の金属の単体、上記第1の金属の酸化物、及び無機担体と上記無機担体に担持された上記第1の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、〔14〕に記載の膜。
 〔16〕 上記第2の金属を含有する無機物が、上記第2の金属の単体、上記第2の金属の酸化物、及び無機担体と上記無機担体に担持された上記第2の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、〔14〕に記載の膜。
 〔17〕 上記第2の金属を含有する成分が、上記第2の金属を含有する無機物である、〔14〕~〔16〕のいずれかに記載の膜。
 〔18〕 上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物が粒子であり、上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物のいずれについても平均粒径が0.9μm以下である、〔17〕に記載の膜。
 〔19〕 上記第1の金属が銀であり、上記第2の金属が銅である、〔14〕~〔18〕のいずれかに記載の膜。
 〔20〕 上記第1の金属を含有する無機物が、第1の無機担体と、上記第1の無機担体に担持された銀とを有する銀担持無機担体である、〔14〕~〔19〕のいずれかに記載の膜。
 〔21〕 上記第2の金属を含有する無機物が、第2の無機担体と、上記第2の無機担体に担持された銅とを有する銅担持無機担体である、〔14〕~〔20〕のいずれかに記載の膜。
 〔22〕 上記第1の無機担体が、ガラスである、〔20〕に記載の膜。
 〔23〕 上記第2の無機担体が、ガラスである、〔21〕に記載の膜。
 〔24〕 上記第1の金属を含有する無機物が、ガラスと、上記ガラスに担持された銀とを有する銀担持ガラスであり、上記第2の金属を含有する無機物が、ガラスと、上記ガラスに担持された銅とを有する銅担持ガラスである、〔17〕~〔19〕のいずれかに記載の膜。
 〔25〕 更に、親水性バインダーを含有する、〔14〕~〔24〕のいずれかに記載の膜。
 〔26〕 上記親水性バインダーが、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種、又は親水性ポリマーである、〔25〕に記載の膜。
 〔27〕 基材と、〔14〕~〔26〕のいずれかに記載の膜と、を有する、膜付き基材。
 〔28〕 親水性バインダー前駆体を含有する〔1〕~〔13〕のいずれかに記載の組成物を基材の表面に塗布して、組成物層を形成する工程と、
 上記組成物層を硬化させて、膜を得る工程と、を含む、膜付き基材の製造方法。
 〔29〕 親水性バインダーを含有する〔1〕~〔13〕のいずれかに記載の組成物を、基材の表面に塗布して、膜を形成する工程を含む、膜付き基材の製造方法。
 〔30〕 基材と、上記基材上又は上記基材内部に配置された、第1の金属を含有する無機物、及び、上記第1の金属とは異なる第2の金属を含有する無機物及び上記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、を有する修飾基材。
 〔31〕 基材と、上記基材上又は上記基材内部に配置された、第1の金属を含有する無機物、及び、上記第1の金属とは異なる第2の金属を含有する無機物及び上記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、親水性バインダーと、を有する修飾基材。
 〔32〕 上記第1の金属を含有する無機物が、上記第1の金属の単体、上記第1の金属の酸化物、及び無機担体と上記無機担体に担持された上記第1の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、〔30〕又は〔31〕に記載の修飾基材。
 〔33〕 上記第2の金属を含有する無機物が、上記第2の金属の単体、上記第2の金属の酸化物、及び無機担体と上記無機担体に担持された上記第2の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、〔30〕又は〔31〕に記載の修飾基材。
 〔34〕 上記第2の金属を含有する成分が、上記第2の金属を含有する無機物である、〔30〕~〔33〕のいずれかに記載の修飾基材。
 〔35〕 上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物が粒子であり、上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、上記第1の金属を含有する無機物及び上記第2の金属を含有する無機物のいずれについても平均粒径が0.9μm以下である、〔34〕に記載の修飾基材。
 〔36〕 上記第1の金属が銀であり、上記第2の金属が銅である、〔30〕~〔35〕のいずれかに記載の修飾基材。
 〔37〕 上記第1の金属を含有する無機物が、第1の無機担体と、上記第1の無機担体に担持された銀とを有する銀担持無機担体である、〔30〕~〔36〕のいずれかに記載の修飾基材。
 〔38〕 上記第2の金属を含有する無機物が、第2の無機担体と、上記第2の無機担体に担持された銅とを有する銅担持無機担体である、〔30〕~〔37〕のいずれかに記載の修飾基材。
 〔39〕 上記第1の無機担体が、ガラスである、〔37〕に記載の修飾基材。
 〔40〕 上記第2の無機担体が、ガラスである、〔38〕に記載の修飾基材。
 〔41〕 上記第1の金属を含有する無機物が、ガラスと、上記ガラスに担持された銀とを有する銀担持ガラスであり、上記第2の金属を含有する無機物が、ガラスと、上記ガラスに担持されたに担持された銅とを有する銅担持ガラスである、〔34〕~〔36〕のいずれかに記載の修飾基材。
[1] An inorganic substance containing a first metal
An inorganic substance containing a second metal different from the first metal, and a component containing at least one second metal selected from the group consisting of an organic substance containing the second metal;
A composition containing a solvent.
[2] The inorganic substance containing the first metal includes the simple substance of the first metal, the oxide of the first metal, and the inorganic support and the first metal supported on the inorganic support The composition according to [1], which is at least one selected from the group consisting of metal-supported inorganic carriers.
[3] The inorganic substance containing the second metal comprises the single substance of the second metal, the oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support The composition according to [1], which is at least one selected from the group consisting of metal-supported inorganic carriers.
[4] The composition according to any one of [1] to [3], wherein the component containing the second metal is an inorganic material containing the second metal.
[5] The inorganic substance containing the first metal and the inorganic substance containing the second metal are particles, and either the inorganic substance containing the first metal or the inorganic substance containing the second metal Any of the inorganic substance containing an average particle size of 1.2 μm or less and the other average particle size of 0.6 μm or less, or the inorganic substance containing the first metal and the inorganic substance containing the second metal The composition according to [4], wherein the average particle size is also 0.9 μm or less.
[6] The composition according to any one of [1] to [5], wherein the first metal is silver and the second metal is copper.
[7] The silver-supported inorganic support according to [1], wherein the inorganic substance containing the first metal is a silver-supported inorganic support having a first inorganic support and silver supported on the first inorganic support. The composition as described in any one.
[8] The copper-supported inorganic support according to [1], wherein the inorganic substance containing the second metal is a copper-supported inorganic support having a second inorganic support and copper supported on the second inorganic support. The composition as described in any one.
[9] The composition according to [7], wherein the first inorganic carrier is glass.
[10] The composition according to [8], wherein the second inorganic carrier is glass.
[11] The inorganic material containing the first metal is silver-supporting glass having glass and silver supported on the glass, and the inorganic material containing the second metal is glass and the glass The composition according to any one of [4] to [6], which is a copper-supported glass having carried copper.
[12] The composition according to any one of [1] to [11], further comprising a hydrophilic component selected from the group consisting of a hydrophilic binder precursor and a hydrophilic binder.
[13] The composition according to [12], wherein the hydrophilic component contains at least one selected from the group consisting of a silicate compound, a monomer having a hydrophilic group, and a polymer having a hydrophilic group.
[14] An inorganic substance containing a first metal
An inorganic substance containing a second metal different from the first metal, and a component containing at least one second metal selected from the group consisting of an organic substance containing the second metal Do the membrane.
[15] The inorganic substance containing the first metal includes the simple substance of the first metal, the oxide of the first metal, and the inorganic support and the first metal supported by the inorganic support. The membrane according to [14], which is at least one selected from the group consisting of metal-supported inorganic carriers.
[16] The inorganic substance containing the second metal comprises the single substance of the second metal, the oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support The membrane according to [14], which is at least one selected from the group consisting of metal-supported inorganic carriers.
[17] The film according to any one of [14] to [16], wherein the component containing the second metal is an inorganic substance containing the second metal.
[18] The inorganic substance containing the first metal and the inorganic substance containing the second metal are particles, and either the inorganic substance containing the first metal or the inorganic substance containing the second metal Any of the inorganic substance containing an average particle size of 1.2 μm or less and the other average particle size of 0.6 μm or less, or the inorganic substance containing the first metal and the inorganic substance containing the second metal The film according to [17], which also has an average particle size of 0.9 μm or less.
[19] The film according to any one of [14] to [18], wherein the first metal is silver and the second metal is copper.
[20] The silver-supported inorganic support according to [14], wherein the inorganic substance containing the first metal is a silver-supported inorganic support having a first inorganic support and silver supported on the first inorganic support. The membrane according to any one.
[21] The copper-supported inorganic support according to [14], wherein the inorganic substance containing the second metal is a copper-supported inorganic support having a second inorganic support and copper supported on the second inorganic support. The membrane according to any one.
[22] The film according to [20], wherein the first inorganic carrier is glass.
[23] The film according to [21], wherein the second inorganic carrier is glass.
[24] The inorganic material containing the first metal is silver-supporting glass having glass and silver supported on the glass, and the inorganic material containing the second metal is glass and the glass The film according to any one of [17] to [19], which is a copper-supported glass having carried copper.
[25] The film according to any one of [14] to [24], further comprising a hydrophilic binder.
[26] The hydrophilic binder is at least one member selected from the group consisting of a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof, or a hydrophilic polymer [ 25] membrane.
[27] A membrane-coated substrate comprising a substrate and the membrane according to any one of [14] to [26].
[28] A composition layer is formed by applying the composition according to any one of [1] to [13] containing a hydrophilic binder precursor on the surface of a substrate,
Curing the composition layer to obtain a film.
[29] A method for producing a film-coated substrate, comprising the step of applying the composition according to any one of [1] to [13] containing a hydrophilic binder on the surface of the substrate to form a film. .
[30] A base material, an inorganic substance containing a first metal disposed on or in the base material, and an inorganic substance containing a second metal different from the first metal, and the above A modified substrate comprising: a component containing at least one second metal selected from the group consisting of organic substances containing a second metal.
[31] A base material, an inorganic substance containing a first metal disposed on or in the base material, and an inorganic substance containing a second metal different from the first metal, and the above A modified substrate comprising: a component containing at least one second metal selected from the group consisting of an organic material containing a second metal, and a hydrophilic binder.
[32] The inorganic substance containing the first metal includes the simple substance of the first metal, the oxide of the first metal, and the inorganic support and the first metal supported by the inorganic support. The modified substrate according to [30] or [31], which is at least one selected from the group consisting of metal-supported inorganic carriers.
[33] The inorganic substance containing the second metal comprises the simple substance of the second metal, the oxide of the second metal, and an inorganic support and the second metal supported by the inorganic support The modified substrate according to [30] or [31], which is at least one selected from the group consisting of metal-supported inorganic carriers.
[34] The modified substrate according to any one of [30] to [33], wherein the component containing the second metal is an inorganic material containing the second metal.
[35] One of the inorganic substance containing the first metal and the inorganic substance containing the second metal is a particle, and the inorganic substance containing the first metal and the inorganic substance containing the second metal Any of the inorganic substance containing an average particle size of 1.2 μm or less and the other average particle size of 0.6 μm or less, or the inorganic substance containing the first metal and the inorganic substance containing the second metal The modified substrate according to [34], which also has an average particle size of 0.9 μm or less.
[36] The modified substrate according to any one of [30] to [35], wherein the first metal is silver and the second metal is copper.
[37] The silver-supported inorganic carrier according to any one of [30] to [36], wherein the inorganic substance containing the first metal is a silver-supported inorganic carrier having a first inorganic carrier and silver supported on the first inorganic carrier. The modified base material as described in any one.
[38] The copper-supported inorganic support according to [30], wherein the inorganic substance containing the second metal is a copper-supported inorganic support having a second inorganic support and copper supported on the second inorganic support. The modified base material as described in any one.
[39] The modified substrate according to [37], wherein the first inorganic carrier is glass.
[40] The modified substrate according to [38], wherein the second inorganic carrier is glass.
[41] The inorganic substance containing the first metal is silver-supporting glass having glass and silver supported on the glass, and the inorganic substance containing the second metal is glass and the glass The modified substrate according to any one of [34] to [36], which is a copper-supported glass having supported and supported copper.
 本発明によれば、優れた抗菌性及び優れた消臭性を有する膜又は修飾基材を形成できる組成物を提供できる。また、本発明によれば、膜、膜付き基材、膜付き基材の製造方法、、及び修飾基材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the composition which can form the film | membrane or modified base material which has the outstanding antimicrobial property and the outstanding deodorizing property can be provided. Further, according to the present invention, it is possible to provide a film, a film-coated substrate, a method of producing a film-coated substrate, and a modified substrate.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。
 なお本明細書における基(原子群)の表記において、置換、及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。このことは、各化合物についても同義である。
 また、本明細書において、「(メタ)アクリレート」はアクリレート、及びメタクリレートの双方、又はいずれかを表し、「(メタ)アクリル」はアクリル、及びメタクリルの双方、又はいずれかを表し、「(メタ)アクリロイル」はアクリロイル、及びメタクリロイルの双方、又はいずれかを表す。
 また、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値、及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the configuration requirements described below may be made based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the notation of groups (atom groups) in the present specification, the notation not describing substitution or non-substitution is one having a substituent together with one having no substituent within a range that does not impair the effect of the present invention. Is also included. For example, the "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). The same is true for each compound.
Moreover, in the present specification, “(meth) acrylate” represents both or either of acrylate and / or methacrylate, “(meth) acrylic” represents both or either of acrylic and methacryl, “(meth) acrylate” ) Acryloyl represents either or both of acryloyl and methacryloyl.
Further, in the present specification, a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit and the upper limit.
〔組成物〕
 上記組成物(以下「実施形態に係る組成物」ともいう。)は、第1の金属を含有する無機物(以下「無機物(1)」又は「第1金属含有物」ともいう。)と、上記第1の金属とは異なる第2の金属を含有する無機物(以下「無機物(2)」ともいう。)、及び上記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分(以下、「第2金属含有物」ともいう。)と、溶媒と、を含有する。
 なお、本明細書において、単に「金属」という時は、金属単体(金属単体粒子)、金属イオン、及び化合物中に含有される金属原子を含むものとする。
〔Composition〕
The above composition (hereinafter also referred to as “composition according to the embodiment”) is a first metal-containing inorganic substance (hereinafter also referred to as “inorganic substance (1)” or “first metal-containing substance”), and the above At least one first selected from the group consisting of an inorganic substance containing a second metal different from the first metal (hereinafter also referred to as "inorganic substance (2)"), and an organic substance containing the second metal It contains a metal-containing component (hereinafter also referred to as "second metal-containing material") and a solvent.
In addition, in this specification, when only calling it a "metal", a metal simple substance (metal simple particle), a metal ion, and the metal atom contained in a compound shall be included.
 上記組成物により形成される膜又は修飾基材は、上記無機物(1)及び上記第2金属含有物の存在により、抗菌性と消臭性に優れる。 The film or modified substrate formed by the above composition is excellent in antibacterial property and deodorizing property by the presence of the above-mentioned inorganic substance (1) and the above-mentioned second metal-containing substance.
 また、後述するように、上記第2金属含有物が、無機物(2)であり、上記無機物(1)及び上記無機物(2)からなる群から選択される少なくとも一方が粒子状であり、その平均粒径が1.2μm以下である場合、より優れた抗菌性とより優れた消臭性を有する膜又は修飾基材が得られる。
 また、なかでも、後述するように、上記無機物(1)が、第1の無機担体と、上記第1の無機担体に担持された銀とを有する銀担持無機担体であり、且つ、無機物(2)が、第2の無機担体と、上記第2の無機担体に担持された銅とを有する銅担持無機担体である場合、より優れた抗菌性とより優れた消臭性を有する膜又は修飾基材が得られる。例えば、尿臭に関しては、尿臭発生機構中、菌から発生する酵素が尿素を分解しアンモニア源となるが、銅は優れた酵素分解能を示すと推定され、高い消臭能を示す。一方で、銀は、高い抗菌性を示すことが知られている。このため、膜又は修飾基材が銀担持無機担体と銅担持無機担体を含む場合、より優れた抗菌性とより優れた消臭を示すと推測される。更に、銅は、上述したように高い消臭能を示すだけでなく高い抗菌性を示すことも知られているが、本発明者は、種々の検討により、銀と銅は各々互いに異なる機構により抗菌性を発現していると推測している。この結果として、膜又は修飾基材が銀担持無機担体と銅担持無機担体を含む場合、銅と銀による2つの各々の抗菌機構が同時に菌に作用することで、各々を単独で使用した場合と比較すると、顕著に優れた抗菌性が得られると考えている。
 さらに、上記銀担持無機担体及び上記銅担持無機担体のうち少なくとも一方(好ましくは銅担持無機担体であり、より好ましくは銀担持無機担体及び銅担持無機担体)における無機担体が非晶質(アモルファス)である場合、第1の金属及び第2の金属から金属イオンがより放出されやすくなるため、上述の効果がより一層優れる。
Also, as described later, the second metal-containing substance is an inorganic substance (2), and at least one selected from the group consisting of the inorganic substance (1) and the inorganic substance (2) is in the form of particles, and the average When the particle size is 1.2 μm or less, a film or modified substrate having better antibacterial properties and better deodorizing properties can be obtained.
Among others, as described later, the inorganic substance (1) is a silver-supporting inorganic support having a first inorganic support and silver supported on the first inorganic support, and an inorganic (2) And a film or a modifying group having more excellent antibacterial properties and more excellent deodorizing properties, in the case where the carrier is a copper-supported inorganic carrier having a second inorganic carrier and copper supported on the second inorganic carrier. The material is obtained. For example, with regard to urinary odor, an enzyme generated from bacteria decomposes urea and becomes an ammonia source during the mechanism of urinary odor generation, and copper is presumed to exhibit excellent enzyme degradability and exhibits high deodorizing ability. On the other hand, silver is known to exhibit high antibacterial properties. For this reason, it is presumed that when the membrane or modified substrate contains a silver-supporting inorganic carrier and a copper-supporting inorganic carrier, it exhibits better antibacterial properties and better deodorizing. Furthermore, although copper is known not only to exhibit high deodorizing ability as described above but also to exhibit high antibacterial properties, the inventor of the present invention has made various investigations that silver and copper have different mechanisms. It is speculated that it exhibits antibacterial activity. As a result, when the membrane or the modified substrate contains a silver-supporting inorganic carrier and a copper-supporting inorganic carrier, each of the two antibacterial mechanisms of copper and silver simultaneously acts on the bacteria, and each is used alone and In comparison, it is considered that remarkably superior antibacterial properties can be obtained.
Furthermore, the inorganic support in at least one of the silver-supporting inorganic support and the copper-supporting inorganic support (preferably a copper-supporting inorganic support, more preferably a silver-supporting inorganic support and a copper-supporting inorganic support) is amorphous (amorphous) In this case, the metal ions are more easily released from the first metal and the second metal, and thus the above-mentioned effect is further enhanced.
 上記組成物の用途は特に制限されないが、例えば、介護現場にて用いられるオムツに適用でき、尿臭に対して優れた抗菌効果及び消臭効果を発揮する。
 尿臭は、尿に含まれているアンモニア及びトリメチルアミン等の物質により生じる。オムツに吸収された尿を長時間放置すると、尿臭の原因である上記物質が、細菌の作用によって更に増えるため、オムツの臭気がより強くなる。
 これに対し、上記組成物により形成される膜がオムツ中の尿便が触れる部位に形成された場合、細菌の増殖及び細菌による尿便物質の酵素分解が抑制されるため、上述のアンモニア及びトリメチルアミン等の物質の増加が抑制される。つまり、臭気の増加が抑制される。更に、オムツに尿が吸収された時から長期間にわたって、安定して消臭効果が持続される。
 なお、上記効果は、上記組成物を用いて形成された、後述する修飾基材によっても同様に得られる。
 以下に、上記組成物に含まれる各成分について詳述する。
Although the use in particular of the said composition is not restrict | limited, For example, it can apply to the diaper used at a care setting site, and the antimicrobial effect and the deodorizing effect which were excellent with respect to urine odor are exhibited.
Urine odor is caused by substances contained in urine, such as ammonia and trimethylamine. When the urine absorbed in the diaper is left for a long time, the odor of the diaper becomes stronger because the above-mentioned substances responsible for the urine odor are further increased by the action of bacteria.
On the other hand, when the membrane formed by the above composition is formed at the site touched by the urine in the diaper, bacterial growth and enzymatic degradation of the urine material by the bacteria are suppressed, so the ammonia and trimethylamine described above The increase of substances such as That is, the increase in odor is suppressed. Furthermore, the deodorizing effect is stably sustained over a long period of time from when urine is absorbed in the diaper.
In addition, the said effect is similarly acquired by the modification | requirement base material mentioned later formed using the said composition.
Below, each component contained in the said composition is explained in full detail.
<無機物(1)>
 無機物(1)としては特に制限されないが、エスケリキア属(例えば、E.coli等)、スタフィロコッカス属(例えば、S.aureus等)、クレブシエラ属(例えば、K.oxytoca、K.pneumoniae等)、セラチア属(例えば、S.marcescens)、シトロバクター属(例えば、C.freundii、C.diversus等)、エンテロバクター属(例えば、E.aerogenes、E.cloacae)、プロテウス属(例えば、P.mirabilis、P.vulgaris等)、シュードモナス属(例えば、P.aeruginosa等)、及びモルガネラ属(例えば、M.morganii等)の細菌に対して除菌(殺菌を含む)及び/又は静菌効果を有するものが好ましい。
<Inorganic substance (1)>
The inorganic substance (1) is not particularly limited, but includes, but is not limited to, Escherichia (eg, E. coli etc.), Staphylococcus (eg, S. aureus etc.), Klebsiella (eg, K. oxytoca, K. pneumoniae etc.), Serratia (eg, S. marcescens), Citrobacter (eg, C. freundii, C. diversus etc.), Enterobacter (eg, E. aerogenes, E. cloacae), Proteus (eg, P. mirabilis, Those having a bactericidal (including bactericidal) and / or bacteriostatic effect against bacteria of P. vulgaris etc.), Pseudomonas sp. (Eg P. aeruginosa etc.), and Morganella sp. (Eg M. morganii etc.) preferable.
 無機物(1)は、固形物であっても、液状物であってもよいが、本発明の効果により優れる点で、無機物(1)は固形物が好ましく、固形物としては、粒子(組成物中で粒子として存在するもの)がより好ましい。 The inorganic substance (1) may be a solid substance or a liquid substance, but the inorganic substance (1) is preferably a solid substance from the viewpoint of being excellent by the effect of the present invention, and the solid substance is a particle (composition Among them, those present as particles) are more preferred.
 無機物(1)は第1の金属を含有する。無機物(1)の形態としては特に制限されず、第1の金属の単体(金属単体粒子)、第1の金属のイオン、及び第1の金属を含有する無機化合物(化合物の定義:化学変化によって2種又はそれ以上の元素の単体に分けることができる純粋物質をいう)のいずれであってもよく、これらの混合物であってもよい。また、無機物(1)は、無機化合物と、第1の金属との複合体であってもよい。複合体としては、例えば、無機担体と、上記無機担体に担持された第1の金属(例えば、第1の金属の単体(金属単体粒子)、第1の金属のイオン、及び第1の金属を含有する化合物(第1の金属を含有する化合物としては、具体的には、第1の金属を含有する無機化合物が挙げられる。)のいずれであってもよい。)とを有する金属担持担体(以下、「第1金属担持無機担体」ともいう。)が挙げられる。
 なかでも、本発明の効果がより優れる観点で、無機物(1)は、第1の金属の単体(粒子)、第1の金属のイオン、第1の金属の酸化物、及び第1金属担持無機担体からなる群から選択される少なくとも1種が好ましく、第1の金属の単体(粒子)、第1の金属の酸化物、及び第1金属担持無機担体からなる群から選択される少なくとも1種がより好ましく、第1金属担持無機担体が更に好ましい。
The inorganic substance (1) contains a first metal. The form of the inorganic substance (1) is not particularly limited, and a first metal simple substance (metal simple particle), an ion of the first metal, and an inorganic compound containing the first metal (definition of the compound: by chemical change The pure substance which can be divided into two or more elements alone may be used, or a mixture thereof. In addition, the inorganic substance (1) may be a complex of an inorganic compound and a first metal. As the complex, for example, an inorganic carrier, and a first metal (for example, a first metal single particle (metal single particle), a first metal ion, and a first metal) supported on the inorganic carrier are mentioned. (A compound containing the first metal may specifically include an inorganic compound containing the first metal) (a compound containing the first metal may be any one of the compounds containing the first metal). Hereinafter, it may be referred to as "first metal-supported inorganic carrier".
Among them, the inorganic substance (1) is a simple substance (particle) of a first metal, an ion of a first metal, an oxide of a first metal, and an inorganic substance supporting a first metal, from the viewpoint that the effect of the present invention is more excellent. At least one member selected from the group consisting of carriers is preferable, and at least one member selected from the group consisting of a single metal particle (particles) of a first metal, an oxide of a first metal, and a first metal-supported inorganic carrier is More preferably, the first metal-supported inorganic support is more preferred.
 第1の金属としては、特に制限されないが、銀、銅、亜鉛、水銀、鉄、鉛、ビスマス、チタン、錫、ジルコニウム、アルミニウム、及びニッケル等が挙げられ、なかでも、銀、銅、亜鉛、アルミニウム、又はジルコニウムが好ましく、銀、銅、亜鉛、又はアルミニウムがより好ましく、銀又は銅が更に好ましく、銀が特に好ましい。
 無機物(1)としては、例えば、第1の金属の酸化物、窒化物、ハロゲン化物、シアン化物、セレン化物、硫化物、テルル化物、及び第1の金属の塩等であってもよい。
 第1の金属の塩としては、例えば、ヒ酸塩、フッ化水素塩、臭素酸塩、塩素酸塩、クロム酸塩、シアン酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩、ヘキサフルオロリン酸塩、ヨウ素酸塩、イソチオシアン酸塩、モリブデン酸塩、硝酸塩、亜硝酸塩、過塩素酸塩、過マンガン酸塩、過レニウム酸塩、リン酸塩、セレン酸塩、亜セレン酸塩、硫酸塩、亜硫酸塩、テトラフルオロほう酸塩、テトラタングステン酸塩、チオシアン酸塩、及びバナジン酸塩等が挙げられる。
The first metal is not particularly limited, and silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like can be mentioned, among which silver, copper, zinc, Aluminum or zirconium is preferred, silver, copper, zinc or aluminum is more preferred, silver or copper is more preferred, and silver is particularly preferred.
The inorganic substance (1) may be, for example, an oxide, a nitride, a halide, a cyanide, a selenide, a sulfide, a telluride, a salt of the first metal and the like of the first metal.
As the first metal salt, for example, arsenate, hydrogen fluoride salt, bromate, chlorate, chromate, cyanate, hexafluoroantimonate, hexafluoroarsenate, hexafluoro Phosphate, iodate, isothiocyanate, molybdate, nitrate, nitrite, perchlorate, permanganate, perrhenate, phosphate, selenate, selenite, sulfuric acid And salts, sulfites, tetrafluoroborates, tetratungstates, thiocyanates, vanadates and the like.
 第1金属担持無機担体の無機担体の種類としては特に制限されないが、リン酸亜鉛カルシウム、リン酸カルシウム、リン酸ジルコニウム、リン酸アルミニウム、ケイ酸カルシウム、活性アルミナ、酸化ケイ素、ケイ酸塩ガラス、ホウケイ酸塩ガラス、リン酸塩ガラス、ゼオライト(結晶性アルミノケイサン塩)、アパタイト、ヒドロキシアパタイト、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、及びハイドロタルサイト;活性炭;金属;等が挙げられる。
 なお、本明細書において、第1金属担持無機担体の無機担体を「第1の無機担体」ということがある。
The type of inorganic support of the first metal-supported inorganic support is not particularly limited, but zinc calcium phosphate, calcium phosphate, zirconium phosphate, aluminum phosphate, calcium silicate, activated alumina, silicon oxide, silicate glass, borosilicate Salt glass, phosphate glass, zeolite (crystalline aluminosilicate salt), apatite, hydroxyapatite, titanium phosphate, potassium titanate, hydrated bismuth oxide, hydrated zirconium oxide, and hydrotalcite; activated carbon; metal; etc. Be
In the present specification, the inorganic support of the first metal-supported inorganic support may be referred to as the "first inorganic support".
 無機担体としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましく、ガラスがより好ましい。ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等が挙げられ、なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。 The inorganic carrier may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline, more preferably glass. As a material which can comprise glass, a silicate, borosilicate, and phosphate etc. are mentioned, for example, Especially, a silicate is preferable and aluminum silicate is more preferable.
 上記ケイ酸アルミニウムは、天然物又は合成物であってもよい。ケイ酸アルミニウムとしては、下記式(A)で表される化合物が好ましい。
 Al・nSiO・mHO    (A)
 式(A)におけるnは6以上の正数(好ましくは、6~50)であり、mは1~20の正数である。なかでも、nが8~15で、mが3~15であることが好ましい。
The aluminum silicate may be natural or synthetic. As aluminum silicate, the compound represented by following formula (A) is preferable.
Al 2 O 3 · nSiO 2 · mH 2 O (A)
In the formula (A), n is a positive number of 6 or more (preferably, 6 to 50), and m is a positive number of 1 to 20. Among them, n is preferably 8 to 15 and m is preferably 3 to 15.
 なお、無機物(1)としては、上記無機担体のうち、銀、銅、亜鉛、水銀、鉄、鉛、ビスマス、チタン、錫、ジルコニウム、アルミニウム、及びニッケル等を含むもの(例えば、リン酸ジルコニウム及びケイ酸アルミニウム等)も使用できる。 Among the above-mentioned inorganic carriers, inorganic substances (1) include silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like (for example, zirconium phosphate and the like) Aluminum silicate etc. can also be used.
 第1金属担持無機担体としては、第1の金属が担持された、金属担持ゼオライト、金属担持アパタイト、金属担持ガラス、金属担持リン酸ジルコニウム、又は金属担持ケイ酸カルシウムが好ましく、金属担持ガラスがより好ましい。 As the first metal-supported inorganic support, metal-supported zeolite, metal-supported apatite, metal-supported glass, metal-supported zirconium phosphate, or metal-supported calcium silicate, on which the first metal is supported, is preferable, and metal-supported glass is more preferable. preferable.
 無機物(1)が粒子である場合、無機物(1)の粒子の平均粒径としては、特に制限されないが、一般に、0.01μm以上であり、0.2μm以上が好ましい。また、その上限は特に制限されないが、例えば10μm以下が挙げられ、5.0μm以下が好ましい。なかでも、3.0μm以下が好ましく、1.5μm以下がより好ましく、1.2μm以下が更に好ましく、0.9μm以下がより更に好ましく、0.6μm以下が特に好ましく、0.5μm以下が最も好ましく、0.3μm以下がより最も好ましい。
 なお、沈降性や組成物の透明性を考慮する場合、無機物(1)の平均粒径は小さい方が分散性が向上し、この結果として組成物の透明性が高くなる傾向にある。組成物の透明性がより優れる点で、無機物(1)の平均粒径は、0.5μm以下が好ましく、0.4μm以下がより好ましい。
When the inorganic substance (1) is a particle, the average particle diameter of the particles of the inorganic substance (1) is not particularly limited, but in general, it is 0.01 μm or more, preferably 0.2 μm or more. Further, the upper limit thereof is not particularly limited, and for example, 10 μm or less is mentioned, and 5.0 μm or less is preferable. Among them, 3.0 μm or less is preferable, 1.5 μm or less is more preferable, 1.2 μm or less is more preferable, 0.9 μm or less is further more preferable, 0.6 μm or less is particularly preferable, 0.5 μm or less is most preferable And 0.3 μm or less is more preferable.
When the sedimentation and the transparency of the composition are taken into consideration, the smaller the average particle diameter of the inorganic substance (1), the better the dispersibility, and as a result, the transparency of the composition tends to be higher. In the point which the transparency of a composition is more excellent, 0.5 micrometer or less is preferable and, as for the average particle diameter of inorganic substance (1), 0.4 micrometer or less is more preferable.
 無機物(1)の粒子の平均粒径は、電子顕微鏡を用いて観察することにより測定できる。具体的には、上記平均粒径は、無機物(1)の粒子について、一次粒子及び二次粒子(なお、「二次粒子」とは、一次粒子同士が融合あるいは接触して構成される集合体と定義する。)の直径を電子顕微鏡の画像から計測し、全粒子数の中の最も直径が小さい側の粒子数5%と、最も直径が大きい側の粒子数5%を除いた、90%の範囲の粒子の直径を平均した値である。つまり、平均粒径は、一次粒子及び二次粒子から求められる値である。また、直径とは、粒子の外接円相当直径のことをいう。
 なお、無機物(1)の粒子の粒子形状に大きく違いがない場合、堀場製作所社製のレーザー回折/散乱式粒度分布測定装置を用いて50%体積累積径(D50)を3回測定して、3回測定した値の平均値を平均粒径として代用してもよい。
The average particle size of the particles of the inorganic substance (1) can be measured by observation using an electron microscope. Specifically, for the particles of the inorganic substance (1), the above-mentioned average particle diameter is a primary particle and a secondary particle (Note that “secondary particle” is an aggregate formed by fusion or contact of primary particles with each other) 90% of the total number of particles excluding the 5% of the number of particles on the small diameter side and the 5% of the particles on the large diameter side of the total particle number. The average particle diameter in the range of That is, the average particle size is a value determined from primary particles and secondary particles. Moreover, a diameter means the circumscribed circle equivalent diameter of particle | grains.
In addition, when there is no big difference in the particle shape of the particles of the inorganic substance (1), 50% volume cumulative diameter (D50) is measured three times using a laser diffraction / scattering type particle size distribution analyzer manufactured by Horiba, Ltd. The average value of the values measured three times may be substituted as the average particle diameter.
