WO2019013118A1 - Vacuum pump, temperature adjustment control device applied to vacuum pump, inspection tool, and diagnosis method for temperature adjustment function unit - Google Patents

Vacuum pump, temperature adjustment control device applied to vacuum pump, inspection tool, and diagnosis method for temperature adjustment function unit Download PDF

Info

Publication number
WO2019013118A1
WO2019013118A1 PCT/JP2018/025668 JP2018025668W WO2019013118A1 WO 2019013118 A1 WO2019013118 A1 WO 2019013118A1 JP 2018025668 W JP2018025668 W JP 2018025668W WO 2019013118 A1 WO2019013118 A1 WO 2019013118A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
terminal
heater
solenoid valve
vacuum pump
Prior art date
Application number
PCT/JP2018/025668
Other languages
French (fr)
Japanese (ja)
Inventor
深美 英夫
政利 石橋
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017211992A external-priority patent/JP6942610B2/en
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to CN201880042475.3A priority Critical patent/CN110770446B/en
Priority to EP18831905.7A priority patent/EP3653883A4/en
Priority to US16/629,471 priority patent/US11549515B2/en
Priority to KR1020197035916A priority patent/KR102553701B1/en
Publication of WO2019013118A1 publication Critical patent/WO2019013118A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps

Definitions

  • the present invention relates to a vacuum pump, a control device for temperature control applied to the vacuum pump, a jig for inspection, and a diagnostic method of a temperature control function part, and in particular, a large scale inspection device is unnecessary and the temperature control function is simplified.
  • the present invention relates to a vacuum pump that can perform self-diagnosis using various devices and can perform inspection generally, a control device for temperature control applied to the vacuum pump, a testing jig, and a diagnosis method of a temperature control function unit.
  • a vacuum pump is used to evacuate the chamber, but a turbo molecular pump, which is one of vacuum pumps, is widely used, particularly from the viewpoint of low residual gas and easy maintenance.
  • turbo molecular pump not only evacuates the chamber but also exhausts the process gases from the chamber. Is also used.
  • the process gas may be introduced into the chamber at a high temperature to enhance the reactivity. Then, these process gases may become solid at a certain temperature which is cooled when being exhausted and may deposit a product in an exhaust system. Then, this type of process gas may become solid at low temperature in the turbo molecular pump and adhere to and deposit inside the turbo molecular pump.
  • a heater or an annular water-cooled tube is wound around the outer periphery of a turbo molecular pump base or the like, and a temperature sensor (for example, a thermistor) is embedded in the base or the like.
  • a temperature sensor for example, a thermistor
  • Control of heating by a heater or cooling by a water cooling pipe (hereinafter referred to as TMS (Temperature Management System)) is performed so as to maintain the temperature of the base part at a constant high temperature (preset temperature) based on a signal.
  • TMS Temporal Management System
  • the set temperature As the set temperature of TMS is higher and the product is less likely to be deposited.
  • the electronic circuit provided in the main body of the turbo molecular pump exceeds the limit temperature when the exhaust load changes or the ambient temperature changes to a high temperature, etc.
  • the storage means by the semiconductor memory may be destroyed.
  • the semiconductor memory is broken and the maintenance information data such as the pump activation time and the error history disappears.
  • TMS control An example of TMS control is shown in FIG.
  • the temperature of the base portion is measured by a temperature sensor (corresponding to a TMS temperature sensor described later), and a heating command is sent to the heater such that the measured temperature is equal to or lower than the preset allowable temperature of the base portion.
  • the target set temperature is 60 degrees.
  • the control device turns on the heater and continues heating at the initial stage of the operation start, and turns off the heater when the measured temperature measured by the temperature sensor exceeds 60 degrees. During this time, the temperature of the base portion is heated by the heater since the solenoid valve continues to close.
  • the temperature of the base portion does not drop rapidly, and forms an overshoot curve. After that, when the measured temperature exceeds 63 degrees, the solenoid valve is opened to supply water from the water cooling pipe. When the temperature of the base portion falls to 60 degrees or less, the solenoid valve is closed. Thereafter, the heater is turned on again when the temperature of the base portion becomes 58 degrees or less.
  • one temperature sensor controls one heater and one solenoid valve, but as the pump capacity increases, more number of temperature sensors, heaters, and solenoid valves are disposed. Ru. The temperature for turning the heater on and off and the temperature for opening and closing the solenoid valve also differ. Hysteresis is taken into consideration in setting the temperature threshold and the logic is complicated.
  • a dedicated inspection device is connected to the control device in order to check whether TMS control in which complicated operations are performed while considering hysteresis in time series is normally performed. An inspection was being conducted.
  • This inspection system includes inspection jigs, I / O boards, and personal computers, but since application software etc. is configured according to the OS used on personal computers, each time the OS is upgraded In some cases, jigs for inspection, I / O boards and application software can not be used.
  • the inspection apparatus has to be newly developed and prepared. Furthermore, the inspection apparatus prepared in this way is not necessarily applied to all turbo molecular pumps in common, and in the case of expensive inspection equipment, there is a difficult aspect in that it is always provided in a service base or the like.
  • the present invention was made in view of such conventional problems, and does not require a large-scale inspection device, and can perform self-diagnosis with a simple device for temperature control function, and can perform inspection universally, the vacuum
  • An object of the present invention is to provide a control device for temperature control applied to a pump, a jig for inspection, and a diagnostic method of a temperature control function part.
  • the present invention is an invention of a vacuum pump, comprising: a control unit for monitoring and controlling a motor and a magnetic bearing built in the pump main body; and at least one temperature sensor provided in the pump main body
  • the temperature control function unit can connect or disconnect the temperature sensor. Whether the input signal to the first terminal is normally input, or the second terminal has one terminal and the second terminal capable of connecting or disconnecting the heater or the solenoid valve. It is characterized by having a self-diagnosis unit capable of self-diagnosis as to whether or not it is output normally from the terminal.
  • the self-diagnosis unit that can self-diagnose whether the measurement signal from the temperature sensor is normally input separately from the temperature control function unit or whether the output to the heater or the solenoid valve is normally performed.
  • the software part of the temperature control function part is not examined at the self-diagnosis part because it has been sufficiently examined at the time of development. Therefore, in the inspection of the self-diagnosis unit, only the input path by the temperature sensor and the output path of the heater and the solenoid valve are inspected.
  • the diagnostic program for the examination is simple. For this reason, since it can be configured at low cost and a large-scale inspection tool such as a personal computer incorporating a dedicated program is unnecessary, it can be easily introduced to each service base. Further, since a personal computer is not required for the examination of the self-diagnosis unit, the application software can not be used each time the version of the OS is upgraded as in the prior art.
  • the present invention (claim 2) is the invention of a vacuum pump, in which the temperature control function unit is connected to the first terminal by a first load for dummy instead of the temperature sensor, A temperature determination unit that determines in a pseudo manner that the temperature sensor has reached a predetermined temperature value when the voltage applied to the load 1 is a preset voltage value, and the second terminal is replaced with the heater or the solenoid valve And output means connected to the second load for dummy and supplying or stopping a predetermined current to the second load based on the determination result of the temperature determination means, wherein the voltage value set in advance is set.
  • the output means is configured independently for each heater or the solenoid valve.
  • the inspection efficiency is high and simple.
  • the present invention (claim 3) is an invention of a vacuum pump, wherein the success or failure of the inspection is judged by judging ON and OFF of the heater or opening and closing of the solenoid valve in time series. It is characterized by
  • the accuracy of the pass / fail judgment is improved by judging ON / OFF of the heater or opening / closing of the solenoid valve in chronological order according to the actual operation sequence of the temperature control function unit.
  • the present invention (claim 4) is an invention of a vacuum pump, and it is determined in a pseudo manner that a predetermined output is performed to the heater or the solenoid valve when the predetermined current flows to the output means.
  • an output determination unit configured to
  • the accuracy of the pass / fail judgment is improved by confirming that a predetermined current has flowed to the output means.
  • the present invention (claim 5) is an invention of a vacuum pump, wherein the first load is a resistor having a resistance value corresponding to ON and OFF of the heater, or the opening and closing of the solenoid valve. , And the resistors are switchable by switches.
  • the present invention (claim 6) is an invention of a vacuum pump, wherein the temperature control function unit enters an inspection mode when it is confirmed that the first load is in a short circuit state.
  • the present invention (claim 7) is an invention of a vacuum pump, wherein the temperature control function unit is configured as a unit independent of the control unit.
  • control unit and the temperature control function unit are separated, the capacity of the vacuum pump is large, and even if the number of sensors, heaters, and solenoid valves is large, remodeling to greatly expand the control device side Can reduce costs without the need.
  • the present invention is an invention of a vacuum pump, comprising judgment means for judging disconnection or short circuit of a cable with respect to the first terminal and the second terminal of the temperature control function unit, It is characterized in that when the determination means determines that a disconnection or a short circuit occurs, the input signal to the first terminal is not sensed, and control from the second terminal to the outside is not performed.
  • control setting for each terminal of the temperature control function unit can be performed automatically, and setting errors can be prevented.
  • the present invention (claim 9) is an invention of a vacuum pump, wherein the judging means carries out judgment of disconnection or short circuit when the temperature control function unit rises.
  • the present invention is an invention of a control device for temperature adjustment, comprising: a control unit for monitoring and controlling a motor and a magnetic bearing incorporated in a pump body; and at least one of the control body disposed in the pump body.
  • It is a control device for temperature control provided with a temperature control function part which measures a temperature of the pump body by a temperature sensor and controls at least one heater or a solenoid valve based on the temperature, wherein the temperature control function part It has a first terminal to which a temperature sensor can be connected or detached, and a second terminal to which the heater or the solenoid valve can be connected or detached, and an input signal to the first terminal is normally input
  • It is characterized by having a self-diagnosis part which can carry out self-diagnosis whether it was properly output from the 2nd terminal or not.
  • the present invention is an invention of a jig for inspection of a temperature control function unit, wherein the temperature of the pump body is measured by at least one temperature sensor disposed in the pump body, and It is a jig for inspection of the temperature control function part which controls at least one heater or a solenoid valve based on the above, and the temperature control function part is the 1st terminal which can connect or can remove the temperature sensor, the heater or the It has a second terminal to which a solenoid valve can be connected or disconnected, and whether or not an input signal to the first terminal is normally input or is normally output from the second terminal And a self-diagnosis unit capable of self-diagnosis.
  • the present invention is an invention of a method for diagnosing the presence or absence of an abnormality in the temperature control function unit, wherein the temperature of the pump body is measured by at least one temperature sensor disposed in the pump body; It is a method of diagnosing temperature existence of a temperature control function part which controls at least one heater or a solenoid valve based on the temperature and existence of an output, wherein the temperature control function part can connect or remove the temperature sensor.
  • a first terminal, and a second terminal capable of connecting or disconnecting the heater or the solenoid valve, and whether or not the input signal to the first terminal is normally input, or the second It is possible to self-diagnose whether or not the output is normal from the terminal of the terminal, and instead of the temperature sensor, a first load for dummy is connected to the first terminal, and the heater or the solenoid valve is connected to the second terminal. Instead of When the voltage applied to the first load is a preset voltage value, it is determined that the temperature sensor has reached a predetermined temperature value in a pseudo manner, and the pseudo load is determined.
  • the control of the current to the second load is prepared independently for each of the heater or the solenoid valve.
  • the present invention (claim 1), it is possible to self-diagnose whether the measurement signal from the temperature sensor is normally input or whether the signal is normally output to the heater or the solenoid valve. Since the self-diagnosis unit is provided, only the input path by the temperature sensor and the output path of the heater and the solenoid valve are inspected. Thus, the diagnostic program for the examination is simple. For this reason, it can be configured at low cost, and a large-scale inspection tool such as a personal computer incorporating a dedicated program is unnecessary.
  • FIG. 1 shows an overall system configuration of an embodiment of the present invention
  • FIG. 2 shows a configuration of a turbo molecular pump.
  • the control device 200 is described separately from the pump main body 100 in FIG. 1, the turbo molecular pump can be applied to this embodiment even if the pump main body 100 and the control device 200 are integrated. .
  • the control device 200 is supplied with 200 volts AC power.
  • the control device 200 monitors and controls the state of a motor 121 and magnetic bearings 104, 105, 106, which will be described later, which are built in the pump main body 100.
  • a dedicated inspection jig, an I / O board, a personal computer or the like can be connected to the port 201 at the control device 200.
  • a terminal 203 is disposed in the control device 200, and one end of an extension cable 211 is connected to the terminal 203.
  • the other end of the extension cable 211 is connected to a terminal 301 of a TMS control device 300 which performs TMS control for temperature adjustment to the pump body 100.
  • the TMS controller 300 is also supplied with 200 volt AC power.
  • the extension cable 211 can be omitted depending on the connection when the control device 200 and the TMS control device 300 are provided.
  • the TMS controller 300 is provided with four channels, each of which receives an input signal and an output signal. In the channel 1, in order to measure the ambient temperature heated by the TMS heater 151, a signal from the TMS temperature sensor 155 provided near the disposition of the TMS heater 151 is input. Then, an AC power supply of 200 volts is turned on or off with respect to the TMS heater 151 disposed in the pump body 100.
  • a signal from a water cooling temperature sensor 157 provided in the vicinity of the arrangement of a water cooling pipe 152 described later for measuring a temperature cooled by opening and closing the solenoid valve 153 is inputted. It has become. Then, a 24 volt DC power supply is turned on or off with respect to a water cooling solenoid valve 153 disposed in the pump body 100.
  • a signal from an exhaust port temperature sensor 161 provided near the disposition of the exhaust port heater 159 is input.
  • An AC power supply of 200 volts is turned on or off with respect to the exhaust port heater 159 disposed on the side of the pump body 100.
  • the TMS controller 300 is configured to control one solenoid valve, two heaters, and three temperature sensors independently of the controller 200.
  • Channel 4 is provided as a reserve for additional temperature control.
  • the number of channels has been described as four, it is not limited to this, and it is desirable to appropriately set according to the number of temperature control required.