 無機物(1)の平均粒径が上記数値範囲である場合、後述する親水性バインダーを含有する組成物を用いて形成された膜又は修飾基材において、無機物(1)が親水性バインダーから露出した状態で固定化され易い。このため、例えば、無機物(1)が金属担持担体である場合、金属が担体からより放出され易くなり、本発明の効果がより優れる。 When the average particle diameter of the inorganic substance (1) is in the above numerical range, the inorganic substance (1) is exposed from the hydrophilic binder in a film or a modified substrate formed using a composition containing a hydrophilic binder described later It is easy to be fixed in the state. For this reason, for example, when the inorganic substance (1) is a metal-supported carrier, the metal is more easily released from the carrier, and the effect of the present invention is more excellent.
 無機物(1)の形成方法としては、ブレークダウン法(例えば、粉砕法)及びビルドアップ法のいずれでもよい。
 無機物(1)の粉砕方法としては、例えば、乾式粉砕及び湿式粉砕等が挙げられる。乾式粉砕においては、例えば、乳鉢、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、及びビーズミル等が適宜用いられる。また、湿式粉砕においては、各種ボールミル、高速回転粉砕機、ジェットミル、ビーズミル、超音波ホモジナイザー、及び高圧ホモジナイザー等が適宜用いられる。例えば、ビーズミルにおいては、メディアとなるビーズの径、種類、及び混合量等を調節することで平均粒径を制御できる。
As a formation method of an inorganic substance (1), any of a breakdown method (for example, a grinding method) and a buildup method may be used.
Examples of the method of grinding the inorganic substance (1) include dry grinding and wet grinding. In dry grinding, for example, a mortar, a jet mill, a hammer mill, a pin mill, a rotary mill, a vibration mill, a planetary mill, and a bead mill are suitably used. In wet grinding, various ball mills, high-speed rotary grinders, jet mills, bead mills, ultrasonic homogenizers, high-pressure homogenizers, and the like are suitably used. For example, in a bead mill, the average particle size can be controlled by adjusting the diameter, type, and mixing amount of beads serving as media.
 ビルドアップ法とは、例えば、水酸化物及び有機金属物等の原料成分と任意成分とを混合して反応を実施することにより、無機物(1)を直接形成する方法である。
 ビルドアップ法としては、ポッド内に原料成分を添加して撹拌混合するバッチ式でもよいし、原料成分を流路中で連続的に混合して反応させる方式(例えば、マイクロリアクター、又は2重管混合方式)でもよいが、後者が好ましい。
The buildup method is a method of directly forming the inorganic substance (1) by carrying out a reaction by mixing raw material components such as a hydroxide and an organic metal and the like, for example.
As a build-up method, a batch type may be used in which raw material components are added to the pod and stirred and mixed, or a method in which raw material components are continuously mixed and reacted in a flow path (for example, microreactor or double tube Although the mixing method may be used, the latter is preferable.
 無機物(1)は1種を単独で用いても、2種以上を併用してもよい。
 上記組成物中における無機物(1)の含有量(無機物(1)が複数含まれる場合はその合計含有量)は特に制限されないが、組成物の全固形分に対して、0.001~55質量%が好ましく、0.001~50質量%がより好ましく、0.01~40質量%が更に好ましい。
The inorganic substance (1) may be used alone or in combination of two or more.
The content of the inorganic substance (1) in the composition (the total content of the inorganic substance (1) in the case where a plurality of the inorganic substances (1) is contained) is not particularly limited, but 0.001 to 55 mass with respect to the total solid content of the composition % Is preferable, 0.001 to 50% by mass is more preferable, and 0.01 to 40% by mass is more preferable.
 また、無機物(1)中における金属の含有量は特に制限されないが、例えば、無機物(1)が金属担持担体の場合、金属の含有量は、金属担持担体全質量に対して、0.001~30質量%が好ましく、0.01~10質量%がより好ましい。なお、組成物中に無機物(1)が複数含まれる場合、金属の合計含有量が上記数値範囲であることが好ましい。 Further, the content of the metal in the inorganic substance (1) is not particularly limited, but, for example, when the inorganic substance (1) is a metal-supported carrier, the content of the metal is 0.001 to 30% by mass is preferable, and 0.01 to 10% by mass is more preferable. In addition, when multiple inorganic substances (1) are contained in a composition, it is preferable that total content of a metal is the said numerical range.
<第2金属含有物>
 上記組成物は、無機物(2)、及び第2の金属を含有する有機物からなる群から選択される少なくとも1種(第2金属含有物)を含有する。
<Second metal inclusions>
The composition contains at least one selected from the group consisting of an inorganic substance (2) and an organic substance containing a second metal (a second metal-containing substance).
 組成物中における第2金属含有物の含有量としては特に制限されないが、0.01~50質量%が好ましく、0.01~40質量%が好ましく、0.1~35質量%がより好ましく、0.1~30質量%が更に好ましく、0.1~10質量%が特に好ましい。
 第2金属含有物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の第2金属含有物を併用する場合には、合計含有量が上記範囲内であることが好ましい。
The content of the second metal-containing material in the composition is not particularly limited, but is preferably 0.01 to 50% by mass, preferably 0.01 to 40% by mass, and more preferably 0.1 to 35% by mass. 0.1 to 30% by mass is more preferable, and 0.1 to 10% by mass is particularly preferable.
The second metal-containing material may be used alone or in combination of two or more. When using 2 or more types of 2nd metal containing things together, it is preferable that total content is in the said range.
 第2の金属は、第1の金属とは異なる。ここで、「異なる」とは、金属元素の種類が異なることを意味する。 The second metal is different from the first metal. Here, "different" means that the types of metal elements are different.
 第2の金属としては、特に制限されないが、銀、銅、亜鉛、水銀、鉄、鉛、ビスマス、チタン、錫、ジルコニウム、アルミニウム、及びニッケル等が挙げられ、銀、銅、亜鉛、アルミニウム、又はジルコニウムが好ましく、銀、銅、亜鉛、又はアルミニウムがより好ましく、銅が更に好ましい。 The second metal is not particularly limited, and silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like can be mentioned, and silver, copper, zinc, aluminum or Zirconium is preferred, silver, copper, zinc or aluminum is more preferred, and copper is even more preferred.
 無機物(2)の形態としては特に制限されず、第2の金属の単体(粒子)、第2金属のイオン、又は第2の金属を含有する無機化合物のいずれであってもよく、これらの混合物であってもよい。無機物(2)は、無機化合物と、第2の金属との複合体であってもよい。複合体としては、例えば、無機担体と、上記無機担体に担持された第2の金属(第2の金属の単体(金属単体粒子)、第2の金属のイオン、及び第2の金属を含有する化合物(第2の金属を含有する化合物としては、具体的には、第2の金属を含有する無機化合物が挙げられる。)のいずれであってもよい。)とを有する金属担持担体(以下、「第2金属担持無機担体」ともいう。)が挙げられる。
 無機物(2)は、本発明の効果により優れる観点で、第2の金属の単体(粒子)、第2の金属の酸化物、及び第2金属担持無機担体からなる群から選択される少なくとも1種がより好ましく、第2金属担持無機担体が更に好ましい。
The form of the inorganic substance (2) is not particularly limited, and may be any of a single metal (particle) of a second metal, an ion of a second metal, or an inorganic compound containing a second metal, and a mixture thereof It may be The inorganic substance (2) may be a complex of an inorganic compound and a second metal. The complex includes, for example, an inorganic carrier, and a second metal (second metal single particle (metal single particle) supported on the inorganic carrier, ions of the second metal, and a second metal. A metal supported carrier (hereinafter referred to as “any of the compounds (the compound containing the second metal may specifically include an inorganic compound containing the second metal)) Also referred to as "second metal-supported inorganic carrier".
The inorganic substance (2) is at least one selected from the group consisting of a single metal (particle) of a second metal, an oxide of a second metal, and a second metal-supported inorganic carrier in the viewpoint of being superior by the effect of the present invention Is more preferable, and the second metal-supported inorganic carrier is more preferable.
 第2金属担持無機担体の無機担体としては、第1金属担持無機担体の無機担体として説明したものと同様のものが使用できる。なお、本明細書において、第2金属担持無機担体の無機担体を「第2の無機担体」ということがある。 As the inorganic carrier of the second metal-supporting inorganic carrier, the same one as the inorganic carrier of the first metal-supporting inorganic carrier can be used. In the present specification, the inorganic support of the second metal-supported inorganic support may be referred to as "second inorganic support".
 無機担体としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましく、ガラスがより好ましい。ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等が挙げられ、なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。 The inorganic carrier may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline, more preferably glass. As a material which can comprise glass, a silicate, borosilicate, and phosphate etc. are mentioned, for example, Especially, a silicate is preferable and aluminum silicate is more preferable.
 第2金属担持無機担体の具体例としては、第2金属が担持された、金属担持ゼオライト、金属担持アパタイト、金属担持ガラス、金属担持リン酸ジルコニウム、又は金属担持ケイ酸カルシウムが好ましく、金属担持ガラスがより好ましい。 Specific examples of the second metal-supporting inorganic support are preferably metal-supporting zeolite, metal-supporting apatite, metal-supporting glass, metal-supporting zirconium phosphate, or metal-supporting calcium silicate supporting a second metal, metal-supporting glass Is more preferred.
 なお、無機物(2)として、上述した無機担体のうち、銀、銅、亜鉛、水銀、鉄、鉛、ビスマス、チタン、錫、ジルコニウム、アルミニウム、及びニッケル等を含むもの(例えば、リン酸ジルコニウム及びケイ酸アルミニウム等)も使用できる。 Among the above-mentioned inorganic carriers, those containing silver, copper, zinc, mercury, iron, lead, bismuth, titanium, tin, zirconium, aluminum, nickel and the like as the inorganic substance (2) (for example, zirconium phosphate and the like) Aluminum silicate etc. can also be used.
 第2の金属を含有する有機物としては、例えば、第2の金属の塩が挙げられる。第2の金属の塩としては、酢酸塩、アセチルアセトン酸塩、金属アセチリド、(cis,cis-1,5-シクロオクタジエン)-1,1,1,5,5,5-ヘキサフルオロアセチルアセトン酸塩、ジエチルジチオカルバミン酸塩、7,7-ジメチル-1,1,1,2,2,3,3-ヘプタフルオロ-4,6-オクタンジオン酸塩、乳酸塩、シュウ酸塩、ペルフルオロ酪酸塩、ペルフルオロプロピオン酸塩、ピクリン酸塩、プロピオン酸塩、スルファジアジン塩、p-トルエンスルホン酸塩、トリフルオロメタンスルホン酸塩、及びトリフルオロ酢酸塩等が挙げられる。 Examples of the second metal-containing organic substance include salts of the second metal. As a second metal salt, acetate, acetylacetonate, metal acetylide, (cis, cis-1,5-cyclooctadiene) -1,1,1,5,5,5-hexafluoroacetylacetonate Diethyldithiocarbamate, 7,7-dimethyl-1,1,1,2,2,3,3-heptafluoro-4,6-octanedionate, lactate, oxalate, perfluorobutyrate, perfluoro Propionate, picrate, propionate, sulfadiazine salt, p-toluenesulfonate, trifluoromethanesulfonate, trifluoroacetate and the like can be mentioned.
 また、第2の金属を含有する有機物は、有機化合物と、第2の金属との複合体であってもよい。複合体としては、例えば、有機担体と、上記有機担体に担持された第2の金属(第2の金属の単体(金属単体粒子)、第2の金属のイオン、及び第2の金属を含有する化合物(第2の金属を含有する化合物としては、具体的には、第2の金属を含有する無機化合物が挙げられる。)のいずれであってもよい。)とを有する金属担持担体、又は第2の金属を含む無機化合物と上記無機化合物を覆うように配置された有機化合物とを含む有機無機複合体が好ましく、なかでも、有機担体と有機担体に担持された第2の金属とを有する金属担持有機担体(以下、「第2金属担持有機担体」ともいう。)がより好ましい。
 第2金属担持有機担体の有機担体としては、例えばポリマー粒子が挙げられる。
The organic substance containing the second metal may be a complex of an organic compound and the second metal. The complex contains, for example, an organic carrier, and a second metal (second metal single particle (metal single particle) supported on the organic carrier, ions of the second metal, and a second metal. A metal-supported carrier comprising any of the compounds (specifically, the second metal-containing compound includes an inorganic compound containing the second metal), or An organic-inorganic composite comprising an inorganic compound containing a metal of 2 and an organic compound arranged so as to cover the above-mentioned inorganic compound is preferable, and in particular, a metal having an organic carrier and a second metal supported on the organic carrier A supported organic carrier (hereinafter also referred to as "second metal-supported organic carrier") is more preferable.
Examples of the organic carrier of the second metal-supported organic carrier include polymer particles.
 第2金属担持有機担体の具体例としては、例えば、銅粒子及び銅酸化物粒子からなる群から選択される第2金属が担持されたポリマー粒子(以下、「銅担持ポリマー」ともいう。)が挙げられる。
 上記銅粒子及び上記銅酸化物粒子の平均粒径は、本発明の効果がより優れる点で、90nm以下が好ましく、70nm以下がより好ましく、50nm以下が更に好ましい。下限は特に制限されないが、例えば、1nm以上である。
 上記銅粒子及び上記銅酸化物粒子の平均粒径は、既に説明した無機物(1)の粒子の平均粒径の測定方法を使用できる。
 なお、電子顕微鏡の画像から、銅担持ポリマー粒子中の銅粒子又は酸化銅粒子と、銅粒子又は酸化銅粒子のみを分散した状態とで、粒子形状に大きな変化がない場合、銅粒子又は酸化銅粒子のみの分散液を用いた動的光散乱による測定値で平均粒径を代用してもよい。この場合、平均粒径は、レーザー回折による粒径分布測定機等を用いて動的光散乱により測定できる。
As a specific example of the second metal-supporting organic support, for example, a polymer particle supporting a second metal selected from the group consisting of copper particles and copper oxide particles (hereinafter, also referred to as “copper-supporting polymer”) is It can be mentioned.
The average particle diameter of the copper particles and the copper oxide particles is preferably 90 nm or less, more preferably 70 nm or less, and still more preferably 50 nm or less, in that the effect of the present invention is more excellent. The lower limit is not particularly limited, and is, for example, 1 nm or more.
The average particle diameter of the said copper particle and said copper oxide particle can use the measuring method of the average particle diameter of the particle | grains of the inorganic substance (1) demonstrated already.
From the image of the electron microscope, when there is no significant change in the particle shape in the state in which the copper particles or copper oxide particles in the copper-supporting polymer particles and the copper particles or copper oxide particles alone are dispersed, The average particle size may be substituted by a measurement value by dynamic light scattering using a dispersion of particles only. In this case, the average particle size can be measured by dynamic light scattering using a particle size distribution measuring device by laser diffraction or the like.
 また、上記銅担持ポリマー粒子において、上記銅粒子及び上記銅酸化物粒子の平均一次粒径は、100nm未満が好ましい。下限は特に制限されないが、例えば、1nm以上である。上記銅粒子及び上記銅酸化物粒子の平均一次粒径は、本発明の効果がより優れる点で、5~90nmがより好ましく、5~50nmが更に好ましい。
 なお、「平均一次粒径」とは、各一次粒子の直径を電子顕微鏡の画像から計測し、全一次粒子数の中の最も直径が小さい側の一次粒子数5%と、最も直径が大きい側の一次粒子数5%を除いた、90%の範囲の一次粒子の直径を平均した値である。ここで直径とは、一次粒子の外接円相当直径のことをいう。
In the copper-supporting polymer particles, the average primary particle diameter of the copper particles and the copper oxide particles is preferably less than 100 nm. The lower limit is not particularly limited, and is, for example, 1 nm or more. The average primary particle diameter of the copper particles and the copper oxide particles is more preferably 5 to 90 nm, and still more preferably 5 to 50 nm, in that the effects of the present invention are more excellent.
The “average primary particle size” means that the diameter of each primary particle is measured from the image of the electron microscope, and the number of primary particles on the smallest diameter side among the total number of primary particles is 5% and the diameter is the largest. It is a value obtained by averaging the diameters of primary particles in the range of 90% excluding the primary particle number 5%. Here, the diameter means the circumscribed circle equivalent diameter of primary particles.
 また、上記銅担持ポリマー粒子において、上記ポリマー粒子の平均粒径は、100~1000nmが好ましく、100~800nmがより好ましい。
 ポリマー粒子の平均粒径は、既に説明した無機物(1)の粒子の平均粒径の測定方法を使用できる。
 上記ポリマー粒子を構成する樹脂材料としては特に制限されず、なかでも、ポリウレタン樹脂、(メタ)アクリル樹脂、ポリスチレン樹脂、ポリスチレン-(メタ)アクリル共重合樹脂、又はポリオレフィン樹脂が好ましい。ポリマー粒子としては、例えば、日本触媒製 エポスター050W及び100W等を使用できる。
In the copper-supporting polymer particles, the average particle diameter of the polymer particles is preferably 100 to 1000 nm, and more preferably 100 to 800 nm.
The average particle diameter of the polymer particles can be measured using the method of measuring the average particle diameter of the particles of the inorganic substance (1) described above.
The resin material constituting the polymer particles is not particularly limited, and among them, polyurethane resin, (meth) acrylic resin, polystyrene resin, polystyrene- (meth) acrylic copolymer resin, or polyolefin resin is preferable. As the polymer particles, for example, EPOPER 050W and 100W manufactured by Nippon Shokubai can be used.
 銅担持ポリマー粒子において、ポリマー粒子と銅粒子及び銅酸化物粒子との比(ポリマー粒子の質量/銅粒子及び銅酸化物粒子の合計質量)は、特に制限されないが、抗菌性がより優れるという点で、質量比で、例えば、1/0.00001~1/100000の範囲が好ましく、1/0.0001~1/10000の範囲がより好ましい。 In the copper-supported polymer particles, the ratio of polymer particles to copper particles and copper oxide particles (mass of polymer particles / total mass of copper particles and copper oxide particles) is not particularly limited, but it is more excellent in antibacterial properties. In terms of mass ratio, for example, the range of 1 / 0.00001 to 1 / 10,000 is preferable, and the range of 1 / 0.0001 to 1 / 10,000 is more preferable.
 また、銅担持ポリマー粒子は、担体であるポリマー粒子の表面上の少なくとも一部に、シラン化合物からなる被膜が形成されていてもよい。シラン化合物としては、例えば、後述するシリケート系化合物を縮合して得られる。 In addition, the copper-supporting polymer particles may have a coating formed of a silane compound formed on at least a part of the surface of the polymer particles as a carrier. As a silane compound, it is obtained by condensing the silicate type compound mentioned later, for example.
 第2金属含有物は、固形物であっても、液状物であってもよいが、本発明の効果により優れる点で、第2金属含有物は固形物が好ましく、固形物としては、粒子(組成物中で粒子として存在するもの)が好ましい。 The second metal-containing substance may be a solid or liquid, but the second metal-containing substance is preferably a solid, and particles (as solid) are preferable because they are superior by the effect of the present invention. Those which are present as particles in the composition are preferred.
 第2金属含有物としては、なかでも、無機物(2)及び第2金属担持有機担体が好ましい。第2金属担持無機担体又は第2金属担持有機担体がより好ましく、第2金属担持無機担体が更に好ましい。 Among them, as the second metal-containing material, the inorganic material (2) and the second metal-supporting organic carrier are preferable. The second metal-supported inorganic support or the second metal-supported organic support is more preferable, and the second metal-supported inorganic support is more preferable.
 第2金属含有物が粒子である場合、第2金属含有物の平均粒径としては、特に制限されないが、例えば、4.0μm以下であり、2.0μm以下が好ましく、1.5μm以下がより好ましい。第2金属含有物の平均粒径は、なかでも、1.2μm以下が好ましく、1.0μm以下がより好ましく、0.9μm以下が更に好ましく、0.7μm以下がより更に好ましく、0.6μm以下が特に好ましく、0.5μm以下が最も好ましく、0.3μm以下がより最も好ましく、0.2μm以下が更に最も好ましく、0.15μm以下が特に最も好ましい。また、下限としては、0.01μm以上が好ましく、0.10μm以上がより好ましい。
 なお、第2金属含有物の粒子の平均粒径の測定及び調整は、既に説明した無機物(1)の粒子の平均粒径の測定及び調整方法を使用できる。
When the second metal-containing material is a particle, the average particle diameter of the second metal-containing material is not particularly limited, but is, for example, 4.0 μm or less, preferably 2.0 μm or less, and more preferably 1.5 μm or less preferable. Above all, the average particle diameter of the second metal-containing material is preferably 1.2 μm or less, more preferably 1.0 μm or less, still more preferably 0.9 μm or less, still more preferably 0.7 μm or less, 0.6 μm or less Is particularly preferably 0.5 μm or less, more preferably 0.3 μm or less, still more preferably 0.2 μm or less, and most preferably 0.15 μm or less. The lower limit is preferably 0.01 μm or more, more preferably 0.10 μm or more.
In addition, the measurement and adjustment method of the average particle diameter of the particle | grains of the inorganic substance (1) already demonstrated can be used for measurement and adjustment of the average particle diameter of the particle | grains of a 2nd metal inclusion.
 第2金属含有物が粒子である場合、そのアスペクト比は特に制限されないが、1~40が好ましく、2~20がより好ましい。
 上記アスペクト比は、以下の方法にて算出される。まず、電子顕微鏡を用いて、第2金属含有物に外接する平行な2つの直線のうち、直線間距離が最大となる平行な2つの直線を選択し、この平行な2つの直線間の距離を第2金属含有物の長軸とする。次に、長軸に直交し、かつ、第2金属含有物に外接する平行な2つの直線のうち、直線間距離が最小となる平行な2つの直線を選択し、この平行な2つの直線間の距離を第2金属含有物の短軸とする。得られた短軸に対する著軸の比(長軸/短軸)を特定アスペクト比とする。この操作を任意の100個以上の第2金属含有物について行い、得られた特定アスペクト比を算術平均することにより、上記アスペクト比が得られる。
When the second metal-containing material is a particle, the aspect ratio is not particularly limited, but is preferably 1 to 40, and more preferably 2 to 20.
The aspect ratio is calculated by the following method. First, using an electron microscope, of two parallel straight lines circumscribing the second metal inclusion, select two parallel straight lines with the largest distance between straight lines, and then select the distance between the two parallel straight lines. The major axis of the second metal inclusions. Next, among two parallel straight lines that are orthogonal to the major axis and circumscribed to the second metal inclusion, two parallel straight lines with the smallest distance between straight lines are selected, and between the two parallel straight lines Of the second metal inclusion as the minor axis of the second metal inclusion. The ratio of the major axis to the obtained minor axis (major axis / minor axis) is taken as the specific aspect ratio. The above aspect ratio can be obtained by performing this operation on arbitrary 100 or more second metal-containing substances and arithmetically averaging the obtained specific aspect ratios.
 上記組成物の好適形態の一例としては、上記第2金属含有物として無機物(2)を含み、上記無機物(1)及び上記無機物(2)がいずれも粒子であり、無機物(1)及び無機物(2)のいずれについても平均粒径が1.5μm以下であることが好ましく、無機物(1)及び無機物(2)のいずれも平均粒径が1.2μm以下であることがより好ましく、無機物(1)及び無機物(2)のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.9μm以下であることが更に好ましく、無機物(1)及び無機物(2)のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、無機物(1)及び無機物(2)のいずれについても平均粒径が0.9μm以下であることが特に好ましく、無機物(1)及び無機物(2)のいずれの平均粒径も0.5μm以下であることが特により好ましく、無機物(1)及び無機物(2)のいずれか一方の平均粒径が0.5μm以下であり、且つ他方の平均粒径が0.3μm以下であることが最も好ましく、無機物(1)及び無機物(2)のいずれの平均粒径も0.3μm以下であることがより最も好ましい。 As an example of the suitable form of the above-mentioned composition, an inorganic substance (2) is included as the 2nd metal content thing of the above-mentioned, and the above-mentioned inorganic substance (1) and the above-mentioned inorganic substance (2) are particles. The average particle size is preferably 1.5 μm or less for any of the above 2), and it is more preferable that the average particle size is 1.2 μm or less for both the inorganic substance (1) and the inorganic substance (2). More preferably the average particle diameter of either one of the inorganic substance (2) or less is 1.2 μm or less and the average particle diameter of the other is 0.9 μm or less, and the inorganic substance (1) and the inorganic substance (2) Either one of the average particle sizes is 1.2 μm or less, and the other is 0.6 μm or less, or the average particle size of either the inorganic substance (1) or the inorganic substance (2) is 0 .9 μm or less is particularly preferable More preferably, the average particle size of either the inorganic substance (1) or the inorganic substance (2) is 0.5 μm or less, and the average particle size of either the inorganic substance (1) or the inorganic substance (2) is 0. It is most preferable that the average particle diameter is 5 μm or less, and the other is 0.3 μm or less, and it is more preferable that the average particle diameter of both the inorganic substance (1) and the inorganic substance (2) is 0.3 μm or less .
 上記組成物の好適形態の他の一例としては、上記無機物(1)として銀含有物、上記第2金属含有物として銅含有物を含む形態が挙げられる。上記組成物中、消臭性及び抗菌性がより優れる点で、銀含有物中の銀の含有量に対する銅含有物中の銅の含有量の質量比(銅含有物中の銅の含有量/銀含有物中の銀の含有量)は、例えば800以下が好ましく、350以下がより好ましく、300以下が更に好ましく、0.1以上が好ましく、5.0以上がより好ましい。 As another example of a suitable form of the above-mentioned composition, a form containing a silver content thing as the above-mentioned inorganic substance (1), and a copper content thing as the above-mentioned 2nd metal content thing is mentioned. In the above composition, the mass ratio of the content of copper in the copper-containing material to the content of silver in the silver-containing material at the point where the deodorizing property and the antibacterial property are more excellent (content of copper in copper-containing material 800 or less is preferable, 350 or less is more preferable, 300 or less is still more preferable, 0.1 or more is preferable, and 5.0 or more is more preferable, for example.
 上記組成物が、上記無機物(1)として銀含有物、第2金属含有物として銅含有物を含む場合、消臭性及び抗菌性の観点から、銀含有物及び銅含有物がいずれも粒子であり、銀含有物及び銅含有物のいずれについても平均粒径が1.5μm以下であることが好ましく、銀含有物及び銅含有物のいずれも平均粒径が1.2μm以下であることがより好ましく、銀含有物及び銅含有物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.9μm以下であることが更に好ましく、銀含有物及び銅含有物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、銀含有物及び銅含有物のいずれについても平均粒径が0.9μm以下であることが特に好ましく、銀含有物及び銅含有物のいずれの平均粒径も0.5μm以下であることが特により好ましく、銀含有物及び銅含有物のいずれか一方の平均粒径が0.5μm以下であり、且つ他方の平均粒径が0.3μm以下であることが最も好ましく、銀含有物及び銅含有物のいずれの平均粒径も0.3μm以下であることがより最も好ましい。
 上記形態において、上記無機物(1)としての銀含有物は、第1の無機担体と上記第1の無機担体に担持された銀とを有する銀担持無機担体が好ましく、銀担持ガラスがより好ましい。また、第2金属含有物としての銅含有物は、第2の無機担体と上記第2の無機担体に担持された銅とを有する銅担持無機担体、及び、有機担体と上記有機担体に担持された銅とを有する銅担持有機担体からなる群から選択される1種以上が好ましく、第2の無機担体と上記第2の無機担体に担持された銅とを有する銅担持無機担体がより好ましい。
When the composition contains a silver-containing material as the inorganic substance (1) and a copper-containing material as the second metal-containing material, both the silver-containing material and the copper-containing material are in the form of particles from the viewpoint of deodorant and antibacterial properties. The average particle diameter is preferably 1.5 μm or less for both the silver-containing material and the copper-containing material, and it is more preferable that the average particle diameter is 1.2 μm or less for both the silver-containing material and the copper-containing material. More preferably, the average particle diameter of either the silver-containing material or the copper-containing material is 1.2 μm or less, and the other average particle diameter is 0.9 μm or less, and the silver-containing material and the copper-containing material The average particle diameter of either one is 1.2 μm or less, and the other average particle diameter is 0.6 μm or less, or the average particle diameter of either of the silver-containing material and the copper-containing material is 0. It is particularly preferable that the thickness is 9 μm or less, and it is preferable to contain silver and copper. It is more preferable that the average particle size of any of the objects is particularly 0.5 .mu.m or less, and the average particle size of any one of the silver-containing material and the copper-containing material is 0.5 .mu.m or less and the other It is most preferable that the average particle diameter is 0.3 μm or less, and most preferable that the average particle diameter of any of the silver-containing material and the copper-containing material is 0.3 μm or less.
In the above embodiment, the silver-containing inorganic carrier having the first inorganic carrier and the silver supported on the first inorganic carrier is preferable, and the silver-containing glass as the inorganic material (1) is more preferable. In addition, a copper-containing material as the second metal-containing material is supported by a copper-supporting inorganic carrier having a second inorganic carrier and copper supported by the second inorganic carrier, and an organic carrier and the organic carrier. One or more selected from the group consisting of copper-supporting organic supports having copper and copper are preferred, and copper-supporting inorganic supports having a second inorganic support and copper supported on the second inorganic support are more preferred.
 また、上記組成物の好適形態の他の一例としては、上記無機物(1)として銀担持無機担体を含み、第2金属含有物として、銅含有物(好ましくは、第2の無機担体と上記第2の無機担体に担持された銅とを有する銅担持無機担体、及び、有機担体と上記有機担体に担持された銅とを有する銅担持有機担体からなる群から選択される1種以上であり、より好ましくは、第2の無機担体と上記第2の無機担体に担持された銅とを有する銅担持無機担体)及びリン酸ジルコニウムを含む形態が挙げられる。 Moreover, as another example of the preferred embodiment of the above composition, a silver-supporting inorganic carrier is contained as the inorganic substance (1), and a copper-containing substance (preferably, the second inorganic carrier and the above-mentioned second metal-containing substance). And at least one selected from the group consisting of a copper-supported inorganic carrier having copper supported on the inorganic carrier of 2 and a copper-supported organic carrier having an organic carrier and copper supported on the organic carrier, More preferably, a form containing a copper-supported inorganic carrier having a second inorganic carrier and copper supported on the second inorganic carrier and zirconium phosphate can be mentioned.
 また、上記組成物の好適形態の一例としては、上記無機物(1)が銀担持無機担体であり、第2金属含有物がリン酸ジルコニウム又はリン酸塩ガラスである形態が挙げられる。
 上記形態の場合、上記無機物(1)の平均粒径は、0.01μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上が更に好ましく、0.5μm以上が特に好ましく、10μm以下が好ましく、5.0μm以下がより好ましい。また、第2金属含有物の平均粒径は4.0μm以下が好ましく、2.0μm以下がより好ましく、1.5μm以下が更に好ましく、1.0μm以下が特に好ましく、0.5μm以下が最も好ましく、0.01μm以上が好ましく、0.1μm以上がより好ましい。なかでも、無機物(1)及び第2金属含有物の平均粒径がいずれも0.9μm以下(好ましくは0.6μm以下であり、より好ましくは0.5μm以下である)ことが好ましい。
Moreover, as an example of the suitable form of the said composition, the said inorganic substance (1) is a silver carrying | support inorganic support | carrier, and the form whose 2nd metal content thing is a zirconium phosphate or phosphate glass is mentioned.
In the case of the above embodiment, the average particle diameter of the inorganic substance (1) is preferably 0.01 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more, particularly preferably 0.5 μm or more, and 10 μm or less Preferably, 5.0 μm or less is more preferable. The average particle diameter of the second metal-containing material is preferably 4.0 μm or less, more preferably 2.0 μm or less, still more preferably 1.5 μm or less, particularly preferably 1.0 μm or less, and most preferably 0.5 μm or less 0.01 μm or more is preferable, and 0.1 μm or more is more preferable. Among them, the average particle diameter of the inorganic substance (1) and the second metal-containing material is preferably 0.9 μm or less (preferably 0.6 μm or less, more preferably 0.5 μm or less).
 また、上記組成物の好適形態の一例としては、上記無機物(1)がリン酸ジルコニウム又はリン酸塩ガラスであり、第2金属含有物が、銅含有物(好ましくは、第2の無機担体と上記第2の無機担体に担持された銅とを有する銅担持無機担体、及び、有機担体と上記有機担体に担持された銅とを有する銅担持有機担体からなる群から選択される1種以上であり、より好ましくは、第2の無機担体と上記第2の無機担体に担持された銅とを有する銅担持無機担体)である形態が挙げられる。
 上記形態の場合、上記無機物(1)の平均粒径は、4.0μm以下が好ましく、2.0μm以下がより好ましく、1.5μm以下が更に好ましく、1.0μm以下が特に好ましく、0.5μm以下が最も好ましく、0.01μm以上が好ましく、0.1μm以上がより好ましい。また、第2金属含有物の平均粒径は0.01μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上が更に好ましく、0.5μm以上が特に好ましく、10μm以下が好ましく、5.0μm以下がより好ましい。なかでも、無機物(1)及び第2金属含有物の平均粒径がいずれも0.9μm以下(好ましくは0.6μm以下であり、より好ましくは0.5μm以下である)ことが好ましい。
Moreover, as an example of the suitable form of the said composition, the said inorganic substance (1) is a zirconium phosphate or phosphate glass, a 2nd metal containing material is a copper containing material (preferably, 2nd inorganic support | carrier, And at least one selected from the group consisting of a copper-supporting inorganic support having copper supported on the second inorganic support, and a copper-supporting organic support having an organic support and copper supported on the organic support. More preferably, the form which is a copper carrying | support inorganic support | carrier which has the 2nd inorganic support | carrier and the copper carry | supported by the said 2nd inorganic support | carrier is mentioned.
In the case of the above embodiment, the average particle diameter of the inorganic substance (1) is preferably 4.0 μm or less, more preferably 2.0 μm or less, still more preferably 1.5 μm or less, particularly preferably 1.0 μm or less The following is most preferable, 0.01 μm or more is preferable, and 0.1 μm or more is more preferable. In addition, the average particle diameter of the second metal-containing material is preferably 0.01 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more, particularly preferably 0.5 μm or more, and preferably 10 μm or less. 0 μm or less is more preferable. Among them, the average particle diameter of the inorganic substance (1) and the second metal-containing material is preferably 0.9 μm or less (preferably 0.6 μm or less, more preferably 0.5 μm or less).