  • the number of solenoid valves and heaters to be controlled is not limited to the above number, and it is possible to switch which of the channels is controlled by changing the setting in the channel.
  • the temperature control function of the TMS control device 300 may be integrated into the control device 200. Next, the pump body 100 will be described.
  • an intake port 101 is formed at the upper end of the cylindrical outer cylinder 127 of the pump body 100. Inside the outer cylinder 127, there is provided a rotary body 103 in which a plurality of rotary blades 102a, 102b, 102c.
  • a rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is float-supported and position-controlled in the air by, for example, a so-called 5-axis control magnetic bearing.
  • the upper radial electromagnet 104 In the upper radial electromagnet 104, four electromagnets are arranged in pairs in the X-axis and the Y-axis which are coordinate axes in the radial direction of the rotor shaft 113 and are orthogonal to each other.
  • An upper radial sensor 107 consisting of four electromagnets is provided in proximity to and corresponding to the upper radial electromagnet 104. The upper radial sensor 107 detects the radial displacement of the rotor shaft 113 and sends it to the control device 200.
  • the excitation of the upper radial electromagnet 104 is controlled via a compensation circuit having a PID adjustment function, and the radial position of the upper side of the rotor shaft 113 is determined. adjust.
  • the rotor shaft 113 is formed of a high magnetic permeability material (iron or the like) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is independently performed in the X-axis direction and the Y-axis direction.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are disposed in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is the upper radial position. It is adjusted in the same way.
  • the axial electromagnets 106A and 106B are disposed above and below the disk-shaped metal disk 111 provided at the lower part of the rotor shaft 113.
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor 109 is provided to detect an axial displacement of the rotor shaft 113, and the axial displacement signal is sent to the control device 200.
  • the axial electromagnets 106A and 106B are controlled to be excited based on the axial displacement signal via a compensation circuit having a PID adjustment function of the control device 200.
  • the axial electromagnet 106A and the axial electromagnet 106B attract the metal disk 111 upward and downward, respectively, by the magnetic force.
  • control device 200 appropriately adjusts the magnetic force exerted by the axial electromagnets 106A and 106B on the metal disk 111, magnetically floats the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in a noncontact manner. ing.
  • the motor 121 has a plurality of magnetic poles circumferentially arranged to surround the rotor shaft 113. Each magnetic pole is controlled by the control device 200 so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting on the rotor shaft 113.
  • a plurality of fixed wings 123a, 123b, 123c,... are disposed with a slight air gap from the rotary wings 102a, 102b, 102c,.
  • the rotary wings 102a, 102b, 102c,... are inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision.
  • the fixed wing 123 is similarly formed inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and is disposed alternately with the step of the rotary wing 102 toward the inside of the outer cylinder 127. ing. Further, one end of the fixed wing 123 is supported in a state of being fitted between the plurality of stacked fixed wing spacers 125a, 125b, 125c.
  • the fixed wing spacer 125 is a ring-shaped member, and is made of, for example, a metal such as aluminum, iron, stainless steel, copper or a metal such as an alloy containing such a metal as a component.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer 125 with a slight air gap.
  • a base portion 129 is disposed at the bottom of the outer cylinder 127, and a threaded spacer 131 is disposed between the lower portion of the fixed wing spacer 125 and the base portion 129.
  • An exhaust port 133 is formed in the lower portion of the threaded spacer 131 in the base portion 129 and is communicated with the outside.
  • An exhaust port heater 159 is disposed around the exhaust port 133.
  • An exhaust port temperature sensor 161 is disposed near the exhaust port heater 159.
  • the threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and a plurality of helical screw grooves 131 a are formed on the inner peripheral surface thereof. It is paved.
  • the direction of the spiral of the thread groove 131 a is a direction in which the molecules of the exhaust gas are transferred toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
  • a cylindrical portion 102d is suspended.
  • the outer peripheral surface of the cylindrical portion 102d is cylindrical and protrudes toward the inner peripheral surface of the threaded spacer 131, and is adjacent to the inner peripheral surface of the threaded spacer 131 with a predetermined gap therebetween.
  • a TMS heater 151 is disposed on the threaded spacer 131.
  • the TMS temperature sensor 155 is embedded in the threaded spacer 131.
  • the base part 129 is a disk-like member which comprises the base part of the turbo-molecular pump 10, and is generally comprised with metals, such as iron, aluminum, stainless steel. Further, a water cooling pipe 152 is embedded in an annular shape in the base portion 129. A water cooling temperature sensor 157 is disposed on the side of the water cooling pipe 152.
  • the base portion 129 physically holds the turbo molecular pump 10 and also functions as a heat conduction path, so metals such as iron, aluminum, copper, etc. having rigidity and high thermal conductivity are used. Is desirable.
  • the exhaust gas taken in from the intake port 101 passes between the rotary blade 102 and the fixed wing 123 and is transferred to the base portion 129. At this time, the temperature of the rotary blade 102 rises due to the frictional heat generated when the exhaust gas contacts or collides with the rotary blade 102, the conduction or radiation of the heat generated by the motor 121, etc. The conduction of the exhaust gas by gas molecules and the like is transmitted to the fixed blade 123 side.
  • the fixed wing spacer 125 is joined to each other at the outer peripheral portion, and the heat received by the fixed wing 123 from the rotary wing 102 or the frictional heat generated when the exhaust gas comes into contact with or collides with the fixed wing 123 It is transmitted to the attached spacer 131.
  • the exhaust gas transferred to the threaded spacer 131 is sent to the exhaust port 133 while being guided by the threaded groove 131a.
  • the TMS control device 300 is a device having a temperature adjustment function of the pump main body 100, and the appearance of the front surface and the rear surface of the housing is shown in FIG. 3 as an explanation of the function.
  • On the rear surface of this TMS control unit 300 in the normal operation, in addition to the TMS heater 151, the exhaust port heater 159 and the solenoid valve 153, there are terminals for the TMS temperature sensor 155, the water cooling temperature sensor 157 and the exhaust port temperature sensor 161. It is connected.
  • the terminals for the heater, the solenoid valve and the sensor are removed from the rear surface. And instead, the terminal following the dummy circuit for a test
  • This inspection jig 400 does not require an external inspection device, and enables diagnosis of whether there is an abnormality in the input / output path in the temperature adjustment function.
  • the rotary switch 401 shown in FIG. 4 is disposed on the inspection jig 400.
  • the rotary switch 401 is configured such that connection is switched from the contact 431 to the contact 434 by rotation of the operation shaft 405 around the common terminal 403.
  • the operation shaft 405 contacts the contact point 431 the common terminal 403 and the terminal 407 are shorted.
  • the fixed resistor R1 is connected between the common terminal 403 and the terminal 407.
  • the fixed resistor R 2 is connected between the common terminal 403 and the terminal 407.
  • the common terminal 403 and the terminal 407 are in an open state.
  • a resistor RT is a simplified summary of the fixed resistor R1, the fixed resistor R2, and the like, and corresponds to a dummy resistor of a thermistor. That is, the resistance RT is a resistance realized by simulating a certain temperature of a thermistor mounted inside the pump body 100.
  • the temperature is determined if the resistance value is known. For this reason, as shown in the equivalent circuit of FIG. 6, it is possible to read the temperature value by measuring the voltage across the resistor RT and reading the code obtained by converting the voltage value into a digital as shown in FIG.
  • the resistance R 0 or 3.3 V power supply does not change from that during operation, so if the temperature measured by the thermistor is simulated and replaced with the resistance value of the thermistor at this time, that temperature The same situation as when measuring
  • the fixed resistance R1 in FIG. 4 corresponds to a temperature 80 degrees at which the TMS heater 151 is turned on when the lower limit temperature for TMS control is 80 degrees, and the fixed resistance R2 sets the upper limit temperature for TMS control 150 degrees In this case, the temperature corresponding to 150 degrees at which the TMS heater 151 is turned off is set.
  • the short circuit condition corresponds to a temperature of 400 degrees on the temperature characteristic of a thermistor (not shown), and the open condition corresponds to a temperature of -60 degrees.
  • the assumed temperature by the dummy resistance in the diagnosis is not limited to the above temperature, and is preferably set in accordance with the set temperature for driving the TMS heater and the solenoid valve.
  • FIG. 8 is a flow chart for explaining the operation of the embodiment of the present invention.
  • step 1 shown as S1 in the figure, and so forth
  • the power switch of the TMS control device 300 is turned on.
  • step 2 measurement is started, and in step 3, it is determined whether or not the terminals 303 and 305 shown in FIG. 5 are short circuited.
  • the inspection jig 400 is connected to the TMS control device 300 and the operation shaft 405 is in contact with the contact 431 in the rotary switch 401, it is incorporated in the TMS control device 300 in step 4. Proceed to a mode in which normal TMS temperature control is performed by the executed software. That is, when the inspection jig 400 is not connected to the TMS control device 300, the process proceeds to a mode in which normal TMS temperature control is performed by software in step 4.
  • the process shifts to the self-diagnosis mode after step 5 and a test program independent of the normal temperature control program runs.
  • the inspection program is also incorporated in the TMS controller 300.
  • the power LED 421 provided on the front surface of the TMS control device 300 shown in FIG.
  • the test program continues to monitor the voltage between terminal 303 and terminal 305.
  • step 6 measurement is performed, and the inspection program detects, for example, the fixed resistance R1 corresponding to the TMS temperature sensor 155 from the voltage value converted.
  • step 7 it is determined whether the pseudo temperature is 80 degrees based on this voltage value. Then, if it is detected that the pseudo temperature is 80 degrees, the process proceeds to the next step 8, and a simulated output equivalent to turning on the TMS heater 151 between the terminal 309 and the terminal 311 of the TMS control device 300 shown in FIG. Do.
  • a lamp 413 and a fixed resistor 415 are connected in series between the terminal 409 and the terminal 411 of the inspection jig 400.
  • the lamp 413 is turned on only when a current equal to or greater than a predetermined current value flows.
  • the terminal 311 on the TMS control device 300 side connected to the terminal 411 is grounded.
  • the terminal 409 and the terminal 309 on the side of the TMS control device 300 are connected, and in step 8 a current sufficient for turning on the TMS heater 151 is supplied from the terminal 309.
  • the lamp 413 disposed in the inspection jig 400 is turned on, so it can be determined that the TMS heater 151 has been turned on in a pseudo manner.
  • ramp 413 an electric current meter etc. may be arrange
  • step 9 measurement is performed, and the test program detects the fixed resistance R2 corresponding to the TMS temperature sensor 155 from the voltage value converted.
  • step 10 it is determined whether the pseudo temperature is 150 degrees based on the voltage value. Then, when it is detected that the pseudo temperature is 150 degrees, the process proceeds to the next step 11, and the output current flowing between the terminal 309 and the terminal 311 of the TMS control device 300 is disconnected. At this time, since the lamp 413 is turned off, it can be determined that the TMS heater 151 has been turned off in a pseudo manner.
  • step 14 the LED lamp 422 disposed on the front surface of the TMS controller 300 shown in FIG. 3 is turned on to confirm that the series of input inspection and output inspection for the TMS temperature sensor 155 and the TMS heater 151 have passed. indicate.
  • the rotary switch 401 is switched in the order of the short-circuited state at the contact 431, the state at the temperature 80 degrees at the contact 432, the state at the temperature 150 degrees at the contact 433 and the open state at the contact 434. I will not pass.
  • the combination of the exhaust port temperature sensor 161 and the exhaust port heater 159 can be similarly inspected by the program of this self-diagnosis mode. In this case, since the operating temperature is different between the TMS temperature sensor 155 and the TMS heater 151, the resistance value of the fixed resistor R1 and the resistance value of the fixed resistor R2 are for inspection of the exhaust port temperature sensor 161 and the exhaust port heater 159. It has been changed to As to the combination of the exhaust port temperature sensor 161 and the exhaust port heater 159, the LED lamp 423 disposed on the front surface of the TMS control device 300 is turned on to indicate that the result is acceptable.
  • steps 5 to 14 in the self-diagnosis mode may be omitted as necessary.
  • the processing from step 9 to step 11 is simultaneously performed. It is possible to reduce the number of steps in the self-diagnosis mode.
  • parts such as the fixed resistance R2, the contact point 433 and the lamp 413 can be omitted, and the jig can be simplified.
  • the self-diagnosis function of checking only the input / output path portion is incorporated in the TMS control device 300 separately from the normal temperature control program.
  • the temperature control program and the self-diagnosis function may be incorporated together in the control device 200 that controls the motor 121 and the magnetic bearing.
  • the control device 200 and the inspection jig 400 can be made common regardless of the capacity of the turbo molecular pump. For this reason, the TMS controller 300 may be provided only when the capacity of the turbo molecular pump is large and the number of sensors for temperature control and the number of heaters and solenoid valves are large.
  • the TMS controller 300 having only the temperature control function can be added to the controller 200 used in the conventional model and expanded.
  • the inspection at this time can also be performed by a simple device only by connecting the inspection jig 400.
  • the self-diagnosis program for the inspection regarding the sensor and the heater and the input / output path part of the solenoid valve is also simple. As described above, whether or not the input / output path is normal can be easily determined by the simple jig and the detection circuit in the TMS controller 300.
  • the inspection jig 400 for inspecting the TMS control device 300 has a simple configuration, can be inexpensive, and a large-scale inspection tool such as a personal computer incorporating a dedicated program is unnecessary, so it is easy to each service point Can be introduced.
  • the channels 1 to 3 are connected to the temperature sensor and the heater or the solenoid valve, while the channel 4 is not connected.
  • the channels 1 to 3 are connected to the temperature sensor and the heater or the solenoid valve, while the channel 4 is not connected.
  • setting the unused channel 4 is disabled, there is a possibility that an abnormal signal is output to the outside if there is an abnormal input signal to the TMS control device 300 for some reason after the pump operation starts. is there.
  • FIG. 10 shows an image diagram of the relationship between the thermistor resistance and the measured voltage.
  • This measured voltage corresponds to the voltage between the terminal 303 and the terminal 305 shown in FIG.
  • the control setting of the channel is invalidated.
  • the setting of the disconnection determination region or the short circuit determination region be determined in consideration of the voltage drop or the margin of the circuit or the cable.
  • control setting of the channel When the control setting of the channel is invalidated, the abnormality of the temperature sensor is not detected after the start of the pump operation. Moreover, control of the output device to the heater with respect to the said temperature sensor or a solenoid valve is not performed. In addition, after it is determined that the channel is in the disconnection state or the short circuit state, an alarm can be output that the corresponding channel is invalidated in the disconnection state or the short circuit state to the outside as needed.
  • judgment and invalidation settings can be set for all channels. That is, channels that are not used can be automatically turned off.
  • the control setting of the outlet heater 159 in the TMS control device 300 is automatically performed. It becomes invalid and can prevent forgetting to change control settings.

Abstract

[Problem] To provide: a vacuum pump that is capable of self-diagnosing a temperature adjustment function by a simple device and carrying out generic inspection without needing a large inspection device; a temperature adjustment control device applied to the vacuum pump; an inspection tool; and a diagnosis method for a temperature adjustment function unit. [Solution] In step 5, an inspection program determines whether or not a simulated temperature is 80 degrees by detecting, by use of a voltage value acquired through voltage-conversion, a fixed resistance R1 corresponding to a TMS temperature sensor 155. Upon detection that the simulated temperature is 80 degrees, the process advances to step 6, and a simulated output corresponding to turning-ON of a TMS heater 151 between a terminal 311 and a terminal 309 of a TMS control device 300 is performed. In step 7, the inspection program determines whether or not the simulated temperature is 150 degrees by detecting, by use of a voltage value acquired through voltage-conversion, a fixed resistance R2 corresponding to the TMS temperature sensor 155. Upon detection that the simulated temperature is 150 degrees, the process advances to step 8, and the output current flowing between the terminal 311 and the terminal 309 of the TMS control device 300 is cut.

Description

真空ポンプ、該真空ポンプに適用される温度調節用制御装置、検査用治具、及び温度調節機能部の診断方法Vacuum pump, control device for temperature control applied to the vacuum pump, inspection jig, and diagnostic method for temperature control function unit
 本発明は真空ポンプ、該真空ポンプに適用される温度調節用制御装置、検査用治具、及び温度調節機能部の診断方法に係わり、特に大規模な検査装置が不要で、温度調節機能を簡単な装置で自己診断でき、汎用的に検査の行なえる真空ポンプ、該真空ポンプに適用される温度調節用制御装置、検査用治具、及び温度調節機能部の診断方法に関する。 The present invention relates to a vacuum pump, a control device for temperature control applied to the vacuum pump, a jig for inspection, and a diagnostic method of a temperature control function part, and in particular, a large scale inspection device is unnecessary and the temperature control function is simplified. The present invention relates to a vacuum pump that can perform self-diagnosis using various devices and can perform inspection generally, a control device for temperature control applied to the vacuum pump, a testing jig, and a diagnosis method of a temperature control function unit.
 近年のエレクトロニクスの発展に伴い、メモリや集積回路といった半導体の需要が急激に増大している。
 これらの半導体は、極めて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、エッチングにより半導体基板上に微細な回路を形成したりなどして製造される。
With the development of electronics in recent years, the demand for semiconductors such as memories and integrated circuits is rapidly increasing.
These semiconductors are manufactured by doping impurities into a semiconductor substrate with extremely high purity to give electrical properties, or forming a fine circuit on the semiconductor substrate by etching or the like.
 そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。 And these operations need to be performed in a high vacuum chamber to avoid the influence of dust and the like in the air. Generally, a vacuum pump is used to evacuate the chamber, but a turbo molecular pump, which is one of vacuum pumps, is widely used, particularly from the viewpoint of low residual gas and easy maintenance.
 また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。 Also, in the semiconductor manufacturing process, there are many processes in which various process gases are applied to the semiconductor substrate, and the turbo molecular pump not only evacuates the chamber but also exhausts the process gases from the chamber. Is also used.
ところで、プロセスガスは、反応性を高めるため高温の状態でチャンバに導入される場合がある。そして、これらのプロセスガスは、排気される際に冷却されてある温度になると固体となり排気系に生成物を析出する場合がある。そして、この種のプロセスガスがターボ分子ポンプ内で低温となって固体状となり、ターボ分子ポンプ内部に付着して堆積する場合がある。 By the way, the process gas may be introduced into the chamber at a high temperature to enhance the reactivity. Then, these process gases may become solid at a certain temperature which is cooled when being exhausted and may deposit a product in an exhaust system. Then, this type of process gas may become solid at low temperature in the turbo molecular pump and adhere to and deposit inside the turbo molecular pump.
ターボ分子ポンプ内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプの性能を低下させる原因となる。 When deposits of process gas are deposited inside the turbo molecular pump, the deposits narrow the pump flow path and cause the performance of the turbo molecular pump to be degraded.
この問題を解決するために、従来はターボ分子ポンプのベース部等の外周にヒータや環状の水冷管を巻着させ、かつ例えばベース部等に温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づきベース部の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている(特許文献1、特許文献2を参照)。 In order to solve this problem, conventionally, a heater or an annular water-cooled tube is wound around the outer periphery of a turbo molecular pump base or the like, and a temperature sensor (for example, a thermistor) is embedded in the base or the like. Control of heating by a heater or cooling by a water cooling pipe (hereinafter referred to as TMS (Temperature Management System)) is performed so as to maintain the temperature of the base part at a constant high temperature (preset temperature) based on a signal. , Patent Document 2).
TMSの設定温度は高い方が生成物が堆積し難いため、設定温度は可能な限り高くすることが望ましい。
 一方、このようにベース部を高温にした際には、ターボ分子ポンプの本体内に備えられた電子回路は、排気負荷の変動や周囲温度が高温に変化した場合等には限界温度を超え、半導体メモリによる記憶手段が破壊される恐れがある。この際には、半導体メモリが壊れてポンプ起動時間やエラー履歴等のメンテナンス情報データが消える。
It is desirable to make the set temperature as high as possible, as the set temperature of TMS is higher and the product is less likely to be deposited.
On the other hand, when the base portion is thus heated to a high temperature, the electronic circuit provided in the main body of the turbo molecular pump exceeds the limit temperature when the exhaust load changes or the ambient temperature changes to a high temperature, etc. There is a possibility that the storage means by the semiconductor memory may be destroyed. At this time, the semiconductor memory is broken and the maintenance information data such as the pump activation time and the error history disappears.
メンテナンス情報データが消えた場合には、保守点検の時期やターボ分子ポンプの交換時期等の判断もできなくなる。従って、ターボ分子ポンプの運用上に大きな支障が生ずる。このため、所定温度を超えた場合には水冷管による冷却が行なわれている。 When the maintenance information data disappears, it is impossible to determine the maintenance inspection time, the replacement time of the turbo molecular pump, and the like. As a result, the operation of the turbo molecular pump is seriously hampered. For this reason, when it exceeds predetermined temperature, cooling by a water cooling pipe is performed.
 TMS制御の一例を図11に示す。
この例では、温度センサ(後述するTMS温度センサに相当する)でベース部の温度を計測し、計測温度が予め設定したベース部の許容温度以下となるように、ヒータに対し加熱指令を送ったり、水冷管への水の流れを制御するために電磁弁を開閉したりする。例として、目標とする設定温度は、60度とする。
An example of TMS control is shown in FIG.
In this example, the temperature of the base portion is measured by a temperature sensor (corresponding to a TMS temperature sensor described later), and a heating command is sent to the heater such that the measured temperature is equal to or lower than the preset allowable temperature of the base portion. , Open and close the solenoid valve to control the flow of water to the water cooling pipe. As an example, the target set temperature is 60 degrees.
即ち、図11において、制御装置は運転開始の初期段階にヒータをONし加熱し続け、温度センサで計測した計測温度が60度を超えたときにヒータをOFFする。この間、電磁弁は閉まり続けているのでヒータによりベース部の温度は加熱される。 That is, in FIG. 11, the control device turns on the heater and continues heating at the initial stage of the operation start, and turns off the heater when the measured temperature measured by the temperature sensor exceeds 60 degrees. During this time, the temperature of the base portion is heated by the heater since the solenoid valve continues to close.
 60度でヒータをOFFした後も熱容量の関係から、ベース部の温度は急には下降せず、オーバーシュート曲線を描く。その後、計測温度が63度を超えたときに電磁弁を開いて水冷管より水を供給する。そして、ベース部の温度が60度以下まで下がったときには電磁弁を閉める。その後、ベース部の温度が58度以下になったときには再びヒータをONする。 From the relationship of heat capacity even after the heater is turned off at 60 degrees, the temperature of the base portion does not drop rapidly, and forms an overshoot curve. After that, when the measured temperature exceeds 63 degrees, the solenoid valve is opened to supply water from the water cooling pipe. When the temperature of the base portion falls to 60 degrees or less, the solenoid valve is closed. Thereafter, the heater is turned on again when the temperature of the base portion becomes 58 degrees or less.
 図11の制御例は温度センサが一本で一つのヒータと一つの電磁弁を制御しているが、ポンプの容量が大きくなればより多くの本数の温度センサやヒータ、電磁弁が配設される。ヒータをON、OFFさせる温度や電磁弁を開閉する温度も異なってくる。温度のしきい値の設定にヒステリシスが配慮されたりロジックも複雑化したりする。 In the control example of FIG. 11, one temperature sensor controls one heater and one solenoid valve, but as the pump capacity increases, more number of temperature sensors, heaters, and solenoid valves are disposed. Ru. The temperature for turning the heater on and off and the temperature for opening and closing the solenoid valve also differ. Hysteresis is taken into consideration in setting the temperature threshold and the logic is complicated.
国際公開番号2011-021428号公報International Publication No. 2011-021428 特開2003-278692号公報Japanese Patent Application Publication No. 2003-278692
 ところで、このように時系列にヒステリシスを配慮しつつ複雑な動作が行なわれるTMS制御が正常に行なわれるか否かを検査するために、従来は制御装置に対して専用の検査装置を接続して検査が行なわれていた。この検査装置には検査用の治具やI/O基板、パソコンも含まれるが、アプリケーションソフト等はパソコンで使用されるOSに合わせて構成されているため、OSがバージョンアップされたりする毎に検査用の治具や、I/O基板やアプリケーションソフトが使えなくなることがあった。 By the way, conventionally, a dedicated inspection device is connected to the control device in order to check whether TMS control in which complicated operations are performed while considering hysteresis in time series is normally performed. An inspection was being conducted. This inspection system includes inspection jigs, I / O boards, and personal computers, but since application software etc. is configured according to the OS used on personal computers, each time the OS is upgraded In some cases, jigs for inspection, I / O boards and application software can not be used.
 また、ポンプの容量が大きくなりセンサの本数や制御対象となるヒータ、電磁弁の数が増えた際には検査装置を改めて開発し用意しなければならない恐れがあった。
 更に、このように用意した検査装置はすべてのターボ分子ポンプに対し共通して適用がされる訳ではなく、高価な検査用設備の場合にはサービス拠点等に常備させるという点では難しい側面もあった。
In addition, when the capacity of the pump is increased and the number of sensors and the number of heaters and solenoid valves to be controlled are increased, there is a possibility that the inspection apparatus has to be newly developed and prepared.
Furthermore, the inspection apparatus prepared in this way is not necessarily applied to all turbo molecular pumps in common, and in the case of expensive inspection equipment, there is a difficult aspect in that it is always provided in a service base or the like. The
 更に、センサ、ヒータや電磁弁の数が対象とするポンプによって変わった場合であっても対応できるように検査装置だけではなく、TMSの温度を監視、制御する制御装置についても汎用的なものとして用意することが望ましい。
 しかしながら、この場合にはポンプの運転環境や処理能力如何によってはセンサ、ヒータや電磁弁とは接続されない端子(チャンネル)が出てくることが想定され、この端子を介して侵入した断線に伴うノイズやショートにより異常信号の検出や誤制御の原因となる恐れがある。
Furthermore, as a general-purpose control device that monitors and controls the temperature of TMS as well as the inspection device so that it can respond even when the number of sensors, heaters, and solenoid valves changes depending on the target pump It is desirable to prepare.
However, in this case, depending on the operating environment and processing capacity of the pump, it is assumed that a terminal (channel) not connected to the sensor, heater, or solenoid valve will come out, and the noise associated with the disconnection broken through this terminal A short circuit may cause abnormal signal detection or erroneous control.
 本発明はこのような従来の課題に鑑みてなされたもので、大規模な検査装置が不要で、温度調節機能を簡単な装置で自己診断でき、汎用的に検査の行なえる真空ポンプ、該真空ポンプに適用される温度調節用制御装置、検査用治具、及び温度調節機能部の診断方法を提供することを目的とする。 The present invention was made in view of such conventional problems, and does not require a large-scale inspection device, and can perform self-diagnosis with a simple device for temperature control function, and can perform inspection universally, the vacuum An object of the present invention is to provide a control device for temperature control applied to a pump, a jig for inspection, and a diagnostic method of a temperature control function part.
 このため本発明(請求項1)は真空ポンプの発明であって、ポンプ本体に内蔵されたモータや磁気軸受を監視制御する制御部と、前記ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部を有する真空ポンプにおいて、前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを有し、前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断できる自己診断部を有することを特徴とする。 Therefore, the present invention (claim 1) is an invention of a vacuum pump, comprising: a control unit for monitoring and controlling a motor and a magnetic bearing built in the pump main body; and at least one temperature sensor provided in the pump main body In a vacuum pump having a temperature control function unit that measures the temperature of the pump body and controls at least one heater or a solenoid valve based on the temperature, the temperature control function unit can connect or disconnect the temperature sensor. Whether the input signal to the first terminal is normally input, or the second terminal has one terminal and the second terminal capable of connecting or disconnecting the heater or the solenoid valve. It is characterized by having a self-diagnosis unit capable of self-diagnosis as to whether or not it is output normally from the terminal.