<親水性成分>
 上記組成物は、親水性バインダー前駆体及び親水性バインダーからなる群から選択される親水性成分を含有することが好ましい。
 上記組成物中における親水性成分の含有量としては特に制限されないが、組成物の全固形分に対して、20~99.8質量%が好ましく、20~90質量%がより好ましく、40~99質量%が更に好ましい。
 なお、親水性成分は1種を単独で用いても、2種以上を併用してもよい。2種以上の親水性成分を併用する場合、合計含有量が上記範囲内であることが好ましい。
<Hydrophilic component>
The composition preferably contains a hydrophilic component selected from the group consisting of a hydrophilic binder precursor and a hydrophilic binder.
The content of the hydrophilic component in the composition is not particularly limited, but is preferably 20 to 99.8% by mass, more preferably 20 to 90% by mass, based on the total solid content of the composition. % By mass is more preferred.
The hydrophilic component may be used alone or in combination of two or more. When two or more hydrophilic components are used in combination, the total content is preferably within the above range.
 親水性成分を含む組成物を用いて基材上に膜を形成した場合、無機物(1)及び第2金属含有物は、親水性バインダーによって基材上により堅牢に固定化され得る。
 この結果として、例えば、膜が液体物に接触するような用途に適用された場合であっても、液体物によって無機物(1)及び第2金属含有物の膜外への流出が抑制される。具体的には、オムツ等の基材に上記膜が形成された場合であっても、尿によって無機物(1)及び第2金属含有物の膜外への流出が抑制されるため、抗菌性及び消臭性を持続的に発現させることができる。また、無機物(1)及び第2金属含有物の膜外への流出による皮膚への悪影響も抑制できる。
When a film is formed on a substrate using a composition containing a hydrophilic component, the inorganic substance (1) and the second metal inclusion can be more firmly immobilized on the substrate by a hydrophilic binder.
As a result, for example, even when applied to an application in which the membrane is in contact with a liquid, the liquid suppresses the outflow of the inorganic substance (1) and the second metal inclusion from the membrane. Specifically, even when the above-mentioned film is formed on a base material such as diapers, the outflow of the inorganic substance (1) and the second metal-containing substance to the outside is suppressed by the urine, and thus the antibacterial property and Deodorant property can be expressed continuously. In addition, adverse effects on the skin due to the outflow of the inorganic substance (1) and the second metal-containing substance can be suppressed.
 さらに、上記親水性バインダーは、親水性を有するため、例えばアンモニア及びトリメチルアミン等の臭気物質と親和性が高い。このため、上記親水性バインダーは、臭気物質を膜表面に保持及び拡散して、臭気物質と無機物(1)及び第2金属含有物との接触機会を増やす作用も有している。また、親水性成分を含有する組成物によれば、優れた消臭性がより長時間維持されやすい。
 なお、親水性バインダー前駆体とは、縮合及び重合等の硬化反応により親水性バインダーを形成可能な材料を意味する。
 また、親水性バインダーは、無機物(1)及び第2金属含有物を支持可能な親水性の膜を形成できる材料を意味する。親水性バインダーとしては、ガラス基板上に上記親水性バインダーからなる膜を形成した場合、例えば、水接触角が60°以下となるもの好ましく、50°以下となるものが好ましい。水接触角の下限については特に制限されないが、一般に5°以上が好ましい。
 なお、水接触角は、JIS R 3257:1999の静滴法に基づいて測定を行う。測定には、協和界面科学株式会社製FAMMS DM-701を用いる。
Furthermore, since the hydrophilic binder has hydrophilicity, it has high affinity with odorants such as ammonia and trimethylamine. Therefore, the hydrophilic binder also has the function of retaining and diffusing the odorous substance on the surface of the membrane to increase the chance of contact between the odorous substance and the inorganic substance (1) and the second metal-containing substance. Moreover, according to the composition containing a hydrophilic component, excellent deodorizing property is likely to be maintained for a long time.
In addition, a hydrophilic binder precursor means the material which can form a hydrophilic binder by hardening reactions, such as a condensation and superposition | polymerization.
Moreover, a hydrophilic binder means the material which can form a hydrophilic film | membrane which can support an inorganic substance (1) and a 2nd metal content thing. When a film made of the above hydrophilic binder is formed on a glass substrate as the hydrophilic binder, for example, one having a water contact angle of 60 ° or less is preferable, and one having a water contact angle of 50 ° or less is preferable. The lower limit of the water contact angle is not particularly limited, but generally 5 ° or more is preferable.
The water contact angle is measured based on the static droplet method of JIS R 3257: 1999. For measurement, FAMMS DM-701 manufactured by Kyowa Interface Science Co., Ltd. is used.
 親水性成分としては、特に制限されないが、堅牢性により優れる点で、シリケート系化合物、親水性基を有するモノマー(以下、「親水性モノマー」ともいう。)、及び親水性基を有するポリマー(以下、「親水性ポリマー」ともいう。)からなる群から選択される少なくとも1種が好ましい。
 なお、親水性基を有するモノマーとは、親水性基と重合性基とを有する化合物を意味する。親水性モノマーは、上記組成物が後述する重合開始剤を含有する場合、重合して親水性ポリマーを形成する。
 以下に、シリケート系化合物、親水性モノマー、及び親水性ポリマーについて、それぞれ説明する。
The hydrophilic component is not particularly limited, but a silicate compound, a monomer having a hydrophilic group (hereinafter, also referred to as a "hydrophilic monomer"), and a polymer having a hydrophilic group (hereinafter referred to as "hydrophilic group") And at least one selected from the group consisting of "hydrophilic polymers".
In addition, the monomer which has a hydrophilic group means the compound which has a hydrophilic group and a polymeric group. The hydrophilic monomer is polymerized to form a hydrophilic polymer when the composition contains a polymerization initiator described later.
Below, a silicate type compound, a hydrophilic monomer, and a hydrophilic polymer are each demonstrated.
(シリケート系化合物)
 本明細書において、シリケート系化合物とは、ケイ素原子に加水分解性基が結合した化合物、その加水分解物、及びその加水分解縮合物からなる群から選択される化合物であり、例えば、下記式(1)で表される化合物、その加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種が挙げられる。
式(1) Si-(OR)
 上記式(1)中、Rは、炭素数1~4のアルキル基を表し、同一でも異なってもよい。
(Silicate compounds)
In the present specification, a silicate compound is a compound selected from the group consisting of a compound in which a hydrolyzable group is bonded to a silicon atom, a hydrolyzate thereof, and a hydrolytic condensate thereof, and, for example, At least 1 sort (s) selected from the group which consists of a compound represented by 1), its hydrolyzate, and its hydrolysis-condensation product is mentioned.
Formula (1) Si- (OR) 4
In the above formula (1), R represents an alkyl group having 1 to 4 carbon atoms, and may be the same or different.
 上記式(1)で表わされる化合物としては、テトラメチルシリケート、テトラエチルシリケート、テトラ-n-プロピルシリケート、テトラ-i-プロピルシリケート、テトラ-n-ブチルシリケート、テトラ-i-ブチルシリケート、テトラ-t-ブチルシリケート、メチルエチルシリケート、メチルプロピルシリケート、メチルブチルシリケート、エチルプロピルシリケート、及びプロピルブチルシリケート等が挙げられる。 Examples of the compound represented by the above formula (1) include tetramethyl silicate, tetraethyl silicate, tetra-n-propyl silicate, tetra-i-propyl silicate, tetra-n-butyl silicate, tetra-i-butyl silicate, tetra-t And butyl silicate, methyl ethyl silicate, methyl propyl silicate, methyl butyl silicate, ethyl propyl silicate, and propyl butyl silicate.
 式(1)で表される化合物の加水分解物とは、式(1)で表される化合物中のOR基が加水分解して得られる化合物を意図する。なお、上記加水分解物は、OR基のすべてが加水分解されているもの(完全加水分解物)であっても、OR基の一部が加水分解されているもの(部分加水分解物)であってもよい。つまり、上記加水分解物は、完全加水分解物、若しくは、部分加水分解物、又はこれらの混合物であってもよい。
 また、式(1)で表される化合物の加水分解縮合物とは、式(1)で表される化合物中のOR基が加水分解し、得られた加水分解物を縮合して得られる化合物を意図する。なお、上記加水分解縮合物としては、すべてのOR基が加水分解され、かつ、加水分解物がすべて縮合されているもの(完全加水分解縮合物)であっても、一部のOR基が加水分解され、一部の加水分解物が縮合しているもの(部分加水分解縮合物)であってもよい。つまり、上記加水分解縮合物は、完全加水分解縮合物、若しくは、部分加水分解縮合物、又はこれらの混合物であってもよい。
 なお、加水分解縮合物の縮合度としては、1~100が好ましく、1~20がより好ましく、3~15が更に好ましい。
With the hydrolyzate of the compound represented by Formula (1), the compound obtained by hydrolyzing OR group in the compound represented by Formula (1) is intended. The above hydrolyzate is one in which part of the OR group is hydrolyzed (partial hydrolyzate) even if all of the OR groups are hydrolyzed (completely hydrolyzed) May be That is, the hydrolyzate may be a complete hydrolyzate, a partial hydrolyzate, or a mixture thereof.
Moreover, the hydrolysis condensation product of the compound represented by Formula (1) is a compound obtained by hydrolyzing OR group in the compound represented by Formula (1), and condensing the obtained hydrolyzate Intended. In the above hydrolytic condensate, even if all OR groups are hydrolyzed and all the hydrolysates are condensed (completely hydrolytic condensate), some OR groups are hydrolysed. It may be decomposed and partially hydrolyzate condensed (partial hydrolytic condensate). That is, the hydrolytic condensate may be a complete hydrolytic condensate, a partial hydrolytic condensate, or a mixture thereof.
The degree of condensation of the hydrolytic condensate is preferably 1 to 100, more preferably 1 to 20, and still more preferably 3 to 15.
 式(1)で表される化合物は、水成分とともに混合されることにより、少なくとも一部が加水分解された状態となる。式(1)で表される化合物の加水分解物は、式(1)で表される化合物を水成分と反応させ、ケイ素に結合したOR基をヒドロキシ基に変化させることにより得られる。加水分解に際しては必ずしも全てのOR基が反応する必要はないが、塗布後に親水性を発揮するためにはなるべく多くのOR基が加水分解されることが好ましい。また、加水分解に際して最低限必要な水成分の量は式(1)で表される化合物のOR基と等しいモル量となるが、反応を円滑に進めるには大過剰の量の水が存在することが好ましい。 The compound represented by Formula (1) will be in the state by which at least one part was hydrolyzed by being mixed with a water component. The hydrolyzate of the compound represented by Formula (1) can be obtained by reacting the compound represented by Formula (1) with a water component to convert the silicon-bonded OR group into a hydroxy group. In the hydrolysis, not all the OR groups need to react, but in order to exhibit hydrophilicity after application, it is preferable that as many OR groups as possible be hydrolyzed. Also, although the minimum amount of water component necessary for hydrolysis is equal to the molar amount of the OR group of the compound represented by the formula (1), a large excess of water is present for the reaction to proceed smoothly. Is preferred.
 なお、上記シリケート系化合物の加水分解反応は室温でも進行するが、反応促進のために加温してもよい。また反応時間は長い方がより反応が進むため好ましい。また、触媒の存在下であれば半日程度でも加水分解物を得ることが可能である。
 なお、一般に加水分解反応は可逆反応であり、系から水が除かれると上記シリケート系化合物の加水分解物はヒドロキシ基間で縮合を開始してしまう。従って、上記シリケート系化合物に大過剰の水を反応させて加水分解物の水溶液を得た場合、そこから加水分解物を無理に単離せずに水溶液のまま用いることが好ましい。
In addition, although the hydrolysis reaction of the said silicate type compound advances also at room temperature, you may heat for reaction promotion. The longer reaction time is preferable because the reaction proceeds more. Moreover, it is possible to obtain a hydrolyzate even in about half a day in the presence of a catalyst.
In general, the hydrolysis reaction is a reversible reaction, and when water is removed from the system, the hydrolyzate of the silicate compound starts condensation between hydroxy groups. Therefore, when a large excess of water is reacted with the above-mentioned silicate compound to obtain an aqueous solution of hydrolyzate, it is preferable to use the aqueous solution as it is without forcibly isolating the hydrolyzate therefrom.
 上記シリケート系化合物の好適形態としては、式(X)で表される化合物が挙げられる。 As a suitable form of the said silicate type compound, the compound represented by Formula (X) is mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、式(X)中、R~Rはそれぞれ独立に炭素数1~4のアルキル基を表す。また、nは2~100の整数を表す。
 nは、3~15が好ましく、5~10がより好ましい。
Here, in the formula (X), R 1 to R 4 each independently represent an alkyl group having 1 to 4 carbon atoms. Also, n represents an integer of 2 to 100.
n is preferably 3 to 15, and more preferably 5 to 10.
 上記シリケート系化合物の市販品としては、例えば、コルコート社製「エチルシリケート48」、及び三菱化学社製「MKCシリケート  MS51」等が挙げられる。
 なお、シリケート系化合物は1種を単独で用いても、2種以上を併用してもよい。
As a commercial item of the said silicate type compound, "Ethyl silicate 48" by Korkot company, "MKC silicate MS51" by Mitsubishi Chemical Corporation etc. are mentioned, for example.
The silicate compounds may be used alone or in combination of two or more.
(親水性を有するモノマー(親水性モノマー))
 親水性基としては特に制限されず、例えば、ポリオキシアルキレン基(例えば、ポリオキシエチレン基、ポリオキシプロピレン基、オキシエチレン基とオキシプロピレン基がブロック又はランダム結合したポリオキシアルキレン基)、アミノ基、カルボキシ基、カルボキシ基のアルカリ金属塩、ヒドロキシ基、アルコキシ基、アミド基、カルバモイル基、スルホンアミド基、スルファモイル基、スルホン酸基、及びスルホン酸基のアルカリ金属塩等が挙げられる。親水性モノマー中における親水性基の数は特に制限されないが、得られる膜がより親水性を示す点より、2個以上が好ましく、2~6個がより好ましく、2~3個が更に好ましい。
(Monomer having hydrophilicity (hydrophilic monomer))
The hydrophilic group is not particularly limited. For example, a polyoxyalkylene group (for example, a polyoxyethylene group, a polyoxypropylene group, a polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are block or random bond), an amino group And carboxy group, alkali metal salt of carboxy group, hydroxy group, alkoxy group, amido group, carbamoyl group, sulfonamide group, sulfamoyl group, sulfonic acid group, alkali metal salt of sulfonic acid group, and the like. The number of hydrophilic groups in the hydrophilic monomer is not particularly limited, but is preferably 2 or more, more preferably 2 to 6, and even more preferably 2 to 3, from the viewpoint that the obtained film exhibits more hydrophilicity.
 重合性基としては特に制限されず、例えば、ラジカル重合性基、カチオン重合性基、及びアニオン重合性基等が挙げられる。ラジカル重合性基としては、(メタ)アクリロイル基、アクリルアミド基、ビニル基、スチリル基、及びアリル基等が挙げられる。カチオン重合性基としては、ビニルエーテル基、オキシラニル基、及びオキセタニル基等が挙げられる。なかでも、重合性基としては、(メタ)アクリロイル基が好ましい。
 親水性モノマー中における重合性基の数は特に制限されないが、得られる膜の機械的強度がより優れる点で、2個以上が好ましく、2~6個がより好ましく、2~3個が更に好ましい。
The polymerizable group is not particularly limited, and examples thereof include a radically polymerizable group, a cationically polymerizable group, and an anionically polymerizable group. Examples of the radically polymerizable group include (meth) acryloyl group, acrylamide group, vinyl group, styryl group and allyl group. As a cationically polymerizable group, a vinyl ether group, oxiranyl group, oxetanyl group etc. are mentioned. Among them, as the polymerizable group, a (meth) acryloyl group is preferable.
The number of polymerizable groups in the hydrophilic monomer is not particularly limited, but is preferably 2 or more, more preferably 2 to 6, and still more preferably 2 to 3, in that the mechanical strength of the resulting film is more excellent. .
 親水性モノマーの重合により形成される親水性ポリマーの主鎖の構造は特に制限されず、例えば、ポリウレタン、ポリ(メタ)アクリレート、ポリスチレン、ポリエステル、ポリアミド、ポリイミド、及びポリウレア等が挙げられる。
 親水性モノマーは1種を単独で用いても、2種以上を併用してもよい。
The structure of the main chain of the hydrophilic polymer formed by the polymerization of the hydrophilic monomer is not particularly limited, and examples thereof include polyurethane, poly (meth) acrylate, polystyrene, polyester, polyamide, polyimide, and polyurea.
The hydrophilic monomers may be used alone or in combination of two or more.
(親水性を有するポリマー(親水性ポリマー))
 親水性ポリマーとしては特に制限されず、公知のものを使用できる。なお、親水性基の定義は、上述したとおりである。
 親水性ポリマーとしては、上記親水性モノマーを重合して得られるポリマーが挙げられる。それ以外にも、例えば、セルロース系化合物が挙げられる。セルロース系化合物とは、セルロースを母核とする化合物を意図し、例えば、カルボキシメチルセルロースのほか、トリアセチルセルロースを原料とするナノファイバー等が挙げられる。
 親水性ポリマーの重量平均分子量は特に制限されないが、溶解性等取扱い性がより優れる点で、1,000~1,000,000が好ましく、10,000~500,000がより好ましい。なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定でのポリスチレン換算値として定義される。
 親水性ポリマーは1種を単独で用いても、2種以上を併用してもよい。
(Polymer having hydrophilicity (hydrophilic polymer))
The hydrophilic polymer is not particularly limited, and known polymers can be used. In addition, the definition of a hydrophilic group is as having mentioned above.
Examples of hydrophilic polymers include polymers obtained by polymerizing the above-mentioned hydrophilic monomers. Other than that, for example, a cellulose compound is mentioned. The cellulose-based compound is intended to be a compound having cellulose as a mother core, and examples thereof include carboxymethyl cellulose and nanofibers having triacetyl cellulose as a raw material.
The weight-average molecular weight of the hydrophilic polymer is not particularly limited, but is preferably 1,000 to 1,000,000, and more preferably 10,000 to 500,000, from the viewpoint of better handling such as solubility. In addition, in this specification, a weight average molecular weight is defined as a polystyrene conversion value in a gel permeation chromatography (GPC) measurement.
The hydrophilic polymer may be used alone or in combination of two or more.
<溶媒>
 上記組成物は、溶媒を含有する。
 上記組成物中における溶媒の含有量としては特に制限されないが、組成物がより優れた塗布性を有する点で、組成物の固形分が、0.001~80質量%に調整されるのが好ましく、0.01~10質量%に調整されるのがより好ましく、0.1~5.0質量%に調整されるのが更に好ましい。
 溶媒は1種を単独で用いても、2種以上を併用してもよい。2種以上の溶媒を併用する場合、合計含有量が上記範囲内であることが好ましい。
<Solvent>
The composition contains a solvent.
The content of the solvent in the composition is not particularly limited, but the solid content of the composition is preferably adjusted to 0.001 to 80% by mass in that the composition has more excellent coatability. And more preferably adjusted to 0.01 to 10% by mass, and further preferably adjusted to 0.1 to 5.0% by mass.
The solvents may be used alone or in combination of two or more. When two or more solvents are used in combination, the total content is preferably within the above range.
 溶媒としては特に制限されず、水及び/又は有機溶媒が挙げられる。有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、イソペンタノール、フェニルエチルアルコール、カプリルアルコール、ラウリルアルコール、及びミリスチルアルコール等のアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、及びジプロピレングリコールモノブチルエーテル等のグリコールエーテル系溶媒;ベンゼン、トルエン、キシレン、及びエチルベンゼン等の芳香族炭化水素系溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、及びエチルシクロヘキサン等の脂環族炭化水素系溶媒;テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、及びジ-n-ブチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、及びメチルイソブチルケトン等のケトン系溶媒;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸エチル、及びプロピオン酸ブチル等のエステル系溶媒;10%安息香酸デナトニウムアルコール溶液、ゲラニオール、八アセチル化ショ糖、ブルシン、リナロール、リナリールアセテート、及び酢酸等の親水性溶媒;が挙げられる。無機物(1)及び第2金属含有物に含まれる金属の溶媒への溶出を抑制しやすい点で、溶媒としては、アルコールが好ましく、エタノール又はイソプロピルアルコールがより好ましい。 The solvent is not particularly limited and includes water and / or an organic solvent. As the organic solvent, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-pentanol, isopentanol, phenylethyl alcohol, capryl alcohol, lauryl alcohol, and Alcohol solvents such as myristyl alcohol; methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, ethylene Glycol monobutyl ether, diethylene glycol Glycol ether solvents such as butyl ether, triethylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, and dipropylene glycol monobutyl ether; aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene; cyclopentane, cyclohexane, methyl Alicyclic hydrocarbon solvents such as cyclohexane and ethylcyclohexane; ether solvents such as tetrahydrofuran, dioxane, diisopropyl ether and di-n-butyl ether; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate , Ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, hex acetate Ester solvents such as ethyl propionate and butyl propionate; hydrophilic solvents such as 10% denatonium alcohol solution, geraniol, octaacetylated sucrose, brucine, linalool, linalyl acetate, and acetic acid; Be As a solvent, alcohol is preferable, and ethanol or isopropyl alcohol is more preferable, since it is easy to suppress elution of the metal contained in the inorganic substance (1) and the second metal-containing substance into the solvent.
 上記組成物中、粒状物の沈降を抑制する観点、及び形成される膜の消臭性がより優れる点で、アルコールの含有量は、組成物全質量に対して、5質量%以上が好ましく、10質量%以上が好ましい。上限値は特に制限されないが、例えば、99質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下が更に好ましく、45質量%以下が特に好ましい。 In the above composition, the content of the alcohol is preferably 5% by mass or more based on the total mass of the composition, from the viewpoint of suppressing the sedimentation of the particulate matter and the point that the deodorizing property of the formed film is more excellent. 10 mass% or more is preferable. Although the upper limit value is not particularly limited, for example, 99% by mass or less is preferable, 70% by mass or less is more preferable, 60% by mass or less is more preferable, and 45% by mass or less is particularly preferable.
 また、溶媒がアルコールを含む場合、溶媒中におけるアルコールの含有量としては特に制限されないが、溶媒の全質量に対して、0.001~100質量%が好ましく、0.01~90質量%がより好ましく、5~90質量%が更に好ましく、5~80質量%が特に好ましい。 When the solvent contains an alcohol, the content of the alcohol in the solvent is not particularly limited, but is preferably 0.001 to 100% by mass, more preferably 0.01 to 90% by mass, based on the total mass of the solvent. Preferably, 5 to 90% by mass is more preferable, and 5 to 80% by mass is particularly preferable.
<その他の成分>
 上記組成物は本発明の効果を奏する範囲内において、その他の成分を含有してもよい。その他の成分としては、例えば、消臭剤、抗菌剤、紫外線吸収剤、防腐剤、pH調整剤、消泡剤、重合開始剤、触媒、光触媒性材料、界面活性剤、充填剤、老化防止剤、帯電防止剤、難燃剤、接着性付与剤、レベリング剤、艶消し剤、光安定剤、染料、顔料、分散剤、香料、造膜剤、及び分散安定剤等の公知の添加剤が挙げられる。
 上記組成物は、なかでも、安定化剤として界面活性剤を含有することが好ましい。
<Other ingredients>
The above composition may contain other components within the scope of the effects of the present invention. As other components, for example, deodorant, antibacterial agent, ultraviolet light absorber, preservative, pH adjuster, antifoamer, polymerization initiator, catalyst, photocatalytic material, surfactant, filler, antiaging agent And well-known additives such as antistatic agent, flame retardant, adhesion imparting agent, leveling agent, matting agent, light stabilizer, dye, pigment, dispersing agent, fragrance, film forming agent, and dispersion stabilizer. .
Above all, the composition preferably contains a surfactant as a stabilizer.
(重合開始剤)
 上記組成物が親水性モノマーを含有する場合、上記組成物は、重合開始剤を含有することが好ましい。
 重合開始剤としては特に制限されず、公知の重合開始剤が使用できる。
 重合開始剤としては、例えば、熱重合開始剤、及び光重合開始剤等が挙げられる。
 重合開始剤としては、例えば、ベンゾフェノン、及びフェニルフォスフィンオキシド等の芳香族ケトン類;α-ヒドロキシアルキルフェノン系化合物(BASF社製、IRGACURE184、127、2959、及びDAROCUR1173等);フェニルフォスフィンオキシド系化合物(モノアシルフォスフィンオキサイド:BASF社製 IRGACURE TPO、ビスアシルフォスフィンオキサイド:BASF社製 IRGACURE 819);等が挙げられる。
 なかでも、反応効率の観点で、光重合開始剤が好ましい。
(Polymerization initiator)
When the composition contains a hydrophilic monomer, the composition preferably contains a polymerization initiator.
The polymerization initiator is not particularly limited, and known polymerization initiators can be used.
As a polymerization initiator, a thermal polymerization initiator, a photoinitiator, etc. are mentioned, for example.
Examples of the polymerization initiator include aromatic ketones such as benzophenone and phenylphosphine oxide; α-hydroxyalkylphenone compounds (manufactured by BASF, IRGACURE 184, 127, 2959, and DAROCUR 1173); phenylphosphine oxide Compounds (monoacyl phosphine oxide: IRGACURE TPO manufactured by BASF, bisacyl phosphine oxide: IRGACURE 819 manufactured by BASF);
Among them, a photopolymerization initiator is preferable from the viewpoint of reaction efficiency.
 上記組成物中における重合開始剤の含有量としては特に制限されないが、親水性モノマー100質量部に対して、0.1~15質量部が好ましく、1~6質量部がより好ましい。
 なお、重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合開始剤を併用する場合、合計含有量が上記範囲内であることが好ましい。
The content of the polymerization initiator in the composition is not particularly limited, but is preferably 0.1 to 15 parts by mass, and more preferably 1 to 6 parts by mass with respect to 100 parts by mass of the hydrophilic monomer.
The polymerization initiator may be used alone or in combination of two or more. When using 2 or more types of polymerization initiators together, it is preferable that total content is in the said range.
(分散剤)
 無機物(1)及び第2金属含有物の少なくとも1方が粒子状である場合、上記組成物は、分散剤を含有することが好ましい。
 分散剤としては特に制限されず、公知の分散剤が使用できる。
 分散剤としては、ノニオン系又はアニオン系の分散剤が好ましい。無機物(1)及び第2金属含有物に対する親和性の観点から、カルボキシ基、リン酸基、及び水酸基等のアニオン性の極性基を有する分散剤(アニオン系分散剤)がより好ましい。
 アニオン系分散剤としては、市販品を使用できる。その具体例としては、BYK社の商品名DISPERBYK(登録商標)-110、-111、-116、-140、-161、-162、-163、-164、-170、-171、-174、-180及び-182等が好適に挙げられる。
(Dispersant)
When at least one of the inorganic substance (1) and the second metal-containing substance is in the form of particles, the composition preferably contains a dispersant.
The dispersant is not particularly limited, and known dispersants can be used.
The dispersant is preferably a nonionic or anionic dispersant. From the viewpoint of the affinity to the inorganic substance (1) and the second metal-containing substance, a dispersant (anionic dispersant) having an anionic polar group such as a carboxy group, a phosphate group, and a hydroxyl group is more preferable.
A commercial item can be used as an anionic dispersing agent. As a specific example, the trade names DISPERBYK (registered trademark) -110, -111, -116, -140, -161, -162, -163, -164, -170, -170, -171, -174,- Preferred are 180 and -182.
 上記組成物中における分散剤の含有量としては特に制限されないが、組成物の全固形分に対して、例えば、70質量%以下であり、50質量%以下が好ましい。下限値は特に制限されないが、例えば0.01質量%以上であり、形成される膜の消臭性がより優れる点で、1.0質量%以上が好ましく、15質量%以上が更に好ましい。
 分散剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の分散剤を併用する場合、合計含有量が上記範囲内であることが好ましい。
The content of the dispersant in the composition is not particularly limited, but is, for example, 70% by mass or less and preferably 50% by mass or less with respect to the total solid content of the composition. The lower limit value is not particularly limited, but is, for example, 0.01% by mass or more, and preferably 1.0% by mass or more, and more preferably 15% by mass or more, in that the deodorizing property of the formed film is more excellent.
The dispersant may be used alone or in combination of two or more. When two or more dispersants are used in combination, the total content is preferably within the above range.
(触媒)
 上記組成物がシリケート系化合物を含有する場合、組成物は、シリケート系化合物の縮合を促進する触媒(以下「反応触媒」ともいう。)を含有してもよい。
(catalyst)
When the composition contains a silicate compound, the composition may contain a catalyst that promotes the condensation of the silicate compound (hereinafter also referred to as a “reaction catalyst”).
 触媒としては特に制限されないが、アルカリ触媒及び有機金属触媒等が挙げられる。
 アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、及び水酸化テトラメチルアンモニウム等が挙げられる。
 有機金属触媒としては、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、及びアルミニウムエチルアセトアセテートジイソプロピレート等のアルミキレート化合物、ジルコニウムテトラキス(アセチルアセトネート)、及びジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)等のジルコニウムキレート化合物、チタニウムテトラキス(アセチルアセトネート)、及びチタニウムビス(ブトキシ)ビス(アセチルアセトネート)等のチタンキレート化合物、並びに、ジブチルスズジアセテート、ジブチルスズジラウレート、及びジブチルスズジオクチエート等の有機スズ化合物等が挙げられる。
 なかでも、より優れた本発明の効果を有する組成物が得られる点で、触媒としては、有機金属触媒が好ましく、なかでも、アルミキレート化合物、又はジルコニウムキレート化合物がより好ましく、アルミキレート化合物が更に好ましい。
The catalyst is not particularly limited, and examples thereof include alkali catalysts and organic metal catalysts.
Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide and tetramethyl ammonium hydroxide.
As the organic metal catalyst, aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), and aluminum chelate compounds such as aluminum ethylacetoacetate diisopropylate, zirconium tetrakis (acetylacetonate), And zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate); and titanium bis (butoxy) bis (acetylacetonate); and dibutyltin diacetate And dibutyltin dilaurate, and organic tin compounds such as dibutyltin diacrylate and the like.
Among them, an organometallic catalyst is preferable as a catalyst in that a composition having more excellent effects of the present invention can be obtained, and among them, an aluminum chelate compound or a zirconium chelate compound is more preferable, and an aluminum chelate compound is further preferable. preferable.
 触媒の含有量は、組成物の全固形分100質量部に対して、0.1~20質量部が好ましく、0.2~15質量部がより好ましく、0.3~10質量部が更に好ましい。
 なお、触媒は1種を単独で用いても、2種以上を併用してもよい。2種以上の触媒を併用する場合、合計含有量が上記範囲内であることが好ましい。
The content of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 15 parts by mass, and still more preferably 0.3 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the composition. .
The catalyst may be used alone or in combination of two or more. When two or more types of catalysts are used in combination, the total content is preferably within the above range.
(界面活性剤)
 上記組成物は、界面活性剤を含有してもよい。界面活性剤は組成物の塗布性を向上する作用を有する。
 界面活性剤としては特に制限されず、例えば、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性型界面活性剤等が挙げられる。
 界面活性剤の含有量としては、特に制限されないが、組成物の全固形分100質量部に対して、0.01質量部以上が好ましい。なお、界面活性剤の含有量の上限値は特に制限されないが、組成物の全固形分100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましく、4質量部以下が更に好ましい。
 なお、界面活性剤は1種を単独で用いても、2種以上を併用してもよい。2種以上を併用する場合は、それらの合計含有量が上記範囲内であることが好ましい。
(Surfactant)
The composition may contain a surfactant. The surfactant has the effect of improving the coatability of the composition.
The surfactant is not particularly limited, and examples thereof include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
The content of the surfactant is not particularly limited, but is preferably 0.01 parts by mass or more based on 100 parts by mass of the total solid content of the composition. The upper limit of the content of the surfactant is not particularly limited, but 10 parts by mass or less is preferable, 5 parts by mass or less is more preferable, and 4 parts by mass or less with respect to 100 parts by mass of the total solid content of the composition. More preferable.
The surfactant may be used alone or in combination of two or more. When using 2 or more types together, it is preferable that those total content is in the said range.
 ノニオン性界面活性剤としては、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、及びポリエチレングリコールモノステアリルエステル等が挙げられる。 Examples of nonionic surfactants include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, and polyethylene glycol monostearyl ester.
 イオン性界面活性剤としては、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、及びアルキルリン酸塩等のアニオン性界面活性剤;アルキルトリメチルアンモニウム塩、及びジアルキルジメチルアンモニウム塩等のカチオン性界面活性剤;アルキルカルボキシベタイン等の両性型界面活性剤が挙げられる。 Examples of the ionic surfactant include anionic surfactants such as alkyl sulfates, alkyl benzene sulfonates and alkyl phosphates; cationic surfactants such as alkyl trimethyl ammonium salts and dialkyl dimethyl ammonium salts; alkyl carboxy Amphoteric surfactants such as betaine may be mentioned.
(香料)
 上記組成物は、香料を含有してもよい。
 香料として、長谷川香料社製のフレーバーH-1、H-2、H-3、H-4、H-6、H-9、H-10、H-11、H-12、H-13、H-14、高砂香料工業社製のフレーバーT-100、T-101、T-102、T-103、T-104、T-105、T-106、T-107、EDA-171、曽田香料社製フレーバーS-201、理研香料工業社製フレーバーDA-40等を含んでもよい。
 香料の含有量は、組成物の全質量に対して、0.01~5質量%が好ましい。
(Fragrance)
The composition may contain a flavor.
As a flavor, flavor H-1, H-2, H-3, H-4, H-6, H-9, H-10, H-11, H-12, H-13, H manufactured by Hasegawa Fragrance Co., Ltd. -14, Flavor T-100, T-101, T-102, T-103, T-104, T-105, T-106, T-107, EDA-171 manufactured by Takasago International Corporation Flavor S-201, flavor DA-40 manufactured by Riken Perfume Industries Co., Ltd., etc. may be included.
The content of the fragrance is preferably 0.01 to 5% by mass with respect to the total mass of the composition.