 温度調節機能部とは別に温度センサからの計測信号が正常に入力されたか否か、又は、前記ヒータ又は電磁弁への出力が正常に行なわれているか否かを自己診断できる自己診断部を備えた。温度調節機能部のソフトウェア部分については開発時に十分な検査は行なわれているので自己診断部の検査の対象とはしない。従って、自己診断部の検査では、温度センサによる入力経路とヒータや電磁弁の出力経路だけを検査する。検査のための診断プログラムは簡単である。このため安価に構成でき、専用のプログラムを組み込んだパソコン等の大掛かりな検査器具は不要であるため、各サービス拠点にも容易に導入ができる。
 また、自己診断部の検査にパソコンが不要なため、従来のようにOSがバージョンアップされたりする毎にアプリケーションソフトが使えなくなることはなくなる。
It has a self-diagnosis unit that can self-diagnose whether the measurement signal from the temperature sensor is normally input separately from the temperature control function unit or whether the output to the heater or the solenoid valve is normally performed. The The software part of the temperature control function part is not examined at the self-diagnosis part because it has been sufficiently examined at the time of development. Therefore, in the inspection of the self-diagnosis unit, only the input path by the temperature sensor and the output path of the heater and the solenoid valve are inspected. The diagnostic program for the examination is simple. For this reason, since it can be configured at low cost and a large-scale inspection tool such as a personal computer incorporating a dedicated program is unnecessary, it can be easily introduced to each service base.
Further, since a personal computer is not required for the examination of the self-diagnosis unit, the application software can not be used each time the version of the OS is upgraded as in the prior art.
 また、本発明(請求項2)は真空ポンプの発明であって、前記温度調節機能部は、前記第1の端子に前記温度センサに代えてダミー用の第1の負荷が接続され、前記第1の負荷にかかる電圧が予め設定した電圧値のとき前記温度センサが所定の温度値になったと擬似的に判定する温度判定手段と、前記第2の端子に前記ヒータ又は前記電磁弁に代えてダミー用の第2の負荷が接続され、前記温度判定手段の判定結果に基づき前記第2の負荷に対して所定の電流を流す、若しくは停止する出力手段とを有し、前記予め設定した電圧値が前記ヒータのONとOFF、又は前記電磁弁の開と閉に対応して用意され、前記出力手段は前記ヒータ又は前記電磁弁毎に独立して構成されたことを特徴とする。 The present invention (claim 2) is the invention of a vacuum pump, in which the temperature control function unit is connected to the first terminal by a first load for dummy instead of the temperature sensor, A temperature determination unit that determines in a pseudo manner that the temperature sensor has reached a predetermined temperature value when the voltage applied to the load 1 is a preset voltage value, and the second terminal is replaced with the heater or the solenoid valve And output means connected to the second load for dummy and supplying or stopping a predetermined current to the second load based on the determination result of the temperature determination means, wherein the voltage value set in advance is set. Are prepared corresponding to ON and OFF of the heater or opening and closing of the solenoid valve, and the output means is configured independently for each heater or the solenoid valve.
 擬似的に入力経路を判定でき、また、擬似的に出力経路も判定できるので検査の効率が良く簡単である。 Since the input path can be determined in a pseudo manner and the output path can also be determined in a pseudo manner, the inspection efficiency is high and simple.
 更に、本発明(請求項3)は真空ポンプの発明であって、前記ヒータのONとOFF、又は前記電磁弁の開と閉が時系列に判定されることで検査の合否が判断されることを特徴とする。 Furthermore, the present invention (claim 3) is an invention of a vacuum pump, wherein the success or failure of the inspection is judged by judging ON and OFF of the heater or opening and closing of the solenoid valve in time series. It is characterized by
 ヒータのONとOFF、又は電磁弁の開と閉が実際の温度調節機能部の運転の順番通りに時系列に判定されることで合否判定の精度が向上する。 The accuracy of the pass / fail judgment is improved by judging ON / OFF of the heater or opening / closing of the solenoid valve in chronological order according to the actual operation sequence of the temperature control function unit.
 更に、本発明(請求項4)は真空ポンプの発明であって、前記出力手段に前記所定の電流が流れたことで前記ヒータ又は前記電磁弁に対し所定の出力が行なわれたと擬似的に判定する出力判定手段を備えたことを特徴とする。 Furthermore, the present invention (claim 4) is an invention of a vacuum pump, and it is determined in a pseudo manner that a predetermined output is performed to the heater or the solenoid valve when the predetermined current flows to the output means. And an output determination unit configured to
 出力手段に所定の電流が流れたことを確認することで合否判定の精度が向上する。 The accuracy of the pass / fail judgment is improved by confirming that a predetermined current has flowed to the output means.
 更に、本発明(請求項5)は真空ポンプの発明であって、前記第1の負荷が前記ヒータのONとOFFにそれぞれ対応した抵抗値を有する抵抗であり、又は前記電磁弁の開と閉にそれぞれ対応した抵抗値を有する抵抗であり、それぞれの抵抗はスイッチで切替自在であることを特徴とする。 Further, the present invention (claim 5) is an invention of a vacuum pump, wherein the first load is a resistor having a resistance value corresponding to ON and OFF of the heater, or the opening and closing of the solenoid valve. , And the resistors are switchable by switches.
 このことにより、検査は安価かつ簡単に行なえる。 This makes inspection cheap and easy.
 更に、本発明(請求項6)は真空ポンプの発明であって、前記温度調節機能部は、前記第1の負荷が短絡状態であることを確認したとき検査モードに入ることを特徴とする。 Furthermore, the present invention (claim 6) is an invention of a vacuum pump, wherein the temperature control function unit enters an inspection mode when it is confirmed that the first load is in a short circuit state.
 意図的に短絡状態を作り出すことで確実に検査モードに入ることができる。 By intentionally creating a short circuit condition, it is possible to reliably enter the inspection mode.
 更に、本発明(請求項7)は真空ポンプの発明であって、前記温度調節機能部が前記制御部とはそれぞれ独立したユニットとして構成されたことを特徴とする。 Furthermore, the present invention (claim 7) is an invention of a vacuum pump, wherein the temperature control function unit is configured as a unit independent of the control unit.
 制御部と温度調節機能部とを分離したので、真空ポンプの容量が大きく、センサとヒータや電磁弁の個数が多く必要になった場合であっても制御装置側を大幅に拡張するための改造は必要なくコストを抑えることができる。 Since the control unit and the temperature control function unit are separated, the capacity of the vacuum pump is large, and even if the number of sensors, heaters, and solenoid valves is large, remodeling to greatly expand the control device side Can reduce costs without the need.
 更に、本発明(請求項8)は真空ポンプの発明であって、前記温度調節機能部の前記第1の端子と前記第2の端子に対するケーブルの断線若しくは短絡を判断する判断手段を備え、該判断手段で断線若しくは短絡と判断されたときには、前記第1の端子への入力信号を不感知とし、また、前記第2の端子から外部への制御は行われないことを特徴とする。 Furthermore, the present invention (claim 8) is an invention of a vacuum pump, comprising judgment means for judging disconnection or short circuit of a cable with respect to the first terminal and the second terminal of the temperature control function unit, It is characterized in that when the determination means determines that a disconnection or a short circuit occurs, the input signal to the first terminal is not sensed, and control from the second terminal to the outside is not performed.
 このことにより、温度調節機能部の端子毎の制御設定を自動で行え、設定ミスが防止できる。また、異常入力信号による、エラー出力や誤った制御をすることを防止できる。 As a result, control setting for each terminal of the temperature control function unit can be performed automatically, and setting errors can be prevented. In addition, it is possible to prevent error output and erroneous control due to the abnormal input signal.
 更に、本発明(請求項9)は真空ポンプの発明であって、前記判断手段は、前記温度調節機能部が立ち上がるとき、断線若しくは短絡の判断を実行することを特徴とする。 Further, the present invention (claim 9) is an invention of a vacuum pump, wherein the judging means carries out judgment of disconnection or short circuit when the temperature control function unit rises.
 更に、本発明(請求項10)は温度調節用制御装置の発明であって、ポンプ本体に内蔵されたモータや磁気軸受を監視制御する制御部と、前記ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部を備えた温度調節用制御装置であって、前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを有し、前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断できる自己診断部を有することを特徴とする。 Furthermore, the present invention (claim 10) is an invention of a control device for temperature adjustment, comprising: a control unit for monitoring and controlling a motor and a magnetic bearing incorporated in a pump body; and at least one of the control body disposed in the pump body. It is a control device for temperature control provided with a temperature control function part which measures a temperature of the pump body by a temperature sensor and controls at least one heater or a solenoid valve based on the temperature, wherein the temperature control function part It has a first terminal to which a temperature sensor can be connected or detached, and a second terminal to which the heater or the solenoid valve can be connected or detached, and an input signal to the first terminal is normally input It is characterized by having a self-diagnosis part which can carry out self-diagnosis whether it was properly output from the 2nd terminal or not.
 更に、本発明(請求項11)は温度調節機能部の検査用治具の発明であって、ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部の検査用治具であって、前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを有し、前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断できる自己診断部を有することを特徴とする。 Furthermore, the present invention (claim 11) is an invention of a jig for inspection of a temperature control function unit, wherein the temperature of the pump body is measured by at least one temperature sensor disposed in the pump body, and It is a jig for inspection of the temperature control function part which controls at least one heater or a solenoid valve based on the above, and the temperature control function part is the 1st terminal which can connect or can remove the temperature sensor, the heater or the It has a second terminal to which a solenoid valve can be connected or disconnected, and whether or not an input signal to the first terminal is normally input or is normally output from the second terminal And a self-diagnosis unit capable of self-diagnosis.
 更に、本発明(請求項12)は温度調節機能部の異常の有無を診断する方法の発明であって、ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部の温度判定と出力の異常の有無を診断する方法であって、前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを備え、前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断でき、前記第1の端子に前記温度センサに代えてダミー用の第1の負荷を接続し、前記第2の端子に前記ヒータ又は前記電磁弁に代えてダミー用の第2の負荷を接続し、前記第1の負荷にかかる電圧が予め設定した電圧値のとき前記温度センサが所定の温度値になったと擬似的に判定し、該擬似的に判定された結果に基づき前記第2の負荷に対して所定の電流を流す、若しくは停止を制御し、前記予め設定した電圧値を前記ヒータのONとOFF、又は前記電磁弁の開と閉に対応して用意し、前記第2の負荷に対する電流の制御は前記ヒータ又は前記電磁弁毎に独立して構成したことを特徴とする。 Furthermore, the present invention (claim 12) is an invention of a method for diagnosing the presence or absence of an abnormality in the temperature control function unit, wherein the temperature of the pump body is measured by at least one temperature sensor disposed in the pump body; It is a method of diagnosing temperature existence of a temperature control function part which controls at least one heater or a solenoid valve based on the temperature and existence of an output, wherein the temperature control function part can connect or remove the temperature sensor. A first terminal, and a second terminal capable of connecting or disconnecting the heater or the solenoid valve, and whether or not the input signal to the first terminal is normally input, or the second It is possible to self-diagnose whether or not the output is normal from the terminal of the terminal, and instead of the temperature sensor, a first load for dummy is connected to the first terminal, and the heater or the solenoid valve is connected to the second terminal. Instead of When the voltage applied to the first load is a preset voltage value, it is determined that the temperature sensor has reached a predetermined temperature value in a pseudo manner, and the pseudo load is determined. Supply a predetermined current to the second load or control the stop based on the result, and the preset voltage value corresponds to ON / OFF of the heater or opening / closing of the solenoid valve It is characterized in that the control of the current to the second load is prepared independently for each of the heater or the solenoid valve.
 以上説明したように本発明(請求項1)によれば、温度センサからの計測信号が正常に入力されたか否か、又は、前記ヒータ又は電磁弁へ正常に出力されたか否かを自己診断できる自己診断部を備えて構成したので、温度センサによる入力経路とヒータや電磁弁の出力経路だけが検査される。よって、検査のための診断プログラムは簡単である。このため安価に構成でき、専用のプログラムを組み込んだパソコン等の大掛かりな検査器具は不要である。 As described above, according to the present invention (claim 1), it is possible to self-diagnose whether the measurement signal from the temperature sensor is normally input or whether the signal is normally output to the heater or the solenoid valve. Since the self-diagnosis unit is provided, only the input path by the temperature sensor and the output path of the heater and the solenoid valve are inspected. Thus, the diagnostic program for the examination is simple. For this reason, it can be configured at low cost, and a large-scale inspection tool such as a personal computer incorporating a dedicated program is unnecessary.
本発明の実施形態の全体システム構成図Overall system configuration diagram of the embodiment of the present invention ターボ分子ポンプの構成図Configuration diagram of turbo molecular pump TMS制御装置の筐体のフロント面とリア面の様子を示す図Diagram showing the front and rear faces of the TMS controller housing ロータリースイッチの概念図Conceptual diagram of rotary switch サーミスタのダミーに抵抗を利用した入力判定方法を説明する図Diagram explaining an input judgment method using a resistor for the thermistor dummy ダミー抵抗に生じた電圧を元に温度を検出する方法(その1)Method of detecting temperature based on voltage generated in dummy resistor (Part 1) ダミー抵抗に生じた電圧を元に温度を検出する方法(その2)Method of detecting temperature based on voltage generated in dummy resistor (Part 2) 本発明の実施形態の動作を説明するフローチャートFlow chart describing the operation of an embodiment of the present invention ヒータや電磁弁に対する模擬的な出力判定方法を説明する図Diagram explaining how to determine simulated output for heater and solenoid valve サーミスタ抵抗と計測電圧の関係のイメージ図Image of the relationship between thermistor resistance and measured voltage 従来のTMS制御の一例An example of conventional TMS control
 以下、本発明の実施形態について説明する。本発明の実施形態の全体システム構成図を図1に、また、図2に、ターボ分子ポンプの構成図を示す。
 図1において、制御装置200はポンプ本体100と別体で記載されているが、ターボ分子ポンプは、ポンプ本体100と制御装置200とが一体化されていても本実施形態の適用は可能である。