(造膜剤)
 上記組成物は、造膜剤を含有してもよい。本明細書において、造膜剤には、上述した、シリケート系化合物、親水性モノマー、及び親水性ポリマーは含まれない。
 造膜剤としては、熱可塑性樹脂が挙げられる。造膜剤は、例えば、後述する膜を形成した場合には、バインダーとして機能する。
 以下に、熱可塑性樹脂について説明する。
 熱可塑性樹脂としては、最低造膜温度が0~35℃の樹脂が好ましく、公知の熱可塑性樹脂が使用できる。例えば、ポリウレタン樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ポリスチレン樹脂、フッ素樹脂、ポリイミド樹脂、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマーからなる樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、及びフルオレン環変性ポリエステル樹脂等が挙げられる。なかでも、(メタ)アクリル樹脂、又はウレタン樹脂が好ましい。
 なお、熱可塑性樹脂は、1種を単独で用いても、2種以上を併用してもよい。
 熱可塑性樹脂の含有量は、熱可塑性樹脂の種類等に応じて適宜調節すればよいが、例えば、組成物の全固形分に対して、30質量%以下が好ましく、20質量%以下がより好ましい。
(Film-forming agent)
The composition may contain a film-forming agent. In the present specification, the film-forming agent does not include the above-described silicate-based compound, hydrophilic monomer, and hydrophilic polymer.
As a film-forming agent, a thermoplastic resin is mentioned. The film-forming agent functions as a binder, for example, when a film described later is formed.
The thermoplastic resin is described below.
As the thermoplastic resin, a resin having a minimum film forming temperature of 0 to 35 ° C. is preferable, and a known thermoplastic resin can be used. For example, polyurethane resin, polyester resin, (meth) acrylic resin, polystyrene resin, fluorine resin, polyimide resin, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether Ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, resin composed of cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modified polycarbonate resin, and fluorene ring modified polyester resin Etc. Among them, (meth) acrylic resin or urethane resin is preferable.
In addition, a thermoplastic resin may be used individually by 1 type, or may use 2 or more types together.
The content of the thermoplastic resin may be appropriately adjusted according to the type of the thermoplastic resin etc., but for example, it is preferably 30% by mass or less and more preferably 20% by mass or less based on the total solid content of the composition. .
(抗菌剤及び消臭剤)
 組成物は、抗菌剤として、例えば、第4級アンモニウム塩、フェノールエーテル誘導体、イミダゾール誘導体、スルホン誘導体、N-ハロアルキルチオ化合物、アニリド誘導体、ピロール誘導体、ピリジン系化合物、トリアジン系化合物、ベンゾイソチアゾリン系化合物、及び、イソチアゾリン系化合物等の有機系抗菌剤を含んでいてもよい。
(Antimicrobial agent and deodorant)
The composition includes, for example, quaternary ammonium salts, phenol ether derivatives, imidazole derivatives, sulfone derivatives, N-haloalkylthio compounds, anilide derivatives, pyrrole derivatives, pyridine compounds, triazine compounds, benzoisothiazoline compounds as antibacterial agents And an organic antibacterial agent such as isothiazoline compound may be contained.
 また、組成物は、消臭剤として、リン酸及び硝酸等の無機酸又はその塩;リンゴ酸、クエン酸、及び、アスコルビン酸等の有機酸又はその塩;ジブチルヒドロキシトルエン;ブチルヒドロキシアニソール;ヒノキチオール;フェノール;タンニン酸、カキタンニン、及び、茶タンニン等のフェノール性水酸基を含有する化合物等を含んでいてもよい。 In addition, the composition contains, as a deodorant, inorganic acids such as phosphoric acid and nitric acid or salts thereof; organic acids such as malic acid, citric acid and ascorbic acid or salts thereof; dibutylhydroxytoluene; butylhydroxyanisole; hinokitiol Phenol; and compounds containing a phenolic hydroxyl group such as tannic acid, kakitannin and tea tannin may be included.
 上記無機酸としては、例えば、リン酸、亜硫酸、及び、硫酸、並びにこれらのアルカリ金属塩等が挙げられる。
 上記有機酸としては、例えば、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸、グルコン酸、アジピン酸、フィチン酸、フマル酸、コハク酸、アスコルビン酸、ソルビン酸、グリオキシル酸、メルドラム酸、グルタミン酸、フェルラ酸、ピクリン酸、及び、アスパラギン酸、並びにこれらのアルカリ金属塩等が挙げられる。有機酸のうち分子量が大きいものほど、揮発しにくい傾向があるため、組成物を用いて形成された膜面のpHを6.5以下により維持しやすい。
Examples of the inorganic acid include phosphoric acid, sulfurous acid, sulfuric acid, and alkali metal salts thereof.
Examples of the organic acids include malic acid, citric acid, lactic acid, tartaric acid, salicylic acid, gluconic acid, adipic acid, phytic acid, fumaric acid, succinic acid, ascorbic acid, sorbic acid, glyoxylic acid, meldrum's acid, glutamic acid, ferula Examples thereof include acids, picric acid, and aspartic acid, and alkali metal salts thereof and the like. Among organic acids, the larger the molecular weight, the less likely it is to volatilize, so the pH of the film surface formed using the composition is easily maintained at 6.5 or less.
 消臭剤としては、より揮発しにくく、且つ、消臭性により優れる点で、リンゴ酸、又は、クエン酸が好ましく、リンゴ酸がより好ましい。
 また、消臭剤として、酸化防止機能を有する化合物(例えば、亜流酸塩、フェルラ酸、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、及び、アスコルビン酸等)を用いると、上述した無機物(1)及び第2金属含有成分の変質がより抑制されやすくなり、膜の抗菌性及び消臭性がより優れる。
 また、消臭剤として、酸化防止機能を有する消臭剤と、酸化防止機能を有する消臭剤以外の消臭剤とを併用することも好ましい。酸化防止機能を有する消臭剤と、酸化防止機能を有する消臭剤以外の消臭剤とを併用した場合、膜の抗菌性及び消臭性がより長期間持続する。
As a deodorizer, malic acid or citric acid is preferable, and malic acid is more preferable, from the viewpoint of being less volatile and being more deodorizing.
In addition, when a compound having an antioxidant function (for example, sulfite, ferulic acid, dibutylhydroxytoluene, butylhydroxyanisole, and ascorbic acid, etc.) is used as a deodorant, the inorganic substances (1) and the second substances described above are used. Deterioration of the metal-containing component is more easily suppressed, and the antibacterial and deodorizing properties of the film are more excellent.
Moreover, it is also preferable to use together the deodorant which has an antioxidant function, and deodorizers other than the deodorant which has an antioxidant function as a deodorant. When the deodorant having the antioxidant function and the deodorant other than the antioxidant having the antioxidant function are used in combination, the antibacterial property and the deodorizing property of the film are maintained for a longer period of time.
<組成物のpH>
 上記組成物のpHは特に制限されないが、実使用環境で使用者の手荒れ等を考慮した場合、pHを適切な範囲に調整することが好ましい。
 上記組成物のpHは、一般的に、2.0~12.0が好ましく、3.0~11.0がより好ましく、6.0~8.0が更に好ましい。
 上記組成物が、例えば、無機物(1)及び第2金属含有物として、酸若しくはアルカリに溶解する成分、又は変質しやすい成分を含有する場合、組成物のpHが上記範囲内だと、組成物はより優れた本発明の効果を有する。
 なお、組成物のpHの調整方法としては、上記組成物に、酸若しくはアルカリを配合する方法が挙げられる。
 なお、pHは、市販のpH測定メータ(例えば、東亜ディーケーケー社製のpHメータ HM-30R等)を用いて25℃環境下にて測定できる。
<PH of composition>
The pH of the composition is not particularly limited, but it is preferable to adjust the pH to an appropriate range in consideration of rough hands and the like in the actual use environment.
In general, the pH of the composition is preferably 2.0 to 12.0, more preferably 3.0 to 11.0, and still more preferably 6.0 to 8.0.
When the composition contains, for example, a component that dissolves in acid or alkali as the inorganic substance (1) and the second metal-containing component, or a component that easily deteriorates, the composition has a pH within the above range Has a better effect of the present invention.
In addition, the method of mix | blending an acid or an alkali with the said composition as a method of adjusting the pH of a composition is mentioned.
The pH can be measured under a 25 ° C. environment using a commercially available pH measurement meter (eg, pH meter HM-30R manufactured by Toa DK Co., Ltd.).
<組成物の比重>
 上記組成物の比重は特に制限されないが、0.5~1.2が好ましい。
<Specific gravity of composition>
The specific gravity of the above composition is not particularly limited, but is preferably 0.5 to 1.2.
<組成物の粘度>
 上記組成物の粘度は特に制限されず、用途に応じて調整すればよい。
 例えば、塗布性又はスプレー等に適用する場合、組成物の25℃における粘度は、300cP(センチポアズ:1cp=1mPa・s)以下が好ましく、200cP以下がより好ましく、0.1~150cPが更に好ましい。
 また、抗菌性及び消臭性の効果を長時間持続させる場合は、組成物の25℃における粘度は、250cP以上が好ましく、300cP以上がより好ましく、400cP以上が更に好ましい。なお、その上限は、例えば、500cP以下である。
 なお、粘度は、東機産業社製VISCOMETER TUB-10、又はセコニック社製SEKONIC VISCOMETERを用いて測定できる。
<Viscosity of composition>
The viscosity in particular of the said composition is not restrict | limited, It may adjust according to a use.
For example, when applied to coating properties or spray, the viscosity at 25 ° C. of the composition is preferably 300 cP (centipoise: 1 cp = 1 mPa · s) or less, more preferably 200 cP or less, and still more preferably 0.1 to 150 cP.
When the antibacterial and deodorant effects are sustained for a long time, the viscosity at 25 ° C. of the composition is preferably 250 cP or more, more preferably 300 cP or more, and still more preferably 400 cP or more. The upper limit is, for example, 500 cP or less.
The viscosity can be measured using VISCOMETER TUB-10 manufactured by Toki Sangyo Co., Ltd. or SEKONIC VISCOMETER manufactured by Seconik.
<組成物のゼータ電位>
 上記組成物のゼータ電位は、特に限定されないが、組成物中において、粒状物が適度に分散して耐沈降性により優れることを考慮すると、適切な範囲に調整することが好ましい。上記組成物のゼータ電位は、80mV~-80mVが好ましく、70mV~-70mVがより好ましく、60mV~-60mVが更に好ましい。
 なお、ゼータ電位は、公知の方法を用いて測定することができ、分散液をガラス製の専用測定セルに所定量導入し、大塚電子社製 ELSZ1EASを用いて測定することができる。
<Zeta potential of composition>
The zeta potential of the composition is not particularly limited, but it is preferable to adjust the zeta potential to an appropriate range in consideration of the fact that the particles are appropriately dispersed in the composition to be more excellent in sedimentation resistance. The zeta potential of the above composition is preferably 80 mV to -80 mV, more preferably 70 mV to -70 mV, still more preferably 60 mV to -60 mV.
The zeta potential can be measured using a known method, and a predetermined amount of the dispersion can be introduced into a glass dedicated measuring cell, and measured using ELSZ1 EAS manufactured by Otsuka Electronics Co., Ltd.
<組成物の製造方法>
 なお、上記組成物は、更に、本発明の効果を奏する範囲において、必要に応じてその他の添加剤を含有することができる。
 上記組成物は、上述した必須成分及び任意成分を、適宜混合することによって調製できる。なお、上記成分の混合の順番は特に制限されない。
<Method of producing composition>
In addition, the said composition can contain other additives as needed in the range with the effect of this invention.
The composition can be prepared by appropriately mixing the above-described essential components and optional components. In addition, the order in particular of mixing of the said component is not restrict | limited.
<組成物の用途>
 上記組成物を用いて膜を形成できる。
 上記膜の形成方法は特に制限されないが、上記組成物を所望の基材、又は物品に塗布して塗膜を形成し、これを乾燥又は硬化して膜とする方法(塗布法)が好ましい。
 上記組成物を所望の基材、又は物品に塗布する方法は特に制限されない。例えば、スプレー、ロールコータ、グラビアコータ、スクリーン、スピンコータ、フローコータ、インクジェット、静電塗装、及びワイプが挙げられる。なかでも、既存の物品の表面に、需要に応じて膜を形成して処理(オンデマンド処理)ができる点で、スプレー、又はワイプが好ましく、ワイプがより好ましい。
 ワイプによる膜の形成方法としては特に制限されず、公知の方法を用いることができる。例えば、以下の方法が挙げられる。まず、上記組成物を不織布等の基布に含浸させ、その後、上記基布で基材、又は物品の表面を拭く。これにより、基材、又は物品表面に上記組成物による塗膜が形成される。その後、形成された塗膜を乾燥又は硬化して膜を得る。
<Application of Composition>
The composition can be used to form a film.
The method for forming the film is not particularly limited, but a method (coating method) in which the composition is applied to a desired substrate or article to form a coating, and then dried or cured to form a film is preferable.
The method for applying the composition to the desired substrate or article is not particularly limited. For example, spray, roll coater, gravure coater, screen, spin coater, flow coater, inkjet, electrostatic coating, and wipe can be mentioned. Among them, a spray or a wipe is preferable, and a wipe is more preferable, in that a film can be formed on the surface of an existing article to perform processing (on-demand processing) according to demand.
There is no particular limitation on the method of forming a film by wiping, and known methods can be used. For example, the following method may be mentioned. First, the composition is impregnated into a base fabric such as a non-woven fabric, and then the surface of the substrate or article is wiped with the base fabric. Thereby, the coating film by the said composition is formed in a base material or the article surface. Thereafter, the formed coating is dried or cured to obtain a film.
 また、上記組成物によれば、後述するように、消臭性及び抗菌性に優れた修飾基材を形成できる。上記記組成物を用いて修飾基材を得る場合、組成物は、更に、ポリマー及び硬化性化合物等を含んでいてもよい。ポリマー及び硬化性化合物としては特に制限されず、例えば、ポリアクリル酸ナトリウム等が挙げられる。 Moreover, according to the said composition, as mentioned later, the modified base material excellent in deodorizing property and antibacterial property can be formed. When the above-mentioned composition is used to obtain a modified substrate, the composition may further contain a polymer, a curable compound and the like. The polymer and the curable compound are not particularly limited, and examples thereof include sodium polyacrylate and the like.
〔膜〕
 本発明の膜は、無機物(1)及び第2金属含有物を含む。
〔film〕
The film of the present invention contains the inorganic substance (1) and the second metal inclusion.
<無機物(1)>
 無機物(1)としては、上記組成物中に含まれる無機物(1)と同様であり、好ましい形態も同様である。
<Inorganic substance (1)>
As an inorganic substance (1), it is the same as that of the inorganic substance (1) contained in the said composition, and its preferable form is also the same.
<第2金属含有物>
 第2金属含有物としては、上記組成物中に含まれる第2金属含有物と同様であり、好ましい形態も同様である。
<Second metal inclusions>
As a 2nd metal content, it is the same as that of the 2nd metal content contained in the said composition, and its preferable form is also the same.
<親水性バインダー>
 膜は、親水性バインダーを含有することが好ましい。親水性バインダーとしては特に制限されないが、例えば、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物;親水性基を有するポリマー等が挙げられ、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種が好ましい。
 なお、ケイ素原子に加水分解性基が結合した化合物の好ましい形態、及び親水性基を有するポリマーの好ましい形態は、上述した通りである。
<Hydrophilic binder>
The membrane preferably contains a hydrophilic binder. The hydrophilic binder is not particularly limited, and examples thereof include a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof; At least one selected from the group consisting of a hydrolyzate of a compound having a degradable group bonded thereto, and a hydrolytic condensate thereof is preferred.
In addition, the preferable form of the compound which the hydrolysable group couple | bonded with the silicon atom, and the preferable form of the polymer which has a hydrophilic group are as having mentioned above.
<その他の成分>
 膜は、上述した成分以外の成分を更に含んでいてもよい。
<Other ingredients>
The membrane may further contain components other than the components described above.
<膜の製造方法>
 本発明の膜は、例えば、上記組成物を乾燥又は硬化して得られる。上記組成物としては、既に説明したとおりである。
 なお、上記組成物が親水性成分として親水性バインダー前駆体を含有する場合、上記膜は、組成物の塗膜(組成物層)を硬化して得られる。言い換えると、上記膜は、上記組成物層の硬化処理によって、組成物層中の親水性バインダー前駆体を親水性バインダーとすることにより得られる。
 これに対して、上記組成物中の親水性成分が親水性バインダーである場合、組成物に対して硬化処理を実施する必要はない。
<Method of producing membrane>
The film of the present invention is obtained, for example, by drying or curing the above composition. The above composition is as described above.
In addition, when the said composition contains a hydrophilic binder precursor as a hydrophilic component, the said film | membrane is obtained by hardening the coating film (composition layer) of a composition. In other words, the film can be obtained by curing the composition layer so that the hydrophilic binder precursor in the composition layer is a hydrophilic binder.
On the other hand, when the hydrophilic component in the composition is a hydrophilic binder, it is not necessary to carry out the curing treatment on the composition.
<膜の膜厚>
 膜の膜厚としては特に制限されないが、0.001~50μmが好ましく、0.01~10μmがより好ましい。
 なお、上記膜厚とは、膜のサンプル片を樹脂に包埋して、ミクロトームで断面を削り出し、削り出した断面を走査電子顕微鏡で観察し測定する。膜の任意の10点の位置における厚みを測定し、それらを算術平均した値を意図する。
<Film thickness>
The thickness of the film is not particularly limited, but is preferably 0.001 to 50 μm, and more preferably 0.01 to 10 μm.
In addition, with the said film thickness, the sample piece of a film | membrane is embedded in resin, the cross section is cut off with a microtome, and the cross section cut out is observed and measured with a scanning electron microscope. The thickness at any 10 points of the film is measured, and their arithmetically averaged value is intended.
<膜のpH>
 膜の膜面pHは、典型的には7.0以下が好ましく、特にアンモニア及びトリメチルアミン等の尿及び便等に由来する悪臭物質に対する消臭性により優れる点で、6.5以下が好ましく、5.0以下がより好ましく、4.5以下が更に好ましい。膜の膜面pHの下限は、特に制限されないが、1.0以上が好ましい。
 なお、本明細書において、膜の膜面pHは、膜面に0.02mLの液滴(純水)を滴下し、1分間経過した後、その液滴のpHを、堀場製作所社製のpHメータ LAQUA F-72を用いて測定することにより求めたときの値である。
<PH of membrane>
The membrane surface pH of the membrane is typically preferably 7.0 or less, and particularly preferably 6.5 or less, because it is more excellent in the deodorizing property against malodorous substances derived from urine and feces such as ammonia and trimethylamine. .0 or less is more preferable, and 4.5 or less is still more preferable. The lower limit of the membrane surface pH of the membrane is not particularly limited, but is preferably 1.0 or more.
In the present specification, for the film surface pH of the film, 0.02 mL of droplets (pure water) are dropped on the film surface, and after 1 minute, the pH of the droplets is adjusted to the pH of Horiba, Ltd. It is a value determined by measuring using a meter LAQUA F-72.
 後述するように、膜は、オムツ等の用途に適用できる。このとき、尿等の臭気物質含有液体が膜面に付着した際に、膜面pHが上記数値範囲(好ましくは膜面pH6.5以下)となるようにすると、膜に含有される無機物(1)及び第2金属含有物中の金属がより変質しにくく、抗菌性及び消臭性がより優れる。 As described later, the membrane can be applied to applications such as diapers. At this time, when an odor substance-containing liquid such as urine adheres to the film surface, when the film surface pH falls within the above numerical range (preferably, the film surface pH is 6.5 or less), the inorganic substance (1 And the metal in the second metal-containing material are less likely to deteriorate, and the antibacterial property and the deodorizing property are more excellent.
 膜面pHが上記数値範囲の膜の一例としては、例えば、無機物(1)、第2金属含有物、及び有機酸を含む膜が挙げられる。有機酸は揮発性が低いため、乾燥状態では親水性バインダーに固着して存在する。この膜面に、尿等の臭気物質含有液体が付着すると、この臭気物質含有液体により膜表面の有機酸が溶解し、膜の膜面pHが上記範囲内となりやすい。このようにすると、臭気物質含有液体が付着する前の状態では、膜面pHが低くなりすぎず、膜に含有される無機物(1)及び第2金属含有物中の金属が変質しにくい。
 また、膜面pHが上記数値範囲の膜の他の一例としては、臭気物質含有液体に溶解する皮膜と、上記皮膜内に内包されたpH調整機能を有する化合物等(上述の有機酸でもよい)とを有するマイクロカプセルを膜に含有させる方法が挙げられる。上記マイクロカプセルを含有する膜の膜面に臭気物質含有液体が付着すると、マイクロカプセルの皮膜が溶解してpH調整機能を有する化合物が膜面に露出し、膜の膜面pHが上記範囲となりやすい。また、このようにすると、臭気物質含有液体が付着する前の状態では、膜面pHが低くなりすぎず、膜に含有される無機物(1)及び第2金属含有物中の金属が変質しにくい。
As an example of a film | membrane whose film surface pH is the said numerical range, the film | membrane which contains an inorganic substance (1), a 2nd metal containing material, and an organic acid is mentioned, for example. Since the organic acid has low volatility, it adheres to the hydrophilic binder in the dry state. When an odor substance-containing liquid such as urine adheres to this film surface, the organic acid on the film surface is dissolved by the odor substance-containing liquid, and the film surface pH of the film tends to be in the above range. In this way, in the state before the odorant-containing liquid is attached, the film surface pH does not become too low, and the metal in the inorganic substance (1) and the second metal-containing substance contained in the film is less likely to deteriorate.
Further, as another example of the film having a film surface pH in the above-mentioned numerical range, a film which is dissolved in the odorant-containing liquid, a compound having a pH adjusting function included in the film, etc. (may be the above-mentioned organic acid) And a method in which the microcapsules are contained in the membrane. When the odorant-containing liquid adheres to the film surface of the film containing the above-mentioned microcapsule, the film of the microcapsule dissolves and the compound having a pH adjusting function is exposed on the film surface, and the film surface pH of the film tends to be in the above range. . Also, in this case, the film surface pH does not become too low in the state before the odorant-containing liquid adheres, and the metal in the inorganic substance (1) and the second metal-containing substance contained in the film is less likely to deteriorate .
〔膜付き基材〕
 本発明の実施形態に係る膜付き基材は、基材と、上記膜とを有する。膜付き基材としては、基材と、膜とを有する積層体であればよく、基材の片側の表面上に膜を有してもよいし、基材の両側の表面上に膜を有してもよい。
[Substrate with membrane]
The film-coated substrate according to the embodiment of the present invention has a substrate and the above-mentioned film. The film-coated substrate may be a laminate having a substrate and a film, and may have a film on the surface on one side of the substrate, or have a film on the surface on both sides of the substrate You may
<基材>
 基材は、膜を支持する役割を果たし、その種類は特に制限されない。
 基材の形状は特に制限されないが、板状、フィルム状、シート状、チューブ状、繊維状、及び粒子状等が挙げられる。
 基材を構成する材料としては特に制限されず、例えば、金属、ガラス、セラミックス、及びプラスチック(樹脂)等が挙げられる。なかでも、取り扱い性の点から、プラスチックが好ましい。言い換えれば、基材としては、樹脂基材が好ましい。
<Base material>
The substrate plays a role of supporting the membrane, and the type is not particularly limited.
The shape of the substrate is not particularly limited, and examples thereof include plate, film, sheet, tube, fiber, and particles.
It does not restrict | limit especially as a material which comprises a base material, For example, a metal, glass, ceramics, and plastics (resin) etc. are mentioned. Among them, plastic is preferable in terms of handleability. In other words, as the substrate, a resin substrate is preferable.
〔膜付き基材の製造方法〕
 本発明の膜の製造方法は、上述の組成物を用いて膜を製造する方法に該当し、以下の工程を有する。
(1)組成物が、親水性成分として親水性バインダー前駆体を含有する場合、下記工程Aと、下記工程Bとを有する。
(2)組成物が、親水性成分として親水性バインダーを含有する場合、下記工程Aを有する。
(工程A)基材の表面に、組成物を塗布して、組成物層を形成する工程
(工程B)組成物層を硬化処理させて、膜を得る工程
 以下に、工程A及び工程Bについて説明する。
[Method of producing a film-coated substrate]
The method for producing a film of the present invention corresponds to a method for producing a film using the composition described above, and has the following steps.
(1) When a composition contains a hydrophilic binder precursor as a hydrophilic component, it has following process A and the following process B.
(2) When a composition contains a hydrophilic binder as a hydrophilic component, it has the following process A.
(Step A) A step of applying a composition to the surface of a substrate to form a composition layer (step B) A step of curing the composition layer to obtain a film Hereinafter, about Step A and Step B explain.
(工程A)
 工程Aは、基材の表面に、組成物を塗布して、組成物層を形成する工程である。基材の表面に組成物を塗布する方法としては特に制限されず、公知の塗布法を用いることができる。
 基材の表面に組成物を塗布する方法としては、上述した方法が挙げられる。
(Step A)
Step A is a step of applying the composition to the surface of the substrate to form a composition layer. It does not restrict | limit especially as a method to apply | coat a composition on the surface of a base material, A well-known application method can be used.
As a method of applying a composition to the surface of a substrate, the method mentioned above is mentioned.
 組成物層の膜厚としては特に制限されないが、乾燥膜厚として、0.001~10μmが好ましい。
 また、組成物を塗布した後、溶媒を除去するために加熱処理を行ってもよい。その場合の加熱処理の条件としては特に制限されず、例えば、加熱温度としては、50~200℃が好ましく、加熱時間としては、15~600秒が好ましい。
 なお、工程Aにおいて用いることができる基材としては、既に説明した基材の形態と同様である。
The thickness of the composition layer is not particularly limited, but a dry thickness of 0.001 to 10 μm is preferable.
In addition, after the composition is applied, heat treatment may be performed to remove the solvent. The conditions for the heat treatment in that case are not particularly limited. For example, the heating temperature is preferably 50 to 200 ° C., and the heating time is preferably 15 to 600 seconds.
In addition, as a base material which can be used in the process A, it is the same as that of the form of the base material already demonstrated.
(工程B)
 工程Bは、組成物層を硬化させて、膜を得る工程である。つまり、組成物層中に含有される親水性バインダー前駆体を縮合又は重合等の硬化反応により親水性バインダーとする工程である。
 組成物層を硬化させる方法としては特に制限されないが、例えば、加熱処理及び/又は露光処理が挙げられる。
 露光処理としては、特に制限されないが、例えば、紫外線ランプにより100~600mJ/cmの照射量の紫外線を照射して組成物層を硬化する形態が挙げられる。
 紫外線照射の場合、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、及びメタルハライドランプ等の光線から発する紫外線等が利用できる。
 加熱処理の温度としては特に制限されないが、例えば、50~150℃が好ましく、80~120℃がより好ましい。
(Step B)
Step B is a step of curing the composition layer to obtain a film. That is, in this step, the hydrophilic binder precursor contained in the composition layer is converted to a hydrophilic binder by a curing reaction such as condensation or polymerization.
The method for curing the composition layer is not particularly limited, and examples thereof include heat treatment and / or exposure treatment.
The exposure treatment is not particularly limited, but includes, for example, a form in which the composition layer is cured by irradiation with ultraviolet rays of 100 to 600 mJ / cm 2 with an ultraviolet lamp.
In the case of ultraviolet irradiation, ultraviolet light and the like emitted from light beams such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc and a metal halide lamp can be used.
The temperature of the heat treatment is not particularly limited, but for example, 50 to 150 ° C. is preferable, and 80 to 120 ° C. is more preferable.
〔修飾基材〕
 本発明の修飾基材は、基材と、上記基材上又は上記基材内部に配置された、無機物(1)と第2の金属を含有する成分とを有する。
 なお、本発明の修飾基材が、無機物(1)と第2の金属を含有する成分とを基材上に有する場合、本発明の修飾基材は、基材と、上記基材上に配置された無機物(1)と第2の金属を含有する成分と親水性バインダーとを有する構成も好ましい。
[Modified substrate]
The modified substrate of the present invention comprises a substrate, and the component containing the inorganic substance (1) and the second metal, which is disposed on or in the substrate.
When the modified substrate of the present invention has the inorganic substance (1) and the component containing the second metal on the substrate, the modified substrate of the present invention is disposed on the substrate and the above substrate It is also preferable to have a composition comprising the component (1) containing the second inorganic material and the second metal, and a hydrophilic binder.
 上記基材の形状は特に制限されないが、板状、フィルム状、シート状、チューブ状、及び繊維状等が挙げられる。なお、ここでいう繊維状には、繊維、及び、繊維により形成された2次元構造及び3次元構造等の構造(例えば、織編物、及び不織布等の布帛状体)を意図する。
 上記基材を構成する材料としては特に制限されず、例えば、天然樹脂及び合成樹脂等が挙げられる。
Although the shape in particular of the said base material is not restrict | limited, Plate shape, a film shape, sheet shape, tube shape, fiber shape etc. are mentioned. The term "fiber-like" as used herein refers to fibers and structures such as a two-dimensional structure and a three-dimensional structure formed by fibers (for example, a cloth-like body such as a woven or knitted fabric and a non-woven fabric).
It does not restrict | limit especially as a material which comprises the said base material, For example, natural resin, a synthetic resin, etc. are mentioned.
 以下、修飾基材の実施形態について説明する。
 例えば、上記基材が繊維である場合、上記修飾基材としては、繊維と、上記繊維の表面に付着した無機物(1)と第2金属含有成分とを有する形態が挙げられる。
 基材が繊維構造体である場合、上記修飾基材としては、繊維構造体と、上記繊維構造体の表面に付着した無機物(1)と第2金属含有成分とを有する形態、及び、繊維構造体と、上記繊維構造体の内部に無機物(1)と第2金属含有成分とを有する形態が挙げられる。なお、基材が繊維又は繊維構造体である場合、修飾基材中、無機物(1)と第2金属含有成分の含有量は、繊維又は繊維構造体の質量に対して0.0001~10質量%が好ましい。
 基材が繊維又は繊維構造体である上記修飾基材の形成方法としては特に制限されず、例えば、含浸及び吹付等の方法により繊維又は繊維構造体に上述した組成物を付与した後、これを乾燥して修飾基材を形成する方法が挙げられる。なお、上記組成物が、親水性バインダー前駆体を含んでいる場合、加熱処理及び/又は露光処理を行ってもよい。
 また、繊維構造体である修飾基材の形成方法の他の一例としては、例えば、パルプ等の繊維材料と上述した組成物とを混合してスラリーを調製し、このスラリーを原料とした湿式抄造法によって、繊維構造体と、繊維構造体に配置した無機物(1)と第2の金属を含有する成分とを有する修飾基材を形成する方法が挙げられる。
Hereinafter, an embodiment of a modification substrate is described.
For example, when the base material is a fiber, examples of the modified base material include a form having a fiber, an inorganic substance (1) attached to the surface of the fiber, and a second metal-containing component.
When a base material is a fiber structure, the form which has a fiber structure, the inorganic substance (1) adhering to the surface of the said fiber structure, and a 2nd metal containing component as said modification base material, and a fiber structure The form which has an inorganic substance (1) and a 2nd metal containing component in the inside of the body and the said fiber structure is mentioned. When the base material is a fiber or a fiber structure, the content of the inorganic substance (1) and the second metal-containing component in the modified base material is 0.0001 to 10 mass based on the mass of the fiber or fiber structure % Is preferred.
There is no particular limitation on the method of forming the modified substrate in which the substrate is a fiber or a fiber structure, and for example, after applying the above-described composition to a fiber or a fiber structure by a method such as impregnation and spraying, Methods of drying to form a modified substrate are included. When the above composition contains a hydrophilic binder precursor, heat treatment and / or exposure treatment may be performed.
Moreover, as another example of the method for forming a modified base material that is a fiber structure, for example, a slurry is prepared by mixing a fiber material such as pulp and the above-described composition, and wet sheet making using this slurry as a raw material According to the method, there is a method of forming a modified substrate having a fibrous structure, an inorganic substance (1) disposed in the fibrous structure, and a component containing a second metal.
 上記修飾基材は、例えば、樹脂から形成された成型体(例えばシート状の成型体)と、上記成型体内部に配置された無機物(1)と第2金属含有成分とを有する形態であってもよい。なお、上記樹脂としては特に制限されないが、例えば、合成樹脂(ポリアクリル酸ナトリウム等の吸水性高分子)が挙げられる。上記実施形態に係る修飾基材としては、上述した組成物を用いて形成できる。具体的な製造方法としては、上述した組成物を流延して流延フィルムを形成した後、乾燥、加熱、及び/又は硬化を実施する方法が挙げられる。なお、上述した組成物を用いて上記実施形態に係る修飾基材を形成する場合、組成物は、更に、ポリマー及び硬化性化合物等を含むことが好ましい。ポリマー及び硬化性化合物としては特に制限されず、例えば、ポリアクリル酸ナトリウム等が挙げられる。 The modified substrate is, for example, a form having a molded body (for example, a sheet-like molded body) formed of a resin, an inorganic substance (1) disposed inside the molded body, and a second metal-containing component. It is also good. The resin is not particularly limited, and examples thereof include synthetic resins (water-absorbent polymers such as sodium polyacrylate). As a modification base material concerning the above-mentioned embodiment, it can form using the composition mentioned above. As a specific manufacturing method, after casting the composition described above to form a cast film, drying, heating and / or curing may be carried out. In addition, when forming the modification base material which concerns on the said embodiment using the composition mentioned above, it is preferable that a composition contains a polymer, a curable compound, etc. further. The polymer and the curable compound are not particularly limited, and examples thereof include sodium polyacrylate and the like.
<無機物(1)>
 無機物(1)としては、上記組成物中に含まれる無機物(1)と同様であり、好ましい形態も同様である。
<第2金属含有物>
 第2金属含有物としては、上記組成物中に含まれる第2金属含有物と同様であり、好ましい形態も同様である。
<Inorganic substance (1)>
As an inorganic substance (1), it is the same as that of the inorganic substance (1) contained in the said composition, and its preferable form is also the same.
<Second metal inclusions>
As a 2nd metal content, it is the same as that of the 2nd metal content contained in the said composition, and its preferable form is also the same.
<無機物(1)と第2金属含有物の組み合わせ>
 なお、無機物(1)と第2金属含有物の組み合わせについても、既に説明した上記組成物中における無機物(1)と第2金属含有物の組み合わせの好適形態と同様である。
<Combination of inorganic substance (1) and second metal-containing substance>
The combination of the inorganic substance (1) and the second metal-containing substance is the same as the preferred embodiment of the combination of the inorganic substance (1) and the second metal-containing substance in the composition described above.
<親水性バインダー>
 上記修飾基材は、親水性バインダーを含有することが好ましい。親水性バインダーとしては特に制限されないが、例えば、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物;親水性基を有するポリマー等が挙げられ、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種が好ましい。
 なお、ケイ素原子に加水分解性基が結合した化合物の好ましい形態、及び親水性基を有するポリマーの好ましい形態は、組成物中に含まれ得る親水性成分として説明したものと同様である。
<Hydrophilic binder>
The modified substrate preferably contains a hydrophilic binder. The hydrophilic binder is not particularly limited, and examples thereof include a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof; At least one selected from the group consisting of a hydrolyzate of a compound having a degradable group bonded thereto, and a hydrolytic condensate thereof is preferred.
In addition, the preferable form of the compound which the hydrolysable group couple | bonded with the silicon atom, and the preferable form of the polymer which has a hydrophilic group are the same as what was demonstrated as a hydrophilic component which may be contained in a composition.
<その他の成分>
 修飾基材は、上述した成分以外の成分を更に含んでいてもよい。
<Other ingredients>
The modified substrate may further contain components other than the components described above.
〔ウェットワイパー〕
 本発明の実施形態に係るウェットワイパーは、基布と、上記基布に含浸させた組成物と、を有する。上記組成物としては、既に説明したとおりである。
[Wet wiper]
A wet wiper according to an embodiment of the present invention has a base fabric and a composition impregnated in the base fabric. The above composition is as described above.
 上記基布としては、特に制限されず、天然繊維で形成されたものであっても、化学繊維で形成されたものであってもよい。
 天然繊維としては、例えば、パルプ、綿、麻、亜麻、羊毛、キヤメル、カシミヤ、モヘヤ、及び絹等が挙げられる。
 化学繊維の材料としては、レーヨン、ポリノジック、アセテート、トリアセテート、ナイロン、ポリエステル、ポリアクリロニトリル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリウレタン、ポリアルキレンパラオキシベンゾエート、及びポリクラール等が挙げられる。
 なかでも、これらの基布のうち、組成物が含浸しやすい点で、親水性の基布が好ましい。親水性の基布とは、例えば、水酸基、アミノ基、カルボキシ基、アミド基、及びスルホニル基等の親水性基を有する繊維を含む基布である。親水性の基布としては、具体的には、植物性繊維、綿、パルプ、動物性繊維、レーヨン、ナイロン、ポリエステル、ポリアクリロニトリル、及びポリビニルアルコール等が挙げられる。
 上記ウェットワイパーの基布としては、不織布、布、タオル、ガーゼ、及び脱脂綿等を使用してもよく、不織布が好ましい。
 また、基布の目付(単位面積当たりの質量)は、100g/m以下が好ましい。上記組成物を基布に含浸させる際の含浸量は、基布の質量に対して1倍以上の量が好ましい。
The base fabric is not particularly limited, and may be formed of natural fibers or chemical fibers.
Natural fibers include, for example, pulp, cotton, hemp, flax, wool, camel, cashmere, mohya, silk and the like.
Materials for chemical fibers include rayon, polynozic, acetate, triacetate, nylon, polyester, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyalkylene para oxybenzoate, and polychlore, etc. .
Among these base fabrics, hydrophilic base fabrics are preferable in that the composition is easily impregnated. The hydrophilic base is, for example, a base containing a fiber having a hydrophilic group such as a hydroxyl group, an amino group, a carboxy group, an amido group, and a sulfonyl group. Specific examples of the hydrophilic base cloth include vegetable fibers, cotton, pulp, animal fibers, rayon, nylon, polyester, polyacrylonitrile, and polyvinyl alcohol.
As a base fabric of the said wet wiper, a nonwoven fabric, cloth, a towel, gauze, absorbent cotton etc. may be used, and a nonwoven fabric is preferable.
The basis weight (mass per unit area) of the base fabric is preferably 100 g / m 2 or less. The amount of impregnation at the time of impregnating the composition with the base fabric is preferably an amount of one or more times the mass of the base fabric.
〔スプレー〕
 本発明の実施形態に係るスプレーは、スプレー容器と、上記スプレー容器に収納された組成物と、を有する。上記組成物としては、既に説明したとおりである。
 本発明のスプレーとしては、上記組成物と噴射剤とを所定の容器に充填した形態が一例として挙げられる。用いられる噴射剤としては、特に制限されないが、例えば液化石油ガス等が挙げられる。
〔spray〕
The spray which concerns on embodiment of this invention has a spray container and the composition accommodated in the said spray container. The above composition is as described above.
As a spray of this invention, the form which filled the said composition and the propellant in the predetermined | prescribed container is mentioned as an example. The propellant to be used is not particularly limited, and examples thereof include liquefied petroleum gas and the like.
〔組成物(参考例)〕
 また、本発明者は、第1金属担持無機担体と、第1金属担持有機担体と、溶媒と、を含む組成物(以下「組成物(参考例)」ともいう。)によっても、優れた抗菌性、及び優れた消臭性を有する膜を形成できることを知見している。
 ここで、第1の金属としては特に制限されないが、銀又は銅が更に好ましく、銅が特に好ましい。
[Composition (Reference Example)]
In addition, the present inventor also has excellent antibacterial properties by a composition containing a first metal-supporting inorganic carrier, a first metal-supporting organic carrier, and a solvent (hereinafter also referred to as a “composition (reference example)”). It has been found that it is possible to form a film having good properties and excellent deodorizing properties.
Here, the first metal is not particularly limited, but silver or copper is more preferable, and copper is particularly preferable.
<第1金属担持無機担体>
 第1金属担持無機担体の無機担体としては、既に説明した実施形態の組成物中に含まれ得る第1金属担持無機担体の無機担体と同様であり、好適形態も同じである。
<First metal-supported inorganic carrier>
The inorganic support of the first metal-supporting inorganic support is the same as the inorganic support of the first metal-supporting inorganic support that can be included in the composition of the embodiment described above, and the preferred form is also the same.
 無機担体としては、結晶性であっても、非晶性(アモルファス)であってもよいが、非晶性であることが好ましく、ガラスがより好ましい。ガラスを構成し得る材料としては、例えば、ケイ酸塩、ホウケイ酸塩、及びリン酸塩等が挙げられ、なかでも、ケイ酸塩が好ましく、ケイ酸アルミニウムがより好ましい。 The inorganic carrier may be crystalline or non-crystalline (amorphous), but is preferably non-crystalline, more preferably glass. As a material which can comprise glass, a silicate, borosilicate, and phosphate etc. are mentioned, for example, Especially, a silicate is preferable and aluminum silicate is more preferable.
 第1金属担持無機担体としては、第1の金属が担持された、金属担持ゼオライト、金属担持アパタイト、金属担持ガラス、金属担持リン酸ジルコニウム、又は金属担持ケイ酸カルシウムが好ましく、金属担持ガラスがより好ましい。 As the first metal-supported inorganic support, metal-supported zeolite, metal-supported apatite, metal-supported glass, metal-supported zirconium phosphate, or metal-supported calcium silicate, on which the first metal is supported, is preferable, and metal-supported glass is more preferable. preferable.
 第1金属担持無機担体の平均粒径は特に制限されないが、4.0μm以下が好ましく、1.5μm以下がより好ましく、1.0μm以下が更に好ましく、0.7μm以下が特に好ましく、0.5μm以下が最も好ましく、0.2μm以下がより最も好ましく、0.15μm以下が更に最も好ましい。また、下限としては、0.01μm以上が好ましく、0.10μm以上がより好ましい。なお、第1金属担持無機担体の平均粒径の測定方法及びその調整方法は、既に説明した実施形態の組成物中に含まれ得る無機物(1)の平均粒径の測定方法及びその調整方法と同様である。 The average particle diameter of the first metal-supported inorganic carrier is not particularly limited, but is preferably 4.0 μm or less, more preferably 1.5 μm or less, still more preferably 1.0 μm or less, particularly preferably 0.7 μm or less The following is most preferable, 0.2 μm or less is more preferable, and 0.15 μm or less is even more preferable. The lower limit is preferably 0.01 μm or more, more preferably 0.10 μm or more. The method of measuring the average particle diameter of the first metal-supported inorganic carrier and the method of adjusting the same are the method of measuring the average particle diameter of the inorganic substance (1) that can be contained in the composition of the embodiment described above It is similar.
 また、第1金属担持無機担体のアスペクト比は特に制限されないが、1~40が好ましく、2~20がより好ましい。なお、アスペクト比は、上述の方法により算出される。 The aspect ratio of the first metal-supported inorganic carrier is not particularly limited, but is preferably 1 to 40, and more preferably 2 to 20. The aspect ratio is calculated by the method described above.
 上記組成物(参考例)中における第1金属担持無機担体の含有量としては特に制限されないが、組成物の全固形分に対して、0.01~40質量%が好ましく、0.1~30質量%がより好ましく、0.1~10質量%が更に好ましい。 The content of the first metal-supported inorganic carrier in the composition (Reference Example) is not particularly limited, but is preferably 0.01 to 40% by mass with respect to the total solid content of the composition. % By mass is more preferable, and 0.1 to 10% by mass is even more preferable.
<第1金属担持有機担体>
 第1金属担持有機担体の有機担体としては特に制限されないが、例えばポリマー粒子が挙げられる。
 第1金属担持有機担体の具体例としては、例えば、銅粒子又は銅酸化物粒子が担持されたポリマー粒子(銅担持ポリマー)が挙げられる。
 銅担持ポリマーとしては、既に説明した実施形態の組成物中に含まれ得る第2金属担持有機担体の具体例として挙げた銅担持ポリマーと同様である。
<First metal-supported organic carrier>
The organic carrier of the first metal-supported organic carrier is not particularly limited, and examples thereof include polymer particles.
Specific examples of the first metal-supporting organic support include, for example, polymer particles (copper-supporting polymer) on which copper particles or copper oxide particles are supported.
The copper-supported polymer is the same as the copper-supported polymer mentioned as a specific example of the second metal-supported organic carrier that can be included in the composition of the embodiment described above.
 第1金属担持有機担体の平均粒径は特に制限されないが、一般に、0.01μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上が更に好ましい。なお、その上限としては、3.0μm以下が好ましく、1.0μm以下がより好ましい。なお、第1金属担持有機担体の沈降性や組成物の透明性を考慮する場合、第1金属担持有機担体の平均粒径は小さい方が分散性がよく、結果として、組成物の透明性が高くなり、好ましい。この場合、第1金属担持有機担体の平均粒径は、1.0μm以下が好ましく、0.5μm以下がより好ましく、0.4μm以下が更に好ましい。
 第1金属担持有機担体の平均粒径を上記数値範囲とすることにより、組成物(参考例)が後述する親水性バインダーを含有する場合、組成物(参考例)を用いて形成された膜において、第1金属担持有機担体が親水性バインダーから露出した状態で固定しやすくなる。このため、金属が担体から、より放出され易くなり、膜の抗菌性及び消臭性が一層優れる。
 なお、第1金属担持有機担体の平均粒径の測定方法は、既に説明した実施形態の組成物中に含まれ得る無機物(1)の平均粒径の測定方法と同様である。
The average particle size of the first metal-supporting organic carrier is not particularly limited, but generally 0.01 μm or more is preferable, 0.2 μm or more is more preferable, and 0.5 μm or more is more preferable. The upper limit thereof is preferably 3.0 μm or less, and more preferably 1.0 μm or less. When the sedimentation of the first metal-supporting organic carrier and the transparency of the composition are taken into consideration, the smaller the average particle diameter of the first metal-supporting organic carrier, the better the dispersibility, and as a result, the transparency of the composition Higher and preferred. In this case, the average particle diameter of the first metal-supported organic carrier is preferably 1.0 μm or less, more preferably 0.5 μm or less, and still more preferably 0.4 μm or less.
When the composition (Reference Example) contains a hydrophilic binder described later by setting the average particle diameter of the first metal-supporting organic carrier to the above numerical range, in a film formed using the composition (Reference Example) The first metal-supporting organic carrier can be easily fixed in the state of being exposed from the hydrophilic binder. Therefore, the metal is more easily released from the carrier, and the antibacterial property and the deodorizing property of the film are further excellent.
In addition, the measuring method of the average particle diameter of a 1st metal support organic carrier is the same as the measuring method of the average particle diameter of the inorganic substance (1) which may be contained in the composition of embodiment already demonstrated.
 上記組成物(参考例)中における第1金属担持有機担体の含有量としては特に制限されないが、組成物の全固形分に対して、0.001~50質量%が好ましく、0.01~40質量%がより好ましい。 The content of the first metal-supporting organic carrier in the composition (Reference Example) is not particularly limited, but is preferably 0.001 to 50% by mass, based on the total solid content of the composition, 0.01 to 40 % By mass is more preferred.
<溶媒>
 溶媒の種類としては特に制限されないが、既に説明した実施形態の組成物中に含まれ得る溶媒として説明したものと同様のものが使用できる。
<Solvent>
The type of solvent is not particularly limited, but the same solvents as those described as the solvent that can be included in the composition of the embodiment described above can be used.
<親水性バインダー>
 組成物(参考例)は、親水性成分を含んでいてもよい。
 親水性成分としては、既に説明した実施形態の組成物中に含まれ得る親水性成分として説明したものと同様であり、好適形態も同じである。
<Hydrophilic binder>
The composition (Reference Example) may contain a hydrophilic component.
As a hydrophilic component, it is the same as that of what was demonstrated as a hydrophilic component which may be contained in the composition of embodiment already demonstrated, and the suitable form is also the same.
<その他の成分>
 組成物(参考例)は、その他の成分を含んでいてもよい。
 その他の成分としては、既に説明した実施形態の組成物中に含まれ得るその他の成分と同様であり、好適形態も同じである。
<Other ingredients>
The composition (Reference Example) may contain other components.
The other components are the same as the other components that may be included in the composition of the embodiment described above, and the preferred form is also the same.
<組成物(参考例)の物性>
 組成物(参考例)の各種物性(組成物のpH、組成物の比重、組成物の粘度、及び組成物のゼータ電位)としては、既に説明した実施形態の組成物の各種物性(組成物のpH、組成物の比重、組成物の粘度、及び組成物のゼータ電位)として説明したものと同様であり、好適形態も同じである。
<Physical Properties of Composition (Reference Example)>
As various physical properties (pH of the composition, specific gravity of the composition, viscosity of the composition, and zeta potential of the composition) of the composition (reference example), various physical properties (composition of the composition of the embodiment already described) The pH, the specific gravity of the composition, the viscosity of the composition, and the zeta potential of the composition) are the same as described above, and the preferred embodiments are also the same.
<組成物(参考例)の製造方法及び用途>
 組成物(参考例)の製造方法及び用途は、既に説明した実施形態の組成物の製造方法及び用途として説明したものと同様であり、好適形態も同じである。
<Method of Producing Composition (Reference Example) and Use>
The production method and use of the composition (Reference Example) are the same as those described for the production method and use of the composition of the embodiment described above, and the preferred embodiments are also the same.
〔膜(参考例)〕
 また、本発明者は、第1金属担持無機担体と、第1金属担持有機担体とを含む膜(以下「膜(参考例)」ともいう。)が、優れた抗菌性、及び優れた消臭性を有することを知見している。
 ここで、第1の金属としては特に制限されないが、銀又は銅が更に好ましく、銅が特に好ましい。
[Membrane (reference example)]
In addition, the inventor of the present invention has found that a film containing a first metal-supporting inorganic carrier and a first metal-supporting organic carrier (hereinafter also referred to as "film (reference example)") has excellent antibacterial properties and excellent deodorizing properties. We have found that it has sex.
Here, the first metal is not particularly limited, but silver or copper is more preferable, and copper is particularly preferable.
<第1金属担持無機担体>
 第1金属担持無機担体としては、既に説明した組成物(参考例)中に含まれる第1金属担持無機担体と同様であり、好ましい形態も同様である。
<First metal-supported inorganic carrier>
The first metal-supported inorganic carrier is the same as the first metal-supported inorganic carrier contained in the composition (the reference example) described above, and the preferred embodiment is also the same.
<第1金属担持有機担体>
 第1金属担持有機担体としては、既に説明した組成物(参考例)中に含まれる第1金属担持有機担体と同様であり、好ましい形態も同様である。
<First metal-supported organic carrier>
The first metal-supporting organic carrier is the same as the first metal-supporting organic carrier contained in the composition (the reference example) described above, and the preferred embodiment is also the same.
<親水性バインダー>
 上記膜(参考例)は、親水性バインダーを含有することが好ましい。親水性バインダーとしては特に制限されないが、例えば、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物;親水性基を有するポリマー等が挙げられ、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種が好ましい。
 なお、ケイ素原子に加水分解性基が結合した化合物の好ましい形態、及び親水性基を有するポリマーの好ましい形態は、既に説明した実施形態の組成物と同様である。
<Hydrophilic binder>
The film (reference example) preferably contains a hydrophilic binder. The hydrophilic binder is not particularly limited, and examples thereof include a hydrolyzate of a compound in which a hydrolyzable group is bonded to a silicon atom, and a hydrolytic condensate thereof; At least one selected from the group consisting of a hydrolyzate of a compound having a degradable group bonded thereto, and a hydrolytic condensate thereof is preferred.
In addition, the preferable form of the compound which the hydrolysable group couple | bonded with the silicon atom, and the preferable form of the polymer which has a hydrophilic group are the same as that of the composition of embodiment already demonstrated.
<その他の成分>
 膜(参考例)は、上述した成分以外の成分を更に含んでいてもよい。
<Other ingredients>
The membrane (reference example) may further contain components other than the components described above.
<膜(参考例)の製造方法>
 本発明の膜は、例えば、上記組成物(参考例)を乾燥又は硬化して得られる。上記組成物(参考例)としては、既に説明したとおりである。
 なお、上記組成物(参考例)が親水性成分として親水性バインダー前駆体を含有する場合、上記膜(参考例)は、組成物(参考例)の塗膜(組成物層)を硬化して得られる。言い換えると、上記膜(参考例)は、上記組成物層の硬化処理によって、組成物層中の親水性バインダー前駆体を親水性バインダーとすることにより得られる。
 これに対して、上記組成物(参考例)中の親水性成分が親水性バインダーである場合、組成物(参考例)に対して硬化処理を実施する必要はない。
<Method of manufacturing membrane (reference example)>
The film of the present invention can be obtained, for example, by drying or curing the above composition (Reference Example). As said composition (reference example), it is as having already demonstrated.
In addition, when the said composition (reference example) contains a hydrophilic binder precursor as a hydrophilic component, the said film (reference example) hardens the coating film (composition layer) of a composition (reference example). can get. In other words, the film (the reference example) is obtained by setting the hydrophilic binder precursor in the composition layer to a hydrophilic binder by curing treatment of the composition layer.
On the other hand, when the hydrophilic component in the composition (Reference Example) is a hydrophilic binder, it is not necessary to carry out the curing treatment on the composition (Reference Example).
<膜(参考例)の膜厚>
 膜(参考例)の膜厚としては特に制限されないが、0.001~50μmが好ましく、0.01~10μmがより好ましい。
 なお、上記膜厚とは、膜のサンプル片を樹脂に包埋して、ミクロトームで断面を削り出し、削り出した断面を走査電子顕微鏡で観察し測定する。膜の任意の10点の位置における厚みを測定し、それらを算術平均した値を意図する。
<Film thickness of film (reference example)>
The thickness of the film (reference example) is not particularly limited, but is preferably 0.001 to 50 μm, and more preferably 0.01 to 10 μm.
In addition, with the said film thickness, the sample piece of a film | membrane is embedded in resin, the cross section is cut off with a microtome, and the cross section cut out is observed and measured with a scanning electron microscope. The thickness at any 10 points of the film is measured, and their arithmetically averaged value is intended.
<膜(参考例)のpH>
 膜(参考例)の膜面pHは、典型的には7.0以下が好ましく、特にアンモニア及びトリメチルアミン等の尿及び便等に由来する悪臭物質に対する消臭性により優れる点で、6.5以下が好ましく、5.0以下がより好ましく、4.5以下が更に好ましい。膜(参考例)の膜面pHの下限は、特に制限されないが、1.0以上が好ましい。
 なお、本明細書において、膜(参考例)の膜面pHは、膜面に0.02mLの液滴(純水)を滴下し、1分間経過した後、その液滴のpHを、堀場製作所社製のpHメータ LAQUA F-72を用いて測定することにより求めたときの値である。
<PH of membrane (reference example)>
The pH on the surface of the membrane (Reference Example) is typically preferably 7.0 or less, and in particular 6.5 or less because it is more excellent in the deodorizing property against malodorous substances derived from urine and feces such as ammonia and trimethylamine. Is preferred, 5.0 or less is more preferred, and 4.5 or less is even more preferred. The lower limit of the membrane surface pH of the membrane (Reference Example) is not particularly limited, but is preferably 1.0 or more.
In the present specification, for the film surface pH of the film (Reference Example), 0.02 mL of droplets (pure water) were dropped on the film surface, and after 1 minute, the pH of the droplets was It is a value obtained by measurement using a pH meter LAQUA F-72 manufactured by corporation.
 後述するように、膜(参考例)は、オムツ等の用途に適用できる。このとき、尿等の臭気物質含有液体が膜面に付着した際に、膜面pHが上記数値範囲(好ましくは膜面pH6.5以下)となるようにすると、膜(参考例)に含有される第1金属担持無機担体及び第1金属担持有機担体中の金属がより変質しにくく、抗菌性及び消臭性がより優れる。 As described later, the membrane (reference example) can be applied to applications such as diapers. At this time, when an odor substance-containing liquid such as urine adheres to the film surface, the film surface pH falls within the above numerical range (preferably, the film surface pH is 6.5 or less), so that it is contained in the film (reference example) The metal in the first metal-supporting inorganic carrier and the first metal-supporting organic carrier are less likely to deteriorate, and the antibacterial property and the deodorizing property are more excellent.
 膜面pHが上記数値範囲の膜の一例としては、例えば、第1金属担持無機担体、第1金属担持有機担体、及び有機酸を含む膜が挙げられる。有機酸は揮発性が低いため、乾燥状態では親水性バインダーに固着して存在する。この膜面に、尿等の臭気物質含有液体が付着すると、この臭気物質含有液体により膜表面の有機酸が溶解し、膜の膜面pHが上記範囲内となりやすい。このようにすると、臭気物質含有液体が付着する前の状態では、膜面pHが低くなりすぎず、膜に含有される第1金属担持無機担体及び第1金属担持有機担体中の金属が変質しにくい。
 また、膜面pHが上記数値範囲の膜の他の一例としては、臭気物質含有液体に溶解する皮膜と、上記皮膜内に内包されたpH調整機能を有する化合物等(上述の有機酸でもよい)とを有するマイクロカプセルを膜に含有させる方法が挙げられる。上記マイクロカプセルを含有する膜の膜面に臭気物質含有液体が付着すると、マイクロカプセルの皮膜が溶解してpH調整機能を有する化合物が膜面に露出し、膜の膜面pHが上記範囲となりやすい。また、このようにすると、臭気物質含有液体が付着する前の状態では、膜面pHが低くなりすぎず、膜に含有される第1金属担持無機担体及び第1金属担持有機担体中の金属が変質しにくい。
As an example of the film | membrane whose film surface pH is the said numerical range, the film | membrane containing a 1st metal support inorganic carrier, a 1st metal support organic carrier, and an organic acid is mentioned, for example. Since the organic acid has low volatility, it adheres to the hydrophilic binder in the dry state. When an odor substance-containing liquid such as urine adheres to this film surface, the organic acid on the film surface is dissolved by the odor substance-containing liquid, and the film surface pH of the film tends to be in the above range. In this way, the film surface pH does not become too low in the state before the odorant-containing liquid adheres, and the metal in the first metal-supported inorganic carrier and the first metal-supported organic carrier contained in the film is denatured. Hateful.
Further, as another example of the film having a film surface pH in the above-mentioned numerical range, a film which is dissolved in the odorant-containing liquid, a compound having a pH adjusting function included in the film, etc. (may be the above-mentioned organic acid) And a method in which the microcapsules are contained in the membrane. When the odorant-containing liquid adheres to the film surface of the film containing the above-mentioned microcapsule, the film of the microcapsule dissolves and the compound having a pH adjusting function is exposed on the film surface, and the film surface pH of the film tends to be in the above range. . Also, in this case, the film surface pH does not become too low in the state before the odorant-containing liquid is attached, and the metal in the first metal-supported inorganic carrier and the first metal-supported organic carrier contained in the film is It is hard to deteriorate.
〔膜付き基材(参考例)〕
 膜付き基材(参考例)は、基材と、上記膜(参考例)とを有する。膜付き基材(参考例)としては、基材と、膜(参考例)とを有する積層体であればよく、基材の片側の表面上に膜(参考例)を有してもよいし、基材の両側の表面上に膜(参考例)を有してもよい。
[Base with Membrane (Reference Example)]
The film-coated substrate (Reference Example) has a substrate and the above-mentioned film (Reference Example). The film-coated substrate (reference example) may be a laminate having a substrate and a film (reference example), and may have a film (reference example) on the surface of one side of the substrate. , And may have a film (Reference Example) on the surface on both sides of the substrate.
<基材>
 基材は、膜(参考例)を支持する役割を果たし、その種類は特に制限されない。
 基材としては、既に説明した実施形態の膜付き基材で用いられる基材と同様である。
<Base material>
The substrate plays a role of supporting the membrane (reference example), and the type is not particularly limited.
As a base material, it is the same as that of the base material used with the film-coated base material of embodiment already demonstrated.
〔膜付き基材の製造方法(参考例)〕
 膜付き基材の製造方法(参考例)は、上述の組成物(参考例)を用いて膜(参考例)を製造する方法に該当し、以下の工程を有する。
(1)組成物(参考例)が、親水性成分として親水性バインダー前駆体を含有する場合、下記工程Aと、下記工程Bとを有する。
(2)組成物(参考例)が、親水性成分として親水性バインダーを含有する場合、下記工程Aを有する。
(工程A)基材の表面に、組成物(参考例)を塗布して、組成物層を形成する工程
(工程B)組成物層を硬化処理させて、膜(参考例)を得る工程
 なお、膜付き基材の製造方法(参考例)の具体的な手順は、既に説明した実施形態に係る膜付き基材の製造方法の手順と同様である。
[Method of producing a film-coated substrate (reference example)]
The method for producing a film-coated substrate (Reference Example) corresponds to a method for producing a film (Reference Example) using the above-mentioned composition (Reference Example), and has the following steps.
(1) When a composition (reference example) contains a hydrophilic binder precursor as a hydrophilic component, it has the following process A and the following process B.
(2) When the composition (Reference Example) contains a hydrophilic binder as a hydrophilic component, the following process A is included.
(Step A) A step of applying a composition (reference example) to the surface of a substrate to form a composition layer (step B) curing the composition layer to obtain a film (reference example) The specific procedure of the method for producing a film-coated substrate (Reference Example) is the same as the procedure of the method for producing a film-coated substrate according to the embodiment described above.
〔ウェットワイパー(参考例)〕
 ウェットワイパー(参考例)は、基布と、上記基布に含浸させた組成物(参考例)と、を有する。上記組成物(参考例)としては、既に説明したとおりである。
 なお、ウェットワイパー(参考例)の具体的な構成は、使用する組成物が異なる点以外は、既に説明した実施の形態に係るウェットワイパーの具体的な構成と同じである。
[Wet wiper (reference example)]
The wet wiper (Reference Example) has a base cloth and a composition (Reference Example) impregnated in the base cloth. As said composition (reference example), it is as having already demonstrated.
The specific configuration of the wet wiper (Reference Example) is the same as the specific configuration of the wet wiper according to the embodiment described above except that the composition to be used is different.
〔スプレー(参考例)〕
 スプレー(参考例)は、スプレー容器と、上記スプレー容器に収納された組成物(参考例)と、を有する。上記組成物(参考例)としては、既に説明したとおりである。
 なお、スプレー(参考例)の具体的な構成は、使用する組成物が異なる点以外は、既に説明した実施の形態に係るスプレーの具体的な構成と同じである。
[Spray (reference example)]
The spray (reference example) has a spray container and the composition (reference example) stored in the spray container. As said composition (reference example), it is as having already demonstrated.
The specific configuration of the spray (the reference example) is the same as the specific configuration of the spray according to the embodiment described above, except that the composition to be used is different.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により制限的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, proportions, treatment contents, treatment procedures and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the following examples.
〔実施例1:組成物1の調製〕
 容器中でエタノール367gを攪拌しながら、純水60g、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、及びアニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、イソプロパノール18g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6g、平均粒径を0.3μmに調整した銀担持ガラス粒子(富士ケミカル社製、エタノール希釈:固形分濃度60質量%)2.4gを加え、20分間攪拌し、分散液Aを得た。
 なお、この分散液A中の上記銀担持ガラス粒子は、無機物(1)に該当する。
Example 1 Preparation of Composition 1
60 g of pure water, 14 g of a silicate compound ("MKC (registered trademark) Silicate" MS 51 "manufactured by Mitsubishi Chemical Co., Ltd.) and aluminum chelate D (aluminium bis (ethyl acetoacetate) mono (acetyl aceto) while stirring 367 g of ethanol in a container ), Ethanol dilution: 15 g solid content concentration, 15 g nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., pure water dilution: 0.5 mass% solid concentration), anionic interface After sequentially adding 10 g of an activator (sodium di (2-ethylhexyl) sulfosuccinate, pure water dilution: solid concentration 0.2% by mass), 18 g of isopropanol, a dispersant (manufactured by BYK "DISPERBYK (registered trademark)-180" Silver-supported glass particles adjusted to an average particle size of 0.3 μm (3.6 g) (Fuji Chemica Company Ltd., diluted ethanol: solids concentration 60 mass%) 2.4 g was added and stirred for 20 minutes to obtain a dispersion liquid A.
In addition, the said silver carrying | support glass particle in this dispersion liquid A corresponds to an inorganic substance (1).
 得られた分散液Aに、第2金属含有物として、銅担持ガラス(東亞合成製「NS-20C」(無機物(2)に該当する。なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムに該当する。))0.28gを加えて攪拌することにより、組成物1を得た。
 得られた実施例1の組成物1は、無機物(1)、第2金属含有物(無機物(2))、親水性成分としてシリケート系化合物と、溶媒と、を含む。
In the obtained dispersion A, as a second metal-containing substance, a copper-supporting glass (corresponding to “NS-20C” manufactured by Toagosei Co., Ltd. (inorganic substance (2). Inorganic carrier of “NS-20C” manufactured by Toagosei Co., Ltd.) A composition 1 is obtained by adding and stirring 0.28 g of aluminum silicate (corresponding to aluminum silicate).
The obtained composition 1 of Example 1 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
(無機物(1)及び第2金属含有物の平均粒径)
 無機物(1)及び第2金属含有物が粒子である場合、上記粒子の平均粒径については、電子顕微鏡を用いた観察により測定した。具体的な測定方法は、上述したとおりである。
(Average particle size of inorganic substance (1) and second metal-containing substance)
When the inorganic substance (1) and the second metal-containing substance are particles, the average particle diameter of the particles is measured by observation using an electron microscope. The specific measurement method is as described above.
<評価A>
(試験サンプルの作製)
 上記で得られた組成物1について、以下に示す試験に基づいて、その消臭性についての評価を実施した。
 まず、不織布を準備し、不織布100cm当たり、組成物1が1g付着するように、不織布に対して組成物1を噴射した。次に、得られた組成物1付き不織布を25℃にて2日間乾燥し、膜付き基材1を作製した。
<Evaluation A>
(Preparation of test sample)
The composition 1 obtained above was evaluated for its deodorizing property based on the test shown below.
First, a non-woven fabric was prepared, and the composition 1 was sprayed onto the non-woven fabric so that 1 g of the composition 1 adhered per 100 cm 2 of non-woven fabric. Next, the obtained non-woven fabric with composition 1 was dried at 25 ° C. for 2 days to produce a film-coated substrate 1.
(消臭性の評価)
 アンモニア臭がする尿を上記膜付き基材1に10g噴霧し、室温放置した。放置後、1h後及び8h後の臭いを官能評価した。結果を第1表に示す。
(Evaluation of deodorant)
The urine having an ammonia odor was sprayed on the membrane-coated substrate 1 at 10 g and left at room temperature. The odor after 1 h and 8 h after sensory standing was evaluated sensoryily. The results are shown in Table 1.
≪評価基準≫
 「A」:ほぼ臭気を感じない。
 「B」:わずかに臭気を感じる。
 「C」:やや臭気を感じる。
 「D」:臭気を感じる。
 「E」:強く臭気を感じる。
«Evaluation criteria»
"A": Almost no odor.
"B": A slight odor is felt.
"C": A slight odor is felt.
"D": I feel an odor.
"E": strongly smells.
(抗菌性の評価)
 上記膜付き基材1の抗菌性を評価した。
 抗菌性の評価は、JIS Z 2801:2012記載の評価方法に準拠し、大腸菌を使用し、菌液への接触時間を24時間に変更して試験を実施した。試験後の抗菌活性値を測定し、以下の評価基準に基づいて評価を行なった。結果を第1表に示す。
≪評価基準≫
 「A」:抗菌活性値が2.5以上
 「B」:抗菌活性値が1.0以上2.5未満
 「C」:抗菌活性値が1.0未満
(Evaluation of antibacterial activity)
The antimicrobial properties of the film-coated substrate 1 were evaluated.
The evaluation of the antimicrobial property was conducted in accordance with the evaluation method described in JIS Z 2801: 2012, using E. coli and changing the contact time to the bacterial solution to 24 hours to carry out the test. The antimicrobial activity value after the test was measured and evaluated based on the following evaluation criteria. The results are shown in Table 1.