Hereinafter, embodiments of the present invention will be described. FIG. 1 shows an overall system configuration of an embodiment of the present invention, and FIG. 2 shows a configuration of a turbo molecular pump.
Although the control device 200 is described separately from the pump main body 100 in FIG. 1, the turbo molecular pump can be applied to this embodiment even if the pump main body 100 and the control device 200 are integrated. .
 制御装置200には200ボルトの交流電源が供給されている。この制御装置200はポンプ本体100に内蔵された後述するモータ121や磁気軸受104、105、106の状態の監視や制御を行なっている。そして、ポート201にはこの制御装置200に専用の検査用の治具やI/O基板、パソコン等が接続自在である。 The control device 200 is supplied with 200 volts AC power. The control device 200 monitors and controls the state of a motor 121 and magnetic bearings 104, 105, 106, which will be described later, which are built in the pump main body 100. A dedicated inspection jig, an I / O board, a personal computer or the like can be connected to the port 201 at the control device 200.
 この制御装置200には端子203が配設され、この端子203には延長ケーブル211の一端が接続されている。一方、延長ケーブル211の他端はポンプ本体100への温度調節のためのTMS制御を行なうTMS制御装置300の端子301に接続されている。TMS制御装置300にも200ボルトの交流電源が供給されている。なお、延長ケーブル211は、制御装置200とTMS制御装置300が配設された際の取合いによっては省略可能である。
 TMS制御装置300には4つのチャンネルが用意され、それぞれ入力信号の入力と出力信号の出力がされる。チャンネル1では、TMSヒータ151により加熱された周囲の温度を計測するため、TMSヒータ151の配設付近に備えられたTMS温度センサ155からの信号が入力されるようになっている。そして、ポンプ本体100に配設されたTMSヒータ151に対し200ボルトの交流電源がON若しくはOFFされるようになっている。
A terminal 203 is disposed in the control device 200, and one end of an extension cable 211 is connected to the terminal 203. On the other hand, the other end of the extension cable 211 is connected to a terminal 301 of a TMS control device 300 which performs TMS control for temperature adjustment to the pump body 100. The TMS controller 300 is also supplied with 200 volt AC power. The extension cable 211 can be omitted depending on the connection when the control device 200 and the TMS control device 300 are provided.
The TMS controller 300 is provided with four channels, each of which receives an input signal and an output signal. In the channel 1, in order to measure the ambient temperature heated by the TMS heater 151, a signal from the TMS temperature sensor 155 provided near the disposition of the TMS heater 151 is input. Then, an AC power supply of 200 volts is turned on or off with respect to the TMS heater 151 disposed in the pump body 100.
 また、このチャンネル2では、電磁弁153が開閉されたことにより冷却された温度を計測するための後述する水冷管152の配設付近に備えられた水冷温度センサ157からの信号が入力されるようになっている。そして、ポンプ本体100に配設された水冷用の電磁弁153に対し24ボルトの直流電源がON若しくはOFFされるようになっている。 Further, in this channel 2, a signal from a water cooling temperature sensor 157 provided in the vicinity of the arrangement of a water cooling pipe 152 described later for measuring a temperature cooled by opening and closing the solenoid valve 153 is inputted. It has become. Then, a 24 volt DC power supply is turned on or off with respect to a water cooling solenoid valve 153 disposed in the pump body 100.
 チャンネル3では、排気口ヒータ159の配設付近に備えられた排気口温度センサ161からの信号が入力されるようになっている。そして、ポンプ本体100の側部に配設された排気口ヒータ159に対し200ボルトの交流電源がON若しくはOFFされるようになっている。 In the channel 3, a signal from an exhaust port temperature sensor 161 provided near the disposition of the exhaust port heater 159 is input. An AC power supply of 200 volts is turned on or off with respect to the exhaust port heater 159 disposed on the side of the pump body 100.
 このようにTMS制御装置300は制御装置200とは独立して1つの電磁弁と2つのヒータと3つの温度センサを制御するように構成されている。チャンネル4については、追加の温度制御のための予備として設けられている。
 チャンネル数に関しては、4つとして説明したが、これに限定されることはなく、必要とする温度制御の数に合わせ、適宜設定することが望ましい。また、制御する電磁弁やヒータの数は、上記個数に限定されず、チャンネル内の設定を変更することで、各チャンネルにおいて、どちらを制御するか切替えることができる。
 また、このTMS制御装置300の温度制御機能は制御装置200に一体化されてもよい。
 次に、ポンプ本体100について説明する。
Thus, the TMS controller 300 is configured to control one solenoid valve, two heaters, and three temperature sensors independently of the controller 200. Channel 4 is provided as a reserve for additional temperature control.
Although the number of channels has been described as four, it is not limited to this, and it is desirable to appropriately set according to the number of temperature control required. Further, the number of solenoid valves and heaters to be controlled is not limited to the above number, and it is possible to switch which of the channels is controlled by changing the setting in the channel.
Also, the temperature control function of the TMS control device 300 may be integrated into the control device 200.
Next, the pump body 100 will be described.
 図2において、ポンプ本体100の円筒状の外筒127の上端には吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードによる複数の回転翼102a、102b、102c・・・を周部に放射状かつ多段に形成した回転体103を備える。 In FIG. 2, an intake port 101 is formed at the upper end of the cylindrical outer cylinder 127 of the pump body 100. Inside the outer cylinder 127, there is provided a rotary body 103 in which a plurality of rotary blades 102a, 102b, 102c.
 この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。 A rotor shaft 113 is attached to the center of the rotating body 103, and the rotor shaft 113 is float-supported and position-controlled in the air by, for example, a so-called 5-axis control magnetic bearing.
 上側径方向電磁石104は、4個の電磁石が、ロータ軸113の径方向の座標軸であって互いに直交するX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接かつ対応されて4個の電磁石からなる上側径方向センサ107が備えられている。この上側径方向センサ107はロータ軸113の径方向変位を検出し、制御装置200に送るように構成されている。 In the upper radial electromagnet 104, four electromagnets are arranged in pairs in the X-axis and the Y-axis which are coordinate axes in the radial direction of the rotor shaft 113 and are orthogonal to each other. An upper radial sensor 107 consisting of four electromagnets is provided in proximity to and corresponding to the upper radial electromagnet 104. The upper radial sensor 107 detects the radial displacement of the rotor shaft 113 and sends it to the control device 200.
 制御装置200においては、上側径方向センサ107が検出した変位信号に基づき、PID調節機能を有する補償回路を介して上側径方向電磁石104の励磁を制御し、ロータ軸113の上側の径方向位置を調整する。 In the control device 200, based on the displacement signal detected by the upper radial direction sensor 107, the excitation of the upper radial electromagnet 104 is controlled via a compensation circuit having a PID adjustment function, and the radial position of the upper side of the rotor shaft 113 is determined. adjust.
 ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。 The rotor shaft 113 is formed of a high magnetic permeability material (iron or the like) and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is independently performed in the X-axis direction and the Y-axis direction.
 また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。 Also, the lower radial electromagnet 105 and the lower radial sensor 108 are disposed in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is the upper radial position. It is adjusted in the same way.
 更に、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向変位信号が制御装置200に送られるように構成されている。 Further, the axial electromagnets 106A and 106B are disposed above and below the disk-shaped metal disk 111 provided at the lower part of the rotor shaft 113. The metal disk 111 is made of a high magnetic permeability material such as iron. An axial sensor 109 is provided to detect an axial displacement of the rotor shaft 113, and the axial displacement signal is sent to the control device 200.
 そして、軸方向電磁石106A、106Bは、この軸方向変位信号に基づき制御装置200のPID調節機能を有する補償回路を介して励磁制御されるようになっている。軸方向電磁石106Aと軸方向電磁石106Bは、磁力により金属ディスク111をそれぞれ上方と下方とに吸引する。 The axial electromagnets 106A and 106B are controlled to be excited based on the axial displacement signal via a compensation circuit having a PID adjustment function of the control device 200. The axial electromagnet 106A and the axial electromagnet 106B attract the metal disk 111 upward and downward, respectively, by the magnetic force.
 このように、制御装置200は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。 Thus, the control device 200 appropriately adjusts the magnetic force exerted by the axial electromagnets 106A and 106B on the metal disk 111, magnetically floats the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in a noncontact manner. ing.
 モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置200によって制御されている。 The motor 121 has a plurality of magnetic poles circumferentially arranged to surround the rotor shaft 113. Each magnetic pole is controlled by the control device 200 so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting on the rotor shaft 113.
 回転翼102a、102b、102c・・・とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c・・・が配設されている。回転翼102a、102b、102c・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。 A plurality of fixed wings 123a, 123b, 123c,... Are disposed with a slight air gap from the rotary wings 102a, 102b, 102c,. The rotary wings 102a, 102b, 102c,... Are inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision.
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。
 そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c・・・の間に嵌挿された状態で支持されている。
Further, the fixed wing 123 is similarly formed inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and is disposed alternately with the step of the rotary wing 102 toward the inside of the outer cylinder 127. ing.
Further, one end of the fixed wing 123 is supported in a state of being fitted between the plurality of stacked fixed wing spacers 125a, 125b, 125c.
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。 The fixed wing spacer 125 is a ring-shaped member, and is made of, for example, a metal such as aluminum, iron, stainless steel, copper or a metal such as an alloy containing such a metal as a component.
 固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。そして、ベース部129中のネジ付きスペーサ131の下部には排気口133が形成され、外部に連通されている。排気口133の周囲には排気口ヒータ159が配設されている。そして、この排気口ヒータ159の近くに排気口温度センサ161が配設されている。 An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer 125 with a slight air gap. A base portion 129 is disposed at the bottom of the outer cylinder 127, and a threaded spacer 131 is disposed between the lower portion of the fixed wing spacer 125 and the base portion 129. An exhaust port 133 is formed in the lower portion of the threaded spacer 131 in the base portion 129 and is communicated with the outside. An exhaust port heater 159 is disposed around the exhaust port 133. An exhaust port temperature sensor 161 is disposed near the exhaust port heater 159.
 ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。
 ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
The threaded spacer 131 is a cylindrical member made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and a plurality of helical screw grooves 131 a are formed on the inner peripheral surface thereof. It is paved.
The direction of the spiral of the thread groove 131 a is a direction in which the molecules of the exhaust gas are transferred toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
 回転体103の回転翼102a、102b、102c・・・に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、円筒状で、かつネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。ネジ付きスペーサ131にはTMSヒータ151が配設されている。また、このネジ付きスペーサ131にはTMS温度センサ155が埋設されている。本実施形態ではネジ付きスペーサ131を直接加熱しているが、ベース129を加熱することにより、間接的に加熱してもよい。 At the lowermost portion following the rotary wings 102a, 102b, 102c, ... of the rotary body 103, a cylindrical portion 102d is suspended. The outer peripheral surface of the cylindrical portion 102d is cylindrical and protrudes toward the inner peripheral surface of the threaded spacer 131, and is adjacent to the inner peripheral surface of the threaded spacer 131 with a predetermined gap therebetween. There is. A TMS heater 151 is disposed on the threaded spacer 131. The TMS temperature sensor 155 is embedded in the threaded spacer 131. Although the threaded spacer 131 is directly heated in the present embodiment, it may be indirectly heated by heating the base 129.
 ベース部129は、ターボ分子ポンプ10の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。また、このベース部129には水冷管152が環状に埋設されている。そして、水冷管152の側部には水冷温度センサ157が配設されている。 The base part 129 is a disk-like member which comprises the base part of the turbo-molecular pump 10, and is generally comprised with metals, such as iron, aluminum, stainless steel. Further, a water cooling pipe 152 is embedded in an annular shape in the base portion 129. A water cooling temperature sensor 157 is disposed on the side of the water cooling pipe 152.
 ベース部129はターボ分子ポンプ10を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。 The base portion 129 physically holds the turbo molecular pump 10 and also functions as a heat conduction path, so metals such as iron, aluminum, copper, etc. having rigidity and high thermal conductivity are used. Is desirable.
 かかる構成において、回転翼102がモータ121により駆動されてロータ軸113と共に回転すると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバからの排気ガスが吸気される。 In such a configuration, when the rotary vane 102 is driven by the motor 121 and rotates with the rotor shaft 113, the exhaust gas from the chamber is sucked through the inlet 101 by the action of the rotary vane 102 and the fixed wing 123.
 吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触又は衝突する際に生ずる摩擦熱や、モータ121で発生した熱の伝導や輻射などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子等による伝導により固定翼123側に伝達される。 The exhaust gas taken in from the intake port 101 passes between the rotary blade 102 and the fixed wing 123 and is transferred to the base portion 129. At this time, the temperature of the rotary blade 102 rises due to the frictional heat generated when the exhaust gas contacts or collides with the rotary blade 102, the conduction or radiation of the heat generated by the motor 121, etc. The conduction of the exhaust gas by gas molecules and the like is transmitted to the fixed blade 123 side.