«Evaluation criteria»
"A": antibacterial activity value 2.5 or more "B": antibacterial activity value 1.0 or more and less than 2.5 "C": antibacterial activity value less than 1.0
(膜面pH)
 上記膜付き基材1の抗菌性を評価した。評価方法は、上述したとおりである。
(Membrane surface pH)
The antimicrobial properties of the film-coated substrate 1 were evaluated. The evaluation method is as described above.
〔比較例1:組成物R1の調製〕
 第2金属含有物を使用しなかったこと、及びなお、無機物(1)の平均粒径を表1に記載のサイズ(μm)に調整したこと以外は実施例1と同様の方法により、比較例1の組成物R1を調製した。
 得られた組成物R1を用いて、組成物1と同様の方法により各種評価を実施した。結果を第1表に示す。
Comparative Example 1: Preparation of Composition R1
Comparative Example was carried out in the same manner as Example 1, except that the second metal-containing substance was not used, and that the average particle size of the inorganic substance (1) was adjusted to the size (μm) described in Table 1. Composition R1 of 1 was prepared.
Various evaluation was implemented by the method similar to the composition 1 using obtained composition R1. The results are shown in Table 1.
〔実施例2:組成物2の調製〕
 無機物(1)及び第2金属含有物との平均粒径を第1表に記載したサイズに調整したこと以外は、実施例1と同様にして、組成物2を調製し、評価した。結果を第1表に示した。
Example 2 Preparation of Composition 2
Composition 2 was prepared and evaluated in the same manner as in Example 1 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 1. The results are shown in Table 1.
〔実施例3:組成物3の調製〕
 MKCシリケートMS51を使用しなかったこと以外は、実施例2と同様にして、組成物3を調製し、評価した。結果を第1表に示した。
Example 3 Preparation of Composition 3
Composition 3 was prepared and evaluated in the same manner as Example 2, except that MKC Silicate MS51 was not used. The results are shown in Table 1.
〔比較例2:組成物R2の調製〕
 MKCシリケートMS51を使用しなかったこと以外は、比較例1と同様にして、組成物R2を調製し、評価した。結果を第1表に示した。
Comparative Example 2: Preparation of Composition R2
Composition R2 was prepared and evaluated in the same manner as Comparative Example 1 except that MKC Silicate MS51 was not used. The results are shown in Table 1.
〔比較例3:組成物R3の調製〕
 銀担持ガラスを用いなかったこと以外は実施例3と同様にして、組成物R3を調製し、評価した。結果を第1表に示した。
Comparative Example 3 Preparation of Composition R3
The composition R3 was prepared and evaluated in the same manner as in Example 3 except that silver supporting glass was not used. The results are shown in Table 1.
 以下に、第1表を示す。
 なお、第1表中の「銅担持ガラス」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-20C」である。なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムに該当する。
Table 1 is shown below.
The “copper-supporting glass” in Table 1 is “NS-20C” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table. The inorganic carrier of "NS-20C" manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、無機物(1)と、第2金属含有物と、溶媒とを含有する実施例1~4の組成物は、本発明の効果を有していることがわかった。一方、第2金属含有物を含有しない比較例1又は2の組成物、無機物(1)を含有しない比較例3の組成物は、本発明の効果を有していなかった。 From the above results, it was found that the compositions of Examples 1 to 4 containing the inorganic substance (1), the second metal-containing substance, and the solvent have the effects of the present invention. On the other hand, the composition of Comparative Example 1 or 2 containing no second metal-containing material and the composition of Comparative Example 3 containing no inorganic substance (1) did not have the effects of the present invention.
 また、親水性成分を含有する、実施例2の組成物は、実施例3の組成物と比較して、8時間経過後であってもより優れた消臭性を維持していることがわかった。 In addition, it is found that the composition of Example 2, which contains a hydrophilic component, maintains superior deodorizing properties even after 8 hours as compared with the composition of Example 3. The
〔実施例4:組成物4の調製〕
 無機物(1)の平均粒径、並びに、第2金属含有物の平均粒径及びアスペクト比を第2表に記載した値に調整したこと以外は、実施例1と同様にして、組成物4を調製した。
 調製した組成物4を用いて、後述する<評価B>の評価を行い、結果を第2表に示した。なお、後述する<評価B>は、上述した後述する<評価A>よりも厳しい評価条件とした。
Example 4 Preparation of Composition 4
Composition 4 was prepared in the same manner as Example 1, except that the average particle size of the inorganic substance (1) and the average particle size and aspect ratio of the second metal-containing substance were adjusted to the values described in Table 2. Prepared.
The evaluation of <Evaluation B> described later was performed using the prepared composition 4 and the results are shown in Table 2. Note that <Evaluation B> described later is a more severe evaluation condition than <Evaluation A> described later.
<評価B>
(試験サンプルの作製)
 上記で得られた組成物4について、以下に示す試験に基づいて、その消臭性についての評価を実施した。
 まず、不織布を準備し、不織布100cm当たり組成物4が0.1g付着するように、不織布に対して組成物4を噴射した。次に、得られた組成物4付き不織布を25℃にて2日間乾燥し、膜付き基材4を作製した。
<Evaluation B>
(Preparation of test sample)
The composition 4 obtained above was evaluated for its deodorizing property based on the test shown below.
First, a non-woven fabric was prepared, and the composition 4 was jetted to the non-woven fabric so that 0.1 g of the composition 4 adhered per 100 cm 2 of non-woven fabric. Next, the obtained nonwoven fabric with composition 4 was dried at 25 ° C. for 2 days to produce a membrane-coated substrate 4.
(消臭性の評価)
 アンモニア臭がする尿を上記膜付き基材4に10g噴霧し、室温放置した。放置後、1h後及び8h後の臭いを官能評価した。結果を第1表に示す。
(Evaluation of deodorant)
The ammonia smelling urine was sprayed on the membrane-coated substrate 4 at 10 g and left at room temperature. The odor after 1 h and 8 h after sensory standing was evaluated sensoryily. The results are shown in Table 1.
≪評価基準≫
 「AA」:ごくごくわずかにしか臭気を感じない。
 「A」:ほぼ臭気を感じない。
 「B」:わずかに臭気を感じる。
 「C」:やや臭気を感じる。
 「D」:臭気を感じる。
 「E」:強く臭気を感じる。
«Evaluation criteria»
"AA": A very slight odor is felt.
"A": Almost no odor.
"B": A slight odor is felt.
"C": A slight odor is felt.
"D": I feel an odor.
"E": strongly smells.
(抗菌性の評価)
 上記膜付き基材4の抗菌性を評価した。
 抗菌性の評価は、JIS Z 2801:2012記載の評価方法に準拠し、大腸菌を使用し、菌液への接触時間を24時間に変更して試験を実施した。試験後の抗菌活性値を測定し、以下の評価基準に基づいて評価を行なった。結果を第2表に示す。
≪評価基準≫
 「A」:抗菌活性値が2.5以上
 「B」:抗菌活性値が1.0以上2.5未満
 「C」:抗菌活性値が1.0未満
(Evaluation of antibacterial activity)
The antimicrobial properties of the film-coated substrate 4 were evaluated.
The evaluation of the antimicrobial property was conducted in accordance with the evaluation method described in JIS Z 2801: 2012, using E. coli and changing the contact time to the bacterial solution to 24 hours to carry out the test. The antimicrobial activity value after the test was measured and evaluated based on the following evaluation criteria. The results are shown in Table 2.
«Evaluation criteria»
"A": antibacterial activity value 2.5 or more "B": antibacterial activity value 1.0 or more and less than 2.5 "C": antibacterial activity value less than 1.0
(膜面pH)
 上記膜付き基材4の抗菌性を評価した。評価方法は、上述したとおりである。
(Membrane surface pH)
The antimicrobial properties of the film-coated substrate 4 were evaluated. The evaluation method is as described above.
〔実施例5:組成物5の調製〕
 第2金属含有物の平均粒径及びアスペクト比を第2表に記載した値に調整したこと以外は、実施例4と同様にして、組成物5を調製し、評価した。結果を第2表に示した。
Example 5 Preparation of Composition 5
The composition 5 was prepared and evaluated in the same manner as in Example 4 except that the average particle diameter and the aspect ratio of the second metal-containing material were adjusted to the values described in Table 2. The results are shown in Table 2.
〔実施例6:組成物6の調製〕
 第2金属含有物の平均粒径及びアスペクト比を第2表に記載した値に調整したこと以外は、実施例4と同様にして、組成物6を調製し、評価した。結果を第2表に示した。
Example 6 Preparation of Composition 6
The composition 6 was prepared and evaluated in the same manner as in Example 4 except that the average particle size and the aspect ratio of the second metal-containing material were adjusted to the values described in Table 2. The results are shown in Table 2.
〔実施例7:組成物7の調製〕
 無機物(1)の平均粒径、並びに、第2金属含有物の平均粒径及びアスペクト比を第2表に記載した値に調整したこと以外は、実施例4と同様にして、組成物7を調製し、評価した。結果を第2表に示した。
Example 7 Preparation of Composition 7
Composition 7 was prepared in the same manner as Example 4, except that the average particle size of the inorganic substance (1) and the average particle size and aspect ratio of the second metal-containing substance were adjusted to the values described in Table 2. Prepared and evaluated. The results are shown in Table 2.
 なお、上述した組成物1及び組成物2を用いて、上述した評価Bを実施した結果も表2に示す。 In addition, the result of having implemented the evaluation B mentioned above using the composition 1 and the composition 2 which were mentioned above is also shown in Table 2.
 なお、第2表中の「銅担持ガラス」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-20C」である。なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。 The “copper-supporting glass” in Table 2 is “NS-20C” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table. The inorganic carrier "NS-20C" manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate glass.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記結果から、第2金属含有物が粒子であり、その平均粒径が1.5μm以下(好ましくは0.5μm以下、より好ましくは0.2μm以下、さらに好ましくは0.15μm以下)の場合により、消臭性がより向上することが確認された。 From the above results, depending on the case where the second metal-containing material is particles, the average particle diameter thereof is 1.5 μm or less (preferably 0.5 μm or less, more preferably 0.2 μm or less, still more preferably 0.15 μm or less). It was confirmed that the deodorizing property is further improved.
〔実施例8:組成物8の調製〕
 酸化銅粒子(関東化学製「酸化銅(II)COPPER OXIDE」)を減圧下、4℃、40時間の条件で低温乾燥することにより水分を除去した。次いで、乾燥後の酸化銅粒子を水で10倍希釈することにより分散した後、ビーズミルを使用して湿式粉砕した。得られた分散液を、減圧下にて50℃、5時間の条件で乾燥し、平均粒径30nmのCuO粉末を作製した。
 なお、後述する組成物16(実施例16)に用いた酸化銅(II)粒子については、ミル時間及びフィルタ種類を変動させた以外は組成物8で用いられる酸化銅(II)と同様の方法により粒径制御を行った。
Example 8 Preparation of Composition 8
The water content was removed by drying the copper oxide particles ("Copper (II) COPPER OXIDE" manufactured by Kanto Chemical Co., Ltd.) under reduced pressure at 4 ° C. for 40 hours at a low temperature. Next, the dried copper oxide particles were dispersed by diluting with 10 times with water, and then wet-pulverized using a bead mill. The obtained dispersion was dried at 50 ° C. for 5 hours under reduced pressure to prepare a CuO powder having an average particle diameter of 30 nm.
In addition, about the copper oxide (II) particle used for the composition 16 (Example 16) mentioned later, the method similar to copper oxide (II) used by the composition 8 except having varied the milling time and the kind of filter The particle size was controlled by
 容器中において、ポリマー粒子(日本触媒製「エポスター100W」、平均粒径:150nm)水分散液(固形分濃度0.1質量%)150gを攪拌しながら、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケートMS51」)0.1gを加えて20分間攪拌した。次いで、この攪拌物に、粒径制御した酸化銅(関東化学製「酸化銅(II)COPPER OXIDE」)水分散液(固形分濃度0.01質量%:平均粒径30nm)50gを加えて、更に20分間攪拌し、分散液Cを得た。
 なお、この分散液Cは、第2金属含有物として、銅担持ポリマー粒子(第2の金属を含有する有機物に該当する。)を含有する。
In a container, 150 g of an aqueous dispersion (solid content concentration: 0.1% by mass) of polymer particles (Nippon Shokuhin “Epoler 100 W”, average particle diameter: 150 nm) is stirred while a silicate compound (MKC Corporation “MKC” 0.1 g of (registered trademark) Silicate MS 51 ") was added and stirred for 20 minutes. Subsequently, 50 g of copper oxide ("Copper oxide (II) COPPER OXIDE" manufactured by Kanto Chemical Co., Ltd.) aqueous dispersion (solid content concentration 0.01 mass%: average particle size 30 nm) whose particle size is controlled is added to this stirred product, The mixture was further stirred for 20 minutes to obtain dispersion C.
This dispersion liquid C contains copper-supporting polymer particles (corresponding to the organic substance containing the second metal) as the second metal-containing substance.
 なお、本実施例欄において、銅担持ポリマー粒子中における、酸化銅粒子及びポリマー粒子の平均粒径については、酸化銅粒子のみの分散液及びポリマー粒子のみの分散液を用いて、下記の動的光散乱による測定により得られた平均粒径を代用した。
(酸化銅粒子及びポリマー粒子の平均粒径の測定)
 分散液中の上記酸化銅粒子及びポリマー粒子の平均粒径は、レーザー回折による粒径分布測定機等を用いて動的光散乱により測定した。
 具体的には、Marveln社製動的光散乱測定装置(ゼータサイザーZS)を用いて測定した。平均粒径は、キュムラント解析による粒径の平均値(Z-Average)としてISO13321で定められている方式で3回測定して、3回測定した値の平均値を用いた。
In the column of this example, regarding the average particle diameter of the copper oxide particles and the polymer particles in the copper-supporting polymer particles, using the dispersion liquid of only the copper oxide particles and the dispersion liquid of only the polymer particles, the following dynamic The average particle size obtained by measurement by light scattering was substituted.
(Measurement of average particle size of copper oxide particles and polymer particles)
The average particle sizes of the copper oxide particles and the polymer particles in the dispersion liquid were measured by dynamic light scattering using a particle size distribution analyzer by laser diffraction.
Specifically, it was measured using a dynamic light scattering measurement apparatus (Zetasizer ZS) manufactured by Marveln. The average particle size was measured three times according to the method defined in ISO 13321 as an average value (Z-Average) of particle sizes by cumulant analysis, and an average value of values measured three times was used.
 次に、得られた分散液Cを遠心分離して、銅担持ポリマー粒子を沈降させた。濾過により上記銅担持ポリマー粒子を分離し、減圧下で自然乾燥させることにより、銅担持ポリマー粒子を得た。光学顕微鏡による観察により、銅担持ポリマー粒子は、ポリマー粒子の表面上に酸化銅粒子が担持された構造を有し、ポリマー粒子の表面上の少なくとも一領域に、シリケート系化合物が縮合してなるシラン化合物の被膜が形成されていることを確認した。
 また、銅担持ポリマー粒子は、平均粒径が0.6μmであった。
Next, the obtained dispersion C was centrifuged to precipitate copper-supported polymer particles. The copper-supported polymer particles were separated by filtration and naturally dried under reduced pressure to obtain copper-supported polymer particles. According to observation with an optical microscope, the copper-supporting polymer particle has a structure in which copper oxide particles are supported on the surface of the polymer particle, and a silane is formed by condensation of a silicate compound in at least one region on the surface of the polymer particle. It confirmed that the film of the compound was formed.
In addition, the copper-supported polymer particles had an average particle size of 0.6 μm.
 得られた分散液Cに、無機物(1)として、平均粒径を0.3μmに制御したリン酸ジルコニウム0.1gを加えて攪拌することにより、組成物8を得た。
 なお、上記リン酸ジルコニウムは、東亞合成(株)製「NS-10」を平均粒径0.3μmに制御したものに該当する。
 得られた実施例8の組成物8は、無機物(1)、第2金属含有物(第2の金属を含有する有機物)、親水性成分としてシリケート系化合物、及び溶媒を含む。
Composition 8 was obtained by adding 0.1 g of zirconium phosphate which controlled the average particle diameter to 0.3 micrometer as an inorganic substance (1) to the obtained dispersion liquid C, and stirring it.
The zirconium phosphate corresponds to one obtained by controlling “NS-10” manufactured by Toagosei Co., Ltd. to an average particle diameter of 0.3 μm.
The obtained composition 8 of Example 8 contains an inorganic substance (1), a second metal-containing substance (an organic substance containing a second metal), a silicate compound as a hydrophilic component, and a solvent.
<評価C>
(試験サンプルの作製)
 上記で得られた組成物8について、以下に示す試験に基づいて、その消臭性についての評価を実施した。
 まず、不織布を準備し、100cm当たり組成物8が1g付着するように、不織布に対して組成物8を噴射した。次に、得られた組成物8付き不織布を25℃にて2日間乾燥し、膜付き基材8を作製した。
<Evaluation C>
(Preparation of test sample)
The composition 8 obtained above was evaluated for its deodorizing property based on the test shown below.
First, a non-woven fabric was prepared, and the composition 8 was sprayed to the non-woven fabric so that 1 g of the composition 8 was adhered per 100 cm 2 . Next, the obtained nonwoven fabric with composition 8 was dried at 25 ° C. for 2 days to produce a membrane-coated substrate 8.
(消臭性の評価)
 アンモニア臭がする尿を上記膜付き基材8に10g噴霧し、室温放置した。放置後、1h後及び8h後の臭いを官能評価した。結果を第3表に示す。
(Evaluation of deodorant)
The urine having an ammonia smell was sprayed on the membrane-coated substrate 8 at 10 g and left at room temperature. The odor after 1 h and 8 h after sensory standing was evaluated sensoryily. The results are shown in Table 3.
≪評価基準≫
 「AA」:かすかにしか臭気を感じない。
 「A」:ほぼ臭気を感じない。
 「B」:わずかに臭気を感じる。
 「C」:やや臭気を感じる。
 「D」:臭気を感じる。
 「E」:強く臭気を感じる。
«Evaluation criteria»
"AA": I feel only a faint odor.
"A": Almost no odor.
"B": A slight odor is felt.
"C": A slight odor is felt.
"D": I feel an odor.
"E": strongly smells.
(抗菌性の評価)
 上記膜付き基材8の抗菌性を評価した。
 抗菌性の評価は、JIS Z 2801:2012記載の評価方法に準拠し、大腸菌を使用し、菌液への接触時間を24時間に変更して試験を実施した。試験後の抗菌活性値を測定し、以下の評価基準に基づいて評価を行なった。結果を第3表に示す。
≪評価基準≫
 「A」:抗菌活性値が2.5以上
 「B」:抗菌活性値が1.0以上2.5未満
 「C」:抗菌活性値が1.0未満
(Evaluation of antibacterial activity)
The antimicrobial properties of the film-coated substrate 8 were evaluated.
The evaluation of the antimicrobial property was conducted in accordance with the evaluation method described in JIS Z 2801: 2012, using E. coli and changing the contact time to the bacterial solution to 24 hours to carry out the test. The antimicrobial activity value after the test was measured and evaluated based on the following evaluation criteria. The results are shown in Table 3.
«Evaluation criteria»
"A": antibacterial activity value 2.5 or more "B": antibacterial activity value 1.0 or more and less than 2.5 "C": antibacterial activity value less than 1.0
(膜面pH)
 上記膜付き基材8の抗菌性を評価した。評価方法は、上述したとおりである。
(Membrane surface pH)
The antimicrobial properties of the film-coated substrate 8 were evaluated. The evaluation method is as described above.
〔実施例9~10:組成物9~10の調製〕
 無機物(1)の種類及び平均粒径を第3表に記載の組成にかえた以外は実施例8の組成物8と同様の方法により、実施例9~10の組成物9~10をそれぞれ調製した。
 得られた実施例9~10の組成物9~10は、無機物(1)、第2金属含有物(第2の金属を含有する有機物)、親水性成分としてシリケート系化合物、及び溶媒を含む。
 得られた組成物9~10を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
[Examples 9 to 10: Preparation of Compositions 9 to 10]
Compositions 9 to 10 of Examples 9 to 10 were prepared in the same manner as Composition 8 of Example 8 except that the type of inorganic substance (1) and the average particle size were changed to those described in Table 3. did.
The obtained compositions 9 to 10 of Examples 9 to 10 contain the inorganic substance (1), the second metal-containing substance (the organic substance containing the second metal), the silicate compound as the hydrophilic component, and the solvent.
Using the obtained compositions 9 to 10, various evaluations were carried out by the same method as the composition 8. The results are shown in Table 3.
〔実施例16、20:組成物16、20の調製〕
 更に添加剤を第3表に記載の配合量で添加した以外は実施例8の組成物8と同様の方法により、実施例16、20の組成物16、20をそれぞれ調製した。
 得られた実施例16及び実施例20の組成物16及び組成物20は、無機物(1)、第2金属含有物(第2の金属を含有する有機物)、親水性成分としてシリケート系化合物、及び溶媒を含む。
 得られた組成物16及び組成物20を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Examples 16 and 20: Preparation of Compositions 16 and 20
Further, compositions 16 and 20 of Examples 16 and 20 were respectively prepared by the same method as that of composition 8 of Example 8 except that additives were added in the compounding amounts described in Table 3.
The obtained composition 16 and composition 20 of Example 16 and Example 20 were the inorganic substance (1), the second metal-containing substance (the organic substance containing the second metal), the silicate compound as the hydrophilic component, and Contains solvent.
Various evaluations were performed by the method similar to the composition 8 using the obtained composition 16 and the composition 20. The results are shown in Table 3.
〔実施例11:組成物11の調製〕
 容器中でエタノール367gを攪拌しながら、純水60g、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)14g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)15g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)60g、及びアニオン性界面活性剤(ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、純水希釈:固形分濃度0.2質量%)10gを順次加えた後、イソプロパノール18g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)3.6g、平均粒径を0.6μmに制御した銀担持ガラス粒子(富士ケミカル社製、エタノール希釈:固形分濃度60質量%)2.4gを加え、20分間攪拌し、分散液Dを得た。
 なお、この分散液D中の上記銀担持ガラス粒子は、無機物(1)に該当する。
Example 11 Preparation of Composition 11
60 g of pure water, 14 g of a silicate compound ("MKC (registered trademark) Silicate" MS 51 "manufactured by Mitsubishi Chemical Co., Ltd.) and aluminum chelate D (aluminium bis (ethyl acetoacetate) mono (acetyl aceto) while stirring 367 g of ethanol in a container ), Ethanol dilution: 15 g solid content concentration, 15 g nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., pure water dilution: 0.5 mass% solid concentration), anionic interface After sequentially adding 10 g of an activator (sodium di (2-ethylhexyl) sulfosuccinate, pure water dilution: solid concentration 0.2% by mass), 18 g of isopropanol, a dispersant (manufactured by BYK "DISPERBYK (registered trademark)-180" ) 3.6 g, silver-supported glass particles whose average particle size is controlled to 0.6 μm (Fuji Chemica Company Ltd., diluted ethanol: solids concentration 60 mass%) 2.4 g was added and stirred for 20 minutes to obtain a dispersion liquid D.
In addition, the said silver carrying | support glass particle in this dispersion liquid D corresponds to an inorganic substance (1).
 得られた分散液Dに、第2金属含有物として、平均粒径を0.3μmに制御したリン酸ジルコニウム(無機物(2)に該当する。)0.28gを加えて攪拌することにより、組成物11を得た。
 なお、上記リン酸ジルコニウムは、東亞合成(株)製「NS-10」を平均粒径0.3μmに制御したものに該当する。
 得られた実施例11の組成物11は、無機物(1)、第2金属含有物(無機物(2))、親水性成分としてシリケート系化合物と、溶媒と、を含む。
 得られた組成物11を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Composition obtained by adding 0.28 g of zirconium phosphate (corresponding to the inorganic substance (2)) whose average particle diameter is controlled to 0.3 μm as a second metal-containing substance to the obtained dispersion liquid D and stirring it. I got the object 11.
The zirconium phosphate corresponds to one obtained by controlling “NS-10” manufactured by Toagosei Co., Ltd. to an average particle diameter of 0.3 μm.
The obtained composition 11 of Example 11 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
Various evaluations were performed by the method similar to the composition 8 using the obtained composition 11. The results are shown in Table 3.
〔実施例12~13:組成物12~13の調製〕
 第2金属含有物の種類及び平均粒径を第3表に記載の組成にかえた以外は実施例11の組成物11と同様の方法により、実施例12~13の組成物12~13をそれぞれ調製した。
 得られた実施例12~13の組成物12~13は、無機物(1)、第2金属含有物(無機物(2))、親水性成分としてシリケート系化合物、及び溶媒を含む。
 得られた組成物12~13を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
[Examples 12 to 13: Preparation of Compositions 12 to 13]
Compositions 12 to 13 of Examples 12 to 13 were each prepared in the same manner as Composition 11 of Example 11 except that the type and average particle diameter of the second metal-containing material were changed to the compositions described in Table 3. Prepared.
The resulting compositions 12 to 13 of Examples 12 to 13 include the inorganic substance (1), the second metal-containing substance (inorganic substance (2)), the silicate compound as a hydrophilic component, and a solvent.
Using the resulting compositions 12 to 13, various evaluations were carried out in the same manner as the composition 8. The results are shown in Table 3.
〔実施例14:組成物14の調製〕
 銅担持ポリマー粒子の平均粒径を0.6μmから0.3μmにかえた以外は分散液Cと同様の方法により、分散液C1を得た。
 分散液Cを分散液C1にかえた以外は実施例8の組成物8と同様の方法により、実施例14の組成物14を調製した。
 得られた実施例14の組成物14は、無機物(1)、第2金属含有物(第2の金属を含有する有機物)、親水性成分としてシリケート系化合物、及び溶媒を含む。
 得られた組成物14を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Example 14 Preparation of Composition 14
Dispersion C1 was obtained in the same manner as dispersion C, except that the average particle size of the copper-supported polymer particles was changed from 0.6 μm to 0.3 μm.
Composition 14 of Example 14 was prepared in the same manner as Composition 8 of Example 8, except that Dispersion C was replaced with Dispersion C1.
The obtained composition 14 of Example 14 contains an inorganic substance (1), a second metal-containing substance (organic substance containing a second metal), a silicate compound as a hydrophilic component, and a solvent.
Various evaluations were performed by the same method as that of composition 8 using composition 14 obtained. The results are shown in Table 3.
〔実施例15:組成物15の調製〕
 無機物(1)(銀担持ガラス)の平均粒径の平均粒径を0.6μmから0.3μmにかえた以外は分散液Dと同様の方法により、分散液D1を得た。
 分散液Dから分散液D1にかえた以外は実施例11の組成物11と同様の方法により、実施例15の組成物15を調製した。
 得られた実施例15の組成物15は、無機物(1)、第2金属含有物(無機物(2))、親水性成分としてシリケート系化合物、及び溶媒を含む。
 得られた組成物15を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Example 15 Preparation of Composition 15
Dispersion D1 was obtained in the same manner as dispersion D, except that the average particle diameter of the inorganic substance (1) (silver-loaded glass) was changed from 0.6 μm to 0.3 μm.
Composition 15 of Example 15 was prepared in the same manner as Composition 11 of Example 11 except that Dispersion D was changed to Dispersion D1.
The obtained composition 15 of Example 15 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
Using the obtained composition 15, various evaluations were carried out by the same method as that of the composition 8. The results are shown in Table 3.
〔実施例17、18、21:組成物17、18、21の調製〕
 更に添加剤を第3表に記載の配合量で添加した以外は実施例15の組成物15と同様の方法により、実施例17、実施例18、及び実施例21の組成物17、組成物18及び組成物23をそれぞれ調製した。
 得られた実施例17、18、21の組成物17、18、21は、無機物(1)、第2金属含有物(無機物(2))、親水性成分としてシリケート系化合物、及び溶媒を含む。
 得られた組成物17、18、21を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
[Examples 17, 18, 21: Preparation of Compositions 17, 18, 21]
Further, in the same manner as the composition 15 of the example 15 except that the additive is added in the compounding amount described in Table 3, the composition 17, the composition 18 of the example 17, the example 18, and the example 21 And Composition 23 was prepared respectively.
The obtained compositions 17, 18, 21 of Examples 17, 18, 21 contain an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
Various evaluations were performed by the method similar to the composition 8 using the obtained compositions 17, 18, and 21. The results are shown in Table 3.
〔実施例19:組成物19の調製〕
 第2金属含有物として、平均粒径を第3表に記載のサイズに制御した銅担持ガラス(東亞合成製「NS-20C」:なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。)0.1gを加えた以外は同様の方法により分散液C2を調製した。
 なお、この分散液C2は、第2金属含有物として、銅担持ガラス(無機物(2)に該当する。)及び銅担持ポリマー粒子(第2の金属を含有する有機物に該当する。)、を含有する。
 得られた分散液Cに、無機物(1)として平均粒径を0.3μmに制御したリン酸ジルコニウム0.28gを加えて攪拌し、組成物21を得た。得られた実施例19の組成物19は、無機物(1)、第2金属含有物(無機物(2)、第2の金属を含有する有機物)、シリケート系化合物と、溶媒と、を含む。
 得られた組成物19を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Example 19 Preparation of Composition 19
Copper-supported glass whose average particle diameter is controlled to the size listed in Table 3 as a second metal-containing substance (“NS-20C” manufactured by Toagosei Co., Ltd .: inorganic support of “NS-20C” manufactured by Toagosei) Dispersion C2 was prepared in the same manner except that 0.1 g of aluminum glass was added.
The dispersion C2 contains, as a second metal-containing substance, copper-supporting glass (corresponding to the inorganic substance (2)) and copper-supporting polymer particles (corresponding to the organic substance containing the second metal). Do.
To the obtained dispersion liquid C, 0.28 g of zirconium phosphate whose average particle diameter was controlled to 0.3 μm was added as the inorganic substance (1), and the mixture was stirred to obtain a composition 21. The obtained composition 19 of Example 19 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2), an organic substance containing a second metal), a silicate compound, and a solvent.
Various evaluations were performed by the same method as that of composition 8 using composition 19 obtained. The results are shown in Table 3.
〔実施例22:組成物22の調製〕
 得られた分散液D1に、第2金属含有物として、平均粒径を0.3μmに制御したリン酸ジルコニウム0.28gと、平均粒径を表中に記載のサイズに制御した銅担持ガラス(東亞合成製「NS-20C」:なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。)0.1gとを加えて攪拌し、組成物22を得た。得られた実施例22の組成物22は、無機物(1)、第2金属含有物(無機物(2)を2種)、親水性成分としてシリケート系化合物と、溶媒と、を含む。
 得られた組成物22を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Example 22 Preparation of Composition 22
In the obtained dispersion D1, as a second metal-containing substance, 0.28 g of zirconium phosphate whose average particle diameter was controlled to 0.3 μm, and a copper-supported glass whose average particle diameter was controlled to the size described in the table ( Toho Gosei "NS-20C": The inorganic carrier for Toho Gosei "NS-20C" corresponds to an aluminum silicate glass (0.1 g), and the mixture is stirred to obtain Composition 22. The obtained composition 22 of Example 22 contains an inorganic substance (1), a second metal-containing substance (two kinds of inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
Various evaluations were performed by the same method as that of composition 8 using composition 22 obtained. The results are shown in Table 3.
〔実施例23:組成物23の調製〕
 得られた分散液D1に、第2金属含有物として、平均粒径を1.1μmに制御したリン酸ジルコニウム0.28gと、平均粒径を表中に記載のサイズに制御した銅担持ガラス(東亞合成製「NS-20C」:なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。)0.28gとを加えて攪拌し、組成物23を得た。得られた実施例23の組成物23は、無機物(1)、第2金属含有物(無機物(2)を2種)、親水性成分としてシリケート系化合物と、溶媒と、を含む。
 得られた組成物23を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Example 23 Preparation of Composition 23
In the obtained dispersion D1, as a second metal-containing substance, 0.28 g of zirconium phosphate whose average particle diameter was controlled to 1.1 μm, and copper-supported glass whose average particle diameter was controlled to the size described in the table ( Toho Gosei "NS-20C": The inorganic carrier for Toho Gosei "NS-20C" corresponds to aluminum silicate glass (0.28 g), and the mixture is stirred to obtain Composition 23. The obtained composition 23 of Example 23 contains an inorganic substance (1), a second metal-containing substance (two kinds of inorganic substances (2)), a silicate compound as a hydrophilic component, and a solvent.
Using the obtained composition 23, various evaluations were performed by the same method as the composition 8. The results are shown in Table 3.
〔比較例4:組成物R4の調製〕
 無機物(1)を使用しなかった以外は実施例8と同様の方法により、比較例4の組成物R4を調製した。
 得られた組成物R4を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Comparative Example 4: Preparation of Composition R4
Composition R4 of Comparative Example 4 was prepared in the same manner as in Example 8 except that the inorganic substance (1) was not used.
Various evaluation was implemented by the method similar to the composition 8 using composition R4 obtained. The results are shown in Table 3.
〔比較例5:組成物R5の調製〕
 第2金属含有物を使用しなかった以外は実施例11と同様の方法により、比較例5の組成物R5を調製した。
 得られた組成物R5を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Comparative Example 5 Preparation of Composition R5
Composition R5 of Comparative Example 5 was prepared in the same manner as in Example 11 except that the second metal-containing material was not used.
Various evaluation was implemented by the method similar to the composition 8 using obtained composition R5. The results are shown in Table 3.
〔比較例6:組成物R6の調製〕
 分散剤Cを使用せず、分散剤Cのかわりにシリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)0.1gと純水200gを使用した以外は実施例8と同様の方法により、比較例6の組成物R6を調製した。
 得られた組成物R6を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Comparative Example 6: Preparation of Composition R6
Example 7 is the same as Example 8, except that dispersant C is not used, and 0.1 g of a silicate compound ("MKC (registered trademark) Silicate" MS 51 "manufactured by Mitsubishi Chemical Corporation) and 200 g of pure water are used instead of dispersant C The composition R6 of Comparative Example 6 was prepared by the method of
Various evaluation was implemented by the method similar to the composition 8 using obtained composition R6. The results are shown in Table 3.