 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触又は衝突する際に生ずる摩擦熱などを外筒127やネジ付きスペーサ131へと伝達する。
 ネジ付きスペーサ131に移送されてきた排気ガスは、ネジ溝131aに案内されつつ排気口133へと送られる。
The fixed wing spacer 125 is joined to each other at the outer peripheral portion, and the heat received by the fixed wing 123 from the rotary wing 102 or the frictional heat generated when the exhaust gas comes into contact with or collides with the fixed wing 123 It is transmitted to the attached spacer 131.
The exhaust gas transferred to the threaded spacer 131 is sent to the exhaust port 133 while being guided by the threaded groove 131a.
 次に、TMS制御装置300について説明する。
 TMS制御装置300はポンプ本体100の温度調整機能を有する装置であり、その機能の説明として、筐体のフロント面とリア面の様子を図3に示す。このTMS制御装置300のリア面には通常の運転時はTMSヒータ151、排気口ヒータ159や電磁弁153の他、TMS温度センサ155、水冷温度センサ157、排気口温度センサ161用の各端子が接続されている。一方、温度調整機能の検査の際にはこれらのヒータや電磁弁、センサ用の各端子はリア面から外される。そして、代わりにこれらのヒータや電磁弁、センサに対応した検査用のダミー回路に続く端子が接続されるようになっている。ダミー回路はすべて検査用治具400に内蔵されている。
Next, the TMS control device 300 will be described.
The TMS control device 300 is a device having a temperature adjustment function of the pump main body 100, and the appearance of the front surface and the rear surface of the housing is shown in FIG. 3 as an explanation of the function. On the rear surface of this TMS control unit 300, in the normal operation, in addition to the TMS heater 151, the exhaust port heater 159 and the solenoid valve 153, there are terminals for the TMS temperature sensor 155, the water cooling temperature sensor 157 and the exhaust port temperature sensor 161. It is connected. On the other hand, at the time of the inspection of the temperature control function, the terminals for the heater, the solenoid valve and the sensor are removed from the rear surface. And instead, the terminal following the dummy circuit for a test | inspection corresponding to these heaters, a solenoid valve, and a sensor is connected. All dummy circuits are built in the inspection jig 400.
 この検査用治具400は、外部検査装置を必要とせず、温度調整機能における入出力経路に異常がないかの診断を可能にするものである。
 この検査用治具400には図4に示すロータリースイッチ401が配設されている。ロータリースイッチ401は、共通端子403を中心に操作軸405が回転することで接点431から接点434に接続が切り替えられるようになっている。
 操作軸405が接点431に接触したとき共通端子403と端子407間は短絡状態となる。操作軸405が接点432に接触したとき共通端子403と端子407間には固定抵抗R1が接続された状態となる。操作軸405が接点433に接触したとき共通端子403と端子407間には固定抵抗R2が接続された状態となる。操作軸405が接点434に接触したとき共通端子403と端子407間は開放状態となる。
This inspection jig 400 does not require an external inspection device, and enables diagnosis of whether there is an abnormality in the input / output path in the temperature adjustment function.
The rotary switch 401 shown in FIG. 4 is disposed on the inspection jig 400. The rotary switch 401 is configured such that connection is switched from the contact 431 to the contact 434 by rotation of the operation shaft 405 around the common terminal 403.
When the operation shaft 405 contacts the contact point 431, the common terminal 403 and the terminal 407 are shorted. When the operation shaft 405 contacts the contact point 432, the fixed resistor R1 is connected between the common terminal 403 and the terminal 407. When the operation shaft 405 contacts the contact point 433, the fixed resistor R 2 is connected between the common terminal 403 and the terminal 407. When the operation shaft 405 contacts the contact point 434, the common terminal 403 and the terminal 407 are in an open state.
 検査用治具400は検査の際に、図5に示すように検査用治具400側の共通端子403と端子407がそれぞれTMS制御装置300側の端子303と端子305に対し接続できるようになっている。端子305は接地され、端子303は抵抗R0を介して3.3ボルトの直流電源に接続されている。また、端子303の電圧はA/D変換された後CPU307に入力されている。図5において、抵抗RTは固定抵抗R1や固定抵抗R2等を簡略的にまとめて記載したものであり、サーミスタのダミー抵抗に相当する。即ち、抵抗RTはポンプ本体100の内部に装着されたサーミスタのある温度を模擬的に抵抗で実現したものである。 In inspection jig 400, common terminals 403 and terminals 407 on inspection jig 400 can be connected to terminals 303 and 305 on TMS controller 300, respectively, as shown in FIG. ing. Terminal 305 is grounded and terminal 303 is connected to a 3.3 volt DC power supply via resistor R0 . The voltage of the terminal 303 is A / D converted and then input to the CPU 307. In FIG. 5, a resistor RT is a simplified summary of the fixed resistor R1, the fixed resistor R2, and the like, and corresponds to a dummy resistor of a thermistor. That is, the resistance RT is a resistance realized by simulating a certain temperature of a thermistor mounted inside the pump body 100.
 サーミスタは一般的に温度に応じて抵抗値が変化するので、抵抗値が分かれば温度が決まる。このため、図6の等価回路に示すように抵抗RTの両端の電圧を計測し、図7のようにこの電圧値をディジタル変換したコードを読むことで温度値を読み取ることができる。抵抗R0や3.3ボルトの電源は運転中のときと変わっていないので、サーミスタで計測されたときのある温度を模擬的にこのときのサーミスタの抵抗値で置き換えてあげればサーミスタでその温度を計測したときと同じ状況を試験的に実現することができる。 Since the resistance value of the thermistor generally changes in accordance with the temperature, the temperature is determined if the resistance value is known. For this reason, as shown in the equivalent circuit of FIG. 6, it is possible to read the temperature value by measuring the voltage across the resistor RT and reading the code obtained by converting the voltage value into a digital as shown in FIG. The resistance R 0 or 3.3 V power supply does not change from that during operation, so if the temperature measured by the thermistor is simulated and replaced with the resistance value of the thermistor at this time, that temperature The same situation as when measuring
 例えば、図4の固定抵抗R1は、TMS制御の下限温度を80度にした場合にTMSヒータ151をONさせる温度80度に相当し、固定抵抗R2は、TMS制御の上限温度を150度にした場合にTMSヒータ151をOFFさせる温度150度に相当するように設定する。また、短絡状態は図示しないサーミスタの温度特性上の温度400度に相当し、開放状態は温度-60度に相当するものとする。診断でのダミー抵抗による想定温度は、上記温度に限定されず、TMSヒータ及び電磁弁を駆動させる設定温度に合わせて設定することが望ましい。 For example, the fixed resistance R1 in FIG. 4 corresponds to a temperature 80 degrees at which the TMS heater 151 is turned on when the lower limit temperature for TMS control is 80 degrees, and the fixed resistance R2 sets the upper limit temperature for TMS control 150 degrees In this case, the temperature corresponding to 150 degrees at which the TMS heater 151 is turned off is set. The short circuit condition corresponds to a temperature of 400 degrees on the temperature characteristic of a thermistor (not shown), and the open condition corresponds to a temperature of -60 degrees. The assumed temperature by the dummy resistance in the diagnosis is not limited to the above temperature, and is preferably set in accordance with the set temperature for driving the TMS heater and the solenoid valve.
 次に、本発明の実施形態の動作について説明する。
 図8は本発明の実施形態の動作を説明するフローチャートである。
 まず、ステップ1(図中S1と示す。以下同様)では、TMS制御装置300の電源スイッチがONされる。ステップ2で測定が開始され、ステップ3では、図5に示す端子303と端子305間が短絡か否か判断される。検査用治具400がTMS制御装置300に接続されており、かつ、ロータリースイッチ401において操作軸405が接点431に接触している場合以外の場合には、ステップ4でTMS制御装置300内に内蔵されたソフトウェアにより通常のTMS温度制御が行なわれるモードに進む。即ち、検査用治具400がTMS制御装置300に接続されていない場合にはステップ4でソフトウェアにより通常のTMS温度制御が行なわれるモードに進む。
Next, the operation of the embodiment of the present invention will be described.
FIG. 8 is a flow chart for explaining the operation of the embodiment of the present invention.
First, in step 1 (shown as S1 in the figure, and so forth), the power switch of the TMS control device 300 is turned on. In step 2, measurement is started, and in step 3, it is determined whether or not the terminals 303 and 305 shown in FIG. 5 are short circuited. Except when the inspection jig 400 is connected to the TMS control device 300 and the operation shaft 405 is in contact with the contact 431 in the rotary switch 401, it is incorporated in the TMS control device 300 in step 4. Proceed to a mode in which normal TMS temperature control is performed by the executed software. That is, when the inspection jig 400 is not connected to the TMS control device 300, the process proceeds to a mode in which normal TMS temperature control is performed by software in step 4.
 一方、操作軸405が接点431に接触しており端子303と端子305間が短絡の場合にはステップ5以降の自己診断モードに移り、通常の温度制御プログラムとは独立した検査用プログラムが走る。この検査用プログラムもTMS制御装置300内に内蔵されている。このとき、検査中であることを示すために、例えば図3に示すTMS制御装置300のフロント面に配設されたパワー用LED421を点滅させる。検査中の間、検査用プログラムは端子303と端子305間の電圧を監視し続けている。 On the other hand, when the operation shaft 405 is in contact with the contact point 431 and the terminal 303 and the terminal 305 are short-circuited, the process shifts to the self-diagnosis mode after step 5 and a test program independent of the normal temperature control program runs. The inspection program is also incorporated in the TMS controller 300. At this time, the power LED 421 provided on the front surface of the TMS control device 300 shown in FIG. During the test, the test program continues to monitor the voltage between terminal 303 and terminal 305.
 次に検査用治具400のロータリースイッチ401を接点432に切り替える。ステップ6では測定が行なわれ、検査用プログラムが例えばTMS温度センサ155に相当する固定抵抗R1を電圧変換された電圧値で検出する。ステップ7では、この電圧値に基づき擬似温度が80度か否かを判断する。そして、擬似温度が80度であることを検出すると次のステップ8に進み図9に示すTMS制御装置300の端子309と端子311間にTMSヒータ151をONさせることに相当する模擬的な出力を行なう。 Next, the rotary switch 401 of the inspection jig 400 is switched to the contact point 432. In step 6, measurement is performed, and the inspection program detects, for example, the fixed resistance R1 corresponding to the TMS temperature sensor 155 from the voltage value converted. In step 7, it is determined whether the pseudo temperature is 80 degrees based on this voltage value. Then, if it is detected that the pseudo temperature is 80 degrees, the process proceeds to the next step 8, and a simulated output equivalent to turning on the TMS heater 151 between the terminal 309 and the terminal 311 of the TMS control device 300 shown in FIG. Do.
 図9において、検査用治具400の端子409と端子411間にはランプ413と固定抵抗415とが直列に接続されている。本構造により、ランプ413は所定電流値以上の電流が流されたときにのみ点灯するようになっている。端子411と接続されたTMS制御装置300側の端子311は接地されている。端子409とTMS制御装置300側の端子309とは接続されており、ステップ8ではこの端子309よりTMSヒータ151をONさせるのに必要なだけの電流を流す。このことにより検査用治具400に配設されたランプ413が点灯するので、TMSヒータ151が擬似的にONしたと判定できる。なお、ここではランプ413を配設するとして説明したが、電流メーター等が配設されてもよい。 In FIG. 9, a lamp 413 and a fixed resistor 415 are connected in series between the terminal 409 and the terminal 411 of the inspection jig 400. According to this structure, the lamp 413 is turned on only when a current equal to or greater than a predetermined current value flows. The terminal 311 on the TMS control device 300 side connected to the terminal 411 is grounded. The terminal 409 and the terminal 309 on the side of the TMS control device 300 are connected, and in step 8 a current sufficient for turning on the TMS heater 151 is supplied from the terminal 309. As a result, the lamp 413 disposed in the inspection jig 400 is turned on, so it can be determined that the TMS heater 151 has been turned on in a pseudo manner. In addition, although it demonstrated as arrange | positioning the lamp | ramp 413 here, an electric current meter etc. may be arrange | positioned.
 次に、検査用治具400のロータリースイッチ401を接点433に切り替える。ステップ9では測定が行なわれ、検査用プログラムがTMS温度センサ155に相当する固定抵抗R2を電圧変換された電圧値で検出する。ステップ10では、この電圧値に基づき擬似温度が150度か否かを判断する。そして、擬似温度が150度であることを検出すると次のステップ11に進みTMS制御装置300の端子309と端子311間に流れていた出力電流を切断する。このときランプ413は消灯するので、TMSヒータ151が擬似的にOFFしたと判定できる。 Next, the rotary switch 401 of the inspection jig 400 is switched to the contact point 433. In step 9, measurement is performed, and the test program detects the fixed resistance R2 corresponding to the TMS temperature sensor 155 from the voltage value converted. In step 10, it is determined whether the pseudo temperature is 150 degrees based on the voltage value. Then, when it is detected that the pseudo temperature is 150 degrees, the process proceeds to the next step 11, and the output current flowing between the terminal 309 and the terminal 311 of the TMS control device 300 is disconnected. At this time, since the lamp 413 is turned off, it can be determined that the TMS heater 151 has been turned off in a pseudo manner.
 続いてステップ12の測定により、ステップ13でロータリースイッチ401を接点434に切り替えることで開放状態を検出したらステップ14で一連の検査は合格と判定される。ステップ14では、図3に示すTMS制御装置300のフロント面に配設されたLEDランプ422を点灯させて、TMS温度センサ155とTMSヒータ151に関する一連の入力検査と出力検査が合格であることを表示する。 Subsequently, when the open state is detected by switching the rotary switch 401 to the contact point 434 in step 13 by the measurement in step 12, the series of inspections are determined to be pass in step 14. In step 14, the LED lamp 422 disposed on the front surface of the TMS controller 300 shown in FIG. 3 is turned on to confirm that the series of input inspection and output inspection for the TMS temperature sensor 155 and the TMS heater 151 have passed. indicate.
 即ち、ロータリースイッチ401が接点431における短絡状態、接点432における温度80度の状態、接点433における温度150度の状態、接点434における開放状態の順番で切り替えられ、この順番で正常と確認がされないと合格にはならない。
 同様に、排気口温度センサ161と排気口ヒータ159の組み合わせについてもこの自己診断モードのプログラムで同様に検査ができる。この場合には、TMS温度センサ155とTMSヒータ151の場合とは動作温度が違うので、固定抵抗R1の抵抗値と固定抵抗R2の抵抗値は排気口温度センサ161と排気口ヒータ159の検査用のものに変えられている。排気口温度センサ161と排気口ヒータ159の組み合わせについては、TMS制御装置300のフロント面に配設されたLEDランプ423を点灯させて合格である
ことを表示する。
That is, the rotary switch 401 is switched in the order of the short-circuited state at the contact 431, the state at the temperature 80 degrees at the contact 432, the state at the temperature 150 degrees at the contact 433 and the open state at the contact 434. I will not pass.