〔比較例7:組成物R7の調製〕
 分散剤Dを使用せず、分散剤Dのかわりにシリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)14gと純水536gを使用した以外は実施例11と同様の方法により、比較例7の組成物R7を調製した。
 得られた組成物R7を用いて、組成物8と同様の方法により各種評価を実施した。結果を第3表に示す。
Comparative Example 7: Preparation of Composition R7
The same method as in Example 11 except that Dispersant D was not used, and 14 g of a silicate compound ("MKC (registered trademark) Silicate" MS 51 "manufactured by Mitsubishi Chemical Corp.) and 536 g of pure water were used instead of Dispersant D. Thus, composition R7 of Comparative Example 7 was prepared.
Various evaluation was implemented by the method similar to the composition 8 using obtained composition R7. The results are shown in Table 3.
 表中の「BHT」は、ジブチルヒドロキシトルエンの略語である。
 表中の「リン酸ジルコニウム」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-10」である。
 表中の「リン酸塩ガラス」は、平均粒径を表中に記載のサイズに制御した富士ケミカル社製である。
 表中の「銅担持ガラス」は、平均粒径を表中に記載のサイズに制御した東亞合成製「NS-20C:なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。」である。
"BHT" in the table is an abbreviation of dibutyl hydroxytoluene.
“Zirconium phosphate” in the table is “NS-10” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
"Phosphate glass" in the table is manufactured by Fuji Chemical Co., Ltd. whose average particle size is controlled to the size described in the table.
The “copper-supported glass” in the table has an average particle diameter controlled to the size described in the table “Tosoh Synthetic“ NS-20C: Inorganic carrier of Toago Synthetic “NS-20C” is aluminum silicate glass Applicable ".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 第3表の結果から、実施例8~23の組成物により得られる膜は、抗菌性と消臭性とに優れることが確認できた。特に、消臭性が長期間にわたって持続することが確認された。
 また、実施例8~14との対比から、無機物(1)及び第2金属含有物がいずれも粒子であり、且つ、無機物(1)及び第2金属含有物の平均粒径がいずれも0.6μm以下である(好ましくは0.5μm以下である)場合、消臭性により優れることが確認された。
 また、実施例8と実施例16及び実施例20、実施例15と実施例17及び実施例21の対比から、添加剤としてクエン酸を併用した場合、消臭性により優れることが確認された。
 また、実施例8と実施例19との対比から、第2金属含有物として、2種以上の金属担持担体を併用した場合(好ましくは、第2金属有機担体と第2金属無機担体とを併用した場合)、消臭性により優れることが確認された。
 また、実施例15及び実施例22の対比から、無機物(1)が銀担持ガラスを含み、第2金属含有物が銅担持ガラスを含む場合、消臭性により優れることが確認された。
From the results of Table 3, it can be confirmed that the films obtained by the compositions of Examples 8 to 23 are excellent in antibacterial property and deodorizing property. In particular, it was confirmed that the deodorizing property lasts for a long time.
Further, from the comparison with Examples 8 to 14, all of the inorganic substance (1) and the second metal-containing substance are particles, and the average particle diameters of the inorganic substance (1) and the second metal-containing substance are all 0. When it is 6 micrometers or less (preferably 0.5 micrometers or less), it was confirmed that it is excellent by deodorizing property.
Further, from the comparison between Example 8 and Example 16 and Example 20, Example 15 and Example 17 and Example 21, when citric acid was used in combination as an additive, it was confirmed that the deodorizing property is superior.
Moreover, when contrast with Example 8 and Example 19, when 2 or more types of metal carrying | support carriers are used together as a 2nd metal containing material (Preferably, 2nd metal organic support and 2nd metal inorganic support are used together (In the case of (1)), it was confirmed that the deodorizing property is excellent.
Moreover, from the comparison of Example 15 and Example 22, when the inorganic substance (1) contains silver carrying glass and the second metal-containing substance contains copper carrying glass, it is confirmed that the deodorizing property is excellent.
〔実施例24:組成物24の調製〕
 容器中でエタノール52gを攪拌しながら、純水38g、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケート」MS51」)0.41g、アルミキレートD(アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、エタノール希釈:固形分濃度1質量%)1.3g、ノニオン性界面活性剤(日本エマルジョン社製「エマレックス715」、純水希釈:固形分濃度0.5質量%)3.3g、アニオン性界面活性剤(日油社製「ラビゾールA-90」、純水希釈:固形分濃度0.2質量%))0.8gを順次加えた後、イソプロパノール2.7g、無機物(1)(平均粒径を1.1μmに制御した銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」の平均粒径を1.1μmに制御したものに該当する。なお、富士ケミカル社製「バクテライトMP-103DV」の無機担体はリン酸塩ガラスに該当する。)、エタノール/水溶媒希釈:固形分濃度25.3質量%)0.039g、分散剤(BYK社製「DISPERBYK(登録商標)-180」)0.04g、エタノール1.4g、第2金属含有物(平均粒径を3.1μmに制御した銅担持ガラス(東亞合成製「NS-20C」の平均粒径を3.1μmに制御したものに該当する。なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。):固形分濃度100質量%)0.489gを加え、20分間攪拌し、組成物24を得た。
 得られた実施例24の組成物24は、無機物(1)、第2金属含有物(無機物(2))、親水性成分としてシリケート系化合物と、溶媒と、を含む。
 得られた組成物24を用いて、下記の<評価D>により各種評価を実施した。
 なお、下記評価Dは、上述した評価A~Cよりも厳しい評価条件とした。
Example 24 Preparation of Composition 24
While stirring 52 g of ethanol in a container, 38 g of pure water, 0.41 g of a silicate compound ("MKC (registered trademark) Silicate" MS 51 "manufactured by Mitsubishi Chemical Corporation), 0.41 g of aluminum chelate D (aluminium bis (ethyl acetoacetate) mono ( Acetyl acetonate), Ethanol dilution: 1.3 g solid content concentration, 1.3 g, nonionic surfactant ("Emarex 715" manufactured by Nippon Emulsion Co., Ltd., pure water dilution: solid content concentration 0.5 mass%) After sequentially adding 3 g, 0.8 g of an anionic surfactant (“Rabisol A-90” manufactured by NOF Corporation, pure water dilution: solid content concentration 0.2 mass%), 2.7 g of isopropanol, an inorganic substance (1 ) (Silver-loaded glass whose average particle diameter is controlled to 1.1 μm (the average particle diameter of Bacterite MP-103DV manufactured by Fuji Chemical is controlled to 1.1 μm) In addition, the inorganic carrier of “Bacterite MP-103DV” manufactured by Fuji Chemical Co., Ltd. corresponds to phosphate glass), ethanol / water solvent dilution: solid content concentration 25.3 mass%) 0.039 g, Dispersing agent (BYK "DISPERBYK (registered trademark)-180") 0.04 g, ethanol 1.4 g, second metal-containing substance (average particle diameter is controlled to 3.1 μm copper-supported glass (Toagosei "NS" It corresponds to what controlled the average particle diameter of "-20C" to 3.1 micrometers. In addition, the inorganic carrier of "Tosoh Synthetic" NS-20C "corresponds to aluminum silicate glass.): Solid content concentration 100 mass%) 0.489 g was added and stirred for 20 minutes to obtain composition 24.
The obtained composition 24 of Example 24 contains an inorganic substance (1), a second metal-containing substance (inorganic substance (2)), a silicate compound as a hydrophilic component, and a solvent.
Various evaluations were performed using the obtained composition 24 according to the following <Evaluation D>.
Incidentally, the following evaluation D was set to a more severe evaluation condition than the above-mentioned evaluations A to C.
<評価D>
(試験サンプルの作製)
 上記で得られた組成物24について、以下に示す試験に基づいて、その消臭性についての評価を実施した。
 まず、不織布不織布を準備し、不織布100cm当たり組成物24が0.06g付着するように、不織布に対して組成物24を噴射した。次に、得られた組成物24付き不織布を25℃にて2日間乾燥し、膜付き基材24を作製した。
<Evaluation D>
(Preparation of test sample)
The composition 24 obtained above was evaluated for its deodorizing property based on the test shown below.
First, a non-woven non-woven fabric was prepared, and the composition 24 was jetted to the non-woven fabric so that 0.06 g of the composition 24 adhered per 100 cm 2 of non-woven fabric. Next, the obtained non-woven fabric with composition 24 was dried at 25 ° C. for 2 days to produce a film-coated substrate 24.
(消臭性の評価)
 アンモニア臭がする尿を上記膜付き基材24に10g噴霧し、室温放置した。放置後、1h後及び8h後の臭いを官能評価した。結果を第4表に示す。
(Evaluation of deodorant)
The ammonia smelling urine was sprayed on the film-coated substrate 24 by 10 g and left at room temperature. The odor after 1 h and 8 h after sensory standing was evaluated sensoryily. The results are shown in Table 4.
≪評価基準≫
 「AA」:かすかにしか臭気を感じない。
 「A」:ほぼ臭気を感じない。
 「B」:わずかに臭気を感じる。
 「C」:やや臭気を感じる。
 「D」:臭気を感じる。
«Evaluation criteria»
"AA": I feel only a faint odor.
"A": Almost no odor.
"B": A slight odor is felt.
"C": A slight odor is felt.
"D": I feel an odor.
(抗菌性の評価)
 上記膜付き基材24の抗菌性を評価した。
 抗菌性の評価は、JIS Z 2801:2012記載の評価方法に準拠し、大腸菌を使用し、菌液への接触時間を24時間に変更して試験を実施した。試験後の抗菌活性値を測定し、以下の評価基準に基づいて評価を行なった。結果を第4表に示す。
≪評価基準≫
 「A」:抗菌活性値が2.5以上
 「B」:抗菌活性値が1.0以上2.5未満
 「C」:抗菌活性値が1.0未満
(Evaluation of antibacterial activity)
The antimicrobial properties of the film-coated substrate 24 were evaluated.
The evaluation of the antimicrobial property was conducted in accordance with the evaluation method described in JIS Z 2801: 2012, using E. coli and changing the contact time to the bacterial solution to 24 hours to carry out the test. The antimicrobial activity value after the test was measured and evaluated based on the following evaluation criteria. The results are shown in Table 4.
«Evaluation criteria»
"A": antibacterial activity value 2.5 or more "B": antibacterial activity value 1.0 or more and less than 2.5 "C": antibacterial activity value less than 1.0
〔実施例25~30:組成物25~30の調製〕
 無機物(1)及び第2金属含有物の含有量を第4表に記載した量に調整したこと以外は、実施例24と同様にして、組成物25~30を調製し、評価した。結果を第4表に示した。
[Examples 25 to 30: Preparation of Compositions 25 to 30]
Compositions 25 to 30 were prepared and evaluated in the same manner as in Example 24 except that the contents of the inorganic substance (1) and the second metal-containing substance were adjusted to the amounts described in Table 4. The results are shown in Table 4.
〔実施例31~37:組成物31~37の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物31~37をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 31 to 37: Preparation of Compositions 31 to 37]
Compositions 31 to 37 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4. The results are shown in Table 4.
〔実施例38~44:組成物38~44の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物38~44をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 38-44: Preparation of Compositions 38-44
Compositions 38 to 44 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4. The results are shown in Table 4.
〔実施例45~51:組成物45~51の調製〕
 第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物45~51をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 45 to 51: Preparation of Compositions 45 to 51]
Compositions 45 to 51 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle diameter of the second metal-containing material was adjusted to the size described in Table 4. The results are shown in Table 4.
〔実施例52~58:組成物52~58の調製〕
 第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物52~58をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 52 to 58: Preparation of Compositions 52 to 58]
Compositions 52 to 58 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle diameter of the second metal-containing material was adjusted to the size described in Table 4. The results are shown in Table 4.
〔実施例59~65:組成物59~65の調製〕
 第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物59~65をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 59 to 65: Preparation of Compositions 59 to 65]
Compositions 59 to 65 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the second metal-containing material was adjusted to the size described in Table 4. The results are shown in Table 4.
〔実施例66~72:組成物66~72の調製〕
 無機物(1)及び第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物66~72をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 66-72 Preparation of Compositions 66-72
Compositions 66 to 72 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
〔実施例73~79:組成物73~79の調製〕
 無機物(1)及び第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物73~79をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 73 to 79: Preparation of Compositions 73 to 79]
Compositions 73 to 79 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
〔実施例80~86:組成物80~86の調製〕
 無機物(1)及び第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物80~86をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 80-86: Preparation of Compositions 80-86
Compositions 80 to 86 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
〔実施例87~93:組成物87~93の調製〕
 無機物(1)及び第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物87~93をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 87 to 93: Preparation of Compositions 87 to 93]
Compositions 87 to 93 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
〔実施例94~100:組成物94~100の調製〕
 無機物(1)及び第2金属含有物の平均粒径を第4表に記載のサイズに調整したこと以外は、実施例24~30と同様にして、組成物94~100をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 94 to 100: Preparation of Compositions 94 to 100]
Compositions 94 to 100 were respectively prepared and evaluated in the same manner as in Examples 24 to 30 except that the average particle size of the inorganic substance (1) and the second metal-containing substance was adjusted to the size described in Table 4. did. The results are shown in Table 4.
〔実施例101~107:組成物101~107の調製〕
 無機物(1)の種類及び含有量並びに第2金属含有物の平均粒径を第4表に記載の種類及び含有量にかえた以外は、実施例24~30と同様にして、組成物101~107をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例101~107で使用する無機物(1)は、平均粒径を0.3μmに制御した銀担持ゼオライト(中村超硬社製「ゼオール4A」、水希釈:固形分濃度19質量%)である。
[Examples 101 to 107: Preparation of Compositions 101 to 107]
Compositions 101 to 102 were prepared in the same manner as in Examples 24 to 30, except that the type and content of the inorganic substance (1) and the average particle diameter of the second metal-containing material were changed to the types and content described in Table 4. 107 were each prepared and evaluated. The results are shown in Table 4.
In addition, the inorganic substance (1) used in Examples 101 to 107 has a silver-supported zeolite whose average particle diameter is controlled to 0.3 μm (“Zeol 4A” manufactured by Nakamura Cement Co., Ltd., water dilution: solid content concentration 19 mass%) It is.
〔実施例108~114:組成物108~114の調製〕
 無機物(1)の種類及び含有量を第4表に記載の種類及び含有量にかえ、無機物(2)の含有量及び平均粒径を第4表に記載の含有量及び平均粒径にかえた以外は、実施例24~30と同様にして、組成物108~114をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例108~114で使用する無機物(1)は、平均粒径を1.0μmに制御した銀担持リン酸ジルコニウム(東亞合成社製「ノバロンAG300」、固形分濃度100質量%)である。
Examples 108 to 114: Preparation of Compositions 108 to 114
The type and content of the inorganic substance (1) were changed to the type and content described in Table 4, and the content of the inorganic substance (2) and the average particle size were changed to the content and average particle size described in Table 4. Compositions 108-114 were prepared and evaluated as in Examples 24-30, respectively, except for the following. The results are shown in Table 4.
In addition, the inorganic substance (1) used in Examples 108 to 114 is a silver-supported zirconium phosphate ("Novalon AG300" manufactured by Toagosei Co., Ltd .; solid content concentration: 100% by mass) whose average particle diameter is controlled to 1.0 μm. .
〔実施例115~121:組成物115~121の調製〕
 エタノール濃度を第4表に記載の量に調整したこと以外は、実施例31~37と同様にして、組成物115~121をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 115 to 121: Preparation of Compositions 115 to 121]
Compositions 115 to 121 were respectively prepared and evaluated in the same manner as in Examples 31 to 37 except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例122~128:組成物122~128の調製〕
 エタノール濃度を第4表に記載の量に調整したこと以外は、実施例87~93と同様にして、組成物122~128をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 122-128 Preparation of Compositions 122-128
Compositions 122 to 128 were respectively prepared and evaluated in the same manner as in Examples 87 to 93 except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例129~135:組成物129~135の調製〕
 エタノール濃度を第4表に記載の量に調整したこと以外は、実施例101~107と同様にして、組成物129~135をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 129 to 135: Preparation of Compositions 129 to 135
Compositions 129 to 135 were prepared and evaluated in the same manner as in Examples 101 to 107, respectively, except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例136~142:組成物136~142の調製〕
 エタノール濃度を第4表に記載の量に調整したこと以外は、実施例108~114と同様にして、組成物136~142をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 136 to 142: Preparation of Compositions 136 to 142
Compositions 136 to 142 were respectively prepared and evaluated in the same manner as in Examples 108 to 114 except that the ethanol concentration was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例143~149:組成物143~149の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整し、且つ、第2金属含有物の種類及びその含有量を第4表に記載の量に調整したこと以外は、実施例24~30と同様にして、組成物143~149をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例143~149で使用する第2金属含有物は、平均粒径を0.6μmに制御した銅担持ポリマー粒子(第2の金属を含有する有機物に該当する。)である。
 銅担持ポリマー粒子は下記の方法により製造して使用した。
[Examples 143 to 149: Preparation of Compositions 143 to 149]
Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 143-149 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
The second metal-containing material used in Examples 143 to 149 is a copper-supported polymer particle (corresponding to an organic material containing a second metal) whose average particle diameter is controlled to 0.6 μm.
The copper-supported polymer particles were produced and used by the following method.
(銅担持ポリマー粒子)
 酸化銅粒子(関東化学製「酸化銅(II)COPPER OXIDE」)を減圧下、4℃、40時間の条件で低温乾燥することにより水分を除去した。次いで、乾燥後の酸化銅粒子を水で10倍希釈することにより分散した後、ビーズミルを使用して湿式粉砕した。得られた分散液を、減圧下にて50℃、5時間の条件で乾燥し、平均粒径30nmのCuO粉末を作製した。
(Copper-loaded polymer particles)
The water content was removed by drying the copper oxide particles ("Copper (II) COPPER OXIDE" manufactured by Kanto Chemical Co., Ltd.) under reduced pressure at 4 ° C. for 40 hours at a low temperature. Next, the dried copper oxide particles were dispersed by diluting with 10 times with water, and then wet-pulverized using a bead mill. The obtained dispersion was dried at 50 ° C. for 5 hours under reduced pressure to prepare a CuO powder having an average particle diameter of 30 nm.
 容器中において、ポリマー粒子(日本触媒製「エポスター100W」、平均粒径:150nm)水分散液(固形分濃度0.1質量%)150gを攪拌しながら、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケートMS51」)0.1gを加えて20分間攪拌した。次いで、この攪拌物に、粒径制御した酸化銅(関東化学製「酸化銅(II)COPPER OXIDE」)水分散液(固形分濃度0.01質量%:平均粒径30nm)50gを加えて、更に20分間攪拌し、分散液Fを得た。
 次に、得られた分散液Fを遠心分離して、銅担持ポリマー粒子を沈降させた。濾過により上記銅担持ポリマー粒子を分離し、減圧下で自然乾燥させることにより、銅担持ポリマー粒子を得た。光学顕微鏡による観察により、銅担持ポリマー粒子は、ポリマー粒子の表面上に酸化銅粒子が担持された構造を有し、ポリマー粒子の表面上の少なくとも一領域に、シリケート系化合物が縮合してなるシラン化合物の被膜が形成されていることを確認した。なお、銅担持ポリマー粒子は、分散時間を調整することにより、平均粒径0.6μmと平均粒径0.3μmの2種のサイズを作製した。
In a container, 150 g of an aqueous dispersion (solid content concentration: 0.1% by mass) of polymer particles (Nippon Shokuhin “Epoler 100 W”, average particle diameter: 150 nm) is stirred while a silicate compound (MKC Corporation “MKC” 0.1 g of (registered trademark) Silicate MS 51 ") was added and stirred for 20 minutes. Subsequently, 50 g of copper oxide ("Copper oxide (II) COPPER OXIDE" manufactured by Kanto Chemical Co., Ltd.) aqueous dispersion (solid content concentration 0.01 mass%: average particle size 30 nm) whose particle size is controlled is added to this stirred product, The mixture was further stirred for 20 minutes to obtain a dispersion F.
Next, the obtained dispersion F was centrifuged to precipitate copper-supported polymer particles. The copper-supported polymer particles were separated by filtration and naturally dried under reduced pressure to obtain copper-supported polymer particles. According to observation with an optical microscope, the copper-supporting polymer particle has a structure in which copper oxide particles are supported on the surface of the polymer particle, and a silane is formed by condensation of a silicate compound in at least one region on the surface of the polymer particle. It confirmed that the film of the compound was formed. In addition, the copper carrying | support polymer particle produced two types of sizes, average particle diameter 0.6 micrometer, and average particle diameter 0.3 micrometer, by adjusting dispersion time.
〔実施例150~156:組成物150~156の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整し、且つ、第2金属含有物の種類及びその含有量を第4表に記載の量に調整したこと以外は、実施例24~30と同様にして、組成物150~156をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例150~156で使用する第2金属含有物は、平均粒径を0.3μmに制御した銅担持ポリマー粒子(第2の金属を含有する有機物に該当する。)である。
Examples 150 to 156: Preparation of Compositions 150 to 156
Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 150-156 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
The second metal-containing material used in Examples 150 to 156 is a copper-supported polymer particle (corresponding to an organic material containing a second metal) whose average particle diameter is controlled to 0.3 μm.
〔実施例157~163:組成物157~163の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整し、且つ、第2金属含有物の種類及びその含有量を第4表に記載の量に調整したこと以外は、実施例24~30と同様にして、組成物157~163をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例157~163で使用する第2金属含有物は、平均粒径を0.03μmに制御した酸化銅粒子(無機物(2)に該当する。)である。
Examples 157-163: Preparation of Compositions 157-163
Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 157-163 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
The second metal-containing material used in Examples 157 to 163 is a copper oxide particle (corresponding to the inorganic material (2)) whose average particle diameter is controlled to be 0.03 μm.
〔実施例164~170:組成物164~170の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整し、且つ、第2金属含有物の種類及びその含有量を第4表に記載の量に調整したこと以外は、実施例24~30と同様にして、組成物164~170をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例164~170で使用する第2金属含有物は、平均粒径を0.6μmに制御した銅担持ポリマー粒子(第2の金属を含有する有機物に該当する。)である。
Examples 164 to 170: Preparation of Compositions 164 to 170
Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 164-170 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
The second metal-containing material used in Examples 164 to 170 is a copper-supported polymer particle (corresponding to an organic material containing a second metal) whose average particle diameter is controlled to 0.6 μm.
〔実施例171~177:組成物171~177の調製〕
 無機物(1)の平均粒径を第4表に記載のサイズに調整し、且つ、第2金属含有物の種類及びその含有量を第4表に記載の量に調整したこと以外は、実施例24~30と同様にして、組成物171~177をそれぞれ調製し、評価した。結果を第4表に示した。
 なお、実施例171~177で使用する第2金属含有物は、平均粒径を0.3μmに制御した銅担持ポリマー粒子(第2の金属を含有する有機物に該当する。)である。
[Examples 171 to 177: Preparation of Compositions 171 to 177]
Example except that the average particle size of the inorganic substance (1) was adjusted to the size described in Table 4, and the type of the second metal-containing substance and the content thereof were adjusted to the amounts described in Table 4. Compositions 171-177 were prepared and evaluated as in 24-30, respectively. The results are shown in Table 4.
The second metal-containing substance used in Examples 171 to 177 is a copper-supported polymer particle (corresponding to an organic substance containing a second metal) whose average particle diameter is controlled to 0.3 μm.
〔実施例178~184:組成物178~184の調製〕
 親水性成分(MKCシリケート)の含有量を第4表に記載の量に調整したこと以外は、実施例94~100と同様にして、組成物178~184をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 178 to 184: Preparation of Compositions 178 to 184
Compositions 178 to 184 were respectively prepared and evaluated in the same manner as in Examples 94 to 100 except that the content of the hydrophilic component (MKC silicate) was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例185~191:組成物185~191の調製〕
 親水性成分(MKCシリケート)の含有量を第4表に記載の量に調整したこと以外は、実施例178~184と同様にして、組成物185~191をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 185 to 191 Preparation of Compositions 185 to 191
Compositions 185 to 191 were respectively prepared and evaluated in the same manner as in Examples 178 to 184 except that the content of the hydrophilic component (MKC silicate) was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例192~198:組成物192~198の調製〕
 分散剤の含有量を第4表に記載の量に調整したこと以外は、実施例94~100と同様にして、組成物192~198をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 192 to 198: Preparation of Compositions 192 to 198]
Compositions 192 to 198 were respectively prepared and evaluated in the same manner as in Examples 94 to 100 except that the content of the dispersant was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例199~205:組成物199~205の調製〕
 分散剤の含有量を第4表に記載の量に調整したこと以外は、実施例94~100と同様にして、組成物199~205をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 199 to 205: Preparation of Compositions 199 to 205
Compositions 199 to 205 were respectively prepared and evaluated in the same manner as in Examples 94 to 100 except that the content of the dispersant was adjusted to the amount described in Table 4. The results are shown in Table 4.
〔実施例206~212:組成物206~212の調製〕
 第2金属含有物として平均粒径を0.8μmに制御したリン酸ジルコニウム(東亞合成社製「NS-10」)を第4表に記載した配合量で更に添加し、エタノール濃度を第4表に記載した濃度に調整したこと以外は実施例31~37と同様にして、組成物206~212をそれぞれ調製し、評価した。結果を第4表に示した。
Examples 206 to 212: Preparation of Compositions 206 to 212
As the second metal-containing substance, zirconium phosphate ("NS-10" manufactured by Toagosei Co., Ltd.) whose average particle size is controlled to 0.8 μm is further added in the amount described in Table 4, and the ethanol concentration is shown in Table 4 Compositions 206 to 212 were respectively prepared and evaluated in the same manner as in Examples 31 to 37 except that the concentration was adjusted to that described in. The results are shown in Table 4.
〔実施例213~219:組成物213~219の調製〕
 第2金属含有物として平均粒径を0.8μmに制御したリン酸ジルコニウム(東亞合成社製「NS-10」)を第4表に記載した配合量で更に添加したこと以外は、実施例87~93と同様にして、組成物213~219をそれぞれ調製し、評価した。結果を第4表に示した。
[Examples 213 to 219: Preparation of Compositions 213 to 219]
Example 87 except that as the second metal-containing substance, zirconium phosphate (“NS-10” manufactured by Toagosei Co., Ltd.) whose average particle diameter was controlled to 0.8 μm was further added in the amount described in Table 4 Compositions 213-219 were respectively prepared and evaluated in the same manner as -93. The results are shown in Table 4.
〔実施例220:組成物220の調製〕
 第2金属含有物1として平均粒径を0.15μmに制御したケイ酸アルミニウム(東亞合成社製「NS-20」)を使用し、第2金属含有物2として平均粒径を0.8μmに制御したリン酸ジルコニウム(東亞合成社製「NS-10」)を添加しなかったこと以外は、実施例219と同様にして、組成物220を調製し、評価した。結果を第4表に示した。
Example 220 Preparation of Composition 220
The second metal inclusion 1 uses aluminum silicate (“NS-20” manufactured by Toagosei Co., Ltd.) whose average particle diameter is controlled to 0.15 μm, and the second metal inclusion 2 has an average particle diameter of 0.8 μm The composition 220 was prepared and evaluated in the same manner as in Example 219 except that controlled zirconium phosphate (“NS-10” manufactured by Toagosei Co., Ltd.) was not added. The results are shown in Table 4.
〔比較例8:組成物R8の調製〕
 第2金属含有物を配合しなかった以外は、実施例30と同様にして、組成物R8調製し、評価した。結果を第4表に示した。
Comparative Example 8 Preparation of Composition R8
Composition R8 was prepared and evaluated in the same manner as in Example 30 except that the second metal-containing material was not blended. The results are shown in Table 4.
〔比較例9:組成物R9の調製〕
 第2金属含有物を配合しなかった以外は、実施例26と同様にして、組成物R9調製し、評価した。結果を第4表に示した。
Comparative Example 9 Preparation of Composition R9
Composition R9 was prepared and evaluated in the same manner as in Example 26 except that the second metal-containing material was not blended. The results are shown in Table 4.
〔比較例10:組成物R10の調製〕
 第2金属含有物を配合しなかった以外は、実施例44と同様にして、組成物R10調製し、評価した。結果を第4表に示した。
Comparative Example 10 Preparation of Composition R10
Composition R10 was prepared and evaluated in the same manner as in Example 44 except that the second metal-containing material was not blended. The results are shown in Table 4.
〔比較例11:組成物R11の調製〕
 第2金属含有物を配合しなかった以外は、実施例40と同様にして、組成物R11調製し、評価した。結果を第4表に示した。
Comparative Example 11 Preparation of Composition R11
Composition R11 was prepared and evaluated in the same manner as Example 40 except that the second metal-containing material was not blended. The results are shown in Table 4.
〔比較例12:組成物R12の調製〕
 第2金属含有物を配合しなかった以外は、実施例103と同様にして、組成物R12調製し、評価した。結果を第4表に示した。
Comparative Example 12 Preparation of Composition R12
Composition R12 was prepared and evaluated in the same manner as in Example 103, except that the second metal-containing material was not blended. The results are shown in Table 4.
〔比較例13:組成物R13の調製〕
 第2金属含有物を配合しなかった以外は、実施例110と同様にして、組成物R13調製し、評価した。結果を第4表に示した。
Comparative Example 13 Preparation of Composition R13
Composition R13 was prepared and evaluated in the same manner as in Example 110 except that the second metal-containing material was not blended. The results are shown in Table 4.
〔比較例14、15:組成物R14、R15の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)を配合しなかった以外は、実施例24及び実施例26と同様にして、組成物R14及び組成物R19をそれぞれ調製し、評価した。結果を第4表に示した。
Comparative Examples 14 and 15 Preparation of Compositions R14 and R15
Composition R14 and Composition R19 were respectively prepared and evaluated in the same manner as in Example 24 and Example 26 except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
〔比較例16、17:組成物R16、R17の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)を配合しなかった以外は、実施例52及び実施例54と同様にして、組成物R16及び組成物R17をそれぞれ調製し、評価した。結果を第4表に示した。
Comparative Examples 16 and 17 Preparation of Compositions R16 and R17
Composition R16 and Composition R17 were respectively prepared and evaluated in the same manner as Example 52 and Example 54 except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
〔比較例18、19:組成物R18、R19の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)を配合しなかった以外は、実施例88及び実施例89と同様にして、組成物R18及び組成物R19をそれぞれ調製し、評価した。結果を第4表に示した。
Comparative Examples 18 and 19 Preparation of Compositions R18 and R19
Composition R18 and Composition R19 were prepared and evaluated in the same manner as in Example 88 and Example 89, respectively, except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
〔比較例20、21:組成物R20、R21の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)を配合しなかった以外は、実施例143及び実施例145と同様にして、組成物R20及び組成物R21をそれぞれ調製し、評価した。結果を第4表に示した。
Comparative Examples 20 and 21: Preparation of Compositions R20 and R21
The composition R20 and the composition R21 were respectively prepared and evaluated in the same manner as in Example 143 and Example 145 except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
〔比較例22、23:組成物R22、R23の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)を配合しなかった以外は、実施例150及び実施例152と同様にして、組成物R22及び組成物R23をそれぞれ調製し、評価した。結果を第4表に示した。
Comparative Examples 22 and 23 Preparation of Compositions R22 and R23
Compositions R22 and R23 were prepared and evaluated in the same manner as in Example 150 and Example 152, respectively, except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
〔比較例24、25:組成物R24、R25の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)を配合しなかった以外は、実施例157及び実施例159と同様にして、組成物R24及び組成物R25をそれぞれ調製し、評価した。結果を第4表に示した。
[Comparative Examples 24 and 25: Preparation of Compositions R24 and R25]
The composition R24 and the composition R25 were respectively prepared and evaluated in the same manner as in Example 157 and Example 159 except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) was not blended. . The results are shown in Table 4.
〔比較例26:組成物R26の調製〕
 銀担持ガラス(富士ケミカル社製「バクテライトMP-103DV」)及び銅担持ガラス(東亞合成製「NS-20C」)を配合しなかった以外は、実施例206と同様にして、組成物R26を調製し、評価した。結果を第4表に示した。
Comparative Example 26 Preparation of Composition R26
Composition R26 was prepared in the same manner as in Example 206, except that silver-supporting glass ("Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd.) and copper-supporting glass ("NS-20C" manufactured by Toagosei Co., Ltd.) were not blended. Prepared and evaluated. The results are shown in Table 4.
〔比較例27:組成物R27の調製〕
 リン酸ジルコニウムのかわりにケイ酸アルミニウム(平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-20」を配合した以外は、比較例26と同様にして、組成物R27を調製し、評価した。結果を第4表に示した。
Comparative Example 27 Preparation of Composition R27
Composition R27 was prepared in the same manner as in Comparative Example 26 except that aluminum silicate (“NS-20” manufactured by Toagosei Co., Ltd., whose average particle size was controlled to the size described in the table, was blended instead of zirconium phosphate). It was prepared and evaluated, and the results are shown in Table 4.
 以下に表4を示す。
 表中「銀担持ガラス」は、平均粒径を表中に記載のサイズに制御した富士ケミカル社製「バクテライトMP-103DV(固形分25.3質量%)」である。なお、富士ケミカル社製「バクテライトMP-103DV」の無機担体はリン酸塩ガラスに該当する。
 表中「銅担持ガラス」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-20C」(固形分100質量%)である。なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。
 表中「銀担持ゼオライト」は、平均粒径を表中に記載のサイズに制御した中村超硬製「ゼオール4A」(固形分19%)である。
 表中「銀担持リン酸ジルコニウム」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「ノバロンAG300」(固形分100質量%)である。
 表中「酸化銅」は、平均粒径を表中に記載のサイズに制御した酸化銅(固形分100質量%)である。
 表中の「リン酸ジルコニウム」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-10」(固形分100質量%)である。
 表中の「ケイ酸アルミニウム」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-20」(固形分100質量%)である。
Table 4 is shown below.
In the table, “silver-supporting glass” is “Bacterite MP-103DV (solid content 25.3 mass%)” manufactured by Fuji Chemical Co., Ltd., whose average particle diameter is controlled to the size described in the table. The inorganic carrier of "Bacterite MP-103DV" manufactured by Fuji Chemical Co., Ltd. corresponds to phosphate glass.