Similarly, the combination of the exhaust port temperature sensor 161 and the exhaust port heater 159 can be similarly inspected by the program of this self-diagnosis mode. In this case, since the operating temperature is different between the TMS temperature sensor 155 and the TMS heater 151, the resistance value of the fixed resistor R1 and the resistance value of the fixed resistor R2 are for inspection of the exhaust port temperature sensor 161 and the exhaust port heater 159. It has been changed to As to the combination of the exhaust port temperature sensor 161 and the exhaust port heater 159, the LED lamp 423 disposed on the front surface of the TMS control device 300 is turned on to indicate that the result is acceptable.
 また、水冷温度センサ157と電磁弁153の組み合わせについても同様である。固定抵抗R1の抵抗値と固定抵抗R2の抵抗値を水冷温度センサ157と電磁弁153の検査用のものに変えるだけで済む。この場合には、TMS制御装置300のフロント面に配設されたLEDランプ424を点灯させて合格であることを表示する。このようにセンサとヒータや電磁弁の出力とは1対1対応で、かつ、それぞれの組み合わせは独立しているので自己診断モードのプログラムは独立して何通りでも対応できる。
 自己診断モードの終了の際にはTMS制御装置300の電源を切る。
 なお、自己診断モードのステップ5からステップ14の処理については、必要に応じ省略することも可能である。
 例えば、ステップ5の自己診断モードに入るために接点431に切り替えた際、疑似温度が400度であると判断して、OFF出力も同時に行うようにすると、ステップ9からステップ11の処理も同時に行うことが可能となり、自己診断モードのステップを少なくできる。また、検査用治具400に関しては、固定抵抗R2や接点433及びランプ413等の部品が省略でき、より簡易化した治具とすることが可能となる。
The same applies to the combination of the water cooling temperature sensor 157 and the solenoid valve 153. It is only necessary to change the resistance value of the fixed resistor R1 and the resistance value of the fixed resistor R2 to those for inspection of the water-cooled temperature sensor 157 and the solenoid valve 153. In this case, the LED lamp 424 disposed on the front surface of the TMS control device 300 is turned on to indicate that the result is acceptable. As described above, since the sensor and the output of the heater and the solenoid valve are in one-to-one correspondence and each combination is independent, the program of the self-diagnosis mode can be independently corresponded in various ways.
At the end of the self-diagnosis mode, the TMS controller 300 is turned off.
The processes of steps 5 to 14 in the self-diagnosis mode may be omitted as necessary.
For example, when switching to the contact point 431 to enter the self-diagnosis mode of step 5, if the pseudo temperature is determined to be 400 degrees and the OFF output is simultaneously performed, the processing from step 9 to step 11 is simultaneously performed. It is possible to reduce the number of steps in the self-diagnosis mode. Further, regarding the inspection jig 400, parts such as the fixed resistance R2, the contact point 433 and the lamp 413 can be omitted, and the jig can be simplified.
 ここに、従来の温度調節機能部の検査設備では本実施形態のような自己診断モードはなく、ソフトウェアによる通常の温度制御が正常に動作しているか否かの検査のその流れの中で、センサとヒータや電磁弁の入出力機能検査も含めた形で全体的なシステムのチェックが行われていた。
 しかし、温度制御のロジックやソフトウェアは開発時のチェックだけで十分に評価はされているしプログラムに関する問題は以降は起こらない可能性が極めて高い。従って、センサとヒータや電磁弁のハードウェアで主に構成されている入出力経路部分に異常がないかどうかだけを検査できれば検査としては十分であると考えられる。
Here, in the inspection equipment of the conventional temperature control function unit, there is no self-diagnosis mode as in this embodiment, and in the flow of inspection whether normal temperature control by software is operating normally or not Overall system checks were conducted in the form of including input / output function inspections of heaters and solenoid valves.
However, the logic and software of temperature control are sufficiently evaluated only at the time of development check, and there is a high possibility that problems with programs will not occur thereafter. Therefore, it can be considered as sufficient as a test if it is possible to inspect only whether there is an abnormality in the input / output path portion mainly composed of the sensor, the heater and the hardware of the solenoid valve.
 そこで、本実施形態の温度調節機能部では入出力経路部分だけを検査する自己診断機能を通常の温度制御プログラムとは別にTMS制御装置300内に組み込んだものである。
 但し、温度制御プログラムと自己診断機能とは、モータ121や磁気軸受を制御する制御装置200内に一緒に組み込むようにしてもよい。
Therefore, in the temperature control function unit of the present embodiment, the self-diagnosis function of checking only the input / output path portion is incorporated in the TMS control device 300 separately from the normal temperature control program.
However, the temperature control program and the self-diagnosis function may be incorporated together in the control device 200 that controls the motor 121 and the magnetic bearing.
 本実施形態のようにTMS制御装置300と制御装置200とを別体で構成することにすれば制御装置200や検査用治具400をターボ分子ポンプの容量如何に関わらず共通化できる。このため、ターボ分子ポンプの容量が大きく、温度調整用のセンサとヒータや電磁弁の個数が多く必要なときにのみTMS制御装置300を配設すればよい。 If the TMS control device 300 and the control device 200 are configured separately as in this embodiment, the control device 200 and the inspection jig 400 can be made common regardless of the capacity of the turbo molecular pump. For this reason, the TMS controller 300 may be provided only when the capacity of the turbo molecular pump is large and the number of sensors for temperature control and the number of heaters and solenoid valves are large.
 即ち、ターボ分子ポンプの容量が大きくなっても従来の機種で使用している制御装置200に対して温度調整機能だけの構成を有するTMS制御装置300を付け足して拡張ができる。このときの検査も検査用治具400を接続するだけの簡単な装置で行える。センサとヒータや電磁弁の入出力経路部分に関する検査のための自己診断プログラムも簡単である。このように入出力経路が正常かどうかを、簡単な治具とTMS制御装置300内の検出回路によって、容易に判定できる。
 従って、ターボ分子ポンプの容量が大きく、センサとヒータや電磁弁の個数が多く必要になった場合であっても制御装置200側を大幅に拡張するための改造は必要なくコストを抑えることができる。また、ターボ分子ポンプの新規機種を開発した際の外部検査装置の準備が不要となる。新規機種の生産立ち上げにおける対応項目の削減にも繋がる。
That is, even if the capacity of the turbo molecular pump is increased, the TMS controller 300 having only the temperature control function can be added to the controller 200 used in the conventional model and expanded. The inspection at this time can also be performed by a simple device only by connecting the inspection jig 400. The self-diagnosis program for the inspection regarding the sensor and the heater and the input / output path part of the solenoid valve is also simple. As described above, whether or not the input / output path is normal can be easily determined by the simple jig and the detection circuit in the TMS controller 300.
Therefore, even if the capacity of the turbo molecular pump is large and the number of sensors, heaters, and solenoid valves is large, there is no need to remodel the control device 200 to significantly expand the side of the control device, and the cost can be reduced. . In addition, it becomes unnecessary to prepare an external inspection device when developing a new type of turbo molecular pump. It also leads to the reduction of the corresponding items in the production launch of new models.
 TMS制御装置300を検査するための検査用治具400は簡素な構成であり、安価にでき、専用のプログラムを組み込んだパソコン等の大掛かりな検査器具は不要であるため、各サービス拠点にも容易に導入ができる。 The inspection jig 400 for inspecting the TMS control device 300 has a simple configuration, can be inexpensive, and a large-scale inspection tool such as a personal computer incorporating a dedicated program is unnecessary, so it is easy to each service point Can be introduced.
 また、温度調整機能を検査するためにパソコンが不要なため、従来のようにOSがバージョンアップされたりする毎にアプリケーションソフトが使えなくなることはなくなる。
 但し、図1に示すTMS制御装置300の端子301に接続された延長ケーブル211を使い、I/O装置経由でパソコンに接続すれば、温度調整機能のパソコンでの動作確認も可能にできる。
In addition, since a personal computer is not required to inspect the temperature adjustment function, application software can not be used each time the OS is upgraded as in the prior art.
However, if the extension cable 211 connected to the terminal 301 of the TMS control device 300 shown in FIG. 1 is used and connected to the PC via the I / O device, it is possible to confirm the operation of the temperature control function on the PC.
 次に、上記のようにTMS制御装置300を汎用的に用いる場合に、より一層安全なポンプ運転を可能とする機能について説明する。
 TMS制御装置300を汎用的に運用する場合、ターボ分子ポンプの運転状況や容量等の仕様に合わせて、以下に述べる通り使用するチャンネルと使用しないチャンネルを個別に設定する必要がある。
Next, when the TMS control device 300 is used for a general purpose as described above, a function that enables safer pump operation will be described.
When the TMS controller 300 is operated in a versatile manner, it is necessary to individually set channels to be used and channels not to be used, as described below, in accordance with specifications such as the operating condition and capacity of the turbo molecular pump.
 例えば、図1のTMS制御装置300の場合にはチャンネル1~3が温度センサとヒータや電磁弁に接続されており、一方、チャンネル4は未接続の状態である。この際、使用しないチャンネル4の設定を無効化しておかないと、ポンプ運転開始後に、何らかの原因でTMS制御装置300に異常な入力信号があると、外部に異常信号を出力してしまう可能性がある。また、上記設定の無効化を手動で行うと、設定をし忘れる恐れがある。 For example, in the case of the TMS controller 300 of FIG. 1, the channels 1 to 3 are connected to the temperature sensor and the heater or the solenoid valve, while the channel 4 is not connected. At this time, unless setting the unused channel 4 is disabled, there is a possibility that an abnormal signal is output to the outside if there is an abnormal input signal to the TMS control device 300 for some reason after the pump operation starts. is there. In addition, there is a risk of forgetting to make settings if the above settings are manually disabled.
 図10に、サーミスタ抵抗と計測電圧の関係のイメージ図を示す。この計測電圧は図5に示す端子303と端子305間の電圧に相当する。起動時にこの端子303と端子305間の電圧を読むことで、この端子303と端子305間にケーブルが接続されているか否かが判断される。即ち、各チャンネルの端子303と端子305間の電圧が、図10の矢視線A(2.9ボルト程度に相当)より電源電圧の3ボルト迄の間(断線判断領域)にある場合には断線状態と判断する。一方、図10の矢視線B(0.1ボルト程度に相当)より0ボルト迄の間(短絡判断領域)にある場合には短絡状態と判断する。そして、このように起動時に電圧値が断線判断領域若しくは短絡判断領域にある場合は、そのチャンネルの制御設定を無効化する。但し、断線判断領域若しくは短絡判断領域の設定は、回路やケーブルの電圧降下や余裕等を考慮して決めることが望ましい。 FIG. 10 shows an image diagram of the relationship between the thermistor resistance and the measured voltage. This measured voltage corresponds to the voltage between the terminal 303 and the terminal 305 shown in FIG. By reading the voltage between the terminal 303 and the terminal 305 at startup, it is determined whether or not a cable is connected between the terminal 303 and the terminal 305. That is, when the voltage between the terminal 303 and the terminal 305 of each channel is between 3 A of the power supply voltage (broken line judging region) from the arrow line A (corresponding to about 2.9 volts) in FIG. Judge as a state. On the other hand, when it is between 0 volt (short circuit determination area) from arrow B (corresponding to about 0.1 volt) in FIG. Then, when the voltage value is in the disconnection determination region or the short circuit determination region at the time of startup as described above, the control setting of the channel is invalidated. However, it is desirable that the setting of the disconnection determination region or the short circuit determination region be determined in consideration of the voltage drop or the margin of the circuit or the cable.
 チャンネルの制御設定が無効化された場合には、ポンプ運転開始後は、温度センサの異常を検知しない。また、上記温度センサに対するヒータや電磁弁への出力デバイスの制御も行わない。また、断線状態や短絡状態と判断した後は、必要に応じ、外部に該当のチャンネルが断線状態や短絡状態で無効化されていることをアラームとして出力することもできる。
 かかる判断と無効化の設定は、チャンネルのすべてに亙り設定可能である。即ち、使用しないチャンネルは、自動で制御をオフにすることができる。
 例えば、排気口ヒータ159を使わない仕様に変更する等で、排気口温度センサ161のケーブルをチャンネルに接続しなかった場合には、TMS制御装置300における排気口ヒータ159の制御設定が自動的に無効となり、制御設定の変更し忘れが防止できる。
When the control setting of the channel is invalidated, the abnormality of the temperature sensor is not detected after the start of the pump operation. Moreover, control of the output device to the heater with respect to the said temperature sensor or a solenoid valve is not performed. In addition, after it is determined that the channel is in the disconnection state or the short circuit state, an alarm can be output that the corresponding channel is invalidated in the disconnection state or the short circuit state to the outside as needed.
Such judgment and invalidation settings can be set for all channels. That is, channels that are not used can be automatically turned off.
For example, when the cable of the outlet temperature sensor 161 is not connected to the channel, for example, by changing to a specification not using the outlet heater 159, the control setting of the outlet heater 159 in the TMS control device 300 is automatically performed. It becomes invalid and can prevent forgetting to change control settings.
 また、断線している入力チャンネルに対して、断線、短絡、低温、高温等の温度センサの異常を検知しないので、ポンプ運転開始後に、何らかの異常な信号入力があっても外部にエラーを表示したり、誤った制御をすることもない。
 なお、上記断線や短絡状態の判定は、TMS制御装置300の起動時(温度調節機能部の立ち上がり時)に行い、一旦無効化設定がされてしまったものに対する再設定は、TMS制御装置300の再起動によって行うことができる。
 以上の通り、TMS制御装置300に本機能を採用することで、TMS制御装置300のチャンネル毎の制御設定を自動で行え、設定ミスが防止できる。また、異常入力信号による、エラー出力や誤った制御をすることを防止できる。
 なお、本発明は、本発明の精神を逸脱しない限り種々の改変をなすことができ、そして、本発明が当該改変されたものにも及ぶことは当然である。
In addition, since an abnormality in the temperature sensor such as disconnection, short circuit, low temperature, high temperature, etc. is not detected for the disconnected input channel, an error is displayed outside even if there is any abnormal signal input after the start of pump operation. And there is no wrong control.
The determination of the disconnection or short circuit state is performed at the time of activation of the TMS control device 300 (at the time of rising of the temperature control function unit), and resetting of those for which invalidation setting has been made once is performed by the TMS control device 300. It can be done by rebooting.
As described above, by adopting this function in the TMS control device 300, control setting for each channel of the TMS control device 300 can be performed automatically, and setting errors can be prevented. In addition, it is possible to prevent an error output or an erroneous control due to an abnormal input signal.
The present invention can be modified in various ways without departing from the spirit of the present invention, and it goes without saying that the present invention extends to those modified as well.
10 ターボ分子ポンプ
100 ポンプ本体
133 排気口
151 ヒータ
152 水冷管
153 電磁弁
155 TMS温度センサ
157 水冷温度センサ
159 排気口ヒータ
161 排気口温度センサ
200 制御装置
300 TMS制御装置
301、303、305、309、311 端子
400 検査用治具
401 ロータリースイッチ
403 共通端子
405 操作軸
407、409、411 端子
413 ランプ
415 固定抵抗
421、422、423、424、425 LEDランプ
431、432、433、434 接点