In the table, “copper-supporting glass” is “NS-20C” (solid content: 100% by mass) manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table. The inorganic carrier "NS-20C" manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate glass.
"Silver-loaded zeolite" in the table is "Zeool 4A" (solid content 19%) manufactured by Nakamura Cemented Carbide in which the average particle diameter is controlled to the size described in the table.
"Silver-supported zirconium phosphate" in the table is "Novalon AG300" (solid content: 100% by mass) manufactured by Toagosei Co., Ltd. whose average particle diameter is controlled to the size described in the table.
"Copper oxide" in the table is copper oxide (solid content: 100% by mass) whose average particle diameter is controlled to the size described in the table.
"Zirconium phosphate" in the table is "NS-10" (solid content: 100% by mass) manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
"Aluminum silicate" in the table is "NS-20" (solid content: 100% by mass) manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実施例24~100の結果から、銀担持ガラス及び銅担持ガラスのいずれについても平均粒径が1.2μm以下の場合、形成される膜の消臭性がより優れることが確認された。
 なかでも、実施例52~72の結果から、銀担持ガラス及び銅担持ガラスのいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.9μm以下である場合、形成される膜の消臭性がより優れることが確認された。また、なかでも、銀担持ガラス及び銅担持ガラスのいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下である場合か、又は、銀担持ガラス及び銅担持ガラスのいずれについても平均粒径が0.9μm以下である場合、形成される膜の消臭性がより優れることが確認された。
 また、なかでも、実施例73~93の結果から、銀担持ガラス及び銅担持ガラスのいずれの平均粒径も0.5μm以下である場合(好ましくは、銀担持ガラス及び銅担持ガラスのいずれか一方の平均粒径が0.5μm以下であり、且つ他方の平均粒径が0.3μm以下である場合)、形成される膜の消臭性がより優れることが確認された。
 また、なかでも実施例94~100の結果から、銀担持ガラス及び銅担持ガラスのいずれの平均粒径も0.3μm以下である場合、形成される膜の消臭性がより優れる傾向があることが確認された。
From the results of Examples 24 to 100, it was confirmed that the deodorizing properties of the formed film are more excellent when the average particle diameter is 1.2 μm or less for both the silver-supporting glass and the copper-supporting glass.
Above all, according to the results of Examples 52 to 72, when the average particle diameter of one of silver-supporting glass and copper-supporting glass is 1.2 μm or less, and the other is 0.9 μm or less, It was confirmed that the deodorizing property of the formed film is more excellent. In addition, among the above, it is preferable that the average particle diameter of one of the silver-supporting glass and the copper-supporting glass is 1.2 μm or less and the other is 0.6 μm or less, It was confirmed that the deodorizing property of the formed film is more excellent when the average particle diameter is 0.9 μm or less for any of the copper-supporting glass.
In addition, in particular, according to the results of Examples 73 to 93, when any of the silver-supporting glass and the copper-supporting glass has an average particle diameter of 0.5 μm or less (preferably, any one of the silver-supporting glass and the copper-supporting glass It was confirmed that the deodorizing property of the formed film is more excellent) when the average particle diameter of is 0.5 μm or less and the other average particle diameter is 0.3 μm or less).
In addition, according to the results of Examples 94 to 100, when any of the silver-supporting glass and the copper-supporting glass has an average particle size of 0.3 μm or less, the deodorizing properties of the formed film tend to be more excellent. Was confirmed.
 また、実施例94~100と実施例101~107の対比から、無機物(1)の無機担体がガラスである場合、形成される膜の消臭性がより優れることが確認された。 From the comparison of Examples 94 to 100 and Examples 101 to 107, it was confirmed that when the inorganic carrier of the inorganic substance (1) is glass, the deodorizing properties of the formed film are more excellent.
 また、実施例24~100と実施例143~177の対比から、無機物(1)が銀担持ガラスであり、第2金属含有物が銅担持ガラスである場合、形成される膜の消臭性がより優れる傾向があることが確認された。 Further, from the comparison of Examples 24 to 100 and Examples 143 to 177, when the inorganic substance (1) is silver-supporting glass and the second metal-containing substance is copper-supporting glass, the deodorizing property of the formed film is It was confirmed that there is a tendency to be superior.
 また、実施例31~37と実施例115~121との対比、及び実施例87~93と実施例122~128との対比から、組成物中のエタノール濃度が45質量%以下の場合、形成される膜の消臭性がより優れる傾向があることが確認された。
 一方、実施例101~107と実施例129~135との対比、及び実施例116~114と実施例136~142の対比から、組成物中のエタノール濃度が5質量%以上の場合、形成される膜の消臭性がより優れる傾向があることが確認された。
From the comparison of Examples 31 to 37 and Examples 115 to 121, and the comparison of Examples 87 to 93 and Examples 122 to 128, it was formed when the ethanol concentration in the composition was 45% by mass or less. It was confirmed that the deodorizing properties of the film tended to be more excellent.
On the other hand, when the concentration of ethanol in the composition is 5% by mass or more, it is formed from the comparison of Examples 101 to 107 and Examples 129 to 135 and the comparison of Examples 116 to 114 and Examples 136 to 142. It was confirmed that the deodorizing properties of the film tended to be more excellent.
 また、実施例94~100と実施例192~205の対比から、組成物中の分散剤の含有量が、組成物の全固形分に対して、15質量%以上である場合(実施例192~205が該当)、形成される膜の消臭性がより優れる傾向があることが確認された。 Also, from the comparison of Examples 94 to 100 and Examples 192 to 205, when the content of the dispersant in the composition is 15% by mass or more with respect to the total solid content of the composition (Example 192- It is confirmed that the deodorizing property of the formed film tends to be more excellent).
 また、実施例178~191と実施例94~100の対比から、組成物が親水性成分を含む場合、形成される膜の消臭性及び抗菌性がより優れることが確認された。 Also, from the comparison of Examples 178 to 191 and Examples 94 to 100, it was confirmed that when the composition contains a hydrophilic component, the deodorizing property and the antibacterial property of the formed film are more excellent.
〔参考例1:参考組成物1の調製〕
 酸化銅粒子(関東化学製「酸化銅(II)COPPER OXIDE」)を減圧下、4℃、40時間の条件で低温乾燥することにより水分を除去した。次いで、乾燥後の酸化銅粒子を水で10倍希釈することにより分散した後、ビーズミルを使用して湿式粉砕した。得られた分散液を、減圧下にて50℃、5時間の条件で乾燥し、平均粒径30nmのCuO粉末を作製した。
Reference Example 1: Preparation of Reference Composition 1
The water content was removed by drying the copper oxide particles ("Copper (II) COPPER OXIDE" manufactured by Kanto Chemical Co., Ltd.) under reduced pressure at 4 ° C. for 40 hours at a low temperature. Next, the dried copper oxide particles were dispersed by diluting with 10 times with water, and then wet-pulverized using a bead mill. The obtained dispersion was dried at 50 ° C. for 5 hours under reduced pressure to prepare a CuO powder having an average particle diameter of 30 nm.
 容器中において、ポリマー粒子(日本触媒製「エポスター100W」、平均粒径:150nm)水分散液(固形分濃度0.1質量%)150gを攪拌しながら、シリケート系化合物(三菱化学社製「MKC(登録商標)シリケートMS51」)0.1gを加えて20分間攪拌した。次いで、この攪拌物に、粒径制御した酸化銅(関東化学製「酸化銅(II)COPPER OXIDE」)水分散液(固形分濃度0.01質量%:平均粒径30nm)50gを加えて、更に20分間攪拌し、分散液Gを得た。 In a container, 150 g of an aqueous dispersion (solid content concentration: 0.1% by mass) of polymer particles (Nippon Shokuhin “Epoler 100 W”, average particle diameter: 150 nm) is stirred while a silicate compound (MKC Corporation “MKC” 0.1 g of (registered trademark) Silicate MS 51 ") was added and stirred for 20 minutes. Subsequently, 50 g of copper oxide ("Copper oxide (II) COPPER OXIDE" manufactured by Kanto Chemical Co., Ltd.) aqueous dispersion (solid content concentration 0.01 mass%: average particle size 30 nm) whose particle size is controlled is added to this stirred product, The mixture was further stirred for 20 minutes to obtain a dispersion G.
 次に、得られた分散液Gを遠心分離して、銅担持ポリマー粒子を沈降させた。濾過により上記銅担持ポリマー粒子を分離し、減圧下で自然乾燥させることにより、銅担持ポリマー粒子を得た。光学顕微鏡による観察により、銅担持ポリマー粒子は、ポリマー粒子の表面上に酸化銅粒子が担持された構造を有し、ポリマー粒子の表面上の少なくとも一領域に、シリケート系化合物が縮合してなるシラン化合物の被膜が形成されていることを確認した。
 また、銅担持ポリマー粒子は、平均粒径が0.6μmであった。
Next, the obtained dispersion G was centrifuged to precipitate copper-supported polymer particles. The copper-supported polymer particles were separated by filtration and naturally dried under reduced pressure to obtain copper-supported polymer particles. According to observation with an optical microscope, the copper-supporting polymer particle has a structure in which copper oxide particles are supported on the surface of the polymer particle, and a silane is formed by condensation of a silicate compound in at least one region on the surface of the polymer particle. It confirmed that the film of the compound was formed.
In addition, the copper-supported polymer particles had an average particle size of 0.6 μm.
 得られた分散液Gに、第1金属無機担体として、銅担持ガラス(東亞合成製「NS-20C」:なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムガラスに該当する。)0.1gを加えて攪拌することにより、参考組成物1を得た。
 得られた参考例1の参考組成物1は、第1金属有機担体、第2金属無機担体、親水性成分としてシリケート系化合物、及び、溶媒を含む。
In the obtained dispersion liquid G, copper-supporting glass (“NS-20C” manufactured by Toagosei Co., Ltd.) as a first metal inorganic carrier: the inorganic carrier “NS-20C” manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate glass. Reference composition 1 was obtained by adding and stirring 0.1 g.
The obtained Reference Composition 1 of Reference Example 1 includes a first metal organic carrier, a second metal inorganic carrier, a silicate compound as a hydrophilic component, and a solvent.
(第1金属無機担体、第1金属有機担体の平均粒径)
 第1金属無機担体及び第1金属有機担体の平均粒径については、電子顕微鏡を用いた観察により測定した。具体的な測定方法は、上述したとおりである。
(Average particle diameter of first metal inorganic carrier, first metal organic carrier)
The average particle diameter of the first metal inorganic carrier and the first metal organic carrier was measured by observation using an electron microscope. The specific measurement method is as described above.
 実施例1と同様の方法により、得られた参考例1の参考組成物1を評価した。結果を第5表に示す。 Reference Composition 1 of Reference Example 1 obtained was evaluated in the same manner as in Example 1. The results are shown in Table 5.
〔参考例2〕
 MKCシリケートMS51を使用しなかったこと以外は参考例1の参考用組成物1と同様の方法により、参考例2の参考組成物2を調整した。
 実施例1と同様の方法により、得られた参考例1の参考組成物1を評価した。結果を第5表に示す。
Reference Example 2
Reference Composition 2 of Reference Example 2 was prepared in the same manner as Reference Composition 1 of Reference Example 1 except that MKC Silicate MS51 was not used.
Reference Composition 1 of Reference Example 1 obtained was evaluated in the same manner as in Example 1. The results are shown in Table 5.
 なお、第5表中の「銅担持ガラス」は、平均粒径を表中に記載のサイズに制御した東亞合成社製「NS-20C」である。なお、東亞合成製「NS-20C」の無機担体はケイ酸アルミニウムに該当する。 The “copper-supporting glass” in Table 5 is “NS-20C” manufactured by Toagosei Co., Ltd., whose average particle diameter is controlled to the size described in the table. The inorganic carrier of "NS-20C" manufactured by Toagosei Co., Ltd. corresponds to aluminum silicate.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022

Claims (41)

  1.  第1の金属を含有する無機物と、
     前記第1の金属とは異なる第2の金属を含有する無機物、及び前記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、
     溶媒と、を含有する、組成物。
    An inorganic substance containing a first metal;
    A component containing at least one second metal selected from the group consisting of an inorganic substance containing a second metal different from the first metal, and an organic substance containing the second metal;
    A composition containing a solvent.
  2.  前記第1の金属を含有する無機物が、前記第1の金属の単体、前記第1の金属の酸化物、及び無機担体と前記無機担体に担持された前記第1の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、請求項1に記載の組成物。 Metal-supported inorganic substance comprising an inorganic substance containing the first metal, the first metal alone, an oxide of the first metal, and an inorganic support and the first metal supported on the inorganic support The composition according to claim 1, which is at least one selected from the group consisting of a carrier.
  3.  前記第2の金属を含有する無機物が、前記第2の金属の単体、前記第2の金属の酸化物、及び無機担体と前記無機担体に担持された前記第2の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、請求項1に記載の組成物。 A metal-supported inorganic substance comprising an inorganic substance containing the second metal, the single substance of the second metal, an oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support. The composition according to claim 1, which is at least one selected from the group consisting of a carrier.
  4.  前記第2の金属を含有する成分が、前記第2の金属を含有する無機物である、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the component containing the second metal is an inorganic substance containing the second metal.
  5.  前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物が粒子であり、前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物のいずれについても平均粒径が0.9μm以下である、請求項4に記載の組成物。 The average particle of either the inorganic substance containing the first metal and the inorganic substance containing the second metal is a particle, and the inorganic substance containing the first metal and the inorganic substance containing the second metal The average diameter of the particles is 1.2 μm or less, and the average particle diameter of the other is 0.6 μm or less, or the average of any of the first metal-containing inorganic substance and the second metal-containing inorganic substance The composition according to claim 4, wherein the particle size is 0.9 μm or less.
  6.  前記第1の金属が銀であり、前記第2の金属が銅である、請求項1~5のいずれか1項に記載の組成物。 The composition according to any one of the preceding claims, wherein the first metal is silver and the second metal is copper.
  7.  前記第1の金属を含有する無機物が、第1の無機担体と、前記第1の無機担体に担持された銀とを有する銀担持無機担体である、請求項1~6のいずれか1項に記載の組成物。 7. The silver-supported inorganic carrier according to claim 1, wherein the inorganic substance containing the first metal is a silver-supported inorganic carrier having a first inorganic carrier and silver supported on the first inorganic carrier. Composition as described.
  8.  前記第2の金属を含有する無機物が、第2の無機担体と、前記第2の無機担体に担持された銅とを有する銅担持無機担体である、請求項1~7のいずれか1項に記載の組成物。 8. The copper-supported inorganic carrier according to any one of claims 1 to 7, wherein the inorganic substance containing the second metal is a copper-supported inorganic carrier having a second inorganic carrier and copper supported on the second inorganic carrier. Composition as described.
  9.  前記第1の無機担体が、ガラスである、請求項7に記載の組成物。 The composition according to claim 7, wherein the first inorganic carrier is glass.
  10.  前記第2の無機担体が、ガラスである、請求項8に記載の組成物。 9. The composition of claim 8, wherein the second inorganic carrier is glass.
  11.  前記第1の金属を含有する無機物が、ガラスと、前記ガラスに担持された銀とを有する銀担持ガラスであり、前記第2の金属を含有する無機物が、ガラスと、前記ガラスに担持された銅とを有する銅担持ガラスである、請求項4~6のいずれか1項に記載の組成物。 The inorganic substance containing the first metal is a silver-supported glass having glass and silver supported on the glass, and the inorganic substance containing the second metal is supported on the glass and the glass The composition according to any one of claims 4 to 6, which is a copper-loaded glass having copper.
  12.  更に、親水性バインダー前駆体及び親水性バインダーからなる群から選択される親水性成分を含有する、請求項1~11のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 11, further comprising a hydrophilic component selected from the group consisting of a hydrophilic binder precursor and a hydrophilic binder.
  13.  前記親水性成分が、シリケート系化合物、親水性基を有するモノマー、及び親水性基を有するポリマーからなる群から選択される少なくとも1種を含有する、請求項12に記載の組成物。 The composition according to claim 12, wherein the hydrophilic component contains at least one selected from the group consisting of a silicate compound, a monomer having a hydrophilic group, and a polymer having a hydrophilic group.
  14.  第1の金属を含有する無機物と、
     前記第1の金属とは異なる第2の金属を含有する無機物、及び前記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、を含有する、膜。
    An inorganic substance containing a first metal;
    An inorganic substance containing a second metal different from the first metal, and a component containing at least one second metal selected from the group consisting of an organic substance containing the second metal Do the membrane.
  15.  前記第1の金属を含有する無機物が、前記第1の金属の単体、前記第1の金属の酸化物、及び無機担体と前記無機担体に担持された前記第1の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、請求項14に記載の膜。 Metal-supported inorganic substance comprising an inorganic substance containing the first metal, the first metal alone, an oxide of the first metal, and an inorganic support and the first metal supported on the inorganic support The membrane according to claim 14, which is at least one selected from the group consisting of a carrier.
  16.  前記第2の金属を含有する無機物が、前記第2の金属の単体、前記第2の金属の酸化物、及び無機担体と前記無機担体に担持された前記第2の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、請求項14に記載の膜。 A metal-supported inorganic substance comprising an inorganic substance containing the second metal, the single substance of the second metal, an oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support. The membrane according to claim 14, which is at least one selected from the group consisting of a carrier.
  17.  前記第2の金属を含有する成分が、前記第2の金属を含有する無機物である、請求項14~16のいずれか1項に記載の膜。 The film according to any one of claims 14 to 16, wherein the component containing the second metal is an inorganic substance containing the second metal.
  18.  前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物が粒子であり、前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物のいずれについても平均粒径が0.9μm以下である、請求項17に記載の膜。 The average particle of either the inorganic substance containing the first metal and the inorganic substance containing the second metal is a particle, and the inorganic substance containing the first metal and the inorganic substance containing the second metal The average diameter of the particles is 1.2 μm or less, and the average particle diameter of the other is 0.6 μm or less, or the average of any of the first metal-containing inorganic substance and the second metal-containing inorganic substance The film according to claim 17, wherein the particle size is 0.9 μm or less.
  19.  前記第1の金属が銀であり、前記第2の金属が銅である、請求項14~18のいずれか1項に記載の膜。 The film according to any one of claims 14 to 18, wherein the first metal is silver and the second metal is copper.
  20.  前記第1の金属を含有する無機物が、第1の無機担体と、前記第1の無機担体に担持された銀とを有する銀担持無機担体である、請求項14~19のいずれか1項に記載の膜。 20. The silver-supported inorganic carrier according to any one of claims 14 to 19, wherein the inorganic substance containing the first metal is a silver-supported inorganic carrier having a first inorganic carrier and silver supported on the first inorganic carrier. Membrane described.
  21.  前記第2の金属を含有する無機物が、第2の無機担体と、前記第2の無機担体に担持された銅とを有する銅担持無機担体である、請求項14~20のいずれか1項に記載の膜。 21. The copper-supported inorganic support according to any one of claims 14 to 20, wherein the inorganic substance containing the second metal is a copper-supported inorganic support having a second inorganic support and copper supported on the second inorganic support. Membrane described.
  22.  前記第1の無機担体が、ガラスである、請求項20に記載の膜。 21. The membrane of claim 20, wherein the first inorganic support is glass.
  23.  前記第2の無機担体が、ガラスである、請求項21に記載の膜。 22. A membrane according to claim 21, wherein the second inorganic support is glass.
  24.  前記第1の金属を含有する無機物が、ガラスと、前記ガラスに担持された銀とを有する銀担持ガラスであり、前記第2の金属を含有する無機物が、ガラスと、前記ガラスに担持された銅とを有する銅担持ガラスである、請求項17~19のいずれか1項に記載の膜。 The inorganic substance containing the first metal is a silver-supported glass having glass and silver supported on the glass, and the inorganic substance containing the second metal is supported on the glass and the glass The film according to any one of claims 17 to 19, which is a copper-loaded glass having copper.
  25.  更に、親水性バインダーを含有する、請求項14~24のいずれか1項に記載の膜。 The membrane according to any one of claims 14 to 24, further comprising a hydrophilic binder.
  26.  前記親水性バインダーが、ケイ素原子に加水分解性基が結合した化合物の加水分解物、及びその加水分解縮合物からなる群から選択される少なくとも1種、又は親水性ポリマーである、請求項25に記載の膜。 26. The hydrophilic polymer according to claim 25, wherein the hydrophilic binder is at least one selected from the group consisting of a hydrolyzate of a compound having a hydrolyzable group bonded to a silicon atom, and a hydrolytic condensate thereof, or a hydrophilic polymer. Membrane described.
  27.  基材と、請求項14~26のいずれか1項に記載の膜と、を有する、膜付き基材。 A membrane-coated substrate comprising a substrate and the membrane according to any one of claims 14 to 26.
  28.  親水性バインダー前駆体を含有する請求項1~13のいずれか1項に記載の組成物を基材の表面に塗布して、組成物層を形成する工程と、
     前記組成物層を硬化させて、膜を得る工程と、を含む、膜付き基材の製造方法。
    Applying the composition according to any one of claims 1 to 13 containing a hydrophilic binder precursor on the surface of a substrate to form a composition layer;
    Curing the composition layer to obtain a film.
  29.  親水性バインダーを含有する請求項1~13のいずれか1項に記載の組成物を、基材の表面に塗布して、膜を形成する工程を含む、膜付き基材の製造方法。 A method for producing a membrane-coated substrate, comprising the step of applying the composition according to any one of claims 1 to 13 containing a hydrophilic binder to the surface of the substrate to form a film.
  30.  基材と、前記基材上又は前記基材内部に配置された、第1の金属を含有する無機物、及び、前記第1の金属とは異なる第2の金属を含有する無機物及び前記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、を有する修飾基材。 A base material, a first metal-containing inorganic substance disposed on or within the base material, and a second metal-containing inorganic substance different from the first metal and the second metal A modified substrate comprising: at least one second metal-containing component selected from the group consisting of metal-containing organic substances.
  31.  基材と、前記基材上又は前記基材内部に配置された、第1の金属を含有する無機物、及び、前記第1の金属とは異なる第2の金属を含有する無機物及び前記第2の金属を含有する有機物からなる群から選択される少なくとも1種の第2の金属を含有する成分と、親水性バインダーと、を有する修飾基材。 A base material, a first metal-containing inorganic substance disposed on or within the base material, and a second metal-containing inorganic substance different from the first metal and the second metal A modified substrate comprising a component containing at least one second metal selected from the group consisting of metal-containing organic substances, and a hydrophilic binder.
  32.  前記第1の金属を含有する無機物が、前記第1の金属の単体、前記第1の金属の酸化物、及び無機担体と前記無機担体に担持された前記第1の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、請求項30又は請求項31に記載の修飾基材。 Metal-supported inorganic substance comprising an inorganic substance containing the first metal, the first metal alone, an oxide of the first metal, and an inorganic support and the first metal supported on the inorganic support The modified substrate according to claim 30 or 31, which is at least one selected from the group consisting of a carrier.
  33.  前記第2の金属を含有する無機物が、前記第2の金属の単体、前記第2の金属の酸化物、及び無機担体と前記無機担体に担持された前記第2の金属とを有する金属担持無機担体からなる群から選択される少なくとも1種である、請求項30又は請求項31に記載の修飾基材。 A metal-supported inorganic substance comprising an inorganic substance containing the second metal, the single substance of the second metal, an oxide of the second metal, and an inorganic support and the second metal supported on the inorganic support. The modified substrate according to claim 30 or 31, which is at least one selected from the group consisting of a carrier.
  34.  前記第2の金属を含有する成分が、前記第2の金属を含有する無機物である、請求項30~33のいずれか1項に記載の修飾基材。 The modified substrate according to any one of claims 30 to 33, wherein the component containing the second metal is an inorganic substance containing the second metal.
  35.  前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物が粒子であり、前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物のいずれか一方の平均粒径が1.2μm以下であり、且つ他方の平均粒径が0.6μm以下であるか、又は、前記第1の金属を含有する無機物及び前記第2の金属を含有する無機物のいずれについても平均粒径が0.9μm以下である、請求項34に記載の修飾基材。 The average particle of either the inorganic substance containing the first metal and the inorganic substance containing the second metal is a particle, and the inorganic substance containing the first metal and the inorganic substance containing the second metal The average diameter of the particles is 1.2 μm or less, and the average particle diameter of the other is 0.6 μm or less, or the average of any of the first metal-containing inorganic substance and the second metal-containing inorganic substance 35. The modified substrate of claim 34, wherein the particle size is 0.9 μm or less.
  36.  前記第1の金属が銀であり、前記第2の金属が銅である、請求項30~35のいずれか1項に記載の修飾基材。 The modified substrate according to any of claims 30 to 35, wherein the first metal is silver and the second metal is copper.
  37.  前記第1の金属を含有する無機物が、第1の無機担体と、前記第1の無機担体に担持された銀とを有する銀担持無機担体である、請求項30~36のいずれか1項に記載の修飾基材。 37. The silver-supported inorganic support according to any one of claims 30 to 36, wherein the inorganic substance containing the first metal is a silver-supported inorganic support having a first inorganic support and silver supported on the first inorganic support. Modified substrate as described.
  38.  前記第2の金属を含有する無機物が、第2の無機担体と、前記第2の無機担体に担持された銅とを有する銅担持無機担体である、請求項30~37のいずれか1項に記載の修飾基材。 38. The copper-supported inorganic support according to any one of claims 30 to 37, wherein the inorganic substance containing the second metal is a copper-supported inorganic support having a second inorganic support and copper supported on the second inorganic support. Modified substrate as described.
  39.  前記第1の無機担体が、ガラスである、請求項37に記載の修飾基材。 39. The modified substrate of claim 37, wherein the first inorganic support is glass.
  40.  前記第2の無機担体が、ガラスである、請求項38に記載の修飾基材。 39. The modified substrate of claim 38, wherein the second inorganic support is glass.
  41.  前記第1の金属を含有する無機物が、ガラスと、前記ガラスに担持された銀とを有する銀担持ガラスであり、前記第2の金属を含有する無機物が、ガラスと、前記ガラスに担持されたに担持された銅とを有する銅担持ガラスである、請求項34~36のいずれか1項に記載の修飾基材。 The inorganic substance containing the first metal is a silver-supported glass having glass and silver supported on the glass, and the inorganic substance containing the second metal is supported on the glass and the glass The modified substrate according to any one of claims 34 to 36, which is a copper-loaded glass having copper supported thereon.
PCT/JP2018/026100 2017-07-10 2018-07-10 Composition, film, film-attached base material, method for producing film-attached base material, and modified base material WO2019013227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019529745A JPWO2019013227A1 (en) 2017-07-10 2018-07-10 Composition, film, base material with film, method for producing base material with film, and modified base material
CN201880039420.7A CN110809405A (en) 2017-07-10 2018-07-10 Composition, film-attached substrate, method for producing film-attached substrate, and modified substrate

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2017-135077 2017-07-10
JP2017135077 2017-07-10
JP2017146256 2017-07-28
JP2017-146256 2017-07-28
JP2017-146695 2017-07-28
JP2017146695 2017-07-28
JP2017-211396 2017-10-31
JP2017211326 2017-10-31
JP2017211396 2017-10-31
JP2017-211326 2017-10-31
JP2018-052671 2018-03-20
JP2018052671 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019013227A1 true WO2019013227A1 (en) 2019-01-17

Family

ID=65002483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026100 WO2019013227A1 (en) 2017-07-10 2018-07-10 Composition, film, film-attached base material, method for producing film-attached base material, and modified base material

Country Status (3)

Country Link
JP (1) JPWO2019013227A1 (en)
CN (1) CN110809405A (en)
WO (1) WO2019013227A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124480A1 (en) * 2017-12-22 2019-06-27 富士フイルム株式会社 Composition, wet wiper, spray and method for manufacturing surface-treated substrate
WO2019188353A1 (en) * 2018-03-29 2019-10-03 富士フイルム株式会社 Antibacterial composition, antibacterial film, substrate with antibacterial film
WO2020045416A1 (en) * 2018-08-29 2020-03-05 富士フイルム株式会社 Deodorant composition, spray, wiper, membrane, substrate with membrane, and resin molded body
WO2021026121A1 (en) * 2019-08-07 2021-02-11 Corning Incorporated Biocidal dispersions for coating compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585910A (en) * 1991-09-24 1993-04-06 Taihei Kagaku Sangyo Kk Antibacterial-antifungal zinc phosphate compound
JPH10513192A (en) * 1995-02-06 1998-12-15 ギルテク リミテッド Antimicrobial composition composed of controlled release glass
JP2002087842A (en) * 2000-07-10 2002-03-27 Toagosei Co Ltd Antibacterial agent and antibacterial artificial marble
JP2010506877A (en) * 2006-10-19 2010-03-04 チバ ホールディング インコーポレーテッド Packing ingredients for evaporative coolers with biofilm formation resistance
JP2017109983A (en) * 2015-05-15 2017-06-22 富士フイルム株式会社 Antibacterial solution, antibacterial film and wet wiper

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238866A (en) * 1986-04-04 1987-10-19 大和紡績株式会社 Production of deodorizing cellulose fiber
JP3176054B2 (en) * 1990-07-19 2001-06-11 朝日化学工業株式会社 Antibacterial aluminum silicate composition and method for producing the same
JPH09157614A (en) * 1995-12-06 1997-06-17 Yazaki Corp Antimicrobial adhesive composition for polyvinyl chloride
US6217892B1 (en) * 1997-10-24 2001-04-17 Joseph A. King Water treatment composition
JP3087610U (en) * 2002-01-29 2002-08-16 リンテック株式会社 Deodorant antibacterial sheet and deodorant antibacterial bag
GB0601687D0 (en) * 2006-01-27 2006-03-08 Smith & Nephew Antimicrobial materials
JP2008184460A (en) * 2007-01-31 2008-08-14 Toagosei Co Ltd Composition for spray coating and spray coating method
TW201321031A (en) * 2011-10-12 2013-06-01 Corning Inc Antimicrobial glass-ceramics
FR3008705A1 (en) * 2013-07-18 2015-01-23 Meto & Co COMPOSITE COATINGS OF COPPER OXIDE AND / OR PHOSPHORUS
JP6441186B2 (en) * 2015-08-31 2018-12-19 石塚硝子株式会社 Deodorant spray

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585910A (en) * 1991-09-24 1993-04-06 Taihei Kagaku Sangyo Kk Antibacterial-antifungal zinc phosphate compound
JPH10513192A (en) * 1995-02-06 1998-12-15 ギルテク リミテッド Antimicrobial composition composed of controlled release glass
JP2002087842A (en) * 2000-07-10 2002-03-27 Toagosei Co Ltd Antibacterial agent and antibacterial artificial marble
JP2010506877A (en) * 2006-10-19 2010-03-04 チバ ホールディング インコーポレーテッド Packing ingredients for evaporative coolers with biofilm formation resistance
JP2017109983A (en) * 2015-05-15 2017-06-22 富士フイルム株式会社 Antibacterial solution, antibacterial film and wet wiper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124480A1 (en) * 2017-12-22 2019-06-27 富士フイルム株式会社 Composition, wet wiper, spray and method for manufacturing surface-treated substrate
WO2019188353A1 (en) * 2018-03-29 2019-10-03 富士フイルム株式会社 Antibacterial composition, antibacterial film, substrate with antibacterial film
US11877577B2 (en) 2018-03-29 2024-01-23 Fujifilm Corporation Antibacterial composition, antibacterial film, and antibacterial film-attached substrate
WO2020045416A1 (en) * 2018-08-29 2020-03-05 富士フイルム株式会社 Deodorant composition, spray, wiper, membrane, substrate with membrane, and resin molded body
WO2021026121A1 (en) * 2019-08-07 2021-02-11 Corning Incorporated Biocidal dispersions for coating compositions

Also Published As

Publication number Publication date
CN110809405A (en) 2020-02-18
JPWO2019013227A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2019013227A1 (en) Composition, film, film-attached base material, method for producing film-attached base material, and modified base material
WO2016186051A1 (en) Antibacterial solution, antibacterial film and wet wipe
DE69930399T2 (en) PHOTOCATORATORY ITEMS FOR PREVENTING CONSTROGENSES AND DEPOSITS, METHOD FOR PRODUCING THE ARTICLE
EP0866101B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
CN103635543B (en) Inorganic hydrophilic coating fluid and, thus obtained by hydrophilic film and use its parts
US20180255774A1 (en) Antiviral film
JP6967086B2 (en) Method for manufacturing composition, wet wiper, spray, surface treatment base material
CN107200333A (en) A kind of preparation method and application of silica hydrophilic particle
JP2019182811A (en) Composition, film, substrate with film, method of producing substrate with film, spray, and wet wiper
JP5147176B2 (en) Antibacterial agent
WO2020137612A1 (en) Composition, film, film-coated substrate, method for producing film-coated substrate, spray, wet wiper, and antibacterial particles
WO2019087856A1 (en) Odor inhibition method, composition, wiper, and spray
WO2018092808A1 (en) Composite particles, dispersion, membrane, deodorant, wet wipe, and spray
WO2020045416A1 (en) Deodorant composition, spray, wiper, membrane, substrate with membrane, and resin molded body
WO2020045404A1 (en) Composition, spray, wiper, membrane, substrate with membrane, and resin molded body
WO2020090351A1 (en) Composition, modified base material, wet wipes, and spray
WO2020022448A1 (en) Composition, film, base material with film, method for producing base material with film, spray and wet wipe
WO2022009776A1 (en) Composition, wet wiper, spray, mask with antimicrobial agent, faceguard with antimicrobial agent, and antimicrobial liquid material
WO2019004007A1 (en) Coating-type antifogging agent for films for agricultural use, and film for agricultural use
US20050049328A1 (en) Surface film with depositing function, the production and use thereof
WO2019021733A1 (en) Rinsing liquid-resistant hydrophilic member and method for manufacturing same
US20210325570A1 (en) Easy To Clean And Anti-Fog Coating With Anti-Reflective Properties
JP2002212505A (en) Optical semiconductor metal-organic substance mixture, optical semiconductor metal-containing composition, method for producing photocatalyst coating film and photocatalyst member
CN114773939A (en) Transparent super-hydrophilic coating and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832046

Country of ref document: EP

Kind code of ref document: A1