 
DESCRIPTION OF SYMBOLS 10 turbo molecular pump 100 pump main body 133 exhaust port 151 heater 152 water cooling pipe 153 solenoid valve 155 TMS temperature sensor 157 water cooling temperature sensor 159 exhaust port heater 161 exhaust port temperature sensor 200 control apparatus 300 TMS control apparatus 301, 303, 305, 309, 311 terminal 400 inspection jig 401 rotary switch 403 common terminal 405 operation shaft 407, 409, 411 terminal 413 lamp 415 fixed resistance 421, 422, 423, 424, 425 LED lamp 431, 432, 433, 434 contact point

Claims (12)

  1.  ポンプ本体に内蔵されたモータや磁気軸受を監視制御する制御部と、
    前記ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部を有する真空ポンプにおいて、
    前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、
    前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを有し、
    前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断できる自己診断部を有することを特徴とする真空ポンプ。
    A control unit that monitors and controls a motor and a magnetic bearing built in the pump body;
    A vacuum pump having a temperature control function unit that measures the temperature of the pump body by at least one temperature sensor disposed in the pump body and controls at least one heater or a solenoid valve based on the temperature.
    The temperature control function unit includes a first terminal to which the temperature sensor can be connected or removed.
    And a second terminal capable of connecting or disconnecting the heater or the solenoid valve,
    A vacuum pump comprising a self-diagnosis unit capable of self-diagnosis as to whether or not an input signal to the first terminal is normally input or whether it is normally output from the second terminal.
  2.  前記温度調節機能部は、
    前記第1の端子に前記温度センサに代えてダミー用の第1の負荷が接続され、
    前記第1の負荷にかかる電圧が予め設定した電圧値のとき前記温度センサが所定の温度値になったと擬似的に判定する温度判定手段と、
    前記第2の端子に前記ヒータ又は前記電磁弁に代えてダミー用の第2の負荷が接続され、前記温度判定手段の判定結果に基づき前記第2の負荷に対して所定の電流を流す、若しくは停止する出力手段とを有し、
    前記予め設定した電圧値が前記ヒータのONとOFF、又は前記電磁弁の開と閉に対応して用意され、
    前記出力手段は前記ヒータ又は前記電磁弁毎に独立して構成されたことを特徴とする請求項1記載の真空ポンプ。
    The temperature control function unit
    A dummy first load is connected to the first terminal instead of the temperature sensor,
    Temperature determination means for determining in a pseudo manner that the temperature sensor has reached a predetermined temperature value when the voltage applied to the first load is a preset voltage value;
    A second load for dummy is connected to the second terminal instead of the heater or the solenoid valve, and a predetermined current is supplied to the second load based on the determination result of the temperature determination means, or And output means for stopping
    The preset voltage values are prepared corresponding to ON and OFF of the heater or opening and closing of the solenoid valve,
    The vacuum pump according to claim 1, wherein the output means is configured independently for each of the heater or the solenoid valve.
  3.  前記ヒータのONとOFF、又は前記電磁弁の開と閉が時系列に判定されることで検査の合否が判断されることを特徴とする請求項2記載の真空ポンプ。 The vacuum pump according to claim 2, wherein the pass / fail of the inspection is judged by judging ON / OFF of the heater or opening / closing of the solenoid valve in time series.
  4.  前記出力手段に前記所定の電流が流れたことで前記ヒータ又は前記電磁弁に対し所定の出力が行なわれたと擬似的に判定する出力判定手段を備えたことを特徴とする請求項2又は請求項3に記載の真空ポンプ。 3. The apparatus according to claim 2, further comprising: an output determination unit that determines in a pseudo manner that a predetermined output is performed to the heater or the solenoid valve when the predetermined current flows in the output unit. The vacuum pump according to 3.
  5.  前記第1の負荷が前記ヒータのONとOFFにそれぞれ対応した抵抗値を有する抵抗であり、又は前記電磁弁の開と閉にそれぞれ対応した抵抗値を有する抵抗であり、それぞれの抵抗はスイッチで切替自在であることを特徴とする請求項2~4のいずれか一項に記載の真空ポンプ。 The first load is a resistor having a resistance value corresponding to each of ON and OFF of the heater, or a resistor having a resistance value corresponding to each of opening and closing of the solenoid valve, and each resistance is a switch The vacuum pump according to any one of claims 2 to 4, which is switchable.
  6.  前記温度調節機能部は、前記第1の負荷が短絡状態であることを確認したとき検査モードに入ることを特徴とする請求項2~5のいずれか一項に記載の真空ポンプ。 The vacuum pump according to any one of claims 2 to 5, wherein the temperature control function unit enters an inspection mode when it is confirmed that the first load is in a short circuit state.
  7.  前記温度調節機能部が前記制御部とはそれぞれ独立したユニットとして構成されたことを特徴とする請求項1~6のいずれか一項に記載の真空ポンプ。 The vacuum pump according to any one of claims 1 to 6, wherein the temperature control function unit is configured as a unit independent of the control unit.
  8.  前記温度調節機能部の前記第1の端子と前記第2の端子に対するケーブルの断線若しくは短絡を判断する判断手段を備え、
    該判断手段で断線若しくは短絡と判断されたときには、前記第1の端子への入力信号を不感知とし、また、前記第2の端子から外部への制御は行われないことを特徴とする請求項1~7のいずれか一項に記載の真空ポンプ。
    It comprises a determination means for determining a break or a short circuit of a cable to the first terminal and the second terminal of the temperature control function unit,
    When it is determined by the determination means that a disconnection or a short circuit occurs, the input signal to the first terminal is not sensed, and control from the second terminal to the outside is not performed. The vacuum pump according to any one of 1 to 7.
  9.  前記判断手段は、
    前記温度調節機能部が立ち上がるとき、断線若しくは短絡の判断を実行することを特徴とする請求項8に記載の真空ポンプ。
    The judging means
    9. The vacuum pump according to claim 8, wherein when the temperature control function unit starts up, determination of disconnection or short circuit is performed.
  10.  ポンプ本体に内蔵されたモータや磁気軸受を監視制御する制御部と、
    前記ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部を備えた温度調節用制御装置であって、
    前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、
    前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを有し、
    前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断できる自己診断部を有することを特徴とする温度調節用制御装置。
    A control unit that monitors and controls a motor and a magnetic bearing built in the pump body;
    A temperature control device comprising a temperature control function unit that measures the temperature of the pump body by at least one temperature sensor disposed in the pump body and controls at least one heater or a solenoid valve based on the temperature. There,
    The temperature control function unit includes a first terminal to which the temperature sensor can be connected or removed.
    And a second terminal capable of connecting or disconnecting the heater or the solenoid valve,
    It has a self-diagnosis unit capable of self-diagnosis as to whether or not an input signal to the first terminal is normally input or whether it is normally output from the second terminal. Control device.
  11.  ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部の検査用治具であって、
    前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、
    前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを有し、
    前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断できる自己診断部を有することを特徴とする前記温度調節機能部の検査用治具。
    A test jig for a temperature control function unit, which measures the temperature of the pump body by at least one temperature sensor disposed in the pump body and controls at least one heater or a solenoid valve based on the temperature,
    The temperature control function unit includes a first terminal to which the temperature sensor can be connected or removed.
    And a second terminal capable of connecting or disconnecting the heater or the solenoid valve,
    The temperature control characterized in that it has a self-diagnosis unit capable of self-diagnosis whether an input signal to the first terminal is normally input or whether it is normally output from the second terminal. Jig for inspection of function part.
  12.  ポンプ本体に配設された少なくとも一つの温度センサにより該ポンプ本体の温度を計測し、該温度に基づき少なくとも一つのヒータ又は電磁弁を制御する温度調節機能部の温度判定と出力の異常の有無を診断する方法であって、
    前記温度調節機能部は、前記温度センサを接続若しくは取外し可能な第1の端子と、
    前記ヒータ又は前記電磁弁を接続若しくは取外し可能な第2の端子とを備え、
    前記第1の端子への入力信号が正常に入力されたか否か、又は、前記第2の端子から正常に出力されたか否かを自己診断でき、
    前記第1の端子に前記温度センサに代えてダミー用の第1の負荷を接続し、
    前記第2の端子に前記ヒータ又は前記電磁弁に代えてダミー用の第2の負荷を接続し、
    前記第1の負荷にかかる電圧が予め設定した電圧値のとき前記温度センサが所定の温度値になったと擬似的に判定し、
    該擬似的に判定された結果に基づき前記第2の負荷に対して所定の電流を流す、若しくは停止を制御し、
    前記予め設定した電圧値を前記ヒータのONとOFF、又は前記電磁弁の開と閉に対応して用意し、
    前記第2の負荷に対する電流の制御は前記ヒータ又は前記電磁弁毎に独立して構成したことを特徴とする前記温度調節機能部の異常の有無を診断する方法。

     
    At least one temperature sensor provided in the pump body measures the temperature of the pump body, and based on the temperature, determines whether there is an abnormality in the temperature determination and the output of the temperature control function unit that controls the at least one heater or solenoid valve. A method of diagnosis,
    The temperature control function unit includes a first terminal to which the temperature sensor can be connected or removed.
    And a second terminal capable of connecting or disconnecting the heater or the solenoid valve,
    It is possible to self-diagnose whether the input signal to the first terminal is normally input or whether it is normally output from the second terminal,
    A dummy first load is connected to the first terminal instead of the temperature sensor,
    Connecting a second load for dummy to the second terminal instead of the heater or the solenoid valve;
    When the voltage applied to the first load is a preset voltage value, it is determined in a pseudo manner that the temperature sensor has reached a predetermined temperature value,
    A predetermined current is supplied to the second load or a stop is controlled based on the result of the pseudo determination,
    Preparing the preset voltage value corresponding to ON and OFF of the heater or opening and closing of the solenoid valve;
    The control of the current to the second load is configured independently for each of the heater or the solenoid valve.

PCT/JP2018/025668 2017-07-14 2018-07-06 Vacuum pump, temperature adjustment control device applied to vacuum pump, inspection tool, and diagnosis method for temperature adjustment function unit WO2019013118A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880042475.3A CN110770446B (en) 2017-07-14 2018-07-06 Vacuum pump, control device, inspection jig, and diagnostic method
EP18831905.7A EP3653883A4 (en) 2017-07-14 2018-07-06 Vacuum pump, temperature adjustment control device applied to vacuum pump, inspection tool, and diagnosis method for temperature adjustment function unit
US16/629,471 US11549515B2 (en) 2017-07-14 2018-07-06 Vacuum pump, temperature adjustment controller used for vacuum pump, inspection tool, and method of diagnosing temperature-adjustment function unit
KR1020197035916A KR102553701B1 (en) 2017-07-14 2018-07-06 Vacuum pump, control device for temperature control applied to the vacuum pump, inspection jig, and diagnostic method for the temperature control function unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017138323 2017-07-14
JP2017-138323 2017-07-14
JP2017-211992 2017-11-01
JP2017211992A JP6942610B2 (en) 2017-07-14 2017-11-01 A method for diagnosing a vacuum pump, a temperature control control device applied to the vacuum pump, an inspection jig, and a temperature control function unit.

Publications (1)

Publication Number Publication Date
WO2019013118A1 true WO2019013118A1 (en) 2019-01-17

Family

ID=65001279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025668 WO2019013118A1 (en) 2017-07-14 2018-07-06 Vacuum pump, temperature adjustment control device applied to vacuum pump, inspection tool, and diagnosis method for temperature adjustment function unit

Country Status (1)

Country Link
WO (1) WO2019013118A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213796A (en) * 1985-07-10 1987-01-22 Shimadzu Corp Air cooling type turbo-molecular pump
JPS6361782A (en) * 1986-08-30 1988-03-17 Japan Electronic Control Syst Co Ltd Self-diagnosing device for fuel pump
JP2000064964A (en) * 1998-08-21 2000-03-03 Ebara Corp Failure prediction system of vacuum pump
JP2003278692A (en) 2002-03-20 2003-10-02 Boc Edwards Technologies Ltd Vacuum pump
JP2004301322A (en) * 2003-03-19 2004-10-28 Boc Edwards Kk Magnetic bearing device and turbo-molecular pump mounted with this magnetic bearing device
JP2008184904A (en) * 2007-01-26 2008-08-14 Shimadzu Corp Vacuum pump device
JP2009041458A (en) * 2007-08-09 2009-02-26 Osaka Vacuum Ltd Turbo molecular pump
WO2011021428A1 (en) 2009-08-21 2011-02-24 エドワーズ株式会社 Vacuum pump
JP2011226377A (en) * 2010-04-20 2011-11-10 Osaka Vacuum Ltd Control device of molecular pump device
JP2016160917A (en) * 2015-03-05 2016-09-05 株式会社島津製作所 Vacuum pump temperature control device
JP2017089462A (en) * 2015-11-06 2017-05-25 エドワーズ株式会社 Determination system of vacuum pump and vacuum pump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213796A (en) * 1985-07-10 1987-01-22 Shimadzu Corp Air cooling type turbo-molecular pump
JPS6361782A (en) * 1986-08-30 1988-03-17 Japan Electronic Control Syst Co Ltd Self-diagnosing device for fuel pump
JP2000064964A (en) * 1998-08-21 2000-03-03 Ebara Corp Failure prediction system of vacuum pump
JP2003278692A (en) 2002-03-20 2003-10-02 Boc Edwards Technologies Ltd Vacuum pump
JP2004301322A (en) * 2003-03-19 2004-10-28 Boc Edwards Kk Magnetic bearing device and turbo-molecular pump mounted with this magnetic bearing device
JP2008184904A (en) * 2007-01-26 2008-08-14 Shimadzu Corp Vacuum pump device
JP2009041458A (en) * 2007-08-09 2009-02-26 Osaka Vacuum Ltd Turbo molecular pump
WO2011021428A1 (en) 2009-08-21 2011-02-24 エドワーズ株式会社 Vacuum pump
JP2011226377A (en) * 2010-04-20 2011-11-10 Osaka Vacuum Ltd Control device of molecular pump device
JP2016160917A (en) * 2015-03-05 2016-09-05 株式会社島津製作所 Vacuum pump temperature control device
JP2017089462A (en) * 2015-11-06 2017-05-25 エドワーズ株式会社 Determination system of vacuum pump and vacuum pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653883A4 *

Similar Documents

Publication Publication Date Title
KR101750572B1 (en) Vacuum pump
WO2012053270A1 (en) Vacuum pump
US6606536B1 (en) Magnetic bearing device and magnetic bearing control device
WO2019239934A1 (en) Vacuum pump and temperature control device
KR102553701B1 (en) Vacuum pump, control device for temperature control applied to the vacuum pump, inspection jig, and diagnostic method for the temperature control function unit
JP2005083316A (en) Motor control system and vacuum pump mounting the same
WO2019013118A1 (en) Vacuum pump, temperature adjustment control device applied to vacuum pump, inspection tool, and diagnosis method for temperature adjustment function unit
WO2021060003A1 (en) Vacuum pump and accessory unit of vacuum pump
JP7242321B2 (en) Vacuum pump and vacuum pump controller
JP2016094849A (en) Vacuum pump and method for estimating cause of trouble at vacuum pump
JP2003232292A (en) Vacuum pump
JP2020176525A (en) Pump monitoring device and vacuum pump
CN110621885A (en) Vacuum pump and heating device thereof
WO2021166777A1 (en) Vacuum pump and controller
EP4310338A1 (en) Vacuum pump, vacuum pump control device, and remote control device
WO2023095851A1 (en) Vacuum pump and control device
JP2004084547A (en) Vacuum pump
KR100604894B1 (en) Rorating system for the apparatus of manufacturing a semiconductor device
JP2004068636A (en) Vacuum pump
JP2008092661A (en) Blower
CN108691769A (en) Vacuum pump apparatus and method for controlling of operation for vacuum pump apparatus
JP2011074893A (en) Turbo-molecular pump and vacuum device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831905

Country of ref document: EP

Effective date: 20200214